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Abstract. This paper contributes to the general understanding of the geometrical model

of concurrency that was named higher dimensional automata (HDAs) by Pratt and van

Glabbeek. In particular we provide some understanding of the modal logics for such models

and their expressive power in terms of the bisimulation that can be captured. The geometric

model of concurrency is interesting from two main reasons: its generality and expressiveness,

and the natural way in which autoconcurrency and action refinement are captured. Logics

for this model, though, are not well investigated, where a simple, yet adequate, modal logic

over HDAs was only recently introduced. As this modal logic, with two existential modali-

ties, during and after, captures only split bisimulation, which is rather low in the spectrum

of van Glabbeek and Vaandrager, the immediate question was what small extension of this

logic could capture the more fine-grained hereditary history preserving bisimulation (hh)?

In response, the work in this paper provides several insights. One is the fact that the ge-

ometrical aspect of HDAs makes it possible to use for capturing the hh-bisimulation, a stan-

dard modal logic that does not employ event variables, opposed to the two logics (over less

expressive models) that we compare with. The logic that we investigate here uses standard

backward-looking modalities (i.e., past modalities) and extends the previously introduced

logic (called HDML) that had only forward, action-labelled, modalities.

Since the direct proofs are rather intricate, we try to understand better the above issues

by introducing a related model that we call ST-configuration structures, which extend the

configuration structures of van Glabbeek and Plotkin. We relate this model to HDAs, and

redefine and prove the earlier results in the light of this new model. These offer a different

view on why the past modalities and geometrical concurrency capture the hereditary history

preserving bisimulation. Additional correlating insights are also gained.

Tribute to Alan Turing. Alan Turing was seeking beauty and naturalness in his work, e.g., with

the Turing machine or the Turing test, and at the same time power of the theories and methods he

was developing, e.g., with “the bombe”. This is what makes a mathematical genius: beauty, power,

and naturalness, that are constantly sought for when building methods for solving problems which

most of us cannot even comprehend. Once these are achieved, then the problems and solutions

open up like a book to the rest of us, and we read from “the book” (as Paul Erdős was saying) for

many years to come. Our gratitude to Alan Turing can never be enough, compared to the benefits

that we still get from his genius.

⋆ Details for proofs of some of the results in this paper can be found in the on-line technical re-

port C. Prisacariu: “The Glory of the Past and Geometrical Concurrency – technicalities” available at

http://heim.ifi.uio.no/ cristi/papers/TR423.pdf.
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1 Introduction

Geometric concurrency was introduced by V. Pratt and R. van Glabbeek as the model of Higher

Dimensional Automata two decades ago [8, 16]. This model of concurrency is more general and

expressive than most other models like event structures or Petri nets (as studied by van Glabbeek

[16]) and accommodates nicely action refinement, which is a good method for building systems

from abstract specifications and refined to gradually more concrete implementations. Moreover,

HDAs are not constrained to only before-after modelling and expose explicitly the choices in the

system. It is a known issue in concurrency models that the combination of causality, concurrency,

and choice is difficult; in this respect, HDAs and Chu spaces [9] do a fairly good job [12].

Logics for this model, though, are not well investigated. A natural modal logic over HDAs was

recently introduced as HDML in [13]. HDML contrasts with standard temporal/program logics

in the fact that it can reason about what holds “during” some concurrent events are executing.

A main question that this logic attracted was what bisimulation it captured. It turns out that this

modal logic, with two existential modalities, during and after, captures only split bisimulation,

cf. [14, Prop.4.3], which is rather low in the spectrum of van Glabbeek and Vaandrager [19].

This expressiveness lack is due to its forward-only modalities, that do not allow to look at the

history of the concurrent execution. The natural question now is what small extension of this logic

can capture the finest, hereditary history preserving bisimulation. This question becomes more

interesting in the light of the fact that two recent logic developments [1, 6] study concurrency

bisimulations (including hh) over concurrency models strictly less expressive than HDAs, yet

using event-identifier variables inside more complex modalities.

For this, one concrete step in this paper is to define the history-aware higher dimensional

modal logic (hHDML) which is a modal logic interpreted over higher dimensional automata

(HDAs) that captures the hereditary history-preserving bisimulation (hh).

The hHDML logic that we present in this paper solves the question of what is a simple and

natural extension of HDML that captures hh-bisimulation. Compared to related works, hHDML

does not make reference to events, but talks only about labels; i.e., hHDML does not use event

identifiers as in [6] or more complicated event-based modalities as in [1]. On the other hand,

hHDML uses backward looking modalities as in [6] (whereas the feature of [1] is that it is a

forward only logic). Moreover, hHDML uses single step modalities (both the forward and the

backward), thus not looking at entire parts of the HDA model, as the modalities of [1, 6] do (or

Until-like modalities of temporal logics).

The other feature of hHDML is that it is a modal logic defined over HDA, which are a model

of true concurrency that is more expressive than the other models on which the logics of [1,6] are

defined (i.e., is more expressive than event structures or configuration structures). Therefore this

makes it a good framework for investigating and comparing all these logics in a uniform manner;

similar to what is done in [16] on comparing expressiveness of concurrency models by embedding

them into HDA (i.e., defining the exact class of HDA that they capture); or similar to [4] where

translations are made between logics that all capture the same bisimulation. Moreover, the simple

syntax and natural interpretation of hHDML in the style of standard modal logic makes it a

good candidate for investigating modal characterizations of the spectrum of true concurrency

bisimulations [7,17,19], as was done with modal logics for standard process equivalences in [15]

and recently using event identifier modalities in [1].

