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Forget the great human heart and brain, the eyes that see sweeping vistas, the lips 

that declare “I am”. The real thing standing between us and the primordial ooze is 

the human skeleton. Built of 206 bones, the skeleton is a living cathedral of ivory 

vaults, ribs and buttresses – a structure at once light and strong, flexible and firm. 

 

Angier, N.  

New York Times November 1994 
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NORSK SAMMENDRAG 

 

Beinskjørhet (osteoporose) er en forstyrrelse i skjelettstoffskiftet som gir økt beintap, redusert 

beinoppbygning og dermed mindre beinvev. Dette øker risikoen for beinbrudd, og hvert år 

pådrar over 25 000 nordmenn seg såkalte lavenergibrudd – som hoftebrudd, underarmsbrudd 

og brudd i ryggen forårsaket av et traume som hos beinfriske ikke ville medført skade. 

Folkehelseinstituttet har estimert at hoftebrudd alene koster samfunnet ca. 2 millarder NOK 

årlig og for den enkelte kan et slikt brudd være fatalt; ca 25 % av eldre med lårhalsbrudd dør i 

løpet av det første året etter bruddet. Vi vet mye om hvilke faktorer som øker risikoen for 

osteoporose, imidlertid er det fremdeles uavklarte molekylære mekanismer bak denne vanlige 

lidelsen. Det er derfor både i den enkelte pasients og samfunnets interesse at kunnskapen om 

de molekylære mekanismene ved osteoporose økes, slik at vi kan utvikle bedre behandling og 

ikke minst kunne forutse og forebygge osteoporose og lavenergibrudd.  

I det første arbeidet i avhandlingen ”Experimental studies on bone with focus on tartrate-

resistant acid phosphatase and bone remodeling” har cand.med. Lene B. Solberg og 

medarbeidere studert sammenhengen mellom osteoporose og bruddtilheling hos rotte. Ved å 

måle beintetthet og mekaniske egenskaper til bruddområdet under tilheling fant gruppen ingen 

forskjeller mellom osteoporotiske og normale dyr, og konkluderer med at brudd hos 

osteoporotiske rotter gror som normalt. I de to påfølgende arbeidene har Solberg og 

medarbeidere studert enzymet tartrate-resistant acid phosphatase (TRAP) som blant annet 

produseres og skilles ut fra beinnedbrytende celler (osteoklaster). En beinspesifikk type av 

TRAP (TRAP 5b) kan måles i serum og flere studier har vist at mengden TRAP 5b i serum er 

direkte proporsjonal med osteoklastantallet og har prognostisk og diagnostisk verdi i 

kartlegging av osteoporose. Imidlertid er TRAPs direkte rolle i beinstoffskiftet ukjent. Solberg 

og medarbeidere har brukt rotter med osteoporose og D-vitaminmangelsykdom samt unge 

rotter i vekst til å studere omsetningen av TRAP i beinvev. Ved hjelp av ulike lys- og 

elektronmikroskopiske teknikker fant gruppen økt nivå av TRAP i flere typer beinceller 

(osteoblaster og osteocytter) hos osteoporotiske rotter. Gruppen fant TRAP sammen med en 

faktor som regulerer beinnedbrytningen (RANKL) og som skilles ut fra osteoblaster og 

ostecytter. Disse nye funnene taler for at TRAP kan ha flere oppgaver i bein, og gruppen 

foreslår at TRAP har en rolle i reguleringen av beinnedbrytningen og/eller er et signalmolekyl 

i koblingen mellom beinnedbrytning og beinoppbygging.  
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1 INTRODUCTION 

The bony skeleton is an organ constantly being changed and rebuilt in order to maintain its 

structural and metabolic functions. It provides body support critical for locomotion, 

respiration and protection of the internal organs as well as houses the bone marrow and 

sharing cells and local regulatory factors with the hematopoietic system. The bone tissue 

components include the mineralized and un-mineralized connective tissue matrix, bone cells 

and water and serve as an ion reservoir, crucial for the calcium and phosphate homeostasis in 

blood. The importance of studying skeletal physiology and pathology is illustrated by the 

incidence of bone diseases affecting the various skeletal functions such as the control and 

arrest of skeletal longitudinal growth, bone mineralization and control of bone mass 

manifested i.e. as dwarfism, rickets and osteoporosis as well as some less prevalent diseases 

such as osteogenesis imperfecta and sclerostosis.  

 

1.1 Bone biology 

Newborn and infants have between 300-350 bones which fuse at different time-points during 

skeletal maturation and growth to the 206 bones making up the adult skeleton. The axial 

skeleton comprises the bones in the midline (skull bones, hyoid bone, vertebrae, sternum and 

ribs) while the appendicular skeleton includes the extremities, scapulas, clavicles and pelvis. 

The individual bones can be further classified depending on their gross appearance and 

architectural structure; most bones of the appendicular skeleton (such as femur and tibia) are 

long bones (Fig. 1), whereas flat bones are found in the skull, mandible, scapula and pelvis. 

Cortical bone makes up the dense outer shell of all bones and the diaphysis of long bones 

providing mechanical strength and protection, while cancellous bone is found in the center of 

flat bones and underneath the cortical shell as well as in the metaphysis of long bones. 
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Modified images from Wikimedia Commons, the free media repository; 
http://commons.wikimedia.org/wiki/File:Illu_long_bone.jpg; 
http://commons.wikimedia.org/wiki/File:Illu_compact_spongy_bone.jpg 
 
Fig. 1 The anatomy of long bones The epiphyses, metaphyses and diaphysis in humerus with 
the insert showing details of the cortical and cancellous bone. Cortical bone, comprises 80% 
of the skeletal weight, is compact with tightly packet lamellae or osteons characterized by 
collagen fibers oriented axial to the applied mechanical force wrapped around a central 
(Haversian) canal which contains blood and lymphatic vessels and nerves. The vessels enter 
bone from the periosteum or the bone marrow through Volkmann’s canals running 
perpendicular to the Haversian canals. Cancellous bone has a “spongy” appearance with thin 
bony plates (trabeculae) forming a complex network hosting the bone marrow. A high 
surface-to-volume ratio and close relation to the circulation enable cancellous bone to play a 
key role in the circulating calcium and phosphate homeostasis. The endosteum is a thin 
delicate membrane of osteogenic cells lining the bone adjacent to the bone marrow, while the 
outer surface is covered with the periosteum (except for where it’s coated with articular 
cartilage) serving as attachment for ligaments and giving rise to the osteogenic cells. 
 

1.1.1 Bone development and growth 

The embryonic bone tissue develops from condensations of mesenchymal cells and is formed 

either directly by differentiation of the mesenchymal cells into bone-forming osteoblasts 

(intramembranous ossification); or in a multi-level process designated endochondral 

ossification where cartilaginous structures are built, resorbed and replaced by bone (Fig. 2). 

Intramembranous bone formation occurs in the skull, part of the facial bones and clavicles in 

addition to the periosteal column of long bones, whereas endochondral bone formation occurs 

in the rest of the axial and appendicular skeleton. The embryonic bone enlarges by 

appositional growth, while the epiphyseal growth plate enables continued elongation of long 
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bones through chondrocyte proliferation and hypertrophy as long as the growth plate exists. 

At the time of puberty, sex hormone levels increase leading to a phase of accelerated bone 

growth followed by closure of the epiphyseal growth plates. Although longitudinal growth of 

long bones ceases after puberty, bone formation continues in an appositional manner via 

intramembranous bone formation in the diaphysis increasing the transverse diameters of the 

long bones.  

 

From: Diseases of bone and mineral metabolism, Singer F (Ed). Copyright © 2008 
WWW.ENDOTEXT.ORG Reproduced with permission from Dr. Roland Baron. 
 
Fig. 2 Endochondral ossification The mesenchymal cells condensate and differentiate into 
chondrocytes producing a cartilage template. The cells at the border form the perichondrium 
which transforms into the periosteum and the bone collars which become the future cortical 
bone. The chondrocytes in the center hypertrophy and mineralize their surroundings, and 
attract capillaries, osteoblasts and chondroclasts/osteoclasts to the mineralized cartilage before 
they die. The invading cells form the primary ossification center where osteoblasts synthesize 
immature (woven) bone upon the cartilage remnants becoming the future cancellous bone. As 
the bone grows, the central part is gradually resorbed and populated with myeloid stromal 
cells establishing the main site of the hematopoiesis in post-natal life. Secondary ossification 
centers (SOCs) develop (usually after birth) in the same manner as the primary centers. In 
long bones, SOCs are formed in the epiphysis leaving only a cartilaginous growth plate 
between the primary and secondary ossification centers.  
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1.1.2 The epiphyseal growth plate 

When secondary ossification (Fig. 2) is complete, the cartilage model is totally replaced by 

bone except for in two areas; a region of articular cartilage remains at the distal end of the 

epiphysis as well as a transverse disc of cartilage between the epiphysis and the diaphysis 

called the epiphyseal growth plate. The growth plate contains chondrocytes at different stages 

of development, and proliferation and differentiation of these cells provide elongation of the 

long bones (Fig. 3).  

 

 
 

Fig. 3 The epiphyseal growth plate Light microscopic image from a 10 weeks old normal 
male rat. The growth plate can be divided into 3 zones; the resting zone (RZ), the proliferative 
zone (PZ) and the hypertrophic zone (HZ) next to the primary spongiosa (PS) - the initial 
trabecular network remodeled into cancellous or cortical bone. The cartilaginous cells 
proliferate as long as the growth plate exists. However, the epiphyseal disc does not increase 
in thickness as the cartilage matures and mineralizes because the cartilage is resorbed and 
replaced by primary spongiosa at the same speed in a tightly controlled manner. Scale bar 
100μm 
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1.1.3 Regulation of chondrogenesis 

The chondrogenesis in both embryonic and post-natal endochondral bone formation is strictly 

regulated to ensure normal longitudinal bone growth. The differentiation of condensated 

mesenchymal cells into chondrocytes is crucial for the development of the cartilaginous 

model. The differentiation is driven by cell-extracellular matrix (ECM) and cell-cell adhesion 

interactions mediated by hormonal and local factors controlling the key transcription factors 

SOX9 and RUNX2. SOX9 is one of the earliest markers of the chondrocyte lineage and 

crucial for the differentiation of condensated mesenchymal cells into chondrocytes, while 

RUNX2 is the main inducer of hypertrophic differentiation and is expressed by 

prehypertrophic and hypertrophic chondrocytes. Members of the WNT family regulate 

chondrocyte differentiation from mesenchymal precursor cells (MPC) via chondrocytes to 

hypertrophic chondrocytes in different ways; e.g. WNT5a and 5b (non-canonical pathways) 

stimulate differentiation from MPC to mature chondrocytes. Loss of β-catenin activity is 

required in mesenchymal cells to permit chondrocyte differentiations, but inhibits further 

differentiation into hypertrophic chondrocytes (reviewed in [2-4]). The Indian hedgehog 

protein (IHH) is expressed in prehypertrophic chondrocytes and is required for normal 

chondrocyte proliferation as well as coupling the chondrocyte hypertrophy with 

osteoblastogenesis by signaling to the adjacent perichondrium to induce osteoblast 

differentiation. IHH also induces PTH (parathyroid hormone)-related peptide (PTHrP) in 

articular cartilage and periarticular cells (chondrocytes in the distal ends of the condensation). 

The PTH/PTHrP receptor (PPR1) is expressed at much higher levels in the proliferating and 

prehypertrophic chondrocytes, and activation of PPR1 prevents the onset of hypertrophic 

differentiation and thus the differentiation of IHH expressing cells. This forms a negative 

feedback-loop controlling the proliferating chondrocytes (reviewed in [2, 3]). IHH expression 

is promoted by bone morphogenic proteins (BMPs) and stimulates chondrocyte proliferation, 

while the fibroblast growth factors (FGFs) inhibit proliferation. Circulating hormones also 

play a crucial role in controlling the growth and inhibitory factors secreted by the 

chondrocytes during the different stages of differentiation (reviewed in [5]); e.g. growth 

hormone (GH) from the pituitary gland stimulates the secretion of insulin-like growth factor 1 

(IGF-1) necessary for both chondrocyte proliferation and hypertrophy; thyroid hormone-

induced hypertrophy appears to be mediated through the WNT/β-catenin (canonical) pathway. 

In addition to limiting the proliferation rate, the hypertrophic chondrocytes regulate cartilage 

mineralization by releasing matrix vesicles to the surrounding ECM [6, 7] providing the 
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nucleation site for mineralization. The hypertrophic chondrocytes also regulate the invasion of 

vessel-forming cells, chondroclasts/osteoclasts as well as osteoblasts to the mineralized 

cartilage by expressing vascular endothelial growth factor (VEGF) promoting the vascular 

invasion, high-mobility group box 1 protein (HMGB1) acting on endothelial cells, osteoblasts 

and osteoclasts, as well as receptor activator of NFKB ligand (RANKL) [8] which is essential 

for chondroclast/osteoclast differentiation (reviewed in [5]). Estrogen regulates the closure of 

the epiphyseal growth plate and the skeleton maturation in human males as well as females, 

and estrogen receptor (ERα) expressed by the growth plate chondrocytes is a likely mediator 

of these effects [9-11].  

 

1.2   Composition of bone tissue 

The bone tissue consists of mineralized and non-mineralized matrix components as well as the 

bone cells. According to volume, the bone mineral hydroxyapatite (HAP) constitutes 

approximately 50% of the ECM, the rest being a mixture of collagen fibers, NCPs, 

proteoglycans, lipids and water where the exact composition varies dependent upon age, 

anatomic location, diet and general health status of the individual.  

 

1.2.1 Bone cells 

There are 3 different cells types in bone originated from 2 different cell lineages; 

mesenchymal cells give rise to the osteoblast lineage, which includes lining cells and 

osteocytes, in addition to adipocytes, myocytes and chondrocytes. The other cell line is the 

hematopoietic monocyte-macrophage lineage in the bone marrow which gives rise to the 

cartilage and bone macrophages known as chondroclasts/osteoclasts.  

The osteoblast is the bone forming cell, columnar in shape with a single, non-centric 

nucleus in its mature, active stage. Osteoblasts synthesize the bone matrix (osteoid) which 

comprises mostly collagen type I (COL1) as well as some minor collagens and proteoglycans, 

in addition to many of the NCPs such as integrin binding sialoprotein (IBSP), osteopontin 

(OPN), osteocalcin (OCN), osteonectin (ON) and the membrane-bound enzyme alkaline 

phosphatase (ALP), known to be an osteoblast marker. Osteoblasts originate from 

mesenchymal progenitor cells in the periosteum and bone marrow as well as in perivascularly. 

RUNX2 and Osterix (OSX) are two key transcription factors in osteoblast differentiation and 

facilitate the regulation of a variety of the different osteoblast-specific genes ([12]). RUNX2 

is one of the earliest markers of the osteoblast lineage and acts directly on the promoter for 
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OSX. Both Runx2 and Osx -/- mice completely lack osteoblasts demonstrating the essential 

role of these two transcription factors (reviewed in [13]). Numerous signaling pathways are 

involved in the differentiation, activation and inhibition of osteoblastic bone formation 

mediated through RUNX2 and OSX, among these are the BMPs, the WNTs, TGF-β, PTH, 

IGF-1, the FGFs and Notch (reviewed in [13-16]). In the end, 60-80% of the osteoblasts die 

by apoptosis. The remaining cells are either embedded in their own matrix during deposition 

of osteoid becoming osteocytes or they are converted into less active, flatten lining cells 

covering the bone surface.  

The osteocyte is the most abundant bone cell and is located in small lacunar areas in 

the mineralized matrix. It is stellate shaped with long cytoplasmic processes radiating from 

the cell body through small canals (canaliculi) in the mineralized matrix. These cytoplasmic 

processes connect the osteocytes to each other, the vessels in the Haversian canals, the bone 

surface with lining cells and osteoblasts as well as the cells in the bone marrow. During the 

transformation from mature, bone forming osteoblast to matrix embedded osteocyte several 

genes are switch on and off; one of the earliest osteocyte markers is E11/gp38/Podoplanin 

(PDPN), which seems to facilitate the formation of the dendritic processes/canaliculi. ALP is 

reduced, while casein kinase II and OCN is elevated in the late osteoblast and also expressed 

by the osteocyte. The mature osteocyte expresses markers such as phosphate-regulating gene 

with homologies to endopeptidases on the X chromosome (PHEX), matrix extracellular 

phosphoglycoprotein (MEPE), dentin matrix acidic phosphoprotein 1 (DMP1) and fibroblast 

growth factor 23 (FGF23) known to regulate phosphate metabolism. When the osteocyte 

senses the fluid-flow stress in the surrounding gel-matrix the cell responds by regulation of 

e.g. nitric oxide (NO), prostaglandin E2 (PGE2) and sclerostin. Sclerostin is a protein 

exclusively produced by osteocytes. It inhibits the canonical WNT/β-catenin signaling 

pathway reducing osteoblast differentiation from mesenchymal precursors and subsequent 

bone formation (reviewed in [17, 18]). Recently it has also been clarified that the osteocytes 

are the main source of RANKL in adult bone [19, 20] which is the main supporter of the 

osteoclastogenesis (reviewed in [14]) (Fig. 4). Osteocytes are also able to remodel their own 

environment (osteocytic osteolysis) under certain conditions, such as lactation, probably 

through the same mechanisms as the osteoclasts and in response to urgent need for bone 

mineral [21].  

The osteoclast is a multinucleated giant cell formed by fusion of mononuclear 

precursor cells of the monocyte-macrophage cell lineage derived from the circulation. The 

development of the osteoclastic phenotype is initially induced by the binding of colony 
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stimulating factor 1 (CSF1) to its receptor CSF1R which upregulates receptor activator of 

NFKB (RANK) on the cell surface (reviewed in [14]). 

 

 
Fig. 4 The RANK-RANKL-OPG axis The figure shows how membrane-bound RANKL in 
osteoblasts (Ob) and osteocytes (Ot) binds to RANK at the surface membrane of mononuclear 
precursor cells stimulating osteoclast (Oc) differentiation and activation [22, 23]. OPG may 
act as a decoy receptor for RANKL in addition to be an intracellular traffic regulator for 
RANKL to secretory lysosomes in both osteoblasts and osteocytes [23, 24]. 
 

