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Abstract 

 A targetable nanocarrier consisting of a superpara-magnetic iron oxide (SPIO) core and 

a biodegradable and biocompatible polymer shell with the potential application in drug 

delivery system was prepared. The biodegradable and biocompatible poly (sebacic 

anhydride)-block-methylether-poly (ethylene glycol) (PSA-mPEG) was synthesized with poly 

condensation method to be used as the polymer shell for encapsulation of SPIO 

nanoparticles (SPIO-NPs). The synthesized block copolymer was charachterized by ܪ	1 NMR, 

FTIR and GPC. The change in chemical structure and molecular weight of the polymer in PBS 

at 37℃ was studied by FTIR and GPC.  

The magnetic nanocarriers were synthesized by nanoprecipitation method and 

morphology of these nanocarriers was studied by transmission electron microscopy (TEM).  

The size and iron oxide content of the nanocarriers were studied by dynamic light scattering 

(DLS) and inductively coupled plasma spectroscopy (ICP-MS) respectively, to find an optimal 

carrier system for delivering therapeutic agents to the tumor site. 

The zeta potential measurement was conducted on nanoparticles in both deionized 

water and phosphate buffer saline (PBS) to evaluate the surface charge of the particles in 

these mediums. The hydrodynamic radius ( ܴℎ) of the SPIO loaded polymeric nanoparticles 

(SPIO-PNP) was measured over 30 days .The ܴℎ did not change considerably so it can be 

concluded that the particles were stable in this time period. 

The cytotoxicity of SPIO-PNPs, SPIO-NPs and blank polymeric nanoparticles were 

investigated on MDA-MB-231 breast cancer cell line. The cell viability was high (> 85%) for all 

three samples meaning that they did not induce toxicity. 

The internalization of SPIO-PNP in MDA-MB-231 cell line was confirmed by TEM. To 

make sure that the particles are confined within cells, the nanoparticle treated cells were 

fixed by glutaraldehyde and later cross sectioned.  
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1. Introduction  

The absence of specificity of drugs for tumor cells is a major problem of conventional 

chemotherapy in cancer treatment. In order to probe sufficient concentration at the tumor, 

large doses of drug need to be administrated causing the same cytotoxicity in both cancerous 

and healthy cells. To avoid damage to the healthy tissue, the administrated dose is usually 

less than optimal. The ideal treatment would provide enough therapeutic agents to eliminate 

all the cancer cells while leaving the healthy tissue intact. Drug delivery systems are a 

promising field of interest for tackling these challenges, and can be defined as the process of 

releasing a bioactive agents at a specific rate and a specific site [1-4]. 

1.2. Nanotechnology for drug-delivery 

By applying nanotechnology in drug delivery, small molecular weight drugs and also 

macromolecules such as protein, peptide or genes are delivered to the tissue of interest. 

Therapeutic agents are incorporated in biocompatible nanocomposites such as nanoparticles, 

nanocapsules and micellar systems in submicron size, and can provide targeted delivery of 

the drug to sustain drug effect in the target tissue and to protect the therapeutic agent from 

enzymatic degradation[5]. 

Among the different types of nanoparticles, superpara-magnetic iron oxide (SPIO) 

nanoparticles (NPs) are considered to be promising candidates in cancer therapy applications, 

as carriers in targeted drug delivery systems. Targeting these magnetic carriers by applying 

magnetic field can eliminate the complications caused by conventional cancer treatment, 

where the body is flushed by the drug[6].      

1.2.1. Nanoparticulate drug delivery systems formed by amphiphilic block 

copolymers 

Block copolymers with amphiphilic characteristics are macromolecules having a large 
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solubility difference between hydrophobic and hydrophilic segments with opposite affinities 

for an aqueous solvent. Block copolymers are at the center of attention in drug delivery 

systems because of their ability to form various types of nanoparticles. For drug delivery 

purposes, biocompatible and biodegradable polymers like polyesters, poly (amino acids) or 

poly anhydride can be used. These hydrophobic blocks are covalently bonded to 

biocompatible hydrophilic blocks like polyethylene glycol (PEG). Amphiphilic copolymers 

have the ability to form nanoparticles with different structures namely: micelles, 

nanospheres, nanocapsules and polymerases (Figure 1-1) [7]. 

 

Figure 1-1: General architecture of Nanoparticulate drug delivery systems formed by amphiphilic block 
copolymers  

1.2.1.1. Micelles 

Micellar self-association takes place above the critical micelle concentration (CMC) in a 

dilute solution of block copolymer in a specific solvent and at fixed temperature. In an 

aqueous solution, this phenomenon occurs because the amphiphilic copolymer orients itself 

in a way that hydrophobic blocks try to avoid the aqueous medium and achieve the minimum 

free energy level. Micellization of block copolymers is strongly dependent on temperature; 

therefore, for every concentration, a critical micelle concentration is specified. The self-

assembling process of polymer segments may generate a core-sell structure, in which the 

inner core is composed of hydrophobic segments. This architecture provides the space for 

solubilization of hydrophobic pharmaceutical agents; the micelle diameter ranges usually 

from 10 to 100 nm. Micelles are categorized as association or amphiphilic colloids but they 
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are not considered to be solid particles [7, 8]. 

1.2.2. Nanospheres 

Nanospheres are polymeric matrix systems in which a therapeutic agent is entrapped, 

encapsulated, absorbed or chemically bounded. In comparison with micelles, nanospheres 

usually exhibit broader size distribution and they are larger in size. Their diameter is often 

between 100 to 200 nm.  Nanospheres, in contrast to micelles, are classified as solid colloidal 

particles. Emulsification and nanoprecipitation are the two most important methods of 

nanosphere preparation. The latter involves dissolution of the block copolymer in an organic 

water miscible solvent followed by dispersion in aqueous media in presence or absence of 

surfactant. The water miscible solvent diffuses out in water; and as a consequence, the 

polymeric particle is formed [7]. 

1.2.3. Nanocapsules and polymersomes 

Nanocapsules are composed of a liquid or semi-liquid core surrounded by a solid 

material shell. A therapeutic agent can be confined to a reservoir or within a cavity 

surrounded by a polymer membrane or coating. Nanocapsules have an oil core with the 

ability to load a high amount of hydrophobic pharmaceutical agent[9]. For nanocapsule 

formation, the drug is first dissolved in a water-miscible organic solvent. An oil miscible with 

solvent but immiscible with mixture is added to this solution which is further dispersed in an 

aqueous media. Consequently, the solvent diffuses into the water and the nanocapsules are 

formed by aggregation of the polymer around the oil droplet [7, 10].  

Alternatively, polymersomes have the same architecture as nanocapsules but in 

contrast to nanocapsules, the core of vesicle is composed of an aqueous phase with the 

ability to encapsulate water-soluble drugs [7, 11].      
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1.3. Targeting the tumor site  

After intravenous administration, anti-cancer therapeutic agents are generally cleared 

from blood circulation rapidly and only a small fraction reaches the tumor site. Besides, 

reaching the tumor site does not guarantee a strong therapeutic effect because the drug may 

be cleared from the tumor too rapidly and may not be exposed to the tumor long enough. 