In the second part of this paper we want to convey a better understanding of why hHDML

over HDA can capture hh-bisimulation without referring to event variables. On top, we want to

get more tight correlations between this logic and HDAs, and the related logics over the event

structures and configuration structures, as well as between the definitions of bisimulations over

HDA and over the other partial order models, cf. [17].
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Fig. 1. Example of a HDA with two concurrent events.

For this we introduce ST-configuration structures, which are a natural extension of config-

uration structures to the setting of higher dimensional automata. Configuration structures [18]

are used in [17] as the most expressive model of concurrency which has a natural way of defin-

ing refinement and the partial order bisimulations. The notion of an ST-configuration has been

used in [19] to define ST-bisimulation and in [16] in the context of HDA. But the model of

ST-configuration structures, as we define here for capturing concurrency, does not appear else-

where. We think that a main characteristic of higher dimensional automata is captured by ST-

configuration structures, opposed to the standard configuration structures; this is the power to

look at the currently executing concurrent events. At the level of the modal logic HDML this is

the power to talk about what happens during the concurrent execution of one or more events. This

is opposed to standard modal logics that talk only about what happens after the execution of one

or more events.

For ST-configuration structures we show how they are a natural extension of configuration

structures and define related notions that steam from the later. We also define notions of steps and

paths and define the bisimulations in this new context. We show how these relate to existing bisim-

ulations for the other models. For this we first relate ST-configuration structures also to HDAs by

identifying the corresponding class of ST-configuration structures, with the particular property of

adjacent-closure. We also define the class of stable ST-configuration structures and relate this with

their counterpart in stable configuration structures. The classical notions of concurrency, causal-

ity, and conflict are not interrelated as in the case of event structures or configuration structures;

but are more loose, as is with HDAs.

2 Preliminaries on Higher Dimensional Automata

In this section we define higher dimensional automata (HDA) following the terminology of [12,

16]. We also define additional notions like paths, adjacency, bisimulations, and the restriction to

acyclic and cubical HDAs.

For an intuitive understanding of the HDA model consider the standard example [12, 16]

pictured in Figure 1. It represents a HDA that models two concurrent events which are labelled

by a and b (we can also have the same label a for both events). The HDA has four states, q10 to

q40 , and four transitions between them. This would be the standard picture for interleaving, but in

the case of HDA there is also a square q2. Traversing through the interior of the square means

that both events are executing. When traversing on the lower transition means that event one is

executing but event two has not started yet, whereas, when traversing through the upper transition

it means that event one is executing and event two has finished already. In the states there is no

event executing, in particular, in state q30 both events have finished, whereas in state q10 no event

has started yet.
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Similarly, HDAs allow to represent three concurrent events through a cube, or more events

through hypercubes. Causality of events is modelled by sticking such hypercubes one after the

other. For our example, if we omit the interior of the square (i.e., the grey q2 is removed) we are

left with a description of a system where there is the choice between two sequences of two events,

i.e., a; b+ b; a.

Definition 2.1 (higher dimensional automata). A cubical set H = (Q, s, t) is formed of a family

of sets Q =
⋃∞

n=0 Qn with all sets Qn disjoint, and for each n, a family of maps si, ti : Qn →
Qn−1 with 1 ≤ i ≤ n which respect the following cubical laws:

αi ◦ βj = βj−1 ◦ αi, 1≤ i<j≤n and α, β ∈{s, t}. (1)

In H , the s and t denote the collection of all the maps from all the families (i.e., for all n). A higher

dimensional structure (Q, s, t, l) over an alphabet Σ is a cubical set together with a labelling

function l : Q1 → Σ which respects l(si(q)) = l(ti(q)) for all q ∈ Q2 and i ∈ {1, 2}. A higher

dimensional automaton (Q, s, t, l, I, F ) is a higher dimensional structure with two designated

sets of initial and final cells I ⊆ Q0 and F ⊆ Q0.

We call the elements of Q0, Q1, Q2, Q3 respectively states, transitions, squares, and cubes,

whereas the general elements of Qn are called cells (also known as n-cell, n-dimensional cubes,

or hypercubes). For a transition q ∈ Q1 the s1(q) and t1(q) represent respectively its source and

its target cells (which are states from Q0 in this case). Similarly for a general n-cell q ∈ Qn there

are n source cells and n target cells all of dimension n − 1. Intuitively, an n-dimensional cell q

represents a configuration of a concurrent system in which n events are performed at the same

time, i.e., concurrently. A source cell si(q) represents the configuration of the system before the

starting of the ith event, whereas the target cell ti(q) represents the configuration of the system

immediately after the termination of the ith event. A transition of Q1 represents a configuration

of the system in which a single event is being performed.

The cubical laws account for the geometry (concurrency) of the HDAs; there are four kinds of

cubical laws depending on the instantiation of α and β. For the example of Figure 1 consider the

cubical law where α is instantiated to t and β to s, and i = 1 and j = 2: t1(s2(q2)) = s1(t1(q2)).
In the left hand side, the second source cell of q2 is, in this case, the transition s2(q2) = q11 =
(q10 , q

2
0) and the first target cell of q11 is q20 (the only target cell because s2(q2) ∈ Q1); this must

be the same cell when taking the right hand side of the cubical law, i.e., the first target cell is

t1(q2) = q21 = (q20 , q
3
0) and the first source of q21 is q20 .

The terminology that we adopt now steams from the Chu spaces representation of HDAs

and triadic event structures [10, 12]. A cell qn of dimension n represents n events happening at

the same time. Therefore we assume a set E, with |E| = n, which for our purposes denotes the

concurrent events. In the HDA case each event may be in three phases: not started, executing, and

terminated (as opposed to only terminated or not started in the standard event oriented models).