RANKL, expressed by osteoblasts and osteocytes in addition to hypertrophic chondrocytes, is 

essential for further differentiation into bone resorbing osteoclasts and loss of function 

mutations in RANK or RANKL causes severe osteopetrosis (a high bone mass disease) due to 

impaired osteoclast function [25, 26]. It is not fully clarified whether membrane-bound 

RANKL or soluble RANKL activates RANK, however, it seems like membrane-bound 

RANKL is the most efficient osteoclast activator [22], (reviewed in [27]), and together with 

co-stimulation by the immunoreceptor tyrosin-based activation motif (ITAM)-containing 

adaptors, this leads to activation of the transcription factor NFATC1. NFATC1 is crucial for 

the osteoclastic phenotype and regulates the osteoclast specific genes (i.e. cathepsin K 

(CTSK), tartrate-resistant acid phosphatase (TRAP), matrix metalloproteinase 9 (MMP9) and 

β3-integrin) (reviewed in [14, 18, 28]). Osteoprotegerin (OPG), which is produced by 

osteoblasts and osteocytes in addition to B cells, endothelial cells and vascular smooth muscle 
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cells, serves as a decoy-receptor for RANKL and by binding to RANKL inhibits the 

activation of RANK (reviewed in [28, 29]) (Fig. 4). Continued stimulation through CSF1R 

and RANK is required for osteoclast survival and thereby making the RANK-RANKL-OPG 

axis a suitable target for therapeutic agents aiming at diminishing bone resorption.  

Prior to bone resorption, the maturing osteoclast must attach to the targeted 

mineralized matrix before the final differentiation occurs. The binding of osteoclastic 

vitronectin receptor ( v 3-integrin) to e.g. OPN enriched at the bone surface [30, 31], seems to 

facilitate the further polarization and reorganization of the actin cytoskeleton forming an F-

actin ring “sealing” the osteoclast to the surface (sealing zone, SZ). This isolates a membrane 

area that develops into the ruffled border (RB) (reviewed in [14, 32]). Simultaneously, a 

functional secretory domain (FSD) develops at the basolateral side allowing the phagocytosed 

bone constituents to be secreted into the circulation [33]. The SZ and the RB form a closed 

space, the osteoclast resorption pit, where acidification of the environment promotes bone 

resorption (Fig. 5). What stops the osteoclastic bone resorption is not fully clear, but after a 

few weeks the osteoclast undergoes apoptosis. Estrogen via TGF-β as well as soluble Fas 

ligand (FASLG) from the osteoblasts acting on the Fas receptor (FAS) in the osteoclasts 

membrane are known to decrease bone resorption by inducing osteoclast apoptosis. These 

mechanisms are further detailed in 1.3. 
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Fig. 5 The bone resorbing osteoclast (Oc) attaches to bone via v 3-OPN binding creating a 
sealing zone (SZ). An isolated membrane area develops into the ruffled border (RB) exposing 
a large surface area towards the bone. Bone resorption occurs at low pH promoting 
dissolution of bone mineral and degradation of collagen type I by acidic proteases such as 
cathepsin K and the MMPs. Collagen remnants, calcium (Ca2+) and phosphate (PO4

3-) as well 
as other molecules are endocytosed and secreted into the circulation via the functional 
secretory domain (FSD). TRAP may serve as a detachment-factor promoting osteoclast 
migration by dephosphorylation of e.g. OPN [34] as well as collaborate in the degradation of 
bone remnants in transcytotic vesicles (Tv) together with cathepsin K [35]. 
 

1.2.2 Extracellular bone matrix 

In all bone types the ECM consist of collagen fibrils, NCPs, small amounts of phospholipids, 

serum proteins and water in addition to HAP. In compact bone collagen type I comprises over 

90% of the organic matrix while the rest of the bone proteins being NCPs, however the ratio 

differs between the various bone types, with woven bone (newly formed bone) being the one 

with the highest NCPs content (reviewed in [36]).  

Collagens make up the structural framework in bone and other connective tissues and 

represent a large family of proteins, accounting for nearly 30% of all human proteins. In bone, 

the collagens fibrils contribute to its fracture resistance and elastic properties, as well as 

playing an important role as a structural template for mineral deposition. Collagen type I is 

predominant in bone, while collagen type II is the main constituent in hyaline cartilage. Other 
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collagens are present as well, however in small amounts. Collagen I and II are rod-like 

structures derived from the aggregation of 3 polypeptide chains (in collagen type 1: 2 α1(I) 

chains and 1 α2(1) chain) fold into a triple helix molecule, where the polypeptide chains are 

characterized by a triplet repeat sequence (gly-x-y, where gly is glycin, x usually is proline 

and y often hydroxyproline). The collagen molecules assemble into fibrils stabilized by cross-

links within and in-between the collagen fibrils. These bone-derived collagen cross-links 

(CTX) can be measured in the urine to monitor bone resorption.  

Non-collagenous matrix proteins are a heterogeneous group of different proteins 

participating and controlling bone mineralization as well as being involved in bone and 

energy metabolism (e.g. OCN). Most NCPs are acidic proteins containing glutamic acid, 

aspartic acid, and phosphorylated serine/threonine residues. In addition, many of them have a 

high capacity for binding calcium ions and to HAP crystal surfaces [37].  The NCPs can be 

divided into subgroups according to their main components as proteoglycans, glycoproteins or 

-carboxylated (gla) proteins. Most of the NCPs are produced locally by the cells of the 

osteoblastic lineage, but approximately one-fourth are produced elsewhere, mainly in the 

liver. These exogenously derived proteins are transported in the circulation and suggested to 

bind to bone matrix because of their high affinity to HAP. Many are acidic serum proteins 

(such as albumin and 2-HS-glycoprotein) which may be of importance in bone 

mineralization or play a role in circulating calcium transport. The NCPs are suggested a role 

as biological modulators rather than exhibiting structural support. Their regulatory function of 

mineralization as well as crystal growth within osteoid is supported by knock-out/transgenic 

experimental studies reporting dramatic phenotypic abnormalities in the mineralization 

process (the function of each protein is reviewed in [36, 38]). However, their concerted role in 

the mineralization of bone is still elusive.  

 

1.2.3 Matrix mineralization 

Bone mineral is essential for the mechanical properties and integrity of the bone tissue and 

serves as the most important ion reservoir of the body. Bone mineral is present mainly as a 

complex of calcium and phosphate, quite close to naturally occurring geologic 

hydroxyapatite, [Ca10(PO4)6OH2], but the crystals are smaller, less perfect and contain several 

impurities. The imperfect composition of the HAP crystals provides increased solubility and 

eases the release of ions into the circulation. However, as the bone matures the crystals 

increase in size and become more perfect. The HAP crystals are deposited between the 
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collagen fibrils and there are two essential events in the mineralization process of bone; the 

first is the nucleation of the crystals with a length axis, the other is the crystal growth. Matrix 

vesicles, mineralization foci, “crystal ghosts”, calcospherulites, phosphoproteins-collagen 

fibrils and 2-HS-glycoprotein have been suggested candidates responsible for the initiation 

and controlling of the mineralization process, thus it is likely that they all, to some extent, 

play a role (reviewed in [38]). After the initial mineral deposition into the “holes” between the 

collagen fibrils, the crystals enlarge and mature by the aggregation of new ions enabling 

growth to occur in more than one direction in an exponential fashion. The NCPs act probably 

as controllers and may bind to and thus regulate the size and shape of the crystals [39]. In 

addition, several other substances are known to affect the growth and maturation of HAP in 

bone. For example, dietary cations (Mg2+, Sr2+), the toxic pollutant cadmium (Cd2+), as well 

as carbonate (CO3-) and citrate in the body fluids may incorporate or substitute other ion 

groups leading to smaller, less perfect and thus more soluble crystals. The opposite effect is 

caused by incorporation of fluoride (F1-) which increases the crystal size thus decreases the 

solubility. Bisphosphonates, which are extensively used in the treatment of osteoporosis, 

incorporates in bone during the HAP crystal formation due to their high affinity for calcium. 

When bone resorption occurs, the bisphosphonates are released inhibiting osteoclast function 

and stimulating apoptosis and thereby further bone resorption. In addition, tetracycline binds 

with high affinity to the surface of recently formed HAP crystals and may be used to 

determine bone turnover [40].  

 

1.3   Bone remodeling 

Bone models and remodels continuous throughout life in a tightly coupled process of bone 

resorption and formation carried out by the osteoclasts and the osteoblasts. Bone modeling 

occurs during growth when the skeleton shapes and changes to achieve its structure and 

function. Remodeling is the continuous replacement of old bone (or cartilage) with new bone. 

The purpose of bone remodeling is not well known, however, removing dead osteocytes and 

microcracks as well as to maintain oxygen and nutrient supply to keep a healthy skeleton are 

likely reasons. Bone remodeling may also occur in response to hormonal regulation e.g. to 

release calcium and phosphate to the blood. Bone is remodeled in small units called the bone 

multicellular unit (BMU) which consists of a bone resorbing osteoclasts in front followed by 

bone forming osteoblasts (Fig. 6). When remodeling occurs in cortical bone the BMU (also 

called an osteon) excavates and replaces a canal (Haversian canal) axial to the applied 
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mechanical force. In cancellous bone, remodeling occurs across the trabeculaes excavating 

and replacing small packets of bone. At any moment more than a million BMUs are operating 

in the skeleton of healthy adults renewing the whole skeleton every 10 year.  

 

 
Fig. 6 Bone multicellular unit (BMU) with a leading bone resorbing osteoclast (Oc) in front 
followed by a team of bone forming osteoblasts (Ob). A central capillary and a nerve (in the 
top of the figure) are also present in the BMU.  

 

The bone remodeling cycle consists of 3 phases: The resorption phase where the 

osteoclasts remove bone; the reversal phase with the formation of the “cement line”, a 

glycoprotein-rich material laid down by what seems to be premature osteoblastic cells that 

gradually differentiates into bone forming osteoblasts [41]; and the formation phase where the 

mature osteoblasts form new bone. These phases occur with different speeds: resorption 

continues for about 14 days, reversal for 4 to 5 weeks while bone formation may take several 

months before a new structural unit is fully formed (reviewed in [18]). This means that if bone 

resorption is accelerated, a temporary imbalance occurs between resorption and formation. 

During the last decade it has been clarified that the osteocyte is a main orchestrator of bone 

remodeling by regulating both the resorption and the formation. Recent studies have 

demonstrated that the osteocyte is the main source of RANKL [19, 20] in adult bone. In 
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addition, the hypertrophic chondrocyte also express RANKL [8, 20]. This may indicate that 

the bone resorption process is more targeted than stochastic as the cells in or near areas in 

need for bone resorption are the ones initiating it. In adult bone the apoptotic osteocytes or 

their surviving neighbors have been suggested to determine the targeted sites for the bone 

resorption (reviewed in [18]). However, the remodeling sequence is regulated by several local 

as well as systemic factors (Table 1) and many are mediated through the RANK-RANKL-

OPG axis (Fig. 4). 

 

1.3.1 Regulation by local factors 

It is well known that increases or decreases in the rate of bone resorption are tightly followed 

by the same response in the rate of bone formation. Over the years much attention has been 

paid to the “coupling” between resorption and formation, trying to identify a main “coupling-

factor”. The osteoclastic bone resorption releases a lot of growth factors from the mineralized 

matrix which stimulate osteoblast differentiation, proliferation and activation. TGF-β, IGF-

I/II and the BMPs are among these. Osteoclasts may also regulate osteoblasts directly through 

e.g. binding of the transmembrane protein ephrin-B2 (EFNB2) to its receptor EPHB4 on 

osteoblasts leading to decreased osteoclast activity and increased osteoblast differentiation 

[42]. In addition, osteoclasts may secrete osteoblast stimulatory factors such as WNT10b and 

BMP6 (reviewed in [43]). Moreover, the osteocyte expresses sclerostin, the product of the 

SOST gene. Sclerostin inhibits bone formation via the canonical WNT/β-catenin pathway by 

binding to LRP5/6 which further inhibits the binding of WNTs with subsequent degradation 

of β-catenin in cytosol and shutdown of the differentiation from mesenchymal precursors into 

bone forming osteoblasts. By suppressing sclerostin (by e.g. mechanical loading or PTH) the 

canonical WNT/β-catenin pathway is activated and β-catenin accumulated in the nucleus 

stimulates osteoblast differentiation. In mature osteoblasts and osteocytes β-catenin 

upregulates OPG, inhibits RANKL and thereby decreases osteoclastogenesis and bone 

resorption. Targeted deletions in the sclerostin gene in mice (Sost) cause high bone mass and 

increased bone strength as does the rare disorder sclerostosis among humans (reviewed in [14, 

17]). Sclerostin antibodies have shown promising results as bone anabolic therapeutics in 

osteoporosis as well as to improve fracture healing [44].  
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1.3.2 Regulation by systemic factors 

Parathyroid hormone (PTH), 1,25(OH)2 vitamin D3 (1,25D), calcitonin, and estrogen are 

pivotal in bone remodeling, however, also other hormones including growth hormone (GH), 

thyroid hormone and glucocorticoids contribute to the regulation. A predominant function of 

PTH, 1,25D and calcitonin is to maintain adequate calcium and phosphate levels in the 

circulation using bone as a mineral reservoir.  

PTH is secreted from the parathyroid glands and targets the kidneys as well as bone. 

Low levels of calcium and high levels of phosphate in the circulation stimulate PTH secretion 

which leads to enhanced renal tubular reabsorption of calcium and increased excretion of 

phosphate and bicarbonate. In addition, vitamin D is hydroxylated in the kidneys under 

influence of PTH to achieve its active form 1,25D. In bone PTH stimulates bone resorption 

via its receptors on osteoblasts and bone marrow stromal cells increasing CSF1 and RANKL 

and decreasing OPG (reviewed in [14]), however, data have also been reported on possible 

PTH receptors in osteoclasts [45]. Dependent upon mode of administration exogenous PTH 

has dual effects on bone remodeling; continuous PTH administration leads to increased bone 

resorption, while intermittent administration leads to increased bone formation. The latter may 

in part be due to the reduced levels of sclerostin by PTH (reviewed in [17]).  

Vitamin D belongs to a group of sterols where vitamin D2 and D3 are the most 

important. It is crucial for calcium and phosphate absorption from the intestine and adequate 

levels of these ions have to be present to permit proper bone mineralization. Vitamin D2 is 

plant-derived while vitamin D3 is synthesized in the skin from cholesterol in response to UVB 

radiation, however both can be introduced through the diet. To achieve its active form, 1,25D, 

vitamin D needs to be hydroxylated in the liver (to calcidiol, 25D) and subsequently in the 

kidneys (to calcitriol, 1,25D) under stimulation of PTH for optimal function in target tissues. 

1,25D acts in a negative feedback loop on PTH synthesis in the parathyroid glands as well as 

induces FGF23 synthesis in the osteocytes which in turn downregulates the synthesis of 

1,25D in the kidney. These loops maintain a steady level of calcium and phosphate in the 

circulation preventing hypo- as well as hyperstates [46]. 1,25D mediates its effects via the 

vitamin D receptor-retinoid X receptor (VDR-RXR) complex acting directly on vitamin D 

responsive elements (VDRE) in the DNA of 1,25D regulated genes. In bone cells the VDR is 

present in osteoblasts, osteocytes and growth plate chondrocytes where the activation 

stimulates the expression of e.g. OCN, OPN, LRP5, and FGF23 [46-48]. At high non-

physiological concentrations and under conditions with low levels of circulating calcium and 
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phosphate, 1,25D stimulates RANKL mediated bone resorption to mobilize ions to the 

circulation and represses the expression of OPG and RUNX2 [46, 47].  

Calcitonin is a peptide hormone produced by the interstitial C-cells in the thyroid 

gland and the synthesis is stimulated by increased levels of serum calcium. Although 

influencing calcium homeostasis, calcitonin is less important than PTH and 1,25D and has the 

opposite effect by lowering the serum calcium. It inhibits osteoclastic bone resorption, 

however only transiently because the osteoclasts escape from the inhibitory effect after 

prolonged exposure probably due to down regulation of receptor mRNA [49].   

Estrogen is the most important bone-sparing hormone in the skeleton for both sexes 

(reviewed in [43, 50]). The crucial effects of estrogen on bone tissue are illustrated by the 

phase of accelerated net bone loss following menopause; ovarian failure and declining 

estrogen levels increases bone resorption which outstrips the fine-tuned coupling to bone 

formation. The effects of estrogen is mainly mediated through intranuclear receptors (ERs), 

which are expressed in osteoblasts [51], osteocytes [52], osteoclasts [51-53] as well as in T-

cells [54]. Two types of ERs, ER  and ER  [55] are present in bone. It is considered that the 

bone-conserving effects of estrogen are modulated via osteocytes, which seems to be the main 

controller of bone remodeling. Estrogen promotes survival of osteocytes by inducing a 

cascade leading to inactivation of the pro-apoptotic protein BCL2-assosiated death promoter 

(BAD) (reviewed in [43]), while estrogen withdrawal increases osteocyte apoptosis and 

thereby trigger bone remodeling [56]. Estrogen also acts directly upon osteoclastic bone 

resorption by inhibiting activation of genes encoding important factors for osteoclasts 

development, such as IL6, TNF-  and CSF1 as well as suppressing TNF-  gene expression 

leading to decreased osteoclast number and activity [57]. Estrogen blocks the effects of 

RANKL and CSF1 in osteoclasts, decreases the production of RANKL by osteoblasts and T 

and B cells and upregulates the synthesis of OPG (reviewed in [43]) in addition to TGF-β by 

osteoblasts inducing osteoclast apoptosis. A recent study [58] has shown that estrogen 

upregulates MMP3 cleavage of FASLG in the osteoblasts membrane. This leads to increased 

levels of soluble FASLG inducing apoptosis via FAS in osteoclast precursors as well as in 

mature osteoclasts and thereby inhibiting bone resorption. Estrogen also favors net bone 

formation by binding to its ER receptor in osteoblasts reducing oxidative stress and apoptosis. 

In sum these results offer an explanation to why estrogen withdrawal is so devastating for 

bone mass; the increased number of bone remodeling sites due to enhanced osteocyte 

apoptosis and bone resorbing osteoclasts in addition to increased osteoblast apoptosis with 
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reduced bone formation, explain why estrogen deficiency leads to a gap between resorption 

and formation with a resulting net bone loss.  