Another limitation is the physicochemical properties of the drug which makes entering the 

target cell difficult. In order to suppress these problems, targetable drug delivery systems 

have been developed. These systems utilize phenotypic properties of the diseased cells to 

concentrate drug at the target cells. Consequently, the drug is targeted to the tumor site and 

drug level in the tumor is enhanced [12]. 

1.3.1. Active targeting 

Tumor cells express many molecules on their surface in comparison with normal cells. 

These molecules can be detected by antibodies. Active targeting displays this characteristic 

of cancer cells to target the drugs to the tumor site. Active targeting, which is also known as 

ligand targeting, involves binding of ligands to the surface of drug carriers. These ligands, 

would then, bind to the molecules expressed on the cancer cells (Figure 1-2)[13]. Folic acid is 

one the most attractive molecules for targeting cancer cells. Primarily, because the folic acid 

receptor is overexpressed in many human cancer cells including ovary, brain, kidney, brain, 

myeloid and lung, and also, because of its high binding affinity, low immunogenicity, ease of 

modification, small size, stability during storage as well as its low cost [14].    

 

Figure 1-2 : ligand coated nanoparticles for active targeting of cancer cells 
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1.3.2. Passive targeting 

Passive targeting uses the enhanced permeability and retention effect (EPR) as one of 

the approaches to target nanoparticles to the tumor site. EPR is the result of the combination 

of leaky vascular and poor lymphatic drainage of a solid tumor. These leaky vessels allow the 

passage of drug carriers ranging from 10 to 500 nm in size depending on the tumor type and 

its location in the body. This preferential distribution to the tumor site facilities the eventual 

release of pharmaceutical agent from the carrier system (Figure 1-3). Particles with an 

appropriate size must have properties to provide a long circulation time. Longer circulation 

times can be achieved by surface modification of nanoparticles with polymers with 

hydrophilic nature such as polyethylene glycol (PEG). There are more aspects to the EPR 

effect than initially defined, which can give a better understanding of sophisticated processes 

in cancerous tissues[15]. 

 

Figure 1-3: accumulation of nanoparticles in tumor cells via EPR effect    

 

1.3.2.1. EPR fundamentals 

In a solid tumor, blood vessels are irregular. The reason for this deficiency is that when 

a solid tumor reaches a certain size, the normal vasculature in its vicinity is not able to 

provide all the required oxygen supply for the tumor’s proliferation. When cells start to die, 
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they produce growth factors that trigger the budding of new blood vessels from surrounding 

capillaries. This leads to the rapid formation of new irregular blood vessels in discourteous 

epithelium which lacks basal membrane of a normal tissue [16, 17].    

The enhanced retention component of the EPR effect can be described as follows: in 

healthy tissues, the extracellular fluid is continuously drained to the lymphatic vessels. This 

continuous draining, the renewal of interstitial fluid and the recycling of extravasated solutes 

push the colloids back into circulation, whereas in tumors, the deficiency in lymphatic 

function and the minimal uptake of interstitial fluid inhibit the return of colloids to the blood 

stream by convective force. Therefore, nanoparticles that have reached the perivascular site 

accumulate in tumor [16, 18].      

1.3.2.2. Long circulating nanoparticles  

 PEGylation provides hydrogen bonding between water molecules and the ether 

oxygens of PEG. The tightly bound water molecules around PEG chains form a hydrated layer 

around the particle; this minimizes the interactions between nanoparticles and plasma 

protein [19] which prevents opsonization of the particles by the reticulo-endothelial system 

(RES). PEG masks the surface of nanoparticles by reducing protein and plasma adsorption to 

the nanoparticle, inhibiting recognition of PEGylated nanoparticles as foreign objects in the 

blood stream so the particles can circulate for a longer time. Longer circulation allows the 

particles to be targeted to the cancerous cells by active or passive targeting. PEGylation can 

be achieved by several approaches including adsorption of PEG-containing polymers on the 

surface of nanoparticle, direct conjugation of PEG to the nanoparticles or by using block 

copolymers, which have PEG in their backbone for forming the nanoparticle [15, 19].  

 

1.3.3. Magnetic particle in biomedicine 

 Superpara-magnetic iron oxide nanoparticles (SPIO-NPs) are composed of iron oxide 

cores with the property to be targeted to the desired area through applying an external 
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magnetic field. Strong permanent magnets like neodymium iron boron (Nd-Fe-B) are widely 

used for this purpose. Particles with super paramagnetic characteristics have a diameter 

below ~	30− 40	݊݉ which means that once the magnetic field is removed, they do not 

show any magnetization properties. This feature is very important in clinical applications, 

because if the particles do not lose their magnetic properties after removing the magnetic 

field, they tend to aggregate and can be easily recognized by macrophages [6, 20]. Moreover, 

SIPO-NPs are considered to be benign to the body mainly because under acidic condition, 

iron oxide is dissolved in the body and forms	݁ܨଷା. This increased number of ferric ions adds 

up to natural ion storage in the body which is 3-5 grams for an adult human [21]. The 

targetability, together with benignity to the body are two main reasons making SPIO-NPs 

increasingly attractive in biomedical applications. SPIO-NPs have provided promising features 

in cancer research as carriers in targeted drug delivery systems, tumor imaging, cancer 

hyperthermia therapy and other techniques [22].  

During the past decades, magnetic nanoparticles and microparticles have been 

developed to retain drug-loaded particles from blood circulation and deliver it to a specific 

site in vivo. This reduces the distribution of cytotoxic drug leading to a decrease in side 

effects. The localized targeting of the drug also reduces the required dosage[23]. This drug 

delivery technique can be used in the case of solid tumors close to the surface of the body 

because the strength of magnetic field decreases with distance [20]. 

Magnetic nanoparticles can couple with other targeting strategies for more efficient 

outcome. Magnetic nanoparticles can passively accumulate in many tumor tissues via the 

EPR effect owing to their nanosize. Moreover, tumor-selective ligands can be attached to the 

surface of magnetic nanoparticles to specifically bind to moieties that are over-expressed on 

the tumor cells. This facilitates active targeting of magnetic particles [24].      

1.4. Magnetic drug delivery 

Magnetic drug delivery conceptualizes targeting therapeutic agents by either attaching 

the drug to the surface of magnetic nanoparticle or encapsulating the drug within a 
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nanocomposite mixture of a polymer and magnetic nanoparticle. The approach of interest in 

this study lies in the encapsulation of cytotoxic drug along with magnetic nanoparticles inside 

a polymer matrix (Figure 1-4). Also, the presence of polymer provides a site for anchoring 

therapeutic drugs or DNA for targeted gene deliver [25].  

The large surface area of SPIO-NPs provides the possibility of enhanced covalent 

attachment of various receptors, antibodies and ligands to bind to specific targets and to 

release the drug with an appropriate dose [6]. In a recent research, R11 peptides were 

conjugated to poly (N-isopropylacrylamide-acrylamide-allylamine) nanoparticles with iron 

oxide core for active targeting of drugs for prostate cancer therapy [26].  

