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Abstract— Publish/subscribe (pub/sub) is a pop-
ular communication paradigm in the design of large-
scale distributed systems. A fundamental challenge in
deploying pub/sub systems on a data center or a cloud
infrastructure is efficient and cost-effective resource
allocation that would allow delivery of notifications
to all subscribers. In this paper, we provide answers
to the following three fundamental questions: Given a
pub/sub workload, (1) what is the minimum amount
of resources needed to satisfy all the subscribers,
(2) what is a cost-effective way to allocate resources
for the given workload, and (3) what is the cost
of hosting it on a public Infrastructure-as-a-Service
(IaaS) provider like Amazon EC2.
To answer these questions, we formulate a prob-

lem coined Minimum Cost Subscriber Satisfaction
(MCSS). We prove MCSS to be NP-hard and provide
an efficient heuristic solution based on a combination
of optimizations.We evaluate the solution experimen-
tally using real traces from Spotify and Twitter along
with a pricing model from Amazon. We show the
impact of each optimization using a naive solution
as the baseline. Using a variety of practical scenarios
for each dataset, we also show that our solution scales
well for millions of subscribers and runs fast.

I. Introduction
Publish/subscribe (pub/sub) has become a popular

communication paradigm that provides a loosely coupled
form of interaction among many publishing data sources
and many subscribing data sinks [1]. Many applications
report benefits from using this form of interaction, such
as application integration [2], financial data dissemina-
tion [3], RSS feed distribution and filtering [4], business
process management [5], and social interaction [6]. As a
result, many industry standards have adopted pub/sub
as part of their interfaces. Examples of such standards
included WS Notifications, WS Eventing, OMG’s Real-
time Data Dissemination Service, and the Active Mes-
sage Queuing Protocol.

Traditionally pub/sub engines have been deployed on
in-house enterprise clusters. However, with the advent
of cloud computing, a viable alternative of running
pub/sub services in the cloud became available. An
enterprise may choose between using a generic pub/sub
engine (such as Azure Service Bus or PubNub included
in Microsoft Azure and Amazon EC2, respectively) and
moving the deployment of its proprietary engine opti-
mized for the application needs to the cloud. While the

questions of cloud resource allocation and cost become
critical in this context, they have never been considered
for pub/sub services.

In this paper, to the best of our knowledge we provide
the first formal treatment of this subject. We consider
the problem for a subclass of pub/sub systems where
notifications are generated due to social interaction: fol-
lowing the tweets of selected users in Twitter, monitoring
updates to the profiles of users’ friends in Facebook, or
receiving instant notifications related to favorite artists
and albums in Spotify. These pub/sub applications are
characterized by a significant data volume, e.g., the Spo-
tify pub/sub service described in [6] is required to send
an order of 2 Terabytes of notifications every day and
Twitter is known to send at least 8 Terabytes of tweets
every day [7]. In such applications, every notification is
intended to be read by a human user so that having a
cumulative delivery rate to a particular subscriber above
a certain threshold will not bring any benefit. Therefore,
in order to guarantee that every subscriber is satisfied,
the system has to ensure that the rate of notifications
of interest delivered to each subscriber is not below a
configurable satisfaction threshold delivery rate.

We adopt a standard cost model used by
Infrastructure-as-a-Service (IaaS) providers such as
Amazon EC2 [8]. This cost model includes separate
expense components due to the use of virtual machines
and bandwidth, under resource constraints for individual
virtual machines. We formulate a problem of Minimum
Cost Subscriber Satisfaction (MCSS), which is how to
allocate resources for the given pub/sub workload so
as to minimize the cost while keeping every subscriber
satisfied. While the main goal of solving this problem
is to help companies that move their operation to the
cloud, the problem is also beneficial for minimizing
resource consumption for companies that continue
using in-house deployment. We show that in some cases
there is an interesting trade-off between minimizing
resources of different types: minimizing the number
of virtual machines may lead to increased bandwidth
consumption and vice versa. In other words, the
problem of optimizing the cost is more complex than
just separately minimizing resources of each type.

We prove MCSS to be NP-hard and provide an effi-
cient heuristic solution. The solution works in two stage:
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first we select a subset of the workload that is sufficient
for satisfying all subscribers. Then, we assign the chosen
subset to virtual machines using an algorithm based on
a customized version of bin packing, with a number of
optimizations. While separating between the two stages
may lead to sub-optimality in the solution, we show
experimentally that this sub-optimality is insignificant
for practical workloads.

We evaluate the solution empirically using large-scale
real traces from Spotify and Twitter. We use two base-
lines in the evaluation: a (possibly non-tight) lower
bound that we derive as well as a naive solution. We
show that the proposed approach can cut down costs
by up to 74% with Twitter traces and up to 38% with
Spotify traces when compared to the naive alternative.
On the other hand, our solution performs only 15%
worse compared to the lower bound in many cases. Ad-
ditionally, we show how we gradually improve the results
by incrementally introducing a number of optimizations
and evaluating the impact of each optimization. The
proposed solution runs in under 30 seconds for the Spo-
tify workload with 5 million subscribers and 1.1 million
topics and under 25 minutes for the Twitter workload
with 30 million subscribers and 8 million topics.

In summary, our main contributions in this paper
include: (1) a tool to estimate the amount of resources
needed to deploy pub/sub for social interaction on data
centers, (2) cost-effective resource provisioning based on
the Amazon EC2 pricing model, (3) formalization of the
resource provisioning problem for pub/sub, and (4) a
large-scale empirical evaluation to show the practical
benefits of our solution.

II. Pub/Sub model and Problem Definition
A. Background and Motivation

In this paper, we consider the problem of resource pro-
visioning for a special class of pub/sub systems designed
to drive notifications due to online social interaction
among users [6]. For example, in Spotify, a pub/sub
engine is used to notify users about the music activity
(e.g. music playback, playlist updates) of their friends
and favorite artists. Another example is Twitter, where
users can follow any other user, and published tweets are
disseminated to all the following users. In such systems,
we can model users as both topics and subscribers.
A user is a topic if she has followers subscribing to
her publications and at the same time, she can be a
subscriber if she follows some users.

The notifications generated by these systems are gen-
erally in the scale of several Terabytes per day [6], [7].
In addition to that, each user generally subscribes to a
high number of notifications. For example, in a sample
we analyzed, more than 3 million users were receiving
more than 1000 tweets per day. For human users, having
a cumulative delivery rate in a given time unit beyond a
certain threshold may not be beneficial. To this end, in

[9] we defined satisfaction metrics that ensure delivery
rates of at least a predefined threshold, but, past this
threshold, users are not considered to be more satisfied.
A pub/sub system designed to meet the satisfaction
threshold for all subscribers can save significant amount
of resources (e.g. number of servers and bandwidth
consumed). Given the large-scale workload to be handled
by such pub/sub engines, distributing the workload on
several servers becomes inevitable. This often results in
replication of publications and hence demands for more
resources. As a result, designing a scalable and cost-
effective pub/sub engine to be deployed on a data center
or a public cloud could benefit from a tool to estimate
and minimize the total costs involved.

