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Abstract—In this paper, we present an open source partial
reconfiguration (PR) system which is designed for portability
and usability serving as a reference for engineers and students
interested in using the advanced reconfiguration capabilities
available in Xilinx FPGAs. This includes design aspects such
as floorplanning and interfacing PR modules as well as fast
reconfiguration and online management. The system features re-
locatable modules which can even contain reconfigurable modules
themselves, hence, implementing hierarchical PR. In addition to
free access to all design files, the system can be tried out remotely
via the Internet without the need to install tools or having access
to a physical board.

I. INTRODUCTION

Partial runtime reconfiguration (PR) of FPGAs has been
demonstrated in several applications, mainly for saving area.
By using smaller FPGAs, cost and power can be significantly
reduced (the smaller an FPGA, the lower its static power).
For instance, in [1], [2], [3] PR is used for adapting the
systems to different environments (e.g., light conditions for a
vision system or channel quality for a wireless communication
system). In [4], partial reconfiguration is used in a database
accelerator to compose SQL operator modules dynamically
together to execute SQL queries. This system uses module
relocation and multi-instantiation of modules which is not
available in the Xilinx vendor tools. Common for all these
examples is that only the entire active modules are loaded to
the FPGA instead of having all modules fitted together on a
(larger) device.

While the benefits of PR are obvious, it is still difficult
to make use out of this technology. The FPGA vendor tools
support only very simple application scenarios (see also Sec-
tion II-A) and academic results are very often not made freely
available. However, with OpenPR [5] and BLINDTOOL [6]
there exist available tools allowing to exploit more advanced
PR features than what is provided by the FPGA vendors. With
EasyPR, we want to push this further by providing an out of
the box PR-system including all components as open-source.

The overall goal of the EasyPR project is to provide an
example system serving as a template for building advanced
run-time reconfigurable systems. Consequently, we aim at
portability among different FPGA families and generic design
practices allowing for fast reuse. So far, we only support
devices from the FPGA vendor Xilinx. However, the here
presented concepts are very general and might be used with
other FPGAs with the availability of corresponding tools.

In many cases, only bounding boxes of reconfigurable
regions and the number of input and output wires have to
be adjusted in the provided scripts in order to generate all
additional constraints that are necessary for implementing a
reconfigurable system. Furthermore, we provide a portable
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Fig. 1. Single island style reconfiguration. a) when using the Xilinx proxy
logic approach, route-through LUTs are placed inside the island and connected
to the static system in an initial implementation step (blue wires). Based on
this, each module is implemented in an incremental design step (red wires).
b) direct wire linking does not need proxy logic. The direct interface wires
are strictly constrained and not determined by the router as in a).
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lightweight configuration manager which can be easily con-
trolled by a CPU or by a dedicated control state machine.

II. RECONFIGURATION STYLES

It is important to understand that there is not one specific
way to build a reconfigurable system and depending on the
application, various approaches exist for building a PR system.
For example, for bootstrapping, only one single PR module
will be used that is loaded after an initial time-critical config-
uration step. In other scenarios, several different or identical
modules might be placed together in one combined region. A
classification of such different scenarios was presented in [7]
under the term configuration style. In that publication, three
styles were mentioned. The basic configuration style where
only one module can be placed exclusively in a reconfigurable
region is called island style. In the slot reconfiguration style,
multiple modules can be placed in a one-dimensional manner.
The most flexible configuration style, where several modules
can be placed freely in a two-dimensional grid, is called
grid style. The different configuration styles have individual
requirements, in particular in the way the communication has
to be implemented with the reconfigurable modules. Note that
different configuration styles might be mixed or used several
times in a system. EasyPR provides examples for all three
configuration styles, as described in the following sections.

A. Single Islands

Placing reconfigurable modules exclusively in a single re-
configurable region is the only configuration style supported
by the FPGA vendors Xilinx [8] and Altera [9]. The Xilinx



PR flow is illustrated in Figure 1a). As the routing between the
static system and a reconfigurable module is not constrained,
it is not possible to reuse a partial module in a different island
(neither inside another island within the same system nor in
any other system). This holds even if all island shapes are
identical (in terms of CLBs, BRAMS, etc.). Moreover, any
change in the static system may reroute the paths to the proxy
logic, hence, demanding to also reroute all partial modules.
As a consequence, this flow is rather cumbersome when using
several islands and modules. For example, a system with
4 islands and 5 different partial modules (placeable in all
islands) needs 20 partial routing steps when modifying the
static system.