In consequence, we associate one valuation E → {0, 12 , 1}, where 1
2 means executing, to each

cell in the hypercube qn = 3E . A hypercube (or n-cell) qn is formed of 3n cells, which we call

faces of qn; these are those cells on lower levels that are connected to qn through s or t maps

(F (qn) = ∪0≤k≤nF
k(qn) where Fn = {qn} and F k(qn) = {q ∈ Qk | (q = si(qk+1) or q =

ti(qk+1)) and qk+1 ∈ F k+1}). In the context of a single hypercube 3E we denote the cells of the

cube by lists of |E| elements e1e2 . . . e|E| where each ei takes values in {0, 12 , 1} and represents

the status of the ith event of the HDA. The dimension of a cell in this hypercube is equal to the

number of 1
2 in its corresponding valuation. With the above conventions, the cells of dimension 0

(i.e., the states of the hypercube qn) are denoted by the corresponding valuation restricted to only

the two values {0, 1}.
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Definition 2.2 (general labelling). Because of the condition l(si(q)) = l(ti(q)) for all q ∈ Q2,

all the edges e1 . . . ei−1
1
2 ei+1 . . . e|E|, with ej ∈ {0, 1} for j 6= i, have the same label. Denote

this as the label li. The label of a general cell q ∈ Qn is the multiset of n labels lj1 . . . ljn where

the j’s are exactly those indexes in the representation of q for which ej has value 1
2 .

Definition 2.3 (paths in HDAs). A simple step in a HDA is either qn−1
si−→ qn with si(qn) =

qn−1 or qn
ti−→ qn−1 with ti(qn) = qn−1, where qn ∈ Qn and qn−1 ∈ Qn−1 and 1 ≤ i ≤ n.

A path π
△

= q0
α1

−→ q1
α2

−→ q2
α3

−→ . . . is a sequence of single steps qj
αj+1

−→ qj+1, with

αj ∈ {si, ti}. We say that q ∈ π iff q = qj appears in one of the steps in π. The first cell in a path

is denoted st(π) and the ending cell in a finite path is en(π). We are interested in the observable

content of a path which is the sequence of labels of the single steps, hence we denote a single step

qn−1
li(qn)

+

−→ qn when qn−1 = si(qn) and qn
li(qn)−

−→ qn−1 when qn−1 = ti(qn). We denote by

π
a±

−→ π′ when the path π′ extends π by a single step labelled by a ∈ Σ; the step may be either a

start or a terminate step.

Many of the results in this paper work with acyclic and cubical HDAs in the following sense.

Such HDAs are the ones usually considered in the literature on concurrent systems and are more

general than most of the true concurrency models [12, 16].

Definition 2.4 (acyclic and cubical HDAs). A HDA is called acyclic if no path visits a cell twice

(i.e., no path results in cycles). An acyclic HDA is called cubical if for any cell all its faces are

different.

Acyclic and cubical HDAs result from the definition of HDA involving cubical complexes,

and hence, the concurrent system is built by putting together cubes of varying dimensions to share

some of their faces. The example of the empty square is built from cubes of dimension 1 that share

their end point faces. The same can be said about all the examples that we give in Section 3.1. A

different view, that may be more appealing to a more abstract mind with aesthetic inclinations, is

as “sculpting out” (as Pratt called it) from a big hypercube formed of all the events in the system

(not just those that are concurrent, as is the case with a single n-cell), those of its faces that are

not relevant. In the same example from the beginning, we would take a 2-cell and carve out its

interior face, i.e., from level Q2.

Definition 2.5 (adjacency and homotopy). Two finite paths π and π′ are called l-adjacent, de-

noted π
l
←→ π′, if one can be obtained from the other by replacing the segment

αl

−→ ql
αl+1

−→ in

one of the following four ways (both directions are allowed), where the path π = q0
α0

−→ q1
α1

−→

q2
α2

−→ . . . qm, with l < m:

– replace segments
si−→ q

sj
−→ and

sj−1

−→ q′
si−→, or

–
tj
−→ q

ti−→ and
ti−→ q′

tj−1

−→, or

–
si−→ q

tj
−→ and

tj−1

−→ q′
si−→, or

–
sj
−→ q

ti−→ and
ti−→ q′

sj−1

−→.

where i < j. Homotopy is the reflexive and transitive closure of adjacency. Two homotopic paths

share both their end points. The homotopy class of a cell q is the set of all homotopic paths that

end in q (and thus start in the initial cell). This is the history of q.

Corollary 2.6 (cf. [16, sec.7.5]). For a path π and a point l > 1 there exists a unique path π′

that is l-adjacent with π.



6 C. Prisacariu

Definition 2.7 (hh-bisimulation). Two higher dimensional automata (HA, q
0
A) and (HB , q

0
B)

(with q0A and q0B two initial cells) are hereditary history-preserving bisimulation equivalent (hh-

bisimilar) if there exists a binary relation R between their paths starting at q0A respectively q0B
that respects the following:

1. if πARπB and πA
a±

−→ π′
A then ∃π′

B with πB
a±

−→ π′
B and π′

ARπ′
B;

2. if πARπB and πB
a±

−→ π′
B then ∃π′

A with πA
a±

−→ π′
A and π′

ARπ′
B;

3. if πARπB and πA
l
←→ π′

A then ∃π′
B with πB

l
←→ π′

B and π′
ARπ′

B;

4. if πARπB and πB
l
←→ π′

B then ∃π′
A with πA

l
←→ π′

A and π′
ARπ′

B;

5. if πARπB and π′
A

a±

−→ πA then ∃π′
B with π′

B

a±

−→ πB and π′
ARπ′

B;

6. if πARπB and π′
B

a±

−→ πB then ∃π′
A with π′

A

a±

−→ πA and π′
ARπ′

B .