Once the drug has been incorporated into the nanoparticles and placed in vivo, these 

magnetic nanocomposites are retained at the target site using high-field rare earth magnet 

[25]. In order to direct the magnetic drug carrier successfully at the target site, the external 

magnetic force should suppress the blood flow pressure in arteries and capillaries [20]. After 

concentrating at target, the drug is released by either changing the physiological condition 

such as pH or temperature or by enzymatic activity [23].  

Biodegradable polymer shell carries the drug by either adsorption or entrapment. The 

incorporation of therapeutic agent and SIPO-NPs in to the polymer shell can be achieved by 

several techniques such as nano/micro emulsion method, nanoprecipitation method and 

micelle formation. Self-assembly and nanoparticle formation of amphiphilic block copolymers 

are promising routes in the formation of multifunctional nanoparticles for imaging and drug 

delivery applications. In order to enhance the targeting efficiency, the polymer coating can 

be further functionalized with molecules such as biotin or avidin, which are attach points for 

targeting antibodies to the carrier complex [23, 27].  
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Figure 1-4: encapsulation of hydrophobic drug along with iron oxide nanoparticles inside a polymer matrix 

  

1.4.1. Colloidally stabilized SPIO particles for polymeric drug delivery systems 

SIPO-NPs tend to agglomerate due to their large surface area to volume ratio and 

strong dipole-dipole attraction in both magnetic field and biological medium. This leads to 

heterogeneous size distribution and rapid clearance from blood stream. To overcome these 

complications and form a homogenous solution, SIPO-NPs are coated with suitable molecules 

or polymers. This homogenous solution is called ferrofluid. Steric and electrostatic repulsive 

forces provided by these agents stabilize the particles in the suspension [28]. The molecules 

used for stabilizing the SIPO-NPs should be biocompatible and biodegradable idyllically. 

However, surfactants such as oleic acid, lauric acid and alkane sulphonic acids are the most 

commonly used molecules. Dimension and surface charge of the particle are other important 

factors in the stability of SPIO-NPs. Particle size should be sufficiently small so that 

sedimentation by gravity can be avoided. High surface charge provides dispersion stability 

due to electrostatic interaction [23].    

The nature of functional groups on the surface of SPIO-NPs mostly determines the 

surface charge of the particle. The surface charge can be measured quantitatively as an 

electrical potential in the interfacial double-layer on the surface of nanoparticles in 

suspension. A high zeta potential value, either negative or positive, indicates that the SPIO-

PNs are stable in dispersion due to the electrostatic interactions [23].  

1.4.2. SPIO-NP synthesis  

The most common method for SPIO-NP synthesis is the co-precipitation method which 

involves addition of base to aqueous solution of ferrous ( ݁ܨଶା) and ferric ( ݁ܨଷା) in a 1:2 
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stoichiometry. The result is a black precipitate of spherical magnetite nanoparticles with 

uniform size. The size and shape of nanoparticles can be tailored by choosing the appropriate 

type of salts (e.g. chlorides, sulphates, nitrates, perchlorates, etc.), adjusting ݁ܨଶା and ݁ܨଷା 

ratio and controlling pH and ionic strength of media. It should be noted that the reaction 

needs an oxygen-free environment; otherwise, the magnetite can be further oxidized to 

ferric hydroxide [29]. The synthesis can be conducted in the presence of some surface- 

complexing agents, which can provide colloidal stability or biocompatibility. Dextran, Oleic 

acid and polyethylene glycol (PEG) are among these several SPIO-complexing agents [30].   

Recently, the microemulsion technique has been adapted to synthesize-NPs. This 

technique has the ability to control the size and shape of the particles more preciously. 

Water in oil is a more common microemulsion technique for SPIO-NP synthesis. In this 

method, iron salts aqueous nanodroplets are enclosed within surfactant layer and dispersed 

in an organic phase to form reverse micelle. Adding alkaline nanodroplets to this, results in 

the formation of SPIO-NPs within the micelles [30, 31]. 

 

1.4.3. Applicable polymers in drug delivery systems 

Designing polymeric drug delivery systems requires a through consideration of 

polymer’s biocompatibility and biodegradability. Until now, there has been no precise 

definition or accurate method of determining the biocompatibility due to the intricate nature 

of interaction between materials and biological systems. In spite of that, a criterion such as 

acceptance by a living organism can be applied to evaluate biocompatibility. By this definition, 

in a biocompatible response, toxicity as well as inflammatory, possible immune response and 

protein adsorption should be reduced to the smallest possible amount. In a biodegradable 

polymer system, degradation products of a polymer do not evoke immune or toxic response 

[32]. 

 There are two classes of biodegradable polymers based on their degradation 

mechanism; hydrolytically degradable polymers and enzymatically degradable polymers. 



Page | 11 
 

Most of the naturally occurring polymers undergo enzymatic degradation while polymers 

with labile chemical bond in their backbone are subjected to hydrolytic degradation. 

Functional groups such as esters, orthoesters, anhydrides, ureas, etc. may undergo hydrolysis. 

There are two general mechanisms for synthesizing hydrolytically sensitive polymers for 

biomedical applications; step (condensation) polymerization and chain (addition) including 

ring opening polymerization. Condensation mechanism is used to synthesize different 

hydrolytically sensitive polymer classes, such as polyanhydrides, poly (ortho esters) and poly 

urethanes [33].  

 Several biodegradable polymer systems have been pre-clinically investigated during 

the past decades for localized chemotherapy. These systems include both naturally occurring 

and synthetic polymers such as polysaccharides (chitosan, alginate and hyaluronan), protein-

based polymers (collagen, gelatin and albumin), polyesters and polyanhydrides. Among these 

different classes of biodegradable polymeric drug carrier systems, only a few polymer-based 

formulations have reached clinical testing. Poly (lactic-co-glycolic acid) (PLGA) based localized 

injectable delivery system and implantable polyanhydride copolymer systems for brain 

cancer treatment are among these clinically tested systems [34-36]. 

1.4.3.1. Natural polymers 

Natural polymers are promising for localized chemotherapeutic delivery systems since 

they have great biocompatibility and the degradation products are non-toxic and non-

immunogenic. However, some complications associated with their purification, 

immunogenicity and the possible disease transformation from their source organism to 

humans exist [34]. 

1.4.3.2. Polyesters 

Polyesters are the earliest and most extensively investigated class of biodegradable 

polymers. Depending on monomer unit, polyesters can be synthesized from various 

monomers via ring opening and polycondensation polymerization [33]. Among this class of 

polymers, poly (lactic acid-co glycolic acid) (PLGA) is the most investigated polymer. PLGA has 
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been used broadly for designing different localized delivery systems such as microparticles 

and implants. Despite the fact that polyesters’ acidic degradation products can lead to local 

irritation and instability of the drug being delivered, polyester-based drug delivery systems 

such as PLGA are considered biocompatible and biodegradable [34].  