In EasyPR, we constrain the routing between the static
system and the partial modules to fixed wires as shown in
Figure 1b). While this needs an extra step to constrain the
signal-to-wire binding, it completely removes the dependency
between the static system routing and the partial modules. In
EasyPR, partial modules can even be implemented before the
static system. The signal-to-wire binding is implemented using
the BLINDTOOL flow [6] where special blockers are generated
to occupy all routing resources that are prohibited in a specific
routing step (e.g., all wires (except the direct connection wires)
inside the island, when implementing the static system).

EasyPR comes with generic BLINDTOOL scripts where it
is sufficient to define 1) reconfigurable regions, 2) the areas
where to allocate the direct interface wires and 3) the signal
names for the interface wires (which are typically the top-
level names of the partial module). This process is supported
by a user-friendly GUI. With this information, BLINDTOOL
creates all necessary UCF constraints, a wrapper for the static
system, a wrapper for the partial system and special blocker
modules for constraining the routing. The BLINDTOOL script
debugger allows observing all steps performed by the script.
The physical implementation of the static system or the partial
modules is carried out by a batch script calling the Xilinx tools
and performing all necessary transformations (e.g., inserting
the blocker into the design).

The wrappers, which are generated by BLINDTOOL act as
placeholders. When implementing the static system, we use
a wrapper acting as a placeholder for the partial module.
Similarly, partial modules connect to a wrapper which replaces
the static system.

While BLINDToOOL allows a very flexible resource allo-
cation, we restricted design parameters in EasyPR to favor
usability and portability (keep it simple!). This includes:

1) the module height has to be defined in full clock regions

2) a module must contain at least one CLB column

3) reconfigurable regions shall not contain I/O pins or clock
primitives (e.g., BUFGs, DCMs, etc.)

4) interface wires are predefined (EasyPR uses double
wires for connecting PR regions that are available on all
Xilinx FPGAs) and up to 4 input signals and 4 output
signals can be connected per CLB wherof the direction
(north, east, south, west) has to be identical for all wires.

5) the partial subsystem uses only one clock domain

6) no static routing allowed inside a reconfigurable region

In most cases, these rules are easy to follow and many of
them are mandatory in other PR flows. For example, using
the Xilinx PR flow demands the rules 1), 2), and 3) and
OpenPR [5] needs pretty much the same rules, except that the
old bus macro communication is used for the interface signals
rather than the more efficient and flexible direct wire binding,
which is uded in EasyPR(rule 4). However, BLINDTOOL is not
bound to any of these constraints and experienced users may
override some or all rules (e.g., by designing a reconfigurable
module which only contains BRAM content or for routing
static signals through a reconfigurable area). Again, EasyPR
was made to provide a smooth quick start into run-time
reconfigurable system design by removing as many obstacles
as possible, while still providing many powerful PR features.

B. Slot Style and Grid Style Reconfiguration

EasyPR provides examples where multiple modules can be
placed in a combined reconfigurable region. The flow is very
similar to the single island style, except for some additional
rules:

1) the module/region width has to be an even number (2,
4, 6, ...) in terms of CLB, BRAM, or DSP columns

2) module placement is vertically restricted in terms
of clock regions and horizontally in steps of two
CLB/BRAM/DSP columns.

3) communication is bound to nearest neighbor commu-
nication in all four directions for the grid style and to
east/west for the slot style.

4) due to the communication scheme from the last rule,
interface signals might glitch during reconfiguration.

As with the single island rules from the last section, it is
possible to override all these additional rules when using
BLINDTOOL. For example, it is possible to reconfigure in-
dividual modules glitch free without any interference to other
modules inside the same reconfigurable region.

C. Advanced Examples

The baseline examples demonstrate the most common PR
use cases for single island style reconfiguration as well as
for slot style and grid style reconfiguration where multiple
modules can be placed in a shared area. In addition, we
are providing more advanced examples including custom in-
struction set extensions where modules can be as small as a
single 8 CLB tall subcolumn. We also show how a MIPS
CPU that contains reconfigurable instructions can itself be
implemented as a reconfigurable module. In this case, the re-
configurable instructions will be reconfigurable modules inside
a reconfigurable module, hence, demonstrating hierarchical
PR. We also show how to route through reconfigurable regions
without loosing the ability of module relocation. While all
advanced examples are provided for Spartan-6 FPGAs, we will
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Fig. 2.
area supporting two-dimensional module placement. The configuration controller supports DMA transfers from an external SPI flash to the ICAP port.

successively port them to other devices.!

