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TWO-PRIMARY ALGEBRAIC K-THEORY
OF RINGS OF INTEGERS IN NUMBER FIELDS

J. ROGNES AND C. WEIBEL
WITH AN APPENDIX BY M. KOLSTER

Introduction

In the early 1970’s, Lichtenbaum [L1, L2] made several distinct conjectures about
the relation between the algebraic K-theory, étale cohomology and zeta function
of a totally real number field F . This paper confirms Lichtenbaum’s conjectural
connection between the 2-primary K-theory and étale cohomology of F , and (when
Gal(F/Q) is Abelian) to the zeta function. Up to a factor of 2r1 , we obtain the
relationship conjectured by Lichtenbaum in [L2, 2.4 and 2.6]. In the special case
F = Q, this result was obtained in [W3].

Our methods depend upon the recent spectacular results of Voevodsky [V2],
Suslin and Voevodsky [SV], and Bloch and Lichtenbaum [BL]. Together with Ap-
pendix B to this paper, they yield a spectral sequence starting with the étale coho-
mology of any field of characteristic zero and converging to its 2-primary K-theory.
For number fields, this is essentially the spectral sequence whose existence was
conjectured by Quillen in [Q4]. The main technical difficulties with this spectral
sequence, overcome in this paper, are that it does not degenerate at E2 when F
has a real embedding, and that it has no known multiplicative structure.

To describe our result we introduce some notation. If A is an Abelian group,
we let A{2} denote its 2-primary torsion subgroup, and let #A denote its order
when A is finite. We write Kn(R) for the nth algebraic K-group of a ring R, and
Hn

ét(R;M) for the nth étale cohomology group of Spec(R) with coefficients in M .

Theorem 0.1. Let F be a totally real number field, with r1 real embeddings. Let
R = OF [ 12 ] denote the ring of 2-integers in F . Then for all even i > 0

2r1 · #K2i−2(R){2}
#K2i−1(R){2} =

#H2
ét(R; Z2(i))

#H1
ét(R; Z2(i))

.

(It is well known that all K- and cohomology groups appearing in this formula
are finite.)

This theorem is an immediate consequence of Theorem 0.6 below. It can also be
formulated in terms of the K-theory of the ring OF of integers in F , because the
localization sequence implies that Kn(OF ){2} ∼= Kn(R){2} for all n > 0.
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Lichtenbaum made a second conjecture relating the values ζF (1− i) of the zeta
function to étale cohomology (and also to K-theory); see [L1, 9.1] and [L2, 1.5]. The
` 6= 2 part of this conjecture was established by Wiles in 1990; see Theorem 1.6 of
[Wi]. We have included an appendix to this paper, written by M. Kolster, showing
that the 2-primary part of Lichtenbaum’s conjecture is a consequence of the 2-adic
Main Conjecture of Iwasawa theory for the trivial character. The appendix also
explains how a theorem of Wiles (see [Wi, Gri]) implies that this Main Conjecture
holds for all totally real Abelian number fields. Let the notation a ∼2 b indicate
that the rational numbers a and b have the same 2-adic valuation. We have then
verified Lichtenbaum’s second conjecture for such fields:

Theorem 0.2. Let F be a totally real Abelian number field, and R its ring of 2-
integers. Then for all even i > 0

ζF (1− i) ∼2 2r1 · #K2i−2(R){2}
#K2i−1(R){2} .

The problem of computing the higher K-theory of a number field F , or rather of
its ring of 2-integers R = OF [ 12 ], has a rich history. The groups Kn(R) are finitely
generated by [Q3], and we have already mentioned Lichtenbaum’s conjectures about
their orders. Harris and Segal showed in [HS] that each K2i−1(OF ) contains a cyclic
summand whose 2-order is wi(F ), 2wi(F ) or wi(F )/2. Here the numbers wi(F )
are defined as the maximal powers of 2 such that Gal(F (ζ2n)/F ) has exponent
dividing i, and can be calculated easily in particular cases; see Definition 1.7 and
Proposition 1.9.

Our results resolve the indeterminacy in the order of these “Harris–Segal” sum-
mands. By [HS], the indeterminacy is only an issue when F is “exceptional,” and
was eliminated or reduced in several cases in [W1]. The following statement is
extracted from Theorems 1.13 and 6.14.

Theorem 0.3. Let F be a number field, and set wi = wi(F ). When F is totally
imaginary, the 2-primary Harris–Segal summand in K2i−1(OF ) is cyclic of order
wi. When F has a real embedding, then the 2-primary Harris–Segal summand is:
Z/wi when i ≡ 0, 1 mod 4; Z/2wi when i ≡ 2 mod 4; and is zero when i ≡ 3 mod 4.

Historically, the next breakthrough was Soulé’s thesis [So], which showed the im-
portance ofK-theory with coefficients, and established some parts of Lichtenbaum’s
conjectures for ` 6= 2.

Since 1980, most of the work on the K-theory of number fields has focussed
upon Quillen’s conjecture in [Q4] that there should be an Atiyah–Hirzebruch type
spectral sequence which starts at the étale cohomology of R, and has an abutment
coinciding with the `-adic K-theory of R in degrees ≥ 2. (Here R is still the ring
of 2-integers in a number field F .) The next significant step was taken by Dwyer
and Friedlander [DF]; they constructed the “étale K-theory” of a scheme, which is
naturally equipped with an Atiyah–Hirzebruch type spectral sequence as well as a
comparison map K∗(R)⊗ Z` → K̂ ét

n (R). They proved that the comparison map is
onto in degrees n ≥ 1, assuming either that ` 6= 2 or that

√−1 ∈ F .
We will not attempt to mention all the work on the Lichtenbaum–Quillen con-

jectures in the last 20 years (Math. Reviews lists over 50 papers on the subject),
mentioning only a few of the authors not named above: Alexander Beilinson, Bruno
Kahn, Steve Mitchell, Vic Snaith and Bob Thomason. The best results to date have
been for odd primes, because of the following technical problem that occurs when
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` = 2: the Dwyer–Friedlander spectral sequence of a number field F is not bounded,
and so is not known to converge, unless F is totally imaginary. In addition, its mul-
tiplicative structure is less useful when

√−1 /∈ F .
Using the results of Voevodsky [V2] and Bloch–Lichtenbaum [BL], we refine the

Dwyer–Friedlander results, and extend them to all totally imaginary number fields.
The result, as well as the methods we use, were suggested by Quillen in [Q4].

Theorem 0.4. Let R = OF [ 12 ] be the ring of 2-integers in any totally imaginary
number field F . (a) For all n ≥ 2

Kn(R) ∼=
{
H2

ét(R; Z2(i+ 1))⊕ (odd) for n = 2i,
Zr2 ⊕ Z/wi(F )⊕ (odd) for n = 2i− 1.

Here the notation “(odd)” refers to a finite group of odd order.
(b) Suppose in addition that

√−1 ∈ F . Then the natural map induces an iso-
morphism

Kn(R)⊗ Z2
∼= K̂ ét

n (R)

for n ≥ 1.

Part (a) of this theorem will be proven as Theorem 6.14(a) below. Note that it
can also be written in terms of OF because if n ≥ 2, then Kn(OF ) is a subgroup
of finite odd index in Kn(R). Part (b) will be extended to all totally imaginary F
in [RW].

Proof of part (b). Dwyer and Friedlander proved in [DF, 8.7] that the natural map
Kn(R)⊗Z2 → K̂ ét

n (R) is a surjection for all n ≥ 1. Part (a) combined with [DF, 8.2
and 8.8], shows that the two sides are abstractly isomorphic as finitely generated
Z2-modules for n ≥ 1. Hence the natural map is an isomorphism when n ≥ 1.

Here is the local analog of Theorem 0.4; it will be proven as Theorem 3.7 below.
Recall that a p-local field E of characteristic zero is a finite extension of the field Qp

of p-adic numbers. By considering the 2-adically completed K-groups Kn(E; Z2) of
E we avoid accounting for the typically uncountable uniquely divisible summands
in Kn(E).

Theorem 0.5. Let E be a 2-local field of characteristic zero with valuation ring
OE, and set d = [E : Q2]. Then for all n ≥ 2, the 2-adically completed K-groups
of OE and E are:

Kn(OE ; Z2) ∼= Kn(E; Z2) ∼=
{

Z/wi(E) for n = 2i,
Zd2 ⊕ Z/wi(E) for n = 2i− 1.

As we have mentioned, our methods yield a concrete calculation of the 2-torsion
in the algebraic K-theory of the ring of integers in a number field. When F has
a real embedding there is a kind of periodicity of order eight, related to the 8-fold
periodicity in the homotopy groups of BO and the image of J . To describe it, we
use the traditional notation that r1 and r2 denote the number of real, resp. pairs,
of complex embeddings of F .
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We write AoB for an Abelian group extension of B by A, i.e., an Abelian group
containing A with quotient B.

Theorem 0.6. Let F be a number field with at least one real embedding, and let
R = OF [ 12 ] denote the ring of 2-integers in F . Then for all n ≥ 2

Kn(OF ) ∼= Kn(R) ∼=



H2
ét(R; Z2(4k + 1)) for n = 8k,

Zr1+r2 ⊕ Z/2 for n = 8k + 1,
H2

ét(R; Z2(4k + 2)) for n = 8k + 2,
Zr2 ⊕ (Z/2)r1−1 ⊕ Z/2w4k+2(F ) for n = 8k + 3,
(Z/2)ρ oH2

ét(R; Z2(4k + 3)) for n = 8k + 4,
Zr1+r2 for n = 8k + 5,
H̃2

ét(R; Z2(4k + 4)) for n = 8k + 6,
Zr2 ⊕ Z/w4k+4(F ) for n = 8k + 7,

modulo odd finite groups. Here j ≤ ρ < r1, where j is the signature defect of R
(see Theorem 0.7 and Definition 7.3), and H̃2

ét(R; Z2(4k + 4)) is the kernel of the
natural surjective map

α2 : H2
ét(R; Z2(4k + 4)) →

r1⊕
H2

ét(R; Z2(4k + 4)) ∼= (Z/2)r1

induced by the r1 real embeddings of F (see Definition 6.6).
The 2-primary subgroup of the finite group K8k+4(R) is isomorphic to the max-

imal finite quotient of K8k+5(R; Z/2∞). The latter is K-theory with coefficients
Z/2∞, and it fits into the short exact sequence

0 → (Z/2)r1−1 → K8k+5(R; Z/2∞) → (Z/2∞)r1+r2 ⊕H2
ét(R; Z2(4k + 3)) → 0 .

We prove this result as Theorem 6.14(b), using Borel’s calculation (cited as
Theorem 6.2 below) of the rational ranks of these groups. The extensions in de-
grees 8k + 3 and 8k + 4, as well as the inequality j ≤ ρ < r1, are discussed in
Corollary 7.12.

Simple examples of totally real fields with r1 = 2 such that K8k+4(R) has no 2-
torsion (so ρ = j = 0) are given by Rognes and Østvær in [RO]. One such example
is F = Q(

√
5), R = Z[

√
5, 1

2 ].
While the exact structure of the even K-groups K2i−2(R) remains as intricate

as the étale cohomology groups H2
ét(R; Z2(i)), we do know the 2-rank of these

K-groups. See Definition 7.3 for a discussion of the Picard group Pic(R) and the
narrow Picard group Pic+(R) appearing in the following result, which will be proven
as Theorem 7.11.

Theorem 0.7. Let F be a number field with r1 > 0 real embeddings and r2 ≥ 0
pairs of complex embeddings. Let R be its ring of 2-integers, let s be the number of
prime ideals in OF dividing 2, let t be the 2-rank of the Picard group Pic(R), and
let u be the 2-rank of the narrow Picard group Pic+(R). (The signature defect of R
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is j = u− t.) Then for all n > 0

the 2-rank of Kn(R){2} =



s+ t− 1 for n = 8k,
1 for n = 8k + 1,
r1 + s+ t− 1 for n = 8k + 2,
r1 for n = 8k + 3,
s+ u− 1 for n = 8k + 4,
0 for n = 8k + 5,
s+ u− 1 for n = 8k + 6,
1 for n = 8k + 7.

The main part of our work uses the Bloch–Lichtenbaum spectral sequence of
[BL] with Z/2∞-coefficients to compute the algebraic K-groups K∗(R; Z/2∞). The
higher Chow groups describing the E2-term of this spectral sequence were re-
expressed as motivic cohomology groups by Suslin in [S2], and as étale cohomology
groups by Suslin and Voevodsky in [SV], using Voevodsky’s results in [V2].

In section 1 we discuss a mod 2ν version of the Bloch–Lichtenbaum spectral
sequence and handle the field versions of Theorems 0.4 and 0.5. In sections 2 and 4
we review the portions of étale cohomology theory we need. We prove Theorem 0.5
in section 3. Section 5 is devoted to the Bloch–Lichtenbaum spectral sequence for
the real numbers. Our calculation of K∗(R; Z/2∞) is given in section 6. We then
obtain the information about the 2-adic K-groups K∗(R; Z2) ∼= K∗(R) ⊗ Z2 using
universal coefficient theorems such as Proposition 2.4. The number of summands
in K2i(R){2} is determined in section 7, along with the K-theory K∗(R; Z/2) with
coefficients mod 2.

We would like to point out that we do not make any assumption that the Bloch–
Lichtenbaum spectral sequence behaves well with respect to multiplication by either
the Hopf map η or the Bott element β. That assumption remains unverified, al-
though it is conjectured to hold by Beilinson, and was used in the papers [W3]
and [K2] in order to obtain results similar to our Theorems 0.1, 0.2 and 0.6. We
circumvent this difficulty in section 5, using topological information about K(Q2)
from [R]. In particular, Theorem 5.3 below provides a substitute for Proposition 4
in [W3]; this substitution justifies the calculation of the 2-torsion in K∗(Z) in [W3].
Many of the results in Bruno Kahn’s preprint [K2] can also be justified by this
result.

This paper evolved over twelve months, beginning with the Oberwolfach con-
ference in June 1996. We completed the mod 2 and 2-adic calculations in July
and September 1996, respectively. However, our calculations depended upon the
assumption that the differentials in the Bloch–Lichtenbaum spectral sequence for
R commute with multiplication by the Hopf map η, an assumption we thought
we could easily prove. Meanwhile Kahn’s preprint [K2] appeared in January 1997,
proving the results under the assumption that the spectral sequence commutes with
both η and β. His preprint clarified our thinking in several respects, especially with
respect to the unknown quantity ρ in Theorem 0.6, and we would like to thank him
for useful discussions in the following months.

The authors would also like to thank Vladimir Voevodsky for his encourage-
ment and his hints. Weibel thanks Spencer Bloch, Steve Lichtenbaum and Mark
Walker for helpful discussions about [BL], [L1] and motivic cohomology. We also
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thank Manfred Kolster for writing the appendix on zeta-functions and the Main
Conjecture of Iwasawa theory.

1. The Bloch–Lichtenbaum spectral sequence

In order to compute the 2-primary part of the algebraic K-theory of a field F ,
we shall use a certain spectral sequence. We begin by describing it.

In [BL, 1.3.4], Bloch and Lichtenbaum constructed a third quadrant spectral
sequence converging to the algebraic K-groups of any field F :

Ep,q2 = CH−q(F,−p− q) =⇒ K−p−q(F ).

Here the CH i(F, n) denote Bloch’s higher Chow groups of the scheme Spec(F ). By
definition (see [Bl]), CHi(F, n) is the nth homotopy group of a simplicial Abelian
group [p] 7→ ZiBl(F, p), which is free Abelian in each degree and zero in degrees
p < i. In particular, CHi(F, n) = 0 for n < i and Ep,q2 = 0 for p > 0. The terms
along the q-axis are isomorphic to Milnor K-theory: CH i(F, i) ∼= KM

i (F ). This is
a result of Nesterenko and Suslin [NS, 4.9].

In fact, their construction also induces a spectral sequence with any finite co-
efficients Z/m. Unfortunately, one may not derive this finite coefficient variant
by a näıve modification of the arguments in [BL], because a crucial step (Corol-
lary 2.3.3, used in the “key step” of [BL, 6.1]) fails to hold with finite coeffi-
cients. We have provided a correct derivation of the finite coefficient spectral se-
quence in Appendix B. Defining CHi(F, n; Z/m) as the nth homotopy group of
Z iBl(F, ·) ⊗ Z/m = ZiBl(F, ·; Z/m), the third quadrant spectral sequence associated
to the exact couple becomes

Ep,q2 = CH−q(F,−p− q; Z/m) =⇒ K−p−q(F ; Z/m) .

Note that again Ep,q2 = 0 for p > 0 and that the terms along the q-axis are now
CHi(F, i; Z/m) ∼= KM

i (F )⊗ Z/m.
It remains to translate the E2-terms of this spectral sequence into étale coho-

mology groups. We do this in two steps, the first step being a straightforward
translation into the language of motivic cohomology. Let Hn

M(F ; Z/`ν(i)) denote
the motivic cohomology groups of Spec(F ) as defined in [S3], [FV] and [V1]. Up
to vocabulary, Suslin proved in [S2] that these motivic cohomology groups agree
with Bloch’s higher Chow groups with finite coefficients, when F is of characteristic
zero. Here is a more precise statement.

Proposition 1.1 (Suslin). Let X be a smooth affine variety over a field F of char-
acteristic zero. Then there are natural isomorphisms

CHi(X,n) ∼= H2i−n
M (X ; Z(i)) and CH i(X,n; Z/`ν) ∼= H2i−n

M (X ; Z/`ν(i)) .

Proof. Following [FV], let Zequi(Y, r)(U) denote the free Abelian group on the
integral subschemes Z of Y × U which are equidimensional of relative dimension r
over U . Letting U run over the cosimplicial scheme ∆· yields a simplicial Abelian
group which we write (abusively but simply) as Zequi(Y, r). By [FV] 9.2, 8.2 and
8.1 (which require characteristic zero), we have:

H2i−n
M (X ; Z(i)) ∼= A0,n(X,Ai) ∼= Ad,n(F,X × Ai) ∼= πnZequi(X × Ai, d) .

Here d is the dimension of X , so that the subschemes Z in X × Ai × U have
codimension i. By [S2, 2.1] and homotopy invariance of Bloch’s higher Chow groups
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[Bl], we have

πnZequi(X × Ai, d) ∼= CHi(X × Ai, n) ∼= CHi(X,n) .

The variant with coefficients is immediate.

The étale cohomology groups Hn
ét(Spec(R);M) are defined when R is a com-

mutative unital ring, and M is an étale sheaf on Spec(R). Milne’s book [M1] is a
general reference for étale cohomology.

To complete the translation into étale cohomology we need two results. Voe-
vodsky proved in [V2] that the Galois symbol KM

n (F )/2 → Hn
ét(F ; Z/2) is an

isomorphism for every field F of characteristic 6= 2, and every n ≥ 0. Suslin and
Voevodsky showed in [SV, 5.11] that for F a field of characteristic zero this implies
(among other things) that there is a natural isomorphism

Hn
M(F ; Z/2(i)) ∼=

{
Hn

ét(F ; Z/2(i)) for 0 ≤ n ≤ i,
0 otherwise.

Here the étale sheaf Z/2(i) is just the constant sheaf Z/2. This is independent of
i, since there are no nontrivial module actions upon the Abelian group Z/2. We
shall use the additive notation Z/2ν(i) for the étale sheaf µ⊗i2ν (see Notations 2.3).

There is a natural map Hn
M(F ; Z/2ν(i)) → Hn

ét(F ; Z/2ν(i)) for all ν (cf. [SV,
5.3]), so a 5-lemma argument shows that more generally

Hn
M(F ; Z/2ν(i)) ∼=

{
Hn

ét(F ; Z/2ν(i)) for 0 ≤ n ≤ i,
0 otherwise.

Hence when F has characteristic zero and we are working with 2-primary coeffi-
cients, the E2-term of the Bloch–Lichtenbaum spectral sequence may be expressed
as:

Ep,q2 =

{
Hp−q

ét (F ; Z/2ν(−q)) for q ≤ p ≤ 0,
0 otherwise

=⇒ K−p−q(F ; Z/2ν).(1.2)

Passing to the colimit over ν, and writing W (i) for the union of the étale sheaves
Z/2ν(i), we also obtain a spectral sequence:

Ep,q2 =

{
Hp−q

ét (F ;W (−q)) for q ≤ p ≤ 0,
0 otherwise

=⇒ K−p−q(F ; Z/2∞).(1.3)

Hereafter we briefly denote étale cohomology groups by Hn(R;M) = Hn
ét(R;M).

