
Heavy Meson Decays with Soft Gluon Effects

Teresa Lynne Palmer

May 2014



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© Teresa Lynne Palmer, 2014 
 
 
Series of dissertations submitted to the  
Faculty of Mathematics and Natural Sciences, University of Oslo 
No. 1489 
 
ISSN 1501-7710 
 
 
All rights reserved. No part of this publication may be  
reproduced or transmitted, in any form or by any means, without permission.   
 
 
 
 
 
 
 
 
Cover: Inger Sandved Anfinsen. 
Printed in Norway: AIT Oslo AS.   
 
Produced in co-operation with Akademika Publishing.  
The thesis is produced by Akademika Publishing merely in connection with the  
thesis defence. Kindly direct all inquiries regarding the thesis to the copyright  
holder or the unit which grants the doctorate.   



Acknowledgements

I would like to thank my advisor Jan Olav Eeg for his guidance, patience and motivation

during these years. I also thank the professors Farid Ould-Saada, Carsten Lutken and Are

Raklev who were my teachers. Thanks also to my office mate Sergey and my fellow students

Marianne, Marius and the members of the theory group for their support both technical and

social. I would also like to thank my PhD committee.

My children Thomas and Andreas and my husband Roar were patient with my late working

hours, weekend work, and with some truncated vacations. Roar also helped with proof reading,

providing useful writing advice, and did the usual house and family work when I was occupied

with equations and calculations. I would also like to thank Bjørg and Asgeir who supported the

project fully as well, which was also very important to me.

iii





Contents

1 Introduction 1

2 The Standard Model 3
2.1 Particle content of the Standard Model . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Gauge interactions of the Standard Model . . . . . . . . . . . . . . . . . . . . 4

2.3 Spontaneous symmetry breaking . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Framework for calculation of weak decays of heavy mesons 9
3.1 The η and η′ mesons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Effective Field Theory at the Quark Level 13
4.1 Fermi theory of weak interactions . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Operator product expansion OPE . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 Factorizable and nonfactorizable contributions . . . . . . . . . . . . . . . . . . 16

5 Effective theories at the meson level 19
5.1 Chiral Perturbation Theory, χPT . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 Heavy Quark Effective Theory, HQET . . . . . . . . . . . . . . . . . . . . . . 20

5.3 Heavy-Light Chiral Perturbation Theory (HLχPT) . . . . . . . . . . . . . . . 21

5.4 Large Energy Effective Theory, LEETδ . . . . . . . . . . . . . . . . . . . . . 22

6 Quark Models: Bridge between quark and meson models 25
6.1 Chiral Quark Model χQM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2 Including soft gluons in the quark models . . . . . . . . . . . . . . . . . . . . 26

6.3 Heavy Light Chiral Quark Model, HLχQM . . . . . . . . . . . . . . . . . . . 27

6.4 Large energy chiral quark model LEχQM . . . . . . . . . . . . . . . . . . . . 28

7 Adding vector mesons to the χQM’s 31
7.1 Including soft vector mesons . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2 Including hard vector mesons . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8 Summary of the papers 35
8.1 Paper 1: On the color suppressed contribution

to B̄0
d → π0π0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8.2 Paper 2: Form factors for semileptonic D decays . . . . . . . . . . . . . . . . 35

8.3 Paper 3: D to V η,η′ decays including gluon fusion . . . . . . . . . . . . . . . 35

v





Chapter 1

Introduction

The current theory of particle physics, known as the Standard Model (SM), was developed over

a period of 30 years. While this theory has been very successful at predicting experimental

results, there are both experimental and theoretical reasons to believe that it is incomplete. The

fact that it is incomplete, implies that the Standard Model is a low energy approximation to a

more complete higher energy theory.

Possible extensions to the SM have been proposed in the form of new particles or new

forces. However, direct searches for new particles at accelerators have not detected any new

particles or forces beyond those predicted by the Standard Model. If there is new physics at

an energy that is out of the range of current accelerators, it is still possible to detect the effects

from quantum fluctuations in the loop calculations, on processes, such as particle decay rates

that occur at the lower, accessible energies.

This thesis is focused on calculating the nonleptonic weak decay rates of mesons. It is

important to calculate the decay rates to test the SM prediction against measurements, but also

to look for new physics. The effects of new physics will increase with energy so that the effects

on the decay rates at accessible energies will be small. In particle decays that have a high rate

in the SM, the effect of the new physics will be too small to be detected against the background.

In rare decays, where the SM decay rate is small, the effect of new physics, even when small,

might stand out against the background.

While the weak and electromagnetic (EM) interactions can be calculated using perturba-

tion techniques, this becomes difficult at low energies, <∼ 1 GeV, with the strong interaction.

Unlike the EM force, the coupling constant for the strong force decreases with higher energy.

Perturbation expansion can be used at high energy. At the lower energy scale of confinement of

the quarks into mesons, the coupling constant is too large for perturbation techniques to apply.

These calculations can be done numerically by solving the full equations on a lattice, called

lattice QCD. But this is computationally expensive and each decay mode must be calculated

separately. Another complication is that the QCD Lagrangian is written in terms of quarks and

gluons. However, at the energy scale ∼ 1 GeV the quarks are confined into bound states of

quarks (mesons and baryons), which are the particles that are measured. Another approach is

to use effective theories, which are simpler, low energy approximations to the full QCD theory.

The current work focuses on calculations of the decays of heavy mesons (B, D) to light

pseudoscalar mesons (π, K, η) and to light vector mesons (ρ, K∗). While these particles decay

via the weak interaction, the decay process also includes QCD effects from the exchange of
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gluons. These calculations can be done using chiral quark models that include the mesons and

effects of the soft gluons on the interactions.

The framework for the decay calculations is the operator product expansion, which allows

seperation of the energy scales of the decay. . Heavy Light chiral perturbation theory extends

this to include the heavy mesons (B,D). The chiral quark model is based on chiral perturbation

theory, in which the degrees of freedom are the light mesons (π, K, η) and the coupling between

them. The quark models include coupling between the mesons and the light quarks and soft

gluons. Including the coupling of soft gluons to the light quarks allows calculation of the effects

of the gluons on the decays. Heavy light chiral quark model extends the chiral quark model to

include heavy mesons and the heavy quarks (b, c).

The current work uses a chiral quark model which is extended to include vector mesons, to

calculate decay modes of B and D mesons to vector and pseudoscalar mesons. The calculations

include soft gluon effects,using the gluon condensate, and gluon fusion production of η′. In the

first paper, we calculate the decay amplitude of B mesons to two pions with a comparison of the

factorizable and nonfactorizable decay modes. The second paper presents a calculation of the

form factors for D meson decays to both vector and pseudoscalar mesons. The modified chiral

quark model is used to calculate the form factors. The third paper is a calculation of the decay

of D mesons to vector mesons and the η and η′ meson, and the contribution to the η′ mode from

gluon fusion effects.

The following sections describe the models that are used in the calculations. Chapter 4

introduces effective field theory and the nonleptonic Fermi theory for weak decays. Chapter

5 describes the chiral perturbation theories and their extensions to include high energy and

high mass particles. Chapter 6 describes the different quark models that are used. Chapter 7

describes the extensions of the quark models to include light vector mesons and high energy

vector mesons and the method used to determine the couplings in the model. Chapter 8 gives a

brief review of the 3 papers in the thesis and a summary of the results.
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Chapter 2

The Standard Model

The Standard Model, which is the current theory that is used to treat the fundamental particles

of matter and the interactions of the electromagnetic, weak and strong forces is a quantum

field theory which combines quantum physics with relativity [29]. The Standard Model (SM)

is a relativistic quantum field theory. The gauge fields enter the Lagrangian in the covariant

derivative which is defined from the requirement of gauge invariance.

2.1 Particle content of the Standard Model

There are two main classes of particles in the standard model; fermions which are the matter

particles and gauge bosons which are the force mediators. To experimental limits, the fermions,

which include leptons and quarks, are point particles with no discernible structure, but carry a

spin of 1/2. The gauge bosons carry a spin of 1 and include the massless photons and gluons,

and the massive weak gauge bosons, W and Z.

The matter particles are spin 1/2 fermions. The six quarks (u, d, s, c, b, t), and six leptons

(e,νe,μ,νμ,τ ,μτ ) are grouped into 3 families of two quarks and two leptons each,

(
u e−

d′ ν ′
e

)
,

(
c μ−

s′ ν ′
μ

)
,

(
t τ−

b′ ν ′
τ

)
. (2.1)

Each family is grouped into left handed SU(2) doublets of quarks and leptons, and right

handed singlet states; (
u

d′

)
L

,

(
νe

e

)
L

, uR, d′
R, eR, (νe)R . (2.2)

The right and left handed particles are projections of the mass particle states, with, for example

eR = R e =
(1 + γ5)

2
e (2.3)

where R = (1 + γ5)/2 and L = (1 − γ5)/2 are the right and left handed projection opera-

tors. These are given as mass eigenstates. Because the mass eigenstates differ from the weak

eigenstates, the weak eigenstates (d′, s′, b′) can be written as linear combinations of the mass
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eigenstates related by the CKM matrix [23],

⎛
⎝ d′

s′

b′

⎞
⎠ =

⎛
⎝ Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎠
⎛
⎝ d

s

b

⎞
⎠ = VCKM

⎛
⎝ d

s

b

⎞
⎠ . (2.4)

While the quarks are the degrees of freedom in the SM Lagrangian, at low energies, they do

not exist as free particles, but have only been observed in bound states of quark-antiquark pairs,

qq̄, (the mesons) and in bound state of 3 quarks or 3 antiquarks, qqq and q̄q̄q̄ (the hadrons).

Because, at low energies, the quarks only exist in bound states and free quarks do not exist, it is

not simple to define a quark mass. The constituent quark mass is taken to be the average energy

of a quark bound in a hadron in the ground state, while the current mass is the mass that appears

in the Lagrangian. This is given in Eq. (3.1).

2.2 Gauge interactions of the Standard Model

The interactions between particles arise from the gauge symmetries in the Lagrangian. The

gauge symmetry group for the Standard Model is

SU(3)C × SU(2)L × U(1)Y . (2.5)

Here, SU(3)C color is the gauge group for the strong interaction and SU(2)L × U(1)L is the

gauge group for the electroweak interaction.

As an example, the QED interaction is generated by a local U(1) gauge transformation, with

the quarks and leptons represented by a free fermion field ψ(x). The Lagrangian density for

ψ(x) is

L = ψ̄(iγ · ∂ − m)ψ. (2.6)

Under a local U(1) gauge transformation the field ψ(x) transforms as

ψ(x) → ψ′(x) = Uψ(x) = eiα(x)ψ(x), (2.7)

where ψ is a fermion matter field (quark, lepton) and

U = eiα(x) ∈ U(1). (2.8)

The derivative acting on the field ψ(x) will transform as

∂μψ(x) → eiα(x)[∂μψ(x) + iψ(x)(∂μα(x))]. (2.9)

The Lagrangian density transforms as

L → L′ = L + iψ̄(γ · ∂α(x))ψ. (2.10)

We can formulate a Lagrangian that is invariant under the gauge transformation if we introduce
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a vector field Aμ, which transforms as

Aμ → A′
μ = Aμ − 1

e
∂μα, (2.11)

which defines the covariant derivative

Dμ = ∂μ + ieAμ (2.12)

where Aμ is called a gauge field and e is the coupling constant. The covariant derivative acting

on the field ψ(x) will transform under local U(1) gauge transformations the same way as the

field ψ,

Dμψ → (D′
μψ

′) = U(Dμψ). (2.13)

The Lagrangian density with the covariant derivative

L = ψ̄(iγ · D − m)ψ , (2.14)

is invariant under the U(1) gauge transformation. This brings in the gauge field Aμ with inter-

actions with the matter fields ψ(x) (quarks and leptons).

Similarly, invariance under the local SU(3)C ×SU(2)L ×U(1)Y transformations introduces

a covariant derivative that includes the gauge fields Aa
μ, W a

μ and Bμ of the SU(3)C , SU(2)L and

U(1)Y groups respectively,

Dμ = ∂μ + igst
aAa

μ + igW a
μ

σa

2
+

i

2
g′Y Bμ. (2.15)

The matrices ta are the 8 generators of the SU(3) color group. The matrices σa/2 are the 3

generators of the weak SU(2) group.

The SU(3) gauge field has 3 color charges and 8 gauge bosons. The gluon field tensor is

given by

Ga
μν = ∂μA

a
ν − ∂νA

a
μ + igsf

abcAb
μA

c
ν , (2.16)

where fabc are the structure constants for the SU(3) group. The field tensor for the weak force

mediators is

F a
μν = ∂μW

a
ν − ∂νW

a
μ + igεabcW b

μW c
ν , (2.17)

εabc are the structure functions for the SU(2) group and for the U(1)Y group bosons the field

tensor is

F Y
μν = ∂μBν − ∂νBμ. (2.18)

Because the SU(3)C and SU(2) groups are non-Abelian the terms in (2.16) and (2.17) with

the structure constants will generate self coupling between the gauge bosons for the strong and

weak interactions. The U(1)Y group is Abelian and the structure constants are zero so there is

no self interaction term with the Bμ gauge bosons.
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2.3 Spontaneous symmetry breaking

While the gluons and photons are massless, the weak vector bosons W+, W− and Z have

nonzero mass. Adding a mass term for the vector boson to the Lagrangian would violate the

gauge symmetry. However, masses can be generated by spontaneous breaking of the weak

gauge symmetry. A spontaneous symmetry breaking occurs when a symmetry that is inherent

in the Lagrangian is broken by the ground state of a system. The spontaneous breaking of the

weak gauge symmetry, which gives mass to the weak vector bosons W+, W− and Z, is achieved

by adding a scalar field that couples to the weak and electromagnetic fields [18, 15, 22, 17]. This

field, which is commonly called the Higgs field, is a complex scalar field with a general form,

φ(x) =

(
φ+(x)

φ0(x)

)
= 〈φ〉0 + Δφ, (2.19)

with a nonzero ground state, 〈φ〉0. The Lagrangian density terms pertaining to the Higgs field

are given by

LHiggs = (Dμφ)†(Dμφ) − V (φ), (2.20)

where the potential is

V (φ) = μ2φ†φ + λ(φ†φ)2. (2.21)

The SU(2)L x U(1)Y symmetry is broken by the Higgs field acquiring a nonzero vacuum

expectation value when μ2 < 0. The ground state, which gives a minumum for the potential

V (φ), is

〈φ〉0 ≡ 〈0|φ|0〉 =

(
0

v/
√

2

)
, (2.22)

with v =
√−μ2/λ, where μ2 < 0 and λ > 0.

Because the Higgs field couples to SU(2) and U(1) fields, the covariant derivative

Dμ φ(x) =
[
∂μ + igW a

μ

σa

2
+

i

2
g′BμY

]
φ(x) (2.23)

includes the SU(2) and U(1) gauge fields, W a
μ (x) and Bμ(x). The Lagrangian then generates

mass terms for the gauge bosons from the coupling of the vacuum expectation value of the

Higgs field to the gauge boson fields. Taking this term on the ground state yields

(Dμφ0)
†(Dμφ0) =

v2

2

[(g

2

)2 (
W 2

1 + W 2
2

)
+

(
−g

2
W3 +

g′

2
B

)2
]

. (2.24)

The fields W1 and W2 are written in the basis with the charged W-boson fields,

W± =
W1 ∓ iW2√

2
. (2.25)

The fields W μ
3 and Bμ are written in terms of the Z boson and the photon field Aμ

Zμ =
gW μ

3 − g′Bμ√
g2 + g′2 (2.26)
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and

Aμ =
gW μ

3 + g′Bμ√
g2 + g′2 . (2.27)

It is common to express the Z and A fields in terms of a rotation,

Z = cos θW W 3 − sin θW B

A = sin θW W 3 + cos θW B,
(2.28)

where θW is the weak mixing angle defined by

sin θW =
g′√

g2 + g′2 , cos θW =
g√

g2 + g′2 . (2.29)

The W bosons have a mass

MW = g
v

2
, (2.30)

and the Z boson has a mass

MZ =
MW

cos θW

. (2.31)

The photon field, A remains massless.
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Chapter 3

Framework for calculation of weak decays
of heavy mesons

The standard model Lagrangian is written in terms of quarks and leptons. At lower energies

� 1 − 2 GeV, the quarks are in bound states of mesons, which are quark-antiquark pairs, or

baryons, which are composed of 3 quarks (or 3 antiquarks). The particles that are measured in

experiments are leptons and mesons and baryons. The mesons and baryons decay in strong and

weak interactions. This work is focused on the weak decay of heavy mesons to lighter mesons.

The weak interaction in these decays have QCD effects that arise from the emission of gluons

from the quarks in the mesons. The QCD coupling increases at lower energies and at the energy

scale of the meson decays, perturbative QCD is used down to a scale ∼ 1 GeV. Our calculations

are done using effective theories with mesons and their interactions together with quark models

that give the coupling of the quarks to the mesons.

The quarks are generally classified in two groups, the light quarks u, d, s, which have masses

m 
 1 GeV and the heavy quarks, c, b and t which have mass m > 1 GeV. The current masses

of the quarks are [4]

mu = 0.002 GeV mc = 1.275 GeV

md = 0.005 GeV mb = 4.6 GeV

ms = 0.095 GeV mt = 173 GeV.

(3.1)

The mesons, bound states of a quark and an antiquark, are also classified as light or heavy.

The light mesons (π,K, η) are bound states of the light quarks (u, d, s). The heavy mesons

(B,D) are bound states containing at least one heavy quark (c, b). The top quark t, is heavy and

decays too quickly to form mesonic bound states.

The decay rates are calculated in terms of the probability amplitude, M, of decay process.

The amplitude, M(P → P1P2), for a decay of a particle P to two decay products is calculated

from the Lagrangian by

M(P → P1P2) = 〈P1P2|L|P 〉. (3.2)

The decay rate for a decay to two pseudoscalar mesons P → P1P2 is given by

Γ(P → P1P2) =
1

8π

|�P |
M2

|M|2. (3.3)
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For decays to one pseudoscalar and one vector meson, P → P1V , the decay rate is given by

Γ(P → P1V ) =
1

8π

|�P |3
M2

|M|2. (3.4)

For a two body decay, where M is the mass of the initial particle and m1 and m2 are the masses

of the decay products, the energy of the decay product is

E1 =
M2 − m2

2 + m2
1

2M
. (3.5)

The 3-momentum of the decay products, |�P | = |�P1| = |�P2| is

|�P | =
[(M2 − (m1 + m2)

2)(M2 − (m1 − m2)
2)]1/2

2M
. (3.6)

For the calculations of the amplitudes, we use effective theories and quark models. An

effective field theory is a theory with the same symmetries as the full theory which is applicable

in a limited energy range. In the meson decays that we consider, there are several energy scales.