III. THE EASYPR REFERENCE SYSTEM

EasyPR is built around the BLINDTOOL framework (avail-
able under [10]). The tool and the flow is described in [6].

The EasyPR reference systems is currently available on two
FPGA platforms: the Spartan-6 Atlys board and the Zynq Zed-
Board (not using the ARM core). However, the design can be
easily ported to all devices supported by BLINDTOOL (Virtex-
6/7, Spartan-6, Zynq, Kintex). The minimum requirements are
a VGA output and a com port. For using all features, a video
input path and a SPI flash must be available. We kept the
reference systems plain for simplifying modifications (e.g.,
changing reconfigurable regions or adding extra logic). For
implementing own partial modules, it is sufficient to instantiate
the module in the provided project and to define the module
height and the left and right columns of the module on the
device. This is supported in the BLINDTOOL GUI Running
the tool flow will produce a partial module that can then be
placed into the static reference system. This is again supported
by BLINDTOOL that can show all valid placement positions
for the new module.

In the following sections, we will introduce the main
components provided in EasyPR, except for the configuration
controller that we devoted a dedicated section (Section IV).

A. MIPS CPU with Reconfigurable Custom Instructions

The system provides a very simple MIPS-I compatible
softcore CPU. The CPU is not pipelined making the code
very readable. However, on a Spartan-6, this CPU still runs at
50MHz which results in S0M instructions peak performance,
more than what many microcontrollers provide.

To this CPU, we added two PR regions for hosting custom
instructions (CI; and Cl, in Figure 2). This allows more
complex instructions to be added to the MIPS and allows

'We favor Spartan-6 devices, because they are low cost (boards start below
50 US$) and because the have the finest granularity for reconfiguring the
logic among all Xilinx FPGAs. Reconfiguring Xilinx FPGAs can only be
done by writing frames that contain configuration information for all CLBs
in a column within the span of a clock region. In the case of Spartan-6, the
smallest reconfigurable update will affect 16 CLBs while it is 40 CLBs for
Virtex-6 FPGAs. Another advantage of Spartan-6 FPGAs for PR is that I/Os
are located around the die and not in the middle of the fabric (as with recent
Virtex-FPGAs). This simplifies floorplanning when using large PR regions.

Xilinx bitstream format. EasyPR reference system with two partial regions for hosting custom instructions in a softcore CPU and a reconfigurable

the combination of a RISC CPU with the possibility of
computing instructions that are more typical for CISC CPUs.
As examples, we included the following custom instruction
modules:

e count-ones: return number of ’ 1/ -bits in a 32-bit vector

¢ CRC: computes a CRC checksum

¢ bit-permute: [31..0] = [0..31] (uses routing only)

o saturation-add: adding without overflow

o byte-add: 4 8-bit adders instead of 1 32-bit add
The first three instructions all save about 100 original MIPS
instructions per call and nicely demonstrate the advantage of
customizing the ISA (instruction set architecture). In addition
to the custom instructions, we are also providing code ex-
amples and a small tutorial on how to announce a custom
instructions to the compiler’> and how to call them in a C
program (via inline assembler).

The MIPS CPU takes only 1400 Spartan-6 LUTs includ-
ing (DSP48) multiplication and barrel shifting, but without
division or floating point support. For saving resources, it is
possible to remove unused instructions from the CPU, which
is called ISA subsetting [11].

B. Reconfigurable Area

The system not only provides a runtime reconfigurable
CPU, it also includes a larger reconfigurable area for hosting
several relocatable modules. As shown in Figure 2, this area
is tiled into multiple identical rows. The columns can include
logic (CLB), memory (BRAM), or multipliers (DSP). For
the video streaming, a regular structured path is routed in a
meander style regularly over all rows. Here, we used a path of
double wires (routing two CLBs far) that provide the necessary
connections and that are available on all Xilinx FPGAs. This
defines tiles to be two CLB/BRAM/DSP columns wide and
this is the reason, why modules have two be a multiple of two
columns wide. This rule is the key to provide communication
with relocatable modules as we can now use equivalent wires
on the left and right side for streaming in and streaming out the
video data. This is constrained with the help of BLINDTOOL.