Denote this as (HA, q
0
A)

hh
∼ (HB, q

0
B).

3 History-aware Higher Dimensional Modal Logic

We extend the higher dimensional modal logic of [13] with backward looking modalities in the

style of past temporal logics [5] or PDL with converse [3, ch.10.5]. Call this extension history-

aware higher dimensional modal logic, for short hHDML. This logic follows the tradition and

style of standard modal languages [2]. hHDML is a multi-modal logic with the modalities labelled

from a finite set of action labels, which are the same Σ labels of the HDA that we interpret the

logic over.

Definition 3.1 (history-aware higher dimensional modal logic). A formula ϕ in the language

of hHDML is constructed using the grammar below, from a set ΦB of atomic propositions, with

φ ∈ ΦB , which are combined using the propositional symbols ⊥ and → (from which all other

standard propositional operations are generated), and using the forward modalities {a} and 〈a〉
and backward modalities {a} and 〈a〉, all parametrized by the action labels in Σ.

ϕ := φ | ⊥ | ϕ → ϕ | {a}ϕ | 〈a〉ϕ | {a}ϕ | 〈a〉ϕ

We call {a} the during modality and 〈a〉 the after modality. The intuitive reading of {a}ϕ is:

“pick some event from the ones currently not running (must exist at least one not running) and

start it; in the new configuration of the system (during which, one more event is executing) the

formula ϕ must hold”. The intuitive reading of 〈a〉ϕ is: “pick some event from the ones currently

running concurrently (must exist one running) and terminate it; in the new configuration of the

system the formula ϕ must hold”.

These two modalities only make the higher dimensional modal logic of [13]. hHDML adds the

two new backward looking modalities {a} and 〈a〉, increasing the expressive power of HDML

to the point that it captures the hh-bisimulation (as we prove in this section). Intuitively, if the

forward modalities {a} and 〈a〉were following a path, the past modalities {a} and 〈a〉 are walking

on paths backwards (from right to left), undoing events that may have been started or terminated.

The models of hHDML are higher dimensional structures together with a valuation function

V : Q → 2ΦB which associates a set of atomic propositions to each cell (of any dimension).

This means that V assigns some propositions to each state of dimension 0, to each transition of

dimension 1, to each square of dimension 2, to each cube of dimension 3, etc. Denote a model of

hHDML byH = (Q, s, t, l,V). A hHDML formula is evaluated in a cell of such a modelH.
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H, q |= φ iff φ ∈ V(q).
H, q 6|=⊥
H, q |= ϕ1 → ϕ2 iff when H, q |= ϕ1 then H, q |= ϕ2.

H, q |= {a}ϕ iff assuming q ∈ Qn for some n, ∃q′ ∈ Qn+1 s.t.

si(q
′) = q for some 1 ≤ i ≤ n+ 1, l(q′) = l(q)a and H, q′ |= ϕ.

H, q |= 〈a〉ϕ iff assuming q ∈ Qn for some n, ∃q′ ∈ Qn−1 s.t.

ti(q) = q′ for some 1 ≤ i ≤ n, l(q) = l(q′)a and H, q′ |= ϕ.

H, q |= {a}ϕ iff assuming q ∈ Qn for some n, ∃q′ ∈ Qn−1 s.t.

si(q) = q′ for some 1 ≤ i ≤ n, l(q) = l(q′)a and H, q′ |= ϕ.

H, q |= 〈a〉ϕ iff assuming q ∈ Qn for some n, ∃q′ ∈ Qn+1 s.t.

ti(q
′) = q for some 1 ≤ i ≤ n+ 1, l(q′) = l(q)a and H, q′ |= ϕ.

Table 1. Semantics for hHDML.

Definition 3.2 (satisfiability). Table 1 defines recursively the satisfaction relation |= of a formula

ϕ w.r.t. a model H in a particular n-cell q (for some arbitrary n); denote this as H, q |= ϕ. The

notions of satisfiability and validity are defined as usual.

The four modalities have an existential flavour. The universal correspondents are defined in the

standard style of modal logic. We denote these modalities using square brackets; i.e., respectively

[{a}]ϕ, [a]ϕ, [{a}]ϕ and [a]ϕ. The intuitive reading of [{a}]ϕ is: “ϕ holds in all those configurations

of the system from which the current configuration can be reached by starting some event labelled

by a”. In other words, it look at all possible ways of undoing the start of some event labelled with

a.

Definition 3.3 (modal equivalence). Define the hHDML modal equivalence as the relation
hHDML
∼

between cells, s.t.:

(H, q)
hHDML
∼ (H′, q′) iff ∀ϕ : H, q |= ϕ⇔ H′, q′ |= ϕ.

Two modelsHA andHB are modally equivalent iff their initial cells are; i.e., iff (HA, IA)
hHDML
∼

(HB , IB).

For proving the next results we need to relate the equivalence of cells, as in the modal equiv-

alence, with the equivalence of paths, as in the hh-bisimulation.

We say the two paths of two HDAs are modal equivalent iff they have the same length and

all their corresponding cells are modal equivalent (i.e., when occupying the same position in the

path).

Proposition 3.4 (hHDML captures hh-bisimulation). The relations
hHDML
∼ and

hh
∼ coincide.