At low energies � 1 GeV, where the quarks are confined to bound states, the degrees of

freedom are the mesons. The effective theory for the light mesons (π,K,η), is Chiral Perturbation

Theory (χPT). The Heavy Light Chiral Perturbation Theory HLχPT has as degrees of freedom

the light mesons of the χPT and the heavy B and D mesons. These effective theories are based

on QCD with the quark degrees of freedom integrated out.

At higher energies > 1 GeV the degrees of freedom are the quarks which can be treated with

perturbative QCD. In this energy range effective theories are used. The Heavy Quark Effective

Theory (HQET) includes the heavy c and b quarks. The Large Energy Effective Theory (LEET)

is and effective theory for high energy light quarks.

Quark models are a bridge between the higher energy theories, where the degrees of freedom

are quarks, and the low energy chiral perturbation theories, which are in terms of light mesons.

They include interactions between the mesons and the quarks. The chiral quark model (χQM)

includes interactions between the light mesons (π,K,η) and the light quarks, (u, d, s). The heavy

light chiral quark model (HLχQM) extends the (χQM) to include the heavy mesons (B, D) and

the heavy quarks (b, c). While the effective theories have parameters that are determined by

QCD, the chiral quark models have parameters, such as the coupling constants and constituent

masses, that must be determined by matching calculations of currents with known or measured

quantities.

In the current work, an extension to the (χQM) is used, which includes couplings with the

vector mesons ( ρ,K∗,ω) which are bound states of 2 quarks in a state with spin 1.

3.1 The η and η′ mesons

The light meson octet (π, K, η) contains the light mesons which includes the meson η8. There

also exists a singlet state η1. The physical states which are measured, are the η and η′ which

are mixtures of the SU(3) singlet (η1) and octet (η8) states. In terms of the quark content, these
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states are

η1 =
1√
3
(uu + dd + ss) (3.7)

and

η8 =
1√
6
(uu + dd − 2ss). (3.8)

The physical states, η and η′, are defined as

(
η

η′

)
=

(
cosθ −sinθ

sinθ cosθ

)(
η8

η1

)
. (3.9)

Here, θ is the η mixing angle. The η mixing angle has been measured to be θ = 13.7 degrees

[33], but the ideal mixing angle of θ = 19.5 degrees is often used. Because the η′ is a neutral,

singlet state, in addition to the u, d and s quark content, η′ also includes an admixture of cc̄

quark states and gluon states. The η′ has up to 26% gluon fraction [24]. Due to this gluon

component the η′ can be produced by the fusion of two gluons [20]. The production of η′ by

gluon fusion has been measured at the RHIC experiment [21].

The η and η′ can also be written in the quark flavor basis, ηq and ηs,

ηq =
1√
2
(uu + dd) (3.10)

ηs = ss (3.11)(
η

η′

)
=

(
cosφ −sinφ

sinφ cosφ

)(
ηq

ηs

)
. (3.12)

φ has been measured to be φ ∼ 39.3 degrees [1].
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Chapter 4

Effective Field Theory at the Quark Level

An effective field theory is usually, a low energy approximation to a higher energy theory.

Effective theories are generally used when they have variables or degrees of freedom that are

more appropriate or easier to use in a limited energy region. For example, chiral perturbation

theory is used for energies below ∼ 1 GeV, where the quarks are not free, but are bound into

mesons and baryons. The degrees of freedom for chiral perturbation theory are the light mesons

(π,K,η) rather than the quarks and gluons of the full QCD theory.

An effective theory is only applicable in a limited energy range and in general will not have

the correct high energy behavior. The Lagrangian will include all the terms that are compatible

with the the symmetry of the theory. The coefficients of these terms can generally be calcu-

lated from the full, high energy theory. However, for QCD theory, at low energies perturbation

techniques cannot be used, due to the strong coupling constant. For low energy effective theo-

ries involving QCD, the coefficients are treated as free parameters of the theory and related to

experimental data or data from lattice QCD calculations.

One can define an effective weak Lagrangian to describe weak interactions at low energies.

In this effective theory, the W bosons and the top quark are removed as explicit degrees of

freedom, i.e. they are integrated out. This is an effective field theory with nf active quarks,

so at scales above mb, there are 5 quark flavors, while at the scale of mc there are 4 quark

flavors. The couplings in the effective action are suppressed by the masses of the heavy degrees

of freedom that are integrated out.

4.1 Fermi theory of weak interactions

An example of an effective theory is the Fermi theory of weak interactions. To lowest order, the

weak interaction is represented by an exchange of a single W boson between two weak currents.

The currents have the form

Jμ = uiγ
μ(1 − γ5)Vijdj , (4.1)

where ui and dj are quark fields, u1 = u, u2 = c, u3 = t and d1 = d, d2 = s, d3 = b. Vij is

the CKM matrix defined in Eq. 2.4. These are the weak quark currents. There are also weak

leptonic currents which are not involved in the hadronic meson decays. The weak, 4 quark

interactions have the form

Lweak = Jμg2
W Dμν(W )J†ν , (4.2)
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where Dμν(W ) is the W propagator which, in the Feynman gauge, is given by

Dμν(W ) =
−gμν

p2 − M2
W + iε

. (4.3)

In the limit where (p2) 
 M2
W , the W boson propagator can be written

Dμν(W ) =
gμν

M2
W

+ O(q2/M2
W ). (4.4)

This leads to an effective Lagrangian that includes a 4-fermion interaction

LFermi = −GF√
2
JμJ

μ, (4.5)

where GF is the effective coupling
GF√

2
=

g2
W

4M2
W

. (4.6)

Equation (4.6) is a matching condition that gives a relation between the parameters of the full

electroweak theory (gW , MW ) and the coupling in the effective theory, GF . It would be possible

to expand the W propagator in powers of p2/M2
W to get operators of higher dimension, but we

leave out these operators in the meson decay calculations.

In a typical weak decay, the scale is set by the mass of the decaying hadron, for example the

decaying meson have mass MB ∼ 5 GeV or MD ∼ 2 GeV and the decay products have mass

mπ ∼ 140 MeV and mK ∼ 500 MeV. These are all small compared to the mass MW ≈ 80 GeV

of the W boson.

4.2 Operator product expansion OPE

In the operator product expansion (OPE) the Lagrangian is expressed as an expansion in the

product of local operators [34]. For the weak interactions, the products of the quark current

operators that interact (via the W exchange) are expanded into a series of local operators Qi

multiplied by Wilson coefficients, Ci,

Leff
weak =

∑
i

CiQi . (4.7)

The Wilson coefficients Ci = Ci(μ) depend on the renormalisation scale μ of the interactions,

and represent the strength that a given operator contributes to the amplitude. The Wilson coef-

ficients are calculated using perturbative QCD and the renormalization group equations.

The OPE gives a factorization of the short and long distance physics. The Wilson coef-

ficients Ci(μ) contain all the information about the short distance dynamics of the theory, at

energy scales greater or equal to μ. They depend on the properties of the particles that have

been integrated out of the effective theory. The factorization implies that the coefficients are

independent of the external states, i.e., the Ci’s are the same for all external particles.

In the operator product expansion, the weak effective Lagrangian for nonleptonic, weak
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decays, including QCD and electroweak corrections, can be written as a sum of operators [16]:

Leff
Weak =

GF√
2

∑
i

V i
CKMCi(μ)Qi(μ). (4.8)

While the weak effective Lagrangian will in general contain operators for all possible quark

currents we generally only include the Qi which are the relevant to the particular decay in

question. For the quark model where μ is below the charm quark mass, the Lagrangian operators

(Qi’s) contain only the light quarks, u,d,s.

We will focus on the first two operators which are dominating at the energy scale of the

meson decays, on the order of 1 GeV. I.e., the Wilson coefficients of the first 2 operators, C1

and C2, are much larger than the coefficients of the other operators. For example, For the

ΔC = 1 processes, which is relevant for D meson decays, the operators are:

Q1 = (sicj)(ujdi)

Q2 = (sici)(ujdj)

Q3 = (sici)
∑

q(ujdj)V −A

Q4 = (sicj)
∑

q(ujdi)V −A

Q5 = (sici)
∑

q(ujdj)V +A

Q6 = (sicj)
∑

q(ujdi)V +A.

The current (sicj) is defined as (siγ
μ(1 − γ5)cj), where the i and j are color indices. For the

ΔB = 1 processes, which are relevant for B meson decays, the operators are:

Q1 = (biuj)(ujdi)

Q2 = (biui)(ujdj)

Q3 = (bidi)
∑

q(qjqj)V −A

Q4 = (bidj)
∑

q(qjqi)V −A

Q5 = (bidi)
∑

q(qjqj)V +A

Q6 = (bidj)
∑

q(qjqi)V +A.

The operator Q2 corresponds to the tree level diagram, the operator Q1 is generated by the tree

level diagram with a gluon correction, shown in figure 4.1.

The operator Q1 = (sicj)(ujdi), after a Fierz transformation, can be written

QF
1 = Q1 = (sidi)(ujcj) (4.9)

We can also write Q1 in terms of Q2 by using the properties of the color SU(3)C generators,

δijδln =
1

NC

δinδlj + 2taint
a
lj . (4.10)

Q1 is then

Q1 =
1

NC

(sici)(ujdj) + 2(sici)
a(ujdj)

a =
1

NC

Q2 + 2Qc
2 (4.11)

here (sici)
a = (siγ

μ(1 − γ5)taci) is a colored quark current, ta is a color matrix. The operator

Qc
2 is a product of two colored currents, Qc

2 = (sici)
a(ujdj)

a.

The operator Q2 can also be written in terms of Q1. After a Fierz transformation, Q2 is

Q2 = (sidj)(ujci) . (4.12)
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Then using the transformation properties in Eq. (4.10), Q2 becomes

Q2 =
1

NC

(sidi)(ujcj) + 2(sidi)
a(ujcj)

a =
1

NC

Q1 + 2Qc
1 . (4.13)

Q1 Q2

scc u

d s d u

Figure 4.1: The Q1 and Q2 are local 4 quark operators.

d u

c s c s

d u

Figure 4.2: Contributions to the Q1 and Q2 operators. In the limit where MW 
 μ, the diagram

on the left generates the Q2 operator. The diagram on the right generates the Q1 operator and a

contribution to Q2.

4.3 Factorizable and nonfactorizable contributions

To calculate amplitudes, we start with the factorization framework, where the amplitude is

written in terms of a product of two factorizable currents [8]. As an example the decay D0 →
K0π0 has the underlying quark transition c̄ → s̄dū. The amplitude written in terms of the

operators Q1 and Q2 is

M(D0 → K0π0) = 〈K0π0|L|D0〉 =
GF√

2
VCKM 〈K0π0|(C1Q1 + C2Q2)|D0〉 (4.14)

As an example of factorization, the term in the amplitude with Q1 can be written in terms of

quark currents

〈K0π0|Q1|D0〉 = 〈K0π0|(siγ
μ(1 − γ5)di)(ujγ

μ(1 − γ5)cj|D0〉 . (4.15)
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Using the vacuum saturation approximation, this term can be written as a product of currents,

〈K0π0|Q1|D0〉 = 〈K0π0|(siγ
μ(1 − γ5)di)|0〉〈0|(ujγ

μ(1 − γ5)cj|D0〉
+ 〈K0|(siγ

μ(1 − γ5)di)|0〉〈π0|(ujγ
μ(1 − γ5)cj|D0〉 .

(4.16)

These are shown in figure (4.3). The term in the amplitude with operator Q2 is

K0

D0
π0

D0
K0

π0

Figure 4.3: The factorizable currents in 〈K0π0|Q1|D0〉. The diagram on the left corresponds

to the current 〈K0π0|(sidi)|0〉〈0|(ujcj)|D0〉 and the diagram on the right corresponds to the

current 〈K0|(sidi)|0〉〈π0|(ujcj)|D0〉.

〈K0π0|Q2|D0〉 = 〈K0π0|(siγ
μ(1 − γ5)ci)(ujγ

μ(1 − γ5)dj|D0〉 . (4.17)

This term cannot be written as a product of two currents due to the quark transitions in the

operator. We then use equation (4.13) to write Q2 in terms of Q1 and a colored current,

〈K0π0|Q2|D0〉 =
1

NC

〈K0π0|Q1|D0〉
+ 2 〈K0π0|(siγ

μ(1 − γ5)tadi)(ujγ
μ(1 − γ5)tacj|D0〉 .

(4.18)

The first term is proportional to the Q1 contribution. The second term is not factorizable, we

write it as a product of quasi-factorizable colored currents,

〈K0π0|siγ
μ(1 − γ5)tadi)(ujγ

μ(1 − γ5)tacj)|D0〉 =

〈K0π0|(siγ
μ(1 − γ5)tadi)|0〉〈0|(ujγ

μ(1 − γ5)tacj|D0〉
+ 〈K0|(siγ

μ(1 − γ5)tadi)|0〉〈π0|(ujγ
μ(1 − γ5)tacj|D0〉 .

(4.19)

This is the nonfactorizable contribution, which is shown in figure (4.4). The matrix elements of

D0
K0

π0

K0

D0
π0

Figure 4.4: The nonfactorizable currents in 〈K0π0|Q1|D0〉. The diagram on the left corresponds

to the current 〈K0π0|(sidi)
a|0〉〈0|(ujcj)

a|D0〉 and the diagram on the right corresponds to the

current 〈K0|(sidi)
a|0〉〈π0|(ujcj)

a|D0〉.
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the noncolored currents in (4.16) are well known. The matrix elements of the currents with the

colored operators, Qc
1 and Qc

2, are calculated using effective theories and chiral quark models.
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Chapter 5

Effective theories at the meson level

The effective theories that we use for nonleptonic meson decays, depend on the energy scale of

the specific decays. Various models are used depending on the energy scale, shown in figure

5.1. At high energies, μ ∼ 80 GeV, the full Standard Model, with QCD and EW interaction is

used. The degrees of freedom are the free quarks, u, d, s, c, t, b, gluons, W and Z bosons, see

fig 5.1. At energies below μ ∼ 5 GeV, the Heavy Quark Effective Theory (HQET) can be used.

This is generated by integrating out the top quark and the heavy W mesons, leaving the degrees

of freedom, the c, b quarks. The light quarks quarks in this energy range are treated using the

Large Energy Effective Theory. Here the degrees of freedom are hard, light quarks, u, d, s.

At lower energies, μ < 1 GeV, the quarks exist in bound states of mesons. These are calcu-

lated with chiral perturbation theory (χPT), where the degrees of freedom are the light meson

states π, K, η and with heavy-light chiral perturbation theory (HLχPT), where the degrees of

freedom include the heavy mesons B and D.

The chiral quark models are a bridge between the theories with quark degrees of freedom at

high energies, and the chiral perturbation theories with mesons, at lower energies. The degrees

of freedom in the chiral quark models are quarks, and the heavy and light mesons.

The decay of a heavy, B or D, meson to a light π, K, η, ρ meson will involve several energy

scales, μ ∼ 5 GeV for the B meson, μ ∼ 2 GeV for the D meson and μ < 1 GeV for the light

mesons and confinement effects. We use the operator product expansion to seperate the energy

scales of the interactions.

5.1 Chiral Perturbation Theory, χPT

Chiral perturbation theory, χPT is an effective field theory for the pseudoscalar mesons (π,K,

η) containing light quark flavors (u, d, s) [30]. It has a chiral symmetry in the limit where the

light quarks are approximately massless. Treating the light quarks as massless is, in some cases,

a valid approximation because the masses of the light quarks are much smaller than the masses

of the mesons. The Chiral Lagrangian is a representation of QCD with the heavy quark(c, b, t)

and gluon degrees of freedom integrated out. The form of the Lagrangian is determined by the

SUL(3) × SUR(3) chiral symmetry plus a quark mass matrix (Mq) term that breaks the chiral

invariance. The perturbation expansion is in terms of the momentum which is small, instead of

the strong coupling constant which is large.
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New Physics, SUSY, ... ???

1 TeV

MW ∼ 80 GeV

mb ∼ 5 GeV

SU(3)L × SU(3)R

Λχ

Full Standard Model
u, d, s, c, b, t, ...

HQET c, b

LEET, u, d, s

χQM + HLχQM + LEχQM

χPT + HLχPT
K, η, π, B, D, ...

q
u
ark

s→
m

eson
s

SU(3)V

Figure 5.1: The effective theories and quark models used at various energy scales.

The χPT Lagrangian includes the light meson octet (π, K, η) in a 3 by 3 matrix,

Σ ≡ ξ · ξ = exp

(
2i

f
Π

)
; Π =

1√
2

⎡
⎢⎣

π0√
2

+ η8√
6

π+ K+

π− − π0√
2

+ η8√
6

K0

K− K
0 − 2√

6
η8

⎤
⎥⎦ . (5.1)

The effective Lagrangian to lowest order is

LχPT =
f 2

4
Tr(∂μΣ∂μΣ†) +

f2B0

2
Tr(MΣ† + ΣM†). (5.2)

where M is the quark mass matrix,

M =

⎛
⎝ mu 0 0

0 md 0

0 0 ms

⎞
⎠ , (5.3)

f is the pion decay constant and B0 is related to the quark condensate, 〈0|q̄iqj|0〉 = −f 2B0/2δij .

Expanding Σ in powers of Π produces the free pion Lagrangian plus higher order terms.

5.2 Heavy Quark Effective Theory, HQET

Another approximate symmetry of QCD is in the limit of heavy quark masses. In the decay of

a heavy quark (Q = b, c), take the limit where mQ → ∞ where mQ is the mass of the heavy

quark. While this is a good approximation for the b quark, it can be problematic for the c quark,

which has a lighter mass. For decays of heavy to light mesons we use Heavy Quark Effective
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Theory (HQET) [26, 5].