It is not so clear whether there is an inverse limit spectral sequence, with 2-
adic coefficients, since the cohomology groups of fields are typically not finitely
generated, and limits of such groups are typically not exact.

To summarize:

Theorem 1.4. For each field F of characteristic zero there are spectral sequences
(1.2) and (1.3) as above, which are natural in F and in the coefficients. We call these
the mod 2ν and mod 2∞ Bloch–Lichtenbaum spectral sequences for F , respectively.

Remark 1.5. If the Dwyer–Friedlander spectral sequence in [DF] is reindexed, it
looks like the Bloch–Lichtenbaum spectral sequence (1.2) with the restriction p ≤ 0
lifted. We suspect that the Bloch–Lichtenbaum spectral sequence agrees with the
reindexed Dwyer–Friedlander spectral sequence for p ≤ 0, when cd2(F ) <∞. This
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seems particularly likely in light of our Theorem 0.4(b). If so, we would be able to
use multiplicative tricks like [DF, 5.4], when cd2(F ) <∞. See [K1].

Example 1.6. When F̄ is algebraically closed, e.g. F̄ = C, then Hn(F̄ ;W (i)) = 0
for n 6= 0 and H0(F̄ ;W (i)) = Z/2∞ for all i. Thus (if char(F ) = 0) the mod 2∞

spectral sequence collapses at the E2-term. We recover

Kn(F̄ ; Z/2∞) ∼=
{

Z/2∞ for n even,
0 for n odd.

In the mod 2 case, Hn(F̄ ; Z/2) = 0 for n 6= 0 and H0(F̄ ; Z/2) = Z/2, so the mod 2
spectral sequence also collapses at the E2-term, with

Kn(F̄ ; Z/2) ∼=
{

Z/2 for n even,
0 for n odd.

Example 1.6 shows that the edge map

e : K2i(F ; Z/2∞) → H0(F ;W (i)) ⊆W (i)

in the mod 2∞ Bloch–Lichtenbaum spectral sequence (1.3) has an elementary in-
terpretation. It factors as the projection of K2i(F ; Z/2∞) onto the 2-torsion sub-
group K2i−1(F ){2} of K2i−1(F ), followed by the natural map from K2i−1(F ){2}
to K2i−1(F̄ ){2} ∼= W (i). Following [W1, p. 276], we shall call e the (2-primary)
e-invariant, since by [Q5] it is a generalization of Adams’ complex e-invariant. The
size of the target group H0(F ;W (i)) is determined by the presence of roots of unity
in cyclotomic extensions, as follows.

Definition 1.7. Fix a prime ` and let F be a field. We define an integer wi(F ) by

wi(F ) = max{`ν | Gal(F (µ`ν )/F ) has exponent dividing i}
for each integer i. If there is no maximum we let wi(F ) = `∞. In particular
Z/w0(F ) = Z/`∞. Note that w−i(F ) = wi(F ) for all i.

We call a field F exceptional if the Galois group Gal(F (µ`ν )/F ) is not cyclic for
some ν, and nonexceptional otherwise. There are exceptional fields only for ` = 2.
Real number fields are exceptional when ` = 2.

Proposition 1.8. Let F be any field. Then H0(F ;W (i)) ∼= Z/wi(F ).

Proof. Let ζ be a primitive `νth root of unity. Then ζ⊗i is invariant under g ∈ GF
(the absolute Galois group) precisely when giζ = ζ, and ζ⊗i is invariant under all
of GF precisely when the group Gal(F (µ`ν )/F ) has exponent i.

We recall the following from [W1, 6.3]. (See [HS, p. 28] when ` is odd.) Let
log`(n) be the maximal power of ` dividing n, i.e., the `-adic valuation of n. By
convention let log`(0) = ∞.

Proposition 1.9. Let F be a field of characteristic 6= 2. Let a be maximal such
that F (

√−1) contains a primitive 2ath root of unity, i.e., µ2∞(F (
√−1)) = µ2a .

Let i be any integer, and let b = log2(i).
(a) If

√−1 ∈ F , then wi(F ) = 2a+b.
(b) If

√−1 /∈ F and i is odd, then wi(F ) = 2.
(c) If

√−1 /∈ F , F is exceptional and i is even, then wi(F ) = 2a+b.
(d) If

√−1 /∈ F , F is nonexceptional and i is even, then wi(F ) = 2a+b−1.
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For example, wi(R) is 2 if i is odd, and 2∞ if i is even. In this case it is well
known that the e-invariant is onto for i even, and has image Z/2 for i ≡ 1 mod 4.
In section 5 we will consider the rest of the mod 2∞ spectral sequence for the field
of real numbers. This will allow us to treat real number fields in sections 6 and 7;
cf. Theorems 6.7 and 7.4.

Although it does not have characteristic zero, the e-invariant of a finite field
is well known to be an isomorphism. For later reference, we record the Galois
cohomology of Fq (taken from [So, III.1.4]) and the K-groups of Fq (taken from
[Q1]).

Proposition 1.10. Let Fq be the finite field with q elements. Then wi(Fq) is the
greatest power of ` dividing qi − 1, and

Kn(Fq) =


Z for n = 0,
Z/(qi − 1) for n = 2i− 1 > 0,
0 otherwise.

Suppose (`, q) = 1. When i 6= 0 we have Hn(Fq;W (i)) = 0 for n 6= 0, and
H0(Fq;W (i)) = Z/wi(Fq). When i = 0 we have Hn(Fq;W (0)) ∼= Z/`∞ for n =
0, 1, and Hn(Fq;W (0)) = 0 for n 6= 0, 1. In nonnegative degrees

K2i(Fq; Z/`∞) ∼= H0(Fq;W (i)) = Z/wi(Fq),

while Kn(Fq; Z/`∞) = 0 if n is odd or negative.

We now consider the e-invariant of a p-local field E of characteristic zero. If OE
is its valuation ring we have H0(OE ;W (i)) = H0(E;W (i)) ∼= Z/wi(E). Thus the
following rigidity theorem for étale cohomology determines wi(E).

Proposition 1.11. Let E be a p-local field of characteristic zero with valuation
ring OE and residue field kP, and let M be one of the coefficient modules Z/`ν(i),
W (i) or Z`(i). Suppose p 6= `. Then the canonical map OE → kP induces an
isomorphism

Hn(OE ;M)
∼=−→ Hn(kP;M)

in every degree n. In particular wi(E) = wi(kP) for all i, and is finite for i 6= 0.

Proof. This is well known for M = Z/`ν(i); see [M1, III.3.11(a)] and/or [CF,
II.7(1)]. The other cases follow by passage to (co–)limits.

We may now determine the mod 2∞ K-groups of p-local fields of characteristic
zero and totally imaginary number fields.

Theorem 1.12. Let E be a p-local field of characteristic zero, and write wi for
wi(E). The mod 2∞ algebraic K-groups of E are:

Kn(E; Z/2∞) ∼=
{
H0(E;W (i)) = Z/wi for n = 2i ≥ 0,
H1(E;W (i)) for n = 2i− 1 ≥ 1.

We can and shall make the group K2i−1(E; Z/2∞) ∼= H1(E;W (i)) explicit.
When p 6= 2, it is the finite cyclic group Z/wi−1; see Corollary 2.10 and Theo-
rem 3.4. When p = 2, i ≥ 1 and d = [E : Q2] this group is (Z/2∞)d ⊕ Z/wi−1; see
Proposition 3.6 and Theorem 3.7.
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Proof. Consider the mod 2∞ Bloch–Lichtenbaum spectral sequence (1.3) for E,
converging to K∗(E; Z/2∞). The E2-term is

Ep,q2 =

{
Hp−q(E;W (−q)) for q ≤ p ≤ 0,
0 otherwise.

Now it is well known that Hn(E;W (i)) = 0 for n ≥ 3; this is part of the Lo-
cal Duality Theorem [T, 2.1], which we have restated below in Theorem 2.11.
By an elementary direct limit argument, detailed in Corollary 2.12, we also have
H2(E;W (i)) = 0 when i 6= 1. Hence the spectral sequence is concentrated on the
two diagonal lines where 0 ≤ p− q ≤ 1, and the spectral sequence collapses at the
E2-term.

Theorem 1.13. Let F be a totally imaginary number field. Its mod 2∞ algebraic
K-groups are given as follows:

Kn(F ; Z/2∞) ∼=
{
H0(F ;W (i)) = Z/wi(F ) for n = 2i ≥ 0,
H1(F ;W (i)) for n = 2i− 1 ≥ 1.

Proof. The argument is similar to the proof of Theorem 1.12, except that the
reference for H2(F ;W (i)) = 0 when i ≥ 2 is [W1, 7.3], restated below in Theo-
rem 4.5(a).

Remark 1.14. There is a cyclic summand Ei of K2i−1(F ) for i > 0, constructed
in [HS], called the Harris–Segal summand. If F is totally imaginary, it was known
that this summand has order wi(F ), except possibly when F is exceptional and
i ≡ 0 mod 4. (See [HS] and [W1, 6.6.2].) Since K2i(F ; Z/2∞) ∼= Z/wi(F ) is
an extension of K2i−1(F ){2} by K2i(F ) ⊗ Z/2∞ we must have Ei ∼= Z/wi(F ).
Therefore this result resolves the ambiguity in the order of E4k, as well as showing
that Ei is all of the 2-torsion subgroup of K2i−1(F ).

Next we describe the mod 2 K-theory of p-local fields of characteristic zero and
totally imaginary number fields, in terms of étale cohomology groups. An alterna-
tive identification may be given using the well known facts that H0(F ; Z/2) = Z/2,
H1(F ; Z/2) ∼= F×/2 and H2(F ; Z/2) ∼= 2Br(F ) for every field F . Moreover, if E is
a p-local field of characteristic zero, then H2(E; Z/2) ∼= Z/2.

Recall that the notation H2 oH0 represents an Abelian group extension of H0

by H2. For example, Z/2 o Z/2 represents either Z/2⊕ Z/2 or Z/4.

Theorem 1.15. (a) Let E be a p-local field of characteristic zero. Its mod 2 alge-
braic K-groups are given (up to extensions) as follows:

Kn(E; Z/2) ∼=


H0(E; Z/2) = Z/2 for n = 0,
H1(E; Z/2) ∼= E×/2 for n = 2i− 1 odd,
H2(E; Z/2) oH0(E; Z/2) for n = 2i > 0 even.

When n = 2i > 0 the extension is either Z/2⊕ Z/2 or Z/4; see Remark 1.16(a).
(b) Let F be a totally imaginary number field. Its mod 2 algebraic K-groups are

given (up to extensions) as follows:

Kn(F ; Z/2) ∼=


H0(F ; Z/2) = Z/2 for n = 0,
H1(F ; Z/2) ∼= F×/2 for n = 2i− 1 odd,
H2(F ; Z/2) oH0(F ; Z/2) for n = 2i > 0 even.

When n = 2i > 0 the extension may be nontrivial; see Remark 1.16(b).
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Proof. We give the proof in the number field case. The local case is identical.
When F is totally imaginary we have Hn(F ; Z/2) = 0 for n ≥ 3; this is part of

Tate’s Theorem [T, 3.1(c)], which we have restated below as Theorem 4.2 (we refer
the reader there for further discussion). The mod 2 Bloch–Lichtenbaum spectral
sequence (1.2) for F abuts to K∗(F ; Z/2) and its nonzero E2-terms Hp−q(F ; Z/2)
are concentrated on the three adjacent diagonal lines where 0 ≤ p− q ≤ 2. Hence
there is no room for nonzero differentials, the spectral sequence collapses at the
E2-term, and the E∞-term gives the asserted expression for K∗(F ; Z/2).

Remarks 1.16. (a) The possibility of a nontrivial extension in K2i(E; Z/2) is related
to the presence of nontrivial multiplications by η in the 2-adic groups K∗(E; Z2).
For example, we know that K2(Q2; Z/2) ∼= Z/4 by an old calculation of Araki
and Toda (see [W1, 1.3]), since the symbol {−1,−1} is nonzero in K2(Q2). More
generally, K4j+2(Q2; Z/2) ∼= Z/4 for all j ≥ 0 (see [R] or Example 3.8). In contrast,
if p 6= 2 the extension in K2i(E; Z/2) is split for all i > 0 (see [W1, 4.1(c)]).

(b) When F is a totally imaginary number field, the extension in K2i(F ; Z/2)
may also be nontrivial, but in this caseH2(F ; Z/2) = 2Br(F ) is infinitely generated.
To illustrate, the field F = Q(

√−7) is contained in Q2, and the nontrivial extension
in K8k+2(Q2; Z/2) detects a corresponding Z/4 in K8k+2(Q(

√−7); Z/2) for all k ≥
0.

2. Review of étale cohomology

Notation 2.1. We shall often use the Pontryagin dual A# = Hom(A,Q/Z) of an
Abelian group A. The correspondence A 7→ A# induces an equivalence between
the category of discrete Abelian torsion groups (ind–finite groups) and the category
of profinite Abelian groups, with (A#)# ∼= A. (See e.g. [W2, Ex. 6.11.3].)

Lemma 2.2 (Exactness of lim). If {0 → Ai → Bi → Ci → 0}i∈I is a filtered
inverse system of exact sequences of profinite Abelian groups, then 0 → limiA

i →
limiB

i → limi C
i → 0 is exact, where limi denotes the inverse limit of the under-

lying system of Abelian groups.

Proof. By Pontryagin duality, the exactness of filtered colimits (direct limits) in
the category of discrete Abelian torsion groups implies exactness of filtered limits
(inverse limits) in the category of profinite Abelian groups. Hence it suffices to
show that limi is the categorical limit. The forgetful functor from profinite Abelian
groups to Abelian groups is right adjoint to the profinite completion functor. Any
right adjoint preserves categorical limits. (See e.g. [W2, 2.6.10].) Hence the limit
in the category of profinite Abelian groups coincides with the limit in the category
of Abelian groups.

Notations 2.3. When A is an Abelian group and n an integer we write nA and A/n
for the kernel and cokernel of the multiplication by n map n : A → A. We let
torsA ⊆ A denote the maximal torsion subgroup, and for a prime ` we let A{`} =⋃
ν `νA be the maximal `-torsion subgroup. We also let A/`∞ = colimν A/`

ν ∼=
A⊗ Z/`∞.

Let Gm(R) be the multiplicative group R×, let µ(R) be its torsion subgroup,
i.e., the roots of unity in R, and let µ`ν (R) be the `νth roots of unity in R, with
µ`∞(R) denoting all `th power roots of unity in R.
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We may and shall regard the groups µ`ν as sheaves for the étale topology. For
i ≥ 0 let µ⊗i`ν be the tensor product of i copies of µ`ν , and let µ⊗i`ν = (µ⊗(−i)

`ν )# (Pon-
tryagin dual) for i < 0. We will prefer additive notation for these coefficient sheaves,
writing Z/`ν(i) for µ⊗i`ν . We let Z`(i) = limν Z/`ν(i) be the limit over the coefficient
projections π : Z/`ν+1(i) → Z/`ν(i). Dually we let W (i) = colimν Z/`ν(i) be the
colimit over the coefficient injections ι : Z/`ν(i) → Z/`ν+1(i). Then Z`(i) is a
profinite group and W (i) is a discrete torsion group for all i. (The sheaves µ⊗i`ν are
discussed in [M1, p. 163], along with the `-adic sheaves Z`(i).)

The definition of the étale cohomology groups Hn(R;M) can be naturally ex-
tended to the topologized coefficient sheaf Z`(i); see [J]. There is then an exact
sequence

0 → lim1

ν
Hn−1(R; Z/`ν(i)) → Hn(R; Z`(i)) → lim

ν
Hn(R; Z/`ν(i)) → 0 .

The lim1-term often vanishes, e.g. when each group Hn−1(R; Z/`ν(i)) is finite.
There is always an isomorphism

Hn(R;W (i)) ∼= colim
ν

Hn(R; Z/`ν(i)) .

(See [M1, III.3.6(d)].)
The Picard group Pic(R) and Brauer group Br(R) of a ring R are classically de-

fined in terms of constant rank one projective R-modules and Azumaya R-algebras,
respectively. It is well known that Pic(R) ∼= H1(R; Gm), while Br(R) ∼= H2(R; Gm)
by a theorem of Gabber and Hoobler. (See [M1, Ch. IV] and [H].) When F is a
field, Pic(F ) = H1(F ; Gm) = 0 by Hilbert’s Theorem 90, and the Brauer group is
the classical group of Morita equivalence classes of central simple F -algebras.

We refer to the following result as the universal coefficient theorem.

Proposition 2.4. (a) Suppose Hn(R; Z`(i)) is a finitely generated Z`-module, for
a fixed i and all n. We can then write

Hn(R; Z`(i)) ∼= Fn(i)⊕ T n(i)

where Fn(i) is a finitely generated free Z`-module and T n(i) = torsHn(R; Z`(i)) is
a finite `-group. Then

Hn(R;W (i)) ∼= Fn(i)# ⊕ T n+1(i) .

(b) Conversely suppose that Hn(R;W (i)) is the Pontryagin dual of a finitely
generated Z`-module, for a fixed i and all n. We can then write

Hn(R;W (i)) ∼= Fn(i)# ⊕ Un(i)#

where Fn(i) is a finitely generated free Z`-module and Un(i) = tors(Hn(R;W (i))#)
is a finite `-group. Then

Hn(R; Z`(i)) ∼= Fn(i)⊕ Un−1(i)# .

Proof. (a) The short exact sequence of coefficient sheaves 0 → Z`(i)
`ν→ Z`(i) →

Z/`ν(i) → 0 induces a long exact sequence in étale cohomology, which leads to the
following short exact sequence:

0 → Hn(R; Z`(i))/`ν → Hn(R; Z/`ν(i)) → `νH
n+1(R; Z`(i)) → 0.
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Inserting the formulas for Hn(R; Z`(i)) and passing to the colimit over ν then gives
the short exact sequence

0 → Fn(i)/`∞ → Hn(R;W (i)) → T n+1(i) → 0,

which is split since Fn(i)/`∞ ∼= Fn(i)# is injective.

(b) The short exact sequence of coefficient sheaves 0 → Z/`ν(i) → W (i) `ν→
W (i) → 0 induces a long exact sequence in étale cohomology, which provides the
following short exact sequence:

0 → Hn−1(R;W (i))/`ν → Hn(R; Z/`ν(i)) → `νH
n(R;W (i)) → 0.

The finite generation hypothesis on Hn(R;W (i))# ensures that each term in this
exact sequence is a finite group. Inserting the formulas forHn(R;W (i)) and passing
to the limit over ν gives the short exact sequence

0 → Un−1(i)# → Hn(R; Z`(i)) → Fn(i) → 0,

which is split since Fn(i) is projective. The lim1-terms vanish, since the groups in
the limit system are finite.

Notations 2.5. Let E be a p-local field of characteristic zero, i.e., a finite extension
of the p-adic numbers Qp. Let e be its ramification index and f its residue field
degree. The degree of E over Qp is [E : Qp] = ef . Let OE ⊂ E be the valuation
ring, let P ⊂ OE be its maximal ideal, and let kP = OE/P be the residue field.

Let F be a number field, i.e., a finite extension of the rational numbers Q, with
r1 real embeddings and r2 pairs of complex embeddings. The degree of F over Q is
[F : Q] = r1 +2r2. Let OF ⊂ F be the ring of algebraic integers, and let R = OF [ 1` ]
be the ring of `-integers in F . As in the local case, let kP = OF /P be the residue
field at P.

Let S = {P | `} be the set of prime ideals (viewed as primes, or places) in OF
dividing `, and let s = #S be the number of such primes. Let S∞ be the union of
S and the set of Archimedean places of F , and let Σ be the set of all places of F .
For each place v of F let Fv denote the v-completion of F . For each fixed prime p,
we have an identity ∑

P|p
[FP : Qp] = [F : Q]

where the sum runs over the primes P dividing p. (See e.g. [CF, II.2(4)].)
For a p-local field E of characteristic zero there is an isomorphism Br(E) ∼= Q/Z,

while in the Archimedean cases Br(R) ∼= Z/2 and Br(C) = 0. (See e.g. pp. 162–163
of [Se].)