Proof (sketch). The proof that
hh
∼ is in

hHDML
∼ is simpler, using reductio ad absurdum to assume a

formula that holds on one model but not on the other, and then employ induction on the structure

of the formula. Use the forward steps of
hh
∼ when we work with the forward modalities, and the

back steps (5 and 6) for backward modalities.

The proof that
hHDML
∼ is in

hh
∼ is the more involved part. It shows that

hHDML
∼ respects the six

rules of being a
hh
∼ over paths. For the forward and backward rules (1,2 and 5,6) we employ the as-

sumptions of image-finite (i.e., finite choices) and finite concurrency, using reductio ad absurdum

to construct a formula that will contradict the initial assumptions. The adjacency rules (3 and 4)
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Fig. 2. Concurrency vs. interleaving. E |= {a}{b}⊤, F 6|= {a}{b}⊤.

are more involved. Knowing that for each of the two initial paths there exists a unique l-adjacent

path (cf. Corollary 2.6) the proof reduces to showing that these two are modal equivalent, i.e.,

that their respective cells satisfy the same formulas. We do this for each of the four l-adjacency

replacements, using induction on l and on the dimension of the cell involved in the l-adjacency

replacement. We also use the proof principle reductio ad absurdum and show that whenever as-

suming an “error” in the
hh
∼ that we are building using

hHDML
∼ , we can change the relation so far

by interlacing cells (or indexes of maps), so that the l-adjacency is respected.

3.1 Expressiveness of hHDML through examples

We give an intuition for the expressive power of hHDML logic interpreted over HDAs by exem-

plifying its distinguishing power wrt. the modal equivalence.

For each of the two systems that are compared in each example we give two presentations: one

in the style of event structures, and the other as a HDA. The event structure style (using partial

orders) is displayed on the left using just labels (a,b,...) for the events and arrows (downwards)

denoting causality between the events, and dotted lines denoting conflict. We omit arrows and

lines that can be inferred through transitive closure, and two events that are not connected by

any line or arrow are meant as concurrent. The HDA presentation is displayed on the right using

squares. We represent by a black dot the fact that a square is filled in. A side of a square (i.e., a

transition, or cell of dimension 1) is represented through a different arrow showing the direction

of the space, to account for the fact that we omit the s and t maps. We label these arrows with the

corresponding action label of the corresponding event that the 1-cell is supposed to model. All

the examples, except the first, cannot be distinguished only using the initial HDML logic; they

require the past modalities.

Example 3.5 (concurrency vs. interleaving). This is the standard example of how HDAs dis-

tinguish between concurrency and interleaving, and how the original higher dimensional modal

logic would distinguish these two. The system E represents a||b whereas system F represents

a; b+ b; a. The two HDA presentations are distinguished by the hHDML formula

ϕ
△

= {a}{b}⊤

which holds on E but not on F in their respective initial cells.

Example 3.6 (limits of wh-bisimulation). This example is from [17, ex.9.3] and shows the limits

of wh-bisimulation, which cannot distinguish the two systems; but they can be distinguished by

pomset-bisimulation. The two systems of this example are depicted in their partial order and HDA

presentations in Figure 3. For each system, the arrow in the HDA presentation that is labelled with

a and goes out of the initial cell horizontally, corresponds to the event in the upper right corner of

the partial order presentation. These two HDA systems are distinguished by the hHDML formula

ϕ
△

= {a}{a}[{a}]{b}⊤
which holds on E but not on F in their respective initial cells.
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Fig. 3. The limits of weak history preserving bisimulation. IE |= {a}{a}[{a}]{b}⊤, IF 6|= {a}{a}[{a}]{b}⊤

a a b

b b

a

a

a

ab

b b b b

E F

IE IF

Fig. 4. ST vs. causality based bisimulations. IE |= {a}〈a〉{b}¬〈a〉⊤, IF 6|= {a}〈a〉{b}¬〈a〉⊤

Example 3.7 (causality vs. ST-bisimulations). This example from [19, sec.5.4] shows the dif-

ference between the ST-bisimulation and the causality based bisimulations like pomset or h-

bisimulation. The two systems of this example are depicted in their partial order and HDA pre-

sentations in Figure 4. These two systems are indistinguishable by the ST-bisimulation but are

distinguished by any of the causality based bisimulations because one needs to look at the history,

i.e., the homotopy class of a cell. The two HDA presentations are distinguished by the hHDML

formula
ϕ

△

= {a}〈a〉{b}¬〈a〉⊤

which holds on E but not on F in their respective initial cells.

Example 3.8 (absorbtion law). The absorbtion law example is used in [1, 17] to show that hh-

bisimulation has strictly more distinguishing power than h-bisimulation; where in [6] it is shown

that the two examples are distinguished already by hwh-bisimulation. The two systems of this

example are:
E = (a|(b + c)) + (b|(a+ c)) and F = (a|(b + c)) + a|b+ (b|(a+ c)),

as depicted in their HDA presentation in Figure 5. The horizontal right arrow labelled by a go-

ing out of either IE or IF corresponds to the left-most a-labelled event in their respective CCS

description. There are no dependencies, only conflicting relations (expressed using the CCS +).

These two HDA systems are distinguished by the hHDML formula

ϕ
△

= [{a}][{b}]({b}{c}⊤ ∨ {a}{c}⊤)

which holds on E but not on F in their respective initial cells.

