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Abstract

Reinforcement learning methods are increasingly used to op-
timise dialogue policies from experience. Most current tech-
niques are model-free: they directly estimate the utility of vari-
ous actions, without explicit model of the interaction dynamics.
In this paper, we investigate an alternative strategy grounded in
model-based Bayesian reinforcement learning. Bayesian infer-
ence is used to maintain a posterior distribution over the model
parameters, reflecting the model uncertainty. This parameter
distribution is gradually refined as more data is collected and
simultaneously used to plan the agent’s actions.

Within this learning framework, we carried out experiments
with two alternative formalisations of the transition model, one
encoded with standard multinomial distributions, and one struc-
tured with probabilistic rules. We demonstrate the potential of
our approach with empirical results on a user simulator con-
structed from Wizard-of-Oz data in a human-robot interaction
scenario. The results illustrate in particular the benefits of cap-
turing prior domain knowledge with high-level rules.

Index Terms: dialogue management, reinforcement learning,
Bayesian inference, probabilistic models, POMDPs

1. Introduction

Designing good control policies for spoken dialogue systems
can be a daunting task, due both to the pervasiveness of speech
recognition errors and the large number of dialogue trajecto-
ries that need to be considered. In order to automate part of
the development cycle and make it less prone to design errors,
an increasing number of approaches have come to rely on rein-
forcement learning (RL) techniques [1, 2, 3, 4, 5, 6, 7, 8] to auto-
matically optimise the dialogue policy. The key idea is to model
dialogue management as a Markov Decision Process (MDP) or
a Partially Observable Markov Decision Process (POMDP), and
let the system learn by itself the best action to perform in each
possible conversational situation via repeated interactions with
a (real or simulated) user. Empirical studies have shown that
policies optimised via RL are generally more robust, flexible
and adaptive than their hand-crafted counterparts [2, 9].

To date, most reinforcement learning approaches to pol-
icy optimisation have adopted model-free methods such as
Monte Carlo estimation [8], Kalman Temporal Differences
[10], SARSA(A) [6], or Natural Actor Critic [11]. In model-
free methods, the learner seeks to directly estimate the expected
return (()-value) for every state-action pairs based on the set of
interactions it has gathered. The optimal policy is then simply
defined as the one that maximises this @)-value.

In this paper, we explore an alternative approach, inspired
by recent developments in the RL community: model-based
Bayesian reinforcement learning [12, 13]. In this framework,
the learner doesn’t directly estimate Q-values, but rather grad-
ually constructs an explicit model of the domain in the form of

transition, reward and observation models. Starting with some
initial priors, the learner iteratively refines the parameter es-
timates using standard Bayesian inference given the observed
data. These parameters are then subsequently used to plan the
optimal action to perform, taking into consideration every pos-
sible source of uncertainty (state uncertainty, stochastic action
effects, and model uncertainty).

In addition to providing an elegant, principled solution
to the exploration-exploitation dilemma [12], model-based
Bayesian RL has the additional benefit of allowing the system
designer to directly incorporate his/her prior knowledge into the
domain models. This is especially relevant for dialogue man-
agement, since many domains exhibit a rich internal structure
with multiple tasks to perform, sophisticated user models, and a
complex, dynamic context. We argue in particular that models
encoded via probabilistic rules can boost learning performance
compared to unstructured distributions.

The contributions of this paper are twofold. We first demon-
strate how to apply model-based Bayesian RL to learn the tran-
sition model of a dialogue domain. We also compare two mod-
elling approaches in the context of a human-robot scenario
where a Nao robot is instructed to move around and pick up ob-
jects. The empirical results show that the use of structured rep-
resentations enables the learning algorithm to converge faster
and with better generalisation performance.

The paper is structured as follows. §2 reviews the key con-
cepts of reinforcement learning. We then describe how model-
based Bayesian RL operates (§3) and detail two alternative for-
malisations for the domain models (§4). We evaluate the learn-
ing performance of the two models in §5. §6 compares our ap-
proach with previous work, and §7 concludes.