The Brauer group of a number field F is determined by the Brauer–Hasse–
Noether theorem, asserting exactness of the sequence

0 → Br(F )
β→

⊕
v∈Σ

Br(Fv)
h→ Q/Z → 0,

where h is a sum of injections Br(Fv) → Q/Z. (See sections 10 and 11 of Chap-
ter VII in [CF].) There is a similar isomorphism Br(R) ∼= (Z/2)r1 ⊕ (Q/Z)s−1 and
an exact sequence

0 → Br(R)
β→

⊕
v∈S∞

Br(Fv)
h→ Q/Z → 0 .(2.6)
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(See [M1, p. 109]; S∞ contains non–Archimedean primes, so the map h is surjective
and we may truncate the sequence in loc. cit. after the first three terms.) Also note
that the natural map Br(R) → Br(F ) is an injection. (See [M1, p. 107].)

Since Z/`ν(1) = µ`ν , the Kummer sequence allows us to describe the étale coho-
mology groups with twist 1 in terms of units, the Picard group and the Brauer
group. For any ring R we have H0(R; Z/`ν(1)) ∼= µ`ν (R), H1(R; Z/`ν(1)) ∼=
R×/`ν o `νPic(R) and H2(R; Z/`ν(1)) ∼= Pic(R)/`ν o `νBr(R).

Proposition 2.7. (a) Let E be a p-local field of characteristic zero. Then

H0(E;W (1)) ∼= µ`∞(E),

H1(E;W (1)) ∼=
{

Z/`∞ for p 6= `,
(Z/`∞)ef+1 for p = `,

H2(E;W (1)) ∼= Br(E){`} ∼= Z/`∞ .

(b) Let R be the ring of `-integers in a number field. Then Pic(R) is a finite
group, and

H0(R;W (1)) ∼= µ`∞(R),

H1(R;W (1)) ∼= (Z/`∞)r1+r2+s−1 ⊕ Pic(R){`},
H2(R;W (1)) ∼= Br(R){`} ∼= (Z/(2, `))r1 ⊕ (Z/`∞)s−1 .

Proof. By the Dirichlet unit theorem R× ∼= µ(R) × Zr1+r2+s−1, while E× ∼= Z ×
µ(E)× Zefp . (See e.g. [N, III.1.2].) Passing to colimits over ν gives the result.

Example 2.8. When ` = 2 and R = Z[ 12 ] both Br(R) ∼= Z/2 and Br(R) ∼= Z/2.
The natural map therefore induces an isomorphism H2(Z[ 12 ]; Z/2) ∼= H2(R; Z/2) ∼=
Z/2. We will need this special case in section 5 below.

There is a long exact localization sequence in étale cohomology, defined and
natural for Dedekind domains. We shall need the following two cases.

Proposition 2.9. (a) Let E be a p-local field of characteristic zero with valuation
ring OE and residue field kP. The localization sequence breaks up into short exact
sequences

0 → Hn(OE ;W (i)) → Hn(E;W (i))
∂eP−→ Hn−1(kP;W (i− 1)) → 0

for all integers i. Hence Hn(OE ;W (i)) ∼= Hn(E;W (i)) when n 6= 1, 2, or when
n = 2 and i 6= 1.

(b) Let F be a number field with ring of `-integers R and residue fields kP for
P - `. The localization sequence breaks up into exact sequences

0 → H1(R;W (i)) → H1(F ;W (i)) ∂e−→
⊕
P-`

H0(kP;W (i − 1)) →

→ H2(R;W (i)) → H2(F ;W (i)) ∂e−→
⊕
P-`

H1(kP;W (i− 1))

for all integers i. When i 6= 1 the rightmost group is zero. For n 6= 1, 2 there are
isomorphisms

Hn(R;W (i))
∼=−→ Hn(F ;W (i)) .
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We shall see in Proposition 4.7 below that H2(R;W (i)) → H2(F ;W (i)) is an
isomorphism for i ≥ 2, and an injection when i = 1. Hence the localization sequence
in (b) breaks up into short exact sequences for i ≥ 1.

Proof. The localization sequences with coefficients Z/`ν(i) are given in [So, III.1]
for ` odd, and as [W1, 4.0] for ` = 2. (The hypothesis in loc. cit. that i ≥ 1 is not
needed. See [So, p. 268].) The proposition follows by passing to the colimit over
ν, and noting that Hn(kP;W (i − 1)) = 0 for n 6= 0, except for (n, i) = (1, 1), by
Proposition 1.10.

Corollary 2.10. Let E be a p-local field of characteristic zero with residue field
kP and p 6= `. For i 6= 0, 1 we have

Hn(E;W (i)) ∼=


Z/wi(kP) for n = 0,
Z/wi−1(kP) for n = 1,
0 otherwise.

Moreover, the connecting map ∂eP : H1(E;W (i)) → H0(kP;W (i− 1)) in the étale
cohomology localization sequence 2.9(a) is an isomorphism for all i 6= 0.

Proof. This follows by combining Propositions 1.8, 1.10, 1.11 and 2.9(a).

Next we review local Tate–Poitou duality. Let E be a p-local field of character-
istic zero, and let M be a finite GE -module. We define the (twisted) dual module
to be M ′ = Hom(M,Gm). The example Z/`ν(i)′ ∼= Z/`ν(1 − i) will be important
to us. The pairing M ×M ′ → Gm induces a pairing

Hn(E;M)×H2−n(E;M ′) → H2(E; Gm) = Br(E) ∼= Q/Z .

The following result appears as [T, 2.1], or [M2, I.2.3].

Local Duality Theorem 2.11 (Tate, Poitou). Let E be a p-local field of charac-
teristic zero and M a finite coefficient module. Then for all n the pairing defined
above is a perfect pairing of finite groups

Hn(E;M)×H2−n(E;M ′) → Q/Z,

natural in E and M . In particular, Hn(E;M) = 0 for all n 6= 0, 1, 2.

Corollary 2.12. Let E be a p-local field of characteristic zero. Each Hn(E;W (i))
is a discrete torsion group, each Hn(E; Z`(i)) is a profinite group, and there is a
perfect pairing

Hn(E;W (i))×H2−n(E; Z`(1 − i)) → Q/Z

for all n and i.
In particular Hn(E;W (i)) = 0 and Hn(E; Z`(i)) = 0 for all n 6= 0, 1, 2.
Finally H2(E;W (1)) ∼= Z/`∞ but H2(E;W (i)) = 0 for all i 6= 1.

Proof. Tate–Poitou duality gives isomorphisms of finite groups Hn(E; Z/`ν(i)) →
H2−n(E; Z/`ν(1 − i))# for all ν. We claim that these are compatible with the
transition maps ι∗ in the direct system defining Hn(E;W (i)), and the Pontryagin
duals π#

∗ of the transition maps in the inverse system defining H2−n(E; Z`(1− i)).
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To see this, consider the maps induced by the following commutative diagram of
coefficient modules:

Z/`ν(i)× Z/`ν(1− i) // Z/`ν(1)

ι

��

%%J
JJ

JJ
JJ

JJ
J

Z/`ν(i)× Z/`ν+1(1− i)

1×π
OO

ι×1

��

Gm .

Z/`ν+1(i)× Z/`ν+1(1 − i) // Z/`ν+1(1)

::tttttttttt

Passing to the colimit over ν, and recalling that Pontryagin duality converts co-
limits of discrete torsion groups to limits of profinite groups, we obtain a duality
isomorphism Hn(E;W (i)) → H2−n(E; Z`(1 − i))#, as claimed.

For the final claim, assume that i 6= 1. Then wi−1(E) is finite by Proposi-
tion 1.11. Now

H2(E; Z/`ν(i)) ∼= H0(E; Z/`ν(1 − i))# ∼= Z/wi−1(E)

for large ν, and the maps in the inverse system are multiplication by `. Hence
the dual maps in the direct system are nilpotent, and the colimit H2(E;W (i)) is
trivial.

Proposition 2.13. Let E be a p-local field of characteristic zero. Then

H0(E;W (0)) ∼= Z/`∞,

H1(E;W (0)) ∼=
{

Z/`∞ ⊕ µ`∞(E) for p 6= `,
(Z/`∞)ef+1 ⊕ µ`∞(E) for p = `,

H2(E;W (0)) = 0 .

Proof. This is a direct corollary of the universal coefficient theorem 2.4, Proposi-
tion 2.7 and local Tate–Poitou duality 2.12.

Remark 2.14. Combining Proposition 2.7, Corollary 2.10 and Proposition 2.13 we
have shown that when E is a p-local field of characteristic zero with p 6= `, then for
all n and i the Abelian group Hn(E;W (i)) is a discrete torsion group, Pontryagin
dual to a finitely generated Z`-module. In Proposition 3.6 below we will obtain a
similar result for p = ` = 2.

3. Two-primary algebraic K-theory of two-local fields

In this section we compute the 2-completed algebraicK-theory of a p-local field E
of characteristic zero, Kn(E; Z2). When p 6= 2, this follows from the localization
sequence in K-theory and Gabber’s Rigidity Theorem; we give a slightly more
general result in Theorem 3.4 below. For p = 2 we need a result of Wagoner, the
Bloch–Lichtenbaum spectral sequence, and local Tate–Poitou duality. The result is
given in Theorem 3.7, thus proving Theorem 0.5 of the introduction.

There is a K-theory localization sequence for Dedekind domains, constructed in
[Q2]. For p-local fields of characteristic zero it specializes as follows.
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Theorem 3.1 (Soulé). Let E be a p-local field of characteristic zero with valuation
ring OE and residue field kP. For each prime ` 6= p, the K-theory localization
sequence breaks up into split short exact sequences

0 → K2i−1(OE ; Z/`∞) → K2i−1(E; Z/`∞)
∂P−→ K2i−2(kP; Z/`∞) → 0,

and isomorphisms K2i(OE ; Z/`∞) ∼= K2i(E; Z/`∞).

Proof. The corresponding sequences with coefficients in Z/`ν are given in [So, III.3]
for ` odd, and as (4.0) and Proposition 4.1(c) of [W1] for ` = 2. Now pass to the
colimit over ν and note that Kn(kP; Z/`∞) = 0 for n odd by Proposition 1.10. This
yields the asserted exact sequences and isomorphisms.

Furthermore, each short exact sequence with Z/`ν-coefficients is split, by the
same references, so since K2i−2(kP; Z/`ν) → K2i−2(kP; Z/`∞) is an isomorphism
for large ν it follows that also the exact sequence with Z/`∞-coefficients is split.

Rigidity Theorem 3.2 (Gabber). Let E be a p-local field of characteristic zero
with p 6= `. The canonical map OE → kP induces an isomorphism for all n:

Kn(OE ; Z/`∞)
∼=−→ Kn(kP; Z/`∞).

Proof. The corresponding result with Z/`ν-coefficients is Theorem 1 of [Ga]. The
result then follows by passing to the colimit.

Corollary 3.3. Let E be a p-local field of characteristic zero with p 6= `. Then the
connecting map

∂P : K2i−1(E; Z/`∞) → K2i−2(kP; Z/`∞)

in the K-theory localization sequence is an isomorphism for all i.

Proof. This follows because K2i−1(OE ; Z/`∞) ∼= K2i−1(kP; Z/`∞) = 0.

Thus the `-completed algebraic K-theory of p-local fields of characteristic zero
is entirely known for p 6= `.

Theorem 3.4. Let E be a p-local field of characteristic zero with p 6= `, and set
wi = wi(E) = wi(kP). Then

Kn(E; Z/`∞) ∼=
{
Kn(kP; Z/`∞) ∼= Z/wi when n = 2i is even,
Kn−1(kP; Z/`∞) ∼= Z/wi when n = 2i+ 1 is odd.

Hence

Kn(E; Z`) ∼=


Z` for n = 0,
Z` ⊕ Z/w1 for n = 1,
Kn−1(kP; Z`) ∼= Z/wi for n = 2i > 0 even,
Kn(kP; Z`) ∼= Z/wi for n = 2i− 1 > 1 odd.

Proof. By Proposition 1.10 the groups K∗(kP; Z/`∞) are concentrated in even de-
grees. Hence the localization sequence in Theorem 3.1 breaks up into isomorphisms
and zero maps. This gives the mod `∞ calculation, and the other claim follows by
the universal coefficient theorem.

Now suppose p = `. The p-completed algebraic K-groups of p-local fields of
characteristic zero are known modulo torsion.
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Theorem 3.5 (Wagoner). Let E be a p-local field of degree ef over Qp. For each n
the group Kn(E; Zp) is a finitely generated Zp-module, with

dimQp(Kn(E; Zp)⊗Zp Qp) =


1 for n = 0,
ef + 1 for n = 1,
0 for n > 0 even,
ef for n > 1 odd.

Thus by the universal coefficient theorem

Kn(E; Z/p∞) ∼=


Z/p∞ for n = 0,
(Z/p∞)ef+1 for n = 1,
torsKn−1(E; Zp) for n > 0 even,
(Z/p∞)ef ⊕ torsKn−1(E; Zp) for n > 1 odd.

For a proof, see [Wg]. See [P] for the identification of the completed algebraic
K-groups above with the continuous algebraic K-groups considered by Wagoner.
Note that the case n = 1 follows easily from the Dirichlet unit theorem.

Now assume E is a 2-local field of characteristic zero, i.e., p = ` = 2. The follow-
ing result uses Wagoner’s result and our Theorem 1.12 to compute étale cohomology
groups. In return it completes the explicit description of the groups Kn(E; Z/2∞)
begun in Theorem 1.12.

Proposition 3.6. If E is a 2-local field of characteristic zero, then the group
Hn(E;W (i)) is the Pontryagin dual of a finitely generated Z2-module for all n
and i. For i 6= 0, 1 we have

Hn(E;W (i)) ∼=


Z/wi(E) for n = 0,
(Z/2∞)ef ⊕ Z/wi−1(E) for n = 1,
0 otherwise.

See Propositions 2.7 and 2.13 regarding Hn(E;W (1)) and Hn(E;W (0)).

Proof. Recall from Proposition 2.12 that we have Hn(E;W (i)) = 0 for all n ≥ 3,
and for n = 2 if i 6= 1. Also, if i 6= 0, then H0(E;W (i)) = Z/wi(E) is finite by
Proposition 1.11. This leaves only n = 1 to consider.

First assume i > 1. Combining Wagoner’s result (Theorem 3.5) for p = 2 with
Theorem 1.12 we find that H1(E;W (i)) ∼= (Z/2∞)ef ⊕ torsK2i−2(E; Z2), where
torsK2i−2(E; Z2) is a finite group.

Hence Hn(E;W (i)) is the Pontryagin dual of a finitely generated Z2-module for
all n and for i > 1. Thus by the universal coefficient theorem Hn(E; Z2(i)) is a
finitely generated Z2-module for all n and for i > 1. By local Tate–Poitou dual-
ity 2.12 the corresponding assertions hold for Hn(E;W (1−i)) andHn(E; Z2(1−i)).
Combined with Propositions 2.4, 2.7 and 2.13 this proves finite generation of
Hn(E;W (i))# and Hn(E; Z2(i)) for all integers n and i.

In more detail, we can compute with the universal coefficient theorem and obtain
the formulas H0(E; Z2(i)) = 0, H1(E; Z2(i)) ∼= Zef2 ⊕Z/wi(E) and H2(E; Z2(i)) ∼=
torsK2i−2(E; Z2) for i > 1. Then by local Tate–Poitou duality 2.12 we have
torsK2i−2(E; Z2) ∼= H2(E; Z2(i)) ∼= H0(E;W (1− i))# ∼= Z/wi−1(E), which proves
the asserted formulas.
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We can now compute the 2-completed algebraic K-theory of any 2-local field of
characteristic zero, and of its corresponding ring of integers.

Theorem 3.7. Let E be a 2-local field of degree ef over Q2, with valuation ring
OE. The 2-adically completed algebraic K-groups of E and OE are

Kn(E; Z2) ∼=


Z2 for n = 0,
Zef+1

2 ⊕ Z/w1(E) for n = 1,
Z/wi(E) for n = 2i > 0 even,
Zef2 ⊕ Z/wi(E) for n = 2i− 1 > 1 odd,

and

Kn(OE ; Z2) ∼=


Z2 for n = 0,
Zef2 ⊕ Z/wi(E) for n = 2i− 1 odd,
Z/wi(E) for n = 2i > 0 even.

Proof. Theorem 1.12 and Proposition 3.6 give a calculation of Kn(E; Z/2∞) for
all n. The formulas for Kn(E; Z2) follow by the universal coefficient theorem.

Let kP be as above. By Quillen’s calculation we have Kn(kP; Z/2∞) = 0 for
n 6= 0, since kP has characteristic 2. Thus the K-theory localization sequence
degenerates to give a calculation of Kn(OE ; Z/2∞). The expression given for
Kn(OE ; Z2) then follows by the universal coefficient theorem.

Example 3.8. When E = Q2 is the 2-adic rationals, then wi(Q2) = 2 for i odd
and wi(Q2) = 22+log2(i) for i even by Proposition 1.9(b), (c). In this case we recover
the calculations of [R, 0.1]:

Kn(Z2; Z2) ∼=


Z2 for n = 0,
Z2 ⊕ Z/wi(Q2) for n = 2i− 1 > 0 odd,
Z/wi(Q2) for n = 2i > 0 even.

This result was obtained in [R] by different methods, involving the cyclotomic
trace map to topological cyclic homology. Those topological methods also give the
improvement

Kn(Q2; Z/2) ∼=


Z/2 for n = 0,
Q×

2/2 ∼= (Z/2)3 for n = 2i− 1 > 0 odd,
Z/4 for n ≡ 2 mod 4, n > 0,
Z/2⊕ Z/2 for n ≡ 0 mod 4, n > 0,

on Theorem 1.15 (see [R, 4.2]). The topologically explicit generators of these groups
will be used to describe the spectral sequence for the reals in section 5.

4. Étale cohomology of global fields

In order to use the spectral sequence (1.3) we need to have control ofHn(F ;W (i))
and Hn(R;W (i)) for i ≥ 2. For n = 0 we have H0(R;W (i)) ∼= H0(F ;W (i)) ∼=
Z/wi(F ) by Propositions 1.8 and 2.9(b). Otherwise the results we need are conse-
quences of Tate’s duality theory for global fields, which is the topic of this section.
We refer to Milne’s book [M2] on arithmetic duality theorems for further details.

We remark that the groups H1(R;W (i)) are not completely known. We will
determine the rank and number of finite cyclic summands in the Pontryagin dual of
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H1(R;W (i)) in Propositions 6.12 and 6.13, using the Global Duality Theorem 4.9.
This leaves only the order of the cyclic summands in H1(R;W (i)) as mysterious.

Definition 4.1. Let F be a number field, with r1 real embeddings. We say that
F is real when r1 > 0, and that F is totally imaginary when r1 = 0. Let

αn(F ;M) : Hn(F ;M) →
r1⊕
Hn(R;M)

be the sum of the homomorphisms induced by the r1 real embeddings F → R of
F . Likewise let

αn(R;M) : Hn(R;M) →
r1⊕
Hn(R;M)

be the sum of the homomorphisms induced by the r1 composites R→ F → R.

The following result of Tate appears as [T, 3.1(c)] and as [M2, I.4.10(c)].

Theorem 4.2 (Tate). For n ≥ 3 there are natural isomorphisms

Hn(R;M)
∼=

//

∼=
αn(R;M)

''P
PP

PP
PP

PP
PP

P
Hn(F ;M)

∼=
αn(F ;M)

wwnn
nn
nn
nn
nn
nn

⊕r1 Hn(R;M)

for M finite, M = W (i) or M = Z2(i).

Proof. For M finite this follows from the references cited, using the set of places
S∞ in the case of αn(R;M), and the set of all places Σ in the case of αn(F ;M).
The claims for M = W (i) and M = Z2(i) then follow by passage to colimits and
limits, respectively.

Lemma 4.3. For n ≥ 0 and any integer i we have

Hn(R;W (i)) =


Z/2∞ for n = 0 and i even,
Z/2 for i− n odd,
0 otherwise.

Also Hn(R; Z/2) ∼= Z/2 for n ≥ 0.

Proof. This is a straightforward calculation of group cohomology using the 2-
periodic resolution for Gal(C/R) ∼= C2. See [W1, 7.1.1].

Corollary 4.4. For n ≥ 3 and all integers i, the maps αn are isomorphisms:

Hn(R; Z/2) ∼= Hn(F ; Z/2) ∼= (Z/2)r1

and

Hn(R;W (i)) ∼= Hn(F ;W (i)) ∼=
{

(Z/2)r1 for i− n odd,
0 for i− n even.

Proof. See [W1, 7.1], or use Theorem 4.2 above.

Theorem 4.5 (Soulé, Weibel). (a) If F is totally imaginary and i ≥ 2, then
H2(R;W (i)) = H2(F ;W (i)) = 0.