In the provided reference system on the Atlys board, the
reconfigurable area is 16 columns wide and 5 clock regions

2This is done in the mips-opc. ¢ file of the GCC cross compiler. In that
file, a new instruction can be added by using an otherwise not used instruction
word. After this, the instruction is available in the (dis)assembler.



tall. This area provides in total 1040 CLBs, 40 BRAMs, and
20 DSPs which are available in 16/2 x 5 = 40 tiles. While
modules can be as small as a single tile (hence, allowing to fit
in 40 reconfigurable modules at the same time), it is possible
to allocate multiple adjacent tiles depending on the module
requirements. The Zynq reference design provides 18 columns
in two clock regions resulting in 18/2 x 2 = 18 tiles (with
1400 CLBs, 40 BRAMs and 40 DSPs).

C. Fartial Module Library

EasyPR comes with reference modules that are provided as
source (VHDL) and relocatable netlists (BLINDTOOL netlist
format). From the latter, partial bitstreams can be easily
generated in BLINDTOOL and tried out on an FPGA without
running place and route for the provided modules. The current
library contains the following modules:

o BMP-viewer: a small overlay module inserting a bitmap
into the video stream

« skin-color: a classifier module marking pixels if they are
in the range of human skin color

o Pong: arcade game controlled by the push buttons

o Hex-viewer: tiny module displaying hex values in a box.
The number of digits, number of rows, the font size, and
transparency can be adjusted by generics.

o Sobel: edge detection as an example for a sliding window
operator

o Game-of-life: a partial module consisting of a baseline
MIPS CPU, a small overlay frame buffer, RAM and
instruction ROM.

All modules can be placed together into one large reconfig-
urable area. The order in which the modules are placed defines
then the layer on the screen (the closer a module is placed to
the video output, the further in front it appears on the screen).
All modules, except the Game-or-life, come as one source file
for simplifying IP reuse.

IV. CONFIGURATION CONTROLLER

EasyPR includes a configuration controller for writing con-
figuration data to the internal configuration access port (ICAP)
of the FPGA. During partial reconfiguration, the involved
reconfigurable area will not provide any service and in order
to minimize this overhead, configuration data has to be written
fast. For this reason, the HWICAP module [12], which is
provided by Xilinx, is commonly not used for high speed
reconfiguration. HWICAP is slow because data is written
by a CPU to the ICAP port rather than using DMA [12].
This results not only in weak reconfiguration times, but also
comprises extra load for the CPU. Consequently, several
configuration controllers have been presented targeting high
configuration speed as the main objective.

In [13] internal BRAM memory was used for storing
partial bitstreams. This approach is obviously only suited for
very few and small modules. [14] proposes a configuration
controller using DMA transfers from external SRAM and the
configuration controllers in [15], [16], [1] fetch the bitstreams
from external DDR memory. The last approaches use the
Xilinx DDR memory IP core by adding a state machine issuing

DMA requests for transferring configuration data from the
external memory to the ICAP port. Because SRAM and DDR
memory is volatile, partial bitstreams have to be preloaded
(e.g., at system start). Another issue is that many published
configuration controllers are not open source. However, [15],
[14] are freely available and can also be used with EasyPR.

Opposed to previous approaches, our configuration con-
troller is designed to provide as much reconfiguration data as
possible from an SPI flash memory to the ICAP primitive. We
chose flash because of the many academic boards which pro-
vide a quad-SPI mode flash memory (QIO-SPI). For example,
the Spartan-6 Atlys board from Digilent, the Spartan-6 FPGA
LX9 Board from Avnet, the Kintex-7 KC705, and the Zynq
ZedBoard, include all a QIO-SPI flash memory. In addition to
the wide availability, flash does not need to be preloaded at
system start and board vendors commonly provide solutions
for writing memory images to the flash. Another advantage
of configuring from flash is that we do not demand DDR
or SRAM memory bandwidth which removes possible inter-
ference of a configuration process with the operation of the
rest of the system (because of the shared memory bandwidth).
We also need no extra access to the DDR memory which in
some cases might impact performance (e.g., by adding an extra
memory port). Instead of this, our flash memory configuration
controller utilizes the (in most cases) unused bandwidth of the
flash memory.