1.4.3.3. Polyanhydrides 

Polyanhydrides undergo hydrolytic degradation due to the highly sensitive aliphatic 

anhydride bond in their backbone. The hydrophobic nature of the polymer, combined with 

hydrolytically labile backbone, prevents water penetration to polymer matrix, leading to 

surface erosion of the polymer. This hydrolytic instability, together with surface-eroding 

characteristic, makes this class of polymers attractive for controlled drug delivery systems. 

The important characteristic of polyanhydrides is that in contrast to polyesters, they degrade 

to products which are not cytotoxic or inflammatory. This material was approved by US FDA 

as a drug delivery carrier in 1966 following extensive in vitro and in vitro drug release and 

biocompatibility evaluations [33, 34, 37, 38]. 

Both homo- and co-polyanhydrides with different properties have been synthesized by 

melt condensation method. The copolymerization of aliphatic polyanhydride like poly 

(sebacic anhydride) (PSA) with hydrophobic aromatic polymer residues have been 

investigated to design polymeric systems with controllable degradation rate [33]. 

1.4.4. Methods for designing magnetic drug carriers 

Encapsulating drug molecules along with SPIO-NPs within the polymer coating 

envelope can be obtained using different methods. Gomez-Lopera et al. described a double-

emulsion method for preparing colloidal particles with magnetic core and a biodegradable 

poly (DL-lactide) polymer shell. The technique includes formation of water in oil emulsion of 

an aqueous solution of a hydrophilic drug and/or an aqueous suspension of magnetic 

particles dispersed in an organic solution of polymer. This emulsion is used to prepare the 

second emulsion in an aqueous surfactant solution. The resultant colloidal particles were 

both responding to magnetic field and useful as drug delivery system [39]. 
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In a more recent research, an emulsion-diffusion-evaporation technique was used to 

render nanocarriers loaded with SPIO-NPs and doxorubicin (SPIO/DOX-NP) and nanoparticles 

loaded with SPIO-NPs and paclitaxel (SPIO/PTX-NP). The SPIO-NPs were surface-modified 

with oleic acid and dispersed in dichloromethane (DCM) and the three polymers used for the 

encapsulation of drugs and SPIO were: PLGA, PLGA-PEG, and PCL-PEG. The organic solution 

contained polymer, SPIO-NPs and the drug. This solution was emulsified by adding the 

organic phase to an aqueous solution containing a surfactant followed by sonication. The 

mixture was then added drop-wise and under magnetic stirring to another aqueous phase 

contacting surfactant and stirred overnight letting the organic solvent evaporates (Figure 

1-5)[40]. 

 

Figure 1-5: nanocarriers loaded with SPIO-NPs and drug [40] 

In a different research, Filippousi et al. used the nanoprecipitation method to load taxol 

and SPIO-NPs within a polymer matrix. Methoxy poly (ethylene glycol)-poly (propylene 

succinate)-methoxy poly (ethylene glycol) (mPEG-PPSU-mPEG) and taxol were dissolved in 

tetrahydrofurane (THF) and the SPIO-NPs were dispersed in THF by sonication. By diffusion of 

this solution into the aqueous phase, multifunctional nanoparticles were formed [41].   
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1.5. Considerations for designing polymeric magnetic drug delivery systems 

When SPIO-NPs are used as drug carriers, size, morphology and charge of the carrier 

system should be closely investigated. These parameters determine the behavior of drug-

loaded nanoparticles in the blood stream and affect blood circulation time as well as 

bioavailability of the particles in the body. Additionally, magnetic properties and 

internalization of the particles depend on the size of particles. Particles with a size over 200 

nm are concentrated in spleen and, consequently, removed by phagocyte system whereas 

particles smaller than 10 nm in diameter by renal clearance [29]. 

1.6. Experimental techniques  

This chapter has a closer look on the experimental techniques used to characterize the 

multifunctional particle with a SIPO-NP core and a biodegradable polymer shell and 

introduce the biodegradable polymer used for encapsulation of SPIO core.   

1.6.1. Introducing Poly (Sebacic anhydride)-block-methyl ether poly (ethylene glycol) 

(PSA-mPEG) 

As mentioned in the introduction section, poly anhydrides including poly (sebacic 

anhydride) provide a controlled drug delivery system for pharmaceutical agents by surface 

erosion besides polyanhydrides and their degradation products are highly biocompatible.[42] 

Due to these important characteristics, (PSA-mPEG) was chosen as the biodegradable 

polymer shell for encapsulating SIPO-NPs. The block-copolymer was synthesized via melt-

condensation method using sebacic anhydride pre-polymer and commercial poly (ethylene 

glycol) methylene ether (mPEG). The introduction of PEG in copolymer formula adjusts the 

release rate and hydrophilic properties of the drug delivery system. The chemical structure of 

the copolymer is depicted below Figure 1-6[42]. 
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Figure 1-6: chemical structure of PSA-mPEG  

1.6.2. Nanoparticle characterization 

The focus of this study is on the characterization of these multifunctional nanocarriers 

rendered by incorporation of SIPO-NPs into a biodegradable polymer shell. Size, morphology, 

stability, and iron oxide content of these nanocarriers were studied with appropriate 

experimental techniques. Methods used to study these features are: dynamic light scattering 

(DLS), zeta potential, transmission electron microscopy (TEM), inductively coupled plasma 

mass spectroscopy (ICP-MS) and high-performance liquid chromatography (HPLC). Here we 

discuss the theory and background of zeta potential and dynamic light scattering 

measurement more closely.  

1.6.2.1. Zeta potential 

Zeta potential gives an indication about the potential stability of a colloidal system. A 

large negative or positive potential (> ±30) results in electrostatic repulsion between the 

particles, which leads to a greater stability of the particles. By definition, zeta potential of a 

colloidal system is the potential at the edge of the electrical double layer and it represents 

the effective surface charge of the particles. In ionic solutions, charged particles have a layer 

of ions, strongly bound to their surface. A second layer comprise of loosely associated ions 

diffuses around the first layer. These two layers are known as electrical double layer. When 

particles move this double layer, the shell is also moved along with the particle [43, 44]. 

In a zeta potential measurement, the electrophoretic mobility of nanoparticles is 

determined upon applying an electrical field. Electrophoretic mobility of a particle is the 
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velocity by which nanoparticles move in a solution. The zeta potential can be determined by 

equation 1:     

૆ = ૝ૈિஜ
ઽ۳

				        1 

Where ߦ	is the zeta potential (mV), ߟ is the viscosity of the dispersion medium (P), µ is the 

migration velocity (ܿ݉ ⁄ݏ  is the dielectric constant of the dispersion medium, and E is the ߝ ,(

potential gradient (Voltage applied/distance between electrodes) [45]. 

1.6.2.2. Dynamic light scattering (DLS) 

DLS determines time-dependent properties such as diffusion coefficient, hydrodynamic 

radius and its distribution by dynamic changes of scattered light intensity. This random 

fluctuation in scattered light intensity is due to the Brownian motion of molecules in the 

solution which is caused by constructive or sometimes instructive light scattered from the 

molecules in the solution. Detecting these time-dependent fluctuations gives the possibility 

to explore the relaxation of concentration fluctuations through equilibrium at length scale 

of	ିݍଵ. 