(b) If F is real and i ≥ 2, then H2(R;W (i)) and H2(F ;W (i)) have exponent 2.
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Proof. Part (a) is [W1, 7.3].
Part (b) follows, since the natural map H2(F ;W (i)) → H2(F (

√−1);W (i)) fol-
lowed by the norm map (transfer) going back induces multiplication by 2, and
factors through a trivial group by part (a). The argument for R is similar. See
[W1, 7.2.1].

Proposition 4.6. Let F be a number field. Then for i ≥ 2

α2 : H2(R;W (i)) ∼= H2(F ;W (i)) ∼=
{

(Z/2)r1 for i odd,
0 for i even.

Proof. We use Theorem 4.5 and the Kummer sequence
2→ H2(F ;W (i)) → H3(F ; Z/2)→ H3(F ;W (i)) 2→

where both maps labeled 2 are equal to zero for i ≥ 2. By Corollary 4.4 we have
H3(F ; Z/2) ∼= (Z/2)r1 , while H3(F ;W (i)) = 0 for i odd, and H3(F ;W (i)) ∼=
(Z/2)r1 for i even. Hence by exactness H2(F ;W (i)) ∼= (Z/2)r1 for i odd, and
H2(F ;W (i)) = 0 for i even. The argument for R is identical.

Hence Corollary 4.4 also applies with n = 2 and i ≥ 2. The case i = 1 is
described in Proposition 2.7(b). For i = 0 it is known (see Satz 4.6 and Lemma 7.1
of [Sc]) that the vanishing of H2(R;W (0)) is equivalent to Leopoldt’s conjecture,
which holds if F is Abelian by Corollary 5.32 of [Ws].

Proposition 4.7. Let F be a number field, R its ring of 2-integers, and suppose
i ≥ 1. The étale cohomology localization sequence 2.9(b) for R breaks up into short
exact sequences

0 → H1(R;W (i)) → H1(F ;W (i)) ∂e−→
⊕
P-`

H0(kP;W (i − 1)) → 0

and isomorphisms Hn(R;W (i)) → Hn(F ;W (i)) for n 6= 1, 2, as well as for n = 2
and i ≥ 2.

Proof. For i ≥ 2 this is immediate from the isomorphism in Proposition 4.6. For
i = 1, use the injection H2(R;W (1)) → H2(F ;W (1)). (See the note following (2.6)
and Proposition 2.7(b).)

We remark that Proposition 4.7 also holds with 2 replaced by an odd prime `.
See [So, p. 287].

Definition 4.8. When E is a local field let Ĥn(E;M) be the Tate cohomology
groups of the absolute Galois group GE with coefficients in M . Thus Ĥn(E;M) =
Hn(E;M) when n > 0, and Ĥ0(E;M) = H0(E;M) when E is non-Archimedean.
In the Archimedean cases we have

Ĥ0(R;M) = Ĥ0(Gal(C/R);M) = MGal(C/R)/NC/R(M),

while Ĥ0(C;M) = 0. Concretely, for ` = 2 we have Ĥ0(R; Z/2) ∼= Z/2, and

Ĥ0(R;W (i)) ∼=
{

0 for i even,
Z/2 for i odd.
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Recall that S∞ denotes the set of primes in F dividing `, together with the
Archimedean places. This is a finite set. Let

βn(R;M) : Hn(R;M)→
⊕
v∈S∞

Ĥn(Fv;M)

be the sum of the homomorphisms induced by the completion maps R→ F → Fv,
for all places v in S∞.

When E is a local field and M is an infinite GE -module, e.g. M = W (i) or Z`(i),
we extend the definition preceding Theorem 2.11 by letting M ′ = Hom(M,µ),
where µ is the torsion subgroup of Gm. In particular W (i)′ ∼= Z`(1 − i) and
Z`(i)′ ∼= W (1− i).

With this notation, local Tate–Poitou duality induces isomorphisms

Ĥn(Fv;M) ∼= Ĥ2−n(Fv;M ′)#

for all n, by Theorem 2.11 and Corollary 2.12. (The omitted Archimedean cases
are straightforward.) Let

γn(R;M) :
⊕
v∈S∞

Ĥn(Fv ;M)→ H2−n(R;M ′)#

be the direct sum of these local Tate–Poitou duality isomorphisms composed with
the Pontryagin dual of the map β2−n(R;M ′).

Let Xn(R;M) = kerβn(R;M). When n = 1 this is the Tate–Shafarevich group.

We now state the remainder of [T, 3.1], or [M2, I.4.10]. The pairing in question
is described immediately before the cited theorem in [T], and on page 79 of [M2].
In the statement of (b) we briefly write βn = βn(R;M) and γn = γn(R;M).

Theorem 4.9 (Tate). (a) There is a natural perfect pairing

Xn(R;M)×X3−n(R;M ′) → Q/Z

for n = 1, 2 and for M finite, M = W (i) or M = Z`(i). These groups are finite
when M is finite, discrete torsion groups when M = W (i), and profinite when
M = Z`(i).

(b) There is a natural 9-term exact sequence

0 // H0(R;M)
β0

//
⊕

v∈S∞ Ĥ0(Fv ;M)
γ0

// H2(R;M ′)#

��

H1(R;M ′)#

��

⊕
v∈S∞ H1(Fv ;M)

γ1
oo H1(R;M)

β1
oo

H2(R;M)
β2

//
⊕

v∈S∞ H2(Fv ;M)
γ2

// H0(R;M ′)# // 0

for M finite, M = W (i) or M = Z`(i). Hence Hn(R;M) is finite when M is finite,
a discrete torsion group when M = W (i), and profinite when M = Z`(i).

Proof. In (a), the naturality of the pairings with respect to the transition maps ι∗
and π∗ in the systems defining Xn(R;W (i)) and X3−n(R; Z`(1 − i)) follows as
in the proof of Corollary 2.12 above. The claims for M = W (i) and M = Z`(i)
then follow from the cases with M finite, by exactness of colimits of discrete torsion
groups and of limits of profinite groups. (Recall Lemma 2.2.)
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The naturality of the pairings above suffices to prove that the 9-term exact
sequence in (b) is natural with respect to ι and π. Thus again the claims with
M = W (i) or M = Z`(i) follow from the finite cases by passage to colimits or
limits.

Theorem 4.10. Let F be a number field, and R its ring of `-integers. Suppose
i ≥ 1. Then X2(R;W (i)) = 0, so β2(R;W (i)) is injective and γ1(R;W (i)) is
surjective.

Hence Tate’s 9-term exact sequence breaks up into an exact 6-term sequence and
a short exact sequence.

Proof. We first prove that β2 = β2(R;W (i)) is injective for i ≥ 2. By Theorem 4.5
and Proposition 4.6 we have H2(R;W (i)) = 0 if ` 6= 2, if F is totally imaginary or
if i is even. In these cases β2 is obviously injective. Otherwise assume that ` = 2,
F is real and i is odd, so that H2(R;W (i)) ∼= (Z/2)r1 . Since H2(Fv;W (i)) = 0 for
each complex or non–Archimedean place of F , we also have

⊕
v∈S∞ H2(Fv;W (i)) ∼=

(Z/2)r1 . And H0(R; Z2(1−i)) = 0 for i 6= 1, so β2 is a surjection between abstractly
isomorphic finite groups, thus an isomorphism.

When i = 1 the maps β2 and γ2 are readily identified with the 2-components of
the Brauer–Hasse–Noether short exact sequence (2.6) for Br(R). In particular β2

is injective.

5. The spectral sequence for the real numbers

We now consider the mod 2 and mod 2∞ spectral sequences for the field R of real
numbers. These do not collapse at the E2-term, and there are nontrivial additive
extensions. These results about the spectral sequence for R will form the basis of
our calculations for real number fields in section 6. They also provide the needed
justification for Proposition 4 in [W3].

The E2-terms of these spectral sequences are given by Lemma 4.3.

Ep,q2 =

{
Z/2 for q ≤ p ≤ 0,
0 otherwise,

=⇒ K−p−q(R; Z/2)

and

Ep,q2 =


Z/2∞ for q = p ≤ 0 and p even,
Z/2 for q ≤ p ≤ 0 and p odd,
0 otherwise,

=⇒ K−p−q(R; Z/2∞) .

To formulate our theorem about the mod 2 spectral sequence for the reals, we
need to recall some well known elements in stable homotopy.

Notation 5.1. Define i1 : Z → Z/2 and ι1 : Z/2 → Z/2∞ as the surjective and
injective group homomorphisms, respectively. These fit into a map of short exact
sequences

0 // Z 2
//

��

Z
i1

//

1/2

��

Z/2

ι1

��

// 0

0 // Z(2) // Q // Z/2∞ // 0 .
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Also let i1 : π∗(X) → π∗(X ; Z/2) and ι1 : π∗(X ; Z/2)→ π∗(X ; Z/2∞) denote the
induced homomorphisms for spectra X .

Let µ8k+1 ∈ π8k+1(QS0) and ηµ8k+1 ∈ π8k+2(QS0) denote Adams’ µ-elements
[A, p. 68]. These generate direct Z/2-summands in their respective homotopy
groups, and are detected (i.e., have nonzero images) in K8k+1(R) and K8k+2(R)
via the unit map QS0 → K(R).

Let β8k+2 ∈ π8k+2(QS0; Z/2) denote a preimage of µ8k+1 under the mod 2
Bockstein map

π8k+2(QS0; Z/2) → π8k+1(QS0) .

Then ι1(β8k+2) ∈ π8k+2(QS0; Z/2∞) is a preimage of µ8k+1 under the mod 2∞

Bockstein map

π8k+2(QS0; Z/2∞) → π8k+1(QS0){2} = π8k+1(QS0; Z(2)),

as is seen from the map of short exact sequences above.
Let β8k ∈ π8k(QS0; Z/2) represent the image under the k-fold Adams v4

1-action
[A] on the generator of π0(QS0; Z/2) ∼= Z/2. This class maps to the generators of
K8k(R; Z/2) ∼= K8k(C; Z/2) ∼= Z/2 under the unit maps QS0 → K(R) → K(C).

Then β8k, i1(µ8k+1), β8k+2, ηβ8k+2 and η2β8k+2 in π∗(QS0; Z/2) are classes
that map to generators of K∗(R; Z/2). In addition, the additive extension in
K8k+2(R; Z/2) ∼= Z/4 corresponds to the relation 2 · β8k+2 = i1(ηµ8k+1).

Also the classes ι1(β8k+2) and ι1(ηβ8k+2) in π∗(QS0; Z/2∞) map to generators of
K∗(R; Z/2∞) in degrees 8k+2 and 8k+3. In degree 8k+4, ι1(η2β8k+2) maps to the
order 2 element in K8k+4(R; Z/2∞) ∼= Z/2∞. The remainder of K8k+4(R; Z/2∞) is
detected by the natural map onto K8k+4(C; Z/2∞) ∼= Z/2∞, which multiplies by 2.
Finally, in degree 8k we have K8k(R; Z/2∞) ∼= K8k(C; Z/2∞).

We shall need the following topological result, which is a restatement of part
of [R, 4.2(c) and 4.3(c)]. Recall from Theorem 1.15 above that for i > 0 we have
K2i−1(Q2; Z/2) ∼= H1(Q2; Z/2) ∼= (Z/2)3, while K2i(Q2; Z/2) is an extension of
H0(Q2; Z/2) = Z/2 by H2(Q2; Z/2) = Z/2.

Lemma 5.2. The images of i1(µ8k+1) and ηβ8k+2 are nonzero in K8k+1(Q2; Z/2),
resp. K8k+3(Q2; Z/2).

The images of i1(ηµ8k+1) and β8k+2 are nonzero in K8k+2(Q2; Z/2) ∼= Z/4, with
2 · β8k+2 = i1(ηµ8k+1).

The image of η2β8k+2 is nonzero in K8k+4(Q2; Z/2) ∼= Z/2⊕ Z/2.

Proof. When k = 0, this is standard. In the notation of [R, 4.2(c)] we have:
i1(µ1) = i1(η), β2 = η̃2 and ηβ2 = ηη̃2 are detected as ξ1, ξ2 and ξ3, respectively,
while i1(ηµ1) = i1(η2) is detected by ∂(ξ3(0)). From this, one calculates that
η2β2 = η2η̃2 is detected by ∂(ξ5(0)), using the formulas ∂(λ) = η2, λη̃2 = i1(κ) and
i1(∂(κ)) = ∂(ξ5(0)).

By [R, 4.3(c)], Adams’ element v4
1 acts injectively on K∗(Q2; Z/2). Hence this

pattern of detection repeats in higher degrees.

Theorem 5.3. In the mod 2 Bloch–Lichtenbaum spectral sequence for R the classes
β8k, i1(µ8k+1), i1(ηµ8k+1), β8k+2, ηβ8k+2 and η2β8k+2 are represented by perma-
nent cycles in bidegrees (p, q), with p = −4k or p = −4k − 1, and 0 ≤ p − q ≤ 2,
for all k ≥ 0.
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The remaining classes do not survive to the E∞-term. In particular, the classes
in bidegrees (p, q) with p = −4k − 2 or p = −4k − 3 and 0 ≤ p − q ≤ 4 support
nontrivial differentials.

There is a nontrivial additive extension Z/2oZ/2 ∼= Z/4 in total degree −(8k+2).

β8k

β8k+2 i1(µ8k+1)
0 ηβ8k+2 i1(ηµ8k+1)

0 0 η2β8k+2 0

Proof. The classes β8k and β8k+2 have complex Adams e-invariant −1/2,
hence are detected in K∗(C; Z/2). Thus the classes in bidegrees (−4k,−4k) and
(−4k−1,−4k−1) are permanent cycles, representing the images of β8k and β8k+2.

We next turn to the classes i1(µ8k+1) and ηβ8k+2, referring to these as the first
and second case, respectively. In both cases consider the following diagram, with
i = 4k + 1 or i = 4k + 2, respectively. Here p is any prime, and the maps labeled
“edge” are the edge maps in the mod 2 Bloch–Lichtenbaum spectral sequences.
The right hand edge map is an isomorphism by Theorem 1.15.

π2i−1(QS0; Z/2)

��

K2i−1(R; Z/2)

edge

��

K2i−1(Q; Z/2) //

edge

��

oo K2i−1(Qp; Z/2)

edge∼=
��

H1(R; Z/2) H1(Q; Z/2) //oo H1(Qp; Z/2)

Let x ∈ H1(Q; Z/2) denote the image of i1(µ8k+1), resp. ηβ8k+2, under the com-
posed vertical map. For each prime p let xp ∈ H1(Qp; Z/2) and z ∈ H1(R; Z/2) ∼=
Z/2 be the further images of x, under the natural maps.

We must prove that z 6= 0, for then i1(µ8k+1), resp. ηβ8k+2, maps to a class
represented as a permanent cycle in bidegree (1− i,−i), as asserted.

Lemma 5.4. In both cases, x and z are the image of a nonzero y ∈ H1(Z[ 12 ]; Z/2).
Moreover, ι1(y) 6= 0 in H1(Z[ 12 ];W (i)) in the second case.

Proof. In both cases we know by Lemma 5.2 that x2 6= 0 and hence x 6= 0, so if y
exists it is nonzero. Recall the étale cohomology localization sequence 2.9(b)

0 → H1(Z[ 12 ]; Z/2)→ H1(Q; Z/2) ∂e−→
⊕
p6=2

H0(Fp; Z/2)

for Z[ 12 ] → Q. Comparing with the localization sequence 2.9(a) for Zp → Qp, we
see that the map ∂e is the direct sum of the composite maps

H1(Q; Z/2)→ H1(Qp; Z/2)
∂ep−→ H0(Fp; Z/2)
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for all primes p 6= 2. Hence it suffices to prove that ∂ep(xp) = 0 for all p 6= 2. For
this, we consider the following diagram:

H1(Q; Z/2) //

ι1

��

H1(Qp; Z/2)
∂ep

//

ι1

��

H0(Fp; Z/2)

into ι1

��

H1(Q;W (i)) // H1(Qp;W (i))
∂ep

// H0(Fp;W (i− 1)) .

The vertical maps are induced by the coefficient injection ι1 : Z/2 → W (i). The
right hand vertical map is injective because H0 is left exact.

In the first case, the image ι1(x) of µ8k+1 ∈ π8k+1(QS0) in H1(Q;W (i)) factors
through π8k+1(QS0; Q) = 0, hence is zero. Thus also ι1(xp) = 0 and ∂ep(xp) = 0 for
all primes p (including p = 2), by injectivity of the right hand vertical map ι1.

In the second case, the map from π8k+3(QS0; Z/2) to H1(Qp;W (i)) factors
through K8k+3(Zp; Z/2∞) under the unit map QS0 → K(Zp) → K(Qp). But

K8k+3(Zp; Z/2∞) ∼= K8k+2(Zp; Z2) ∼= K8k+2(Fp; Z2) = 0

for all primes p 6= 2 by Gabber’s Rigidity Theorem 3.2. Thus also in this case
ι1(xp) = 0 and ∂ep(xp) = 0 for all primes p 6= 2.

For the last claim, note that in the second case ι1(x2) has nonzero mod 2∞

Bockstein, so ι1(x) 6= 0 and thus ι1(y) 6= 0.

In the first case, regarding i1(µ8k+1), we conclude with the following diagram
with i = 4k + 1. Since i is odd, H0(Q2;W (i)) = H0(Z[ 12 ];W (i)) = H0(R;W (i)) =
Z/2 by Proposition 1.9(b) and H1(R;W (i)) = 0 by Lemma 4.3.

0 // H0(Q2;W (i)) // H1(Q2; Z/2)
ι1

// H1(Q2;W (i))

0 // H0(Z[ 12 ];W (i)) //

∼=
OO

∼=
��

H1(Z[ 12 ]; Z/2)
ι1

//

into

OO

��

H1(Z[ 12 ];W (i))

OO

��

0 // H0(R;W (i)) ∼=
// H1(R; Z/2) // 0

The rows are exact, and the vertical maps are induced by ring homomorphisms.
Also the group H1(Z[ 12 ]; Z/2) ∼= Z[ 12 ]×/2 ∼= (Z/2)2, which is generated by 2 and −1,
injects into H1(Q2; Z/2) ∼= Q×

2/2 ∼= (Z/2)3, which is generated by 2, −1 and 5. We
chose y to map to z, as well as to x2 6= 0. Since we saw in the proof of Lemma 5.4
that ι1(x2) = 0, a diagram chase shows that z is nonzero. This concludes the proof
of Theorem 5.3 for i1(µ8k+1).

In the second case, regarding ηβ8k+2, we use the commutative square below:

H1(Z[ 12 ]; Z/2) α1
//

ι1

��

H1(R; Z/2)

ι1∼=
��

H1(Z[ 12 ];W (4k + 2)) α1
// H1(R;W (4k + 2))

Since ι1(x) 6= 0 in this case, we have ι1(y) 6= 0. By the following lemma, it then
follows that ι1(z) 6= 0 and z 6= 0, concluding the proof of Theorem 5.3 for ηβ8k+2.
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Lemma 5.5. For all even i 6= 0, the natural map

α1 : H1(Z[ 12 ];W (i)) → H1(R;W (i)) ∼= Z/2

is an isomorphism.

Proof. Associated to ι1 : Z/2 → W (i) we have H1(R; Z/2) ∼= H1(R;W (i)) ∼= Z/2
by Lemma 4.3, and a commutative diagram

0 // H0(Z[ 12 ];W (i))/2 //

��

H1(Z[ 12 ]; Z/2) //

��
��

2H
1(Z[ 12 ];W (i)) //

��

0

0 // 0 // H1(R; Z/2)
∼=

//
2H

1(R;W (i)) // 0 .

Here the middle vertical map is onto by the Kummer sequence: H1(Z[ 12 ]; Z/2) ∼=
Z[ 12 ]×/2 ∼= (Z/2)2 has generators −1 and 2, while H1(R; Z/2) ∼= R×/2 ∼= Z/2 is gen-
erated by −1. Since i 6= 0 we also haveH0(Z[ 12 ];W (i))/2 ∼= Z/2 by Propositions 1.8
and 1.9. By the 5-lemma, we have an isomorphism 2H

1(Z[ 12 ];W (i)) ∼= H1(R;W (i))
and α1 is a split surjection.

Now if A is any 2-torsion Abelian group such that 2A is a summand of A, then
A ∼= 2A. Applying this to A = H1(Z[ 12 ];W (i)) yields the lemma.