Example 3.9 (conflicting futures). This example from [1, ex.3] is meant there to show the need

for quantification over event variables in conflict with previously bound events. The two systems

of this example are depicted in their partial order and HDA presentations in Figure 6. These two

systems are indistinguishable by the h-bisimulation but are distinguished by hh-bisimulation. The

horizontal right arrow going out of IE labelled with a corresponds to the right-most a=labelled

event in E. The two HDA presentations are distinguished by the hHDML formula
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Fig. 5. Absorbtion law example systems: E = (a|(b+c))+(b|(a+c)) and F = (a|(b+c))+a|b+(b|(a+c)).
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Fig. 6. Conflicting futures of [1]. {IE |=, IF 6|=} [{a}][{b}](〈b〉{a}{d}⊤ ∨ 〈a〉{b}{c}⊤)

ϕ
△

= [{a}][{b}](〈b〉{a}{d}⊤ ∨ 〈a〉{b}{c}⊤)

which holds on E but not on F in their respective initial cells.

Example 3.10 (non-binary conflict and the need for event identifiers). This example is taken

from [6, ex.4.8] where it is meant to illustrate that the event identifier logic indeed needs the

event variables in order to make the distinction between the two concurrent systems which are

distinguishable by the hh-bisimulation (the other examples of that paper can be distinguished by

the logic without the need of event variables). The hHDML logic can distinguish these systems

(thus, without the need of event variables). Another line that this example draws is that the HDA

model can naturally express non-binary conflicting events. This means going beyond the expres-

siveness of prime event structures. Note that the examples of [17] are all using binary conflict.

These two HDA systems of Figure 7 are distinguished by the hHDML formula

ϕ
△

= {a}{a}([a]{a}⊤∧ 〈a〉{a}{a}{a}〈a〉{a}〈a〉¬{a}⊤)

which holds on E but not on F in their respective initial cells.

4 ST-configuration structures

For a better understanding of the previous results we develop here the theory of ST-configuration

structures. We do this along the lines drawn by Pratt [11, 12], extending the configuration struc-

tures of van Glabbeek and Plotkin [18] starting from the notion of ST-configuration as defined

in [16, 19]. ST-configurations structures are a natural generalization of configuration structures

to the setting of HDA. In this section we translate and relate to notions from HDA in ST-

configuration structures, thus showing strong correlations between the two and eventually ex-

plaining better why the hHDML over HDAs captures hh-bisimulation without requiring quantifi-

cation over event variables, i.e., only with the standard modal logic machinery.
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a1a1 a2a2 a3a3

a4a4 a5a5 a6a6 a7

E F

IE IF

Fig. 7. Example systems for non-binary conflict and event identifiers.

Definition 4.1 (ST-configuration). An ST-configuration is a pair of sets (S, T ) with the following

property:
(start before terminate) T ⊆ S.

Intuitively S contains the events that have started and T the event that have terminated.

Definition 4.2 (ST-configuration structures). An ST-configuration structure (also called ST-

structure) is a tuple ST = (ST, l) with ST a set of ST-configurations and l a labelling function

of the events, l :
⋃

S∈ST S → Σ, with ST satisfying the constraint:

if (S, T ) ∈ ST then (S, S) ∈ ST.

The constraint above is a kind of closure so that we do not represent events that are started but

never terminated.

Definition 4.3 (stable ST-structures). An ST-configuration structure (ST, l) is called:

– rooted iff (∅, ∅) ∈ ST ;

– connected iff ∀(S, T ) ∈ ST non-empty then ∃e ∈ S s.t. either (S \ {e}, T ) ∈ ST or (S, T \
{e}) ∈ ST ;

– closed under bounded unions iff for (S, T ), (S′, T ′), (S′′, T ′′) ∈ ST if (S, T ) ∪ (S′, T ′) ⊆
(S′′, T ′′) then (S, T ) ∪ (S′, T ′) ∈ ST ;

– closed under bounded intersections iff for (S, T ), (S′, T ′), (S′′, T ′′) ∈ ST if (S, T )∪(S′, T ′) ⊆
(S′′, T ′′) then (S, T ) ∩ (S′, T ′) ∈ ST .

An ST-structure is called stable iff it is rooted, connected, and closed under bounded unions and

intersections.

Having only ST-configurations does not give us much information, especially we cannot ob-

tain the information that an ST-trace has, cf. [19, def.2.5]. Therefore we define steps (or transi-

tions) between ST-configurations. These will give the power to observe the behaviour of a system.

We show then how to recover the information than an ST-trace has.

Definition 4.4 (ST steps). A step between two ST-configurations is denoted (S, T )
a
−→ (S′, T ′)

and is defined as:

s-step: T = T ′, S ⊆ S′ and S′ \ S = {e} and l(e) = a;

t-step: S = S′, T ⊆ T ′ and T ′ \ T = {e} and l(e) = a.

Definition 4.5 (paths and traces). A path of an ST-configuration structure ST is a sequence of

steps and is denoted π (overwriting the notation used for paths in HDAs). A path is rooted if it

starts in (∅, ∅).



12 C. Prisacariu

We generally work with rooted paths; and mention when the discourse involves general paths.

For a rooted and connected ST-configuration structure ST and a path π ∈ ST , the following

notion of ST-trace corresponds to the one defined in [19, def.2.5] or [16, sec.7.3]. The ST-trace of

π is denoted ST (π) and is the sequence of labels of the steps of π where each label is annotated

with a0 if it labels an s-step or by an if it labels a t-step, where n ∈ N
+ is determined by counting

the number of steps until the s-step that adds the event e to the S set, with e being the event that

has been added to T in the current t-step.