ࢗ = ૝࢙࢔.࣊
ࣅ

ࣂ)	ܖܑܛ
૛

)    2  

Here q is the wave vector, ݊௦ is the refractive index of the solution, λ is the wavelength of 

scattering light in a vacuum and ߠ is the	 scattering angle. If the scattered field obeys 

Gaussian statistics, the experimentally obtained normalized intensity autocorrelation 

function ݃ଶ(ݍ,  is directly related to the first order electric field autocorrelation function  (ݐ

݃ଵ(ݍ,  :by the Sigert equation  (ݐ

,ࢗ)૛ࢍ (࢚ = ૚ + ,ࢗ)૚ࢍ|࡮  ૛     3	|(࢚

B (≤1) is an empirical factor. The correlation function has been described by a single 

exponential followed by the stretched exponential at longer times.  

,ࢗ)૚ࢍ (࢚ = ࢚−ቂ࢖࢞ࢋࢌ࡭ ൗࢌ࣎ ቃ+ ࢚)−ൣ࢖࢞ࢋ࢙࡭ ൗࢋ࢙࣎   ൧    4ࢼ	(
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ࢌ࡭ + ࢙࡭ = ૚         5 

߬ ௦ is the amplitude of the slow mode. ߬௙ andܣ ௙ is the amplitude of the fast mode andܣ ௦௘are 

the fast relaxation time and the effective slow relaxation time, respectively.  (1≥ ߚ >0) ߚ is 

the measure of the width of the distributions of relaxation times. The slow relaxation time is 

calculated by the following equation: 

࢙࣎ ≡ ∫ ࢚)−ൣ࢖࢞ࢋ ൗࢋ࢙࣎ ൧ஶࢼ	(
૙ dt= (࢚ ൗࢋ࢙࣎ )ડ(૚ ൗࢼ )     6 

Where Γ is the gamma function. 

When the fast and slow relaxation modes are diffusive (ݍଶ dependent):  

ࢌࡰ = ૚ ൗ	ࢌ࣎  ૛      7ࢗ

 The apparent hydrodynamic radii ܴ௛  can be calculated by using Stokes-Einstein equation: 

ࢎࡾ		 = ࢀ࡮࢑
૟ࡰࣁ࣊

               8 

݇஻ is the Boltzmann constant,	ܶ is the absolute temperature and ߟ	 is the solvent viscosity 

[46]. 
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2. Experimental 

2.1 .Pre-polymer synthesis 

Sebacic acid (20.0g) was refluxed with acetic anhydride (200 ml) at 140	℃ for 45 

minutes under nitrogen atmosphere. Acetic acid and unreacted acetic anhydride were then 

removed by rotary evaporator at 60℃. The resulting oligomers were recrystallized overnight 

at 0	℃   from dry toluene. The crystals were subsequently added to 200 ml extraction solvent 

(1:1 dry petroleum ether/di ethyl ether) to extract traces of acetic anhydride and toluene. 

The purified pre-polymer was dried overnight in vacuum at room temperature (88.5% yield) 

[47]. 

2.2. Block copolymer synthesis 

Sebacic anhydride pre-polymer (PSA) (4.0g) and poly (ethylene glycol) monomethyl 

ether (mPEG) (3.0 g) (ܯ௪=2000) were placed in a flask at 180	℃, in vacuum for 2 hours to 

perform melt-condensation. The raw product was dissolved in 40 ml dry chloroform and 

precipitated afterwards in 200 ml anhydrous diethyl ether. The purified PSA-mPEG was dried 

overnight in vacuum at room temperature (81.4% yield)[48]. 

2.3. Characterization of the pre-polymer and copolymer 

The chemical structure of pre-polymer and block copolymer was confirmed by ܪ	ଵ  NMR 

and the spectrum was recorded with a Bruker DRX 500 MHz spectrometer. A 1 wt % polymer 

solution in ݈ܥܦܥଷ was used for the measurement. 

FTIR spectroscopy was done by a Perkin Elmer spectrum one spectrometer to confirm 

the chemical structure of PSA, PSA-mPEG and its degradation products. The polymer samples 

pellets were prepared using KBr. 

Number average molecular weight (ܯ௡ ), weight average molecular weight, and 

polydispersity index (PDI) of the synthesized block copolymer were measured by gel 

permeation chromatography (GPC) (Measurements were done at KTH) using 
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polymethylmethacrylate (PMMA) as standard for calibration. Measurements were done in 

triplicate and the results are reported in average.     

2.4. In vitro hydrolytic degradation 

The degradation study of PSA-mPEG was performed in 10 ml phosphate saline buffer 

(PBS) of pH 7.4.  Three samples containing 200 mg polymer were prepared for three time 

intervals. The samples were placed in an incubator shaker (Edmund Bühler GmbH model 

TH30) at 75 rpm and 37℃. A 1-ml aliquot of PBS was replaced by fresh PBS every 24 hours. 

After 3 days the PBS in the first sample was removed and then lyophilized and kept at -80℃ . 

The second sample was treated with the same procedure after 6 days and the third one after 

10 days. The degradation products were further characterized by FTIR spectroscopy. The first 

and third samples were chosen to investigate the change in molecular weight by GPC. 

Measurements were done in triplicate and the average molecular weight was reported.  

2.4.1. Phosphate buffer saline (PBS) preparation 

PBS was prepared by dissolving 2.175 g	ܰܽ0.068 ,݈ܥ g	ܪܭଶܲ ସܱ, and 0.284 g	ܰܽଶܱܲܪସ 

in 200 ml deionized water. The pH was adjusted to 7.4 either by adding 1N ݈ܥܪ	or 1Nܱܰܽܪ. 

The final volume was then brought to 250 ml by adding deionized water[49]. 

2.5. Nile red loaded nanoparticles 

To evaluate the drug loading properties of PSA-mPEG nanoparticles, nile red was used 

as a hydrophobic drug model. This drug model was encapsulated within PSA-mPEG 

nanoparticles by nanoprecipitation method. Nile red stock solutions of 0.005 (w/v) % and 

0.01 (w/v) % in tetrahydrofuran (THF) were prepared. PSA-mPEG (20mg) was dissolved in 

 l nile red (0.01 (w/v) %) was added to the polymer solution. Fromߤ	l THF and 400ߤ 4600

0.005 (w/v) % nile red stock solution, 300 ߤl was added the same way to 4700 ߤl of polymer 

solution in THF containing 20 mg PSA-mPEG. 

The organic solution containing dye and polymer was added drop-wise by needle and 

syringe to 15 ml filtered (0.1	݉ߤ MILLEX® VV) deionized-water (non-solvent) under magnetic 
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stirring at room temperature. THF was removed afterwards by a rotary evaporator. Resulting 

nile red-loaded nanoparticles were recovered by ultra-centrifugation (Beckman L-80 XP 

ultracentrifuge) for 1 hour with 25000 r.p.m at 4℃ . The supernatant which contained non-

encapsulated nile red was discarded and nanoparticles were then lyophilized and stored at 

4℃. 