We proceed with the proof of Theorem 5.3, regarding the image of i1(ηµ8k+1)
and η2β8k+2 in the mod 2 spectral sequence for R. Again this makes for two cases,
which we again call the first and second case.

Both i1(ηµ8k+1) and η2β8k+2 map to zero in K∗(C; Z/2), so in both cases these
classes map to zero in H0(Q; Z/2), and admit an image in H2(Q; Z/2).

Consider the following diagram, with i = 4k + 3 or i = 4k + 2. Each edge map
is only partially defined, on the kernel of the natural map to K2i−2(C; Z/2).

π2i−2(QS0; Z/2)

��

K2i−2(R; Z/2)

edge

��
�

�

�
K2i−2(Q; Z/2)

edge

��
�

�

�
//oo K2i−2(Qp; Z/2)

edge

��
�

�

�

H2(R; Z/2) H2(Q; Z/2) //oo H2(Qp; Z/2)

Define x ∈ H2(Q; Z/2), xp ∈ H2(Qp; Z/2) and z ∈ H2(R; Z/2) as the images of
i1(ηµ8k+1), resp. η2β8k+2, as before. We need to prove that z 6= 0 in each case.

In both cases we know by Lemma 5.2 that x2 is the nonzero element of the
subgroup of K2i−2(Q2; Z/2) that maps isomorphically to H2(Q2; Z/2) by the edge
map. Thus also x 6= 0 in both cases.

For each prime p 6= 2 we have xp = 0. In the first case, this is because the image of
i1(ηµ8k+1) in K8k+2(Qp; Z/2) factors through K8k+2(Zp; Z2) ∼= K8k+2(Fp; Z2) = 0.
In the second case, the image of η2β8k+2 in K8k+4(Qp; Z/2) factors through

K8k+4(Zp; Z/2) ∼= K8k+4(Fp; Z/2) ∼= 2K8k+3(Fp),

hence equals the image of η2µ8k+1 ∈ π8k+3(QS0) in K8k+3(Fp), which is zero.
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Again we have the exact localization sequence

H2(Z[ 12 ]; Z/2) → H2(Q; Z/2) ∂e−→
⊕
p6=2

H1(Fp; Z/2)

where ∂e takes x to the sum over p 6= 2 of ∂ep(xp) = 0. Hence x 6= 0 admits a lift
y 6= 0 ∈ H2(Z[ 12 ]; Z/2) in both cases. But then z 6= 0, because by Example 2.8 the
natural map H2(Z[ 12 ]; Z/2) → H2(R; Z/2) is an isomorphism. This concludes the
proof of Theorem 5.3 for i1(ηµ8k+1) and η2β8k+2.

We now finish the proof of Theorem 5.3 by showing that the remaining classes
do not survive to E∞. By [S1], the spectral sequence converges to

Kn(R; Z/2) ∼=


Z/2 for n ≡ 0, 1, 3, 4 mod 8,
Z/4 for n ≡ 2 mod 8,
0 otherwise.

We have shown that the classes β8k, i1(µ8k+1), i1(ηµ8k+1), β8k+2, ηβ8k+2 and
η2β8k+2 survive as permanent cycles in this spectral sequence. They clearly gen-
erate the entire abutment, hence there can be no further permanent cycles in this
spectral sequence, and the remaining classes must be killed by differentials. The
classes in bidegrees (p, q) with p ≡ −2,−3 mod 4 and 0 ≤ p−q ≤ 4 cannot be hit by
differentials for bidegree reasons, hence they must support nontrivial differentials.
This completes the proof.

The mod 2∞ case now follows by naturality.

Theorem 5.6. In the mod 2∞ Bloch–Lichtenbaum spectral sequence for R, the
classes ι1(β8k+2), ι1(ηβ8k+2) and ι1(η2β8k+2) in π∗(QS0; Z/2∞) map to classes
in K∗(R; Z/2∞) that are represented by permanent cycles in bidegrees (p, q) with
p = −4k− 1 and 0 ≤ p− q ≤ 2. The classes Z/2∞ in bidegrees (p, p) with p = −4k
or −4k − 2 are also permanent cycles.

The remaining classes do not survive to the E∞-term. In particular, the classes
in bidegrees (p, q) with p = −4k−3 and 0 ≤ p−q ≤ 5 support nontrivial differentials.

There is a nontrivial additive extension Z/2 o Z/2∞ ∼= Z/2∞ in total degree
−(8k + 4).

Proof. Each permanent cycle of the mod 2 Bloch–Lichtenbaum spectral sequence
for R maps under ι1 to an infinite cycle in the mod 2∞ Bloch–Lichtenbaum spec-
tral sequence for R. Hence the classes β8k+2, ηβ8k+2 and η2β8k+2 map to (nonzero)
infinite cycles. They cannot be boundaries for bidegree reasons, hence are in fact
permanent cycles. The natural map Kn(R; Z/2∞) → Kn(C; Z/2∞) is an isomor-
phism for n = 8k and a surjection with kernel Z/2 when n = 8k + 4. Hence the
classes in bidegrees (−4k,−4k) and (−4k− 2,−4k− 2), which detect Kn(C; Z/2∞)
for n = 8k and n = 8k + 4, must also detect the image of Kn(R; Z/2∞) in these
degrees. Thus these classes are permanent cycles.

By Suslin’s theorem [S1]

Kn(R; Z/2∞) ∼=


Z/2∞ for n ≡ 0, 4 mod 8,
Z/2 for n ≡ 2, 3 mod 8,
0 otherwise.

The given permanent cycles account for the entire abutment, and no other classes
can survive to the E∞-term in this spectral sequence. For bidegree reasons the
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classes in bidegrees (p, q) with p ≡ −3 mod 4 and 0 ≤ p − q ≤ 5 cannot be hit
by differentials, so the remaining classes in these bidegrees must support nontrivial
differentials. This completes the proof.

6. Two-primary K-theory of number fields

For number fields the K-theory localization sequence specializes as follows.

Theorem 6.1 (Soulé). Let F be a number field with ring of `-integers R and
residue fields kP for P - `. For i ≥ 1 the K-theory localization sequence for R
breaks up into short exact sequences

0 → K2i−1(R; Z/2∞) → K2i−1(F ; Z/2∞) ∂→
⊕
P-2

K2i−2(kP; Z/2∞) → 0

and isomorphisms K2i−2(R; Z/2∞) ∼= K2i−2(F ; Z/2∞).

Proof. The terms Kn(kP; Z/2∞) vanish for odd n by Proposition 1.10. Soulé
showed that the torsion group K2i−2(F ) maps onto

⊕
P-2K2i−3(kP); see [W1,

4.6]. It follows that in the commutative diagram

K2i−1(F ; Z/2∞) ∂
//

��

⊕
P-2K2i−2(kP; Z/2∞)

∼=
��

K2i−2(F ){2} ∂
//
⊕

P-2K2i−3(kP){2}
the left hand and lower maps are surjections, while the right hand map is an iso-
morphism. Hence the boundary map

∂ : K2i−1(F ; Z/2∞) →
⊕
P-2

K2i−2(kP; Z/2∞)

is surjective, as claimed.

The K-groups of rings of integers in number fields are known modulo torsion.
The following result is proven in [Bo] and [Q3].

Theorem 6.2 (Borel, Quillen). Let F be a number field with r1 real embeddings,
r2 pairs of complex embeddings, and s primes dividing 2. For each n ≥ 0 the group
Kn(R) is finitely generated, with rational rank

dimQ(Kn(R)⊗Z Q) =



1 for n = 0,
r1 + r2 + s− 1 for n = 1,
r2 for n ≡ 3 mod 4,
r1 + r2 for n ≡ 1 mod 4, n > 1,
0 otherwise.

Likewise, the group Kn(R; Z/`∞) is a discrete torsion group, Pontryagin dual to a
finitely generated Z`-module of `-adic rank equal to the rational rank of Kn(R).

For the remainder of this section we assume ` = 2.
We first dispense with the case when F is totally imaginary. In this case, The-

orem 1.13 expresses the K-groups of F in terms of étale cohomology groups. We
now use the localization sequences in K-theory and étale cohomology to express
the K-groups of the ring of integers in F in terms of étale cohomology.
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Theorem 6.3. Let F be a totally imaginary number field, with R its ring of 2-
integers. The mod 2∞ algebraic K-groups of R are given as follows:

Kn(R; Z/2∞) ∼=
{
H0(R;W (i)) for n = 2i even,
H1(R;W (i)) for n = 2i− 1 odd.

Proof. If n = 2i we combine Theorem 1.13, Proposition 2.9(b) and Theorem 6.1 to
get K2i(R; Z/2∞) ∼= K2i(F ; Z/2∞) ∼= H0(F ;W (i)) ∼= H0(R;W (i)) for i ≥ 0.

Now consider n = 2i−1 odd, with i ≥ 1. By Theorems 1.12 and 1.13 the Bloch–
Lichtenbaum spectral sequences for F and its completions FP determine isomor-
phisms K2i−1(F ; Z/2∞) ∼= H1(F ;W (i)) and K2i−1(FP; Z/2∞) ∼= H1(FP;W (i)).
By naturality of the spectral sequences with respect to the embeddings F → FP

we obtain the left commuting square in the following diagram:

K2i−1(F ; Z/2∞) //

∼=
��

⊕
P-2K2i−1(FP; Z/2∞)

⊕∂P

∼=
//

∼=
��

⊕
P-2K2i−2(kP; Z/2∞)

∼=
��

H1(F ;W (i)) //
⊕

P-2H
1(FP;W (i))

⊕∂eP
∼=

//
⊕

P-2H
0(kP;W (i− 1))

(6.4)

Now each map ∂P and ∂eP is an isomorphism, by Corollaries 3.3 and 2.10, respec-
tively. Hence there is a unique isomorphism K2i−2(kP; Z/2∞) ∼= H0(kP;W (i− 1))
for each P - 2 such that their direct sum makes the right square commute in the
diagram above. The horizontal composites are ∂ and ∂e, by naturality of the local-
ization sequences with respect to the inclusions R→ OFP

.
The outer rectangle in the commutative diagram (6.4) induces maps in the mid-

dle and right positions between the short exact sequences of Theorem 6.1 and
Proposition 4.7:

0 → K2i−1(R; Z/2∞) //

∼=
��

K2i−1(F ; Z/2∞) ∂
//

∼=
��

⊕
P-2K2i−2(kP; Z/2∞) → 0

∼=
��

0 → H1(R;W (i)) // H1(F ;W (i)) ∂e
//
⊕

P-2H
0(kP;W (i − 1)) → 0

The left vertical map is the induced map from ker(∂) to ker(∂e), and must be an
isomorphism since the middle and right vertical maps are isomorphisms. Hence
K2i−1(R; Z/2∞) ∼= H1(R;W (i)). This completes the proof.

We will shortly use the following algebraic lemma about comparing spectral
sequences.

Lemma 6.5. Let αp,qr : Ep,qr → ′Ep,qr be a morphism of E2-spectral sequences, both
of which are zero for p < q. Suppose that: (i) all differentials in ′E are either
zero or isomorphisms; (ii) the maps αp,q2 are injections for p = q, surjections for
p = q + 1 and for p = q + 2, and isomorphisms otherwise. Then:

(a) If ′Ep,q∞ = ′Ep,q2 , then Ep,q∞ = Ep,q2 .
(b) If ′Eq,q∞ = 0 but ′Eq,q2 6= 0, there is a unique a = a(q), s = q+a and t = q−a+1

such that ′da : ′Eq,qa ∼= ′Es,ta . Then Eq,q∞ = 0 and Es,t∞ ∼= ′Eq,q2 /Eq,q2 .



TWO-PRIMARY ALGEBRAIC K-THEORY 31

(c) If ′Eq+1,q
∞ = 0 but ′Eq+1,q

2 6= 0, then Eq+1,q
∞ ∼= ker(Eq+1,q

2 → ′Eq+1,q
2 ).

(d) If ′Eq+2,q
∞ = 0 but ′Eq+2,q

2 6= 0, then Eq+2,q
∞ ∼= ker(Eq+2,q

2 → ′Eq+2,q
2 ).

(e) Ep,q∞ ∼= ′Ep,q∞ in all other cases.
More specifically, let us call (s, t) distinguished if there is a nonzero differential

′da : ′Eq,qa ∼= ′Es,ta . Then Es,tr
∼= ′Es,tr unless either 0 ≤ t − s ≤ 2 or (s, t) is

distinguished and r > a. (These cases are implicitly itemized in (a) to (d) above.)

Proof. We proceed by induction on r ≥ 2. Given p, q and r with p ≥ q, set s = p+r
and t = q − r + 1 and consider the following diagram:

Ep,qr
dp

//

α

��

Es,tr
ds

//

∼=
��

·
∼=

��′Ep,qr
′dp

// ′Es,tr
′ds

// ·

Here we briefly write dp for dp,qr , etc. Since s ≥ t + 3, the induction hypothesis
implies that the right two vertical maps are isomorphisms.

If ′dp = 0, then dp = 0 and Es,tr+1
∼= ′Es,tr+1. Moreover, if p < q + 2r − 1, then

′dp−r = dp−r = 0 and we also have Ep,qr = Ep,qr+1,
′Ep,qr = ′Ep,qr+1. If p ≥ q + 2r − 1,

then (p, q) is the (s, t) of another such diagram.
Thus we may suppose that ′dp 6= 0. In this case ds = ′ds = 0, ′Ep,qr+1 = ′Es,tr+1 = 0,

and (p, q) cannot be distinguished. Thus we have only four cases. If α is an
isomorphism, then Ep,qr+1 = Es,tr+1 = 0. If p = q, then r = a(q) and α is an injection,
so we have Eq,qr+1 = 0 and Es,tr+1

∼= ′Eq,qr /Eq,qr = ′Eq,q2 /Eq,q2 . If p = q+1 or p = q+2,
then α is a surjection, Es,tr+1 = 0 and Ep,qr+1 = ker(α). This establishes the inductive
step, and hence the lemma.

Definition 6.6 (H̃n and H̄n). Suppose F is a number field with r1 > 0 real em-
beddings. Recall from 4.1 that αn = αn(F ;M) denotes the natural map

Hn(F ;M) αn−→
r1⊕

Hn(R;M),

where the sum runs over the real places of F . Let H̃n(F ;M) = kerαn(F ;M).
For n ≥ 3 the map αn is an isomorphism by Tate’s Theorem 4.2. Let H̄n(F ;M)

be the cokernel of the diagonal embedding

∆ : Hn(R;M) →
r1⊕
Hn(R;M) ∼= Hn(F ;M)

viewed as a quotient of Hn(F ;M). When M = W (i) and i − n is odd the source
and target of ∆ are Z/2 and (Z/2)r1 , so abstractly

H̄n(F ;W (i)) = cok∆ ∼= (Z/2)r1−1.

We use similar notations H̃n(R;M) and H̄n(R;M) with R replacing F . Clearly,
Hn(R;M) → Hn(F ;M) induces a natural map H̃n(R;M) → H̃n(F ;M), and (for
n ≥ 3) isomorphisms H̄n(R;M) ∼= H̄n(F ;M).
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Theorem 6.7. Let F be a real number field. Its mod 2∞ algebraic K-groups are
given (up to extensions) as follows:

Kn(F ; Z/2∞) ∼=



H0(F ;W (4k)) ∼= Z/w4k(F ) for n = 8k,
H1(F ;W (4k + 1)) for n = 8k + 1,
H0(F ;W (4k + 1)) ∼= Z/2 for n = 8k + 2,
H1(F ;W (4k + 2)) for n = 8k + 3,
(Z/2)r1 oH0(F ;W (4k + 2)) for n = 8k + 4,
(Z/2)r1−1 oH1(F ;W (4k + 3)) for n = 8k + 5,
0 for n = 8k + 6,
H̃1(F ;W (4k + 4)) for n = 8k + 7.

Here H0(F ;W (4k+2)) ∼= Z/w4k+2(F ). The extension in degree 8k+4 is abstractly
isomorphic to (Z/2)r1−1⊕Z/2w4k+2(F ). For any real embedding F → R the image
of K8k+4(F ; Z/2∞) in K8k+4(R; Z/2∞) ∼= Z/2∞ is the cyclic group Z/2w4k+2(F ).

Proof. The mod 2∞ Bloch–Lichtenbaum spectral sequence E of (1.3) has

Ep,q2 =

{
Hp−q(F ;W (−q)) for q ≤ p ≤ 0,
0 otherwise.

Let ′E denote the direct sum of r1 copies of the corresponding spectral sequence (1.3)
for R. We will apply Lemma 6.5 to the map α : E → ′E of spectral sequences
induced by the r1 real embeddings of F . The following lemma verifies that the
hypotheses of 6.5 hold.

Lemma 6.8. Let F be a real number field, and write n = p− q and i = −q.
(a) For n = 0

α0 : H0(F ;W (i)) →
r1⊕
H0(R;W (i))

can be identified with the diagonal embeddings ∆ : Z/2 → (Z/2)r1 for i odd, and
Z/wi(F ) → (Z/2∞)r1 for i even.

(b) For n = 1 we have a surjection

α1 : H1(F ;W (i)) →
r1⊕

H1(R;W (i)) =

{
(Z/2)r1 i even,
0 i odd.

(c) For n = 2 and i ≥ 2, or for n ≥ 3, we have an isomorphism

αn : Hn(F ;W (i))
∼=−→

r1⊕
Hn(R;W (i)) =

{
(Z/2)r1 i− n even,
0 i− n odd.

Proof. To prove (a) it suffices to note that H0(F ;W (i)) ∼= Z/2 for F real and i odd,
and that each real embedding induces an injection H0(F ;W (i)) → H0(R;W (i)).

We turn to the proof of (b), where we may assume that i is even. The coefficient
inclusion ι1 : Z/2 →W (i) induces the following commutative diagram:

H1(F ; Z/2) //

α1(F ;Z/2)
��
��

H1(F ;W (i))

α1(F ;W (i))

��⊕r1 H1(R; Z/2)
∼=

//
⊕r1 H1(R;W (i))



TWO-PRIMARY ALGEBRAIC K-THEORY 33

Note that H1(F ; Z/2) ∼= F×/2. The left map α1(F ; Z/2), which may be identified
with F×/2 → ⊕r1 R×/2, is surjective by the (very strong) approximation theorem
for units. (See e.g. [CF, II.15]. The image of F in Rr1 under the various real
embeddings is dense.) Hence also α1(F ;W (i)) is surjective for all even i. This
proves (b).

Claim (c) is immediate from Theorem 4.2 and Proposition 4.6.

We can now complete the proof of Theorem 6.7. By Theorem 5.6 and Lemma 6.5
the E∞-term of the mod 2∞ Bloch–Lichtenbaum spectral sequence for F is given
as

Ep,q∞ =



H0(F ;W (−q)) for p = q, −p 6≡ 3 mod 4,
H1(F ;W (−q)) for p = q + 1, −p 6≡ 3 mod 4,
H̃1(F ;W (−q)) for p = q + 1, −p ≡ 3 mod 4,
H2(F ;W (−q)) for p = q + 2, −p ≡ 1 mod 4,
H̄2a−1(F ;W (−q)) for (p, q) distinguished and a ≥ 2,
0 otherwise.

There is precisely one distinguished bidegree (p, q) in each total degree p + q =
−(8k + 5), namely the bidegree hit by a nontrivial differential da from bidegree
(−4k−3,−4k−3) in the spectral sequence for R. (Here a ≥ 2 might depend on k.)
Then p− q = n = 2a− 1 ≥ 3, and p is odd, so q is even and H̄2a−1(F ;W (−q)) ∼=
(Z/2)r1−1. We also substitute (Z/2)r1 for H2(F ;W (4k + 3)). The given formulas
for K∗(F ; Z/2∞) follow.

For the final assertion, set i = 4k + 2 and consider the map of extensions from

K8k+4(F ; Z/2∞) ∼= H2(F ;W (i + 1)) oH0(F ;W (i))

to

K8k+4(R; Z/2∞) ∼= H2(R;W (i + 1)) oH0(R;W (i)) ∼= Z/2 o Z/2∞

induced by a real embedding F → R. As noted in Theorem 5.6, the second extension
is nontrivial. Since the map from Z/wi(F ) ∼= H0(F ;W (i)) to H0(R;W (i)) ∼=
Z/2∞ is injective, the first extension K8k+4(F ; Z/2∞) must be nontrivial, with
image Z/2wi(F ). Finally, note that all nontrivial extensions of Z/wi by (Z/2)r1
are abstractly isomorphic.