The QIO-SPI mode allows to read data as fast as 50
MB/s. We implemented a QIO-SPI DMA controller able to
fully utilize this speed. For even further improving speed,
we included a decompression module that uses LZSS [17]
compression. Bitstream decompression not only allows for
faster reconfiguration, it also shrinks the bitstreams, hence
allowing to store more reconfigurable modules in the same
memory. Note that the LZSS decompression module might
also be used for fast system start by decompressing software
binaries or other data that is read from the flash.

A. The Flash Configuration Controller Hardware

The block view of the configuration controller is shown in
Figure 3 and consists of the following components:

« Flash controller.

o SPI flash reader.

o Decompression module.

o UART receiver.

« 8-bit to 16-bit (or 32-bit) buffer.

o ICAP primitive.

1) Flash controller: This module controls reading configu-
ration data from the flash memory. It has 3 registers accessible
on the system bus:

o Address register (24-bit): The read address which is sent

to the flash memory (bitstream memory location).

o Size register (24-bit): Number bytes to read from flash

memory (bitstream size).

o Control register (3-bit): Flags for enabling/disabling the

configuration and for checking the configuration progress.
After writing start address and size, the controller starts
reading data from the flash. This data can be either passed
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Fig. 3. Block view of configuration controller. The red emphasized signals are the top level signals of the configuration controller while all other signals are
internal. The architecture is generic and for supporting different Xilinx FPGAs, word sizes will be adjusted to fit maximum ICAP width.

through the decompression module or sent directly to ICAP.
In both cases, the number of data words that are written to
ICAP are counted and not the words that are read from the
flash memory, which is more intuitive to use. The system bus
can be easily connected to any established bus standard or
even replaced by some logic writing directly to the registers.

2) SPI flash reader: The SPI flash reader module is de-
signed to read data from a 128 Mbit Numonyx N25Q12 flash
memory (or any compatible device) which is available on
many popular FPGA boards. The N25Q12 transfers data over
SPI at maximum specified clock frequency of 108 MHz. In
QIO-SPI mode, the read speed from the memory is 50 MB/s
at a memory clock frequency of 100 MHz.

At start-up (or reset) of the system, the flash reader module
initializes the high-speed QIO-SPI mode on the N25Q12. After
this, a ready flag is set to signal that the module is now
ready for QIO-SPI read instructions. In read mode, the flash
reader waits for a position-length tuple and a read strobe.
On this event, the flash reader sends the corresponding read
instruction and memory address to the flash and continues to
receive data. The flash memory provides a 4-bit data item each
clock cycle until the fast read instruction is terminated by the
flash reader. A buffer/register is used to assemble larger words

from consecutive nibbles. To temporary halt flash memory
reading without ending transfer (e.g., for flow control), an
input signal for stalling (STALL) is provided. When a stall
request is received, the flash reader holds the flash memory
clock signal low to halt transfer. For safely stalling the flash
clock, an I/O primitive (ODDR2) (originally intended for
double-data transfers) was used to prevent glitches. In addition,
the ODDR?2 primitive guarantees a low skew on the clock pin
of the flash chip. All flash interface signals were constrained
with flip-flops in the input/output blocks (IOBs) of the FPGA.
This hides timing issues from long signal paths within the
FPGA. A user has only to paste the provided UCF constraints
into his own design and adjust 6 IOBs locations.

3) Decompression module: At 100 MHz system clock, the
flash memory can provide 50 MB/s. Adding compression
on the bitstream allows faster reconfiguration, but requires a
module for decompression before data is sent to the ICAP.
We achieved a compression ratio of about 50% for highly
utilized modules and much better values for modules leaving
more resources unused. With this, we can basically double the
configuration speed from the flash.

The configuration bitstreams are compressed with Lempel-
Ziv-Storer-Szymanski (LZSS) [17] lossless compression be-
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Fig. 4. Xilinx bitstream format. After a preamble, one or more sequences
containing the configuration data will follow. Each sequence starts with a
position field followed by the actual configuration data. For module relocation,
only the position field is adjusted. The figure is taken from [7].

fore they are stored in the flash memory. The decompression
module is placed in the configuration controller between the
memory and ICAP to decompress the configuration bitstreams.
Our decompression module is described in [18] and takes some
of the ideas published in [19]. We optimized the decompressor
for low area overhead, high decompression speed and good
compression ratios.