In the limit mQ → ∞, the interactions of the light quark with the heavy quark in the heavy

mesons are independent of the heavy quark mass mQ and the quark spin. The heavy quark

becomes a static source of color in its rest frame which is flavor and spin independent. A bound

state including a heavy quark (Q = b, c) interacts with the light quarks (u, d, s) through low

energy gluons. There are corrections on the order of 1/mQ.

This theory uses the mass of the heavy quark as an expansion parameter, giving predictions

in the limit mQ → ∞. Qv is a heavy quark (b or c) with velocity v and mass mQ,

Qv(x) = e−imQx·vP+(v)Q(x). (5.4)

Here, P+(v) is the projection operator of the momentum state:

P+(v) =
γ · v + 1

2
. (5.5)

To lowest (zero) order in 1/mQ, the Lagrangian is

L(0) = Qvv · DQv + O(1/mQ). (5.6)

The velocity of vμ in the heavy quark rest frame has the form, vμ = (1,�0), so that v · v = 1

and the momentum is written p = mQv + k. Here k 
 mQ is the residual momentum. The

heavy quark carries most of the energy of the hadron, and is nearly on-shell. The residual

momentum k is a measure of how far off shell the heavy quark is.

In the limit mQ → ∞, the heavy quark propagator is modified:

lim
mQ→∞

γ · pQ + mQ

P 2
Q − m2

= lim
mQ→∞

mQv · γ + γ · k + mQ

m2
Qv2 + 2mQv · k + k2 − m2

Q

=
P+(v)

v · k + O(1/mQ). (5.7)

The heavy quark propagator can be written

SQ =
P+(v)

v · k . (5.8)

To first order in 1/mQ, the Lagrangian is

L(1) =
1

2mQ

Qv(−Cmg/2σ · G + (iD⊥)2
eff )Qv + O(m−2

Q ). (5.9)

D⊥ is the derivative orthogonal to the heavy quark velocity, and σ · G = σμνGa
μνt

a is the

chromo-magnetic term. Cm = 1 at tree level.

5.3 Heavy-Light Chiral Perturbation Theory (HLχPT)

HLχPT is based on heavy Quark Effective Field Theory (HQEFT) [8, 3], where to lowest

(zeroth) order in mQ the 0− and 1− heavy mesons are degenerate and Hv is the corresponding
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heavy (0−, 1−) meson field doublet

Hv = P+(v) (γ · P ∗ − iγ5 P5) , (5.10)

where P+(v) = (1 + γ · v)/2 is a projection operator, and v is the velocity of the heavy quark.

P ∗
μ is the 1− field and P5 the 0− field. The HLχPT Lagrangian,

LHLχPT = −Tr(H̄v ivμ∂
μHv) + Tr(H̄v

a
Hb

v vμ Vμ
ba) − gA Tr(H̄v

a
Hb

v γμ γ5Aμ
ba) , (5.11)

includes these heavy meson fields, coupled to the vector and axial fields Vμ and Aμ. These are

given by

Vμ ≡ i

2
(ξ†∂μξ + ξ∂μξ

†) , Aμ ≡ − i

2
(ξ†∂μξ − ξ∂μξ

†) , (5.12)

where

ξ = exp{iΠ/f} (5.13)

and Π is defined in Eq. (5.3). Based on the symmetry of HQEFT, take the current of one heavy

and one light quark, integrate out the quarks. This gives the bosonised current for the system

with one heavy quark and one light quark (Qv q̄) is [7, 31, 19]:

qL γμ Qv −→ αH

2
Tr

[
ξ†γαL Hv

]
, (5.14)

where Qv is a heavy quark field, v is its velocity, and Hv is the corresponding heavy meson

field. This bosonized current is compared with the matrix elements defining the meson decay

constants fH (where H = B, D), which are the same when QCD corrections below mQ are

neglected [26, 13].

5.4 Large Energy Effective Theory, LEETδ

The LEET (Large energy Effective Theory) was developed for calculations of heavy to light

meson decays, such as B or D → π. In these decays the light meson has a high energy compared

to the mass. LEET includes high energy light quarks and pseudoscalar mesons. LEET was

developed by Dugan and Grinstein [11], to study the B → Dπ decays, where the outgoing

pion is highly energetic. Charles et al. [6] applied this to semileptonic heavy to light meson

transitions. In LEET, the light quark in the decay has an energy that is large compared to the

QCD sale and the mass of the light meson. In this limit, the interactions of the hard quark

with the soft light quarks are independent of mass and flavor. The momentum of the decaying

heavy meson is defined to be P≡Mv, where v = (1, 0, 0, 0). The momentum of the hard light

meson in the rest frame of the decaying meson is P ′ = En where n = (1, 0, 0, 1) and n2 = 0.

Unfortunately, the combination of the standard version of LEET with χQM will lead to infrared

divergent loop integrals for n2 = 0. Therefore, we use a modified version where instead of

n2 = 0, we use n2 = δ2 �= 0, with δ = ν/E where ν ∼ ΛQCD, such that δ 
 1. This

construction is called LEETδ. This version of LEET uses almost light-like vectors

n = (1, 0, 0, +η) ; ñ = (1, 0, 0,−η) , (5.15)

22



where η =
√

1 − δ2. This gives

nμ + ñμ = 2vμ , n2 = ñ2 = δ2 , v · n = v · ñ = 1 , n · ñ = 2 − δ2 . (5.16)

The LEETδ Lagrangian is [25],

LLEETδ = q̄n

(
γ · ñ + δ

N

)
(in · D)qn + O(E−1) , (5.17)

where N2 = 2n · ñ. Here, qn is a hard, light quark

qn(x) = e−iEn·xP+q(x) . (5.18)

This is analogous to the heavy quark field in (5.4). The projection operators are

P+ =
1

N2
γ · n(γ · ñ + δ) , P− =

1

N2
(γ · ñ − δ)γ · n , (5.19)

The quark propagator is then

Sn(k) =
γ · n

N(n · k)
, (5.20)

which reduces to the LEET propagator in the limit δ → 0.

This can be used with light mesons with high energy ( on the scale of the heavy mesons). In

the limit where the light quark energy is large (E → ∞) the flavor and spin of the high energy

light quark are not seen by the low energy quarks in the hadron.

In the LEET limit (MH → ∞ and E → ∞), the form factors for the H → P can be

parametrised as [6]:

〈P |q̄γμQv|H〉 = 2E (ζ nμ + ζ1 vμ) . (5.21)

The form factors for the vector current for the H → V transition can be written,

〈V |q̄γμQv|H〉 = 2iEζ⊥ εμνρσvνnρε
∗
σ . (5.22)

For the axial current, the corresponding matrix element has the form

〈V |q̄γμγ5Qv|H〉 = 2Eζ
(a)
⊥ [ε∗μ − (ε∗ · v) nμ] + 2mV ζ||(ε∗ · v) nμ . (5.23)

Here the form factor ζ
(a)
⊥ is equal to ζ⊥ to leading order, and ζ

(a)
⊥ and ζ|| scale in the same manner

as ζ⊥ and ζ .

23





Chapter 6

Quark Models: Bridge between quark and
meson models

While chiral perturbation theories give the Lagrangian in terms of mesonic states, the quark

models include the quark and gluon degrees of freedom. The χQM is based on χPT and in-

cludes the light mesons (π, K, η), the light quarks (u, d, s) and an interaction term. The Heavy

Light Chiral Quark Model,( HLχQM), extends the χQM to include the heavy mesons (B, D)

and the heavy quarks (b, c) and interactions. The interaction terms in these quark models in-

troduce model parameters, in the form of couplings that cannot be determined from symmetry

considerations alone. These model parameters are determined by relating calculations to known

quantities. These quark models can be used together with the gluon couplings to calculate de-

cays with soft gluon emissions. For example the nonfactorizable amplitudes in B → ππ decays

in Paper 1 where the quark loops emit soft gluons which form a gluon condensate. Another ap-

plication is calculating decay modes where the soft gluons emitted from the quark loops produce

an η′, as in the D → V η′ decay modes in Paper 3.

6.1 Chiral Quark Model χQM

The Chiral Quark Model (χQM) contains the light mesons from χPT (π, K, η) and adds inter-

actions with the light quarks (u, d, s) [31]. The Lagrangian contains quarks, Goldstone bosons

of the broken SU(3)R × SU(3)L symmetry (the pseudoscalar meson octet π, K, η) and glu-

ons. The χQM can be used to bridge the gap between high energy perturbative QCD and low

energy χPT. The chiral quark model can be used to calculate the coefficients of Chiral Perturba-

tion Theory. The model parameters are the quark condensate, gluon condensate and the quark

masses.

The χQM Lagrangian includes the chiral perturbation theory Lagrangian with a term added

for the interaction between the light quarks (u, d, s) and the light meson octet

LχQM = q(iγμDμ − Mq)q − m(qRΣ†qL + qLΣqR), (6.1)

where q contains the light quarks (u, d, s), Mq is the light quark mass matrix, and includes the
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masses (mu, md, ms). The light meson octet is

ξ · ξ = exp(i2Π/f) = Σ . (6.2)

Integrating out the quarks will result in the chiral perturbation theory Lagrangian, Eq. (5.2).

The chiral quark model can also be formulated with flavor rotated quark fields,

χL = ξ†qL , χR = ξqR , (6.3)

where ξ is the light meson octet given in equation (5.3). The Lagrangian with the rotated quark

fields is

Lrot
χQM = χ[γ · (iD + V) + γ · A]χ − mχχ , (6.4)

where m is the constituent mass due to chiral symmetry breaking, and the vector and axial fields

are given by

Vμ = i
2
(ξ†∂μξ + ξ∂μξ

†) (6.5)

Aμ = − i
2
(ξ†∂μξ − ξ∂μξ

†) . (6.6)

The interaction term proportional to m in the Lagrangian (6.1) becomes a pure constituent mass

term.

6.2 Including soft gluons in the quark models

The chiral quark model Lagrangian includes colored currents where the light quarks in the loops

can emit soft gluons as in equation (4.19). We need to include these gluon emissions in the

model. We will include the gluon emissions by using an effective propagator for a light quark

interacting with a external gluon field, shown in figure 6.1. We use the method of Novikov et

al. [27] for treating soft gluons. In the Fock-Schwinger gauge the gluon field can be written as

an expansion in the momentum,

Aa
μ(k) = −i

(2π)4

2
Ga

ρμ

∂

∂kρ

δ(4)(k) + . . . . (6.7)

and we keep only the lowest order term. The coupling of the soft gluon to the light quark is then

approximated with the gluon at zero momentum,

−1

2
gst

aγμGμρ(0)
∂

∂kρ

∣∣∣
k=0

+ . . . (6.8)

For the case of a light quark emitting a single soft gluon, we use an effective propagator for a

light quark moving in a gluonic background keeping only the first order in the gluon field [32].

This is calculated by applying the gluon vertex in equation (6.8) to the quark propagator. The

quark propagator is

S(p) =
1

γ · p − m
(6.9)
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H P

g

Figure 6.1: H → P current in the χQM with emission of a soft gluon from the light quark in

the loop.

The propagator for a quark with momentum p emitting a soft gluon with momentum k is then

S1(p, G) = −1

2
gst

aGμρ(0)
∂

∂kρ

∣∣∣
k=0

S(p)γμS(p − k) (6.10)

The gluon momentum is then set to zero, for the soft gluon emission and the propagator to

lowest order is

S1(p, G) = −gs

4
tbGb

μρ

{σμρ, (γ · p + m)}
(p2 − m2)2

, (6.11)

where {a, b} = ab + ba is the anticommutator. The higher order terms in the expansion of the

gluon vertex in equation (6.8) correspond to higher numbers of gluons emitted from the quark.

The coupling of a gluon to a heavy quark is suppressed by 1/mQ. To lowest order the derivative

of the heavy quark propagator gives a factor of the heavy quark velocity vμ, therefore the vertex

is proportional to vμvνGμν and Gμν is antisymmetric so that vμvνGμν = 0.

Two gluons which are emitted from the quark loops can combine to form a gluon conden-

sate. This is approximated by replacing the two gluon fields with the gluon condensate,

g2
sG

a
μνG

b
αβ → 4π2

(N2
c − 1)

δab
〈αs

π
G2

〉 1

12
(gμαgνβ − gμβgνα), (6.12)

where
〈

αs

π
G2

〉
is the vacuum value of the gluon condensate. There are higher order terms in the

gluon condensate, but we will use only the lowest order term. This method is used to calculate

the nonfactorizable amplitudes, where one gluon is emitted from each colored current. This

method is used in Paper 1 to calculate the nonfactorizable contribution to B → ππ decays and

in Paper 3 to calculate the nonfactorizable contribution to D → PV decays.

6.3 Heavy Light Chiral Quark Model, HLχQM

The heavy light chiral quark model, HLχQM, combines the χQM with HQET to include heavy-

light mesons [19, 8, 31]. These are mesons with a heavy quark (c or b) and a light quark (u,d,s).

The Lagrangian contains both quark and meson fields with a term that couples the heavy-light
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mesons with heavy and light quark fields,

LHLχQM = LHQEFT + LχQM + LInt (6.13)

LInt = −GH [χaH
a

vQv + QvH
a
v χa] +

1

2G3

Tr[H
a

vH
a
v ]. (6.14)

Ha
v is the heavy meson field, that includes both pseudo scalar and vector heavy mesons, Ha

v ≡
P+(P a

μγμ − iP a
5 γ5), where a is a SU(3) flavor index, Qv is the reduced heavy quark field in

(5.4). GH and G3 are coupling constants. The quark-meson coupling GH is determined within

the HLχQM to be [19]

G2
H =

2m

f 2
π

ρ , (6.15)

where ρ is a hadronic quantity of order one. If we start with the HLχQM Lagrangian in Eq.

(6.14) and integrate out the quarks, the result is the HLχPT Lagrangian in Eq. (5.11).

Non-factorizable (color-suppressed) effects in non-leptonic decays can be accounted for

with gluon condensates. This model is used for example in B − B mixing and in B → DD

decays, and in the B → Dη′ decay [14, 12].

6.4 Large energy chiral quark model LEχQM

The Large energy chiral quark model (LEχQM) combines the high energy light mesons and

quarks from LEET to the light quarks in the χQM [25]. This model is used to calculate heavy

to light currents, for example B → π in Paper 1 and the D → π, K, η currents in Paper 2 and

Paper 3.

For hard light and chiral quarks coupling to a hard light meson multiplet field M , we extend

the ideas of χQM and HLχQM, and assume that the energetic light mesons couple to light

quarks with a derivative coupling to an axial current:

Lintq ∼ q̄ γμγ5(i ∂μM) q . (6.16)

The light energetic mesons are described by an octet 3×3 matrix field M = exp (+iEn · x) Mn ,

where Mn has the same form as Π in (5.3):

Mn =

⎛
⎜⎝

π0
n√
2

+ ηn√
6

π+
n K+

n

π−
n − π0

n√
2

+ ηn√
6

K0
n

K−
n K̄0

n −2ηn√
6

⎞
⎟⎠ . (6.17)

Here π0
n, π+

n , K+
n etc. are the hard meson fields with momentum ∼ Enμ.

Combining (6.16) with the replacement ∂μ → iE nμ yields the LEχQM interaction La-

grangian:

LLEχQM = GA Eχ̄ (γ · n) Z qn + h.c. , (6.18)

where qn is the field corresponding to an energetic light quark having momentum fraction close

to one as in Eq. (5.17), and χ represents a soft quark. GA is an unknown coupling which is
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H Pn

Figure 6.2: H → Pn current in the LEχQM. The hard pion Pn couples to the hard light quark

qn and a light chiral quark χ.

determined by relating GA to a known meson decay, for example B → π. The field Z contains

the hard meson fields MR and ML and the soft meson fields ξ,

Z = ξMn R − ξ†Mn L . (6.19)

The value of GA can be determined by calculating the current for the heavy meson to light

meson transition, H → P within LEχQM. Within the model, the current for heavy meson to

hard light meson is,

Jμ
tot(Hv → Mn) = −2iζ

√
E

MH

Tr
{
γμLHv [γ · n] ξ†ML

}
. (6.20)

Relating this to the form factors in Eq. (5.21) we obtain

ζ(v) =
1

4
m2 GH GA F

√
MH

E
, (6.21)

where the hadronic quantity F is obtained from the loop calculations in fig. 2,

F =
Nc

16π
+

3 f 2
π

8m2 ρ
(1 − gA) − (24 − 7π)

768 m4
〈αs

π
G2〉 � 0.09. (6.22)

Then we obtain the coupling constant

GA =
4ζ(v)

m2 GH F

√
E

MH

, (6.23)

where ζ(v) is numerically known to be � 0.3 for B → π [2], but is expected to be larger for

D → P [28].
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Chapter 7

Adding vector mesons to the χQM’s

7.1 Including soft vector mesons

The heavy light chiral quark model can be extended to include the light vector mesons (ρ, ω,

K∗). This model is used to calculate the decays of D mesons to light vector mesons in Paper 3.

We start with the χQM and add in terms for the vector meson mass, and the interaction terms

between the quarks and vector mesons. The vector mesons are in a matrix Vμ analogous to the

Π matrix that contains the light pseudoscalar mesons (π,K, η). The matrix Vμ is given by

Vμ =

⎛
⎜⎝

ρ0√
2

+ ω√
2

ρ+ K∗+

ρ− − ρ0√
2

+ ω√
2

K∗0

K∗− K
∗0 −φ

⎞
⎟⎠ . (7.1)

There is a similar matrix Aμ that contains the axial vector mesons. The vector models starts

with the chiral quark model Lagrangian and includes a mass term for the vector mesons and an

interaction term,

LV χQM = LχQM + LInt + Lmass. (7.2)

The interaction between quarks and the vector and axial mesons is given by

LInt = χ[hV γμVμ + hAγμγ5Aμ]χ. (7.3)

The fields χ are the rotated light quark fields defined in equation (6.3). The vector meson

interaction term is

LIV = hV χγμVμχ. (7.4)

The mass term is

Lmass = m2
V Tr[VμV

μ]. (7.5)

The strength of the coupling between vector mesons and the rotated quark fields, given by

hV in equation (7.4), can be determined by calculating the vector current within the model.