Theorem 6.9. Let F be a real number field, with R its ring of 2-integers. The
mod 2∞ algebraic K-groups of R are given as follows:

Kn(R; Z/2∞) ∼=



H0(R;W (4k)) ∼= Z/w4k(F ) for n = 8k,
H1(R;W (4k + 1)) for n = 8k + 1,
H0(R;W (4k + 1)) ∼= Z/2 for n = 8k + 2,
H1(R;W (4k + 2)) for n = 8k + 3,
(Z/2)r1 oH0(R;W (4k + 2)) for n = 8k + 4,
(Z/2)r1−1 oH1(R;W (4k + 3)) for n = 8k + 5,
0 for n = 8k + 6,
H̃1(R;W (4k + 4)) for n = 8k + 7.

Here H0(R;W (4k+2)) ∼= Z/w4k+2(F ). The extension in degree 8k+4 is abstractly
isomorphic to (Z/2)r1−1 ⊕ Z/2w4k+2(F ).
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Proof. The result is immediate from Theorem 6.7 when n = 2i, because we have
K2i(R; Z/2∞) ∼= K2i(F ; Z/2∞) by Theorem 6.1 and H0(R;W (i)) = H0(F ;W (i)).

When n = 2i − 1 we compare the edge maps K2i−1(F ; Z/2∞) → H1(F ;W (i))
for i ≥ 1 with the edge isomorphisms

K2i−1(FP; Z/2∞)
∼=−→ H1(FP;W (i))

for each P - 2. As in the construction of diagram (6.4), the isomorphisms ∂P and ∂eP
determine isomorphisms K2i−2(kP; Z/2∞) → H0(kP;W (i − 1)) making the right
square in the following diagram commute:

0 → K2i−1(R; Z/2∞) //

��

K2i−1(F ; Z/2∞) ∂
//

edge

��

⊕
P-2K2i−2(kP; Z/2∞) → 0

∼=
��

0 → H1(R;W (i)) // H1(F ;W (i)) ∂e
//
⊕

P-2H
0(kP;W (i − 1)) → 0

(6.10)

The rows are exact by Proposition 4.7 and Theorem 6.1.
In degrees n = 8k+1 and 8k+3 the edge map for F in (6.10) is an isomorphism

by Theorem 6.7. Hence the induced map K2i−1(R; Z/2∞) → H1(R;W (i)) is also
an isomorphism, by the 5-lemma.

In degrees n = 8k + 5 the edge map for F in (6.10) is a surjection, with kernel
(Z/2)r1−1. It follows that we have a short exact sequence

0 → (Z/2)r1−1 → K8k+5(R; Z/2∞) → H1(R;W (4k + 3)) → 0,

where the right hand map is the map of horizontal kernels in (6.10).
In degrees n = 8k+7 the edge map for F in (6.10) is injective, and its cokernel can

be identified with
⊕r1 H1(R;W (4k+4)) in view of Definition 6.6 and Lemma 6.8(b).

Hence by the snake lemma applied to (6.10) there is a short exact sequence

0 → K8k+7(R; Z/2∞) → H1(R;W (4k + 4)) α1−→
r1⊕

H1(R;W (4k + 4)) → 0,

where the right hand map is the direct sum of the natural maps induced by the
real embeddings R→ F → R. Hence K8k+7(R; Z/2∞) ∼= H̃1(R;W (4k + 4)).

Corollary 6.11. The natural maps

α1 : H1(R;W (i)) →
r1⊕
H1(R;W (i)) ∼= (Z/2)r1 ,

α2 : H2(R; Z2(i)) →
r1⊕
H2(R; Z2(i)) ∼= (Z/2)r1

are surjective for i = 4k > 0.

Proof. The first claim follows from the last paragraph of the proof above. The
second claim follows by a Bockstein argument.

Hence we have formulas describing the 2-primaryK-theory of R, and thus of OF ,
in terms of the étale cohomology of R. We recall that Hn(R;W (i)) is completely
described for n = 0 by Propositions 1.8 and 2.9(b), for n = 2 and i ≥ 1 by Propo-
sitions 2.7(b) and 4.6, and for n ≥ 3 by Corollary 4.4. Hence only H1(R;W (i))
remains unknown; we shall see in Appendix A that when F is totally real it is
related to ζF (1− i) via the Main Conjecture of Iwasawa Theory.
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We now translate from Hn(R;W (i)) with mod 2∞-coefficients to Hn(R; Z2(i))
with 2-adic coefficients, using the universal coefficient theorem 2.4.

Proposition 6.12. Let R be the ring of 2-integers in a number field F . The group
Hn(R;W (i)) is the Pontryagin dual of a finitely generated Z2-module for all n
and i. Likewise Hn(R; Z2(i)) is a finitely generated Z2-module for all n and i.

For i ≥ 2 the groups H0(R;W (i)) ∼= Z/wi(F ) and H2(R; Z2(i)) are finite, and

H1(R; Z2(i)) ∼= (Z2)r ⊕ Z/wi(F ),

H1(R;W (i)) ∼= (Z/2∞)r ⊕H2(R; Z2(i))

where r = r2 for i even, and r = r1 + r2 for i odd.
The finite group H2(R; Z2(i)) is determined up to extensions by the exact se-

quence

0 → H0(R;W (1− i))
β0

−→
⊕
v∈S∞

Ĥ0(Fv;W (1− i)) →

→ H2(R; Z2(i)) → X1(R;W (1− i)) → 0 .

In particular each Tate–Shafarevich group X1(R;W (1 − i)) is finite for i ≥ 2.

Proof. Finite generation of Hn(R;W (i))# for i > 1 is clear from Quillen’s part of
Theorem 6.2, the universal coefficient theorem, and Theorems 6.3 and 6.9. The
corresponding statements for Hn(R; Z2(i)) follow by the universal coefficient the-
orem 2.4, and for Hn(R;W (1− i))# and Hn(R; Z2(1 − i)) by global Tate duality,
i.e., the exact sequence in Theorem 4.9(b). Similar remarks apply for i = 1 by use
of Proposition 2.7(b).

For i ≥ 1 the rank of H1(R;W (i))# modulo torsion as a free Z2-module equals
the rational rank of K2i−1(R), by Theorems 6.3 and 6.9, and is given by Borel’s
part of Theorem 6.2. For i ≥ 2 the same reasoning shows that H2(R;W (i)) is finite
for i ≥ 2. Thus H2(R; Z2(i)) is isomorphic to the torsion in H1(R;W (i))# by the
universal coefficient theorem. By global Tate duality, this group is given by the
4-term exact sequence listed above, where X1(R;W (1 − i)) appears as the kernel
of β1 in Tate’s 9-term exact sequence 4.9(b).

In particular X1(R;W (1− i)) is a quotient of the finite group H2(R;W (i)) and
is itself finite.

Proposition 6.13. Let R be the ring of 2-integers in a number field F with r1 real
embeddings and r2 pairs of complex embeddings. Let s be the number of primes of
F dividing 2, and let t be the 2-rank of the Picard group Pic(R). Then for i ≥ 2
the 2-rank of the finite group H2(R; Z2(i)) equals{

r1 + s+ t− 1 for i even,
s+ t− 1 for i odd.

Proof. There is an exact universal coefficient sequence

0 → H2(R; Z2(i))/2 → H2(R; Z/2) → 2H
3(R; Z2(i)) → 0 .

By Corollary 4.4 and Propositions 2.4 and 4.6, if i ≥ 2 then H3(R; Z2(i)) is 0 for i
even and (Z/2)r1 for i odd. Also H2(R; Z/2) ∼= Pic(R)/2⊕ 2Br(R) by the Kummer
sequence. Now Pic(R)/2 has rank t and 2Br(R) has rank r1 +s−1. So H2(R; Z/2)
has rank r1 + s+ t− 1 and the result follows.



36 J. ROGNES AND C. WEIBEL

We can now explicitly formulate a result about the 2-torsion in the algebraic
K-groups of R. Recall from 6.6 and 6.11 that H̃2(R; Z2(4k+4)) denotes the kernel
of the natural surjective map α2 from H2(R; Z2(4k+4)) to (Z/2)r1 induced by the
r1 real embeddings of F .

Theorem 6.14. (a) Let F be a totally imaginary number field. The 2-torsion
subgroup in the algebraic K-group Kn(R) is given for n ≥ 0 by

Kn(R){2} ∼=
{
H2(R; Z2(i + 1)) for n = 2i even,
Z/wi(F ) for n = 2i− 1 odd.

The 2-primary Harris–Segal summand in K2i−1(R) equals the 2-torsion subgroup
K2i−1(R){2} ∼= Z/wi(F ), while the number of cyclic summands in the finite group
K2i(R){2} ∼= H2(R; Z2(i+ 1)) is s+ t− 1, independent of i ≥ 1.

(b) Let F be a real number field. The 2-torsion subgroup in the algebraic K-group
Kn(R) is given for n ≥ 0 by

Kn(R){2} ∼=



H2(R; Z2(4k + 1)) for n = 8k,
Z/2 for n = 8k + 1,
H2(R; Z2(4k + 2)) for n = 8k + 2,
(Z/2)r1−1 ⊕ Z/2w4k+2(F ) for n = 8k + 3,
(Z/2)ρ oH2(R; Z2(4k + 3)) for n = 8k + 4, with ρ < r1,

0 for n = 8k + 5,
H̃2(R; Z2(4k + 4)) for n = 8k + 6,
Z/w4k+4(F ) for n = 8k + 7.

The 2-primary Harris–Segal summands in K8k+3(R) and K8k+7(R) are the cyclic
groups Z/2w4k+2 and Z/w4k+4, respectively.

The undetermined extension K8k+4(R){2} is isomorphic to the maximal finite
quotient of K8k+5(R; Z/2∞). The latter K-group fits into the short exact sequence

0 → (Z/2)r1−1 → K8k+5(R; Z/2∞) → (Z/2∞)r1+r2 ⊕H2(R; Z2(4k + 3)) → 0 .

Part (a) of this theorem is restated as Theorem 0.4 in the introduction, and
part (b) is restated as Theorem 0.6. Both of these results use Theorem 6.2. The
orders of the Harris–Segal summands had previously been known up to a factor
of 2; see [W1, 6.8.1]. See Corollary 7.12 for more information about the extensions
in the above result.

Proof. Combine Theorems 6.3 and 6.9 with the universal coefficient theorem. Sub-
stitute Z/wi(F ) for H0(R;W (i)), and note that wi(F ) = 2 for i odd and F real.

7. Mod two K-groups of number fields

In this section we use the mod 2 Bloch–Lichtenbaum spectral sequence (1.2) to
compute the mod 2 algebraic K-theory of number fields and their rings of integers.
Combined with the universal coefficient theorem we can thus compute the number
of cyclic summands in the 2-torsion subgroups of K-theory. In particular we can
detect nontrivial additive extensions in Theorems 6.9 and 6.14.
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Proposition 7.1. The edge maps K2i−1(F ; Z/2) → H1(F ; Z/2) in the mod 2
Bloch–Lichtenbaum spectral sequence induce maps K2i−1(R; Z/2) → H1(R; Z/2)
fitting into a commutative diagram with exact rows:

0 → K2i−1(R; Z/2) //

��

K2i−1(F ; Z/2)
∂1

//

��

⊕
P-2K2i−2(kP; Z/2)

∼=φ

��

0 → H1(R; Z/2) // H1(F ; Z/2)
∂e1

//
⊕

P-2H
0(kP; Z/2) .

Proof. We have K2i−1(R) ∼= K2i−1(F ) and K2i−2(R) injects into K2i−2(F ); this is
a theorem of Soulé (see [W1, 4.6]). Hence K2i−1(R; Z/2) injects into K2i−1(F ; Z/2)
and the top row is exact. Now the construction of the right square proceeds exactly
like the construction of the commutative square (6.4), using the identification of
K2i−2(kP; Z/2) and H0(kP; Z/2) with the exponent two subgroups of the cyclic
groups K2i−2(kP; Z/2∞) and H0(kP;W (i− 1)).

Now let F be a totally imaginary number field. The mod 2 algebraic K-groups
of F were given in Theorem 1.15(b); here are the mod 2 K-groups of R. We
remind the reader that H0(R; Z/2) = Z/2, H1(R; Z/2) ∼= R×/2 ⊕ 2Pic(R), and
H2(R; Z/2) ∼= Pic(R)/2⊕ 2Br(R).

Theorem 7.2. Let F be a totally imaginary number field, with R its ring of 2-
integers. The mod 2 algebraic K-groups of R are given (up to extensions) as follows:

Kn(R; Z/2) ∼=


Pic(R)/2⊕H0(R; Z/2) for n = 0,
H1(R; Z/2) for n = 2i− 1 odd,
H2(R; Z/2) oH0(R; Z/2) for n = 2i > 0 even.

The extension for n = 2i need not split; see Remark 1.16(b).

Proof. The case n = 0 follows trivially from K0(R) ∼= Z⊕ Pic(R).
The case n = 2i > 0 follows from Theorems 4.5(a) and 6.3, which imply the

existence of isomorphisms

H2(R; Z/2) ∼= H1(R;W (i+ 1))/2 ∼= K2i+1(R; Z/2∞)/2

and H0(R; Z/2) ∼= 2H
0(R;W (i)) ∼= 2K2i(R; Z/2∞). The claim then follows from

the exact sequence

0 → K2i+1(R; Z/2∞)/2 → K2i(R; Z/2) → 2K2i(R; Z/2∞) → 0 .

This leaves the odd cases n = 2i − 1 to consider, i ≥ 1. As in the proof of
Theorem 6.3 the Bloch–Lichtenbaum spectral sequence determines an isomorphism
K2i−1(F ; Z/2) ∼= H1(F ; Z/2). Hence the theorem follows in this case by the 5-
lemma applied to the diagram of Proposition 7.1.

We now describe the situation for real number fields.

Definition 7.3 (Pic+ and Br+). Let F be a real number field. Each real embed-
ding of F determines a map F× → R× → R×/2 ∼= Z/2, detecting the sign of units
of F under that embedding. Let the sign map

σ : F× → (Z/2)r1
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be the direct sum of these maps. Clearly σ factors over F×/2, and we let σ/2 denote
the resulting map F×/2 → (Z/2)r1 , which can be identified with α1(F ; Z/2) from
Definition 4.1.

As noted in the proof of Lemma 6.8(b), the (very strong) approximation theorem
for F implies that the image of σ is dense, hence that σ is surjective. We let
F×+ ⊂ F× be the kernel of σ. This is the group of totally positive units of F . Let
R×+ = R× ∩ F×+ be the subgroup of totally positive units in R. Let e+ be the
restriction of the divisor map e : F× → ⊕

P-` Z to F×+ , and let Pic+(R) = cok e+
be the narrow Picard group, by definition. We have a diagram with exact rows:

0 // R×+ //

��

F×+
e+

//

��

⊕
P-` Z // Pic+(R)

ρ

��

// 0

0 // R× // F×
e

//
⊕

P-` Z // Pic(R) // 0

It follows that Pic+(R) is an extension of the finite group Pic(R) by an elementary
Abelian 2-group. Indeed, the snake lemma yields an exact sequence

0 → R×+ → R× → (Z/2)r1 → Pic+(R)
ρ→ Pic(R) → 0 .

Let t be the 2-rank of Pic(R), and let u be the 2-rank of Pic+(R). (Recall that
the 2-rank of a group A is the dimension of 2A over F2.) We call j = u − t the
signature defect of R. Clearly t ≤ u < t + r1 when F is real, since −1 ∈ R×

maps nontrivially to (Z/2)r1 . Thus 0 ≤ j < r1 in the real case. We will see in
Lemma 7.6(a) that the 2-rank of H̃1(R; Z/2) is r2 + s+ u.

The real embeddings of F determine surjective maps Br(F ) → Br(R) ∼= Z/2,
which combine to a projection map τ : Br(F ) → (Z/2)r1 . By the Brauer–Hasse–
Noether theorem (2.6) the map τ is split surjective, since F has at least one non–
Archimedean place. Likewise the restriction 2τ of τ to the elements of exponent 2 is
a surjective map 2τ : 2Br(F ) → (Z/2)r1 , which can be identified with α2(F ; Z/2).
Let Br+(F ) = ker τ , and use similar notation with R replacing F . Note that
Br+(R) ∼= (Q/Z)s−1 by (2.6). The kernel of 2τ is H̃2(F ; Z/2) ∼= 2Br+(F ).

Recall the groups H̃n(F ; Z/2) and H̄n(F ; Z/2) introduced in Definition 6.6.

Theorem 7.4. Let F be a real number field. Its mod 2 algebraic K-groups are
given (up to extensions) for n > 0 as follows:

Kn(F ; Z/2) ∼=



H̃2(F ; Z/2) oH0(F ; Z/2) for n = 8k,
H1(F ; Z/2) for n = 8k + 1,
H2(F ; Z/2) oH0(F ; Z/2) for n = 8k + 2,
(Z/2)r1−1 oH1(F ; Z/2) for n = 8k + 3,
H2(F ; Z/2) for n = 8k + 4,
(Z/2)r1−1 o H̃1(F ; Z/2) for n = 8k + 5,
H̃2(F ; Z/2) for n = 8k + 6,
H̃1(F ; Z/2) for n = 8k + 7.
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Proof. The mod 2 Bloch–Lichtenbaum spectral sequence converging to K∗(F ; Z/2)
has

Ep,q2 =

{
Hp−q(F ; Z/2) for q ≤ p ≤ 0,
0 otherwise.

Here H0(F ; Z/2) = Z/2, H1(F ; Z/2) ∼= F×/2, H2(F ; Z/2) ∼= 2Br(F ). For n ≥ 3 we
have Hn(F ; Z/2) ∼= (Z/2)r1 . As in the proof of Theorem 6.7 we compare with the
sum of r1 copies of the spectral sequence for R, using Lemma 6.5.

In the mod 2 case there are nontrivial da-differentials from the line p = q in the
spectral sequence for R precisely when p = q ≡ −2,−3 mod 4, and these hit one
distinguished bidegree (s, t) in each total degree s+t = −(8k+3) or s+t = −(8k+5).
Then a ≥ 2, so 2a− 1 ≥ 3.

Lemma 7.5. Let F be a real number field and write n = p − q. Consider αn =
αn(F ; Z/2).

(a) α0 is identified with the diagonal embedding ∆ : Z/2 → (Z/2)r1 .
(b) α1 is identified with the surjective sign map σ/2 : F×/2 → (Z/2)r1 .
(c) α2 is identified with the surjective projection 2τ : 2Br(F ) → (Z/2)r1 .
(d) For n ≥ 3, αn is an isomorphism.

Proof. The proof proceeds like the proof of Lemma 6.8 above.

Combining Theorem 5.3 and Lemma 6.5 with the lemma above, we are left with
the following E∞-term:

Ep,q∞ =



H0(F ; Z/2) for p = q, −p ≡ 0, 1 mod 4,
H1(F ; Z/2) for p = q + 1, −p ≡ 0, 1 mod 4,
H̃1(F ; Z/2) for p = q + 1, −p ≡ 2, 3 mod 4,
H2(F ; Z/2) for p = q + 2, −p ≡ 0, 1 mod 4,
H̃2(F ; Z/2) for p = q + 2, −p ≡ 2, 3 mod 4,
H̄2a−1(F ; Z/2) for (p, q) distinguished,
0 otherwise,

for p, q ≤ 0. Here a ≥ 2 so H̄2a−1(F ; Z/2) ∼= (Z/2)r1−1. The given formulas for
K∗(F ; Z/2) follow.

In order to pass to the mod 2 K-theory of R we need two lemmas.

Lemma 7.6. (a) Restriction of the connecting map ∂e1 of the mod 2 étale cohomol-
ogy localization sequence for R to the kernel of the sign map σ/2 determines the
following commutative diagram with exact rows:

0 // H̃1(R; Z/2) //

��

H̃1(F ; Z/2)
∂̃e1

//

��

⊕
P-2H

0(kP; Z/2)

0 // H1(R; Z/2) // H1(F ; Z/2)
∂e1

//
⊕

P-2H
0(kP; Z/2)

The vertical maps are injective, and the kernel–cokernel sequence of the maps in
the right square can be identified with the following exact sequence:

0 → H̃1(R; Z/2)→ H1(R; Z/2)
σ/2−→ (Z/2)r1 → Pic+(R)/2

ρ/2−→ Pic(R)/2 → 0 .
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(b) Restriction of the connecting map ∂e2 to the kernel of 2τ : 2Br(F ) → (Z/2)r1
determines the following commutative diagram with exact rows:

H̃2(R; Z/2) //

��

H̃2(F ; Z/2)
∂̃e2

//

��

⊕
P-2H

1(kP; Z/2) // 0

H2(R; Z/2) // H2(F ; Z/2)
∂e2

//
⊕

P-2H
1(kP; Z/2) // 0

Proof. The localization sequence on the bottom row of the diagram in (a) continues
with the bottom row of the diagram in (b). A diagram chase shows that the top
rows are also exact. Identifying H1(R; Z/2) with R×/2⊕2Pic(R), it follows from the
diagram in Definition 7.3 that the horizontal cokernels in diagram (a) are Pic+(R)/2
and Pic(R)/2, respectively.