4) UART receiver: The UART receiver is added to the
configuration controller as an option to allow reconfiguration
with bitstreams not stored in the flash memory. By default, it
operates at 115200 baud. Alternatively, other data rates can be
set by a generic value and even Mbit rates are supported for
systems providing a corresponding serial interface (e.g., when
using a FTDI USB to RS232 bridge). When a bitstream is sent
over the UART, this module takes control over the ICAP and
starts writing the received configuration data to the ICAP data
port. This process will be much slower than configuring from
flash memory and was added to support portability for systems
without SPI flash memory and also for testing new modules
without the need to upload bitstreams to the flash memory.

5) Internal Configuration Access Port (ICAP): To carry
out reconfiguration at runtime, the system needs to write
configuration data into the configuration cells of the FPGA.
For self-reconfiguration on Xilinx devices, this means writing
data to the ICAP port which is basically an internal version of
the SelectMap configuration port. Our configuration controller
uses ICAP at maximum possible word size, which is 16-bit
for Spartan-6 FPGAs and 32-bit for all Virtex families.

We are currently not using configuration readback. A future
version of the EasyPR configuration controller will contain an
optional readback option with state extraction and restoration
(for preemptive execution of partial modules).

B. Module Relocation

With EasyPR, we want to demonstrate how to easily
implement complex reconfigurable systems on FPGAs. This
commonly implies systems where modules can be placed to
different positions on the FPGA. For allowing module reloca-
tion, we have to physically constrain modules, for example, to
fit into bounding boxes. This process is carried out at design
time. In addition, we have to modify address information
inside the bitstream that defines the physical module position
on the FPGA fabric, which has to be accomplished at run-
time. A flow chart illustrating the Xilinx bitstream format is
shown in Figure 4. The flow is identical for all Xilinx FPGAs
but details including word size, encoding of positions, and
bitstream sizes might differ among different device families.

For manipulating the placement information, a (signed)
displacement value has to be added to the address (this address
is called major address (MJA) by Xilinx) which has to be

written to the frame address register (FAR). For example, for
shifting a module by one CLB column to the right, the MJA
address has to be incremented by one. Similarly, there is a
row address for relocating modules in vertical direction. The
exact format is FPGA family specific and the details can be
found in the corresponding user guides. However, the exact
bitstream encoding is not officially disclosed by Xilinx and
there are some issues that should be understand, when using
bitstream relocation:

o Different blocks are used to distinguish between different
sections inside the bitstream. This could be, for example,
the configuration of the CLBs or the initial values of
the BRAMSs, which are stored in another section. As a
consequence, there are multiple displacement values, in
the case a module uses multiple sections. For instance,
relocating a module consisting of CLBs and BRAMs
needs a displacement value for the CLBs and another
(different) displacement value for the BRAM content.
The displacement values are specific for each FPGA
system and depend on the number and position of BRAM
columns on the device.

o Heterogeneous logic resources might be encoded differ-
ently. For example, Xilinx Spartan-6 FPGAs have logic
tiles (CLBs) that can either provide arithmetic functions
with carry chains (called CLEXL) or other tiles that can
provide arithmetic and (in addition) distributed memory
(called CLEXM). Distributed memory allows for the
efficient implementation of small shift registers or register
files. If a module is not using distributed memory, it can
be relocated arbitrarily, but the bitstream encoding differs
depending on the used CLB type (CLEXL or CLEXM).

As our goal is to provide an easy usable and portable flow,
we aim at hiding these low level issues by creating all partial
bitstreams for all possible module positions. However, we al-
ready know that relocated module bitstreams may be identical
except for the FAR address register values (containing the MJA
and row addresses). We use this knowledge to significantly
save memory for relocatable module bitstreams. If we study
again Figure 4, we see that all blocks are fixed except for the
POS-field which is containing the position information.

We use this information to derive blocks that are 1) position
independent and 2) position dependent as sketched in the
following algorithm:

1 : Input: {module My, placement_positions Py},
{My, P}, ..., {My, P}
: Output : Bitstream_lists By, B, ...