Definition 4.6 (adjacent-closure). We say that a rooted and connected ST-configuration struc-

ture ST is adjacent-closed if the following are respected:

– if (S, T ), (S ∪ {e}, T ), (S ∪ {e, e′}, T ) ∈ ST , with e, e′ 6∈ S ∧ e 6= e′, then (S ∪ {e′}, T ) ∈
ST ;

– if (S, T ), (S ∪ {e}, T ), (S ∪ {e}, T ∪ {e′}) ∈ ST , with e 6∈ S ∧ e′ 6∈ T ∧ e 6= e′, then

(S, T ∪ {e′}) ∈ ST ;

– if (S, T ), (S, T∪{e}), (S, T∪{e, e′}) ∈ ST , with e, e′ 6∈ T∧e 6= e′, then (S, T∪{e′}) ∈ ST .

Proposition 4.7 (equivalent with adjacent-closure). A rooted and connected ST-configuration

structure ST is called closed under single events if it respects the following:

– ∀(S, T ) ∈ ST if e ∈ S \ T then (S, T ∪ {e}) ∈ ST ;

– ∀(S, T ) ∈ ST if e ∈ S \ T then (S \ {e}, T ) ∈ ST .

A rooted and connected ST-configuration structure ST that is closed under single events is

also adjacent-closed.

The example of the square with the empty inside is adjacent-closed but not closed under

unions nor under intersections. The example of the parallel switch of Winskel [20] is adjacent-

closed and closed under unions, but not closed under intersections. The parallel switch can be

pictured as only three sides of a cube in HDA.

Proposition 4.8 (correspondence between HDA and ST-structures). Acyclic and cubicalHDAs

correspond to rooted, connected, and adjacent-closed ST-structures (denoted as ST (H)).

Proof (sketch). Cells correspond to ST-configurations, where the dimension of the cell is given

by the number of events present in S but not in T . Acyclic should be associated with the fact that

we work with sets and each step adds events to one of the two sets S or T . The rootedness ensures

the existence of the initial cell (with empty sets of events) and the connectedness ensures that each

cell of dimension higher than 0 has at least one s map. The special property of a ST-configuration

ensures that s and t maps come in pairs. The adjacent-closure then ensures that one cell has all

the s and t maps and that cubical laws are respected. The method of “sculpting out” cells from

a big cell, or the sticking together of cells by identifying some of their faces, is possible because

closure under unions and intersections is not available. Such closures, e.g., would not allow to

have an empty square as in the examples before.

Correspondence between ST-structures and plain configuration structures:

Every configuration as in [17, def.5.5] corresponds to an ST-configuration where S = T . To

every ST-configuration structure ST we can associate a configuration structure by keeping only

those ST-configurations that have S = T ; i.e., C(ST ) = {T | (S, T ) ∈ ST ∧ S = T }.
It is easy to see that if an ST-configuration structure ST is rooted, or connected, or closed

under bounded unions, or intersections, then the corresponding C(ST ) is respectively rooted,
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connected, closed under bounded unions, or intersections. The rootedness and closure properties

are immediate. For the connectedness just apply two times the definition for ST-configurations to

obtain that for configuration structures.

But there is not a one to one correspondence between ST-configuration structures and the con-

figurations structures because there can be several ST-structures that have the same configuration

structure. The example is of one HDA square that is filled in and one that is not; both have the

same set of corners and hence the same configuration structure.

For stable ST-structures and stable configuration structures there is a one to one correspon-

dence. One can build from a configuration structure a corresponding ST-structure by adding for

each pair of configurations T and T ∪ {e} the intermediate ST-configuration also; i.e., have the

ST-configurations: (T, T ), (T ∪{e}, T ), (T ∪{e}, T ∪{e}) and then close under bounded unions

and intersections.

Definition 4.9 (concurrency and causality). For a particular (S, T ) of an ST-configuration

structure we define the two relations of concurrency and causality on the events of the ST-

configuration as:

concurrency: is denoted e||e′ and defined for e, e′ ∈ S as e||e′ iff ∃(S′, T ′) ⊆ (S, T ) : {e, e′} ⊆
S \ T ;

causality: is denoted e < e′ and is defined for e, e′ ∈ S : e 6= e′ as e < e′ iff ∀(S′, T ′) ⊆
(S, T ) : e′ ∈ S′ ⇒ e ∈ T ′.

Note that on ST-configuration structures the concurrency and causality are not interdefinable.

The notion of conflicting events (of cancellation as called by Pratt [12]) is not definable for a

specific ST-configuration because the notion of cancellation essentially says that the occurrence

of one event cancels the others. Conflict/cancellation is a general notion definable on the whole

ST-structure.

Definition 4.10 (conflict). For an ST-configuration structure ST and a set of events E ∈ ST the

relation of global conflict is defined as #E iff 6 ∃(S, T ) ∈ ST with E ⊆ S.

The standard notion of binary conflict is a particular instance of the definition above, where

E = {e, e′}. For stable ST-configuration structures, the constraints of being closed under bounded

unions and intersections guarantees that there is no conflict for the events of a particular ST-

configuration.

Definition 4.11 (hh-bisimulation for ST-configuration structures). A function f is an isomor-

phism of two ST-configurations (S, T )f(S′, T ′) iff f is an isomorphism of S and S′ that agrees

on the T and T ′ sets (i.e., f ↾T= T ′).