Customers of IaaS providers can usually rent virtual
machines (VMs) of a certain predefined CPU, memory
and bandwidth capacities either on an hourly basis or
fixed duration. In addition to this, they are also charged
by the total incoming and outgoing (to and from the
cloud) bandwidth consumption of their application. Our
goal is to find an allocation of the pub/sub workload to
a set of VMs such that it minimizes the total monetary
cost (sum of the cost of VMs plus bandwidth) while
ensuring that all subscribers are satisfied.

Intuitively, the monetary costs of deploying a pub/sub
system in the cloud is directly proportional to the size
of the workload it will handle (e.g. number of pub-
lications and number of recipient subscribers). Hence,
choosing a subset of workload amounting to the least
bandwidth consumption so as to meet satisfaction of
all subscribers can readily save costs. In our model,
each topic has its own publication rate and choosing
the subset of the topics to meet satisfaction metrics can
reduce the workload. However, selecting a topic with all
of its subscribers may not always be beneficial to all the
subscribers. On the other hand, if we have a choice to
include or exclude topic-subscriber pairs, depending on
their contribution to the satisfaction of subscribers, we
can choose a more resource-efficient workload and do a
cost-effective allocation. Thus, in our model we choose
a subset of the pub/sub workload at the granularity of
topic-subscriber pairs.

To simplify the problem, the only capacity constraint
we take into account for allocating load to a VM is the
VM’s bandwidth capacity. We do not explicitly consider
the constraints on other resources such as CPU, memory
and disks. The reason is that, in our system, resource
consumption is driven by the delivery of publications
to subscribers, which is essentially a network-bounded
operation. Thus, bandwidth constraints also serve as
constraints on other VM resources. A pub/sub system
generally has an incoming stream of publications for
each topic and an outgoing stream of notifications to
all the subscribers of the topic, thus requiring incoming
and outgoing bandwidth resources for deployment on
the cloud. In our model, we consider minimizing both
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incoming as well as outgoing bandwidth. Typically, ev-
ery IaaS provider has different costs for incoming and
outgoing bandwidth consumption. However, to simplify
the problem, we assume they cost the same and that
each VM has same incoming and outgoing bandwidth
capacity.

Given that we want to minimize the sum of the cost of
VMs and the cost of bandwidth, it is important to note
that, in our case, there is a trade-off between the number
of VMs and the amount of bandwidth that is needed to
satisfy all subscribers. For example, it is possible that a
load allocation that uses 3 VMs requires less bandwidth
consumption than a load allocation with 2 VMs. The
reason is that having a larger number of VMs increases
the number of subscriber-topic allocations that satisfy
all subscribers, and it is very likely that some of those
extra valid allocations have lower bandwidth costs.

Note also that bandwidth consumption is affected not
only by the subset of topic-subscriber pairs allocated to
the VMs, but also by how topics are spread across VMs.
If two VMs contain topic-subscriber pairs of the same
topic, it is necessary to send the corresponding publi-
cations to both VMs. Thus, concentrating topics in as
few VMs as possible also helps reduce bandwidth costs.
A larger number of VMs makes it easier to concentrate
each individual topic in fewer VMs.
B. Model and Notations

Before we define the problem more formally, we intro-
duce the following notations:
T : A collection of l topics {t1, t2, ..., tl} in the system.
V : A collection of n subscribers {v1, v2, ..., vn} par-
ticipating in the pub/sub system. A subscriber can
subscribe to one or more topics from T . Subscribers in
a typical pub/sub system are generally end-user appli-
cations (e.g. Spotify client software). In the rest of the
paper we use subscribers and users interchangeably.
Tv : The interest of subscriber v, that is, the collection
of topics subscribed by v.
Int : The collection of interests {Tv1 , Tv2 , ..., Tvn} for all
subscribers in V .
evt : Event rate of the publications generated for a topic
t, that is, the average number of events published to
topic t during a time unit (e.g., per minute or per hour).
Without loss of generality, we assume that evt > 0.
When we say ‘event’ in the rest of the paper we mean a
publication-event message generated by the publisher of
a topic intended for all subscribers of the topic
τ : A system parameter that represents the satisfaction
threshold for a subscriber. It is defined as a constant
specifying the number of events to be delivered to a
subscriber in order for the subscriber to be considered
satisfied.
τv : Subscriber-specific satisfaction threshold. In prac-
tice, the total event rate of the topics subscribed to by
a subscriber is sometimes less than τ . In such cases we
need to serve all the events the subscriber is interested

in to meet the satisfaction threshold. It can be expressed
as follows: τv = min(τ,

∑
t∈Tv

evt).
Vt ⊆ V : The (non-empty) set of subscribers to topic t.
Given Int, Vt can be derived trivially.
C1 : A function to compute the cost of renting virtual
machines from the cloud service provider.
C2 : A function to compute the cost of consuming the
total bandwidth (both incoming and outgoing) on the
cloud by a given pub/sub workload. Note that, to sim-
plify the problem, we assume the same cost function to
compute the cost of both incoming as well as outgoing
bandwidth.
BC : A fixed bandwidth capacity of a virtual machine
which cannot be exceeded. We assume that bandwidth
capacity includes both incoming and outgoing band-
width capacity. We exclude the bandwidth consumed by
any communication between the VMs in this capacity.
bwb : The total bandwidth consumption (incoming as
well as outgoing) of virtual machine b.
B : A set of virtual machines allocated to handle the
given pub/sub workload, and an individual virtual ma-
chine is referred to as b ∈ B. We want to minimize
C1 (|B|) + C2

(∑
b∈B bwb

)
.

C. Formal definition of the Minimum Cost Sub-
scriber Satisfaction (MCSS) problem :

Given an instance of T , V and their interests Int,
the goal of the MCSS(T, V, ev, Int, τ, BC, C1, C2) is to
determine the minimum cost in terms of the number of
required VMs the total bandwidth consumed to satisfy
all the subscribers.

To capture the allocation of topic-subscriber pairs to a
VM we introduce an integer variable xtvb = 0, 1 which is
1 if the topic-subscriber pair tv is assigned to the virtual
machine b.

xtvb =
{

1 if tv is assigned to b
0 otherwise (1)

We now define the problem more formally defined below:

Minimize C1 (|B|) + C2

(∑
b∈B

bwb

)

Where, bwb =
∑
v∈V

∑
t∈T

xtvbevt +
∑
t∈T

(
max
v∈Vt

xtvb

)
evt

Subject to: bwb ≤ BC,∀b ∈ B∑
v∈V

fv = |V |

(2)
Where, fv is a an integer variable that indicates if
subscriber v is receiving a number of events that meets
the satisfaction threshold:

fv =
{

1 if
∑

t∈Tv
(maxb∈B xtvb) evt ≥ τv

0 otherwise (3)

In the above definition the total bandwidth bwb con-
sumed by a VM b is defined as sum of two expressions.
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The first expression represents the outgoing traffic (num-
ber of topic-subscriber pairs assigned to b multiplied by
the event rates of the topics). The second expression
represents the incoming traffic, which is exactly the sum
of the event rates of the unique set of topics that are
assigned to a VM b. The goal of maxv∈Vt

xtvb in Equation
(2) is to avoid adding the event rate of a topic once for
each pair and instead only once per VM. In Equation
(3) we use maxb∈B xtvb to ensure that a topic-subscriber
pair (t, v) is considered towards satisfaction of v only if
(t, v) is allocated to at least one VM b.
We also define DCSS(T, V, ev, Int, τ, BC, C1, C2, CT ),

the corresponding decision problem of MCSS, which is
to determine if it is possible to achieve a total cost of at
most CT , where, CT is a given constant.