\S}

, By,

3 m =PlaceModuleToCurrent (Fp)
4 bp = GeneratePartialBitstream(m)
5 : BO = bo
6 : VPFP,i>0do
{
7 m = PlaceModuleToCurrent (F;)
8 : b= GeneratePartialBitstream(m)

9: offset=0
10:  length=20
11:  while (of fset + length < size(b)) do



12: of fset = of fset + length

13: length = CorrelateBitstream (by,b,of fset)
14: if length >1 /I position independent bitstream
15: B; = B; & AddReference(by, of fset,length)
16: else /I position dependent bitstream

17: B; = B; & Addword(b, of fset)
}
}

The algorithm is called with a list of all modules with
all corresponding possible placement positions. For the first
placement position of each module, we generate a complete
partial bitstream by and store the result in our bitstream
repository (lines 3-5). For all other placement positions, we
create a partial bitstream in the same way. We then correlate
this new bitstream b with the first bitstream b, starting at the
position of fset = 0 (line 12). The result is the length of
the longest match where the two bitstreams are identical. If
the matching length is larger than one, we append a reference
referring to the original bitstream to the configuration for the
current placement position; otherwise, we will add the current
word from the bitstream b. This process is repeated until the
end of the bitstream. Note that we use the native word size of
the configuration state machine which is 32 bit for all Virtex
FPGAs and 16 bit Spartan FPGAs from Xilinx.

The algorithm is basically a compression algorithm that has
some similarities with LZSS [17] but which is specifically
tailored to compress mostly identical bitstreams. For relocating
the partial module bitstream by to another position, we will
1) take the preamble from by (the blocks user, sync, and
init in Figure4), 2) concatenate one word containing the
address information (the block pos), and 3) append a final
sequence from by (the blocks size, data, and end). In the
case a module has very low resource utilization or in the case
a module uses logic and BRAM, the sequence will be longer
according to the number of position fields in the bitstream.

For clarity, we omitted a discussion about heterogeneous
logic resources that have different bitstream encoding (the
CLEXL or CLEXM issue mentioned above). Different en-
codings are handled by storing multiple reference bitstreams
and not only a single by. This also means that the correlation
has to be computed against multiple bitstreams and references
can point to different reference bitstreams. In the case of
creating bitstreams for Spartan-6 FPGAs, for example, there
are situations that demand up to 4 reference bitstreams when
relocating modules arbitrary in the left or right half of the
device and when allowing module relocation to start at any
odd or even CLB column. This is because only every other
CLB column provides distributed memory which is differently
encoded than the other arithmetic only CLB columns.

1) Implementation: The module relocation is done at de-
sign time at the netlist level. This can be easily performed in
BLINDTOOL by running the following script:

OpenBinFPGA FileName=xc6slx45csg324-3.binFPGA;

AddBinaryLibraryElement FileName=module.mod;

PlaceModule Location=INT_X%X_pos%$Y$Y_pos$%
LibraryElementName=module;

SaveAsDesign FileName=module_at_X%$X_pos$Y%Y_pos%.xdl;

Spartan-6 Zynq
SPI flash reader 55 (25) 86 (38)
UART receiver 255 (90) 278 (99)
Decompression 63 (39) 67 (49)
Flash controller 145 (44) 202 (78
Configuration controller | 518 (189) | 633 (264)
Without UART 263 (108) | 355 (165)

TABLE I

CONFIGURATION CONTROLLER RESOURCES IN TERMS OF LUTS (SLICES).

We have to set the environment variables X_pos and
Y_pos with the placement position (top-left corner) and
BLINDTOOL will then place the module module.mod on
a completely empty device. The result is a netlist in the
XDL (Xilinx Design Language) format. This netlist will be
converted into the binary netlist format (.ncd) from which we
generate a partial bitfile using the bitgen -r option. Here,
we will call the Xilinx bitstream generation program bitgen
to create a partial bitstream containing the differences to a
completely empty bitstream.