This will include the bare quark loop and the diagrams with two soft gluons emitted as shown

in figure 7.1. The first term in figure 7.1 represents the contribution to the current from the bare

31



quark loop,

Jμ = −iNc

∫
d4

(2π)4
Tr[(γμLΛn)iS(p)(hvγ

νVν)iS(p)] . (7.6)

Where Λn is defined by

Λn = ξ†λnξ , (7.7)

and λn is the SU(3) group generator. The coupling to the weak current is ΛnγμL.

Figure 7.1: The four terms that contribute to the vector current.

The bare quark loop includes divergent integrals I1 and I2 which can be evaluated in terms

of the quark condensate, gluon condensate and the constituent quark mass. Summing the con-

tribution from all the loops in figure 7.1 gives the relation for hV ,

mV fV =
1

2
hV

(
−〈qq〉

m
+ f 2

π − 1

8m2

〈αs

π
G2

〉)
(7.8)

in terms of measurable quantities and the quark condensate, and the gluon condensate.

The calculation from the current using the mass and decay constant from the ρ meson gives

the value

hV = 7.1. (7.9)

Deandrea et al. [9], have a coupling constant of hV = 5.8 obtained from setting hV = mV /fπ.

7.2 Including hard vector mesons

The LEχQM can be extended to include energetic vector mesons. This model is used to calcu-

late the semileptonic form factors for D → V transitions in Paper 2. The hard vector mesons

are in a matrix V μ
n , analogous to the V μ matrix that contains the low energy vector mesons,

V μ
n =

⎛
⎜⎝

ρ0
n√
2

+ ωn√
2

ρ+
n K∗+

n

ρ−
n − ρ0

n√
2

+ ωn√
2

K∗0
n

K∗−
n K̄∗0

n −Φn

⎞
⎟⎠ . (7.10)

Here ρ0
n, ρ+

n , K∗+
n etc. are the (reduced) vector meson fields corresponding to energetic light

vector mesons with momentum ∼ Enμ. The vector mesons V μ
n couple to the hard light quarks,

qn and the soft light quarks χ, with the interaction

LLEV ∼ χ̄ (σ · Fn) qn + h.c. , (7.11)
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where

F μν
n = ∂μV ν

n − ∂νV μ
n + [V μ

n , V ν
n ]. (7.12)

Here, we have used a derivative coupling, similar to the case for the energetic meson coupling

in Eq. (6.18). We can write the interaction term

LLEV = GV Eχ̄ (γ · nγ · Zn) qn + h.c. , (7.13)

where

Zμ
n = V μ

n

(
ξ R + ξ† L

)
. (7.14)

The coupling GV is determined by the experimental value for the D → ρ for D-meson decays

or from B → ρ for B meson decays. The hard vector field Zn in Eq. (7.14) contains the soft

pion fields ξ. In our case where no extra soft pions are going out, we set ξ → 1, and for the

momentum space Vn → kM

√
E(ε∗V ), with the isospin factor kM = 1/

√
2 for ρ0 and kM = 1 for

charged ρ’s. For the D-meson with spin-parity 0− we have H
(+)
v → P+(v)(−iγ5)

√
MH . Using

this, the involved traces are calculated, and we obtain Jμ
tot(H → Vn) for the D → V transition.

The current for a heavy meson to hard vector meson transition is [28],

Jμ
tot(Hv → Vn) = −2i

√
E

MH

Tr
{

γμLHv

(
ζ⊥γ · n − mV

m
ζ||
)

σ · Fn ξ† [γ · n]
}

, (7.15)

where the tensor Fn is given by Eq. (7.12) and Vn is a hard vector meson as in Eq. (7.10).

Relating this current to the LEET form factors in Eq. (5.22) we obtain

ζ⊥ =
m2

4
GH GV F

√
MH

E
, (7.16)

where the factor F , which comes from the loop integrals is the same as the F for the hard meson

model in (6.22). Using the equations (6.22), and (7.16), gives [25]

GV =
2 ζ⊥

m GH F

√
E

MH

, (7.17)

where ζ⊥ for D → ρ is known to be � 0.59 from CLEO data [10]. Using this data gives a value

for GV = 10.9, which is used in the calculations of heavy meson decays.
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Chapter 8

Summary of the papers

8.1 Paper 1: On the color suppressed contribution
to B̄0

d → π0π0

We show that the measured branching fraction of the decay mode B → π0π0 can be ac-

commodated within the standard model by including the nonfactorizable contributions. The

B → π+π− and B → π0π0 decay modes are dynamically different. The B → π+π− is domi-

nated by the factorizable currents, while the B → π0π0 has a large non-factorizable contribution

due to gluon interactions. We use the Large Energy Chiral Quark Model to calculate the non-

factorizable decays modes. This allows us to include the contribution of the gluon condensate

to the B → π0π0 mode.

8.2 Paper 2: Form factors for semileptonic D decays

We calculate the form factors for the D → P and D → V currents. We extend the chiral quark

model to include vector mesons VχQM, and high energy vector mesons LEVχQM. A fit to the

D → V vector form factors determines the coupling constants hV and GV for the VχQM and

the LEVχQM. We average over the values for the V (0) and A0(0) form factors to determine

best fit values of the LEET form factors where we obtain ζ � 0.5, ζ1 � 0.3, ζ⊥ � 0.6, ζ|| � 0.7

and ζ
(a)
⊥ � 0.7.

8.3 Paper 3: D to V η,η′ decays including gluon fusion

In this paper, the D → V η, η′ decay modes are calculated using the vector chiral quark model

described in section VII. This allows us to include the effects of gluon fusion on the production

of η′. In this decay, two soft gluons are emitted by the current loops, which then fuse to form an

η′. We calculate a value for the Ds → ρ η′ rate which is higher than the Ds → ρ η rate which

is consistent with the experimental results. We show that the production of η′ by gluon fusion

can account for the measured branching fractions for these modes that are higher than would be

expected from using flavor symmetry or chiral perturbation theory alone. Previous calculations

gave a value for Ds → ρ η′ that was ∼ 1/3 of the value for the Ds → ρ η branching fraction.
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Color suppressed contribution to �B0
d ! �0�0
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The decay modes of the type B ! �� are dynamically different. For the case �B0
d ! �þ�� there is a

substantial factorized contribution which dominates. In contrast, the decay mode �B0
d ! �0�0 has a small

factorized contribution, being proportional to a small Wilson coefficient combination. However, for the

decay mode �B0
d ! �0�0 there is a sizeable nonfactorizable (color suppressed) contribution due to soft

(long distance) interactions, which dominate the amplitude. We estimate the branching ratio for the mode
�B0
d ! �0�0 in the heavy quark limit for the b quark. In order to estimate color suppressed contributions

we treat the energetic light (u, d, s) quark within a variant of Large Energy Effective Theory combined

with a recent extension of chiral quark models in terms of model- dependent gluon condensates. We find

that our calculated color suppressed amplitude is suppressed by a factor of order �QCD=mb with respect to

the factorizable amplitude, as it should according to QCD-factorization. Further, for reasonable values

of the constituent quark mass and the gluon condensate, the calculated nonfactorizable amplitude for
�B0
d ! �0�0 can easily accommodate the experimental value. Unfortunately, the color suppressed

amplitude is very sensitive to the values of these model-dependent parameters. Therefore fine-tuning

is necessary in order to obtain an amplitude compatible with the experimental result for �B0
d ! �0�0.

A possible link to the triangle anomaly is discussed.

DOI: 10.1103/PhysRevD.83.054016 PACS numbers: 13.20.He, 12.39.Fe, 12.39.Hg, 12.39.St

I. INTRODUCTION

Because of numerous experimental results coming from
BaBar and Belle, there is presently great interest in decays
of B mesons. LHC will also provide us with more data
for such processes. B decays of the type B ! �� and
B ! K�, where the energy release is big compared to
the light meson masses (heavy to light transitions), has
been treated within QCD-factorization [1] and Soft
Collinear Effective Theory (SCET) [2]. In the high energy
limit, the amplitudes for such decay modes factorize into
products of two matrix elements of weak currents, and
some nonfactorizable corrections of order �s can be calcu-
lated perturbatively. However, there are additional contri-
butions of order �QCD=mb which cannot be reliably

calculated within perturbative theory [1]. The so-called
pQCD-model and QCD sum rules have also been used
for B-meson decays [3,4].

For decay modes which are of the heavy to heavy type,
involving b and c quarks, the decay amplitudes have been
described within Heavy Quark Effective Field Theory
(HQEFT) [5]. Some transitions of heavy to heavy type in
the heavy quark limits ð1=mbÞ ! 0 like B� �B mixing [6]
has been studied within Heavy-Light Chiral Perturbation
Theory (HL�PT) [7]. Furthermore, other transitions which
are formally heavy to heavy in the heavy quark limits
ð1=mbÞ ! 0 and ð1=mcÞ ! 0, like the Isgur-Wise function
[8] for B ! D, have been studied within HL�PT [7]. The
cases �B ! D �D [9] and B ! D�� [10,11] have also been
studied within such a framework, even if the energy release
in these processes is above the chiral symmetry breaking
scale. Still this framework gives amplitudes of the right

order of magnitude. The calculation of such transitions
have in addition been supplemented with calculations
within a Heavy-Light Chiral Quark Model (HL�QM) to
determine quantities which are not determined within
HL�PT itself [9,11,12].
As pointed out in a series of papers [9,11–13], there are

processes which have factorized amplitudes multiplied
by a very small Wilson coefficient combination, such
that nonfactorized amplitudes are expected to dominate.
Examples are �B0

d;s ! D0 �D0 [9], �B0 ! D0�0 [12] and
�B0
d ! D0�0. The latter process �B0

d ! D0�0 was consid-

ered recently [13,14]. In that case a heavy b quark decay-
ing to a light, but energetic quark was involved. Then the
light energetic quark might be described by an effective
theory. The first version of such a framework was Large
Energy Effective Theory (LEET) [15,16]. The HQEFT
covers processes where the heavy quarks carry the main
part of the momentum in each hadron. To describe pro-
cesses where energetic light quarks emerge from decays of
heavy b quarks, LEET was introduced [15] and used to
study the current for B ! � [16].
The idea was that LEET should do for energetic light

quarks what HQEFT did for heavy quarks. In HQEFT one
splits off the heavy motion from the full heavy quark field,
thus obtaining a reduced field depending on the velocity of
the heavy quark. Similarly, in LEETone splits off the large
energy from the full field of the energetic light quark, thus
obtaining an effective description for a reduced light quark
which depends on a lightlike four vector. It was later shown
that LEET in its initial formulation was incomplete and did
not fully reproduce QCD physics [17]. Then LEET was
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further developed to be fully consistent with QCD and
became the Soft Collinear Effective Theory (SCET) [2].

In the present paper we consider decay modes of the
type B ! ��. The decay mode �B0

d ! ���þ has a sub-

stantial factorized amplitude, given by the current matrix
element for �B0

d ! �þ transition times the matrix element

of the weak current for the outgoing ��, which is propor-
tional to the pion decay constant f�. The relevant Wilson
coefficient is also the maximum possible, namely, of order
1 times the relevant Cabibbo-Kobayashi-Maskawa (CKM)
quark mixing factors and the Fermi coupling constant.
This is in contrast to the process �B0

d ! �0�0 which is

color suppressed. As said above, decays of the type
B ! 2� have been extensively studied within QCD-
factorization, SCET, and QCD sum rule methods [18]. In
spite of tremendous efforts it has not been possible to
obtain an amplitude compatible with the experimental
result �B0

d ! �0�0. The purpose of this paper is study

this decay mode within an alternative model-dependent
framework.

First we point out that the factorized contribution to the
decay mode �B0

d ! �0�0, which is given by the B ! �
transition amplitude times the decay constant of the �0

meson, is almost zero because it is proportional to a
very small Wilson coefficient combination. For the domi-
nant nonfactorizable (color suppressed) amplitude for
�B0
d ! �0�0 we will, as mentioned above, use a model

named Large Energy Chiral Quark Model (LE�QM)
recently constructed and used to handle the process
�B0
d ! �0D0 [13,14]. Here a variant of LEET was com-

bined with ideas from previous chiral quark model (�QM)
calculations similarly to what has been done for other
nonleptonic decays [6,11,12,19,20].

A priori it might look strange to use the framework of
chiral quark models when the energy release is big com-
pared to the chiral symmetry breaking scale ��. The point

is that the motion of the heavy quark or energetic light
quark can be split off, and the various versions of heavy-
light or large energy chiral quark models and a correspond-
ing chiral perturbation theory (�PT) can be used to
describe the redundant strong interactions corresponding
to momenta of order 1 GeV and below.

It might be argued that we should have used the full
SCET theory as the basis our new model. However, the
purpose of our paper is to estimate, in analogy with pre-
vious papers [6,11,12,19–23], the effects of soft-gluon
emission in terms of gluon condensates, where transverse
quark momenta and collinear gluons will not play an
essential role. In any case this construction [13] will be a
model. Therefore it suffices for our purpose to use the more
simple formulation of LEET. We will combine LEETwith
chiral quark models (�QM) [21,24–27], containing only
soft gluons making condensates. In LE�QM [13] an ener-
getic quark is bound to a soft quark with an a priori
unknown coupling, as proposed in [21]. The unknown

coupling is determined by calculating the known B ! �
current matrix element within the model [13]. This fixes
the unknown coupling because the matrix element of this
current is known [16]. Then, in the next step, we use this
coupling to calculate the nonfactorized (color suppressed)
amplitude contribution to �B0

d ! �0�0 in terms of the low-

est dimension gluon condensate, as have been done for
other nonleptonic decays [6,11,12,19,20]. After the quarks
have been integrated out, we obtain an effective theory
containing soft light mesons as in HL�PT, but also fields
describing energetic light mesons. A similar idea with a
combination of SCET with HL�PT is considered in [28].
The LE�QMwas constructed in analogy with the previous
Heavy-Light Chiral Quark Model (HL�QM) [20] and may
be considered to be an extension of that model.
One might think that to be completely consistent, we

should also have calculated the Wilson coefficients within
a relevant large energy framework. For this purpose the use
of LEET would be dubious because it is an incomplete
theory as mentioned above. However, as we will see below,
the main uncertainty in our final amplitude will be due to
uncertainty in our model-dependent gluon condensate due
to emission of soft gluons. Therefore the Wilson coeffi-
cients calculated within full QCD as in [29] will be appro-
priate for our purpose.
In the next Sec. II we present the weak four quark

Lagrangian and its factorized and nonfactorizable matrix
elements. In Sec. III we present our version of LEET, and
in Sec. IV we present the new model LE�QM to include
energetic light quarks and mesons. In Sec. V we calculate
the nonfactorizable matrix elements due to soft gluons
expressed through the (model-dependent) quark conden-
sate. In Sec. VI we give the results and conclusion.

II. THE EFFECTIVE LAGRANGIAN
AT QUARK LEVEL

Wewill study decays of �B0
d generated by the weak quark

process b ! u �ud. We restrict ourselves to processes where
the b quark decays. This means the quark level processes
b ! du �u. Processes where the anti- b quark decays pro-
ceed analogously. The effective weak Lagrangian at quark
level is [29] (neglecting penguin operators)

L eff ¼ �GFffiffiffi
2

p VubV
�
ud½cAQA þ cBQB�; (1)

where the subscript L denotes the left-handed fields:
qL � Lq, where L � ð1� �5Þ=2 is the left-handed pro-
jector in Dirac-space. The local operator products QA;B are

defined as

QA ¼ 4 �uL��bL �dL�
�uL; QB ¼ 4 �uL��uL �dL�

�bL:

(2)

In these operators summation over color is implied.
In Eq. (1), cA and cB are Wilson coefficients. At tree level
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cA ¼ 1 and cB ¼ 0. At one loop level, a contribution to cB
is also generated, and cA is slightly increased. These effects
are handled in terms of the Renormalization Group
Equations (RGE) [29], and the coefficients can be calcu-
lated at for instance � ¼ mb or � ¼ 1 GeV. Using the
color matrix identity

2taint
a
lj ¼ �ij�ln � 1

Nc

�in�lj;

and Fierz rearrangement, the amplitudes for the processes
�B0 ! �þ�� may be written as

M�þ�� ¼ 4
GFffiffiffi
2

p VubV
�
ud

��
cA þ 1

Nc

cB

�
h��j �dL��uLj0i

� h�þj �uL��bLj �B0i
þ 2cBh�þ��j �dL��t

auL �uL�
�tabLjB0i

�
; (3)

and for �B0 ! �0�0

M�0�0 ¼ 4
GFffiffiffi
2

p VubV
�
ud

��
cB þ 1

Nc

cA

�
h�0j �uL��uLj0i

� h�0j �dL��bLj �B0i
þ 2cAh�0�0j �dL��t

abL �uL�
�tauLjB0i

�
: (4)

Here the terms proportional to 2cA and 2cB with color
matrices inside the matrix elements are the genuinely non-
factorizable contributions.

Since cA is of order one and cB of order �1=3 [12,13],
we refer to the coefficients

cf �
�
cA þ 1

Nc

cB

�
’ 1:1; cnf �

�
cB þ 1

Nc

cA

�
’ 0;

(5)

as favorable (cf) and nonfavorable (cnf) coefficients, re-

spectively. Thus, the decay mode �B0
d ! �þ�� has a size-

able factorized amplitude proportional to cf. In contrast,

the decay mode �B0
d ! �0�0 has a factorized amplitude

proportional to the nonfavorable coefficient cnf which is

close to zero. In this case we expect the nonfactorizable
term (involving color matrices) proportional to 2cA to be
dominant, i.e. the last line of Eq. (4) dominates. A sub-
stantial part of this paper is dedicated to the calculation of
this nonfactorizable contribution to the �B0

d ! �0�0 decay

amplitude.
Thus the main task of this paper will be to calculate the

matrix element of the operator QC consisting of the
product of two colored currents occurring in the last line
of Eq. (4):

QC ¼ ð �dL��t
abLÞð �uL��tauLÞ (6)

for the color suppressed process �B0
d ! �0�0. This matrix

element will be estimated in Sec. V where we use the

LE�QM to estimate nonfactorizable amplitudes in terms
of emission of soft gluons making gluon condensates.