 

Table 1 Overview of some local and systemic factors acting upon bone remodeling 

Factor Bone resorption Bone formation 

BMPs - ↑ differentiation of Ob via RUNX2 

TGF-β ↓ → ↑OPG and ↓RANKL ↑ differentiation of Ob 

Sclerostin ↑ → ↓OPG and ↑RANKL ↓ differentiation of Ob via ↓β-catenin 

NO - ↑ bone formation 
PGE2 - ↑ bone formation 
Insulin ↑ → ↓OPG and ↑RANKL - 

Leptin ↓ → ↑CART → ↓RANKL 
↑ → ↑SNS →↑RANKL 

 
↓ Ob proliferation via ↑SNS 

1,25D ↑ → ↓OPG and ↑RANKL ↑ bone formation and mineralization via 
LRP5, OPN, OCN 
↓ Ob differentiation via RUNX2 

PTH ↑ → ↓OPG and ↑RANKL (↑) intermittent → ↓ sclerostin levels 
Calcitonin ↓  inhibits Oc differentiation - 

Glucocorticoids ↑ Oc survival ↓ by suppression of Ob differentiation and 
stimulation of Ob and Ot apoptosis 

Estrogen ↓ Increases Fas induced Oc 
apoptosis directly and via Ob 
↓ Blocks RANKL/CSF1  
↓→ ↑OPG and ↓RANKL by Ob, T 
and B cells 

↑ bone sparing effect due to pro-survival 
signaling in Ot  
↑ by inhibiting oxidative stress and Ob 
apoptosis 
↑ by inhibiting sclerostin? 

 
 

1.4  Bone as an endocrine organ 

Recent data suggest that bone may function as an endocrine organ. Osteoblasts, in addition to 

its well known synthesis of collagen type I and bone matrix proteins also produce the 

hormone osteocalcin (OCN) which is carboxylated by vitamin K and stored in mineralized 

bone matrix. OCN is suggested to play a role in an endocrine axis where bone participates in 

the regulation of energy metabolism. When bone resorption occurs, OCN is 

undercarboxylated and activated by the acidic environment in the osteoclast resorption pit and 

secreted into the circulation where it stimulate the β-cells to increase insulin synthesis in the 

pancreas, the testosterone synthesis in male gonads, as wells as increases insulin sensitivity in 

muscles, adipose tissue and liver. A positive feedback loop occurs when insulin inhibits OPG 

in osteoblasts, up-regulates RANKL secretion and thereby bone resorption allowing more 

OCN to be activated and secreted into the circulation (reviewed in [14, 59]). On the other 
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hand, leptin, a hormone produced by adipose tissue, also controls the bioactivity of OCN via 

actions involving the sympathetic nervous system (SNS) favoring decarboxylation of OCN 

and thereby decreases OCN activity. In addition, leptin acts on bone metabolism via two 

different pathways with opposite effects that in sum prevent bone mass accumulation; it 

inhibits osteoblast proliferation and stimulates RANKL and bone resorption via SNS as well 

as decreases RANKL expression via cocaine- and amphetamine-regulated transcript (CART) 

(reviewed in [59]).  

Another endocrine factor produced in bone is fibroblast growth factor 23 (FGF23). 

FGF23 is synthesized in the osteocyte under stimulation of VDR-RXR by 1,25D and targets 

the kidneys where it binds to FGFR-α-Klotho complexes in kidney tubules and stimulates the 

elimination of phosphate as well as feedback represses the synthesis of 1,25D in the kidney. 

FGF23 synthesis is also enhanced by high circulating phosphate levels and decreased by 

PHEX and DMP1, two other osteocyte derived factors, allowing reabsorption of phosphate in 

the kidneys to maintain sufficient phosphate levels and subsequent mineralization of bone. 

High circulating FGF23 levels are associated with hypophosphatemic rickets and 

osteomalacia. Low levels are associated with hyperphosphatemia, increased 1,25D and 

ectopic calcification (reviewed in [17, 60, 61]). Interestingly, lower expression of FGF23 was 

observed in the fracture callus of our rats with experimental osteoporosis compared to normal 

controls [62].  

 

1.5   Bone biomechanics and fracture repair 

Knowledge of bone construction is essential to understand bone biomechanics. A compact 

cylinder is extremely strong but heavy, thus the intelligent construction of the skeleton can be 

illustrated by the long bones; they are thick-walled pipes possessing mechanical strength but 

still relatively light due to their tube form. Bone area reflects bone mineral density (BMD), 

but the second moment of area (m4) is a property of shape that is used to predict resistance of 

materials to bending and deflection. In brief, assumed the same bone area, a tubular structure 

has greater resistance to bending than a massive cylinder due to efficient distribution of 

material. Increasing the diameter and decreasing the cortical wall thickness of a tube increases 

the second moment of area, thus increasing the resistance to bending. This can be illustrated 

by appositional bone growth; bone added periosteally increases the bending strength of the 

bone more than the increase in bone area, even if the absolute bone volume and BMD are 

unchanged (reviewed in [63]). 
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1.5.1 Biomechanical properties of bone 

Materials can be described as weak or strong, ductile or brittle, stiff or compliant dependent of 

the outcome of a stress-strain test (e.g., the load-deflection curve obtained by loading a bone 

specimen until failure, Fig. 7). Stress is the load per unit area. Strain (deflection) is the 

percentage change in length calculated as the size of deformation divided on the original 

length of the specimen. The slope of the linear region of the stress-strain curve is called the 

Young’s modulus of the material, representing stiffness; the greater the slope, the stiffer the 

material. The height of the curve represents the ultimate moment (stress), which is a measure 

of strength. The yield point is the point where the curve begins to bend. Prior to the yield 

point the bone bends elastically and will return to its original shape when the applied stress is 

removed. Once the yield point is passed some fraction of deformity will be permanent. The 

area under the curve (the integral of the function f(x)) is the amount of energy the tissue can 

resist before failure (energy absorption) and is also called toughness. Thus, a bone that is 

strong and stiff may require less energy to fracture (less area under the load-deflection curve) 

than a weak, compliant bone.  

The components of bone have different impact on the mechanical properties; the 

intermolecular cross-links in collagen are suggested to enhance bone toughness [64, 65], 

while the fiber orientation is considered critically important to bone strength. The latter is 

supported by the fact that collagen fibers tend to be orientated axial to the applied external 

force [66, 67]. This can be illustrated by the congenital pathologic condition osteogenesis 

imperfecta, “the brittle bone disease”, caused by different mutations in the genes encoding 

collagen type I making the affected individuals prone to low trauma-fractures. Bone mineral 

provides strength and stiffness, and the mineral to collagen-ratio affects both parameters. As 

the fraction of the mineral volume increases, Young’s modulus is improved (increased 

stiffness), but ultimate strain (deflection) decreases and the bone becomes more brittle. The 

adult variant of vitamin D deficiency, osteomalacia, with failure of normal bone 

mineralization makes the bones more prone to deformation during loading “soft bones”, thus 

fractures do not easily occur due to the decrease in mineral volume fraction.   
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Fig. 7 Three-point cantilever bending test Load-displacement curve from mechanical 
testing of a rat femur demonstrating the ultimate moment/bone strength (top of the blue 
curve), bending stiffness (the slope of the linear region, red line), deflection (the ultimate 
deformation of the bone before fracture) and energy absorption/bone toughness (the 
integrated f(x)). 
 

1.5.2 Fracture repair 

A bone fracture can be defined as a discontinuity in the bone tissue as a result of mechanical 

injury or insufficient strength of the bone tissue itself [68]. When fracture occurs, the body 

responds by general wound healing processes as well as tissue specific bone repair with 

almost complete restoration of the original anatomy. Fracture healing includes both 

intramembranous and endochondral bone formation. Direct intramembranous bone formation 

(primary ossification) is rare and permits direct reestablishment of cortical bone by the 

cortical components themselves and is most likely to occur if anatomic reduction and stabile 

fixation has been carried out. However, there is usually some flexibility in the stabilized 

fracture which promotes healing via the formation of a cartilagenous template and several 

steps from the endochondral bone formation are recapitulated.  
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The fracture healing process is often divided into 4 phases: The inflammatory phase is the 

initial body response to tissue damage and is much the same as in general wound repair. A 

fracture hematoma is formed due to vascular damage. Platelets are activated and 

inflammatory cells infiltrate the hematoma which subsequently reorganizes into granulation 

tissue with newly formed vessels and fibroblasts laying down collagen. The hematoma with 

platelets and inflammatory cells is an important source of osteogenic signaling molecules 

resulting in recruitment of osteoprogenitor cells from the periosteum, bone marrow and the 

surrounding soft tissue. Multiple growth factors and cytokins coordinate the process e.g. 

macrophage derived growth factor (MDGF), platelet derived growth factor (PDGF) and 

fibroblast growth factors (FGFs) as well as members of the TGF-β superfamily, interleukins 

and BMPs are involved (reviewed in [69]). The central role of the inflammatory phase can be 

illustrated by the effect of anti-inflammatory agents, such as non-steroidal anti-inflammatory 

drugs (NSAIDs), resulting in increased fibrinogenesis, decreased bone formation and delayed 

fracture healing (reviewed in [70]). The formation of soft callus is the start of the reparative 

phases which is dominated by the formation of a cartilaginous callus promoting early 

stabilization to the fracture site and serving as a template for the later bony callus formation. 

This is much a repetition of the endochondral bone formation process with mesenchymal 

precursor cells differentiating into chondrocytes and hypertrophic chondrocytes with cartilage 

maturation and mineralization [71] (see 1.1.1 for details). The formation of hard callus 

describes the osteogenesis which also occurs during direct, primary ossification if the fracture 

stabilization is sufficiently rigid. As soon as the cartilage is mineralized the in-growth of 

vessels allows the osteoprogenitors to proliferate and differentiate into bone-forming 

osteoblasts synthesizing new, irregular bone (woven bone). The hypertrophic chondrocytes 

stimulate differentiation of chondroclasts/osteoclasts by increasing levels of CSF1 and 

RANKL promoting resorption of the mineralized cartilage, while members of the BMP family 

promote recruitment of the osteoprogenitors and VEGF stimulates neoangiogenesis (reviewed 

in [69, 72]). The remodeling phase begins when the cartilage is resorbed and the callus almost 

exclusively consists of woven bone (after approximately 3-6 weeks). The final remodeling of 

the callus from woven bone into the original cortical or trabecular configuration with the re-

establishment of the marrow cavity, may take months or even years and is driven by a coupled 

process of osteoclastic bone resorption and osteoblastic bone formation similar to regular 

bone remodeling.  
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1.6   Osteoporosis 

Osteoporosis (greek; ostoun meaning bone and poros meaning pore) is an age-related bone 

disorder affecting both men and women where imbalance between bone resorption and 

formation leads to a net bone loss with resulting bone fragility and increased fracture risk. 

BMD is reduced as a measure of bone loss and the bone microarchitecture is deteriorated. 

Osteoporosis is the most frequent bone disorder in the world and the most common metabolic 

disorder among the elderly (reviewed in [73]). The condition is a major health problem not 

only for the affected individuals but also for the society. In Norway the costs of hip fractures 

alone has been estimated to 2.0 billion NOK a year [74]. Norway and Sweden as well as 

northern parts of the United States have the highest prevalence of osteoporosis worldwide 

[75], and although the incidence of hip fractures in Norway has decreased over the last decade 

it is still the highest in the world [76]. As the populations in the western world are getting 

older fragility fractures are expected to increase although the age-related incidence is 

unchanged or decreasing. The World Health Organization (WHO) has defined osteoporosis in 

both men and women as BMD values 2.5 standard deviations or more below the BMD for the 

young, healthy female Caucasian measured by dual-energy X-ray absorbtiometry 

(DEXA/DXA) [77]. Established osteoporosis includes, in addition to low BMD, the presence 

of a fragility fracture and the hip, distal forearm, spine and proximal humerus are especially 

prone to such fractures. However, BMD alone is not sufficient to predict the risk of a future 

fragility fracture, and the WHO therefore recommend the use of FRAX 

(www.shef.ac.uk/FRAX/tool.jsp) which is the WHOs fracture risk assessment tool. This tool 

incorporates several known risk factors for osteoporosis and fractures including BMD, and 

predicts the patient’s 10 year probability of fracture. The set up also contains 

recommendations for anti-osteoporotic therapy.  

New perspectives on osteoporosis as a part of the frailty syndrome classify osteoporosis 

as a degenerative disorder in line with atherosclerosis, myocardial hypertrophy, insulin 

resistance and Alzheimer’s disease. This has lead to a focus shift from the “estrogenocentric” 

view highlighting postmenopausal estrogen deficiency towards increases in cellular oxidative 

stress being the main pathological mechanism causing osteoporosis (reviewed in [73]). 

However, it is well documented that an accelerated rate of bone loss is taking place right after 

menopause [78] due to the withdrawal of estrogen and the hormone’s bone-sparing “anti-

oxidative” effects.  
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Bone loss begins in the thirties for both men and women. After reaching the peak bone 

mass in the early thirties, the continuous remodeling of the skeleton slowly looses bone as the 

defense against oxidative stress in the organism is reduced. Consequently, individuals with 

low peak bone mass are more prone to osteoporosis and fragility fractures. Low peak bone 

mass is influenced by several genetic and non-genetic factors; among the genetic determinants 

are female sex, body mass index (BMI) and age at menarche [79] in addition to 

polymorphisms in genes regulating bone mass e.g., VDR [80], COLIA1 [81], the genes 

influencing the WNT/β-catenin pathway such as the LRP5, DKK and SOST [44, 82, 83] as 

well as some more un-known genes associated with BMD [83]. The non-genetic factors 

contributing to low peak bone mass are e.g. low daily calcium intake during childhood, low 

body weight, sedentary lifestyle and delayed puberty [84, 85] as well as some therapeutics 

e.g. glucocorticoids and anti-convulsives. 

 

1.7   Vitamin D deficiency 

Vitamin D deficiency may be due to inadequate intake or absorption from the intestine, 

defects in the synthesis, or vitamin D resistance in the target tissues (reviewed in [86]). 

Vitamin D inadequacy is common among the elderly [87, 88] leading to decreased intestinal 

calcium absorption and increased levels of PTH (secondary hyperparathyroidism). This 

results in enhanced bone turnover as well as fatigue and muscle wakening increasing the risk 

for falls. Severe vitamin D-deficiency during childhood or in the adults manifests in bone as 

either rickets or osteomalacia, respectively, due to the insufficient mineralization of osteoid 

and/or the periosteal/endosteal appositional growth. In children, rickets includes failure of 

and/or delayed mineralization of growth cartilage at the epiphyseal growth plate which 

becomes thick, wide and irregular. Clinically rickets/osteomalacia manifest with skeletal 

deformities, bone pain and pseudofractures (reviewed in [89]).  

 

1.8  Tartrate-resistant acid phosphatase 

Tartrate-resistant acid phosphatase (TRAP) (ACP5), also known as purple acid phosphatase, 

or uteroferrin [90], is a well known enzyme demonstrated in many mammalian tissues [91-

93], and most known as an osteoclast marker. Acid phosphatase activity in bone was 

described as early as in 1969 [94] and in 1977 it was confirmed that there are 2 types of acid 

phosphatases (ACPases) in bone tissue; tartrate-sensitive ACPase and tartrate-resistant 

ACPase [95]. TRAP belongs to the subfamily of purple acid phosphateses (PAP), a group of 
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metalloenzymes [96] which catalyzes hydrolysis of phosphate esters and anhydrides under 

acidic conditions. Mammalian TRAP enzymes are glycoproteins with a molecular weight of 

approximately 35 kDa. TRAP is synthesized as a relatively inactive pro-enzyme (monomeric 

TRAP/mTRAP/loop-TRAP/serum TRAP 5a) and proteolytic cleavage by members of the 

cathepsin family or other proteinases, increases the catalytic activity at least 10-fold [97, 98].  

TRAP gene expression seems to be most abundant in bone tissue [99] where it has shown 

several biological abilities; e.g., dephosphorylation of OPN and IBSP [100, 101], and of Man-

6-P recognition marker on lysosomal proteins [102, 103] as well as generation of reactive 

oxygen species (ROS) [35] for bone matrix degradation. Human serum contains two isoforms 

of TRAP; 5a and 5b with different pH optimum; 5.0-5.2 and 5.8-6.0 respectively. Serum 

TRAP 5a is identical to monomeric TRAP, while serum TRAP 5b is identical to osteoclastic, 

cleaved TRAP (reviewed in [104]). The serum activity of TRAP 5b is significantly elevated in 

patients with osteoporosis and negatively correlated with BMD [105]. Studies on mice have 

yielded similar results: overexpression of TRAP results in enhanced bone turnover and a mild 

osteoporotic phenotype [106], while global deletion of TRAP leads to disturbed endochondral 

ossification with widening of the growth plate as well as an enhanced number of thickened 

trabeculae in the metaphysis and a mild osteopetrotic phenotype [107-109]. 

TRAP has also been reported in osteoblasts and osteocytes [94, 110-117]; TRAP 

mRNA and enzyme activity have been demonstrated in the metaphysis and in the endosteal 

and periosteal aspects of diaphyseal rat bone [110, 116] as well as in osteocytes in diaphyseal 

rat bone near bone resorption sites [110, 113]. The origin and function of TRAP in these cells 

have been debated; one hypothesis is that osteoclastic TRAP from the resorption lacunae is 

endocytosed by osteoblasts. This theory is supported by cell culture studies reporting that 

osteoblast-like cells are able to engulf osteoclastic TRAP and inactivate the enzyme, 

suggesting that this could control the enzyme activity and prevent further degradation of 

matrix constituents [114, 115].  However, endogenous TRAP production has also been 

demonstrated in osteoblasts [116] and osteocytes [113] in areas close to bone resorbing 

surfaces suggesting that TRAP may take part in mechanisms controlling the direction of 

osteoclastic bone resorption [113]. There are also in vitro results indicating that TRAP in the 

osteoclast lacunae may play a role in the signaling pathway responsible for the differentiation 

of osteoblast-like cells into mature osteoblasts and thereby being one of the “coupling-

factors” between bone resorption and bone formation [118]. In addition, increased amounts of 

TRAP and cathepsin K have been demonstrated in large osteocyte lacunae and canaliculi in 

lactating mice, suggesting that osteocytes are able to remodel their matrix via osteoclast-like 
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mechanisms under specific conditions [21]. Despite excessive studies on TRAP in bone, the 

exact function(s) still remains elusive. 
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2 AIMS OF THE STUDIES 

 

In the current project the initial goal was to establish an animal model for studies of fracture 

healing in osteoporosis as well as to use animal models with disturbed bone turnover to 

provide new insight into bone metabolism at the molecular level.  

 

Paper I 

In the first paper we aimed to establish the experimental osteoporosis model by the 

combination of ovariectomy and vitamin D deficiency in rats, and use this model to test the 

hypothesis that experimental osteoporosis delays bone repair manifested as impaired 

mechanical properties and bone mineral density of the fracture callus. 