2) Hardware Support for Module Relocation: In order to
allow fast reconfiguration with a minimum of CPU interaction
during the reconfiguration process, we added small Fifos
instead of a simple register to store the address and size
values in the flash controller (Section IV-A1). This extension
makes it possible for the configuration controller to chain
together multiple DMA reads from different parts of the flash
memory. Typically, a CPU (in our case a MIPS clone) is
in charge to control reconfiguration and to fill the size and
address FIFOs with DMA commands. In other words, the
configuration process is then a sequence of different DMA
transfers which can be issued to a queue. In addition to DMA
transfers, the value of ’0’ for the size is used to send a data
word (stored in the start address Fifo) directly to ICAP, without
initializing a DMA transfer from the flash memory. This is
intended to add address information to a bitstream. Note
that instead of determining addresses by module relocation
of netlists and analyzing bitstreams, a driver might perform
address computations at run-time.

3) Evaluation: In this paragraph, we present synthesis
results and configuration speeds that were achieved by our
configuration controller. As this controller is pure overhead, we
optimized it for area. A resource breakdown is listed in Table I.
As can be seen, without the UART (which would probably not
be necessary for a commercial product), our controller needs
only a bit more than 100 slices on a Spartan-6 FPGA (and no
BRAM or DSP primitive).

The measured reconfiguration speed ranges from 73 MB/s to
97 MB/s, which mainly depends on the achieved compression
ratio, which in turn, correlates with the logic/routing utilization
inside the module bounding box. While this is slower than
for example, [15] (400 MB/s), we can already provide up to
2.43 x the specified maximal ICAP reconfiguration speed of a
Spartan-6 FPGA (40 MB/s) [12]. Moreover, our configuration
controller takes considerable less resources (263/355 LUTs
versus 586 LUTs and 8 BRAMs in [15]), provides hardware
accelerated bitstream decompression and has built-in support



for module relocation. As a reference: the Xilinxk HWICAP
controller needs 684 LUTs and achieves less than 10 MB/s
throughput when used together with a microblaze [12].

4) Discussion: Hardware supported bitstream relocation
was firstly presented for the REPLICA project [20], [21]. In
that work, one continuous partial bitstream is processed in a
bitstream filter for updating the position field with displaced
addresses. This approach costs more logic than adding dis-
tributed memory Fifos in front of the configuration controller
(for storing a job queue). Furthermore, the parser has to be
adapted for every FPGA and different filter logic is needed
for each FPGA family (e.g., [20] for Virtex-E and [21] for
Virtex-1II). Moreover, the filtering works only for FPGAs where
the bitstream encoding is homogenous, which is a restriction
when using filtering for recent Xilinx devices, such as Spartan-
6 FPGAs.

Our offline relocation and compression approach is more
generic and does not relay on assumptions about the bitstream
encoding and we also do not have to understand the commands
inside the bitstream. This simplifies a reuse of our configu-
ration controller in different systems. And if more advanced
bitstream manipulations are needed, this can still be performed
in software. This can still result in high-speed reconfiguration
by transferring most of the configuration data per DMA while
only adding small changes directly to the bitstream (e.g.,
modifying a position field or for changing a LUT function
table).

V. USING EASYPR REMOTELY

The here presented system can be tried out remotely on
the Blinded project website [22]. This project combines var-
ious FPGA labs for teaching VHDL design remotely via
the internet. This includes basic setups with tasks such as
state machine design and stepper motor control as well as
advanced setups related to cryptography, CPU design, and
partial reconfiguration.

For trying out EasyPR, registered users can upload their
own video overlay modules and specify a bounding box. With
this information, our tools will then run all synthesis steps (on
the server) in order to create a relocatable partial bitstream. If
this was successful, it is possible to upload the result (or other
modules) to an Atlys Spartan-6 board. Loading and removing
modules is controlled by the user in his web browser. For
testing the result, a test video sequence is supplied as an HDMI
stream to the board, then processed by the partial modules, and
finally streamed back to the user. We are currently working
on a video upload function for live video processing.

VI. CONCLUSION

With EasyPR, we provide a complete PR system includ-
ing all design files as open-source (download: [10]). Design
parameters have been carefully selected to allow engineers
who are interested in PR a successful implementation of a
reconfigurable system in only a few hours - or even within
an hour when implementing partial modules for the static
OpenPR reference system. With our new SPI flash DMA
reconfiguration manager, we further help to provide fast bit-
stream transfer and easy module relocation. With this work,

we hope to stimulate research on PR by making reconfigurable
system design more accessible. Future work will include more
supported boards, modules, and examples with more advanced
PR features.
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