2.6. Nile red encapsulation efficiency and content 

The amount of nile red entrapped in PSA-mPEG nanoparticles was measured by HPLC 

(Perkin Elmer Series 200). 1 mg of accurately weighted nanoparticles was suspended in 1 ml 

of ethanol to extract the encapsulated nile red. For complete extraction, the suspension was 

sonicated for 10 minutes and the nanoparticles were separated by a spin down centrifuge. 

The amount of encapsulated nile red was measured by injecting 10 ߤl of supernatant and 

detection at 550 nm using a calibration curve made based on peak area and absolute amount 

of nile red. HPLC measurements were done at analytical chemistry group at UIO.  

(%)ݕ݂݂ܿ݊݁݅ܿ݅݁	݊݋݅ݐ݈ܽݑݏ݌ܽܿ݊݁ =
	ݏ݈݁ܿ݅ݐݎܽ݌݋ܽ݊	݊݅	݀݁ݎ	݈݁݅݊	݂݋	ݐ݊ݑ݋݉ܽ

݀݁ݎ	݈݁݅݊	݂݋	ݐ݊ݑ݋݉ܽ	݈ܽ݅ݐ݅݊݅ × 100 

ݐ݊݁ݐ݊݋ܥ	݁ݕܦ ቀ%
ݓ
ݓ
ቁ =

ݏ݈݁ܿ݅ݐݎܽ݌݋݊ܽ݊	݊݅	݀݁ݎ	݈݁݅݊	݂݋	ݐ݊ݑ݋݉ܽ
ݏ݈݁ܿ݅ݐݎܽ݌݋݊ܽ݊	݂݋	ݐ݊ݑ݋݉ܽ × 100 

2.7. SPIO loaded polymeric nanoparticle preparation 

SPIO loaded polymeric nanoparticles (SPIO-PNPs) were prepared by the 

nanoprecipitation method using PSA-mPEG as the polymeric vehicle. SPIO-NPs had an 

average diameter of 10 nm and the surface of the particles was hydrophobically modified 

with oleic acid. SPIO-NPs (5 mg/ml) in THF (sample 1=40 ߤl, sample 2=80 ߤl, sample 3=120 ߤl, 

sample 4= 160 ߤl) were added to the solution of 20 mg PSA-mPEG in THF (sample 1=4.960 ml, 

sample 2=4.920 ml, sample 3=4.880 ml, sample 4= 4.840 ml). Later, the suspensions were 

added drop-wise to 15 ml of filtered deionized water (0.1	݉ߤ MILLEX® VV)  by needle and 

syringe under constant stirring of an overhead stirrer at 900 r.m.p (Ruhrwerk EUROSTAR 

power control-visc P7). THF was further removed by a rotary evaporator (Figure 2-1). 
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Figure 2-1: Schematic of SPIO-NPs loaded in PSA-mPEG by nanoprecipitation method   

2.8. Purification of SPIO loaded nanoparticles 

After solvent removal, nanoparticles were collected by ultracentrifugation (Beckman L-

80 XP ultracentrifuge) at 25000 r.p.m for 60 minutes at 4℃. The supernatant was discarded 

and the nanoparticles were suspended in 4 ml solution of 0.05 Mܱܰܪଷ. In order to remove 

unloaded SPIO-NP, the suspension was neutralized with PBS pH 7.4. The resulting iron 

hydroxide aggregates were eliminated by mild centrifugation (2000 r.p.m for 15 minutes). 

The loaded SPIO-PNPs in the supernatant were collected by ultracentrifugation (27000 r.p.m 

for 90 minutes at 4℃ and re-suspended in 5 ml of deionized water [50]. 

The resulting suspension was stored for studying its size, morphology and zeta 

potential while for studying iron oxide content of SPIO-PNPs the suspension was lyophilized 

and stored at 4℃ for further measurement. 

 

2.9. Inductively coupled plasma spectroscopy (ICP-MS) analysis 

Iron content of SPIO-PNPs was measured using ICP-MS. Analysis was performed using a 
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Thermo Finnigan Element 2 instrument (Bremen, Germany). The measurements were done 

at chemistry department of NTNU.  

To correlate the iron concentration obtained from ICP-Ms analysis to the amount of 

iron oxide particles, the following relation was used[29] : 

1 particle of SPIO = 62896 iron atoms 

1 g of SPIO-NPs = 1.71 × 10ଵ଻particles 

The iron oxide content in SPIO loaded polymeric nanoparticles is calculated by the 

below relation [50] : 

(%)݊݁ݐ݊݋ܿ	݁݀݅ݔ݋	݊݋ݎܫ =
ܱܫܲܵ	݊݅	݁݀݅ݔ݋	݊݋ݎ݅	݂݋	ݏݏܽ݉ − ܲܰܲ

ܱܫܲܵ	݂݋	ݏݏܽ݉ − ܲܰܲ × 100 

2.10. Dynamic light scattering (DLS) 

DLS measurements were carried out to determine the size of SPIO-PNPs. The 

experiments were conducted using an ALV/CGS-8F multi-detector compact goniometer 

system with eight off fiber-optical detection units made by ALV-GmbH, Langen, Germany. 

The laser light (He-Ne,ߣ = 632.5 nm) was focused on the sample cell (10 mm NMR tube). 

The temperature control of the cell was provided by a thermostat, circulating water around a 

cylindrical quartz container filled by a refractive index-matching liquid (cis-decalin). The 

intensity of scattered light from the sample measured simultaneously at eight scattering 

angles in a range of 22-141°. All the sample solutions were filtered in the atmosphere of filter 

air through a 5 ݉ߤ filter (Millipore) into the pre-cleaned NMR tubes to avoid entering dust to 

the solutions. 

2.11. Transmission electron microscopy (TEM) 

The morphology of nanoparticles was investigated by TEM. For this, the suspension of 

particles was absorbed on hexagonal copper grids for 2 minutes followed by washing three 

times with MQ-water and further staining with 3% uranyl acetate. The imaging was 
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performed with a Philips transmission electron microscope CM100 (Philips, Eindhoven, The 

Netherlands). The images were recorded digitally with a Quesma TEM CCD camera (Olympus 

Soft Imaging Solution, Germany) and iTEM software (Olympus Soft Imaging Solution, 

Germany).   

2.12. Zeta potential 

The zeta potential measurements were conducted on a Malvern Zetasizer Nano ZS 

(Malvern Instrument Ltd. Worcestershire, UK). The sample cell used was a dip-cell, including 

palladium electrodes with 2mm spacing, one PCS115 cuvette, and a cap. First standard 

solution of -68 mV was measured three times after that measurements continued on 600ߤl 

of sample solutions in triplicate.    