D. Hardness of DCSS problem
To establish the hardness of DCSS we prove that the

well-known NP-Hard problem Partition Problem (PP)
[10] can be reduced to a special case of DCSS. We now
define the PP problem.

Definition II.1 (Partition Problem (PP) [10]). The
task of an instance of a partition problem PP(S) is
deciding whether a given multiset S = {x1, x2, ..., xn} of
positive integers xi can be partitioned into two subsets
S1 and S2 such that

∑
xj∈S1

xj =
∑

xk∈S2
xk and

S \ S1 = S2.

Theorem II.2. DCSS is NP-Hard.

Proof: Given an instance of PP(S), we create an
instance of DCSS in the following way: For each integer
xi ∈ S, create a topic t with evt = xi and a single
subscriber vi of the topic. This means that each topic
t costs 2xi bandwidth to be served since the incoming
and outgoing bandwidth each cost xi respectively. Set
BC =

∑
xi∈S xi and τ = maxxi∈Sxi to ensure all topic-

subscriber pairs are selected as part of the solution. We
also set C1(x) = x, and C2(x) = 0, meaning that the cost
of a solution will be the number of VMs used. Finally,
we set the cost threshold CT for the decision problem
DCSS as 2.
With this reduction, a reduced instance of PP is

in essence the same instance where all input values
have been doubled. In the reduced instance, all topic-
subscriber pairs must be picked and this will use up
exactly as much bandwidth as 2 VMs have. Thus, if the
reduced instance is a yes instance, a partition can be
achieved by letting S1 consist of all topics served by one
VM.

III. Solution Approach
The Integer Program formulation of MCSS defined

in Section II is NP-Hard according to Theorem II.2
and hence it is expensive to solve optimally in practice.
Specifically, with the typical scale of pub/sub systems
consisting of millions of topics and subscribers we need

to deal with millions of variables to be considered in
Equation (2). To the best of our knowledge, we are
not aware of any IP solvers with the ability to scale
to millions of variables. Instead, we propose a heuristic
approach to solve MCSS. We solve the MCSS problem
by dividing it into two relatively simpler sub-problems
which are solved one after the other, thereby introducing
two stages in our solution.

In the first stage, we solve a simplified version of
the MCSS in which we are given a hypothetical single
VM with unlimited capacity. Then the goal is to meet
the satisfaction threshold of all subscribers by selecting
topic-subscriber pairs and allocating them to this hy-
pothetical VM with unlimited bandwidth capacity. This
sub-problem aims at selecting those pairs that minimize
the total bandwidth consumption. After having solved
the first stage, we move on to the second stage, in
which we know that the output of Stage 1 satisfies the
constraint

∑
v∈V fv = |V | from Equation (2). The goal

of the second stage is to allocate the selected pairs to
VMs in a manner to satisfy the capacity constraints of
the VMs from Equation (2). We also want to consider
the trade-off between the number of VMs and total
bandwidth consumption explained in Section II-A.

A. Stage 1: Selection of topic-subscriber pairs
The pseudocode of Stage 1 is presented in Alg. 2.

In this stage, for each subscriber, we select a subset
of topics pairs that meet the satisfaction threshold of
the user while trying to minimize the bandwidth cost.
Note that, for each subscriber, it is basically a variant
of the knapsack problem that can be solved optimally
using dynamic programming. However, given the large
number of subscribers and topics, the optimal solution is
too costly in terms of execution time. Instead, we solve
the problem using a greedy heuristic based on a benefit-
cost ratio for each (t, v) pair (see Alg. 1.)

The cost of a (t, v) pair is the amount of bandwidth
it requires, which is 2 · evt for every (t, v). This is the
amount of (incoming) bandwidth required to push events
for topic t into the cloud plus the amount of (outgoing)
bandwidth required to deliver the event to user v.
We define the benefit of (t, v) in terms of the con-

tribution of t towards the satisfaction of user v. To
determine this benefit, we first calculate the remaining
event-delivery rate required to satisfy v, which we refer
to as remv, and which is τv minus the sum of the
event rates of the topics already included in the solution
to which v has subscribed (see line 2). If v is already
satisfied without adding (t, v), then the benefit of (t, v) is
zero. If including (t, v) in the solution makes v satisfied,
then the benefit of (t, v) is 1; otherwise, the benefit is
the ratio evt/remv (line 4).
Under this heuristic, topics that contribute to satisfy

v without exceeding the satisfaction threshold have all
the same benefit-cost ratio and are preferred over those
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Algorithm 1: Heuristic value of topic, subscriber
pair (t, v) having selected S

1 GetBenefitCostRatio(t, v, τ,S)
Input: t, v, τ,S
Data: h← 0 : Heuristic value
remv ← 0: Remaining event rate needed to satisfy user v

2 remv ← τv −
∑
{(t′,v′)∈S∧t′∈Tv.} evt′

3 if remv > 0 then
4 h← min

(
1, evt

remv

)
5 return h

2·evt

Algorithm 2: Stage 1 of solution for MCSS:
Greedy pair selection

1 GreedySelectPairs(T, V, ev, cost, Int, τ, C)
Input: T, V, ev, cost, Int, τ, C
Data: A : Array of size |T |
Result: S ← ∅ : Output set of (t,v) pairs

2 foreach v ∈ V do
3 foreach t ∈ Tv do
4 A[t]←GetBenefitCostRatio(t, v, τ,S)
5 while

∑
(t,v)∈S evt < τv do

6 t← argmax{t′∈Tv} A[t′]
7 S ← S ∪ {(t, v)}
8 A[t]← 0
9 foreach t′ ∈ Tv do

10 if (t′, v) 6∈ S then
11 A[t′]← GetBenefitCostRatio(t′, v′, τ,S)

12 A← ∅
13 return S

that exceed the threshold. The latter are penalized in
proportion to the cost they introduce.

For each subscriber, all pairs with topics in Tv are
potential candidates for our solution. However, we want
to select the pairs with the least bandwidth costs. In this
regard, for each candidate pair the benefit-cost ratio is
computed using Alg. 1 and stored in an array A (from
Line 2 to Line 4 of Alg. 2). Then, we select the (t, v) pair
with maximum heuristic value in each iteration until the
satisfaction threshold τv for subscriber v is met (from
Line 6 to Line 11). In each iteration after selecting a
(t, v) pair, the heuristic value of the rest of the pairs
is updated since the benefit of a pair (t2, v) decreases
after having chosen (t1, v) as the remaining number of
events decreases. A set of all the chosen pairs for every
subscriber V is returned in Line 13.