 

Paper II & III 

In paper II we wanted to test the hypothesis that tartrate-resistant acid phosphatase (TRAP) in 

osteoblasts and/or osteocytes in rat bone tissue mainly has an exogenous osteoclastic origin in 

vivo by demonstrating enhanced levels of TRAP in such cells in animal models with increased 

osteoclast activity; i.e. in experimental osteoporosis and in experimental rickets. The second 

hypothesis was that endocytosed TRAP in osteoblasts and/or osteocytes will locate to late 

endosomes or lysosomal structures for subsequent inactivation and degradation or further 

signaling (cf. Fig. 8). 
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Fig. 8 The endocytosis theory for TRAP in osteoblasts A schematic drawing of the 
suggested routes for osteoclastic TRAP (TRAP-Oc) which is endocytosed by osteoblasts for 
either lysosomal degradation or for serving as a coupling factor promoting Ob maturation. 
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3 MATERIALS AND METHODS 

 

An overview of the animal models and the methods applied in the included papers are given 

below. The reader is referred to the respective papers for further details.  

 

3.1 Animal models and study designs 

Local guidelines as well as the American Guide for the Care and Use of Laboratory Animals 

[119, 120] were followed and the protocols approved by the Norwegian National Animal 

Research Authority for the animal experiments included in this thesis. The numbers of 

animals were kept to a minimum in accordance to the statistical power analyses. The surgical 

procedures (ovariectomy and induction of a standardized fracture) were carried out under 

deep anesthesia and all animals received subcutaneous analgesics after the procedures and the 

first postoperative day. Blood samples were collected from the animals in paper I and II prior 

to killing. During the in vivo experiments all the animals were housed under standard 

laboratory conditions (except for the rats with experimental rickets which were kept in a room 

with UV-free light) in a well equipped animal laboratory (Department of Comparative 

Medicine, Oslo University Hospital, Rikshospitalet). The animals were taken daily care of by 

professionals as well as the researchers during the experiments. The animals gained weight 

during the course of the in vivo experiments and killing of all animals was performed either 

under deep anesthesia and in vivo perfusion through the hearth, by a phenobarbital overdose 

or by a guillotine.  

  

 



3 MATERIALS AND METHODS  

29 
 

 
 

Fig. 9 Schematic diagram of the study designs of the animal models              
A Experimental osteoporosis B Experimental rickets  
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3.2 Methods 

 

Table 2 Overview of the applied methods  

 
Paper Animal models Methods 
I Experimental osteoporosis: 

ovariectomy and vitamin D 
deficiency 
 
Bone repair: tibia midshaft fracture 

Immunoassays for serum analyses (25OHD, 
estradiol) 
 
DXA in vivo for BMD measurements  
 
Cantilever bending test  
 
Bone histomorphometry  

II Experimental osteoporosis: 
ovariectomy and vitamin D 
deficiency 
 
Experimental rickets: low 
phosphate and vitamin D deficiency 
rickets and healing from the 
condition for 48h and 72h 

Histology: experimental rickets 
 
Immunoassays for serum analyses (TRAP5b, 
CTX-I) 
 
In situ hybridization (TRAP) 
 
Immunolabeling and fluorescence microscopy 
(mTRAP, ELF97) 
 
Immunoelectron microscopy (TRAP) 
 
Semi-quantitative evaluation 

III 3 days old, untreated rats Immunofluorescence confocal microscopy and 
co-localization analyses (TRAP, RANKL, OPG) 
 
Immunoelectron microscopy of thawed 
cryosections (TRAP, RANKL, LAMP1) 
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4 SUMMARY OF RESULTS 

 

4.1  Paper I 

Melhus G*, Solberg LB*, Dimmen S, Madsen JE, Nordsletten L, Reinholt FP. Experimental 

osteoporosis induced by ovariectomy and vitamin D deficient diet does not markedly affect 

fracture healing in rats  

Acta Orthop 2007 Jun;78(3):393-403 *The authors contributed equally to the study 

 

Animals subjected to ovariectomy and vitamin D-depletion (Ovx-D) developed vitamin D-

deficiency and presented serum levels of estradiol in the range of a human postmenopausal 

state. This confirmed a successful accomplishment of the intervention. The Ovx-D animals 

also developed osteopenia compared to the controls (sham) with significantly reduced BV/TV 

in the femur head (p<0.001), and significantly decreased BMD in the trabecular areas (spine 

and femoral neck, p<0.001). A standardized midshaft fracture was induced in the right tibia in 

all animals 12 weeks post ovariectomy and vitamin D-depletion. DXA-analyses at 2, 3 and 6 

weeks post fracture demonstrated significant lower BMD in the right tibia midshaft at 6 

weeks post fracture and in the right femur neck of both groups at all time-points compared 

with the left limb. No differences were detected with respect to BMD or mechanical 

properties of the callus between the two groups in the fractured right limb; however both 

groups presented a high proportion of non-unions. No impairment in bone strength was 

detected in the Ovx-D group compared to sham, except for significant decreased bending 

stiffness in the femur neck in Ovx-D.  Significant weight gain were seen in the Ovx-D vs. 

sham despite pair-feeding (p<0.001), however, normalization for body weight in the 

mechanical test results did not alter the statistical outcome. In conclusion: experimental 

osteoporosis does not affect the BMD or impair the mechanical properties of the fracture 

callus after 6 weeks of healing. 
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4.2 Paper II 

Solberg LB, Brorson SH, Stordalen GA, Bækkevold E, Andersson G, Reinholt FP. Increased 

tartrate-resistant acid phosphatase (TRAP) expression in osteoblasts and osteocytes in 

experimental osteoporosis in rats  

Submitted October 2013 

 

Tartrate-resistant acid phosphatase (TRAP) is a well known osteoclast marker; however, 

osteoblasts and osteocytes close to bone surfaces or intracortical remodeling sites also 

demonstrate TRAP gene and protein expression as well as enzyme activity. The origin and 

function of TRAP in these cells are not known, thus a suggested mechanism is that osteoblasts 

and/or osteocytes engulf osteoclastic TRAP for inactivation to prevent further bone 

resorption. To evaluate whether changes in osteoclast activity could alter TRAP protein 

expression and enzyme activity in osteoblasts and/or osteocytes in vivo, we analyzed two 

experimental rat models with disturbed bone metabolism and increased osteoclast activity: the 

ovariectomized and vitamin D-depleted rat (Ovx-D) and rats healing from experimental 

rickets for 48h and 72h (experimental rickets). Osteoblasts and osteocytes close to 

intracortical remodeling sites and bone surfaces demonstrated TRAP, most prominent in 

cancellous bone and in osteocytes in both animal models. Intracellular TRAP was located to 

electron dense vesicles with similar morphological features in both osteoblasts and osteocytes. 

Ovx-D increased osteoclast activity (p<0.001) and ELF97+ osteocytes (p<0.05) in cancellous 

bone, but no corresponding increase was observed in the osteocyte lacunar area. The ratio of 

TRAP+ vesicles to total cytoplasm area in cortical osteoblasts (p<0.01) was also increased. In 

addition, Ovx-D presented increased TRAP mRNA expression in osteocytes, however not 

significant, questioning the hypothesis of endocytosis being the mechanism enhancing TRAP 

protein expression and enzyme activity in osteoblasts and osteocytes. To further address this 

question, rats healing from nutritionally induced low phosphate and vitamin D-deficiency 

rickets (experimental rickets) were analyzed as an alternate model of osteoclast activation. 

Enhanced osteoclast activity was noted in healing rickets after 72h (p<0.05), but no 

differences in TRAP expression were detected in osteoblasts or osteocytes. In conclusion; 

increased osteoclast activity does not affect TRAP expression in osteoblast and osteocytes 

favoring the notion that the observed increase in TRAP protein expression and enzyme 

activity in osteoblasts and osteocytes is due to increased synthesis rather than being a result of 

increased osteoclast activity.  



4 SUMMARY OF RESULTS  

33 
 

4.3 Paper III 

Solberg LB, Stang E, Brorson SH, Andersson G, Reinholt FP. Co-localization of tartrate-

resistant acid phosphatase (TRAP) and receptor activator of NFKB ligand (RANKL) in 

lysosomal associated membrane protein 1 (LAMP1) positive vesicles in osteoblasts and 

osteocytes in rats 

Manuscript November 2013 

 

Tartrate-resistant acid phosphatase (TRAP) gene and protein expression as well as enzyme 

activity have previously been observed in osteoclasts, osteoblasts and osteocytes in bone 

tissue in vivo in addition to some reports on TRAP gene expression in hypertrophic 

chondrocytes. Paper II demonstrates enhanced level of TRAP+ osteocytes and TRAP located 

to intracellular vesicles in osteoblasts and osteocytes in experimental osteoporosis, especially 

abundant in osteocytes and osteoblasts in cancellous bone and close to bone surface and 

intracortical remodeling sites. To further address the function of TRAP in osteoblasts and 

osteocytes, long bones of young growing rats were examined in order to reveal the nature of 

the TRAP+ vesicles. Immunofluorescence confocal microscopy displayed co-localization of 

TRAP with RANKL and OPG in hypertrophic chondrocytes and diaphyseal osteocytes. 

Pearson’s correlation coefficient (PCC) > 0.8 indicated strong co-localization of TRAP with 

RANKL and OPG in hypertrophic chondrocytes as well as in diaphyseal osteocytes. 

Transmission electron microscopy (TEM) of tibia metaphysis and diaphysis demonstrated 

TRAP and RANKL in LAMP1+ electron dense vesicles in osteoblasts and osteocytes and 

also displayed co-localization of TRAP and RANKL in vesicular structures in both cell types. 

These observations support the results obtained by confocal microscopy. Recently, in vitro 

data have been reported on OPG as a traffic regulator for RANKL to LAMP1+ secretory 

lysosomes in osteoblasts and osteocytes serving as temporary storage compartments for 

RANKL. In addition, hypertrophic chondrocytes express RANKL and OPG. We 

demonstrated co-localization of TRAP with RANKL in LAMP1+ vesicles in osteoblasts and 

osteocytes as well as co-localization of TRAP with RANKL and OPG in hypertrophic 

chondrocytes and osteocytes. In conclusion: Our observations of RANKL and LAMP1 in 

TRAP+ vesicles in osteoblasts and osteocytes in vivo indicate that TRAP is located to 

RANKL positive secretory lysosomes in osteoblasts and osteocytes. 
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5 GENERAL DISCUSSION 

 

5.1 Methodological considerations 

5.1.1 Animals  

In vivo experiments as well as studies of cell cultures have extended our knowledge on bone 

metabolism and bone repair. New intracellular pathways and mechanisms are often 

discovered in vitro; however, there is also a need to confirm the presence and importance of 

such mechanisms in vivo before carrying out further research that eventually may end up in 

large scale studies of promising new therapeutics. Experimental studies on bone metabolism 

and bone repair in a randomized controlled fashion are difficult to perform in humans, and 

cell culture studies will not let us examine the in vivo aspects, we therefore turned to the 

laboratory rat as model for in vivo experimental studies. The animal models described in this 

thesis have previously been shown to be useful for studying different aspects of bone tissue 

properties and are published by other associated member of our group [121-126]. 

Rats are widely used in bone research and their anatomy and physiology are well 

known. In addition, they are easy to house, low at cost and numerous experiments have been 

carried out in bone making the comparison between different studies easy. However, the use 

of rats in experimental bone research do have some limitations: rodent bone structure is more 

primitive than in humans, lacking Haversian systems in cortical bone and intracortical 

remodeling in young rodents are carried out in resorption cavities [127]. This process shows 

similarities with the Haversian remodeling occurring after fracture healing in humans, and the 

use of rats in studies of bone repair has been accepted [128] as long as the limitations are 

taken into account when extrapolating the results to humans. The lack of Haversian systems 

may also be a potential drawback when inducing osteoporosis in rats, as cortical porosity in 

human osteoporosis is due to increased Haversian remodeling. However, the induction of 

osteoporosis in rats by surgical ovariectomy leads to a condition similar to the rapid bone loss 

observed right after menopause in human females [129]; cancellous bone mass at discrete 

sites exhibits an increased rate of bone remodeling and an altered balance between resorption 

and formation occurs. This favors resorption with trabecular thinning and cancellous bone 

loss, while in cortical bone the mid-diaphyseal diameter increases by periosteal growth as 

well as endosteal thinning. The net result is enlargement of the medullary cavity which may 

be observed at earliest between 90 and 120 days after ovariectomy [130]. An additional 
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difference between human and rat bone biology is the persistent longitudinal long bone 

growth with late closure of the growth plates occuring in rats: they reach their sexual maturity 

at the age of 2.5 months and their peak bone mass and skeletal maturity at 10 months. 

However, some of the epiphyseal growth plates remain open after this; in male rats the 

epiphyses of long bones stay open until past 30 months, while in female rats the proximal 

tibia epiphyses close at 15 months [129]. This makes it mandatory to use a control group to be 

able to differentiate the gain or loss of bone mass from the natural bone modeling, and to be 

aware of the growth and maturation rate for the discrete skeletal sites evaluated. Furthermore, 

ovariectomized rats are not prone to fragility fractures, which is the main symptom of human 

osteoporosis. Fragility fractures or spontaneous fractures have actually never been reproduced 

in any animal model. The WHOs definition of osteoporosis, i.e. BMD below 2.5 SDs of the 

reference group with or without fractures, might be used in animal models. Moreover, WHO 

has accepted the osteopenic rat without fragility fractures appropriate for osteoporosis 

research [129]. Also guidelines from the Food and Drug Administration in the US (FDA) 

support this notion by recommending the ovariectomized rat as one out of 2 animal models 

(the other being a large animal model) for studying the effect of drugs affecting 

postmenopausal osteoporosis in proximal tibia, distal femur and lumbar vertebrae [131].   

 

5.1.2  The experimental osteoporosis model 

We induced experimental osteoporosis by a combination of ovariectomy and vitamin D 

deficiency (Ovx-D) in young female rats. The ovariectomy model was chosen following the 

reasoning above and in trying to come even closer in mimicking human postmenopausal 

osteoporosis, vitamin D depletion was introduced to the ovariectomized rats as low levels of 

vitamin D have been associated with increased risk of hip fractures [87, 132]. In addition, the 

model has previously demonstrated reduced mechanical strength of the femur neck [124]. 

Young, skeletal immature rats with a control group were chosen to be sure that an eventual 

delay in the fracture healing process was due to osteoporosis and not to aging which is known 

to impair the healing properties [133-135]. Pair-feeding was introduced to the Ovx-D animals 

in order to prevent the weight gain known to occur in ovariectomized rats [136] (reviewed in 

[137]), however, despite pair-feeding the Ovx-D animals gained significantly more weight 

than the sham animals. This could, at least to some extent, counteract the bone loss induced 

by ovariectomy. On the other hand, normalizing for body weight differences in the 

mechanical test results did not alter the statistical outcome.  
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5.1.3 The experimental fracture model 

The tibia mid-shaft fracture model in rats has been widely used by associated members of our 

group [121, 122, 125, 126] and standardization with respect to fracture site and stabilization is 

well established. However, the sparsely and slowly developing cortical bone loss known to 

occur in the ovariectomized rat [138] may question the chosen mid-diaphyseal fracture: a 

metaphyseal fracture location might have been a better choice as human osteoporotic fractures 

are most frequently located to sites with high degrees of cancellous bone (as the spine, hip, 

distal forearm and proximal humerus). On the other hand, the main purpose of the study was 

to investigate fracture healing and the biomechanical properties of the callus rather than the 

biomechanical strength of long bone diaphyses in experimental osteoporosis. Assuming that 

the systemic effects of ovariectomy and vitamin D depletion on callus formation are 

independent of the fracture site and following the reasoning above, we determined the tibia 

mid-diaphyseal fracture model suitable for the study.  

It is well known that the immobilization and fixation of the fracture site influence the 

degree of callus formation and the mode of fracture healing i.e. intramembranous or direct 

fracture healing vs. endochondral or indirect fracture healing (see 1.6.2. for details). It is 

therefore particularly important to be able to control the standardization and biomechanical 

properties of the fixation in studies of fracture healing. In our study the tibia fracture was 

stabilized with an intramedullary pin. According to a recent review [128], the applied 

stabilization method is judged both easy and reproducible. However, the method lacks 

rotational and axial stability and has a high risk for dislocations. Thus it is no longer 

recommended, as new improved, specially designed rodent implants have been made 

available during the last years. This was not the case at the time our study was carried out and 

the axial and rotational movement between the fracture-ends might have influenced the results 

by leading to the high degree of non-unions observed (45% vs. 36% non-unions in the Ovx-D 

and sham group, respectively). The non-unions were excluded from the mechanical testing, 

however, the remaining number of animals (6 and 7) were still sufficient to allow detection of 

a 20% difference in means [139].  

 

5.1.4 Rats healing from low phosphate and vitamin D-deficiency rickets 

Low phosphate and vitamin D-deficiency rickets as well as healing from the condition has 

previously been used for the study of chondroclasts/osteoclast resorption activity [140] and 

activation in rats [123]. Vitamin D-deficiency and low phosphate concentrations induce 
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rickets with well known morphological changes; inadequate calcification of the growth plate 

region with impaired hypertrophic chondrocyte apoptosis and minimal cartilage resorption 

result in the characteristic widening of the growth plate. The adjacent metaphysis and cortical 

bone also fail to mineralize properly (reviewed in [141]). Inadequacy in the circulating 

mineral concentration as well as reduced transcription of osteopontin [46, 142, 143] as a result 

of the vitamin D deficiency may contribute to the defect mineralization and the subsequent 

failure in resorption. The theory behind this is that the chondroclasts/osteoclasts recruited to 

areas in need for resorption fail to develop appropriate resorption machinery [140] with 

impaired polarization and ruffled border development. This might be due to the inappropriate 

ECM-cell interaction which seems to be essential for the correct development of ruffled 

border (i.e. the lack of osteopontin and defect binding to αvβ3-integrins [30, 31]). However, 

the exact mechanism remains to be set. Nevertheless, reintroduction of vitamin D and 

phosphate to the diet normalize the growth plate region by stimulating cartilage and bone 

mineralization, as well as increasing the chondroclast/osteoclast activity and resorption [123]. 

We confirmed the intended increase in chondroclast/osteoclast activity in our study by 

morphological examination of the growth plate region and by measuring the serum levels of 

TRAP 5b and CTX-I, widely used to determine osteoclast number and activity, respectively 

[144]. To be sure that we determined the true osteoclast activity and that the results were not 

influenced by e.g. differences in bone size; we calculated the ratio of osteoclast activity 

(CTX-I) over osteoclast number (TRAP5b) in the experimental rickets model. This is in 

parallel to estimating osteoclast activity by calculating the ratio of osteoclasts number per 

bone surface (N.Oc/B.Pm) vs. total number of osteoclasts (N.Oc/T.Ar) [145] as performed for 

the Ovx-D rats. 