2. Background
2.1. POMDPs

Drawing on previous work [14, 7, 8, 15, 16], we formalise dia-
logue management as a Partially Observable Markov Decision
Process (POMDP) (S, A, O, T, Z, R), where S represents the
set of possible dialogue states s, A the set of system actions ay,,
and O the set of observations — here, the N-best lists that can be
generated by the speech recogniser. 7" is the transition model
P(s'|s, am) determining the probability of reaching state s af-
ter executing action a, in state s. Z is the probability P(ols)
of observing o when the current (hidden) state is s. Finally,
R(s, am) is the reward function, which defines the immediate
reward received after executing action a., in state s.

In POMDPs, the current state is not directly observable
by the agent, but is inferred from the observations. The agent
knowledge at a given time is represented by the belief state b,
which is a probability distribution P(s) over possible states.
After each system action a,,, and subsequent observation o, the



belief state b is updated to incorporate the new information:

b'(s)=P(s'|b, am,0) =aP(o|s") Z P(s'|s,am)b(s) (1)

where « is a normalisation constant.

In line with other approaches [7], we represent the belief
state as a Bayesian Network and factor the state s into three
distinct variables s = (ay, i, c), where a,, is the last user di-
alogue act, 7,, the current user intention, and c the interaction
context. Assuming that the observation o only depends on the
last user act a,,, and that a,, depends on both the user intention
i, and the last system action an,, Eq. (1) is rewritten as:

b (@, iu, €) = Play, iy, ¢ |b, am,0) )

= aP(olay) P(a,|iy, am) Y Pliy|iu, am, c)biu,c) (3)

iy ,C

P(o|ay,) is often defined as P(a.,), the dialogue act probabil-
ity in the N-best list provided by the speech recognition and se-
mantic parsing modules. P(al, |1y, am ) is called the user action
model, while P(i}|iy, am, c) is the user goal model.

2.2. Decision-making with POMDPs

The agent objective is to find the action a,, that maximise its
expected cumulative reward Q. Given a belief state—action se-
quence [bo, ag, b1, a1, ...,bn, a,] and a discount factor -, the
expected cumulative reward is defined as:

Q([bovaoablaalv'--bnvan]) = Z'YtR(bhat) C))
t=0

where R(b,a) = . o R(s,a)b(s). Using the fixed point
of Bellman’s equation [17], the expected return for the optimal
policy can be written in the following recursive form:

Q(b,a) = R(b,a) + ) _ P(olb,a) maxQ(t/,a) ()

ocO

where b’ is the updated belief state following the execution of
action a and the observation of o, as in Eq. 1. For notational
convenience, we used P(olb,a) = > ¢ P(o|s,a)b(s).

If the transition, observation and reward models are known,
it is possible to apply POMDP solution techniques to extract an
optimal policy 7 : b — a mapping from a belief point to the
action yielding the maximum Q)-value [18, 19, 20].

Unfortunately, for most dialogue domains, these models are
not known in advance. It is therefore necessary to collect a
large amount of interactions in order to estimate the optimal
action for each given (belief) state. This is typically done by
trial-and-error, exploring the effect of all possible actions and
gradually focussing the search on those yielding a high return
[21]. Due to the number of interactions that are necessary to
reach convergence, most approaches rely on user simulators for
the policy optimisation. These user simulators are often boot-
strapped from Wizard-of-Oz experiments in which the system
is remotely controlled by a human expert [22].

3. Approach

Contrary to model-free methods that directly estimate the policy
or Q-value of (belief) state—action pairs, model-based Bayesian
reinforcement learning relies on explicit transition, reward and
observation models. These models are gradually estimated from
the data collected by the learning agent, and are simultane-
ously used to plan the actions to execute. Model estimation
and decision-making are therefore intertwined.