In order to illustrate the importance of selecting the
topic-subscriber pairs in a cost-efficient manner, we com-
pare and contrast GreedySelectPairs (GSP) against a
naive solution RandomSelectPairs (RSP) (Alg. 6 in
Appendix A). In the naive approach, for each subscriber
v in V , enough (t, v) pairs are selected in no particular
order to reach the satisfaction threshold τv.

B. Stage 2: Allocation of topic-subscriber pairs to VMs
In the second stage, the goal is to allocate the topic-

subscriber pairs S selected from Stage 1 to VMs. It is in-
teresting to note that the goal of our second sub-problem

(t₁, v₂)(t₁, v₁) (t₂, v₂) (t₂, v₃)(t₂, v₁)

b₁

b₂

30 KB/min

50 KB/min

20 KB/min 10 KB/min 10 KB/min 10 KB/min20 KB/min

(a) VMs with no allocation
(t₁, v₂)

(t₁, v₁)

(t₂, v₂) (t₂, v₃)

(t₂, v₁)b₁

b₂

(b) FFBinPacking

(t₁, v₂)

(t₁, v₁)

(t₂, v₂) (t₂, v₃)(t₂, v₁)

b₁

b₂

(c) VMAllocation without
expensive topic first

b₁

b₂ (t₁, v₂)(t₁, v₁)

(t₂, v₂) (t₂, v₃)(t₂, v₁)

(d) VMAllocation with
expensive topic first

Figure 1: Various VM allocation optimizations
is very similar to the well known Bin Packing problem.
Hence, as a first attempt we propose the generally used
job scheduling technique (e.g. used in [11], [12]) First-
Fit Bin Packing FFBinPacking (FFBP) strategy as a
solution for Stage 2. In Alg. 3, the pseudocode to allocate
the topic-subscriber pairs to VMs in a First-Fit manner
is given. Each topic-subscriber pair in S is considered
in no particular sequence (Line 2 to Line 11). If a pair
(t, v) can be allocated to an existing VM it is done so
with the first found VM having enough free capacity to
include it (Line 2 to Line 6). If none of the existing VMs
have enough free capacity to include (t, v) a new VM is
deployed and added to the existing VMs B (Line 8 to
Line 11).

While the First-Fit strategy for Bin Packing is
simple and strives to minimize the number of VMs
used, in our setting, it is not favorable with re-
spect to bandwidth consumption. We illustrate this
with an example. Consider a case with two topics
t1 and t2 with evt1 = 20 events/min and evt2 =
10 events/min with each message around 1KB, let
τ = 30 events/min and consider 3 subscribers forming
5 pairs. (t1, v1), (t2, v1), (t2, v2), (t1, v2), (t2, v3). Assume
there are two VMs b1 and b2 with a remaining capacity
of 30 KB/min and 50 KB/min (see Fig. 1a) respectively
and their respective occupied capacity is shown in dark
grey and their respective available capacity is left un-
filled. In Fig. 1b the outcome for FFBP from Alg. 3 is
shown. Because of the First-Fit strategy, the pairs of the
same topics are split on different VMs resulting in total
bandwidth consumption of 80 KB/min.

Here we make an important observation that
FFBP has high runtime complexity of O

(
|T ||V ||B|

)
,

because each topic-subscriber pair is considered indi-
vidually. This can be improved if we group the topic-
subscriber pairs of the same topic before allocating them
to the VMs. This optimization, in addition to speeding
up the algorithm, also has an advantage of saving band-
width overhead. Since, all pairs of a topic are considered
at the same time, the splitting of pairs across different
VMs will be reduced, thereby reducing the bandwidth
overhead. This can be observed in Fig. 1c. With this
optimization the pairs related to t2 are on same VM,
however, the pairs related to t1 are still on different VMs.
We can improve this further by selecting the topic with
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Algorithm 3: First-Fit Bin Packing Algorithm for
Stage 2 of MCSS:

1 FFBinPacking(S, BC)
Input: S, BC
Data: b← new VM with bandwidth capacity BC
Result: B ← ∅ : Set of VMs with allocated (t,v) pairs

2 foreach (t, v) ∈ S do
// try assigning to existing VMs

3 foreach b ∈ B do
4 if evt ≤ BC − bwb then
5 b← b ∪ (t, v)
6 S ← S \ (t, v)

// Deploy new VM if existing VMs cannot fit
7 if (t, v) ∈ S then
8 b← new VM with bandwidth capacity BC
9 B ← B ∪ b

10 b← b ∪ (t, v)
11 S ← S \ (t, v)

12 return B

Algorithm 4: Stage 2 of MCSS: Customized bin
packing

1 CustomBinPacking(S, BC)
Input: S, BC
Data: P ← ∅ : Temporary set to hold topic-subscriber pairs

to be allocated to VMs
b← new VM with bandwidth capacity BC : VM currently
being allocated
Result: B ← ∅ : Set of VMs with allocated (t,v) pairs

2 while S 6= ∅ do
3 t← argmax{t′}

∑
(t′,v)∈S evt′

4 foreach v ∈ Vt do // Group subscribers of topic t
5 if (t, v) ∈ S then
6 P ← P ∪ (t, v)
7 S ← S \ (t, v)

8 if (|P |+ 1) · evt > BC − bwb and
CheaperToDistribute(t,B, BC, P ) is true then

9 b← argmaxb′∈B{BC − bwb′}
10 while P 6= ∅ and evt ≤ BC − bwb do
11 while evt ≤ BC − bwb do
12 b← b ∪ (t, v)
13 P ← P \ (t, v)
14 b← argmaxb′∈B{BC − bwb′}

// For the remaining pairs deploy new VMs
15 while P 6= ∅ do

// Deploy new VM
16 b← new VM with bandwidth capacity BC
17 B ← B ∪ b
18 while evt ≤ BC − bwb do
19 b← b ∪ (t, v)
20 P ← P \ (t, v)

21 return B

maximum event rate first and the VM with most free
capacity first. These optimizations give priority to the
allocation of pairs of topics with maximum event rate,
which have the most overhead when split among different
VMs, to the VMs with most free capacity. In Fig. 1d
we can see that by applying these optimizations we can
allocate all the pairs of each topic to the same VM,
thereby reducing the overall bandwidth consumption to
50 KB/min instead of 80 KB/min using FFBP.
The pseudocode for the solution for Stage 2 Cus-

Algorithm 5: Lower bound for MCSS
1 GetLowerBound(V, T, ev, Int, C, τ)
Input: V, T, ev, Int, C, τ
Data: bwcostlb← 0 : Lower bound on the cost to satisfy all

subscribers
2 foreach {v ∈ V } do
3 bwcostlb← bwcostlb+ max (τv ,mint∈Tv evt)
4 vmslb← dbwcostlb/BCe
5 return C1(vmslb) + C2(bwcostlb)

tomBinPacking (CBP) with the optimizations men-
tioned above is presented in Alg. 4. We consider topics
and their associated subscriber pairs in the non increas-
ing order of their event rates for the purpose of allocation
(Line 3). We then group the topic-subscriber pairs of
the same topic together (From Line 4 to Line 7). If all
subscribers cannot be allocated to the same VM, we
compare the cost of distributing among existing VMs to
cost of deploying new VMs and choose the most cost-
effective option (Line 8). The comparison of costs is
done in CheaperToDistribute (presented in Alg. 7
of Appendix B). When trying to allocate to already
deployed VMs, we select the VM with most available
capacity (Line 9 and Line 14). Each of the above opti-
mizations give incremental improvement to our solution
in practice and we will explore their incremental impact
with Spotify and Twitter traces in Section IV-D.