For two ST-configuration structures ST and ST ′, a relation R ⊆ ST ×ST ′×P(ST ×ST ′)
is called a history preserving bisimulation between ST and ST ′ iff (∅, ∅, ∅) ∈ R and whenever

((S, T ), (S′, T ′), f) ∈ R

1. f is an isomorphism between (S, T ) and (S′, T ′);

2. if (S, T )
a
−→ (Sa, Ta) then exists (S′

a, T
′
a) ∈ ST

′ and f ′ extending f (i.e., f ′ ↾(S,T )= f )

with (S′, T ′)
a
−→ (S′

a, T
′
a) and ((Sa, Ta), (S

′
a, T

′
a), f

′) ∈ R;

3. if (S′, T ′)
a
−→ (S′

a, T
′
a) in ST ′ then exists (Sa, Ta) ∈ ST and f ′ extending f with (S, T )

a
−→

(Sa, Ta) and ((Sa, Ta), (S
′
a, T

′
a), f

′) ∈ R.

A history preserving bisimulation is called hereditary is the following two back conditions hold:
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4. if (Sa, Ta)
a
−→ (S, T ) in ST then exists (S′

a, T
′
a) ∈ ST

′ and f ′ with f ↾(Sa,Ta)= f ′) and

(S′
a, T

′
a)

a
−→ (S′, T ′) and ((Sa, Ta), (S

′
a, T

′
a), f

′) ∈ R.

Proposition 4.12. For two acyclic and cubical HDAs, H and H′, their corresponding rooted,

connected and adjacent-closed ST-structures ST (H) and ST (H′) are hh-bisimilar (cf. Def. 4.11)

iff the original higher dimensional automata are hh-bisimilar (cf. Def. 2.7).

Proof (sketch). Intuitively, the forward steps in Def. 2.7(1 and 2) are matched in Def. 4.11 by

steps (2 and 3). The backward steps in Def. 2.7(5 and 6) are matched by the backward step 4 in

Def. 4.11. The l-adjacency steps in Def. 2.7(3 and 4) correspond to the restriction 1 in Def. 4.11

of f -isomorphism together with the adjacent-closure properties.

Proposition 4.13. For stable ST-structures and their corresponding stable configuration struc-

tures the hh-bisimulation from Def. 4.11 corresponds to that of [17, def.9.6].

The termination predicate of [17, def.9.6] can be defined for ST-structures also, and for HDAs

using the set of final states/cells. The hHDML can also express if these are maximal using ¬{}⊤
or ¬〈〉⊤ to say that no more events can be started or terminated in a cell/ST-configuration.

Definition 4.14 (hHDML interpreted over ST-structures). The hHDML logic formulas are

interpreted over a ST-configuration structure in a particular ST-configuration. The during modal-

ities {} and {} are moving on the s-steps, forward respectively backward; whereas the after

modalities 〈 〉 and 〈 〉 move on the t-steps. The rest is the same as in Def. 3.2.

Intuitively, when hHDML is interpreted in an ST-configuration (S, T ) a formula {a}ϕ says

that one new event labelled with a should be added to the set of started events S and the resulting

ST-configuration should be part of the ST-structure we are working with and the formula ϕ should

hold.

Proposition 4.15 (
hHDML
∼ and

hh
∼ coincide over ST-structures). For rooted, connected, and

adjacent-closed ST-configuration structures, the relations
hHDML
∼ (cf. Def. 3.3) and

hh
∼ (cf. Def. 4.11)

coincide.

Proof (sketch). The more difficult part is to show that
hHDML
∼ satisfies the restrictions of being a

hh
∼

over ST-configuration structures from Def. 4.11. The changing in the map indexes, or equivalently

in interchanging cell associations, that we were doing in Prop. 3.4 is here reflected in the change

of the isomorphism f that the
hh
∼ is defined with. The isomorphism is changed by interchanging

event associations. We need to change the isomorphism when problems appear from the adjacent-

closure property of the ST-structures that we work with. This change is always possible, without

braking the other forward and backward properties of the
hh
∼ , and such that it also caters for the

adjacent-closure property.

The notion of concurrent step [17, def.7.1] can be defined over ST-configuration structures (or

HDAs) and captured in the hHDML logic by restricting the language of the logic to using only

syntactic definitions of the form 〈A〉ϕ interpreted in the states (cells of dimension 0) of theHDAs.

The syntactic definition for a multiset of labels A is 〈A〉
△

= {A}〈A〉ϕ where {A} is {a1} . . . {an}

with ai ∈ A (analogous for 〈A〉). The concurrent steps of [17, def.7.1] become just (S, T )
A
−→

(S′, T ′) with T ′ = T and S′ = S ∪ {a1, . . . , an} for ai ∈ A, if the ST-configuration (S′, T ′) is

reachable from (S, T ) through a sequence of only s-steps. The standard Hennessy-Milner logic

formulas and the transitions in labelled transition systems are the restriction of concurrent steps

and formulas from above to A being a singleton set.
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5 Conclusion

We presented the history-aware higher dimensional modal logic as a response to the question of

what is a minimal extension in the style of standard modal logic of the previous HDML, with a

natural interpretation over the higher dimensional automata, that can capture the hereditary history

preserving bisimulation defined for this model of concurrency. This logic with past modalities

does not employ event variables (opposed to [1, 6]), but it uses the new modalities that talk about

what happens during the concurrent execution of events (besides the standard after modalities).

In the second part of the paper we have introduced the ST-configuration structures as a model

of concurrency extending the configuration structures of [18] to the setting of HDAs. We have

given various related definitions and made correlations with the similar notions from the other

models that we relate these with, i.e., (stable) configuration structures and (acyclic and cubical)

HDAs. The new hHDML was interpreted over these and the result of capturing hh-bisimulation

was shown again in this new setting.

Acknowledgements: The ST-configuration structures arose from a discussion with Luca Aceto.
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