3.1. Bayesian learning

The estimation of the model parameters is done via Bayesian
inference — that is, the learning algorithm maintains a posterior
distribution over the parameters 6 of the POMDP models, and
updates these parameters given the evidence.

We focus in this paper on the estimation of the transition
model P(s’|s, a,). It should however be noted that the same
approach can in principle be applied to estimate the observa-
tion and reward models [12]. The transition model can be de-
scribed as a collection of multinomials (one for each possible
conditional assignment of s and a,,). It is therefore convenient
to describe their parameters with Dirichlet distributions, which
are the conjugate prior of multinomials.

Fig. 1 illustrates this
estimation process. The
two parameters 6;7 |;,, am and
Oar |it, .am,c TESPECtively rep- @

S~
resent the Dirichlet distribu-

tions for the user goal and user -
action models. Once a new N-

best list of user dialogue acts
is received, these parameters
are updated using Bayes’ rule,
i.e. P(0]o) = aP(0l6).

The operation is repeated
for every observed user act.
To ensure the algorithm re-
mains tractable, we assume
conditional independence be-
tween the parameters, and we
approximate the inference via importance sampling.
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Figure 1: Bayesian pa-
rameter estimation of the
transition model.

3.2. Online planning

After updating its belief state and parameters, the agent must
find the optimal action to execute, which is the one that max-
imises its expected cumulative reward. This planning step is
the computational bottleneck in Bayesian reinforcement learn-
ing, since the agent needs to reason not only over all the current
and future states, but also over all possible transition models
(parametrised by the 6 variables). The high dimensionality of
the task usually prevents the use of offline solution techniques.
But several approximate methods for online POMDP planning
have been developed [23]. In this work, we used a simple for-
ward planning algorithm coupled with importance sampling.

Algorithm 1: Q (b, a, h)

I g« >, b(s)R(s,a)

2: if h > 1 then

33 Y Y P(s']s,a)b(s)

4 v=0

5:  for observation o € O do

6: b+ > P(ols)b'(s)

7: Estimate Q(b”, a’, h—1) for all actions a’
8: v v+ P(o|b') max, Q(b",a’, h—1)
9:  end for

10 g4 q+~yv

11: end if

12: return ¢

Algorithm 1 shows the iterative calculation of the ()-value
for a belief state b, action a and planning horizon h. The al-
gorithm starts by computing the immediate reward, and then



estimates the expected future reward after the execution of the
action. Line 5 loops on possible observations following the
action (for efficiency reasons, only a limited number of high-
probability observations are selected), and for each, the be-
lief state is updated and its maximum expected reward is com-
puted. The procedure stops when the planning horizon has been
reached, or the algorithm has run out of time. The planner then
simply selects the action a* = arg max Q(b, a).

4. Models

We now describe two alternative modelling approaches devel-
oped for the transition model.

4.1. Model 1: multinomial distributions

The first model is constructed with standard multinomial dis-
tributions, based on the factorisation described in §2.1. Both
the user action model P(a,,|i,,,a.) and the user goal model
P(i,]iw, am, c) are defined as multinomials whose parameters
are encoded with Dirichlet distributions. Prior domain knowl-
edge can be integrated by adapting the o Dirichlet counts to
skew the distribution in a particular direction. For instance, we
can encode the fact that the user is unlikely to change his inten-
tion after a clarification request by assigning a higher « value to
the intention 4,, corresponding to the current value i,, when a,
is a clarification request.

4.2. Model 2: probabilistic rules

The second model relies on probabilistic rules to capture the
domain structure in a compact manner and thereby reduce the
number of parameters to estimate. We provide here a very brief
overview of the formalism, previously presented in [24, 25].