 

5.1.5 The applied methods  

Dual energy x-ray absorptiometry and bone mineral density  

A keystone in non-invasive monitoring of bone mass and prediction of fracture risk in vivo is 

the assessment of BMD by dual energy x-ray absorptiometry (DXA) measurements. BMD is 

not a measure of true volumetric bone density but rather a measure of mass per area. 

Therefore, some scientists recommend the use of 3-dimensional tools such as pQCT or μCT 

to obtain detailed images of the bone structure and thus allow differing between e.g. cortical 

and trabecular bone [129, 146], however, the limited accessibility of such hardware has 

previously made it difficult to use pQCT or μCT for in vivo measurements. In the first study 
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BMD was used for the evaluation of bone loss and fracture repair by repeated in vivo 

measurements of the animals pre fracture and at 2, 3 and 6 weeks post fracture. By using 

Lunar PIXImus (Lunar, Madison, Wisconsin, USA), specially designed for the assessment of 

BMD in small animals, we were able to perform the measurements in vivo during the healing 

process and thereby reducing the amount of animals needed for the study and/or increased the 

observation time-points.  

 

Mechanical testing  

Mechanical testing ex vivo is used to monitor fracture healing in order to evaluate the different 

biomechanical properties of the callus area. Several types of mechanical tests have been 

described in the literature, but tension, torsion and bending tests are the most common and 

possessing different advantages/disadvantages [147, 148]. Tension tests (longitudinal 

deformation of an elastic body that results in its elongation) are suggested to be most useful 

during the initial phases of fracture healing [149, 150]. Although torsion tests (twisting of a 

body by two equal and opposite torques) have the advantages of evaluating mechanical 

properties of the entire healing bone and are capable of indicating the weakest section [149], 

bending tests have proven to be useful and sensitive in evaluating mechanical properties of 

callus in long bones of several animal models, including rats [147, 151]. Bending tests can be 

performed as 3-point or 4-point variants. Three-point testing is the most widely used; it is 

easy to perform and is considered to be a good test for examining the properties of tibia 

fractures [147]. The whole bone is loaded until failure during testing. The drawback is that it 

creates high shear stress near the midsection of the bone. In paper I, a mechanical test capable 

of examining different bone sites was required. The cantilever bending test with a 3-point 

bending for femur shaft in addition to a modified test for the femur neck, has previously been 

reported successful [124] and thus chosen in order to examine the healing tibia fracture as 

well as the intact femur shaft and neck. Unfortunately, the measurements presented large SDs, 

most pronounced in the testing of the callus area, probably due to the lack of stability and 

reproducibility in the fracture fixation. On the other hand, the intact bones also presented 

large SDs and this may, at least in part, be related to the design of the bending test, the test-

machine itself or the operator’s skills. Another test-machine or mechanical test may have 

given more consistent results; a 3-point bending test has the disadvantage of the manual 

positioning of the fulcrum to the callus area which thereby determines the fracture point. This 

may lead to inadequate and less reproducible results and thus a 4-point bending test or a 

torsion test may have been a better choice. Another aspect is the operator’s testing skills as 
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well as the orientation of the specimens in the test machine. However, all bending tests were 

performed by the same operators trained in the procedure to minimize this type of bias.   

 

In situ hybridization 

In paper II the amount of osteocytes synthesizing TRAP were analyzed by in situ 

hybridization. This is a reliable method for the morphological localization of mRNA 

transcripts in tissue sections in vivo by a complementary, labeled nucleic acid probe [152]. An 

advantage of in situ hybridization is the spatial resolution of transcript distribution that is 

obtained at the cellular level, and which is not achieved by northern blotting or different PCR 

methods. A disadvantage is that the preparation for the method is tedious and lengthy. The use 

of the sense probe as negative control for the staining procedure has been a common practice, 

however, it has been reported that anti-sense transcripts occur naturally in the tissues which 

may disturb the interpretation of the results. It is therefore preferable to use other genes 

known to have a different expression patterns as controls [152]. However, this was not judged 

to be a problem in our procedure.   

 

Immunohistochemistry  

The principle of all immuno analyses is the detection of antigen epitopes by antibodies which 

recognize and binds to one or more specific area of the epitope. The antibody is then 

visualized by e.g. chromogens, fluorochromes or conjugated gold (for TEM) making it 

accessible for analyses (Fig. 10). The main purpose of immunohistochemistry is to locate 

defined antigens by combining immunolabeling and morphology at the light, confocal or 

electron microscopic level. However, it is important to notice that false-positive as well as 

false-negative labeling may occur. Lack of staining does not exclude the presence of the 

antigen. To control false-positive staining, non-specific labeling with immunoglobulins (IgG) 

is commonly used together with the secondary antibody or just the solely secondary antibody. 

However, the best available method is labeling of sections known to be devoid of the target 

antigen [153], although, this is not always possible. In our studies we used non-specific IgG 

as well as the solely secondary antibody to control false-positive labeling. Although, it is 

difficult to control false-negative labeling; tissue sections known to be positive for the target 

antigen, e.g. TRAP in osteoclasts, were used to ensure proper antibody labeling. 

 An additional problem to be aware of when labeling for two or more different 

antibodies at the same time, is cross-reactivity between the antibodies, especially if the 

antibodies are raised in the same animal species. If antibodies from different animal species 
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are used for the double labeling, these are usually easily distinguished by species-specific 

immunoglobulins [154]. However, it is always important to control for cross-reactivity by 

single labeling for each of the antibody to ensure the labeling pattern before dual labeling is 

performed. We performed single labeling for every antibody subjected to dual labeling in 

paper III.  

 

 

Fig. 10 Schematic drawing of the 
antigen-antibody interaction 
visualized by protein A conjugated 
gold particle. 
 

 

 

 

 

 

 

 

 

 

 

 

Tissue preparation with chemical fixatives 

Several steps during tissue fixation and preparation may influence the degree of antigen 

labeling; e.g. in vivo or in vitro pre-fixation, post-fixation, decalcification of bone tissue, 

embedding, sectioning and eventually the labeling procedure. Chemical treatment may mask 

epitopes and lower the antigenicity in addition to change the ratio of available epitopes 

between the different tissue compartments. Tissue fixed without or with limited use of 

chemical fixatives are closer to “nature” and have a higher degree of available epitopes, 

although, they are often more unstable to work with. In a previous published paper [155] we 

looked into the effect of a chemical fixative, paraformaldehyde (PF), on bone tissue and 

studied the effect of antigen retrieval by heating in order to further improve the immunogold 

signal. In addition, we compared the PF fixed tissue with high-pressure freezing and freeze-

substitution (HPF-FS), a procedure with limited subjection to aldehyde fixation and 
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considered to be the “gold standard” for optimal preservation of tissue for ultrastructural 

examination [156-158]. PF fixed tissue, which is known to induce cross-links between the 

fixative and the tissue proteins [159] masking the epitopes, showed significantly enhanced 

immunogold signal in the retrieved sections, probably due to the breakage of the covalent 

bonds between PF and the tissue proteins. Retrieval of the HPF-FS stabilized sections did not 

increase the immunogold signal, extending the experience by others [160-163]. Interestingly, 

we observed that retrieval by heating altered the tissue distribution pattern of the epitopes in 

the PF fixed sections compared with the non-retrieved PF sections and the sections stabilized 

by HPF-FS. Thus, the results indicate that antigen retrieval by heating may distort the 

distribution pattern of the immunogold signal and that retrieval, at least by heating, should be 

performed with care. And as s a consequence, antigen retrieval was not used in our 

subsequent studies. 

 

Tissue preparation for electron microscopy  

Electron microscopy is very useful for the examination of morphological features and antigen 

labeling at high resolutions. However, cutting of ultrathin decalcified bone sections suitable 

for electron microscopic examination requires in most cases pre-sectional embedding in a 

resin. Acrylic resins have traditionally been preferred for ultrastructural immunolabeling 

compared to conventional epoxy resins [162, 164, 165] due to their combination of sustained 

immunity as well as stability. In contrast to epoxy resins forming covalent bonds with the 

tissue proteins, acrylic resins do not copolymerize with the proteins but rather surround the 

tissue structures making the antigens more prone to labeling after sectioning as the knife-edge 

cut between the tissue and the resin. However, an alternate method may increase the 

immunolabeling even more; thawed cryosectioning [166, 167] introduces only a limited 

degree of aldehyde fixation to the tissue before embedding in sucrose (to avoid crystal 

formation) and subsequent freezing in liquid nitrogen. Thus, the minimal tissue interaction 

increases the success-rate for intracellular immunogold labeling and made us able to do 

further morphological characteristics of the observed intracellular TRAP+ vesicles in paper 

III.  

 

Histomorphometric evaluations  

Bone histomorphometry was performed to quantify gene and protein expression, enzyme 

activity as well as number of cells and amount of bone areas in groups subjected to different 

interventions and to allow comparisons between groups. The analyses were preformed 
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according to stereological principles [168] using a semiautomatic interactive image analyzer 

program and the sections were coded for the examiner in all cases. Stereological 

nomenclature was used in paper I, while the suggested nomenclature from the American 

Society for Bone and Mineral Research [169] was followed in paper II and III.  

Histomorphometry is a powerful tool to quantitate morphological differences in the 

tissue between differently treated specimens. However, it is important to be aware of pitfalls 

when interpreting the sampled data. In addition, one of the “axioms” in histological evaluation 

and histomorphometry is that “your histomorphometry is just as good as your histology” 

[170] and proper tissue fixation and embedding are therefore highly important: the procedures 

should be carried out in light of subsequent analyses to ensure equal treatment of the tissue 

specimen in the different groups subjected to examination. We used histomorphometry to a 

large extent in our studies both for the quantification of amount or size of bone structures, 

bone cells and cell compartments (paper I, II) and for the quantification of the amount of 

antigen presented in different bone areas and cell compartments (paper II). The first is rather 

uncontroversial as commonly defined structures are measured; however, it is important to be 

accurate and randomize the sample areas due to stereological and histomorphometric 

principles. The quantification of antigens by antibody labeling in different compartments and 

specimens is more controversial. The antigen labeling is confounded by false-positive and 

false-negative labeling as it is difficult to treat the bone tissue identically in every step during 

the preparation and several steps may interfere with the available number of epitopes [153]. 

However, the combination of different methods detecting the same antigen may make up for 

some of the confounders. In paper II, the distribution of TRAP in bone cells was evaluated 

using histomorphometry and the results compared between animals with different bone 

phenotypes. Several methods including in situ hybridization, immunofluorescence and 

fluorescence microscopy as well as immunogold labeling and electron microscopy were 

performed on the same type of bone tissue in order to minimize the effect of false-positive 

and false-negative labeling. Large standard deviations were demonstrated between the groups 

in the differently applied methods, which may reflect some of the problems discussed above, 

although biological variations among the animals can also be part of the reason. However, the 

results taken together favor that osteoblasts and osteocytes in Ovx-D animals express more 

TRAP than such cells in sham animals making the conclusion more reliable. 
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Confocal microscopy and co-localization analyses 

The observation of co-localization between antigens provides solid support for their 

interference; however, it is important to notice that co-localization does not directly prove 

their functional relationship. Visual co-localization is strongly supported by quantitative co-

localization analyses comparing the signal in the same pixel location between multi-channel 

fluorescence images [171] (reviewed in [172]). With immunofluorescence confocal 

microscopy, one on the advantages is the opportunity to do quantitative co-localization 

analyses between differently labeled antigens using semi-automatic software specially 

designed for such analyses. However, the tissue sections and the images have to be treated 

properly in order to get reliable results from the co-localization analyses. A confocal 

microscope improves the possibility for quantitative co-localization analyses as the lasers scan 

the tissue labeled with different fluorochromes with narrow wave length using the optimized 

emission filters. In addition, the lasers scan sequentially through the chosen area one-by-one, 

and together with the narrow wave length, this approach minimizes the bleed-through of the 

different fluorochromes between the channels. In order to be sure that there really is true co-

localization in a three-dimensional (3D) way and not only a coincidental two-dimensional 

(2D) overlap, z-stacks should be performed allowing images to be obtained through the tissue 

section. In this way it is possible to perform the co-localization analyses in 3D along the x, y 

and z-axis. The results of the analyses and the calculations may be presented as different 

coefficients; Pearson’s correlation coefficient (PCC) is among these and is commonly used to 

determine co-localization as it measure the strength of a linear relationship between 2 

variables [171], (reviewed in [172]). In paper III semi-automatic quantitative co-localization 

analyses were performed on 2D images using Coloc2 (Fiji, ImageJ) and the results were 

presented as PCCs. In addition, z-stacks were obtained of the actual cells and tissue sections 

demonstrating visual 3D co-localization between the different antigens.  

 

5.1.6 Statistics  

The statistical analyses were performed in SPSS 12.01 (I) and PASW Statistics 18 (III) for 

Windows (Microsoft Corporation). Although, the analyses of the mechanical data in paper I 

differed slightly from a true Gaussian distribution, a two-tailed independent-sample t-test was 

found suitable for the analyses after discussion with an independent statistician (Betina Kulle, 

Department of Biostatistics, University of Oslo, Norway, personal communication). In paper 

II we chose nonparametric tests for two and k variables (Mann-Whitney and Kruskali-Wallis, 

respectively) for the semi-quantitative analyses, as they are less likely to have a Gaussian 
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distribution and to give maximum protection against type I errors. For the measured data we 

chose parametric tests; Student’s t-test for two variables and one-way analyses of variance 

(ANOVA) for k variables, as measured data are more likely to have a Gaussian distribution. 

All results were given as means and standard deviations (SD) (paper I, II) with statistical p-

values and sample sizes. A p-value of < 0.05 was considered significant. In paper III 

Pearson’s correlation coefficient (PCC) above threshold was calculated using Coloc2 (Fiji, 

ImageJ) to determine the co-localization of 2 different antibodies. Positive co-localization was 

considered with PCC > 0.8. 

 

5.2 Discussion of main results 

5.2.1  Paper I 

The experimental osteoporosis model in female rats was successfully accomplished with 

undetectable serum levels of 25(OH)D in 94% of the Ovx-D rats and below the human 

defined deficiency level in all rats [173], in addition to estradiol levels below the human 

postmenopausal state. The Ovx-D rats developed an osteopenic phenotype with significantly 

reduced BMD in bone areas with a high content of cancellous bone; however, no cortical 

bone loss (i.e. increased medullary cavity) was observed. This may be due to the  relatively 

short time-span after ovariectomy (~70 days) [130] and is in line with the observed pattern in 

the classic ovariectomized (OVX) rat model [146]. In addition, except for significantly 

decreased bending stiffness in the Ovx-D group, no impaired biomechanical properties were 

detected in the femur neck or long bone diaphyses. Thus we failed to reproduce the 

weakening of the femur neck as previously reported in this model [124]. However, based on 

our results and sample size it is unlikely that an undetected but clinically relevant difference 

in mechanical strength is present in the femoral neck in the Ovx-D rats at the tested time-

point. 

 

Experimental osteoporosis and the mechanical properties of the callus 

Old osteoporotic ladies heal from a femur shaft fracture more slowly than young men [174], 

however, whether this is due to the osteoporosis or the age is not answered by Nikolaou and 

co-workers. Investigating the fracture healing capacity in osteoporotic humans is difficult and 

there are still no reports on the fracture healing capacity in osteoporotic men or women 

compared to sex and age-matched, healthy controls. On the other hand, several experimental 

studies on animals have been performed over the last 15 years using the classic OVX model 
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in the rat, with or without dietary interventions [62, 133, 175-189], trying to address the 

question; does osteoporosis delay fracture healing? However, the results conflict in BMD and 

mechanical properties of the fracture callus both at early and late healing (defined as < 6 

weeks and > 6 weeks, respectively) regardless of the age of the animals at the fracture time-

point. Studies which demonstrated decreased healing capacity in the OVX group [133, 175-

177, 181, 188] also reported symptoms of delayed healing at the histological level with 

architectural distortion, decreased mineralization and increased osteoclast number [175-177, 

181]. Extended examination of the fracture calluses from the animals in paper I by Melhus 

and co-workers [62] showed no such difference according to the well known bone remodeling 

markers OPN, BSP, TRAP and cathepsin K as well as the osteoblast and osteoclast number. 

However, they found less connective and fibrous tissue and more cartilage and woven bone at 

3 weeks of healing in the Ovx-D animals compared to sham. Similar results have also been 

reported by others and might indicate an impact of osteoporosis on endochondral bone 

formation in the early period of fracture healing [177, 181, 184, 185, 190]. In our model these 

differences were undetectable after 6 weeks [62].  

 

Vitamin D, bone strength and fracture healing 

Interestingly, our data indicate that the additive effect of vitamin D depletion does not 

dramatically alter the results reported from OVX rats on normal rat chow or OVX rats fed a 

low calcium diet (LCD) [178, 182, 183, 187]. Vitamin D-deficiency is common among the 

human female osteoporotic population [191] and insufficient levels of vitamin D have been 

reported in osteoporotic patients experiencing a hip fracture [87, 132]. In addition, 1,25D 

administered orally to OVX rats has resulted in increased fracture callus strength and callus 

remodeling capacity compared to controls both at 6 and 16 weeks post fracture [192]. Thus it 

is tempting to assume that the opposite would be the case in a vitamin D deficient state; 

however, such conclusions cannot be drawn. Moreover, a recent study failed to show any 

difference in the serum levels of 25(OH)D during fracture healing in individuals suffering 

from a fragility fracture and low BMD vs. age matched controls with fracture and normal 

BMD, however, no control group without fracture was included [193]. In both groups the 

serum level of 25(OH)D was in the range of low (<20ng/mL) as defined by experts [173, 

191], and it could not be excluded that low serum level of 25(OH)D makes the individual 

more prone to fracture regardless of BMD.  

Vitamin D favors phosphate and calcium absorption from the intestine as well as the 

reabsorption of phosphate from the kidneys. On the other hand, vitamin D-deficiency is 
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followed by impaired mineralization of osteoid, which seems to be mostly dependent on the 

circulating ion levels of calcium and phosphate. Studies have shown that animals with dietary 

induced vitamin D deficiency do not develop osteomalacia as long as the levels of calcium 

and/or phosphate are kept within the normal range [194, 195]. This implies that the impact of 

the dietary induced vitamin D-deficiency in our rats may have been overridden by the normal 

amount of calcium and phosphate in the diet, thus with little or no impact on the callus and 

skeletal mineralization.   