C. Lower Bound
Combining the solutions for both stages GSP from

Alg. 2 and CBP from Alg. 4, gives us a complete solution
for MCSS. While dividing the solution into two stages
makes it simpler to solve, it renders our solution sub-
optimal. By separately considering the selection of topic-
subscriber pairs and their allocation to VMs, we lose
an opportunity to make a better allocation of the pairs
to the VMs. However, in Section IV we show that our
approach works well in practice.

Deriving theoretical bounds on our solution is difficult
because of various optimizations we introduce and we
omit it from this paper. However, using Theorem A.1
in Appendix C for a given data input we can estimate a
lower bound on the objective of MCSS. Theorem A.1 can
be easily turned into an algorithm to derive the lower
bound and the pseudocode is presented in Alg. 5. For
each subscriber we select the bare minimum bandwidth
cost required to satisfy the subscriber (Lines 2 and 3).
Then we derive the lower bound on the number of VMs
in Line 4 by dividing the lower bound on bandwidth
consumption by bandwidth capacity BC per VM. Fi-
nally, using cost functions we derive the lower bound on
total cost in Line 5. In Section Section IV-D we evaluate
GSP with CBP and RSP with FFBP and compare them
against the lower bound obtained using Alg. 5.

IV. Experimental Evaluation
The goal of the experimental evaluation is to study

the effectiveness of the proposed solution in minimizing
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Figure 2: Impact of introducing optimizations (a) to (e) with Spotify traces

the total cost of deploying pub/sub for social interaction
in systems like Spotify and Twitter on a public cloud
service. In this section, we evaluate our solution by
considering each stage of the solution incrementally. We
repeat all our experiments for Spotify as well as Twitter
traces with various practical settings.

A. Experimental Setup
We implemented all algorithms presented in this paper

using C++. All experiments were executed on a server
with Intel Xeon 1.87GHz processors and 132 GB of
RAM. We executed experiments with τ varying from 10
to 1000. For the cost function we followed the Amazon
EC2 cost model specified in [8]. We used the pricing
for On-Demand Instances with Compute Optimized -
Current Generation. For our experiments, we considered
the pricing for 2 types of VM instances c3.large (costs
$0.15 per hour) and c3.xlarge (costs $0.3 per hour), these
instance types are our choice for evaluation because they
have specified bandwidth limits [13]. We set c3.large and
c3.xlarge with bandwidth capacities of 64 mbps and 128
mbps respectively (derived from [13]). Even though we
repeated our experiments using other instance types,
we omit their results due to lack of space and because
they provide no significant new information. For the
bandwidth cost we use $0.12 per GB for both incoming
as well as outgoing bandwidth taken from data transfer
costs of Amazon EC2 [8].

Bandwidth consumption is measured in bytes; hence,
we need to convert the event rates in our model to
bytes. We know that each tweet has a maximum length
of 140 characters. However, from the information given
in [7], the mean size of a tweet is 200 bytes; thus, in
our experiments we set the message size of a twitter

publication as 200 bytes as well. For the Spotify case,
after measuring the mean message size of a sample of
messages from Spotify traces we found it to be 111 bytes.
But we set the message size as 200 bytes to make the
comparison with Twitter traces easier.

B. Data Traces

Spotify Traces: The trace consists of about 1.1 mil-
lion topics and 4.9 million subscribers forming about 12
million topic-subscriber pairs. The traces were gathered
for 10 days (9th Jan 2013 to 19th Jan 2013) from
Spotify’s data center at Stockholm (one of the 3 data
centers). The events we collected were restricted to the
music playback events from users with at least 1 follower.
For more information about the Spotify trace, and its
detailed analysis see [6].

Twitter Traces: We use the publicly available Twit-
ter social graph well studied in [14]. We model the
Twitter users as topics and their followers as subscribers.
The subscriptions (subscribed topics) of a subscriber is
the followings of a user (the list of Twitter users followed
by the user). The number of tweets published by a
particular user t corresponds to the event rate evt for
a given period of time. Since the Twitter user ids in this
data set are real user ids, we made use of the public
Twitter APIs to obtain the number of Tweets of each
user in the data set from 30th Oct 2013 to 9th Nov
2013. We consider all the Twitter users who tweeted
at least once during those 10 days (active users) and
omit the rest. This process provided us with around 8
million active users and their corresponding 30 million
subscribers, and around 683.5 million topic-subscriber
pairs. This data trace can be downloaded from the link
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provided1. For a detailed analysis of Twitter traces refer
to Appendix D.

C. Comparison of approaches for Stage 1
We first explore the impact of using GreedySelectPairs

(GSP) presented in Alg. 2 with RandomSelectPairs
(RSP) presented in Alg. 6 as a baseline on the total
cost with FFBinPacking as Stage 2 solution for both.
We run experiments with c3.large and c3.xlarge VM
cost functions. From Section III we know that, unlike
RSP, GSP selects topic-subscriber pairs to satisfy all
the subscribers while trying to minimize the bandwidth
requirement. This helps in reducing both the number of
VMs and bandwidth consumption and hence the total
cost. Fig. 2a shows the impact of GSP using Spotify
traces and c3.large. With τ = 10 it results in a 33%
reduction in the number of VMs, 22.9% bandwidth
reduction and a 33% reduction in total cost. However,
as τ increases to 100 and 1000, the cost reduction drops
to 27.6% and 10.9% respectively. The reason for the
drop in cost reduction is that higher values of τ leave
little room for optimization, since a higher fraction of all
topic-subscriber pairs are needed to satisfy the problem
constraints. A similar pattern is observed in Fig. 2b
for VM type c3.xlarge with BC = 128 mbps. A 32.7%
reduction with τ = 10 and 17.6% and 10.8% reduction
with τ = 100 and τ = 1000 respectively.

Now we study the impact of GSP with Twitter traces.
As seen in Fig. 3a, the cost reduction is significantly
higher compared to Spotify traces. With τ = 10 there is
a reduction of 71% and 51.4% with τ = 100. However,
with τ = 1000 the reduction is only 29.1%, suggesting
that as τ increases, the room for minimizing cost also
decreases. We observe the same pattern in Fig. 3b as
well with BC = 128 mbps. The improvements are 70%,
51.9% and 20.3% for τ = 10, 100, 1000 respectively.