III. AN ENERGETIC LIGHT QUARK EFFECTIVE
DESCRIPTION (LEET�)

An energetic light quark might, similarly to a heavy
quark, carry practically all the energy E of the meson it
is a part of. The difference is that now the mass of the
energetic quark is close to zero compared to the heavy
quark massmQ and E, which are assumed to be of the same

order of magnitude. We assume that the energetic light
quark is emerging from the decay of a heavy quark Q
with momentum pQ ¼ mQvþ k. The heavy quark is de-

scribed by the HQEFT Lagrangian for the reduced quark
field Qv [5]:

L HQET ¼ �Qvðiv �DÞQv þOð1=mQÞ; (7)

whereQv is the reduced heavy quark field (often named hv
in the literature), v its four velocity andmQ the mass of the

heavy quark.
The momentum of the light energetic light quark q can

be written

p
�
q ¼ En� þ k�; jk�j � jEn�j; mq � E; (8)

where E, which is of order mQ, is the energy of the

energetic light quark, mq is the light quark mass. Further,

n is the lightlike four vector which might be chosen to
have the space part along the z-axis, n� ¼ ð1; 0; 0; 1Þ, in
the frame of the heavy quark where v ¼ ð1; 0Þ. Then
ðv � nÞ ¼ 1 and n2 ¼ 0. Inserting this in the regular quark
propagator, in the limit where the approximations in (8) are
valid, we obtain the propagator

SðpqÞ ¼
� � pq þmq

p2
q �m2

q

! � � n
2n � k : (9)

This propagator is the starting point for the Large Effective
Theory (LEET) constructed in Ref. [16].
Unfortunately, the combination of LEETwith �QM will

lead to infrared divergent loop integrals for n2 ¼ 0 (see
Sec. IV). Therefore, the formalism was modified [13,14]
and instead of n2 ¼ 0, we use n2 ¼ �2, with � ¼ 	=E
where 		�QCD, such that � � 1. An expansion in �
will then within our model be equivalent to an expansion
in �QCD=mb.

In the following we describe the modified LEET [16]
where we keep � � 0 with � � 1. We call this construc-
tion LEET� [13] and define the almost lightlike vectors

n ¼ ð1; 0; 0;þ�Þ; ; ~n ¼ ð1; 0; 0;��Þ; (10)

where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
. This means that

n� þ ~n� ¼ 2v�; n2 ¼ ~n2 ¼ �2;

v � n ¼ v � ~n ¼ 1; n � ~n ¼ 2� �2:
(11)
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In the following we use the projection operators given by

P þ ¼ 1

N2
� � nð� � ~nþ �Þ;

P� ¼ 1

N2
ð� � ~n� �Þ� � n;

(12)

where N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2n � ~np ¼ 2þOð�2Þ. One factors out the

main energy dependence, just as was analogously done in
HQEFT, and define the projected reduced quark fields [16]

q
ðxÞ ¼ eiEn�xP
qðxÞ;
qðxÞ ¼ e�iEn�x½qþðxÞ þ q�ðxÞ�:

(13)

As in [16], the field q� was eliminated and one obtained
for qþ � qn the effective Lagrangian [13]:

LLEET� ¼ �qn

�
� � ~nþ �

N

�
ðin �DÞqn

þ 1

E
�qnXqn þOðE�2Þ; (14)

which (for � ¼ 0) is the first part of the SCET Lagrangian.
The operator X is given in [13]. Equation (14) yields the
LEET� quark propagator

SnðkÞ ¼ Pþ
�
� � ~nþ �

N
ðn � kÞ

��1 ¼ � � n
Nðn � kÞ ; (15)

which reduces to (9) in the limit � ! 0. In addition, for a
light energetic quark, the propagator within SCET [2]
will for small transverse quark momenta p? ! 0 coincide
with Eq. (15).

Based on LEET, it was found [16] in the formal limits
MH ! 1 and E ! 1, that a heavy H ¼ ðB;DÞ meson
decaying by the weak hadronic vector current V� to a light
pseudoscalar meson is described by a matrix element
hPjV�jHi of the form
hPjV�jHi ¼ 2E½
 ðvÞðMH;EÞn� þ 
 ðvÞ1 ðMH;EÞv��; (16)

where


 ðvÞ ¼C

ffiffiffiffiffiffiffiffi
MH

p
E2

; C	ð�QCDÞ3=2; 
 ðvÞ1


 ðvÞ
	 1

E
: (17)

This behavior is consistent with the energetic quark having
x close to 1, where x is the quark momentum fraction of the
outgoing pion [16].

IV. EXTENDED CHIRAL QUARK MODEL
FOR HEAVYAND ENERGETIC LIGHT

QUARKS (LE�QM)

The chiral quark model (�QM) [24,25] and the Heavy-
Light Chiral Quark Model (HL�QM) [20], include
meson-quark couplings and thereby allow us to calculate
amplitudes and chiral Lagrangians for processes involving
heavy quarks and low-energy light quarks. In this section

we will extend these models to include also hard, energetic
light quarks.
For the pure light and soft sector the �QM Lagrangian

can be written as [19,24]

L �QM ¼ ��½� � ðiDþV Þ þ � �A�m��; (18)

where m is the constituent mass term being due to chiral
symmetry breaking. The small current mass term is ne-
glected here. Here we have introduced the flavor rotated
fields �L;R:

�L ¼ �yqL; �R ¼ �qR; (19)

where q is the light quark flavor triplet and

� ¼ expfi�=fg;

� ¼
�0ffiffi
2

p þ �ffiffi
6

p �þ Kþ

�� � �0ffiffi
2

p þ �ffiffi
6

p K0

K� �K0 � 2�ffiffi
6

p

0
BBB@

1
CCCA: (20)

Further, V� and A� are vector and axial vector fields,

given by

V � � i

2
ð�y@��þ �@��

yÞ;

A� � � i

2
ð�y@��� �@��

yÞ:
(21)

To couple the heavy quarks to mesons there are addi-
tional meson-quark couplings within HL�QM [20]:

L int ¼ �GH½ ��a
�Ha
vQv þ �QvH

a
v�a�; (22)

where Qv is the (reduced) heavy quark field and H is the
heavy ð0�; 1�Þ meson field(s)

HðþÞ
v ¼ PþðvÞð� � P� � i�5P5Þ; (23)

P�
� being the 1� and P5 the 0� fields, and PþðvÞ ¼

ð1þ � � vÞ=2. The quark-meson coupling GH is deter-
mined within the HL�QM to be [20]

G2
H ¼ 2m

f2�
�; � ¼ ð1þ 3gAÞ

4ð1þ m2Nc

8�f2�
� �H

2m2f2�
h�s

� G2iÞ
; (24)

where �H ¼ ð8� �Þ=64. The quantity � is of order one.
For hard light quarks and chiral quarks coupling to a

hard light meson multiplet fieldM, one extends the ideas of
�QM and HL�QM, and assume that the energetic light
mesons couple to light quarks with a derivative coupling to
an axial current [13]:

L intq 	 �q���5ði@�MÞq: (25)

One combines LEET� with the �QM and assume that the
ingoing light quark and the outgoing meson are energetic
and have the behavior expð
iEn � xÞ as in (13). To de-
scribe (outgoing) light energetic mesons, we use an octet
3� 3 matrix field M ¼ expðþiEn � xÞMn of the same
form as � in (20):
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Mn ¼
�0

nffiffi
2

p þ �nffiffi
6

p �þ
n Kþ

n

��
n � �0

nffiffi
2

p þ �nffiffi
6

p K0
n

K�
n

�K0
n � 2�nffiffi

6
p

0
BBB@

1
CCCA; (26)

where �0
n, �

þ
n , K

þ
n etc. are the energetic light meson fields

with momentum 	En�.
Combining (25) with the use of the rotated soft quark

fields in (19) and using @� ! iEn� one arrives at the
ansatz for the LE�QM interaction Lagrangian:

L intq� ¼ GAE ��ð� � nÞZqn þ H:c:; (27)

where qn represents an energetic light quark having mo-
mentum fraction close to 1 and � represents a soft quark
(see Eq. (19)). Further, the coupling GA is determined by
physical requirements [13,16], and

Z ¼ �MRR� �yMLL: (28)

Here ML and MR are both equal to Mn, but they have
formally different transformation properties. This is analo-

gous to the use of quark mass matrices Mq and My
q in

standard Chiral Perturbation Theory (�PT). They are in
practice equal, but have formally different transformation
properties.

The axial vector coupling introduces a factor � � n to
the vertex (see (27)), which simplifies the Dirac algebra
within the loop integrals. In order to calculate the non-
factorizable contribution, one must first find a value for the
large energy light quark bosonization coupling GA. This
was done [13] by requiring that our model should be
consistent with the Eqs. (16) and (17). Applying the
Feynman rules of LE�QM [13] we obtain the following
bosonized current (before soft-gluon emission forming a
condensate is taken into account):

J
�
0 ðHvb

! MnÞ ¼ �Nc

Z
}kTrf��LiSvðkÞ½�iGHH

ðþÞ
vb

�
� iS�ðkÞ½iEGA� � nZ�iSnðkÞg; (29)

where }k � dDk=ð2�ÞD (D being the dimension of space-
time), and

SvðkÞ ¼PþðvÞ
v �k ; S�ðkÞ ¼ ð� �kþmÞ

k2�m2
; SnðkÞ ¼ � �n

Nn �k ;
(30)

are the propagators for heavy quarks described by (18), for
light constituent quarks, and (14) for light energetic quarks.
The presence of the left projection operator L in Z ensures
that we only get contributions from the left-handed part of
the interaction in (27), that is, Z ���! ��yMLL. The con-
tribution in (29) corresponding to the B ! � current is
illustrated by the lower part of the diagram in Fig. 1.

Loop diagrams within LE�QM depend on momentum
integrals of the form

Krst ¼
Z }k

ðv � kÞrðk � nÞsðk2 �m2Þt ; (31)

K�
rst ¼

Z }kk�

ðv � kÞrðk � nÞsðk2 �m2Þt ¼ KðvÞ
rstv

� þ KðnÞ
rstn

�:

(32)

These integrals have the important property thatKðnÞ
rst domi-

nates over KðvÞ
rst and Krst with one power of 1=�. In the

present model, we choose 	 ¼ m which is of order �QCD.

Thus the constituent light quark massm is the equivalent of
�QCD within our model. Some details of the calculation of

the B ! � is given in Ref. [13].
To calculate emission of soft gluons we have used the

framework of Novikov et al. [30]. In that framework the
ordinary vertex containing the gluon field Aa

� will be

replaced by the soft-gluon version containing the soft-
gluon field tensor Ga

�	:

igst
a��Aa

� ! � 1

2
gst

a��Ga
�	

@

@k	
. . . :jk¼0 ; (33)

where k is the momentum of the soft-gluon. (Using this
framework one has to be careful with the momentum
routing because the gauge where x�Aa

� ¼ 0 has been

used.) Here �� ¼ ��, v�, or n�ð� � ~nþ �Þ=N for a light
soft quark, heavy quark, or light energetic quark, respec-
tively. Our loop integrals are a priori depending on the
gluon momenta k1;2 which are sitting in some propagators.

These gluon momenta disappear after having used the
procedure in (33). (Note that the derivative has to be taken
with respect to the whole loop integral).

FIG. 1. The factorized contribution to the B0 ! �þ�� decay,
as described in combined HL�QM and LE�QM. Double lines,
single lines and the single line with two arrows are representing
heavy quarks, light soft quarks and light energetic quarks,
respectively. Heavy mesons are represented by a single line
combined with a parallel dashed line, and a light energetic
pion is represented by a dashed line with a double arrow.
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Emision from the heavy quark or light energetic quark
are expected to be suppressed. This will be realized in most
cases because the gluon tensor is antisymmetric, and there-
fore such contributions are often proportional to

Ga
�	v

�v	 ¼ 0; or Ga
�	n

�n	 ¼ 0: (34)

However, there are also contributions proportional to

Ga
�	v

�n	 � 0; (35)

analogous to what happens in some diagrams for the Isgur-
Wise diagram where there are two different velocities vb

and vc [31]. Such contributions appear within our calcu-
lation when two soft gluons are emitted from the heavy
quark line.

Using the prescription [19,20,25,30]

g2sG
a
�	G

a
�
 ! 4�2

�
�s

�
G2

	
1

12
ðg��g	
 � g�
g	�Þ; (36)

for the gluon condensate one obtains the leading bosonized
current [13]

J�totðH ! MÞ ¼ �i
GHGA

2
m2F Trf��LHðþÞ

v ½� � n��yMLg;
(37)

where the quantity F obtained from loop integration is
a priori containing a linearly divergent integral, which is
related to the axial coupling gA, and can be traded for gA.
One obtains [13] for the quantity F:

F ¼ 3f2�
8m2�

ð1� gAÞ þ Nc

16�
� ð24� 7�Þ

768m4
h�s

�
G2i: (38)

Note that F is dimensionless. The parameter � is given in
(24). Numerically, it was found [13] that F ’ 0:08.

In order to obtain the HL�PT Lagrangian terms
Trð �HaHbv�V

�
baÞ and Trð �HaHb���5A

�
baÞ, having coef-

ficients þ1 and �gA respectively, one calculates quark
loops with attached heavy meson fields and vector and
axial vector fields V� or A�. Then logarithmic and
linearly divergent integrals obtained within the loop dia-
grams are identified with physical quantities or quantities
of the model [19,20,24,25].

In order to fix GA in (27), we compare (16) with (37). In
our case where no extra soft pions are going out, we put

� ! 1, and for the momentum space ML ! kM
ffiffiffiffi
E

p
, with

the isospin factor kM ¼ 1=
ffiffiffi
2

p
for �0 (while kM ¼ 1 for

charged pions). Moreover for the Bmeson with spin-parity

0� we have HðþÞ
v ! PþðvÞð�i�5Þ

ffiffiffiffiffiffiffiffi
MH

p
. Using this, the

involved traces are easily calculated, and we obtain
J
�
totðH ! MÞ for the case �B0

d ! �þ:

J�totxð �B0
d ! �þÞ ¼ GHGA

2
ð ffiffiffiffiffiffiffiffiffiffiffi

MHE
p Þm2Fn�: (39)

Using the Eqs. (16), (38), and (39), one obtains [13]

GA ¼ 4
 ðvÞ

m2GHF

ffiffiffiffiffiffiffiffi
E

MH

s
; (40)

where 
 ðvÞ is numerically known [32]. Within our model,
the analogue of�QCD is the constituent light quark massm.

To see the behavior of GA in terms of the energy E, the

quantity C in (17) is written as C � ĉm3=2, which gives

GA ¼
�

4ĉf�
mF

ffiffiffiffiffiffi
2�

p
�

1

E3=2
; (41)

which explicitly displays the behavior GA 	 E�3=2. In
terms of the number Nc of colors, f� 	 ffiffiffiffiffiffi

Nc

p
and F	 Nc

which gives the behavior GA 	 1=
ffiffiffiffiffiffi
Nc

p
, i.e. the same be-

havior as the coupling GH in (22).
The bosonized current in (37) can now be written as

J
�
totðH ! MÞ ¼ �2i
 ðvÞ

ffiffiffiffiffiffiffiffi
E

MH

s
Trf��LHðþÞ

v ½� � n��yMLg:
(42)

V. NONFACTORIZABLE PROCESSES IN LE�QM

In this section we calculate the nonfactorizable contri-
bution to �B0

d ! �0�0 in Eq. (4). This will be formulated as

a quasifactorized product of two colored currents, as illus-
trated in Fig. 2. Then the nonfactorized aspects enters
through color correlation between the two parts, using
Eq. (36). Such a calculation within HL�QM and HL�PT
is done previously [9] for �B0

d;s ! D0 �D0. Here we will use

the colored current for B ! �, within the LE�QM pre-
sented in the preceding section; see the diagram in Fig. 2.
Using the GA value from the preceding section, we may
now calculate the nonfactorizable contribution to the
process by adding one soft-gluon to each loop. Then we

FIG. 2. Nonfactorizable contribution containing large energy
light fermions and mesons. There is also a corresponding dia-
gram where the outgoing antiquark �u is hard.

JAN O. EEG AND TERESA PALMER PHYSICAL REVIEW D 83, 054016 (2011)

054016-6



calculate the decay width for �B0
d ! �0�0 from this non-

factorizable amplitude, and compare our results with a
experiment.

For a low-energy quark interacting with one soft-gluon,
one might in simple cases use the effective propagator
[19,33]

SG1 ðkÞ ¼
gs
4
taGa

�	

ð2m��	 þ f��	; � � kgÞ
ðk2 �m2Þ2 ; (43)

where fa; bg � abþ ba denotes the anticommutator. This
expression is consistent with the prescription in (33), and
can be used for the diagram in Fig. 2.