Probabilistic rules take the form of if...then...else control
structures and map a list of conditions on input variables to
specific effects on output variables. A rule is formally ex-
pressed as an ordered list {(c1,...c,), where each case c; is
associated with a condition ¢; and a distribution over effects
{(F,p1), -y (¥F, pF)}, where 97 is an effect with associated
probability p] = P(1?|¢;). Note that p; ™ must satisfy the
usual probability axioms. The rule reads as such:

if (¢1) then
{[P(¥1) = pi1], ... [P(¥r) = pi]}

else if (¢,,) then

{[P(n) = pnls - [P(¥1") = P}]}

The conditions ¢; are arbitrarily complex logical formu-
lae grounded in the input variables. Associated to each condi-
tion stands a list of alternative effects that define specific value
assignments for the output variables. Each effect is assigned
a probability that can be either hard-coded or correspond to a
Dirichlet parameter to estimate (as in our case).

Here is a simple example of probabilistic rule:

Rule : if (a,, = Confirm(X) A 4., # X) then
{[P(a:, = Disconfirm) = 61]}
The rule specifies that, if the system requests the user to confirm

that his intention is X, but the actual intention is different, the
user will utter a Disconfirm action with probability 6, (which

is presumably quite high). Otherwise, the rule produces a void
effect —i.e. it leaves the distribution P(a},) unchanged.

At runtime, the rules are instantiated as additional nodes in
the Bayesian Network encoding the belief state. They there-
fore function as high-level templates for a plain probabilistic
model. While the formalisation of the rules remains similar to
the one presented in [24, 25] , it should be noted that their use
is markedly different, as they are here applied in a reinforce-
ment learning task, while previous work focussed on supervised
learning with “gold standard” Wizard-of-Oz actions.

5. Evaluation

We evaluated our approach within a human-robot interaction
scenario. We started by gathering empirical data for our dia-
logue domain using Wizard-of-Oz experiments, after which we
built a user simulator on the basis of the collected data. The
learning performance of the two models was finally evaluated
on the basis of this user simulator.

5.1. Wizard-of-Oz data collection

The dialogue domain involved
a Nao robot conversing with a
human user in a shared visual
scene including a few gras-
pable objects, as illustrated in
Fig. 2. The users were in-
structed to command the robot
to walk in different directions
and carry the objects from one .-
place to another. The robot
could also answer questions
(e.g. “do you see a blue cylin-
der?”). In total, the domain in-
cluded 11 distinct user intentions, and the user inputs were clas-
sified into 16 dialogue acts. The robot could execute 37 possible
actions, including both physical and conversational actions.

8 interactions were recorded, each with a different speaker,
totalling about 50 minutes. The interactions were performed in
English. After the recording, the dialogues were manually seg-
mented and annotated with dialogue acts, system actions, user
intentions, and contextual variables (e.g. perceived objects).

Figure 2: User interact-
ing with the Nao robot.

5.2. User simulator

Based on the annotated dialogues, we used MLE to derive the
user goal and action models, as well as a contextual model for
the robot’s perception. To reproduce imperfect speech recog-
nition, we applied a speech recogniser (Nuance Vocon) to the
Wizard-of-Oz user utterances and processed the recognition re-
sults to derive a Dirichlet distribution with three dimensions re-
spectively standing for the probability of the correct utterance,
the probability of incorrect recognition, and the probability of
no recognition. The N-best lists were generated by the simula-
tor with probabilities drawn from this distribution, estimated to
~ Dirichlet(5.4,0.52, 1.6) with T. Minka’s method [26].

5.3. Experimental setup

The simulator was coupled to the dialogue system to compare
the learning performance of the two models. The multino-
mial model contained 228 Dirichlet parameters. The rule-based
model contained 6 rules with 14 corresponding Dirichlet pa-
rameters. Weakly informative priors were used for the initial



parameter distributions in both models. The reward model, in
Table 1, was identical in both cases. The planner operated with
a horizon of length 2 and included an observation model intro-
ducing random noise to the user dialogue acts.

Execution of correct action +6 wrong action -6
Answer to correct question  +6 wrong question -6
Grounding correct intention 42 wrong intention -6

Ask to confirm  correct intention  -0.5 | wrong intention  -1.5

Ask to repeat -1 Ignore user act -1.5

Table 1: Reward model designed for the domain.