D. Comparison of approaches for Stage 2
In Stage 2 of our solution, the goal is to allocate the

topic-subscriber pairs from Stage 1 to VMs so as to
minimize the cost. In this section we explore the impact
of various optimizations introduced in Section III-B for
Stage 2 of our solution on the total cost. To analyze the
effectiveness of these optimizations, we fix the approach
for Stage 1 as GSP for the rest of the experiments unless
mentioned explicitly. By incrementally introducing the
optimizations we study their incremental impact in the
following order: (a) with only FFBinPacking (FFBP),
(b) introducing grouping of pairs by topics, (c) intro-
ducing most expensive topic first, (d) introducing most
free VM first, (e) introducing choice of allocation based
on cost-model. In Figs. 2 and 3 the bar plots contain
the corresponding bars to represent the improvement in
total cost, number of VMs and bandwidth consumption
respectively, in the same order of the optimizations listed

1http://tidal-news.org/data/icdcs14/tweetrates.tgz

above. Finally, we also compare the impact of including
all these optimizations with the lower bound obtained
by running the Alg. 5.

We start with optimization (a), FFBP presented in
Alg. 3. In Figs. 2a and 2b the outcome of FFBP when
used in conjunction with GSP topic-subscriber pair
selection technique can be seen for different values of
τ and for c3.large and c3.xlarge VM types. However, as
mentioned in Section III-B since FFBP considers the
pairs to be allocated to VMs in arbitrary order and at
individual pair level, there is a room for improvement.
Hence, we introduced optimization (b), (presented in
Alg. 4 CustomBinPacking (CBP)) the grouping of
pairs belonging to the same topic in Alg. 4 and now we
analyze its effectiveness. The grouping-of-pairs optimiza-
tion results in a cost reduction of about 3.5% for Spotify
traces in most cases. However, in some cases we see an in-
crease in cost up to 1.6%. This behavior is because of the
trade-off between number of VMs and total bandwidth
consumption. For example, in Fig. 2a for τ = 10 and in
Fig. 2b for all values of τ , it can be noticed that, even
though there is a decrease in bandwidth consumption
of about 8 to 10%, the corresponding number of VMs
increase by 2 to 4%. The increase in total cost in some
cases suggests that grouping of topics alone is not always
beneficial. This behavior is due to the fact that the
grouping-of-pairs optimization is aimed at minimizing
bandwidth consumption. As explained in Sections II
and III, because of the trade-off between the number of
VMs and bandwidth consumption, we see an increase
in total cost. As we show later in the experiments,
this optimization has an impact in conjunction with
other optimizations. For Twitter traces, we can observe
a behavior similar as that seen in Figs. 3a and 3b. In all
cases there is a slight decrease in cost due to the grouping
of topics, even though in some cases there is an increase
in the number of VMs. This can be clearly observed
with τ = 1000 and BC = 128 mbps, in Fig. 3b. In this
case there is a decrease in bandwidth consumption of
8% which results in increase of 0.5% in VMs (1 VM).
However, the total cost still decreases because the de-
crease in bandwidth consumption overshadows increase
in number of VMs. This behavior is again attributed to
the trade-off between the two metrics.

Next we study the impact of introducing optimiza-
tion (c), the ordering of topics in decreasing order of
event rates and selecting the topics and their pairs with
maximum event rate for allocation first. As explained in
Section III-B, the rationale behind this optimization is to
give priority to expensive topics to avoid pairs belonging
to same expensive topic being allocated to different VMs.
This optimization can result in an increased number of
VMs with a slight decrease in bandwidth consumption
in some cases, as in Fig. 2a for τ = 100. However, in
most cases it results in decrease in the total cost up
to 2.5%. For Twitter traces, in Figs. 3a and 3b we can
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Figure 3: Impact of introducing optimizations (a) to (e) with Twitter traces

notice a slight decrease in total cost up to 2.4%. It is
worth noting that, even though this optimization does
not show many benefits on its own, we next show that
it works well together with selecting VMs with most
available capacity first.

As done in Alg. 4, we try to allocate all the pairs of
a topic to the most recently deployed VM. If that is
not feasible, we try to allocate them to existing VMs.
Now we analyze the impact of introducing optimization
(d) in which we choose the VMs with most free capacity
first while allocating the pairs among already deployed
VMs. For both Spotify and Twitter traces, we observe a
reduction in cost with this optimization. The reduction
in number of VMs is the main contributor for reduction
in cost with this optimization. In most cases bandwidth
consumption remains the same or even slightly increases
again due to the trade-off with the number of VMs. For
Spotify traces there is a decrease in cost of up to 10.7%
and for Twitter traces the decrease is up to 9.5%. An
interesting observation here is that the decrease in cost
is slightly higher for τ = 100 and 1000 than τ = 10. It
is worth noting that the improvement we see from this
optimization is also the result of optimizations (b) and
(c).
Finally, we introduce the optimization (e), the decision

to allocate to existing VMs at the cost of extra band-
width consumption against deploying new VMs based
on the cost-model presented in Alg. 7. The decision to
deploy a new VM instead of existing VMs is done if
it results in decreased total cost. This optimization is
supposed to balance the trade-off between the number of
VMs and bandwidth consumption. However, we observe
lower cost reduction than expected. For Spotify, the
maximum cost reduction is 1.2% and for Twitter it is

0.2%. The reason for this behavior is that, in our cost
model, the bandwidth per GB costs only $0.12. Thus,
the bandwidth is significantly inexpensive. For example,
for a topic t with evt 10000 events/day (2 MB/day),
even if all the subscriber pairs of t are spread across 100
different VMs the bandwidth overhead 200 MB which
costs only $0.024. With such a low overhead the cost
model hardly makes a difference. In addition to that,
the cost model is suboptimal since it takes the decision
for each topic independently. Hence, the overhead of
extra bandwidth due to distributing the pairs of a topic
is generally significantly lower than deploying the new
VMs. We leave further exploration of this optimization
for future work.

E. Runtime performance evaluation
In this section, we show the runtime performance of

our approaches. The faster runtime performance of the
VM allocation approaches on cloud are crucial, since
the allocation may be required to run periodically to
adapt to the workload. We first analyze the running
times of solutions for Stage 1. It is clear that selecting
an arbitrary set of pairs (RSP) is faster than selecting
pairs according to the greedy heuristic (GSP). However,
in Fig. 4 we can see that the runtime of GSP for Stage
1 with Spotify traces is only at most 2 seconds slower
than GSP in all cases. Increasing τ requires more topic-
subscriber pairs to be selected. The near-constant time
for GSP suggests that our approach is scalable with τ .
In Fig. 5 we can see a similar pattern for Twitter traces.
However, since the Twitter trace has a much higher
number of pairs (638.5 million), it results in significantly
higher runtime for both RSP and GSP compared to
Spotify traces. RSP takes up to 986 seconds, on the other
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Figure 7: Stage 2 Runtime for
Twitter for c3.large

hand GSP takes up to 1471 seconds. The slower running
time of GSP is because it inspects all the 638.5 million
pairs at least once to select the best pairs according to
the heuristic. On the other hand, RSP selects the first
subset of pairs meeting the satisfaction threshold and
returns pairs which result in significantly high cost. This
is a clear trade-off between quality of output and running
time.

Next we analyze the runtime performance of
FFBP and CustomBinPacking (CBP) solutions for
Stage 2. We restrict our comparison between running
times for optimization (a) and the solution in Alg. 4
including all other optimizations (optimization (a) to
(e)) with assuming input from GSP readily available
in main memory. From Figs. 6 and 7 we can see that
CustomBinPacking (CBP) outperforms FFBP up to
10 times better with Spotify traces and around 1000
times with Twitter traces. The fast runtime of CBP is at-
tributed to the optimization related to grouping of pairs
on per-topic basis to allocate them to VMs (O

(
|T ||B|

)
).