Then one gets [13] the following contribution to the
bosonized colored B ! � current, shown in the lower
part of the diagram in Fig. 2:

J
�
1GðH ! MÞa ¼ �

Z
}kTrf��LtaiSvðkÞ½�iGHH

ðþÞ
v �

� iSG1 ðkÞ½iEGA� � nZ�iSnðkÞg; (44)

where a is a color octet index. Once more, we deal with the
momentum integrals of the types in (31) and (32). Taking
the color trace, rewriting (44), we obtain a contribution of
the form

J
�
1GðHb ! MÞa ¼ gsG

a
��T

�;��ðHb ! MÞ; (45)

where the contribution from the lower part of the diagram
in Fig. 2 alone is to leading order in �:

T�;��ðHb !MÞ ¼GHGA

128�
����
n�Trð��LHðþÞ

v �
�
yMLÞ;
(46)

where E � � ¼ m has been explicitly used.
There are also other diagrams not shown. In one case the

gluon is emitted from the energetic quark. This diagram is
zero due to (34). Furthermore, there is a diagram not shown
where the gluon is emitted from the heavy quark which
contains a nonzero part due to (35). This gives an addi-
tional contribution to the colored B ! � current which is
nonzero. However, this one will be projected out because it
should be proportional to the Levi-Civita tensor to give a
nonzero result for the �B0

d ! �0�0 amplitude as a whole, as

will be seen from Eq. (49) below.
The colored current for an outgoing �0 should now be

calculated in the LE�QM (see the upper part of the dia-
gram in Fig. 2), and we find

J
�
1GðM~nÞa ¼ �

Z
}kTrf��LtaiSG1 ðkÞ½iEGA� � ~nZ�iS~nðkÞg:

(47)

This colored �0 current has the general form

J
�
1GðM~nÞa ¼ gsG

a
��T

�;��ðM~nÞ; (48)

where the tensor T is given by

T�;��ðM~nÞ ¼ 2

�
�GAE

4

�
Y~n��

���� Tr½
XM~n�; (49)

where the 
X within the trace is the appropriate Gell-Mann
SU(3) flavor matrix. For an outgoing hard �0 this trace has

the value
ffiffiffiffiffiffiffiffiffi
E=2

p
when going to the momentum space. The

explicit factor 2 in front of this expression comes from
the corresponding diagram, where in the upper part of the
diagram the antiquark could be hard and the quark could be
soft and emit a soft-gluon. The factor Y contains the result
of loop momentum integration. The relevant loop integral
is now

K
�
012 ¼

Z }kk�

ðk � nÞðk2 �m2Þ2 ¼
I2
�2

n�; (50)

which gives

Y ¼ �iI2 ¼ f2�
4m2Nc


 � Y


� 1

4m2Nc

�
f2� � 1

24m2
h�s

�
G2i

�
: (51)

Here the parameter 
 is of order 10�2 to 10�1 and very
sensitive to small variations in the model-dependent pa-
rameters m and h�s

� G2i.
It is easily seen that the experimental value of the

�B0
d ! �0�0 amplitude can be accommodated for a con-

stituent mass m around 220 Mev and a value for h�s

� G2i1=4
around 315 MeV. These values are of the same order
as used in previous articles [6,9,11–13,20–22]. But in
contrast to these previous cases the present amplitude for
�B0
d ! �0�0 is very sensitive to variations of the model-

dependent parameters m and h�s

� G2i. Or more specific, the

colored current J
�
1GðM~nÞa in (47)–(49) is very sensitive to

these parameters. In other words, Y
 has to be fine-tuned in
order to produce the experimental result.
In a recent paper [31] an extra mass parameter

was introduced in the propagator of heavy quarks. One
might do the same for propagator of the light energetic
quark, and use

Sn ¼ � � n
Nðn � kþ �nÞ : (52)

This would also bring this propagator more in harmony
with the SCET propagator if �n 	 p2

?=E. This will to first
order in �n give an extra contribution in the loop integral
obtained from the diagram in Fig. 2. However, also taking
into account the corresponding diagram where the light
antiquark is the energetic one, this first order term in �n

cancels. But there will be terms of second order in �n,
which are of order �2. Such contributions have to be
considered together with higher order (in �) terms obtained
from the interaction given by the operator X in (14).
One should note that the colored current given by (48)

and (49) is determined by a triangle diagram. Thus one
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might speculate if it can in some way be related to the
triangle anomaly. Namely, the diagram in Fig. 2 would
have, for standard full propagators, the mathematical prop-
erties of the diagram relevant for the triangle anomaly.
Using dimensional regularization in this case, with dimen-
sion D ¼ 4� 2�, the loop integration gives an divergent
result 	I2 	 1=� while the corresponding Dirac trace is
	�. Thereby one obtains a finite expression for the triangle
diagram in that case. However, in the present case we have
replaced one of the standard (full) quark propagators by the
SCET-like propagator S~n. Then the trace will not be 	�
while the corresponding loop integral is still divergent
	1=�. This means that the diagram is in total divergent.
Within our various chiral quark models including heavy
quarks and light energetic quarks, the naive dimensional
regularization (NDR) has been used, and divergent inte-
grals have been identified with physical parameters
[6,9,11–13,20–22,31]. Using other schemes additional fi-
nite terms of type �=� might appear [19], and some pa-
rameters might have to be redefined.

We also note that the description of the anomaly is rather
tricky when going from the low-energy process �0 ! 2�
to higher energies where some cancellations occur [34,35].
In [34] the high energy processes Z ! �0� and �� ! �0�
was studied. (Here the high energy virtual photon �� is
coming from an energetic eþe� pair). In this case a part
of the amplitude corresponding to low-energy decay
�0 ! 2� is cancelled. But there is a remaining anomaly
tail relevant for some high energy processes [34,35].
Trying to adapt such a description in our case, the tensor
T in (49) for an outgoing �0 and soft-gluon would be
replaced by

T�;��ðAnÞ ¼ IAn

4�2f�
ffiffiffi
2

p p�
��

����; (53)

where we have taken into account that couplings and color
traces are different from the calculations in [34,35]. The
quantity IAn is an integral given by

IAn ¼
Z 1

0

xdx

�xð1� xÞ � 1
; (54)

where � � p2
�=m

2. Using, as before, m as a constituent
mass and p� ¼ E~n would give � ¼ 1 leading to IAn ’ 0:6.
However, as the anomaly tail is of perturbative character
[34,35] one might think that it is more relevant to use
masses closer to the current masses of order 5 to
10 MeV. In this case one has an asymptotic behavior IAn ’
lnð�Þ=�, and this would give values for IAn of order 10

�2.
Nowwe use (36) and also include the Fermi coupling the

Cabibbo-Kobayashi-Maskawa matrix elements, and the
coefficient 2cA for the nonfactorizable contributions to
the amplitude, where cA is the Wilson coefficient for the
OA local operator. Using Eqs. (45) and (47) we find the
effective Lagrangian at mesonic level for the nonfactoriz-
able contribution to �B0

d ! �0�0:

L LE�QM
Non:fact: ¼

4�2cA
3

�
4
GFffiffiffi
2

p VubV
�
ud

�
h�s

�
G2iSðHb !MnM~nÞ;

(55)

where SðHb ! MnM~nÞ is the tensor product
SðHb ! MnM~nÞ � T�;��ðHb ! MnÞT�;��ðM~nÞ: (56)

Using Eqs. (46) and (49), and n � ~n ’ 2, we find the
amplitude expressed entirely by known parameters, we
find an explicit expression for SðHb ! MM~nÞ in the case
�B0
d ! �0�0:

Sð �B0
d ! �0�0Þ ¼ 6ð 1ffiffiffi

2
p Þ2 G

2
AGH

128�
YE2

ffiffiffiffiffiffiffiffi
MB

p
: (57)

We will now compare this nonfactorizable amplitude for
�B0
d ! �0�0 with the factorized amplitude which domi-

nates �B0
d ! �þ��:

M�þ�� ¼
�
4
GFffiffiffi
2

p VubV
�
ud

�
� cf �

�
1

2
J�ð��Þ

�

�
�
1

2
J�ð �B0

d ! �þÞ
�
; (58)

where

J�ð��Þ ¼ f�E~n�; J
�ð �B0

d ! �þÞ ¼ 2En�
 ðvÞ: (59)

The form factor 
 ðvÞ is defined in (16) and (17).
Using the Eqs. (40) and (55)–(59), we find the following

ratio between the nonfactorized for �B0
d ! �0�0 and the

factorized amplitudes �B0
d ! �þ�� is

r � Mð �B0
d ! �0�0ÞNon�Fact

Mð �B0
d ! �þ��ÞFact

¼ cA
cf

�

Nc

E
 ðvÞffiffiffiffiffiffiffiffiffiffiffi
mMB

p ; (60)

where � is a model-dependent hadronic factor

� ¼ �Nch�s

� G2iY
2F2m4

ffiffiffiffiffiffi
2�

p : (61)

It will be interesting how the ratio r scales with energy E.

Using the scaling behavior for 
 ðvÞ with C ¼ ĉm3=2 in (17)
we find for the ratio r:

r ’ cA
cf

�ĉ

Nc

m

E
: (62)

Our calculations show that the ratio r of the amplitudes are
suppressed by 1=Nc, as it should. The ratio is also scaling
like m=E. Because E ’ mb=2 and m is the equivalent of
�QCD in our model, we have found that the nonfactorized

amplitude is suppressed by �QCD=mb as required by the

analysis in Ref. [1].
Concerning numerical predictions from our model, we

have to stick to Eq. (60). The measured branching ratios for
�B0
d ! ���þ and �B0

d ! �0�0 are ð5:13
 0:24Þ � 10�6

and ð1:62
 0:31Þ � 10�6, respectively [36]. In order to
predict the experimental value solely with the mechanism
considered in this section, we should have r ’ 0:56
 0:11.
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Numerically, we use 
 ðvÞ ’ 1=3 [32]. In previous papers
on the heavy-light chiral quark model constituent masses

m	 220 MeV and h�s

� G2i1=4 	 315 MeV has been used.

From the plot of r in Fig. 3, we observe that the experi-
mental value of r can easily be accommodated by values of
such orders. The bad news is that in our case the value of Y


and thereby � and r is very sensitive to the explicit choice

of m and h�s

� G2i1=4. Thus fine-tuning has to be used.

We also find that the perturbative anomaly tail will
numerically reproduce the amplitude for IAn ’
3:2� 10�2, corresponding to a quark mass m0 ’
11 MeV, i.e. of same order of magnitude as typical current
quark masses. Using a hybrid description with a quark

model with constituent quark masses for the colored
�B0 ! �0 current in (44)–(46), and the anomaly tail de-
scription [34,35] for the colored �0 current in (47)–(49), is
not preferable. Also, such a hybrid description also fails
to show the behavior �QCD=mb required by QCD-

factorization. Still it might be interesting that we can
numerically match the colored current for outgoing �0

with the anomaly tail description.
Note that there are also mesonic loop contributions

similar to those contributing to processes of the type
B ! D �D and B ! �D [9,11]. For those processes inter-
mediateD�ð1�Þmesons contributed. In the present case the
analogous contributions would involve energetic vector

FIG. 3. Plots for the quantities F, �, 
 and r in terms of m and h�s

� G2i1=4. We observe that for reasonable values of these parameters
the ratio r can take a wide range of values such that fine-tuning is required to reproduce the experimental value.

FIG. 4. Meson loops for �B0
d ! ��. The zigzag lines represent energetic � mesons. The dashed lines with double arrows are

energetic light mesons and the dashed line with no arrow is a soft pion.
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mesons �n, and we would need the amplitudes for
B ! �n�~n. Such loops are shown in Fig. 4. The diagram
to the right would be calculable within an extended theory
involving energetic vector mesons. Unfortunately while
the diagram to the left would be dubious because typical
loop momenta would significantly exceed 1 GeV, and
would require insertion of ad hoc form factors or should
be handled within dispersion relation techniques. Both
diagrams would of course require knowledge of the
�n�n� coupling in Fig. 4. In any case such calculations
are beyond the scope of this paper.

VI. CONCLUSION

We have pointed out that the factorized amplitude for
process �B0

d ! �0�0 is proportional to a Wilson coefficient

combination close to zero. Thus the nonfactorizable con-
tributions dominate the amplitude for this decay mode. To
handle the nonfactorizable contributions we have extended
previous chiral quark models for the pure light quark case

[24] used in [19,23,25], and the heavy-light case [20]
used in [6,9,11,12,21,22], to include also energetic light
quarks.
We have found that within our model we can account

for the amplitude needed to explain the experimental
branching ratio for �B0

d ! �0�0 [36]. In addition, the ratio

r between the nonfactorizable and factorized amplitude
scales as �QCD=mb in agreement with QCD-factorization

[1]. However, the bad news is that the calculated amplitude
is very sensitive to our model-dependent parameters,
i.e. the constituent quark mass m, and the gluon con-
densate h�s

� G2i. Anyway, final state interactions should

be present [37].
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Phys. A 15, 363 (2000).

[18] See, for instance, M. Beneke, T. Huber, and Xin-Qiang Li,
Nucl. Phys. B832, 109 (2010) and references therein.
See also Ref. [4], andH.-n. Li and S. Mishima,

’’Possible resolution of the B -> pi pi, pi K puzzles,’’
Phys. Rev. D., arXiv:0901.1272 (to be published) and
references therein.

[19] S. Bertolini, J. O. Eeg, and M. Fabbrichesi, Nucl. Phys.
B449, 197 (1995); V. Antonelli, S. Bertolini, J. O. Eeg, M.
Fabbrichesi, and E. I. Lashin, Nucl. Phys. B469, 143

(1996); S. Bertolini, J. O. Eeg, M. Fabbrichesi, and E. I.
Lashin, Nucl. Phys. B514, 63 (1998); 514, 93 (1998).

[20] A. Hiorth and J. O. Eeg, Phys. Rev. D 66, 074001 (2002).
[21] J. O. Eeg and A. Hiorth, Fiz. B 14, 41 (2005).
[22] A. Hiorth and J. O. Eeg, Eur. Phys. J. direct C 39 S1, 27

(2005).
[23] J. O. Eeg and I. Picek, Phys. Lett. B 301, 423 (1993); 323,

193 (1994); A. E. Bergan and J. O. Eeg, Phys. Lett. B 390,
420 (1997).

[24] See, for example, A. Manohar and H. Georgi, Nucl. Phys.
B234, 189 (1984); D. Espriu, E. de Rafael, and J. Taron,

Nucl. Phys. B345, 22 (1990), and references therein.
[25] A. Pich and E. de Rafael, Nucl. Phys. B358, 311

(1991).

JAN O. EEG AND TERESA PALMER PHYSICAL REVIEW D 83, 054016 (2011)

054016-10



[26] W.A. Bardeen and C. T. Hill, Phys. Rev. D 49, 409 (1994);
A. Deandrea, N. Di Bartolomeo, R. Gatto, G. Nardulli, and
A.D. Polosa, Phys. Rev. D 58, 034004 (1998); A. D.
Polosa, Riv. Nuovo Cimento Soc. Ital. Fis. 23, 1 (2000);
D. Ebert, T. Feldmann, R. Friedrich, and H. Reinhardt,
Nucl. Phys. B434, 619 (1995).

[27] A. A. Andrianov and V.A. Andrianov, Z. Phys. C 55, 435
(1992); J. Bijnens, E. de Rafael, and H. Zheng, Z. Phys. C
62, 437 (1994).

[28] B. Grinstein and D. Pirjol, Phys. Lett. B 615, 213 (2005).
[29] M.K. Gaillard and B.W. Lee, Phys. Rev. Lett. 33, 108

(1974); G. Altarelli and L. Maiani, Phys. Lett. B 52, 351
(1974); A. I. Vainstein, V. I. Zakharov, and M.A. Shifman,
Zh. Eksp. Teor. Fiz. 72, 1275 (1977); [Sov. Phys. JETP 45,
670 (1977)]; G. Buchalla, A. J. Buras, and M. E.
Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996), and
references therein; M. Ciuchini, E. Franco, G.
Martinelli, and L. Reina, Nucl. Phys. B415, 403 (1994);
See also B. Grinstein, W. Kilian, T. Mannel, and M.B.

Wise, Nucl. Phys. B363, 19 (1991); R. Fleischer, Nucl.
Phys. B412, 201 (1994).

[30] V. Novikov, A. I. Vainstein, V. I. Zakharov, and M.A.
Shifman, Fortschr. Phys. 32, 585 (1984).
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We study transition form factors for decays of D mesons. That is, we consider matrix elements of
the weak left-handed quark current for the transitions D → P and D → V, where P and, V are light
pseudoscalar or vector mesons, respectively. Our motivation to perform the present study of these form
factors is future calculations of nonleptonic decay amplitudes. We consider the transition form factors
within a class of chiral quark models. Especially, we study how the large energy effective theory limit
works for D-meson decays. In this paper, we extend previous work on the case B → π to the case
D → P ¼ π, K. Further, we extend our previous model based on the large energy effective theory to the
entirely new case D → V ¼ ρ; K�;… To determine some of the parameters in our model, we use existing
data and results based on some other methods like lattice calculations, light-cone sum rules, and heavy-light
chiral perturbation theory. We also obtain some new predictions for relations between form factors.
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I. INTRODUCTION

In the present paper, we study transition form factors
of D-meson decays, i.e., the D → P ¼ π; K;… and
D → V ¼ ρ; K�;… transition form factors within extended
chiral quark models. Knowledge of the semileptonic form
factors is, of course, necessary to calculate factorizable
contributions to the nonleptonic decays of mesons. Further,
knowledge about these form factors might determine or at
least restrict some parameters of our models and thereby
indirectly be of importance for our (model dependent)
calculations for nonleptonic decays. We are, of course,
aware of the technical challenges when calculating non-
leptonic decays of D mesons [1], and we will come back to
this in a future publication.
The D → P and D → V transition form factors have

been calculated by various methods. These have their
strength in different regions of the momentum transfer q
squared, from q2 near zero for light-cone sum rules (LCSR)
[2–7] to q2 ¼ q2max for the heavy-light chiral perturbation
theory (HLχPT) [8]. For earlier work, see, for instance,
Refs. [9,10]. In the region q2 → 0 where the momentum of
the outgoing meson is high, one might study form factors
within the large energy effective theory (LEET), invented in
Ref. [11] and further elaborated in Ref. [12]. This theory
was later developed into the soft collinear effective theory
(SCET) [13].
In the region of large momentum transfer (q2 → q2max),

lattice QCD has been used [14–17]. Form factors have been
calculated [8,18–20] within HLχPT, which is based on the
heavy quark effective theory (HQEFT). Calculations within
HLχPT have also been supplemented [21] by calculations
within the heavy-light chiral quark model (HLχQM)
[21–25]. Within the heavy quark symmetry, there are
corrections of the order Oð1=mcÞ, which will be larger
in the D sector than in the B sector. In any case, the form

factors are influenced by nearby meson poles. Heavy
(H ¼ B, D) to light (P ¼ π, K, η) transitions have also
been treated in a mesonic picture [26] and in relativistic
quark models [27–29].
Our intention is to find how well chiral quark models

describe the form factors. Namely, in the next step, we want
to calculate nonfactorizable contributions to nonleptonic
decays of D mesons. Then we ought to know how well the
chiral quark models work in various energy regions, and
specifically we need to know the various form factors
within the LEET. Some form factors are relatively well
known. But for some cases, we perform additional model-
dependent studies. Therefore, these models will be briefly
presented. Compared to previous work, we will, in this
paper, also include light vectors V ¼ ðρ;ω; K�Þ. The
transitions H → P and H → V are illustrated in Fig. 1.