Lemma 7.7. Let E be a p-local field of characteristic zero with valuation ring OE
and separable closure Es. Suppose p 6= 2. For each i ≥ 0 the composite

K2i(OE ; Z/2)→ K2i(E; Z/2) → K2i(Es; Z/2) ∼= Z/2

is an isomorphism.

Proof. Let Oh denote the integral closure of OE in Es; it is a complete local ring
with separably closed residue field ks. Let k be the residue field of OE . By [W1,
4.1(c)] there is a short exact sequence

0 → K2i(OE ; Z/2) → K2i(E; Z/2) → K2i−1(k; Z/2)→ 0

and a similar exact sequence for Oh, which degenerates by Proposition 1.10 to yield

K2i(Oh; Z/2) ∼= K2i(Es; Z/2) ∼= Z/2 .

Therefore it suffices to show that K2i(OE ; Z/2) → K2i(Oh; Z/2) is an isomorphism.
But by Proposition 1.10 and Gabber’s Rigidity Theorem 3.2 this is just the isomor-
phism K2i(k; Z/2) ∼= K2i(ks; Z/2).

Theorem 7.8. Let F be a real number field, with R its ring of 2-integers. The
mod 2 algebraic K-groups of R are given (up to extensions) for n > 0 as follows:

Kn(R; Z/2) ∼=



H̃2(R; Z/2)⊕H0(R; Z/2) for n = 8k,
H1(R; Z/2) for n = 8k + 1,
H2(R; Z/2) oH0(R; Z/2) for n = 8k + 2,
(Z/2)r1−1 oH1(R; Z/2) for n = 8k + 3,
Pic+(R)/2 o 2Br(R) for n = 8k + 4,
(Z/2)r1−1 o H̃1(R; Z/2) for n = 8k + 5,
Pic+(R)/2⊕ 2Br+(R) for n = 8k + 6,
H̃1(R; Z/2) for n = 8k + 7.

Here H0(R; Z/2) = Z/2, H1(R; Z/2) ∼= R×/2⊕ 2Pic(R), H2(R; Z/2) ∼= Pic(R)/2⊕
2Br(R) and H̃2(R; Z/2) ∼= Pic(R)/2⊕ 2Br+(R).

Proof. We first consider odd n = 2i − 1, using Proposition 7.1. When n = 8k + 1
(so i ≡ 1 mod 4) the edge map for F is an isomorphism, hence so is the induced
map Kn(R; Z/2)→ H1(R; Z/2).
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When i ≡ 0 mod 4, the edge map for F is injective, hence so is the induced map
for R. When i ≡ 2 mod 4, the edge map for F is surjective, hence so is the induced
map for R.

When i ≡ 2, 3 mod 4 the kernel of the edge map for F is H̄2a−1(F ; Z/2), which
maps to zero under ∂1 because the composite map factors through K2i−1(FP; Z/2)
and thus through H̄2a−1(FP; Z/2) = 0 by naturality. (Recall that a ≥ 2.) So in
these cases the induced map on vertical kernels in (7.1) can be identified with the
natural isomorphism H̄2a−1(R; Z/2) ∼= H̄2a−1(F ; Z/2) ∼= (Z/2)r1−1. This estab-
lishes the result for i ≡ 2 mod 4.

When i ≡ 0, 3 mod 4 there is a commutative diagram similar to (7.1) obtained
by replacing H1(R; Z/2) with H̃1(R; Z/2), and H1(F ; Z/2) with H̃1(F ; Z/2). The
new lower row is an exact sequence by Lemma 7.6(a), the new middle vertical edge
map is a surjection, and the new left vertical map is again a surjection by the
5-lemma. This establishes the result for i ≡ 0, 3 mod 4.

The right vertical isomorphism φ in the diagram of (7.1) identifies the image of
∂1 with the image of ∂e1 precomposed with the edge map for F . The latter is the
image of ∂e1 on H1(F ; Z/2) when i ≡ 1, 2 mod 4, and the image of ∂e1 restricted to
H̃1(F ; Z/2) when i ≡ 0, 3 mod 4. Hence we can use the diagram in Definition 7.3 to
identify cok∂1 with cok e/2 = Pic(R)/2 when i ≡ 1, 2 mod 4, and with cok e+/2 =
Pic+(R)/2 when i ≡ 0, 3 mod 4.

We now consider even n. By Theorem 7.4 the mod 2 Bloch–Lichtenbaum spectral
sequence determines injective maps H2(F ; Z/2) → K2i−2(F ; Z/2) for i ≥ 2 with
i ≡ 2, 3 mod 4, and injective maps H̃2(F ; Z/2)→ K2i−2(F ; Z/2) for i ≥ 2 with i ≡
0, 1 mod 4. Likewise, by Theorem 1.15(a) the mod 2 Bloch–Lichtenbaum spectral
sequence determines injective maps H2(FP; Z/2) → K2i−2(FP; Z/2). These are
compatible with respect to the natural maps induced by the embeddings F → FP.

Hence when i ≡ 2, 3 mod 4 the left square in the following diagram commutes:

H2(F ; Z/2) //

��

⊕
P-2H

2(FP; Z/2)
⊕∂eP
∼=

//

��

⊕
P-2H

1(kP; Z/2)

∼=φ

��

K2i−2(F ; Z/2) //
⊕

P-2K2i−2(FP; Z/2)
⊕∂P

// //
⊕

P-2K2i−3(kP; Z/2)

(7.9)

As before the horizontal composites in this diagram are the connecting maps ∂ = ∂2

and ∂e = ∂e2 . There is a similar diagram when i ≡ 0, 1 mod 4, replacing H2(F ; Z/2)
by H̃2(F ; Z/2), and in this case the upper composite is ∂̃e2 .

The upper right maps ∂eP are isomorphisms by exactness of the mod 2 étale
cohomology localization sequence, since Hn(OFP

; Z/2) ∼= Hn(kP; Z/2) = 0 for
n = 2, 3 by Proposition 1.11. Hence there is a unique map φP : H1(kP; Z/2) →
K2i−1(kP; Z/2) for each P - 2, such that their direct sum φ =

⊕
P φP makes the

right square in (7.9) commute.
We claim that the maps φP are isomorphisms. The source and target groups

are both isomorphic to Z/2, so it suffices to show that each map φP is nonzero, or
equivalently that the composite

H2(FP; Z/2) → K2i−2(FP; Z/2)
∂P−→ K2i−3(kP; Z/2)

is nonzero. By exactness of the mod 2K-theory localization sequence we must prove
that the (nonzero) left injection here does not factor throughK2i−2(OFP

; Z/2). But
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consider the composites

K2i−2(OFP
; Z/2)→ K2i−2(FP; Z/2)→ K2i−2(F sP; Z/2),

H2(FP; Z/2)→ K2i−2(FP; Z/2)→ K2i−2(F sP; Z/2)

where F sP is a separable closure of FP. By Lemma 7.7 the first composite is
an isomorphism of nontrivial groups, while the second composite factors through
H2(F sP; Z/2) = 0 by naturality of the Bloch–Lichtenbaum spectral sequence, hence
is zero. This contradicts a factorization of the map from H2(FP; Z/2) through
K2i−2(OFP

; Z/2). Hence each map φP is nonzero, and an isomorphism, as claimed.
We have thus established the commutative diagram

H2(R; Z/2) // H2(F ; Z/2)
∂e2

//

��

⊕
P-2H

1(kP; Z/2) //

∼=φ

��

0

K2i−2(R; Z/2) // K2i−2(F ; Z/2)
∂2

//
⊕

P-2K2i−3(kP; Z/2) // 0

when i ≡ 2, 3 mod 4, and the commutative diagram

H̃2(R; Z/2) // H̃2(F ; Z/2)
∂̃e2

//

��

⊕
P-2H

1(kP; Z/2) //

∼=φ

��

0

K2i−2(R; Z/2) // K2i−2(F ; Z/2)
∂2

//
⊕

P-2K2i−3(kP; Z/2) // 0

when i ≡ 0, 1 mod 4. In both cases the middle vertical map is the injection de-
termined by the Bloch–Lichtenbaum spectral sequence, the upper row is an exact
sequence by Lemma 7.6(b), and the lower row is part of the K-theory localization
sequence.

Hence we have an injection ker∂e2 → ker ∂2 for i ≡ 2, 3 mod 4, and an injection
ker ∂̃e2 → ker ∂2 for i ≡ 0, 1 mod 4. These maps are isomorphisms for i ≡ 0, 3 mod 4,
and we can identify their cokernels with H0(R; Z/2) ∼= H0(F ; Z/2) for i ≡ 1, 2 mod
4. Finally ker∂e2 ∼= 2Br(R) and ker ∂̃e2 ∼= 2Br+(R).

The mod 2 algebraic K-theory localization sequence determines a short exact
sequence

0 → cok∂1 → K2i−2(R; Z/2)→ ker ∂2 → 0 .

Combining these results we obtain isomorphisms

K2i−2(R; Z/2) ∼= Pic+(R)/2 o 2Br+(R), resp.

K2i−2(R; Z/2) ∼= Pic+(R)/2 o 2Br(R)

when i ≡ 0 mod 4, resp. i ≡ 3 mod 4, and short exact sequences

0 → Pic(R)/2 → K2i−2(R; Z/2) → 2Br+(R) oH0(R; Z/2) → 0, resp.

0 → Pic(R)/2 → K2i−2(R; Z/2) → 2Br(R) oH0(R; Z/2) → 0

when i ≡ 1 mod 4, resp. i ≡ 2 mod 4. This determines the groups Kn(R; Z/2) up
to extensions.

We can say a little more about the extensions, by the following arguments.
When n = 8k + 2 the exact sequence

0 → Kn+1(R; Z/2∞)/2 → Kn(R; Z/2) → 2Kn(R; Z/2∞) → 0
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and the isomorphisms H2(R; Z/2) ∼= H1(R;W (4k + 2))/2 ∼= K8k+3(R; Z/2∞)/2
and H0(R; Z/2) ∼= 2H

0(R;W (4k + 1)) ∼= 2K8k+2(R; Z/2∞) (from Proposition 4.6
and Theorem 6.9) determine the extension a little more precisely, as proclaimed.

When n = 8k, the same exact sequence and corresponding isomorphisms produce
a surjection from K8k(R; Z/2) onto H0(R; Z/2), with kernel

H1(R;W (4k + 1))/2.

This group is identified with the kernel of the natural map

H2(R; Z/2) → 2H
2(R;W (4k + 1)) ∼= (Z/2)r1 ,

which by naturality equals the surjection α2 with kernel

H̃2(R; Z/2) ∼= Pic(R)/2⊕ 2Br+(R).

In fact, H0(R; Z/2) ∼= Z/2 is a summand of K8k(R; Z/2). To see this, recall from
section 5 that the map π8k(QS0; Z/2) → K8k(R; Z/2) ∼= H0(R; Z/2) is nontrivial
on the element β8k. Since this map factors through the surjection K8k(R; Z/2) →
H0(R; Z/2) ∼= Z/2, it splits it.

We saw in Theorem 6.14(b) that K8k+5(R){2} = 0 in the real case. Hence
K8k+6(R; Z/2) has exponent 2, so the extension in this degree is trivial. This
completes the proof of Theorem 7.8.

Corollary 7.10. Let SKn(R; Z/2) be the kernel of the natural map Kn(R; Z/2)→
Kn(F ; Z/2). Then

SKn(R; Z/2) ∼=


0 for n odd,
Pic(R)/2 for n ≡ 0, 2 mod 8,
Pic+(R)/2 for n ≡ 4, 6 mod 8.

Proof. Compare Theorems 7.4 and 7.8.

Theorem 7.11. Let F be a real number field with r1 > 0 real embeddings and r2
pairs of complex embeddings. Let R be its ring of 2-integers, let s = #S be the
number of primes of F dividing 2, let t be the 2-rank of Pic(R) and let u be the
2-rank of Pic+(R). Let n ≥ 1, and let log2(i) denote the 2-adic valuation of i. Then

log2(#Kn(R; Z/2)) =



s+ t for n = 8k,
r1 + r2 + s+ t for n = 8k + 1,
r1 + s+ t for n = 8k + 2,
2r1 + r2 + s+ t− 1 for n = 8k + 3,
r1 + s+ u− 1 for n = 8k + 4,
r1 + r2 + s+ u− 1 for n = 8k + 5,
s+ u− 1 for n = 8k + 6,
r2 + s+ u for n = 8k + 7.
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Hence the number of cyclic summands in Kn(R){2} equals

s+ t− 1 for n = 8k,
1 for n = 8k + 1,
r1 + s+ t− 1 for n = 8k + 2,
r1 for n = 8k + 3,
s+ u− 1 for n = 8k + 4,
0 for n = 8k + 5,
s+ u− 1 for n = 8k + 6,
1 for n = 8k + 7.

Proof. Clearly, log2(#H
0(R; Z/2)) = 1 and log2(#H̄

2a−1(R; Z/2)) = r1 − 1. Also
R×/2 ∼= (Z/2)r1+r2+s by Dirichlet’s unit theorem, Pic(R)/2 ∼= 2Pic(R) ∼= (Z/2)t

and Pic+(R)/2 ∼= 2Pic+(R) ∼= (Z/2)u, so log2(#H
1(R; Z/2)) = r1 + r2 + s + t.

Also, by Lemma 7.6(a) we have log2(#H̃1(R; Z/2)) = r2 + s+u. Finally 2Br(R) ∼=
(Z/2)r1+s−1, so log2(#H

2(R; Z/2)) = r1 + s + t − 1, and from Lemma 7.6(b) we
deduce log2(#H̃2(R; Z/2)) = s+ t− 1.

Combined with Theorem 7.8 this gives us the orders of Kn(R; Z/2) for all n ≥ 1,
and the listed 2-valuations. Using the known rational ranks from 6.2, we can now
inductively determine the orders of (torsKn(R))/2 by starting with the order of
2K0(R) = 2Pic(R).

Corollary 7.12. Let F be a real number field. Let t and u be the 2-rank of Pic(R)
and Pic+(R), respectively, and let j = u− t be the signature defect of R. Then for
k ≥ 0:

(a) K8k+3(R){2} ∼= (Z/2)r1 o Z/w4k+2(F ) has r1 cyclic summands. The exten-
sion is nontrivial, so

K8k+3(R){2} ∼= (Z/2)r1−1 ⊕ Z/(2w4k+2(F )) .

(b) There are r1 − j − 1 cyclic factors with nontrivial extensions in the exact
sequence

0 → (Z/2)r1−1 → K8k+5(R; Z/2∞) → (Z/2∞)r1+r2 ⊕H2(R; Z2(4k + 3)) → 0 .

Hence there is an exact sequence

0 → (Z/2)ρ → K8k+4(R){2} → H2(R; Z2(4k + 3)) → 0

with ρ− j cyclic factors with nontrivial extensions. Here j ≤ ρ < r1.
(c) There are j cyclic factors with nontrivial extensions in the short exact se-

quence

0 → K8k+6(R){2} → H2(R; Z2(4k + 4)) → (Z/2)r1 → 0 .

Proof. We combine Theorem 6.14 with the numbers from Proposition 6.13 and
Theorem 7.11. In each case the discrepancy between the 2-rank of an extension
A o B and the sum of the 2-rank of A and the 2-rank of B equals the number of
cyclic summands of A o B that extend nontrivially from B to A. This proves (a)
and (c).

Case (b) merits further discussion. The group K8k+5(R; Z/2∞) is an extension
of (Z/2∞)r1+r2 ⊕ H2(R; Z2(4k + 3)) by (Z/2)r1−1, and has K8k+4(R){2} as its
maximal finite quotient. Here the finite groupH2(R; Z2(4k+3)) has 2-rank s+t−1
and K8k+4(R){2} is finite with 2-rank s + u − 1, so there are precisely r1 − j − 1
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cyclic factors with nontrivial extensions in K8k+5(R; Z/2∞). Suppose x of these
are extensions from the divisible summands (Z/2∞)r1+r2 . Then ρ = r1 − x − 1,
and the remaining r1 − j − x− 1 = ρ− j extensions come from the finite summand
H2(R; Z2(4k + 3)). In particular j ≤ ρ < r1.

Appendix A: Cohomological version

of the Lichtenbaum conjecture at the prime 2
by Manfred Kolster

The purpose of this appendix is to prove the following result, which was used in
the main part of the paper by Rognes and Weibel.

Theorem A.1. Let F be a totally real number field. If the 2-adic Main Conjecture
holds for the field F and the trivial character, then for any even integer n ≥ 2:

ζF (1 − n) ∼2

|H2
ét(OF [ 12 ]; Z2(n))|

|H1
ét(OF [ 12 ]; Z2(n))| .

Here we use the notation a ∼2 b to indicate that both sides have the same 2-adic
valuation. In the special case n = 2 the theorem was proved in [Ko, Ngu], and
in particular the proof given in [Ngu] can be easily extended to the more general
situation considered above. We present a slight simplification of the method used
in [Ngu], similar to the corresponding proof for odd p given in [KNF].

The 2-adic Main Conjecture was proved by Wiles (cf. [Wi]) for all real one-
dimensional 2-adic Artin characters of type S over the field Q of rational numbers.
To extend the relation in Theorem A.1 to all Abelian number fields we prove a
kind of “Going-Up” result for the Main Conjecture, which seems to be part of the
general folklore in Iwasawa-theory. I am very grateful to R. Greenberg for some
stimulating discussions on this subject, which led to a proof of the following:

Theorem A.2. Assume that the 2-adic Main Conjecture holds for all real 1-dimen-
sional 2-adic Artin characters of type S over a totally real number field K. Let F
be a finite totally real extension of K. Then the 2-adic Main Conjecture holds for
all those real 1-dimensional 2-adic Artin characters ψ of type S over F , for which
the field Fψ is Abelian over K.

As an immediate consequence we obtain:

Corollary A.3. The formula in Theorem A.1 holds for all totally real Abelian
number fields.

We first recall one of the formulations of the Main Conjecture in Iwasawa theory
due to Greenberg (cf. [Gr2, Fed, Gri, Wi]). Throughout F denotes a totally real
number field with ring of integers OF . Let p be a prime number and let ψ denote
a real one-dimensional p-adic Artin character for F , i.e., the field extension Fψ of
F attached to ψ is real and Abelian over F . Deligne and Ribet (cf. [DR]) proved
the existence of a p-adic L-function Lp(s, ψ), continuous for s ∈ Zp \ {1} and also
at s = 1 if ψ is nontrivial, which interpolates the values of L-functions via

Lp(1− n, ψ) = L(1− n, ψω−n)
∏
P|p

(1− ψω−n(P) NPn−1)

for n ≥ 1. Here ω denotes the Teichmüller character

ω : Gal(F (µ2p)/F ) → Z×p .
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In particular, for n ≥ 2 we always have

Lp(1 − n, ψ) ∼p L(1− n, ψω−n) .

The character ψ is called of type S if Fψ ∩F∞ = F and of type W if Fψ ⊂ F∞ .
Here F∞ denotes the cyclotomic Zp-extension of F . Let Γ = Gal(F∞/F ) and let γ
denote a topological generator of Γ. Let Oψ = Zp[ψ]. There exists a unique power
series (cf. [DR]) Gψ(T ) ∈ Oψ [[T ]], such that

Lp(1 − s, ψ) = Gψ(κ(γ)s − 1)/Hψ(κ(γ)s − 1),

where

Hψ(T ) =

{
ψ(γ)(1 + T )− 1 if ψ is of type W,

1 otherwise,

and κ denotes the cyclotomic character. By the Weierstrass preparation theorem
the power series Gψ(T ) can be written uniquely as

Gψ(T ) = πµ(Gψ)G∗ψ(T )u(T ),

where π denotes a uniformizing parameter in Oψ, G∗ψ(T ) is a distinguished poly-
nomial and u(T ) is a unit power series.