On the other hand, FFBP considers the VMs in the
order of first fit, hence in the worst case it may have
to check the feasibility to allocate with all the deployed
VMs (O

(
|T ||V ||B|

)
). It is worth noting that even though

GSP is slower than RSP on its own, in combination
with CBP the over all runtime performance is better
than RSP in combination with FFBP in most cases. For
example, GSP with CBP takes 1484.7 seconds in total
compared to 2186 seconds taken by RSP with FFBP for
Twitter traces with τ = 1000 on a c3.large instance.

F. Summary and Discussion
In this section, we empirically evaluate our solution

by considering the isolated impact of each stage and
each optimization. We compare the performance of
GSP and RSP while using FFBP as a solution for stage
2. In summary, GSP provides an improvement in the
total cost of up to 33% for the Spotify and 71% for
the Twitter traces. Subsequently, we fix GSP as the
solution for Stage 1 and analyze the incremental impact
of individual optimizations ((b) to (e)) introduced for
Stage 2. Even though each optimization is improving
the cost in only a subset of cases, we observe a cumu-
lative improvement of up to 5%. With a combination of
GSP and CBP we attain a total saving of up to 74%
for the Twitter traces and 38% for the Spotify traces. In

absolute values, this translates into $4000 and $2000 for
the Twitter and Spotify traces respectively. Note that
these savings are for sampled traces (about 10% sample
for Spotify and 1% sample for Twitter) for a 10 day
period. We can expect higher savings for a longer period
and full traces.

The runtime for the Spotify traces on a moderate
strength server is under 30 seconds for our complete
solution, suggesting that it is fast and it can be run peri-
odically to re-allocate the workload. For example, it can
be run every hour to adapt to the changes in the event
rates, new subscriptions, unsubscriptions, etc. However,
for the Twitter traces it runs relatively slower (about
25 minutes) because of the larger scale. Even though
our solution can be run at longer periods (e.g., once per
day), it is desirable to adapt in a dynamic and online
fashion. In some works such as [15] dynamic approaches
are suggested for adaptive provisioning. However, in
order to solve our problem there is a need to take into
account additional factors such as the effects of dynamic
workload on the user satisfaction metric. We plan to
tackle the challenge of devising an online algorithm as
part of future work.

V. Related Work
There are many types of pub/sub systems proposed

in the literature [1]. In this paper, we focus on a
specific class of topic-based pub/sub which facilitates
social interaction among users in systems such as Spotify
pub/sub [6] and Twitter. In [9] satisfaction metrics
were defined for improving the satisfaction of human
subscribers in the context of pub/sub for social inter-
action. That work also addresses problems related to
maximizing the number of satisfied subscribers under
resource constraints imposed on the pub/sub engine as
a single black box. However, in data center or cloud set-
tings, pub/sub systems are scaled horizontally and hence
treating the engine as a black box limits the effectiveness
of resource provisioning. In this paper we address this
limitation by considering a multi-server setup typical of
a data center. We also focus on a different problem of
estimating the monetary costs assuming realistic pricing
models from public IaaS providers such as Amazon EC2.

There are several papers addressing resource provi-
sioning in the cloud to minimize monetary costs [11],
[12], [16]. The provisioning techniques used in these
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works are generic and oblivious to internal semantics of
the applications they consider, which limits the optimal-
ity of allocation and its cost-effectiveness. For example,
this renders most optimizations introduced in this paper,
such as grouping of topic-subscriber pairs by topics
and selecting topics with maximum event rate first,
infeasible.

To the best of our knowledge there exist no works
addressing the problem of cost-effective resource provi-
sioning tailored for topic-based pub/sub systems. One
relevant area of research is stream processing in the
cloud [17], [18]. However, there are only a few works in
this category that specifically consider resource provi-
sioning [15], [19]. In [15], the authors propose adaptive
resource provisioning for processing stream queries with
the goal of optimizing query latency. On the other hand,
this work does not aim at minimizing monetary costs.
The number of VMs is adapted in the proposed scheme
to accommodate the incoming event rate of streams. At
the same time, the solution does not focus on minimizing
bandwidth consumption or exploring the trade-off be-
tween the number of VMs and bandwidth consumption.
While in [19], the authors propose a demonstration of
cost estimation for streaming queries, they do not aim
at minimizing this cost. In contrast to our work, the idea
is specific to the domain of streaming queries. Finally,
in both [19] and [15], there is no concept of subscriber
satisfaction metric, which is essential in our problem.

There exist works that provide a formalization for the
general problem of resource provisioning in the cloud,
with emphasis on theoretical analysis. In [20] a variation
of bin-packing with various collocation constraints is
considered for the problem of VM allocation and proved
NP-hard. However, these works do not take into account
the specifics of resource previsioning for pub/sub. For
example, the problem of MCSS has a unique set of
constraints stemming from the satisfaction requirement
and from the fact that topics are shared across the
subscribers, resulting in the need for cost-effective selec-
tion of topic-subscriber pairs. Furthermore, the fact that
the incoming bandwidth depends on the distribution of
topic-subscriber pairs poses additional challenges and
calls for customized allocation algorithms, which we
address by introducing a customized version of bin-
packing with a number of optimizing heuristics.

VI. Conclusions and Future Work
In this paper, we have proposed a new approach for

resource provisioning for pub/sub in the cloud using
a cost-effective resource allocation. The approach is
directed towards a particular class of pub/sub that is
used to drive social interaction, e.g., among Spotify
and Twitter users. To formalize the challenge of cost-
effective resource allocation, we have introduced the
MCSS problem and established its hardness by a reduc-
tion from the well-known partitioning problem. We have
provided an efficient heuristic for MCSS consisting of a

number of optimizations. Our approach can be used as
a tool by pub/sub architects to estimate and provision
resources to satisfy all subscribers in a data center or in a
cloud. We have evaluated the proposed heuristic solution
empirically using large-scale real traces from Spotify and
Twitter. Using an Amazon EC2 pricing model, we have
showed that our solution can save up to 74% and up to
38% of the total cost for Twitter and Spotify respectively
when compared to a naive alternative. We have also
provided a comparison against a derived lower bound
and showed that in many cases our approach results in
a cost that is only 15% higher.

Finally, our approach has a reasonably low computa-
tion time, as corroborated by the experiments. Hence, it
can also be used for dynamic allocation if run at periodic
intervals to re-provision the resources and re-allocate to
the workload. In the future, we plan to extend this work
to fully support dynamic on-demand provisioning and
allocation for pub/sub.
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Appendix
A. Pseudcode to select random pairs

The pseudocode to select arbitrary topic-subscriber
pairs is provided in Alg. 6. The RandomSelectPairs
(RSP) algorithm, selects the first obtained pairs for each
subscriber v until the satisfaction threshold τv is met
(between Lines 2 and 4). The final set of pairs is returned
in a set S in Line 5.