The performance was first measured in terms of average re-
turn per episode, shown in Fig. 3. To analyse the accuracy
of the transition model, we also derived the Kullback-Leibler
divergence [27] between the next user act distribution P(a,)
predicted by the learned model and the actual distribution fol-
lowed by the simulator at a given time' (Fig. 4). The results of
both figures are averaged on 100 simulations.
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Figure 3: Average return per episode.
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Figure 4: K-L divergence between the estimated distribution
P(a},) and the actual distribution followed by the simulator.

5.4. Analysis of results

The empirical results illustrate that both models are able to
capture at least some of the interaction dynamics and achieve
higher returns as the number of turns increases, but they do so at
different learning rates. In our view, this difference is to be ex-
plained by the higher generalisation capacity of the probabilistic
rules compared to the unstructured multinomial distributions.
It is interesting to note that most of the Dirichlet param-
eters associated with the probabilistic rules converge to their

Some residual discrepancy is to be expected between these two dis-
tributions, the latter being based on the actual user intention while the
former must infer it from the current belief state.

optimal value very rapidly, after a handful of episodes. This is
a promising result, since it implies that the proposed approach
could in principle optimise dialogue policies from live interac-
tions, without the need to rely on a user simulator, as in [4].

6. Related work

The first studies on model-based reinforcement learning for di-
alogue management have concentrated on learning from a fixed
corpus via Dynamic Programming methods [28, 29, 30]. The
literature also contains some recent work on Bayesian tech-
niques. [31] presents an interesting approach that combines
Bayesian inference with active learning. [32] is another related
work that utilises a sample of solved POMDP models. Both
employ offline solution techniques. To our knowledge, the only
approaches based on online planning are [15, 33], although they
focussed on the estimation of the observation model.

It is worth nothing that most POMDP approaches do in-
tegrate statistically estimated transition models in their belief
update mechanism, but they typically do not exploit this infor-
mation to optimise the dialogue policy, preferring to employ
model-free methods for this purpose [8, 34].

Interesting parallels can be drawn between the structured
modelling approach adopted in this paper (via the use of proba-
bility rules) and related approaches dedicated to dimensionality
reduction in large state—action spaces, such as function approx-
imation [6], hierarchical RL [5], summary POMDPs [8], state
space partitioning [35, 36] or relational abstractions [37]. These
approaches are however typically engineered towards a partic-
ular type of domain (often slot-filling applications). There has
also been some work on the integration of expert knowledge
using finite-state policies or ad-hoc constraints [38, 6]. In these
approaches, the expert knowledge operates as an external filter-
ing mechanism, while the probabilistic rules aim to incorporate
this knowledge into the structure of the statistical model.

7. Conclusion

We have presented a model-based Bayesian reinforcement
learning approach to the estimation of transition models for di-
alogue management. The method relies on an explicit repre-
sentation of the model uncertainty via a posterior distribution
over the model parameters. Starting with an initial Dirichlet
prior, this distribution is continuously refined through Bayesian
inference as more data is collected by the learning agent. An
approximate online planning algorithm selects the next action
to execute given the current belief state and the posterior distri-
bution over the model parameters.

We evaluated the approach with two alternative models, one
using multinomial distributions and one based on probabilistic
rules. We conducted a learning experiment with a user simu-
lator bootstrapped from Wizard-of-Oz data, which shows that
both models improve their estimate of the domain’s transition
model during the interaction. These improved estimates are also
reflected in the system’s action selection, which gradually yields
higher returns as more episodes are completed. The probabilis-
tic rules do however converge much faster than multinomial dis-
tributions, due to their ability to capture the domain structure in
a limited number of parameters.

Future work will extend the framework to estimate the re-
ward model in parallel to the state transitions. And most impor-
tantly, we plan to conduct experiments with real users to verify
that the outlined approach is capable of learning dialogue poli-
cies from direct interactions.
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