 

Limitations 

Among the limitations in paper I are the low healing rates, large SDs in mechanical test 

results as well as the failure to reproduce the weakening of the femoral neck as previously 

reported.  The low healing rate and the high variance in the measured callus strength, indicate 

lack of success in inducing reproducible fractures with subsequent standardized group-

dependent healing as mentioned above. A larger sample size for biomechanical testing may 

have reduced the impact of this variation; however, fixation of a tibia mid-shaft fracture with 

an un-locked intramedullary pin is not a stable situation and it is likely that the large SDs 

observed in the mechanical testing of the callus still would have been present. Furthermore, it 

is known that immobilization can reduce or delay fracture healing in mice [196]. This is at 

least in part supported by the left-right comparison in our study showing decreased BMD of 

the right (fractured) limb in both groups. Thus, the use of another type of osteosynthesis may 

have been more optimal to secure a stable situation and thereby reduce the impact of 

immobilization on the fracture callus.  

Rodent strains have shown differences in their fracture healing capacity [128] and the 

chosen rat strain could therefore also be a confounder. Most of the models on fracture repair 

in OVX rats have been carried out in Sprague-Dawley rats [133, 175, 178, 181-184, 186]. On 

the other hand, Wistar rats (as we used) are represented in both groups favoring altered [176, 

185] or unaltered [179, 187] fracture healing capacity. The strain used in this case is thus a 

less likely contributor since the failure in reproducing the weakening of the femur neck [124] 

may have been due to the variance in genetic background of the Wistar rats.   

 

5.2.2  Paper II & III 

TRAP in osteoblasts and osteocytes 

TRAP is well known as an osteoclast marker and is present in the resorption lacunae as well 

as in transcytotic intracellular vesicles during active bone resorption [35, 62, 123, 140, 197]. 
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The presence of osteoclastic TRAP in the resorption lacuna makes the enzyme available for 

interaction with other bone cells. In addition, it is also reported that osteoblasts and osteocytes 

expressing TRAP are observed in the metaphysis and in cortical bone close to intracortical 

remodeling sites as well as at the endosteal and periosteal surfaces [110, 113, 116]. These are 

all bone sites close to or under active remodeling and there have been hypothesized that 

TRAP in osteoblasts and osteocytes is somehow related to osteoclast activity [110, 113, 114, 

116, 118]. 

The main purpose of the study in paper II was therefore to test whether enhanced 

osteoclast activity in vivo would result in a subsequent increase in TRAP in osteoblasts and 

osteocytes. The theoretical background for this hypothesis is supported by the in vitro 

observations from Perez-Amodio and co-workers [114, 115]: They reported that osteoblasts-

like cells co-cultured with osteoclasts precursors are able to remove TRAP from the medium 

and subsequently inactivate it. In addition, TRAP has been suggested as one of the factors 

coupling bone resorption to bone formation [14, 118] as immature osteoblasts, when cultured 

in the osteoclast lacuna in vitro, rapidly differentiate into a mature, bone-forming phenotype. 

Osteoblast endocytosis may be a central event in both theories.  

 

The effect of ovariectomy and vitamin D depletion 

The Ovx-D rats developed osteopenia as discussed above, and we demonstrated increased 

osteoclast activity in the Ovx-D rats compared with sham, as anticipated. The increase in 

osteoclast activity may be due to the estrogen withdrawal, as in menopause or after 

ovariectomy in fertile women. Estrogen deficiency diminishes osteoclast apoptosis by down  

regulation of MMP3 and cleavage of FASLG [58] in osteoblasts. In addition, removal of the 

protective anti-oxidative effect of estrogen on osteoblasts and osteocytes is suggested to 

increase osteoblast and osteocyte apoptosis leading to enhanced RANKL secretion by the 

same or neighboring cells [19, 20, 56, 198, 199]. It is also suggested that osteocyte apoptosis 

directs osteoclasts to bone areas in need for resorption [56]. These effects result in increased 

osteoclast life-span and activity as well as decreased number and bone-forming activity of 

osteoblast altering the balance between bone resorption and bone formation with a net bone 

loss as an end result. With normal levels of calcium and phosphate in the diet, adding vitamin 

D deficiency to the OVX model would probably not affect the mineralization of osteoid. Thus 

the increased osteoclast activity observed in the Ovx-D rats was most likely due to estrogen 

deficiency rather than low levels of vitamin D.  
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The Ovx-D rats demonstrated increased levels of TRAP+ vesicles in osteoblasts and 

osteocytes vs. sham in cortical bone, increased levels of TRAP enzyme activity in cancellous 

bone as well as a tendency to increased levels of TRAP enzyme activity in cortical bone (not 

significant). The observed increase in TRAP+ vesicles could be explained by the endocytosis 

theory, however, the increase in TRAP enzyme activity is somewhat more difficult to explain; 

engulfing TRAP for inactivation is not logically linked with up-regulation of the enzyme 

activity. On the other hand, Perez-Amodio and co-workers also demonstrated increased TRAP 

enzyme activity in their co-cultured osteoblasts with a subsequent rapid decrease in the 

activity, suggesting that this might be due to increased activation of an endogenous fraction 

[114]. In line with this observation, endocytosed and subsequently activated TRAP could play 

a role as a coupling factor promoting osteoblast maturation and activation as suggested by 

Sheu and co-workers [118]. This notion is further supported by Gradin and co-workers [112] 

who demonstrated increased cortical bone formation as well as osteoblast maturation and 

differentiation in transgenic mice over-expressing TRAP in osteoblasts. However, this theory 

does not explain why osteocytes engulf TRAP. Moreover, examining the bone sections for 

TRAP mRNA and monomeric, uncleaved TRAP (mTRAP) displayed a tendency to enhanced 

levels of these products in osteocytes in the Ovx-D animals, questioning endocytosis as the 

main mechanism for the observed increase in TRAP+ vesicles and TRAP enzyme activity in 

the Ovx-D rats. Thus, the results called for a second “osteoclast activation” model to address 

the question in some more depth.  

 

The effect of low phosphate and vitamin D deficiency rickets and repletion 

Nutritionally induced vitamin D-deficiency together with low levels of phosphate causes 

rickets and/or osteomalacia with well known morphological changes [123, 140]. Repletion of 

vitamin D and phosphate stimulates proper mineralization of cartilage and osteoid which in 

turn leads to activation of chondroclasts/osteoclasts. In addition, high doses of vitamin D 

stimulate RANKL transcription and osteoclastogenesis directly through activation of 

VDR/RXR receptor complex in growth plate chondrocytes, osteoblasts and osteocytes [47, 

48, 200]. Increased osteoclast activity was observed in rats healing from dietary induced low 

phosphate and vitamin D-deficiency rickets, as expected, with the highest rate of osteoclast 

activity, expressed by the CTX/TRAP5b ratio, in healing after 72h. Although all of the groups 

in the experimental rickets model displayed osteocytes and osteoblasts with TRAP+ vesicles 

in cancellous bone and TRAP enzyme activity in osteocytes in cancellous and cortical bone, 

no differences were demonstrated between the groups in the experimental rickets model 
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regarding TRAP in osteoblasts and osteocytes, despite increased osteoclast activity in healing 

after 72h. TRAP mRNA was not detected in osteocytes in cortical bone in any of the groups, 

and though mTRAP was present in all groups in both cancellous and cortical bone indicating 

TRAP synthesis and translation to protein, there were no differences between the groups. 

Thus, osteoclasts are less likely the main source of TRAP in osteoblasts or osteocytes in vivo 

neither in experimental osteoporosis nor in experimental rickets and the endocytosis theory is 

not supported by the results in paper II.   

 

TRAP+ vesicles in osteoblast and osteocytes 

The morphological distribution of TRAP in osteocytes and osteoblasts is only sparsely 

described in the literature: Bonucci and co-workers demonstrated TRAP reaction product in 

vesicular structures in osteoblasts from calcium-depleted rats [111], Yamamoto and Nagai 

described TRAP reaction product in the different components of the Golgi complex and 

structures suggested to be secretory lysosomes in osteoblasts [116] and Reinholt and co-

workers observed TRAP+ vesicles in osteoblast-like cells using immunogold technique [201]. 

We examined bone sections from the experimental osteoporosis and rickets models in paper II 

as well as bone sections from young, growing rats in paper III using transmission electron 

microscopy (TEM) and observed TRAP in electron dense vesicles with similar features in 

osteoblasts and osteocytes in both cancellous and cortical bone. The TRAP+ vesicles in 

osteoblasts and osteocytes do to some extent differ from the intracellular TRAP+ vesicles 

observed in osteoclasts [140, 201].  However, TRAP+ vesicles postulated to be secretory 

lysosomes with regulated secretion have been described in osteoclasts [202] and the vesicles 

presented by van Meel and co-workers [202] do have a similar appearance as the TRAP+ 

vesicles we observed in osteoblasts and osteocytes. From their morphological appearance may 

represent late endosomes or secretory lysosomes involved in intracellular transport, cell 

communication or in local bone resorption. However, we did not find any support for the 

latter in paper II. This is in line with the results of Qing and co-workers on unloaded bone and 

it seems like osteocytic bone remodeling is only present under specific conditions with 

excessive requirements for calcium and phosphate, as in lactation [21]. However, also direct 

sclerostin treatment on osteocytes in vitro has demonstrated increased osteocyte lacunar area 

and although the study also demonstrated enhanced levels of TRAP and cathepsin K in the 

osteocytes, only carbonic anhydrase (CA2) was demonstrated to have an direct effect on the 

osteocytic osteolysis, as the CA2 inhibitor, acetozolamide prevented the increase in the 

osteocyte lacunar area [203]. This indicate that TRAP may have a role in osteocytic 
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osteolysis, but do not prove it as inhibition of TRAP or cathepsin K was not tested, and TRAP 

may also have an additional role in both osteoblasts and osteocytes.  

Semi-quantitative calculations demonstrated increased level of TRAP+ vesicles 

relative to total cytoplasmic area in osteocytes compared to osteoblast in all animals, as well 

as in cancellous vs. cortical bone in the experimental rickets model. The latter was also 

observed for TRAP enzyme activity in all groups favoring a role for TRAP in bone 

remodeling; there is an obvious structural difference between cancellous and cortical bone 

and cancellous bone appears to be more metabolic active than cortical bone with a higher 

bone turnover. This might be explained by a greater surface to volume ratio in cancellous vs. 

cortical bone [204] and the increase in TRAP+ vesicles and enzyme activity in osteoblasts and 

osteocytes in cancellous bone might therefore be linked to bone turnover, however, the 

mechanism remains elusive.  

 

Co-localization of TRAP and RANKL in LAMP1+ vesicles 

Lysosomal associated membrane protein 1 (LAMP1) is known to be present in membranes of 

late endosomes and lysosomal compartments protecting the membrane from auto-digestion 

(reviewed in [205]). Generally, late endosomes and lysosomes are considered to be degrative 

organelles where lysosomes represent the end-stage on the endocytotic route degrading 

endocytosed material. Different subclasses of these organelles do however exist and both late 

endosomes and lysosomes can function as secretory organelles. Specialized multivesicular 

late endosomes can fuse with the plasma membrane and cause the release of exosomes [206], 

and secretory lysosomes can secrete their contents in response to external stimuli [207]. 

Secretory lysosomes and “ordinary” lysosomes share features such as the presence of 

lysosomal associated membrane proteins and an acidic luminal pH for the function of the acid 

hydrolases stored in their lumen. Secretory lysosomes are, however, specialized as they in 

addition to having a degrading function, serve as organelles for storage of newly synthesized 

secretory proteins and have the ability to fuse with the plasma membrane [208]. Our 

observation of LAMP1 in the TRAP+ vesicle membrane justifies the vesicular appearance, 

however, it does not alone allow a direct determination of the nature of the vesicles; however, 

the co-localization of TRAP with RANKL indicates that the vesicles might be secretory 

lysosomes. The group of Suzuki has performed excessive research on the intracellular 

regulation of RANKL in osteoblast and osteocytes [23, 24, 209, 210] and has demonstrated 

two pathways for RANKL to the cell surface in both osteoblasts and osteocytes in vitro; one 

minor route transporting RANKL directly from the Golgi complex to the cell surface; and one 
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major route requiring both vacuolar sorting protein 33 homolog A (VPS33A) [209] in 

addition to OPG binding to RANKL before the complex is sorted to LAMP1+ secretory 

lysosomes [24]. The major route seems to be the crucial pathway in the regulation of the 

osteoclastogenesis, as a defect in the traffic regulatory activity of OPG increases the 

osteoclastogenic ability in vitro despite increased numbers of OPG decoy receptors [24]. The 

release of RANKL to the cell surface from the secretory lysosomes is suggested to be 

regulated by the binding of RANK at the surface of osteoclast precursors to small amounts of 

RANKL presented at the osteoblast or osteocyte membrane from the minor pathway. This 

will in turn activate Rab27a/b which leads to docking and release of RANKL from the 

secretory lysosomes [23, 210]. Our TEM immunogold analyses indicate that the TRAP+ 

vesicles with co-labeling of both RANKL and LAMP1 in osteoblasts and osteocytes in vivo, 

are similar to the secretory lysosomes described as storage compartments for RANKL by the 

group of Suzuki. This notion is further supported by the immunofluorescence co-localization 

analyses for both TRAP/RANKL and TRAP/OPG in diaphyseal osteocytes which revealed 

strong co-localization between the antibodies, as OPG has been described as a traffic 

regulator for RANKL from the Golgi complex to the secretory lysosomes [24]. The data may 

imply a role for TRAP in the secretory lysosomes, which is not unlikely as TRAP is an acid 

phosphatase promoting its function in an acidic milieu. However, it cannot be excluded that 

TRAP is released together with RANKL from the secretory lysosomes promoting its function 

outside the cells e.g. as a coupling factor between the osteoclastic bone resorption and the 

osteoblastic bone formation as suggested by Sheu and co-workers [118].   

If the vesicles are secretory lysosomes that secrete their content at the cell surface in 

order to communicate with other cells in e.g. the bone marrow, we would expect them to be 

small enough to travel along the osteocyte canaliculi. Our observed TRAP-RANKL-LAMP1+ 

vesicles are 200-500nm in diameter; You and co-workers [211] have measured osteocyte 

canaliculi in long bone diaphyses from 15 weeks old mice and based on their results we 

propose that it is at least a theoretical possibility for vesicles in the range of 200-500nm in 

diameter to travel along the osteocyte extensions in the canaliculi for secretion. This would 

make the cell-cell communication possible and may explain a way for RANK and membrane-

bound RANKL to interact in order to stimulate osteoclastogenesis.  

In addition to the demonstration of TRAP+ vesicles in osteoblasts and osteocytes we 

observed TRAP in what seems to be vesicular structures in hypertrophic chondrocytes. The 

presence of TRAP in hypertrophic chondrocytes have been reported by others [62], but not 

extensively followed up. RANKL has previously been demonstrated in hypertrophic 
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chondrocytes [8, 20, 212] and also reported located to the same celltype and bone level as 

OPG [212]. We observed RANKL and OPG co-localized with TRAP in hypertrophic 

chondrocytes, suggesting the same mechanisms for TRAP in association with RANKL and 

OPG to be operative in hypertrophic chondrocytes as in osteoblasts and osteocytes.  

The demonstration of loop-TRAP/mTRAP in the Golgi complex in osteoclasts, but not 

in osteoblasts and osteocytes may be related to a limited production, as low levels of synthesis 

are difficult to detect with the immunogold technique. Furthermore, labeling for TRAP was in 

osteoblasts and osteocytes restricted to LAMP1+ electron dense vesicles, no significant 

labeling was observed neither along the synthetic pathway (endoplasmatic retriculum and 

Golgi) nor early in the endocytotic pathway (plasma membrane, early endosomes, 

multivesicular bodies). This may indicate that the technique is not sensitive enough to detect 

small amounts of protein along these pathways, and indirectly supports the assumption that 

the observed labeling of TRAP is localized to secretory lysosomes where newly synthesized 

protein gets stored and thus concentrated to a degree that allows detection.  

 

Limitations 

One of the limitations in paper II is the difference in age, sex and strain in the experimental 

models included; the experimental OP rats were 25 weeks old female Wistar rats, while the 

animals in the experimental rickets model were 10 weeks old male Sprague-Dawley rats. 

However, as the rats were compared within their own model-system and to untreated controls, 

this was not judged to be a confounder. On the other hand, it may explain some of the 

differences observed between the animal models as the male rats were less skeletally matured 

due to age and sex. The controls in the experimental rickets group did not display TRAP+ 

vesicles in cortical osteocytes which differed from the sham animals in the experimental 

osteoporosis model. Extrapolating to TRAP what we know for RANKL, the reason might be 

that the osteoblasts are the most important bone regulator in young individuals, while the 

osteocytes are the most important source of RANKL and the main orchestrator of bone 

remodeling in adults [19, 20]. However, this hypothesis remains to be proven.   