2.13. In vitro cytotoxicity 

MDA-MB-231 breast cancer cells were used to determine the cell cytotoxicity. The cells 

were cultured in RPMI 1640 cell culture medium (Lonza, Verviers, Belgium) containing 10% 

fetal bovine serum and 1% penicillin-streptomycin. Cells were grown by incubation in T75 

flask at 37℃	in humidified atmosphere with 5% ܱܥଶ .  After getting enough confluence, 1ml 

trypsin with a concentration of 200 mg/l was added to dissociate the cells. Trypsin was 

further neutralized by 5 ml of cell culture medium. 

 To obtain the number of viable cells per milliliter, 100	ߤl of cell suspension was mixed 

with 100	ߤl of trypan blue solution, subsequently 10	ߤl of this solution was added to a cell 

counting chamber and viable cells were counted three times under the microscope at 1000 

magnification. Under the microscope a grid of 9 squares is visible. The microscope then 

should be focused on one of the 4 outer squares in the grid (Figure 2-2) which contains 16 

smaller squares. The unstained cells are counted in this square. Nonviable cells are stained by 

trypan blue while viable cells remained unstained. The average of these three time readings 

was multiplied by 10ସ to obtain the number of  viable cells per milliliter[51].  The three 

readings for trypan blue assay were 61, 62 and 67 therefore the average concentration of 

viable cell was 63× 10ସ ݈݈ܿ݁ ݈݉⁄ . 
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Figure 2-2 : Cell counting by trypan blue assay using a cell counting chamber  

Harvested cells were seeded in a 96-well plate at the density of 5× 10ଷ  viable cells 

/well. According to trypan blue assay results, the required density of viable cells corresponds 

to 175	ߤl cells for 20 wells. This amount was added to 1825 	ߤl cell culture medium and 

 l of this mixture was seeded in each 20 plates followed by 24 hours incubation atߤ	100

37℃	in humidified atmosphere with 5%ܱܥଶ. To reduce evaporation during incubation, cell-

seeded wells were surrounded by wells contacting 200 ߤl  of culture medium. Blank PSA-

mPEG NP (PNP), SPIO-NP and SPIO-PNP suspensions were made by adding lyophilized 

nanoparticles to cell culture medium with concentration ranging from 1 to 2 ߤg/ml. 24 hours 

post incubation, 100ߤl of nanoparticle solutions were added to the wells with seeded cells 

according to the Figure 2-3.   

Cell viability of nanoparticle treated cell was assessed by MTS [3-(4, 5-dimethylthiazol-

2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay. 20 µl  MTS 

(CellTiter 96® Promega, Madison-USA) was added to each cell and incubated for 3 hours. The 

cell viability was further determined at three time intervals (24 hours, 48 hours and 72 hours). 

This method is based on bio-reduction of tetrazolium salt to an intensely colored formazan 

with UV absorbance at 490 nm. The quantity of formazan product measured by UV 

spectroscopy is directly proportional to the number of living cells. The absorbance of the 
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produced formazan was measured by plate reader at 490 nm (Wallac Victor, Turku-Finland). 

The cell viability was calculated using following formula: 

(%)ݕݐ݈ܾ݅݅ܽ݅ݒ	݈݈݁ܿ =
ݏ݈݈݁ܿ	݀݁ݐܽ݁ݎݐ	݂݋	ܾ݁ܿ݊ܽݎ݋ݏܾܽ
ݏ݈݈݁ܿ	݀݁ݐܽ݁ݎݐ݊ݑ	݂݋	ܾ݁ܿ݊ܽݎ݋ݏܾܽ 	× 100 

 

Figure 2-3 : Cell seeding pattern in 96-well plate 

2.14. In vitro Cellular uptake of SPIO loaded nanoparticle 

To assess cellular uptake of SPIO loaded PSA-mPEG (SPION-PNPs) nanoparticles, the 

MDA-MB-231 cancer cells were seeded in 6-well plate at a density of 6× 10଺. The cells were 

allowed to grow for 24 hours; subsequently, the medium was replaced by fresh medium 

containing SPION-PNPs nanoparticles. 24 hours post addition of nanoparticles the medium 

was removed and the cells were washed with 1 ml PBS. The cells were fixed by 2% 

glutaraldehyde in cacodylate buffer pH 7.0 and left overnight at 37℃ and then cross-

sectioned in department of biology at UIO. The cross-sectioned cells were imaged by TEM 

afterwards. 
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3. Results and discussion 

3.1. Characterization of pre-polymer and block copolymer 

The chemical structure of PSA-mPEG block-copolymer and PSA pre-polymer is 

confirmed by 	ܴܯܰܪ
ଵ   and FTIR spectra (Figure 3-1) and (Figure 3-2). The chemical shifts at 

 and 2.4 ppm are well resolved and correspond to hydrogen atoms of PSA ,2.2 ,1.6 ,1.3=ߜ

functional groups. The peak at 3.6=ߜ ppm is assigned to the methylene protons on the PEG 

block which was introduced by block-copolymerization. Another chemical shift observed at 

 ppm belongs to the methylene protons of glycol next to the ester bond of sebacic 4.2=ߜ

anhydride and ethylene oxide. This can confirm the successful polymerization of PSA and PEG. 

[42].     

The FTIR spectra of sebacic acid (SA), poly (sebacic anhydride) (PSA), and poly (sebacic 

anhydride)-block-methyl ether poly (ethylene glycol) (PSA-mPEG) are illustrated (Figure 3-2). 

It reveals that absorption peaks related to asymmetric and symmetric stretching modes of 

carbonyl groups in anhydride segment developed at 1740 	 and 1813 ܿ݉ିଵ   while 

corresponding peaks of asymmetric and symmetric stretching modes of C-O for anhydride 

segments appear at 1074 and 1041 ܿ݉ିଵ respectively. The peaks at 2935-2915 ܿ ݉ିଵ and 

2854-2840 ܿ ݉ିଵ are assigned to the methyl and methylene vibrations. Absorption peaks at 

960 ܿ ݉ିଵand 1100 corresponds to symmetric and asymmetric stretching modes of C-O-C of 

ethylene glycol [42, 47]. 

The average ܯ௡ and  ܯ௪ obtained from GPC were 2497 and 2929 ݃ ⁄݈݋݉  respectively 

and the PDI was 1.17. 

3.2. In vitro hydrolytic degradation of PSA-mPEG 

PSA-mPEG undergoes hydrolytic degradation via surface erosion of PSA block in PBS 

buffer at 37℃. The conversion of anhydride bonds to acid groups is depicted in FTRI spectra 

of degraded polymers (Figure 3-2). During the degradation a strong carboxylic hydroxyl band 

appears between 2500 and 3300 ܿ݉ିଵ. This is followed by appearance of a carboxylic 
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carbonyl band at 1704 ܿ ݉ିଵwhich its intensity becomes stronger with degradation time.  

Meanwhile the characteristic peaks for anhydride segment at 1813 and 1740 ܿ ݉ିଵand C-O-C 

stretching band at 1100 ܿ ݉ିଵbecome weaker (Figure 3-3) [47, 52].  