II. DECOMPOSITION OF SEMILEPTONIC
FORM FACTORS

For an heavy pseudoscalar meson H ¼ B, D decaying
into a light pseudoscalar meson P, the vector current
JμVðH → PÞ depends on the involved momenta pH and
p. This current can be decomposed into two form factors.
There are two commonly used decompositions,

JμVðH → PÞ ¼ Fþðq2ÞðpH þ pÞμ þ F−ðq2ÞðpH − pÞμ
(1)

FIG. 1. Diagrams for H → P and H → V transitions at the
mesonic level. The vertical line denotes a virtual electroweak
boson ðW;Z; γÞ.
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and

JμVðH → PÞ ¼ F1ðq2Þ
�
ðpH þ pÞμ − ðM2

H −m2
PÞ

q2
qμ
�

þM2
H −m2

P

q2
F0ðq2Þqμ; (2)

where q ¼ pH − p is the momentum transfer and MH and
mP are the masses of the heavy and light mesons,
respectively. The relations between the form factors in
Eqs. (1) and (2) are

F1 ¼ Fþ; F0 ¼ Fþ þ q2

M2
H −m2

P
F−: (3)

The heavy to light transitions H → V, where H ¼
ðB;DÞ and V ¼ ðρ; K�;ω;ϕÞ, with mass mV , can proceed

through both vector and axial currents. These can be
decomposed into (in total) four form factors. The vector
current depends on only one form factor Vðq2Þ, and is
commonly parametrized as

JμVðH → VÞ ¼ hVðp; εÞjq̄γμQjHðpHÞi

¼ 2Vðq2Þ
MH þmV

εμνρσðε�VÞνpρðpHÞσ; (4)

where ε�V is the polarization vector for the outgoing vector
meson V. The axial current includes three form factors, A0,
A1, and A2, and is written as

JμAðH → VÞ ¼ hVðp; εÞjq̄γμγ5QjHi ¼ ðMH þmVÞ
�
ε�μV − ðε�V · qÞ

q2
qμ
�
A1ðq2Þ

−
�
ðpþ pHÞμ −M2

H −m2
V

q2
qμ
� ðε�V · qÞ
MH þmV

A2ðq2Þ þ
2mVðε�V · qÞ

q2
qμA0ðq2Þ: (5)

For the light leptons (l ¼ μ, e), the amplitudes for
D → Vlν are dominated by the form factors Vðq2Þ,
A1ðq2Þ, and A2ðq2Þ. The vector form factor Vðq2Þ is
dominated by vector resonances, while the A1ðq2Þ and
A2ðq2Þ are dominated by axial resonances, and the A0ðq2Þ
form factor is dominated by the pseudoscalar resonances.
Bećirević and Kaidalov [30] proposed a double pole

form for the Fþðq2Þ function. This includes the pole at a
heavy vector meson H� for the first pole and a term that
includes contributions for higher mass resonances in an
effective pole. The form factors, F ¼ Fþ, V, A0, etc., can
be written in the generic form

Fðq2Þ ¼ Fð0Þ
½1 − q2

m2
pole
�½1 − αq2

m2
pole
�
; (6)

where the parameter α parametrizes the contribution of the
higher mass resonances into an effective pole.

III. ASYMPTOTIC BEHAVIOR
OF FORM FACTORS

The HQET and LEET give constraints on the structure
of the form factors. From the HQET one can estimate
the behavior of the form factors in the limit of zero recoil
(see Ref. [21] and references therein):

Fþ ∼
ffiffiffiffiffiffiffiffi
MH

p
; F− ∼

1ffiffiffiffiffiffiffiffi
MH

p : (7)

The form factors in the LEET limit, with pμ
H ¼ MHvμ

and p ¼ Enμ, can be parametrized as [12]

hPjq̄γμQvjHi ¼ 2Eðζnμ þ ζ1vμÞ: (8)

The 4-vectors v, n are given by v ¼ ð1; 0⃗Þ and n ¼
ð1; 0; 0; 1Þ in the rest frame of the decaying heavy meson.
Here, the ζ should scale with energy E as [12]

ζ≡ ζðMH;EÞ ¼ C
ffiffiffiffiffiffiffiffi
MH

p
E2

; C∼ ðΛQCDÞ3=2;
ζ1
ζ
∼
1

E
:

(9)

In the limit MH → ∞ and E → ∞, the ratio ζ1=ζ → 0. An
explicit relation between ζ1 and ζ will be given later in
Sec. VI. The LEET may be used to estimate form factors at
large recoil, where the momentum carried by the electro-
weak bosons ðW;Z; γÞ is at a minimum, that is, for q2 → 0.
Using Eq. (9) for small q2, i.e., for E≃MH=2, one obtains
the behavior [31]

Fþ ∼ F0 ∼
1

M3=2
H

: (10)

We will need the following relations between the various
form factors and the quantities ζi of the LEET formalism:
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F1 ¼ Fþ ¼ ζ þ E
MH

ζ1; F− ¼ −ζ þ E
MH

ζ1: (11)

It should be noted that in Ref. [12] ζ1 is neglected because
it is suppressed by 1=E, as seen in Eq. (9) and later
in Eq. (64).
For transitions Hð0−Þ → Vð1−Þ, one obtains in the

LEET limit (MH → ∞ and E → ∞) for the vector current:

hVjq̄γμQvjHi ¼ 2iEζ⊥εμνρσvνnρðε�VÞσ: (12)

Here, the form factor ζ⊥ scales in the same way as ζ in
Eq. (9) but with a different factor C:

ζ⊥ ¼ C⊥
ffiffiffiffiffiffiffiffi
MH

p
E2

: (13)

For the axial current, the corresponding matrix element
should have the form

hVjq̄γμγ5QvjHi ¼ 2EζðaÞ⊥ ½ε�μV − ðε�V · vÞnμ�
þ 2mVζ∥ðε�V · vÞnμ: (14)

Here, the form factor ζðaÞ⊥ is equal to ζ⊥ to leading order,
and ζðaÞ⊥ and ζ∥ scale in the same manner as ζ⊥ and ζ.
We will need the relations between the various form

factors V, A0, A1, and A2 and the quantities ζi in the LEET
case [12],

V¼
�
1þmV

MH

�
ζ⊥; A0¼

mV

MH
ζðaÞ⊥ þ

�
1− m2

V

MHE

�
ζ∥;

A1¼
�

2E
MHþmV

�
ζðaÞ⊥ ; A2¼

�
1þmV

MH

��
ζðaÞ⊥ −mV

E
ζ∥

�
;

(15)

which should be valid in the q2 → 0 limit. These form
factors are plotted in Sec. VII.

IV. HEAVY-LIGHT CHIRAL
PERTURBATION THEORY

The HLχPT is based on the HQEFT, where, to lowest
(zero) order in 1=mQ, the 0− and the 1− heavy mesons are
degenerate and described by a field Hv,

Hv ¼ PþðvÞðγ · P� − iγ5P5Þ; (16)

where PþðvÞ ¼ ð1þ γ · vÞ=2 is a projection operator and v
is the velocity of the heavy quark. Further, P�

μ is the 1−
field, and P5 is the 0− part of the heavy meson field. These
mesonic fields enter the Lagrangian of the HLχPT,

LHLχPT ¼ −TrðH̄vivμ∂μHvÞ þ TrðH̄v
aHb

vvμV
μ
baÞ

− gATrðH̄v
aHb

vγμγ5A
μ
baÞ; (17)

where a, b are SUð3Þ flavor indices and gA ¼ 0.59 is the
axial coupling. Further, Vμ and Aμ are vector and axial
vector fields, for pseudoscalar mesons given by

Vμ ≡ i
2
ðξ†∂μξþ ξ∂μξ

†Þ; Aμ ≡− i
2
ðξ†∂μξ − ξ∂μξ

†Þ;
(18)

where

ξ ¼ expfiΠ=fg;

Π ¼

0
BB@

π0ffiffi
2

p þ ηffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ ηffiffi
6

p K0

K− K̄0 − 2ηffiffi
6

p

1
CCA; (19)

where η≡ η8. To calculate the form factors for the η and η0,
we use the η8, η0 basis,

�
η
η0
�

¼
�
cos θ − sin θ
sin θ cos θ

��
η8
η1

�
: (20)

Here, we use the value of θ ¼ 13:7° from Ref. [32].
Based on the symmetry of the HQEFT, the bosonized

current for decay of a system with one heavy quark and one
light quark (Qvq̄) forming Hv is [8,33]

q̄LγμQv ⟶
αH
2

Tr½ξ†γμLHv�; (21)

whereQv is a reduced heavy quark field that is described in
Sec. V, v is its velocity, and Hv is the corresponding heavy
meson field. This bosonized current is compared with the
matrix elements defining the meson decay constants fH
(whereH ¼ B,D). These currents are the same when QCD
corrections below mQ are neglected (see Refs. [25,34]).
The H → P form factors obtained from HLχPT are
illustrated in Fig. 2. Using the double pole parametrization,
form factors were calculated in Ref. [19]:

Fþðq2maxÞ ¼
αH

2
ffiffiffiffiffiffiffiffi
MH

p
f
gA

MH

mP þ ΔH�

þ ~α

2
ffiffiffiffiffiffiffiffi
MH

p
f
~g

MH

mP þ ΔH0� : (22)

Here, αH is defined,

αH ¼ fH
ffiffiffiffiffiffiffiffi
MH

p
: (23)

The term involving ~α and ~g is the contribution from the
higher resonances. (In Ref. [21], the higher resonance term
was not included. Instead, some nonpole terms were
included). One can also include light vectors with an
effective coupling to heavy mesons, given by Ref. [20],
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LHHV ¼ i
gVffiffiffi
2

p λTrðH̄vHvσμνF
μν
V Þ; (24)

where the coupling gV ≃ 5.9 and

Fμν
V ¼ ∂μVν − ∂νVμ þ ½Vμ; Vν�: (25)

This term will give a dominating pole term in the D → V
form factor similar to the one for D → P above. From
Eq. (24), one obtains [20]

Vðq2maxÞ ¼ − αH
2

ffiffiffiffiffiffiffiffi
MH

p
f
gVλffiffiffi
2

p MH

mV þ ΔH�

þ ~α

2
ffiffiffiffiffiffiffiffi
MH

p
f
~λ

MH

mV þ ΔH0� ; (26)

where the second term is coming from higher resonances. It
might also be calculated in the HLχQM following closely
the calculation for D� → Dγ [35]. The coupling ~λ is a
corresponding term for higher resonances.

V. VARIOUS CHIRAL QUARK MODELS

Calculating the matrix elements of quark currents, we
have used chiral quark models. Within such models, one
splits the various quark fields into different categories
according to their relevant energy and mass scale.
In Sec. VA, we consider the ordinary soft quark fields q

and the related soft flavor rotated fields χ (representing
soft constituent light quarks) at energies ranging from the
constituent quark mass m ∼ 220 MeV up to the chiral
symmetry breaking scale Λχ of order 1 GeV. These are the
quarks of the chiral quark model (χQM) [25,36–39]. where
light quarks couple to light mesons.
In Sec. V B, we also indicate how the quark fields chiral

quark model of Sec. V A might be connected to light
vectors V ¼ ρ; K�;…, in a model we call VχQM to be
described in Sec. V B. In Sec. V C, we describe the
HLχQM [21–25] based on the HQEFT [34]. Here, the
motion of the heavy quark with mass mQ (¼ mb or mc)
with momentum pQ is split in the leading termmQv, where
v is the velocity of the heavy quark, and the motion for the
reduced quark field Qv is corresponding to momenta k of
order a few hundred MeV such that pQ ¼ mQvþ k. The
reduced heavy quark field Qv (also called hv in the

literature) is together with a quark field of χQM coupled
to heavy meson fields Hv.
In Sec. V D we describe the large energy chiral quark

model (LEχQM) based on the LEET [11,12] and invented
in Ref. [40], and later used in Ref. [41]. Here, the motion of
the energetic light quark with energy E and 4-momentum
pq ¼ Enþ k (where n is a lightlike vector) is split off,
and the reduced energetic quark fields qn have momenta k
analogous to the reduced heavy quark fields. Here, the
reduced energetic quark fields qn combine with the
ordinary χQM to make energetic light pseudoscalar meson
fieldsMn. In the second part of Sec. V D, we describe how
this LEχQM can be extended to light energetic vectors Vμ

n.
This is an invention that is new in this paper.

A. χQM for low-energy light quarks

For the pure light sector, the chiral quark model gives the
interactions between light quarks and light pseudoscalar
mesons. The χQM Lagrangian can be written as

LχQM ¼ q̄ðiγμDμ −MqÞq −mðq̄RΣ†qL þ q̄LΣqRÞ; (27)

where q is the light quark flavor triplet, Mq is the current
mass matrix, and Σ ¼ ξ · ξ contains the light pseudoscalar
mesons. (The current mass term Mq will often be
neglected). The covariant derivative Dμ contains soft
gluons, which might form gluon condensates within the
model. The quantitym is interpreted as the constituent light
quark mass appearing after the spontaneous symmetry
breaking SUð3ÞL × SUð3ÞR → SUð3ÞV . The Lagrangian
(27) can be transformed into a useful version in terms of
the flavor-rotated fields χL;R:

χL ¼ ξ†qL; χR ¼ ξqR: (28)

The Lagrangian in Eq. (27) is then rewritten in the form

LχQM ¼ χ̄½γ · ðiDþ VÞ þ γ ·Aγ5 −m�χ − χ̄ ~Mq χ; (29)

where the fields V and A are given in Eq. (18) and where
the term including the current mass matrix Mq is given by

~Mq ¼ ~MV
q þ ~MA

qγ5; (30)

where

~MV
q ¼ 1

2
ðξMqξþ ξ†M†

qξ†Þ and

~MA
q ¼ 1

2
ðξMqξ − ξ†M†

qξ†Þ: (31)

This term has to be taken into account when calculating
SUð3Þ-breaking effects.

FIG. 2. Contributions to Fþ within the HLχPT. The single pole
term is shown on the right.
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B. χQM including light vector mesons (VχQM)

The VχQM adds light vector mesons to the χQM.
The vector meson fields Vμ are given as Π in Eq. (19)
with pseudoscalars P ¼ ðπ; K; ηÞ replaced by vectors
V ¼ ðρ;ω; K�;ϕÞ:

Vμ ¼

0
BB@

ρ0ffiffi
2

p þ ωffiffi
2

p ρþ K�þ

ρ− − ρ0ffiffi
2

p þ ωffiffi
2

p K�0

K�− K̄�0 −ϕ

1
CCA: (32)

These fields are coupled to the light quark fields by the
interaction Lagrangian,

LIV ¼ hV χ̄γμVμχ: (33)

The coupling constant hV can be determined from the
left-handed current for vac → V, and we find the SUð3Þ
octet current

Jaμðvac → VÞ ¼ 1

2
mVfVTr½ΛaVμ�; (34)

where the quantity Λa is given by Λa ¼ ξλaξ†, and λa is the
relevant SUð3Þ flavor matrix. For the currents, we obtain

mVfV ¼ 1

2
hV

�
− hq̄qi

m
þ f2π − 1

8m2

�
αs
π
G2

��
; (35)

which can be used to determine hV . We find, by using
fρ ≃ 216 MeV, that hV ≃ 7 for standard values of m,
hq̄qi, and hαsπ G2i [21,25,35].

C. HLχQM

The HLχQM adds heavy meson and heavy quark fields
to the χQM. The (reduced) heavy quark field Qv is related
to the full-field QðxÞ as

QvðxÞ ¼ Pþe−imQv·xQðxÞ; (36)

where P� are projection operators P� ¼ ð1� γ · vÞ=2. The
heavy quark propagator (corresponding the reduced field
Qv) is SvðpÞ ¼ Pþ=ðv · pÞ. The Lagrangian for the
reduced heavy quark fields is

LHQEFT ¼ Q̄viv ·DQv þOðm−1
Q Þ; (37)

where Dμ is the covariant derivative containing the gluon
fields.
To couple the heavy quarks to light pseudoscalar

mesons, there are additional meson-quark couplings within
the HLχQM [21],

Lint ¼ −GH½χ̄aH̄a
vQv þ Q̄vHa

vχa�; (38)

where a is an SUð3Þ flavor index and Qv is the reduced
heavy quark field in Eq. (36). The quark-meson coupling
GH is determined within the HLχQM to be [21]

G2
H ¼ 2m

f2π
ρ; (39)

where ρ is a hadronic quantity of order 1 [21].
The VχQM can be combined with the HLχQM to give a

reasonable description of the weak current for D-meson
decays D → V [20]. A coupling of Vμ to heavy mesons
might be given by Eq. (17) with Vμ → hVVμ or by the
tensor coupling in Eq. (24). In Ref. [20] the factor λ is
found to be λ ¼ −0.53 GeV−1. It might also be calculated
in the HLχQM following closely the calculation for
D� → Dγ [35]. Using the results of Ref. [35], we obtain

λ ¼ −
ffiffiffi
2

p
hVβ

4gV
; (40)

where β is defined in Ref. [35]. The value of β obtained
there gives λ≃−0.4 GeV−1, in agreement with the value
λ≃−0.41 GeV−1 in Ref. [8].
The current JμðH → VÞ, obtained from a quark loop

diagram such as in Fig. 4, has the form

JμtotðHv → VÞ ¼ Trfξ†γμLHv½Aγ · V þ Bv · V�g; (41)

where A and B are hadronic parameters containing the
couplings GH and hV , gluon condensates, and the con-
stituent quark mass. This expression is analogous to
Eq. (28) in Ref. [21] for the case H → P. However, the
D → V form factor will be dominated by the pole term
shown on the right in Fig. 3, and we will not go further into
the detailed structure of the nonleading terms A and B.