Another limitation in paper II was the difference in result between TRAP mRNA and 

mTRAP, most abundant in the experimental rickets model where no TRAP mRNA was 

detected in the cortical osteocytes, while mTRAP occurred in all groups. This is probably due 

to the difference in sensitivity between in situ hybridization and immunofluorescence 

microscopy rather than differences between synthesis and translation to protein.  
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In paper III the use of a limited number of individuals and at a very young age may 

question the general validity of our results. We do not know if the observed co-localization of 

TRAP with RANKL and OPG in the LAMP1+ vesicles in hypertrophic chondrocytes, 

osteoblasts and osteocytes represent a general mechanism in bone remodeling, and this call 

for further investigation.   
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6 CONCLUSIONS 

 

The experimental osteoporosis model (Ovx-D) was successfully established in rats, 

demonstrating an osteopenic state comparable with the classic rat OVX model implicating 

that the addition of vitamin D deficiency to the model had no major effect. The model failed 

to demonstrate any difference in the fracture callus after 6 weeks of healing evaluated by 

BMD and mechanical testing, thus indicating no difference in fracture healing capacity 

between the Ovx-D and sham rats. However, the model demonstrated increased osteoclast 

activity with a corresponding enhancement of the amount of TRAP located to intracellular 

vesicles in osteoblasts and osteocytes in Ovx-D vs. sham. Similar increases in TRAP were not 

observed in rats with nutritionally induced phosphate and vitamin D-deficiency rickets or 

healing from it, despite excessive osteoclast activity during healing. Taken together with the 

tendency to increased TRAP synthesis in cortical osteocytes in the Ovx-D rats, our results 

indicate an endogenous origin of TRAP in osteoblasts and osteocytes independent of the 

osteoclast activity. Further examination of the TRAP+ vesicles in osteoblasts and osteocytes 

in rat bone tissue demonstrated co-localization of TRAP with RANKL in the vesicles with 

LAMP1 presented in the vesicle membrane. Co-localization of TRAP with RANKL and OPG 

in vesicular structures in osteocytes and hypertrophic chondrocytes was also observed. We 

therefore propose that the TRAP+ vesicles may be secretory lysosomes as RANKL and OPG 

recently have been demonstrated in LAMP1+ secretory lysosomes in vitro. This suggestion 

indicates a new role for TRAP in bone remodeling, e.g. 1) as a regulator of RANKL secretion; 

2) as a contributor to the activation and/or direction of osteoclasts to bone areas in need for 

remodeling; or 3) as a coupling factor promoting osteoblast differentiation released 

simultaneously with the osteoclast stimulator (Fig. 11).  
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Fig. 11 Schematic overview of the hypotheses RANKL, OPG and TRAP are synthesized in 
the osteoblast, osteocyte and hypertrophic chondrocytes. OPG binds to RANKL and the 
complex sorts to LAMP1+ secretory lysosomes (major RANKL secretory route, as suggested 
in [23, 24]). TRAP co-localizes with RANKL in the LAMP1+ vesicular structures and with 
OPG at the cellular level and we therefore propose the following hypothetic functions; 1) 
TRAP interacts with or modifies the RANKL-OPG complex in the secretory lysosomes; 2) 
TRAP is secreted to the ECM where it serves as a co-stimulatory factor for osteoclast 
progenitors (Oc-P); or 3) TRAP is secreted to the ECM where it acts as a differentiation and 
maturation factor for the osteoblast progenitors (Ob-P).  
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7 FUTURE PERSPECTIVES 

 

7.1 Co-localization of TRAP with RANKL and OPG  

Further analyses are needed to elucidate TRAP’s role in bone remodeling. The observed 

results of TRAP/RANKL and TRAP/OPG co-localization in the 3 days old growing rats need 

to be confirmed in other animal models as well. Observations of the co-localization in other 

models with different sex, age and strain would strengthen the results. The experimental 

osteoporosis model and the experimental rickets model are suitable for such studies in 

addition to their aspects of altered bone metabolism.  

It would also be fruitful to study TRAP in relation to RANKL and OPG in cell 

cultures of osteoblasts and osteocytes by e.g. using the technique described by Uchihashi and 

co-workers [213]. The advantages of cell culture studies are the opportunity to affect protein 

synthesis, compartment localization and protein secretion in different ways in order to further 

elucidate the nature of the TRAP+ vesicles in osteoblasts and osteocytes. Developing 

osteoblast and osteocytes in vitro will hopefully make us able to look into the protein 

regulation using immunofluorescence and confocal microscopic live imaging techniques in 

addition to immunogold and TEM of differently treated cells; e.g., immunogold labeling for 

Rab27a/b [210] as markers for location of TRAP to secretory lysosomes, CD63 as a marker 

for exocytosis, glucocorticoid treatment to induced cell apoptosis among others.  

 

7.2 The effect of estrogen on osteocyte apoptosis and TRAP expression in 

osteocytes as well as on the co-localization of TRAP with RANKL and OPG 

The OVX rat model may be used with estrogen replacement therapy (HRT) in order to 

elucidate the effect of estrogens on osteocytes apoptosis in cortical and cancellous bone with 

focus on TRAP, TRAP/RANKL and TRAP/OPG in these cells. 

 

7.3 The secretion of RANKL from osteoblasts and osteocytes in genetically 

modulated in vivo models 

The knowledge on how RANKL from osteoblasts and osteocytes stimulates the 

osteoclastogenesis still remains elusive. The immunogold technique for TEM on thawed 

cryosections is a powerful tool in order to look for the vesicles in animal models with altered 
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RANKL production e.g. to see if the vesicles might represent the main secretory route for 

RANKL. 

 

7.4 The fracture healing capacity in osteoporosis – a clinical trial with age-

matched healthy controls 

Animal models mimicking human osteoporosis (OP) seems to be suboptimal to answer the 

question whether osteoporosis delays fracture healing properly [214]. In addition, the 

presence of such delay in e.g. the ovariectomized rat does not implicate that this also occurs in 

humans. A limited number of studies regarding the question have been performed in humans 

as far as we know [174, 193] with none directly addressing the fracture healing capacity in 

osteoporotic individuals compared with sex and age-matched controls. We do not know if 

osteoportic fractures heal more slowly or are more prone to non-unions or implant failure than 

fractures healing in healthy individuals, however, the latter is assumed as internal fixation of 

fractures in osteoporic, old individuals is challenging due to their poor bone structure. The 

large number of fragility fractures as well as the possible costs of pro-healing therapeutics in 

the future, justifies a clinical study trying to predict the fracture healing capacity in an 

osteoporotic state.  To achieve reliable results, study design as well as well defined semi-non-

invasive end-points, are critical and, therefore, a pilot study should be perform.  

 The following set up is suggested in brief: inclusion of sex and age-matched 

individuals with similar fracture type/site in need for surgical fixation, age > 40 years (mature 

skeleton, above peak bone mass), DXA at the time of surgery in order to group the patients 

(OP/control). OP as defined by WHO [77] (with or without previous fragility fracture). 

Suggested end-points would be: BMD by DXA or QCT of the callus area at the follow-up 

consultations; healing of the fracture evaluated by CT; failure of fixation within 12 weeks of 

healing; non-union after 12 weeks. Follow-ups: 2/3, 6, 12 and 52 weeks post surgery with 

clinical and radiological examinations (between 12 and 52 weeks control until healing as in 

ordinary fracture care). Interesting parameters to register at the time of surgery and during the 

follow-up consultations: estradiol (both sexes at the time of surgery), testosterone and SHBG 

(in men), 25(OH)D, calcium, phosphate, creatinine, PTH, NSAIDs treatment (should be 

avoided). If possible; needle biopsies under fluoroscopy of the fracture callus at 2 time-points 

during healing (e.g. 3 and 6 weeks) in selected patients for histology and gene analyses. 

Exclusion criteria: < 40 years, anti-osteoporosis therapy (except for vitamin D and calcium), 

glucocorticoids, anti-convulsives, multitrauma, post-operative infections. 
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ABSTRACT 

TRAP is known as an osteoclast marker, but osteoblasts and osteocytes in the vicinity of bone 

remodeling sites also express TRAP. Cell culture studies suggest that osteoblasts endocytose 

osteoclastic TRAP for inactivation. To evaluate whether changes in osteoclast activity could 

alter TRAP expression in osteoblasts and/or osteocytes in vivo, we studied the ovariectomized 

and vitamin D-deficient rat (Ovx-D), and rats healing from rickets. Bone sections were 

analyzed for TRAP gene expression by in situ hybridization, TRAP protein by immunogold 

labeling and TRAP enzyme activity using the fluorescent substrate ELF97. Osteoblasts and 

osteocytes close to intracortical remodeling sites and bone surfaces demonstrated TRAP, most 

prominent in cancellous bone and in osteocytes. Intracellular TRAP was located to electron 

dense vesicles with similar morphology in both cell types. Ovx-D increased osteoclast activity 

(p<0.001) and ELF97+ osteocytes (p<0.05) in cancellous bone, but no corresponding increase 

was observed in the osteocyte lacunar area. The level of TRAP+ vesicles in cortical 

osteoblasts (p<0.01) in Ovx-D was also increased. Enhanced osteoclast activity was noted in 

healing rickets after 72h (p<0.05), but no differences in TRAP expression were detected in 

osteoblasts or osteocytes. Thus increased osteoclast activity does not affect TRAP expression 

in osteoblast and osteocytes favoring the notion that increased TRAP in these cells is rather 

due to increased synthesis. Although the role of TRAP in osteoblasts and osteocytes remains 

elusive, we speculate that the function is related to the capability of the enzyme to regulate the 

phosphorylation of proteins known to be expressed by these cells.  

Key words: TRAP, Osteoblast, Osteocyte, OVX, Vitamin D 
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INTRODUCTION 

Tartrate-resistant acid phosphatase (TRAP) (ACP5) also known as purple acid phosphatase, 

uteroferrin or type 5 acid phosphatase [1] has been an established marker for osteoclasts and 

bone resorption for more than 50 years. TRAP is synthesized as a relatively inactive pro-

enzyme (monomeric TRAP (mTRAP)/loop-TRAP/serum TRAP 5a) and proteolytic cleavage 

by members of the cathepsin family or other proteinases, increases the catalytic activity at 

least 10-fold [2, 3]. Cleaved, active TRAP is identical to osteoclastic TRAP and serum TRAP 

5b[4] and is able to dephosphorylate bone matrix proteins e.g. osteopontin (OPN) and integrin 

binding sialoprotein (IBSP) [5, 6] as well as to generate reactive oxygen species for bone 

matrix degradation [7]. Halleen and coworkers have shown that the serum activity of TRAP 

5b is significantly elevated in patients with osteoporosis and negatively correlated with bone 

mineral density (BMD) [8]. Studies on mice have yielded similar results: global deletion of 

TRAP leads to disturbed endochondral ossification and a mild osteopetrotic phenotype [9, 

10], while overexpression of TRAP results in enhanced bone turnover and a mild osteoporotic 

phenotype [11]. In addition to osteoclasts, TRAP has also been reported in osteoblasts and 

osteocytes [12-21] closely related to bone surfaces [12, 21] or intracortical remodeling sites 

[12, 16] in rat bone tissue. The origin and function of TRAP in these cells have been debated; 

one hypothesis is that osteoclastic TRAP from the resorption lacunae is endocytosed by the 

osteoblasts and/or osteocytes. This theory is supported by cell culture studies reporting that 

osteoblast-like cells are able to engulf osteoclastic TRAP and inactivate the enzyme, 

suggesting that this could control the enzyme activity and prevent further degradation of 

matrix constituents [17, 18].  However, endogenous TRAP synthesis has been demonstrated 

in osteoblasts [21] and in osteocytes [16] in areas close to bone resorbing osteoclast, 

suggesting that TRAP may take part in mechanisms controlling the direction of osteoclastic 

bone resorption [16]. Qing and co-workers [19] have demonstrated enlarged osteocyte 
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lacunae and canaliculi and increased amount of TRAP and Cathepsin K in osteocytes in 

lactating mice, suggesting that osteocytes are able to remodel their own matrix environment 

through osteoclast-like mechanisms under specific conditions.  

To increase the knowledge of TRAP in osteoblasts and osteocytes, we analyzed two 

experimental rat models with disturbed bone metabolism to investigate whether changes in 

osteoclast activity could alter TRAP protein expression and enzyme activity in osteoblasts 

and/or osteocytes in vivo. The ovariectomized and vitamin D-depleted rat (Ovx-D) mimics 

human osteoporosis as seen in the elderly postmenopausal women with reduced BMD of 

metaphyseal bone [22]. Osteoclast activity and TRAP protein expression in osteoblasts and 

TRAP activity in osteocytes were increased in Ovx-D rats. Moreover, Ovx-D rats presented a 

tendency to increased TRAP mRNA expression in osteocytes, questioning the hypothesis of 

endocytosis being the mechanism enhancing TRAP protein expression and enzyme activity in 

osteoblasts and osteocytes in these rats. To further address this question, rats healing from 

nutritionally induced low phosphate and vitamin D-deficiency rickets (experimental rickets) 

were analyzed as a model of increased osteoclast activity [23]. However, such rats did not 

show any differences in the level of TRAP protein expression or enzyme activity neither in 

osteoblasts nor in osteocytes, making it less likely that osteoblasts and osteocytes endocytose 

osteoclastic TRAP. 

 

MATERIALS AND METHODS 

All analyses were preformed on coded sections using AnalySIS FIVE (Olympus Soft Imaging 

Solutions GmbH, Münster, Germany) following the suggestions for standardized 

nomenclature from ASBMR [24]. 
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Animal experiments  

Guide for the Care and Use of Laboratory Animals [25] was followed and the study protocols 

approved by the Norwegian National Animal Research Authority. The Ovx-D model has been 

reported in detail previously [22]. Low phosphate and vitamin D-deficiency rickets and 

healing for 48h and 72h were induced as described by Hollberg et al 2005 [23]. Blood was 

sampled from the animals and their tissues fixed by vascular perfusion [22] at the end of the 

experiments.  

 

Tissue preparation 

Femurs and tibias were dissected free, immersed in 2% phosphate-buffered paraformaldehyde 

and decalcified in 7% EDTA with 0.5% paraformaldehyde for 40 days. Bone tissues for light 

microscopy or fluorescence microscopy were paraffin-embedded and 2-3μm thick sections 

were cut, picked up on glass-slides and rehydrated in series of graded alcohols. Bone tissues 

for transmission electron microscopy (TEM) were cut into small samples (~1 mm3), fixed in 

2% paraformaldehyde and 0.5% glutaraldehyde and embedded with progressive lowering of 

temperature (Leica EM AFS, Leica Microsystems AG, Wetzlar, Germany) in the acrylate- 

and methacrylate-based resin Lowicryl HM23 according to our established protocol [26]. 

Ultrathin sections (75 nm) were mounted on formvar-coated nickel slot grids. 

 

Osteoclast activity 

Total number of osteoclasts relative to tissue volume (N.Oc/TV) and osteoclasts surface 

relative to bone surface (Oc.S/BS) were estimated by point counting in a squared grid within 

500μm from EMB at TEM micrographs. An osteoclast was defined as a multinuclear cell 

attached to bone surface or in the intertrabecular space with characteristics such as ruffled 

border, intracytoplasmic vesicles and abundant mitochondrial profiles. Twenty micrographs 
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from each animal were analyzed and the ratio (Oc.S/BS)/(N.Oc/TV) calculated for each 

animal and compared between Ovx-D and sham as a parameter of osteoclast activity [27]. In 

the experimental rickets group, commercially available kits were used for determination of 

osteoclast-derived C-telopeptide fragments of collagen type I (CTX) (RatLaps™ EIA, 

Immunodiagnostic Systems Ltd., Tyne & Wear, UK) and osteoclast derived TRAP 5b 

(RatTRAP™ Assay, Immunodiagnostic Systems Ltd., Tyne & Wear, UK). Serum was 

analyzed in all animals and the results of the CTX/TRAP 5b ratio, as a parameter for 

osteoclast activity [27], calculated for each animal and compared between the groups. 

 

In situ hybridization 

TRAP gene expression was studied by in situ hybridization. A gene sequence for rat TRAP 

[28] was amplified by conventional PCR using cDNA from rat bone and oligonucleotide 

forward and reverse primers; rnTRAP.for 5’-ACGCCAATGACAAGAGGT TC-3’, 

rnTRAP.rev 5’-ACATAGCCCACACCGTTCTC-3’(Life Technologies Co., Carlsbad, CA, 

USA) and cloned in a Dual Promoter TA Cloning Kit (Life Technologies Co., Carlsbad, CA, 

USA). The cloned insert was sequenced to establish the orientation (Seqlab, Göttingen, 

Germany). A digoxigenin (DIG)-conjugated complementary RNA probe was synthesized 

using T7 or Sp6 polymerase to yield the probe in the sense or antisense direction (DIG-

labeling kit, Roche Diagnostics AS, Oslo, Norway). Longitudinal sections from tibia 

diaphysis (Ovx-D/sham) and femur diaphysis (experimental rickets) were subjected to 

hybridization following our established protocol [29]. TRAP mRNA+ osteocytes were 

quantified in cortical bone within 4-10 mm from the proximal epiphyseal/metaphyseal border 

(EBM) by point counting in a squared grid. Three sections were examined from each animal 

and their means compared between the groups. The tibia diaphyses were examined twice with 

interclass correlation of p<0.001, and Cronbach’s alfa of 0.94. Staining of osteoclasts from 
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femur metaphysis in healing for 72h were used as positive control. The sense probe did not 

show any staining.  

 

Immunofluorescence  

To estimate TRAP enzyme activity and the putative co-localization of the translated 

monomeric TRAP protein (mTRAP) and the enzyme activity, fluorescence based staining 

with rabbit anti-mTRAP and ELF97 was performed. With low pH (<6.0) ELF97 is cleaved by 

activated acid phosphatase yielding a bright yellow-green-fluorescence precipitate [30, 31]. 

Rabbit anti-mTRAP was the same as previously used [32]. ELF97 Endogenous Phosphatase 

Detection kit, AlexaFlour555 conjugated secondary antibody and DAPI Nucleic Acid Stain 

were purchased from Molecular Probes (Invitrogen Co., Eugene, OR, USA). Longitudinal 

sections from distal femur metaphysis and diaphysis were analyzed. Images were obtained by 

Nikon DS-Fi2 color camera (Nikon Instruments Inc., Melville, NY, USA) using UV and Cy3 

filters and added in ImageJ [33]. ELF97+ osteocytes (Ot), mTRAP+ Ot, ELF97mTRAP+ Ot 

and total Ot were quantified in cancellous bone within 1 mm into the metaphysis from the 

proximal EMB and in cortical bone within 4-10 mm from the proximal EMB. The means 

were calculated for each animal with respect to the parameters above and used for comparison 

between the groups. Non-specific rabbit IgG served as negative control for mTRAP, while 

TRAP enzyme activity was inactivated using 100μM molybdate before adding ELF97 to 

evaluate the background fluorescence. 

 

Immunogold labeling for TEM 

To evaluate the distribution of TRAP in osteoblasts and osteocytes, bone sections from tibia 

diaphysis (Ovx-D/sham) and proximal tibia metaphysis and diaphysis (experimental rickets) 

were labeled with rabbit anti-TRAP (SB-TR103, Immunodiagnostic Systems Ltd., Tyne & 
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Wear, UK). The immunogold labeling was performed as earlier described [34]. Non-specific 

rabbit-IgG served as negative control. Micrographs of 10-20 osteoblasts; defined as 

mononuclear cells attached to osteoid or bone matrix with prominent ER and Golgi 

complexes, and osteocytes; defined as mononuclear cells embedded in bone matrix with 

characteristic canaliculi, were randomly sampled from each animal. TRAP+ vesicle was 

defined as a vesicle of moderate electron density containing >4 gold particles. Area of 

TRAP+ vesicles (TRAPv.Ar) relative to the area of cytoplasm (Cy.Ar) was measured in each 

osteoblast and osteocyte and the mean of the ratios (TRAPv.Ar/Cy.Ar) for each animal 

compared between the groups. The cells were analyzed twice with respect to 

TRAPv.Ar/Cy.Ar with interclass correlation of p<0.001, and Cronbach’s alfa of 0.98. Large 

standard deviations (SDs) in the ratios were observed for both osteoblasts and osteocytes 

within the Ovx-D and sham. To elucidate whether this phenomenon was due to differences 

between the animals in each group or in each animal, 8 bone levels in one animal from each 

group were examined. The results displayed that the large SDs between the animals 

corresponded to the SDs between bone levels in each animal, indicating large biological 

variation (data not shown).  