Algorithm 6: Naive alternative for Stage 1 of solu-
tion for MCSS: Random pair selection
1 RandomSelectPairs(T, V, ev, cost, Int, τ, C)
Input: T, V, ev, cost, Int, τ, C
Result: S ← ∅ : Output set of (t,v) pairs

2 foreach v ∈ V do
3 while

∑
(t,v):(t,v)/∈S∧t/∈Tv

< τv do
4 S ← {(t, v) : (t, v) /∈ S ∧ t ∈ Tv}

5 return S

B. Pseudocode to decide if it is cheaper to distribute
among existing VMs

The goal of CheaperToDistribute in Alg. 7 is to
decide if distributing the pairs of the current topic in
question to already deployed VMs or allocate them to
a new VM. This function is called when the pairs of
the current topic in question cannot be allocated to the
current VM. In Alg. 7, we first compute the estimated
total cost when deploying new VMs and allocating to
them (between Lines 2 and 4). Then compute the cost
of allocating to a VM with maximum available capacity
(Line 5) until there are no more pairs left in P (between
Lines 6 and 6) or none of the existing VMs have enough
capacity left to accommodate even a single pair. It is
possible that some pairs can be left unallocated to the
existing VMs and needing new VMs to be deployed.
The cost of the extra VMs needed and corresponding
bandwidth consumption is computed between Lines 16
and 18. Finally Alg. 7 returns true if allocating to
existing VMs is cheaper and returns false otherwise (in
Lines 19 and 20).

C. Lower Bound Theorem
Theorem A.1. Given an instance
MCSS(T, V, ev, Int, τ, BC, C1, C2), for any solution B it
holds that:

C1 (|B|)+C2

(∑
b∈B

bwb

)
≥ C1



∑
v∈V

max
(
τv,min

t∈Tv

evt

)
BC



+

C2

(∑
v∈V

max
(
τv,min

t∈Tv

evt

))
Proof:
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day traces
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Algorithm 7: Computes the cost of distributing
current topic to existing VMs
1 CheaperToDistribute(t,B, BC, P )
Input: t,B, BC, P
Data: curbw ←

∑
b∈B bwb: Current bandwidth

consumption, curvms← |B|: Number of VMs
currently in use, extravms← 0: Extra VMs needed,
TV ← ∅: Temporary set of VMs,
newvmsbw ← 0, newvms← 0

Result: distribute← false
// Estimate the cost of deploying on new VMs

2 if P 6= ∅ then
3 newvms← d(|P | · evt)/BCe
4 newvmsbw ← curbw + (|P |+ newvms) · evt

5 b← argmaxb′∈B{BC − bwb′}
6 while P 6= ∅ and B \ TV 6= ∅ do
7 newbw ← 0
8 while newbw ≤ BC − bwb do
9 newbw ← newbw + evt

10 if ∀Vt : (t, v) /∈ b then
11 newbw ← newbw + evt

12 P ← P \ (t, v)
13 curbw ← curbw + newbw
14 TV ← TV ∪ b
15 b← argmaxb′∈B\T V {BC − bwb′}
16 if P 6= ∅ then
17 extravms← d(|P | · evt)/BCe
18 curbw ← curbw + (|P |+ extravms) · evt

19 if C1(curvms+ extravms) + C2(curbw) <
C1(newvms+ curvms) + C2(newbw) then

20 distribute←true
21 return distribute

Given a data set, satisfaction metrics and bandwidth
capacity constraints, we can derive a lower bound on
the total cost that can be minimized to. Intuitively, for
each subscriber, we just choose the bare minimum cost
to satisfy the subscriber. Then, use the obtained lower
bound on the bandwidth consumption to derive lower
bound on number of VMs. We elaborate this idea below:

Consider the capacity that must be spent to add a user
to the solution set. A subscriber v can be satisfied when
topics with total event rate of τv are selected in the solu-
tion. Hence, the minimum capacity that must be spent to
satisfy a subscriber is τv. To tighten this bound slightly,
we also observe that if ∀t∈Tvevt ≥ τv, then the semantics
of the MCSS definition dictates we must choose at the
granularity of topic-subscriber pairs. Hence, the capacity
that must be spent in such a scenario is mint∈Tv evt.
Hence, we derive the clause max (τv,mint∈Tv

evt) as
a cost to satisfy a single subscriber. So summing up
these bounds, we get the lower bound on the outgoing
bandwidth consumption to satisfy all subscribers.

Now, to derive a bound on the number of VMs, we
simply divide the total bandwidth consumption by the
bandwidth capacity of the individual VM BC and round
it up.

D. Analysis of Twitter traces
In the first set of experiments we analyze the charac-

teristics of the number of follower/following distributions
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and show that our sample is representative of the original
data set. This can be verified from the Complementary
Cumulative Distribution Function (CCDF) 2 of the num-
ber of followings in Fig. 8. The distinctive anomalies
observed in [14] at 20 and 2000 followings can be seen
here too. The glitches indicate the default values in
the number of followings and restrictions on number
of followers imposed until 2009 respectively. There are
around 550 users following more than 10000 users in our
sample. The CCDF of the number of followers is also
shown in Fig. 8 and there is a visible glitch at 105, as
seen in original data in [14]. In our sample, there are
around 4000 users having more than 104 followers and 66
users beyond 1 million followers. By manually verifying,
they are found to be famous personalities, celebrities and
news agencies.

Next we analyze the distribution of the number of
tweets tweeted by users in our sample in a 10-day
period. Of the 8 million users who are active, around
4 million of them tweeted less than 10 tweets in 10 days.
Around 46000 users tweeted more than 1000 tweets in 10
days, which is significantly high for human users. From
random sample verification, these users are found to
be news agencies or tweet aggregation bots re-tweeting.
There was one user tweeting more than 105 tweets
and it was found to be a bot as well. Most celebrities
produce relatively few tweets, despite their high number
of followers. We explore this in detail in Fig. 10. For each
unique number of followers in the X axis we show the
corresponding mean tweet rate (event rate) in the Y axis.
The mean event rate grows linearly with the number of
followers until 105 followers. Finally, the smaller cloud
corresponding to a number of followers between 105 and
2 · 106 has a relatively lower tweet rate than expected
from the linear behavior. As mentioned earlier, this is
because celebrities and popular news agencies tend to
have more followers yet produce relatively few tweets.

Since our satisfaction metric τ is directly related
to the number of events received by subscribers, it is
worth studying the distribution of the number of tweets
received by each user. For this purpose we use the
Subscription Cardinality (SC) of a subscriber v defined
in [6]:

SCv =
∑

t∈Tv
evt∑

t∈T evt
· 100

In Fig. 11 we show the CCDF of SC. In our sample
there are about 455 million tweets recorded, and around
3 million users receive more than 7000 tweets, and there
is one user receiving 4% of all the tweets, i.e. 18 million
tweets. Finally, we consider the dependency between the
number of followings a user has and the corresponding
mean SC in Fig. 12. It is clear that SC grows linearly
with the number of subscribers. However, there are
noticeable glitches at 20 and 2000 followings, due to the

2CCDF is probability of a random variable X > x

same reason for the glitches in the #Followings CCDF.