In order to formulate the Main Conjecture we have to introduce a few more
notations. LetN be an arbitrary number field and let S consist of the infinite primes
of N and the primes above p. Let ΩS(N) denote the maximal algebraic extension of
N that is unramified outside of primes in S, and let GS(N) = Gal(ΩS(N)/N). Let
M∞(N) denote the maximal Abelian p-extension of N∞ contained in ΩS(N). We
note that it is important to allow ramification at infinite primes, which of course only
intervenes if p = 2. The central Iwasawa module is now X (N) = Gal(M∞(N)/N∞).
If N is totally real, then X (N) is a Noetherian torsion Λ-module, Λ = Zp[[T ]],
without nontrivial finite submodules (cf. [Iwa2]). Let us consider the case that
N = Fψ , and assume that ψ is of type S. The Galois group Gal(N∞/F ) is then
isomorphic to Γ × ∆, where ∆ = Gal(N/F ), and acts on X (N) via conjugation.
Let

X (N)ψ = {x ∈ X (N)⊗Oψ | σ(x) = ψ(σ)x for all σ ∈ ∆}
and let gψ(T ) ∈ Oψ[[T ]] denote the characteristic polynomial of X (N)ψ , which we
can write as

gψ(T ) = πµ(gψ)g∗ψ(T )

with g∗ψ(T ) distinguished. One way of formulating the Main Conjecture in Iwasawa
Theory is the following (cf. [Gr2]):

Main Conjecture. Let F be a totally real number field, p a prime and ψ a real
one-dimensional p-adic Artin character for F of type S. Then

G∗ψ(T ) = g∗ψ(T ) .

The Main Conjecture was proved for odd primes p and all totally real number
fields and for the prime 2 and the field of rational numbers by Wiles in [Wi]. A
different proof for the prime 2 and the field of rational numbers is due to Greither
([Gri]).
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Remark A.4. (a) Let W (N) = X (N) ⊗ Q̄p. Then W (N) is a finite-dimensional
vector space and g∗ψ(T ) is the characteristic polynomial of γ − 1 acting on the
ψ-eigenspace W (N)ψ , since tensoring X (N)ψ by Q̄p removes Λ-torsion. The for-
mulation in [Gr2] is given in terms of W (N)ψ.

(b) A stronger version of the Main Conjecture (First Form in [Ws]) would include
a precise relation between the µ-invariants of Gψ(T ) and gψ(T ) as suggested by
Greenberg in [Gr2]. For odd primes p and characters of order prime to p Wiles
has shown that both µ-invariants are equal. Of course they are conjectured to
be trivial for odd p, this being true for Abelian number fields. For the prime 2
these invariants are nontrivial in general. However, in the special situation we are
interested in, namely that ψ is the trivial character, the two µ-invariants are equal
as a consequence of the analytic class number formula (see [Fed, Gr2]).

Proof of Theorem A.1. Let X = X (F ) and let us simply write G(T ) and g(T ) for
G1(T ) and g1(T ), respectively. Since n is even and ≥ 2 we have

ζF (1− n) ∼2 L2(1− n,1) =
G(κ(γ)n − 1)
κ(γ)n − 1

.

Now clearly κ(γ)n − 1 ∼2 wn(F ) ∼2 |H1
ét(OF [ 12 ]; Z2(n))|. Remark A.4(b) and the

Main Conjecture imply that

G(κ(γ)n − 1) ∼2 g(κ(γ)n − 1) .

Now g(κ(γn)(1 + T ) − 1) is the characteristic polynomial of X (−n). The nonva-
nishing of the zeta-function of F at 1 − n now implies that the groups X (−n)Γ
and X (−n)Γ are finite (cf. [Coa, Lemma 9, Appendix]). Hence X (−n)Γ is trivial,
since X has no nontrivial finite submodules. Therefore, again by [Coa, Lemma 9,
Appendix], the order of X (−n)Γ has the same 2-adic valuation as g(κ(γ)n−1). We
are therefore reduced to showing that X (−n)Γ has order |H2

ét(OF [ 12 ]; Z2(n))|.
Consider the Pontryagin dual:

(X (−n)Γ)# ∼= Hom(X ,Q2/Z2(n))Γ .

Since n is even, Q2/Z2(n) is a trivial module for GS(F∞), and hence

Hom(X ,Q2/Z2(n)) = H1(GS(F∞); Q2/Z2(n)) .

Since the cohomology groups H1(Γ; Q2/Z2(n)) and H2(Γ; Q2/Z2(n)) vanish, the
Hochschild-Serre spectral sequence gives an isomorphism

H1(GS(F ); Q2/Z2(n)) ∼= H1(GS(F∞); Q2/Z2(n))Γ .

Now the group H1(GS(F ); Q2/Z2(n)) is isomorphic to the étale cohomology group
H1

ét(OF [ 12 ]; Q2/Z2(n)) (cf. [Z, Prop. 3.3.1]), which — being finite — is isomorphic
to H2

ét(OF [ 12 ]; Z2(n)). This proves the claim.

We now turn to the proof of Theorem A.2:

Proof of Theorem A.2. Let N = Fψ and let G = Gal(N/K), H = Gal(N/F ). Since
G is Abelian, the induced character IndGH(ψ) is of the form IndGH(ψ) =

∑
χ, where

χ runs through those characters ofG, which restrict to ψ. Let γ denote a topological
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generator of Γ = Gal(K∞/K). Let Ke = F ∩ K∞ have degree 2e over K. Then
γe := γ2e is a topological generator of Gal(F∞/F ), and we have

Lp(1 − s, ψ) =
∏
χ

Lp(1 − s, χ),

hence
Gψ(κ(γe)s − 1)
Hψ(κ(γe)s − 1)

=
∏
χ

Gχ(κ(γ)s − 1)
Hχ(κ(γ)s − 1)

.

If we let T = κ(γ)s − 1, then clearly Te := (1 + T )2
e − 1 = κ(γe)s − 1. It is easy to

verify that

Hψ(Te) =
∏
χ

Hχ(T ),

hence we obtain

Gψ(Te) =
∏
χ

Gχ(T )

and therefore also

G∗ψ(Te) =
∏
χ

G∗χ(T ) .

If e = 0, then the polynomial g∗ψ(T ) also behaves well under induction (cf. Propo-
sition 1 in [Gr3]), and therefore by inducing to Gal(N/Ke) we may assume that
ψ is a character over F = Ke. Let χ be a lift of ψ to G, and let χ = λρ be a
decomposition of χ into a product of a character λ of type S and a character ρ
of type W . We note that in general λ and ρ are not characters of G. We have
G∗χ(T ) ∼ G∗λ(ρ(γ)(1 + T )− 1), where ∼ indicates that both sides differ by a root
of unity. Since by assumption the Main Conjecture holds for λ we have

G∗λ(ρ(γ)(1 + T )− 1) = g∗λ(ρ(γ)(1 + T )− 1) .

Any other lift χ′ of ψ is of the form χ′ = χρ′, where ρ′ is a character of Gal(Ke/K).
Therefore

G∗ψ(Te) ∼
∏
ρ′
g∗λ(ρρ

′(γ)(1 + T )− 1) =
∏
ζ

g∗λ(ζρ(γ)(1 + T )− 1),

where the products run over all characters ρ′ of Gal(Ke/K) and all 2eth roots of
unity ζ, respectively. Let a1, . . . , ar denote the roots of g∗λ(T ). Then

g∗λ(ζρ(γ)(1 + T )− 1) =
r∏
i=1

(ζρ(γ)(1 + T )− (1 + ai)) .

Taking the product over all ζ yields

G∗ψ(Te) ∼
r∏
i=1

(ρ(γ)2
e

(1 + T )2
e − (1 + ai)2

e

) ∼
r∏
i=1

(Te − (ρ(γ)−2e(1 + ai)2
e − 1)),

hence ρ(γ)−2e(1 + ai)2
e − 1, i = 1, . . . , r, are precisely the roots of the polyno-

mial G∗ψ(T ). Let us now consider the polynomial g∗ψ(T ): Let L = Kλ. Clearly
L∞ = N∞, and the representation space W (N)ψ equals W (L)λ. We may identify
Gal(L∞/K) with ∆×Γ, where ∆ = Gal(L/K). Now Gal(L∞/N) is a subgroup of
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Gal(L∞/K) isomorphic to Gal(K∞/Ke), hence has a topological generator γN of
the form

γN = δγe

for some δ ∈ ∆. The characteristic polynomial of γN −1 acting on W (L)λ is g∗ψ(T ).
Since δ acts on W (L)λ via λ(δ) the action of γN is the same as the action of λ(δ)γe.
Now

1 = χ(γN ) = χ(δ)χ(γe) = λ(δ)ρ(γ)2
e

,

which yields λ(δ) = ρ(γ)−2e . Now clearly the zeroes of the characteristic polynomial
of ρ(γ)−2eγ2e − 1 acting on W (L)λ are precisely of the form ρ(γ)−2e(1 + α)2

e − 1
with α a zero of g∗λ(T ), hence G∗ψ(T ) and g∗ψ(T ) have the same zeroes, hence are
equal.

References to Appendix A

[Coa] J. Coates, p-adic L-functions and Iwasawa’s theory, Algebraic Number Fields (A. Fröhlich,
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Appendix B: Bloch and Lichtenbaum’s spectral sequence

with coefficients

by J. Rognes and C. Weibel

In this appendix we prove that there is a “Bloch–Lichtenbaum spectral sequence”
with finite coefficients Z/m. We use this result in a crucial way in the main body of
the paper, and several other papers have also cited the existence of such a spectral
sequence, including [V2], [W3], and [K2].

To state the result, we define CHi(F, n; Z/m) to be the nth homotopy group of
the simplicial Abelian group [p] 7→ ZiBl(F, p)⊗ Z/m = ZiBl(F, p; Z/m).

Theorem B.1. For every integer m and every field F there is a convergent third
quadrant spectral sequence

Ep,q2 = CH−q(F,−p− q; Z/m) =⇒ K−p−q(F ; Z/m) .

Here Ep,q2 = 0 unless q ≤ p ≤ 0.

Before proving Theorem B.1, it is instructive to check how much of the proof in
[BL] goes through if we replace all occurrences of the spectra K(X) and KH(X) by
the corresponding spectra K(X ; Z/m) and KH(X ; Z/m). It turns out that almost
the entire proof in [BL] goes through — everything except for the proof of the “key
point.”

The reason that Theorem B.1 is not an immediate consequence of the methods
in [BL] is this: if R is a regular ring and I is a radical ideal in R, then K0(R, I) = 0
but K0(R, I; Z/m) can be nonzero, because there may be torsion in K−1(R, I) =
K0(R/I)/K0(R). Thus Corollary 2.3.3 of [BL] is false with finite coefficients. That
is unfortunately the result which plays a crucial role in the proof of the “key point,”
Proposition 6.1 of [BL].

Here is the analog of [BL, (1.3.2)]. We will not explain the notation, which is
identical to that of [BL], because it is not important for this appendix.

Proposition B.2. For every field F and integers i, p the spectrum map

f : KVi+1(∆p,Σ) → KVi(∆p,Σ)

is null homotopic. Since ji : KVi+1(∆p, ∂) → KVi(∆p,Σ) and ik : KVi+1(∆p,Σ) →
KVi(∆p−1, ∂) factor through this map, it follows that for every integer m there is
a chain complex:

· · ·K0,Vi+1(∆p, ∂; Z/m) i→ K0,Vi(∆p, ∂; Z/m)
j→ K0,Vi(∆p,Σ; Z/m) k→(B.3)

k→ K0,Vi(∆p−1, ∂; Z/m) i→ K0,Vi−1(∆p−1, ∂; Z/m) · · · .
Proof. We only need to promote the argument in [BL, 1.3] to the level of spec-
tra. It suffices to show that the maps f : KVi+1(∆p,Σ) → KVi(∆p,Σ) are null
homotopic, for then we can form the diagram of topological spaces analogous to
diagram (1.3.1) of [BL], and take homotopy groups with any coefficients to get the
chain complex (B.3).

By the Dold–Kan decomposition of the simplicial spectra [p] 7→ KVi(∆p) and
[p] 7→ KVi+1(∆p), the multirelative map f factors through the absolute map

KVi+1(∆p) → KVi(∆p);

this is essentially the argument of [BL, 1.2.1]. In turn, the absolute map is a filtered
colimit of maps fW : KW (∆p) → KVi(∆p), so it suffices to see that the maps fW
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are null homotopic. If R is such that W = Spec(R), then the use of “Quillen’s trick”
in [BL, 1.2.2] shows that fW factors through the map K ′(R) → K ′(R[t]). But this
map is null homotopic, as Quillen showed in [Q2] using the additivity theorem in
K-theory.

We remark that Quillen’s trick is also used in the discussion in 2.4, the proof of
Proposition 5.2, and the start of the proof of Proposition 6.1 in [BL]. Each time
the analog with finite coefficients is valid.

The notation in (B.3) is awkward. To simplify things, we shall write Kj(i, p) for
Kj,Vi(∆p, ∂) and Kj(i, p; Z/m) for Kj,Vi(∆p, ∂; Z/m). We shall also write ZiBl(p)
for ZiBl(F, p)norm and ZiBl(p; Z/m) for ZiBl(F, p; Z/m)norm. With this notation,
Theorem 1.3.3 of [BL] says that the following sequence is exact:

· · ·K0(i+ 1, p) i→ K0(i, p)
j→ ZiBl(p)

k→ K0(i, p− 1) i→ K0(i − 1, p− 1) · · · .(B.4)

Lemma B.5. If y ∈ K0(i, p) satisfies my = 0, then y = i(x) for an x ∈ K0(i+1, p).

Proof. Since ZiBl(F, p) is a free Abelian group, its subgroup ZiBl(p) is torsion free.
Hence we must have j(y) = 0. Hence y lifts by exactness of (B.4).

Here is the finite coefficient analog of Theorem 1.3.3 in [BL]. The proof of this
result will occupy most of this appendix.

Theorem B.6. The sequences in (B.3) are exact for every field F .

To connect this result to Theorem B.1, we make the following observation. Be-
cause K−1,Vi(∆p) = 0, the identifications in [BL, Lemma 1.2.3] of K0,Vi(∆p) with
ZiBl(F, p) andK0,Vi(∆p,Σ) with ZiBl(p) = ZiBl(F, p)norm becomeK0,Vi(∆p; Z/m) ∼=
Z iBl(F, p) ⊗ Z/m = ZiBl(F, p; Z/m), and

K0,Vi(∆p,Σ; Z/m) ∼= ZiBl(p; Z/m) = ZiBl(F, p; Z/m)norm .

The latter term occurs in the chain complex (B.3), and the finite coefficient analog
of diagram [BL, (1.3.1)] shows that each sequence in (B.3) is exact at this term.

Proof of Theorem B.1, assuming Theorem B.6. We argue as in [BL, 1.3.4]. Given
the above identification, the sequences in (B.3) assemble to form an exact couple
with

E−p,−q1 = ZqBl(F, p+ q; Z/m)norm

and D−p,−q
1 = K0,Vq(∆p+q, ∂; Z/m). By inspection, E−p,−q2 = CHq(F, p+q; Z/m).

For convergence, we make some observations. If q > 0, the notation clearly implies
that Epq1 = Dpq

1 = 0. If p > 0, then Epq1 = 0 and Dpq
1
∼= K−p−q(F ; Z/m). Thus the

exact couple lies in the third quadrant and converges to K−p−q(F ; Z/m).

We now begin the proof of Theorem B.6. The following commutative diagram
is a continuation to the right of the diagram (1.3.1) in [BL], and has exact rows.
The vertical map Zi+1

Bl (p) → ZiBl(p) is zero by [BL, 1.2.2].

K0(i + 1, p)
j

//

i

��

Zi+1
Bl (p) k

//

0

��

K0(i+ 1, p− 1)
g

//

i

��

K−1(i + 1, p) → 0

i′

��

h

vvmm
mm
mm
mm
mm
mm
m

K0(i, p)
j

// ZiBl(p)
k

// K0(i, p− 1)
g

// K−1(i, p) → 0

(B.7)
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The diagonal map h makes both triangles commute and is injective, by surjectivity
of the connecting map g and exactness of (B.4) at K0(i + 1, p − 1). From the
universal coefficient formulas we have a diagram

0 → K0(i+ 1, p)/m −−−−→ K0(i+ 1, p; Z/m) −−−−→ mK−1(i+ 1, p) → 0yi/m yi yi′
0 → K0(i, p)/m −−−−→ K0(i, p; Z/m) −−−−→ mK−1(i, p) → 0yj/m yj y
0 → ZiBl(p)/m

=−−−−→ ZiBl(p; Z/m) −−−−→ 0 .

Let us write mK̃−1(i+ 1, p) for the subgroup of all elements x̄ ∈ K−1(i+ 1, p) such
that mx̄ = i′(x̄) = 0. Then the maps i and j induce maps ı̄ : mK̃−1(i + 1, p) →
K0(i, p)/mK0(i, p)+iK0(i+1, p) and ̄ : mK−1(i, p) → ZiBl(p)/mZiBl(p)+jK0(i, p).

Lemma B.8. The map ̄ induces an injection

mK−1(i, p)
i′
(
mK−1(i+ 1, p)

) → ZiBl(p)
mZiBl(p) + jK0(i, p)

.

Proof. Let ȳ ∈ K−1(i, p) be the image of an element γ ∈ K0(i, p; Z/m), and let
y ∈ K0(i, p − 1) be a lift of ȳ in (B.7). Since mȳ = 0, there is a z ∈ ZiBl(p)
with k(z) = my. Since the bottom row of (B.7) is a fibration sequence for j, it is
well known from topology that the class of z represents j(γ) in ZiBl(p)/mZiBl(p) +
jK0(i, p) up to sign. If z = mt + j(u), then y′ = y − k(t) is another lift of ȳ
with my′ = 0. By Lemma B.5, y′ = i(x) for some x. By commutativity of the
right square in (B.7), we have ȳ = i′(x̄) for some x̄. Finally mx̄ = 0 by injectivity
of h.

Definition B.9. Given an element x̄ of K−1(i + 1, p) such that mx̄ = i′(x̄) = 0,
we define an element a in K0(i, p)/mK0(i, p) + iK0(i + 1, p) as follows. Let y =
h(x̄) ∈ K0(i, p − 1). Then y = i(x) for any lift x ∈ K0(i + 1, p − 1) of x̄. Using
(B.7) choose a lift z ∈ Z iBl(p) of y. Since mx̄ = 0 we have my = 0, and we define a
to be a lift of mz. A diagram chase on (B.7) shows that a is well defined modulo
mK0(i, p) + iK0(i+ 1, p). This yields a map

φ : mK̃−1(i+ 1, p) → K0(i, p)/mK0(i, p) + iK0(i + 1, p) .

An analysis of the topological spaces involved shows that the map φ agrees up to
sign with the map ı̄ induced by i : K0(i + 1, p; Z/m)→ K0(i, p; Z/m).

Lemma B.10. The map φ is an injection.

Proof. Suppose that a = mb + i(c) for some b and c. Then mj(b) = j(a) = mz.
Since Z iBl(p) is torsion free, this yields j(b) = z. Hence y = kj(b) = 0. Since
i(x) = 0, exactness of (B.4) shows that x = k(z′) and hence x̄ = 0.

Exactness of (B.3) at K0(i, p; Z/m). Let γ ∈ K0(i, p; Z/m) be in the kernel of j.
By Lemma B.8, γ comes from an element a ∈ K0(i, p) with j(a) = mz for some
z ∈ ZiBl(p). Set y = k(z). Since my = kj(a) = 0, Lemma B.5 implies that
y = i(x) for some x ∈ K0(i+ 1, p− 1). If x̄ denotes the image of x in K−1(i+ 1, p),
Definition B.9 shows that a = φ(x̄).
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Exactness of (B.3) at K0(i, p− 1; Z/m). Let γ ∈ K0(i, p−1; Z/m) be in the kernel
of i. By Lemma B.10, γ comes from an element x of K0(i, p− 1) with i(x) = my
for some y ∈ K0(i − 1, p − 1). Hence we have mj(y) = ji(x) = 0. Because
ZiBl(p) is torsion free this implies that j(y) = 0, and hence that y = i(w) for
some w ∈ K0(i, p − 1). Hence i(x −mw) = 0, so exactness of (B.4) implies that
x−mw = k(z) for some z ∈ ZiBl(p). Hence γ is the image of z.

This finishes the proof of Theorem B.6, and hence the proof of Theorem B.1.
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