 

Osteocyte lacunar area  

Longitudinal tibia mid-diaphyseal sections from Ovx-D and sham at the same bone level were 

subjected to conventional hematoxylin-eosin-saffron (HES) staining. The osteocyte lacunar 

area was measured within 1 mm at 3 discrete sites separated by 1 mm in a cross-sectional 

manner. Both cortices were included and 200-250 osteocytes were measured per animal. The 

means of the osteocyte lacunar area were calculated and compared between the groups.  
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Statistics  

The statistical analyses were performed in PASW Statistics 18 (SPSS Inc., Chicago, IL, 

USA). Parametric tests were used to compare the measured data; Student’s t-test for two 

variables and one-way analyses of variance (ANOVA) for k variables. Nonparametric tests; 

Mann-Whitney for two variables and Kruskal-Wallis for k variables, were applied on the 

semi-quantitative data. A p-value of 0.05 was considered significant in all tests. 

 

RESULTS 

Animal models  

The Ovx-D rats developed osteoporosis with reduced trabecular bone volume (BV/TV) in the 

femur head, p<0.001, and decreased BMD in the femur neck and the lower lumbar vertebra, 

p<0.001, (Online Resource 1a, b) as well as undetectable serum levels of 25(OH)D and serum 

estradiol within the human postmenopausal range [22]. Low phosphate and vitamin D 

deficiency induced rickets with characteristic morphological changes (Online Resource 1c) 

were in line with previous experience with the model [23]. 

 

Enhanced osteoclast activity in the animal models 

To be able to evaluate TRAP positivity in osteocytes and osteoblasts in relation to osteoclast 

activity, we calculated osteoclast activity as Oc.S/BS relative to N.Oc/TV and CTX relative to 

TRAP 5b in serum in Ovx-D/sham and experimental rickets, respectively. Increased 

osteoclast activity was observed in Ovx-D vs. sham (Fig. 1a), as well as in healing rickets 

after 72h compared to fulminant rickets and normal controls reflecting the healing of the 

growth plate with enhanced resorption monitored by an increased CTX/TRAP 5b ratio in 

serum (Fig. 1b).  
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TRAP is increased in osteoblasts and osteocytes in Ovx-D 

In cancellous bone ELF97+Ot/Ot and co-localized ELF97mTRAP+Ot/Ot were increased in 

Ovx-D vs. sham (Fig. 2, Fig. 3a). Ovx-D also demonstrated a tendency to increase in 

ELF97+Ot/Ot and ELF97mTRAP+Ot/Ot vs. sham in cortical bone (Online Resource 2, Fig. 

3b). TEM analyses showed TRAP in intracellular electron dense vesicles (200-500nm in 

diameter) with similar morphological features in both osteoblasts and osteocytes in cortical 

bone. However, no general pattern of location in the cytoplasm was detected and we were not 

able to demonstrate any fusion between TRAP+ vesicles and the cell-membrane, or any 

coated pits at the cell-surface containing TRAP (Fig. 4a-h). Semi-quantitative measurements 

of the area of TRAP+ vesicles relative to total cytoplasmic area (TRAPv.Ar/Cy.Ar) showed 

an increased ratio in osteoblasts and osteocytes in Ovx-D compared with sham, significant in 

osteoblasts (Fig. 4i). In situ hybridization demonstrated TRAP mRNA in osteocytes in 

cortical bone close to intracortical remodeling sites and bone surfaces in both Ovx-D and 

sham (Fig. 5a-c), however, only a small proportion of the osteocytes in cortical bone were 

TRAP mRNA+: 2.9% in Ovx-D vs. 0.09% in sham. Although the difference appeared 

striking, the result was not statistically significant (Fig. 5e). 

 

Healing from rickets does not alter TRAP in osteoblasts or osteocytes  

No difference was detected in TRAP enzyme activity (ELF97+Ot/Ot), mTRAP+Ot/Ot or 

ELF97mTRAP+Ot/Ot in neither cancellous nor cortical bone in any of the groups in the 

experimental rickets model (Fig. 6). The TRAP+ vesicles were observed in both osteoblasts 

and osteocytes in cancellous bone and presented similar features as in osteoblasts and 

osteocytes in the experimental osteoporosis model. However, there was no difference in the 

ratio TRAPv.Ar/Cy.Ar between the groups. In cortical bone only a few TRAP+ vesicles were 

observed in osteocytes and none in osteoblasts. TRAP mRNA in situ hybridization in femur 
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diaphysis failed to demonstrate TRAP mRNA+ osteocytes in any of the groups, despite 

staining in the metaphyseal osteoclasts used as positive controls (data not shown) and with no 

staining for the sense probe.  

 

TRAP+ vesicles are more abundant in osteocytes compared with osteoblasts 

TEM revealed increased TRAPv.Ar/Cy.Ar ratio in osteocytes vs. osteoblasts in cancellous 

bone for the animals in the experimental rickets model, p<0.05 (rickets and controls), p<0.01 

(healing after 48h), (Online Resource 3a). In cortical bone osteocytes from the Ovx-D and 

sham rats also demonstrated increased TRAPv.Ar/Cy.Ar ratio vs. osteoblasts, significant in 

sham, p<0.001 (Online Resource 3b). Only a small number of TRAP+ vesicles were detected 

in cortical osteocytes and none in cortical osteoblasts in the experimental rickets model. 

 

TRAP activity in osteoblasts and osteocytes is most prominent in cancellous bone  

TRAP enzyme activity in osteocytes (ELF97+Ot/Ot) was increased in cancellous vs. cortical 

bone in all groups from both animal models, p<0.01 (Ovx-D, sham, rickets, healing after 48h 

and controls), p<0.05 (healing after 72h), (Online Resource 4a). The vesicle ratio 

TRAPv.Ar/Cy.Ar was increased in cancellous vs. cortical bone in osteoblasts and osteocytes 

in all animals in the experimental rickets groups; Ot: p<0.001 (rickets and healing after 48h), 

p<0.05 (healing after 72h), p<0.01 (controls); Ob: p<0.001 (rickets, healing after 48h and 

controls), p<0.01 (healing after 72h) (Online Resource 4b, c). 

 

No difference in osteocyte lacunar area in cortical bone in Ovx-D vs. sham  

To elucidate whether the increased level of TRAP in osteocytes in Ovx-D could be related to 

increased local resorption as described for lactating mice [19], osteocyte lacunar area in 

cortical bone was measured, but no difference was detected between the groups (Fig. 7).  
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DISCUSSION 

Osteoclastic TRAP has been demonstrated in transcytotic intracellular vesicles as well as in 

the ruffled border beneath the osteoclast during active bone resorption [7, 23, 29, 35, 36]. The 

secretion of TRAP from the osteoclast to the resorption lacuna makes TRAP available for 

other bone cells and TRAP has been suggested as one of the “coupling-factors” between bone 

resorption and bone formation [37]. Previous studies have demonstrated TRAP in osteoblasts 

and osteocytes in areas close to active bone resorption sites [12, 16, 21], which has led to the 

hypothesis that osteoblasts and/or osteocytes engulf osteoclastic TRAP for inactivation [17]. 

We tested this hypothesis in vivo by analyzing TRAP expression in osteoblasts and osteocytes 

in two animal models with increased osteoclast activity; the experimental osteoporotic rat and 

rats healing from dietary induced rickets. In both models osteocytes and osteoblasts in 

cancellous bone and in cortical bone close to intracortical remodeling sites and 

endosteal/periosteal surfaces demonstrated TRAP gene expression and translation to protein 

as well as TRAP enzyme activity, which are in line with former observations. TEM analyzes 

revealed TRAP in intracellular vesicles with identical morphological features in osteoblasts 

and osteocytes in all the animals in both experimental models. This observation indicate that 

TRAP in osteoblasts and osteocytes might be located to endosomes, involved in intracellular 

transport or stored in vesicular compartments for secretion. Moreover, the Ovx-D group 

demonstrated an increased ratio of TRAP+ vesicles in osteoblasts in cortical bone and 

increased TRAP enzyme activity in osteocytes in cancellous bone, and we also observed a 

tendency to enhanced levels of TRAP gene expression in osteocytes in cortical bone. These 

results indicate that the observed increase in TRAP protein expression and enzyme activity in 

osteoblasts and osteocytes is due to increased synthesis and not increased osteoclast activity. 

Moreover, no changes were demonstrated between the animals in the different groups in the 

experimental rickets model regarding TRAP in osteoblasts and osteocytes, despite the 
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increased osteoclast activity in rats healing for 72h. Thus, enhanced osteoclast activity does 

not change TRAP expression in vivo in osteoblasts or osteocytes in our models. Consequently, 

TRAP observed in osteoblasts and osteocytes is not engulfed osteoclastic TRAP but rather 

synthesized in the respective cells. The theory of osteoblast and osteocyte endocytosis of 

osteoclastic TRAP[17] is therefore not supported by our results. A similar conclusion has 

been drawn by Bonucci and co-workers [13]: they observed that the increased level of TRAP 

positive osteoblasts in calcium depleted rats returned to normal when calcium was repleted 

despite unchanged levels of TRAP positive osteoclasts.  

Comparison of TRAP expression in cancellous vs. cortical bone demonstrated 

enhanced levels of TRAP enzyme activity in osteocytes in all animal groups as well as an 

increase in the ratio of TRAP+ vesicles in osteoblasts and osteocytes in the animals in the 

experimental rickets groups. There is an obvious structural difference between cancellous and 

cortical bone and cancellous bone appears to be more metabolic active than cortical bone with 

a higher bone turnover. This might be explained by a greater surface to volume ratio in 

cancellous vs. cortical bone [38]. The increase in TRAP+ vesicles and enzyme activity in 

osteoblasts and osteocytes in cancellous bone might therefore be linked to bone turnover, 

however the mechanism remains elusive. 

Qing and co-workers observed increased TRAP as well as cathepsin K in osteocytes in 

lactating mice [19] with a corresponding increase in the osteocyte lacunar area. In a recent 

study Kogawa and co-workers [39] show that sclerostin increases the expression of TRAP, 

cathepsin K and carbonic anhydrase (CA2) in osteocytes with a resulting increase in the 

osteocyte lacunar area. The effect is reversed by the CA2 inhibitor acetozolamide, which 

indicates that the osteocytic osteolysis is at least partly dependent on CA2 and its response to 

sclerostin. However, the effects by inhibition of TRAP or cathepsin K on the osteocyte 

lacunar area were not reported. Taken together, both lactation and sclerostin seem to enhance 
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TRAP expression in osteocytes as well as the ostocytic osteolysis. We investigated the effect 

of TRAP on the osteocytic osteolysis in the experimental osteoporosis model, but failed to 

demonstrate any difference in the osteocyte lacunar area between Ovx-D and sham despite 

increased osteocytic TRAP in the Ovx-D animals. An explanation for this may be that we did 

our measurements on decalcified tissue sections. However, this method has been used by 

others with success [39]. Consequently, we propose that osteocytic TRAP is not solely related 

to osteocytic osteolysis but has an additional role in osteocytes. Our TEM observations of 

TRAP located to intracellular vesicles with similar morphological features in both osteoblasts 

and osteocytes indicate that TRAP may have corresponding functions in the two cell types. 

Moreover, osteoblasts do not normally dissolve bone mineral and the observed increase in 

osteoblastic TRAP in the Ovx-D animals is therefore unlikely to be related to local mineral 

handling by the osteoblasts. In conclusion, the role of TRAP in osteoblasts and osteocytes still 

remains elusive. However, our results support the notion that TRAP may have another not yet 

clarified role in osteocytes, in addition to the suggested contribution in local mineral handling. 

It is proposed that the function of TRAP in osteoblasts and osteocytes involves the capability 

of the enzyme to regulate phosphorylation of proteins known to be expressed by these cells 

such as DMP1, MEPE and FGF23.  
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FIGURES 

 

 

 

Fig. 1 Osteoclast activity 

a The ratio of (Oc.S/BS)/(N.Oc/TV) in cancellous bone was increased in Ovx-D vs. sham 

(Student’s t-test, n=7/7). b The ratio of serum CTX/TRAP 5b was increased in healing for 

72h compared with fulminant rickets (R) and controls (C) (ANOVA, n=7/7/7/7). aThe results 

are presented with mean and SD, * p<0.05, *** p<0.001 
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Fig. 2 TRAP enzyme activity and monomeric TRAP (mTRAP) immunolabeling in osteocytes 

(Ot) in cancellous bone from distal femur metaphysis a HES stained sections show the tissue 

architecture of cancellous bone in sham and e Ovx-D. The black outlines demonstrate 
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corresponding areas to the immunofluorescence images. b-d ELF97+ Ot (yellow-green, 

arrows), mTRAP+ Ot (red) and ELF97mTRAP+ Ot (arrowheads) in sham and f-h Ovx-D. i 

Inhibition of TRAP enzyme activity with molybdate demonstrated low background 

fluorescence for ELF97. j Unspecific rabbit IgG served as negative control for mTRAP with 

low background fluorescence. k A high power image shows the staining of ELF97 and 

mTRAP in the osteocytes. Scalebars 10μm 

 

 

 
Fig. 3 TRAP enzyme activity in osteocytes in cancellous and cortical bone in the 

experimental osteoporosis model a ELF97+ Ot/Ot and ELF97mTRAP+ Ot/Ot were 

significantly increased in Ovx-D vs. sham in cancellous bone, b while there were no 

significant differences between the groups in cortical bone (Mann-Whitney test, n=7/7). aThe 

results are presented with mean and SD, * p<0.05 
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Fig. 4 TEM micrographs from tibia diaphysis in Ovx-D and sham. The images with overview 

and close-ups show examples of immunogold labeling for TRAP in intracellular vesicles in 

osteoblasts (Ob) and osteocytes (Ot) in cortical bone; a, b Osteocyte and c, d osteoblast from 

Ovx-D and e, f osteocyte from sham with TRAP+ vesicles. g, h Unspecific rabbit-IgG served 

as negative control and did not label the vesicles in Ovx-D. i Significantly increased TRAP 

vesicle area vs. area of cytoplasm (TRAPv.Ar/Cy.Ar) ratio in osteoblasts in Ovx-D vs. sham 

(Mann-Whitney test, n=7/7). aThe results are presented with mean and SD, ** p<0.01  
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Fig. 5 In situ hybridization for TRAP mRNA in tibia diaphysis in Ovx-D and sham animals. a 

TRAP mRNA positive osteocytes (Ot) (arrows) were stained dark blue and observed closely 

related to the bone surface (BS) and the bone remodeling surface (Rm.S) in Ovx-D. b Sham 

animals demonstrated a limited number of TRAP mRNA positive osteocytes (arrows) c The 

method was confirmed by positive staining of an osteoclast in a bone morphogenic unit 

(BMU) with TRAP mRNA positive osteocytes (arrows) within close vicinity (Ovx-D). (The 
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asterisk marks a central capillary.) d The sense-probe displayed no staining and served as a 

negative control. e There was no significant difference in TRAPmRNA+Ot/ Ot between Ovx-

D and sham (Mann-Whitney test, n=7/7). aThe results are presented with mean and SD  

 

 

 

 
Fig. 6 TRAP enzyme activity in osteocytes (Ot) a cancellous and b cortical bone in the 

experimental rickets model demonstrated no significant differences between the groups; 

fulminant rickets (R), healing for 48h, healing for 72h and controls (C) (Kruskali-Wallis test, 

n=7/7/7/7). aThe results are presented with mean and SD  
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Fig. 7 a Cortical bone sections (tibia diaphyses) from Ovx-D and sham were formalin fixed, 

paraffin embedded and cut in 3μm thick sections before conventional hematoxylin-eosin-

saffron staining was performed. A clear definition of the osteocyte lancunar outline was 

obtained after staining of the tissue sections for both Ovx-D and sham. This is demonstrated 

by the high power images inserted. b There was no difference in the osteocyte (Ot) lacunar 

area between Ovx-D and sham (Student’s t-test, n=7/7). aThe results are presented with mean 

and SD  
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ONLINE RESOURCES 

 

Online Resource 1 Animal models a Light microscopic images display a large difference in 

trabecular bone volume (BV/TV) between Ovx-D and sham. b BV/TV in femoral head and 

bone mineral density (BMD) in femoral neck and vertebrae were decreased in Ovx-D vs. 

sham (Student’s t-test, n=7/7). c The animals with fulminant rickets demonstrated enlarged 

physis/metaphysis and lack of well-defined EMB, while a healing zone (He.Z) had developed 
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at 48h healing.  After healing for 72h the animals showed almost a normal structure at the 

EMB but still with a small He.Z compared to controls. aThe results are presented with mean 

and SD, bThe results are means of the right and left limb, *** p<0.001 
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Online Resource 2 TRAP enzyme activity and monomeric TRAP (mTRAP) immunolabeling 

in osteocytes (Ot) in cortical bone from femur diaphysis. a HES stained sections of cortical 

bone in sham and e Ovx-D show the tissue architecture. The black outlines demonstrate 
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corresponding areas to the immunofluorescence images. b-d ELF97+ Ot (yellow-green, 

arrows), mTRAP+ Ot (red) and ELF97mTRAP+ Ot (arrowheads) in sham and f-h Ovx-D. i 

Inhibition of TRAP enzyme activity with molybdate demonstrated low background 

fluorescence for ELF97. j Unspecific rabbit IgG served as negative control for mTRAP with 

low background fluorescence. Scalebars 10μm 

 

 

 
Online Resource 3 Histomorphometric semi-quantitative analyses of TRAPv.Ar/Cy.Ar in 

osteocytes (Ot) and osteoblasts (Ob). a TRAPv.Ar/Cy.Ar Ot vs. Ob in cancellous bone in 

experimental rickets (n=7/7/6/7). b TRAPv.Ar/Cy.Ar Ot vs. Ob in cortical bone in all groups 

(n=7/7/7/7/5/6) (b). The statistical analyses are performed with Mann-Whitney test. aThe 

results are presented with mean and SD, ** p<0.01, *** p<0.001 
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Online Resource 4 TRAP expression increased in osteocytes (Ot) and osteoblasts (Ob) in 

cancellous vs. cortical bone. a TRAP enzyme activity in all groups displayed by 

ELF97+Ot/Ot. b TRAPv.Ar/Cy.Ar in Ot in experimental rickets. c TRAPv.Ar/Cy.Ar in Ob in 

experimental rickets. The statistical analyses are performed with Mann-Whitney test. aThe 

results are presented with mean and SD, * p<0.05, ** p<0.01, *** p<0.001 
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