D. LEχQM

The LEχQM adds high-energy light mesons and quarks
to the χQM. Unfortunately, the combination of the standard
version of the LEET [11,12] with the χQM will lead to
infrared-divergent loop integrals for n2 ¼ 0. Therefore, the
following formalism is modified and instead of n2 ¼ 0:
we use n2 ¼ δ2, with δ ¼ ν=E, where ν ∼ ΛQCD, such that
δ ≪ 1. In the following, we derive a modified LEET in
which we keep δ ≠ 0 with δ ≪ 1. We call this construction
LEETδ [40] and define the almost lightlike vectors

FIG. 3. Contributions to H → V form factors within the
HLχPT. The single pole term is shown on the right.
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n ¼ ð1; 0; 0;þηÞ; ~n ¼ ð1; 0; 0;−ηÞ; (42)

where η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2

p
. This gives

nμ þ ~nμ ¼ 2vμ; n2 ¼ ~n2 ¼ δ2;

v · n ¼ v · ~n ¼ 1; n · ~n ¼ 2 − δ2: (43)

For the LEET, the reduced quark field is defined by

qnðxÞ ¼ e−iEn·xPþqðxÞ; (44)

corresponding to Eq. (36) and where the projection
operators are

Pþ ¼ 1

N2
γ · nðγ · ~nþ δÞ; P− ¼ 1

N2
ðγ · ~n − δÞγ · n;

(45)

where N2 ¼ n · ~n. The LEETδ Lagrangian corresponding
to the HQEFT Lagrangian in Eq. (37) is [40]

LLEETδ ¼ q̄n

�
γ · ~nþ δ

N

�
ðin ·DÞqn þOðE−1Þ: (46)

For δ → 0, this is the first part of the SCET Lagrangian.
The quark propagator is

SnðkÞ ¼
γ · n

Nðn · kÞ ; (47)

which reduces to the LEET propagator in the limit δ → 0
(which also means N → 2). For further details, we refer
to Ref. [40].
The term OðE−1Þ in Eq. (46) contains a term originating

from the current mass mq for the light energetic quark(s).
We have found that a further development beyond Ref. [40]
gives the SUð3Þ-breaking current mass term mq:

ΔLLEETδðmqÞ ¼
mq

E
q̄n

�
i ~n ·D −mq

2
γ · ~n

�
qn: (48)

For hard light quarks and chiral quarks coupling to a hard
light meson multiplet field M, the χQM and HLχQM were
extended [40], and it was assumed that the energetic light
mesons couple to light quarks with a derivative coupling to
an axial current,

Lintq ∼ q̄γμγ5ði∂μMÞq: (49)

The outgoing light energetic mesons are described by an
octet 3 × 3matrix fieldM ¼ exp ðþiEn · xÞMn, whereMn
has the same form as Π in Eq. (19):

Mn ¼

0
BBB@

π0nffiffi
2

p þ ηnffiffi
6

p πþn Kþ
n

π−n − π0nffiffi
2

p þ ηnffiffi
6

p K0
n

K−
n K̄0

n − 2ηnffiffi
6

p

1
CCCA; (50)

where π0n, πþn , Kþ
n , etc., are the fields for the hard mesons.

Furthermore, qn is related to Mn in the same manner as Qv
is related to Hv.
Combining the interaction (49) with the rotated soft

quark fields in Eq. (28), and using ∂μ → iEnμ, yields the
LEχQM interaction Lagrangian [40]

LLEχQM ¼ GAEχ̄ðγ · nÞZnqn þ H:c: (51)

Here, qn is the reduced field corresponding to an energetic
light quark having a momentum fraction close to 1 [see
Eq. (46)], and χ represents a soft quark [see Eq. (28)].
Further, GA is an unknown coupling to be determined by
relating a current calculation to measured data. Further,

Zn ¼ ξMRR − ξ†MLL: (52)

Here, ML and MR are both equal to Mn, but they have
formally different transformation properties. This is in
analogy with chiral perturbation theory, in which the quark
mass matrices Mq and its Hermitian conjugate M†

q are
equal but have formally different transformation properties
under SUð3ÞL × SUð3ÞR). Equation (51) for the LEχQM is
the analog of Eq. (38) in the HLχQM case.

Calculating the matrix elements of quark currents for the
Hv → Mn transition in the LEχQM, we obtain an expres-
sion for the form factor ζ in terms of model parameters [40],

ζ ¼ 1

4
m2GHGAF

ffiffiffiffiffiffiffiffi
MH

E

r
; (53)

where the quantity F coming from loop integration in Fig. 4
(with soft gluons forming gluon condensates added) is [40]

FIG. 4. Current matrix element in the LEχQM. The double
dashed line is the (external) heavy meson Hv, and the dashed line
with two arrows is the external energetic light meson. The
internal lines are double for heavy quark Qv, single with two
arrows for the energetic light quark qn, and with one arrow for the
soft light quark χ.
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F ¼ Nc

16π
þ 3f2π
8m2ρ

ð1 − gAÞ − ð24 − 7πÞ
768m4

�
αs
π
G2

�
; (54)

which is numerically F≃ 0.08. In Fig. 5, the quantity F is
plotted as function of the quark condensate for typical
values of the constituent quark mass. We obtain the
expression for the coupling constant

GA ¼ 4ζ

m2GHF

ffiffiffiffiffiffiffiffi
E
MH

s
; (55)

where ζ is numerically known [2,7,42] to be ≃0.3 for the
transition B → π but is larger, ζ ≃ 0.6 for D → π [6]. We
can use the data for ζ in the D → π and D → K transitions
to determine the value of the coupling GA. We then use this
to calculate the ζ form factors for the transitions D → η
and D → η0.

Within our model, the constituent light quark mass m is
the analog of ΛQCD. To see the behavior of GA in terms of
the energy E, we therefore write C in Eq. (9) as C≡ ĉm

3
2

and obtain

GA ¼
�

4ĉfπ
mF

ffiffiffiffiffi
2ρ

p
�

1

E
3
2

; (56)

which explicitly displays the behaviorGA ∼ E−3=2. In terms
of the number Nc of colors, fπ ∼

ffiffiffiffiffiffi
Nc

p
and F ∼ Nc, which

gives the behavior GA ∼ 1=
ffiffiffiffiffiffi
Nc

p
, i.e., the same behavior as

for the coupling GH in Eq. (38). The coupling GA is an
auxiliary quantity that can be used in place of the quantity ζ.
In this paper, we will extend the LEχQM further to

include energetic vector mesons, Vμ
n in analogy with Mn in

Eq. (50). In this model, we will use a derivative coupling, as
was used for the coupling of light energetic mesons to
quarks through an axial vector field in Eq. (49). This is in

analogy with light mesons coupling to quarks in Eq. (29).
We will therefore begin from the ansatz with the tensor
field Fμν

V in Eq. (25) [49]:

LLEχV ∼ χ̄σ · FVχ: (57)

It was found in Ref. [40] that derivative coupling gave the
best description of the H → P high-energy current. Using
V → exp ðiEn · xÞVn, we obtain the interaction (remember
that ∂μVμ ¼ 0 implies n · Vn ¼ 0)

LLEχV ¼ EGV χ̄ðγ · nγ · ZnÞqn þ H:c:; (58)

where

Zμ
n ¼ Vμ

nðξRþ ξ†LÞ (59)

and

Vμ
n ¼

0
BBB@

ρ0nffiffi
2

p þ ωnffiffi
2

p ρþn K�þ
n

ρ−n − ρ0nffiffi
2

p þ ωnffiffi
2

p K�0
n

K�−
n K̄�0

n −Φn

1
CCCA.

μ

(60)

Here, ρ0n, ρþn , K�þ
n , etc., are the (reduced) vector meson

fields corresponding to energetic light vector mesons. The
coupling GV is determined by the experimental value for
the form factors for B → ρ (for B decays) or theD → ρ (for
D decays) at q2 ¼ 0, obtained by considering experiment
and lattice calculations when available or LCSR
calculations.
In our case, where no extra soft pions are going out,

we set ξ → 1, and for the momentum space, we set
Vμ
n → kM

ffiffiffiffi
E

p ðε�VÞμ. The isospin factor is kM ¼ 1=
ffiffiffi
2

p
for

ρ0 and kM ¼ 1 for charged ρ’s. For the D meson with
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FIG. 5. F and F∥ as a function of hαsπ G2i1=4 for values of the constituent quark mass from m ¼ 0.210 to m ¼ 0.230 GeV.
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spin parity 0−, we have HðþÞ
v → PþðvÞð−iγ5Þ ffiffiffiffiffiffiffiffi

MH
p

.
Then, the involved traces are calculated, and we obtain
JμtotðHv → VnÞ for the Hv → Vn transition.
From the current calculation, we obtain a relation

between the coupling GV and the form factor ζ⊥. The
formula relating ζ⊥ and GV will be similar to that relating ζ
and GA,

ζ⊥ ¼ 1

4
m2GHGVF

ffiffiffiffiffiffiffiffi
MH

E

r
; (61)

that is obtained by the replacing ζ → ζ⊥ and GA → GV in
Eqs. (55) and (56). The loop integration is the same for both
cases; therefore, the loop factor will also be F in this case as
in Ref. [40]. Here, ζ⊥ is numerically known for B → ρ,
where it is ζ⊥ ≃ 0.3 [3,7], and for D → ρ, it is ζ⊥ ≃ 0.59
from CLEO data [46].

VI. RESULTS FROM THE LEχQM

Within the LEχQM, and in the limit ζ1=ζ ∼ δ → 0, the
bosonized current for the Hv → Mn transition can be
written as

JμtotðHv → MnÞ ¼ −2iζ
ffiffiffiffiffiffiffiffi
E
MH

s
TrfγμLHv½γ · n�ξ†MLg: (62)

Simlarly, in the LEχQM, the bosonized current for the
vector case Hv → Vn can be written as

JμtotðHv→VnÞ

¼−2i
ffiffiffiffiffiffiffiffi
E
MH

s
Tr
	
γμLHv

�
ζ⊥γ ·n−mV

m
ζ∥

�
σ ·Fnξ

†½γ ·n�


;

(63)
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FIG. 6 (color online). D → P form factors Fþ comparing frameworks used: the HLχPT is from Ref. [19], LCSR 2000 is from Ref. [4],
LCSR 2009 is from Ref. [43], the LEET is from Ref. [12], the LFQM from Ref. [44], and the “Data” are from Ref. [45].
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FIG. 7 (color online). D → V form factors A1 and A2: Data CLEO are from Ref. [46], LCSR 2006 is from Ref. [47], the LFQM is from
Ref. [44], Lattice 1998 is from Ref. [14], Lattice 2002 is from Ref. [15], the HLχPT is from Ref. [20], and the QM 2000 is from
Ref. [48]. The LEχQM is from the calculation in this paper.
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FIG. 8 (color online). D → V form factors A0 and V: Data CLEO are from Ref. [46], LCSR 2006 is from Ref. [47], the LFQM is from
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where the tensor Fn is given by Eq. (25) with Vn given as in
Eq. (60). Here, we assume that δ ¼ m=E ≪ 1, which
implies that ζðaÞ⊥ → ζ⊥.

We find the following new predictions within the
LEχQM:

ζ1 ¼
mF∥

EF
ζ; ζðaÞ⊥ ¼ ζ⊥ þm

E
ζ∥; ζ∥ ¼

mF∥

mVF
ζ⊥;

(64)

where

F∥ ¼
Nc

16π
þ 3f2π
8m2ρ

ð1 − gAÞ þ
f2π
2m2

l

þ 1

48m4

�
αs
π
G2

��
7π

16
− 2

�
(65)

is a loop function analogous to F in Eq. (54), which arises
from the loop integrals of the current in Eq. (63), and
plotted in Fig. 5, right. Here, the appearance of l ¼ lnð2=δÞ
is due to the infrared behavior of some of the loop integrals.
With the model parameters, we find F∥ ≃ 0.24≃ 3F.
The values for F and F∥ are obtained with the simplified

LEET propagator in Eq. (47). For the B → D case, an extra
Δ of order 20 MeV was used in the heavy quark propagator
[50]. A similar assumption (which is closer to the SCET
propagator) might be used here, leading to modified values
of F and F∥. However, as we are already considering
model-dependent predictions, we do not go into further
details here. We observe that, although ζ1=ζ ∼ m

E as it
should, the numerical suppression is not strong because
F∥ ≃ 3F, and δ ¼ m

E ≃ 0.24 is not as small for D-meson
decays as it is for B decays (where δ≃ 0.08).

So far, we have considered the SUð3Þ limitmq → 0. One
may also calculate SUð3Þ corrections from the mass
correction Lagrangian in Eq. (48), for hard outgoing s
quarks. We find that the first-order term does not contribute
within the LEχQM. The second-order term in Eq. (48)
contributes and gives terms suppressed by m2

s=ðmEÞ
compared to terms already calculated. These will therefore
be discarded in this work. For decaying Bs and Ds, there
will be first-order ms corrections from the ordinary light
sector χQM, through mass terms in Eq. (31). However,
these corrections must be considered together with meson
loops. Some of these loops might be calculated as in chiral
perturbation theory, while others are formally suppressed
and problematic to handle within our formalism. Therefore,
we do not go further into these details.

VII. PLOTTING THE FORM FACTORS

In this section, we plot transition form factors forD → P
in Fig. 6 and D → V in Figs. 7 and 8 as a function of the
squared momentum transfer q2. We have plotted the curves
from experimental data [45,46], lattice gauge calculations
[14,15], LCSRs [2–7], and the light front quark model
(LFQM) [44]. The plots do not include error bars because
these would make them difficult to read. For plots based on
the LEET, q2 ¼ 0 is the reference point that is determined
by data, and the shape is determined by a single pole.
To obtain the curves for our LEχQM for a generic form

factor Fðq2Þ ðFþ; V; AiÞ, we use data (CLEO) for D → π
and D → ρ for the Fð0Þ’s. We then combine these Fð0Þ’s
with the theoretical relations in Eqs. (11), (15), and (64) to
find the best numerical fit for the ζi’s (see Tables I and II).
Using the relations (15) and (64), we will obtain a
reasonable overall fit for the following ζ’s:

ζ≃0.6; ζ1≃0.4; ζ⊥≃0.6; ζ∥≃0.5; ζðaÞ⊥ ≃0.7:

(66)

We have then plugged these values for the ζi’s back in
Eqs. (11) and (15) to produce values Fð0Þχ for our model.
We then use the single pole assumption in Eq. (13) to
produce the curves for Fðq2Þχ. As a biproduct, we predict
the curves for other cases with no data (say with K or K� in
the final state) in the SUð3Þ limit.
For the HLχPT, the no-recoil point [q2 ¼ ðq2Þmax] is the

reference point for plots that is determined by Eqs. (22) and

TABLE I. Form factors for D → P at q2 ¼ 0. The values for
Fþð0Þ are taken from data when available and from sum rules for
D → η, η0. The values for Fþð0Þχ are determined using the
LEχQM.

Decay Fþð0Þ Fþð0Þχ ζ ζ1

D → π 0.67 0.96 0.65 0.46
D → K 0.74 1.06 0.65 0.44
D → η 0.55 0.66 0.65 0.34
D → η0 0.45 0.55 0.60 0.37

TABLE II. Form factors for D → V at q2 ¼ 0. The values for Vð0Þ and A0ð0Þ are taken from LCSRs for Ds → K� and lattice
calculations for D → ρ, K�. The fitted values for Vð0Þχ, A0ð0Þχ , A1ð0Þχ , and A2ð0Þχ are determined from the ζ’s, which are calculated
using the LEχQM. Vð0Þχ for D → ρ is the input value from CLEO data.

Decay Vð0Þ Vð0Þχ A0ð0Þ A0ð0Þχ ζ⊥ ζðaÞ⊥ ζ∥ A1ð0Þ A1ð0Þχ A2ð0Þ A2ð0Þχ
D → ρ 0.84 0.84 0.65 0.64 0.59 0.69 0.50 0.56 0.58 0.47 0.48
D → K� 0.91 0.87 0.76 0.64 0.58 0.68 0.50 0.62 0.57 0.37 0.43
Ds → K� 0.77 0.86 0.76 0.64 0.58 0.67 0.43 0.59 0.55 0.32 0.44
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(26). The plots for D → P with P ¼ π, K, η are different
because of the different masses. However, we have not
explicitly calculated SUð3Þ-breaking effects, and Eq. (66)
should be valid in the SUð3Þ limit ms → 0. This means the
plots forD → π andD → ρ are the most relevant. The other
plots are included for comparison. According to our model
[see Eq. (48)], SUð3Þ corrections due to hard s quarks (as in
D → K and D → K� transitions) should be small, while
SUð3Þ corrections due to soft s quarks (as in decays of Ds)
should be larger, as pointed out at the end of Sec. VI.

VIII. CONCLUSIONS

We have collected present information on various form
factors for the transitions D → P and D → V
(P ¼ pseudoscalar, V ¼ vector) obtained from various
methods and sources such as data, lattice gauge theory,
LCSRs, etc. From the plots, we have as far as possible
determined the values of relevant form factors at q2 ¼ 0
and then extracted values for the LEET form factors ζi.
The LEχQM gives relations between the ζi’s. We have
previously found [40] ζ1=ζ ∼m=E. Here, we have in
addition found relations between the ζ’s and have shown
that ζðaÞ⊥ → ζ⊥ for m=E → 0 as it should.
We observe that the curves for the form factor Fþ for the

case D → π show a remarkable agreement for q2 → 0 (for
the LEET, this is done by construction). This is in contrast
to the values of Vð0Þ for which the plots show a large
variation among the various methods used. This makes ζ⊥
uncertain. However, ζ⊥ is also related to A0ð0Þ such that we

obtain a reasonable fit using Eqs. (13) and (66). We observe
what we expected, namely, that the LEET and LEχQM
work best for q2 close to zero, while the HLχQM
(eventually supplemented by the HLχPM) works best close
to the no-recoil point.
The LEχQMgives a good fit to the V and A0 form factors

for the D → ρ and Ds → K� transitions. However, for the
D → K� transition, theV andA0 curves lie below the curves
for the lattice data. For theD → K� transition calculation, the
hard quark in the loop is an s quark. We did not include the
correction, which is on the order of the mass of the s quark,
ms. This is a source of small error for this transition. We
observe that the LEχQMvalues for the axial form factor A1,
being transverse to themomentum [seeEqs. (5) and (15)], do
not match well for any of the transitions.
The LEET form factors ζ and ζ⊥, together with data for

the D → π and D → ρ transitions, will determine the
coupling constants GA and GV , which may be used in
the calculation of nonfactorizable (color suppressed) non-
leptonic D-meson decays, in the same manner as has
previously been done for K → ππ [39,51], D → K0K̄0

[52], B → DD̄ [53,54], B → Dπ [40], and B → π0π0 [41].
Then nonleptonic decay amplitudes can be written in terms
of the LEET form factors ζi, both for the factorized and the
color-suppressed cases. We are, of course, aware that the
LEET expansion might have relatively large corrections
beyond the order considered here. Still, we think that our
results will be helpful for further studies of nonfactorizable
nonleptonic decay amplitudes for D mesons.
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