 

Figure 3-1   ܴܯܰܪ	
ଵ  spectra of (a) PSA and (b) PSA-mPEG 
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Figure 3-2  FTIR spectra of (a) sebacic acid (SA), (b) poly (sebacic anhydride) (PSA), (c) Poly (Sebacic anhydride)-

block-methyl ether poly (ethylene glycol) (PSA-mPEG) 

 

To monitor the degradation rate, the change in molecular weight was studied by GPC. 

Molecular weight (ܯ௪) of three time intervals is shown in Figure 3-4. After 3 days there was 

a 14% loss in molecular weight, this amount reached 23% after 10 days. Due to the surface 

erosion mechanism of poly (sebacic anhydride) block, the polymer was able to maintain 77% 

of its initial molecular weight after 10 days. This makes the this block copolymer applicable 

for controlled drug delivery and can provide a sustained release over long period of time[53]. 
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Figure 3-3  FTIR spectra of degradation of PSA-mPEG at (a) 0 day (b) 3rd day, (c) 6th day, and (d) 10th day 

 

 

Figure 3-4 : Change in molecular weight (࢝ࡹ) by hydrolytic degradation  
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3.3. Encapsulation efficiency  

The resulting encapsulation efficiency and dye content of nile red is summarized in 

Table 1. 

Table 1 : Characters of nile red loaded in PSA-mPEG nanoparticles by nanoprecipitation method  

Initial amount 

of dye (ࢍࣆ) 

Dye-polymer 

ratio (%) 

Encapsulation 

efficiency (%) 

Dye content 

(%) 

15 0.075 59.1 0.15 

40 0.2 55.7  0.3 

 

 As it is shown in the table above the drug content was predictably higher for larger 

initial dye usage but despite the big difference in initial dye amount of the two dye-polymer 

ratios there was not a big difference in encapsulation efficiencies. One should note that 

inevitably small amount of nanoparticles may be lost during the washing process which may 

have a slight impact in the resulting encapsulation efficiency and dye content.  

3.4. Synthesis of SPIO-loaded polymeric nanoparticle (SPIO-PNP) 

Purified SPIO-PNPs were prepared with four different loading levels of SPIO (w/w based 

on polymer): 1%, 2%, 3% and 4% by nanoprecipitation method. Table 2 summarizes size, and 

SPIO content of the prepared SPIO-PNPs. 

The average diameter of SPIO-PNPs seems to be affected by amount of SPIO 

encapsulated in these particles. SPIO content of nanoparticles and their average diameter 

was at its maximum for 2% SPIO loading whereas 4% SPIO loading which had the minimum 

SPIO content corresponds to the smallest diameter. 1% and 3% SPIO loading with close 

amount of SPIO content had approximately the same size. The same relation between 

therapeutic agent content and size of a nanoparticle  was observed in a previous study[54].  
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Table 2 : Characters of SPIO-NPs loaded in PSA-mPEG by nanoprecipitation method 

SPIO loading (%) Diameter 

size(nm) 

SPIO content (%) 

1 188 0.05 

2 266 0.08 

3 216 0.03 

4 154 0.01 

 

The size of tumor vascular pores may vary from 100 to 600 nm[55] and carrier systems 

with diameter larger than 200 nm may induce nonspecific scavenging by reticuloendothelial 

system (RES)[56], consequently particles with diameters less than 200 nm exhibit improved 

EPR effect[57]. Considering this fact and the SPIO content of the synthesized nanocarriers in 

Table 2, 1% SPIO loading seems to be an optimal platform for cancer therapy applications.  

In Figure 3-5, normalized time correlation function data at 5 scattering angles for the 

samples in Table 2 together with the corresponding curves fitted by equation 4 are illustrated. 

For all four samples the relaxation process is unimodal and the correlation function was 

fitted successfully by the first stretched exponential function in equation 4. The average ߚ 

value was 1 for all samples except for 3% SPIO loading, where the value was 0.9.      

In Figure 3-5 the decay rate ( ߬ିଵ) as a function of ݍଶ is also depicted, which discloses 

the diffusivity of the system; the slope of this plot represents the apparent diffusion 

coefficient D, which in diffusive systems is not dependent on scattering angle. By putting D in 

equation 8 the hydrodynamic radius	(ܴ௛) is determined. 
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Figure 3-5 : First-order electric field correlation function vs. time and the decay rate (τ-1) as a function of q2 for 1%, 

2%, 3% and 4%SPIO loading of SPIO-PNP solutions. 
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3.5. Zeta potential  

To explore the stability of SPIO-NPs after encapsulation with PSA-mPEG zeta potential 

measurement was conducted on SPIO-PNPs with four concentration of SPIO (1%, 2%, 3% and 

4%), blank PSA-mPEG nanoparticle (PNP) and SPIO nanoparticle without encapsulation (SPIO-

NP) (Figure 3-6) in deionized water and PBS.  

Figure 3-6 shows no sign of significant decrease in zeta potential after encapsulation 

with polymer and it seems that the nanoparticles are stable before and after encapsulation 

with polymer due to the fact that the absolute value of zeta potential is high (larger than 30 

mV) and the particles can be assumed to be electrostatically stabilized. Blank PSA-mPEG 

nanoparticles with zeta potential value about -15 mV on the other hand seems to be 

considerably less stable than SPIO loaded PSA-mPEG nanoparticles [44].    

The absolute value of zeta potential decreased considerably after re-suspending SPIO-

PNPs in PBS. This might be due to the increase in ionic strength of the system which leads to 

gradual screening of electrostatic repulsive forces [58]. 

  

Figure 3-6: Zeta potential measurement of SPIO-PNP, SPIO-NP and PNP 



Page | 34 
 

 

3.6. Long term stability of SPIO-loaded polymeric nanoparticles (SPIO-PNP) 

DLS was employed to measure the size of (SPIO-PNP) over course of 30 days at room 

and body temperature. The hydrodynamic radius derived from the fast relaxation time 

during the period of one month is depicted for 1% SPION-PNPs in Figure 3-7. 

The hydrodynamic radius of nanoparticles did not change considerably over time so it 

can be concluded that particles were stable during the time period [59]. Steric repulsion 

between highly negatively charged particles along with the amphiphilic structure of the di-

block copolymer can probably be named as the main reason for the stability of nanoparticles. 

Due to the surfactant-like behavior of amphiphilic di-block copolymers nanoparticles can be 

prepared by nanoprecipitation method without using stabilizers such as poly (vinyl alcohol) 

(PVA). Stabilizers are usually hard to remove and may cause toxicity [60]. 

In Figure 3-8, normalized time correlation function data at scattering angle of 107° 

together with corresponding fitted curves by equation 4 are illustrated in the form of 

semilogarithmic plots for aqueous suspension of 1% SPIO-PNPs. The measurements were 

done at 6 time intervals at temperature 25 and 37 ℃ . The decay curves fitted by aid of  

equation 4 can be described by a stretched exponential with( β>0.95) (Table 3) indicating 

almost a single exponential decay and a narrow size distribution [61]. 

In the normalized correlation functions for the 15th day with corresponding unimodal 

fitted curves at 5 scattering angles are depicted for both temperatures (Figure 3-9). The slope 

of decay rate ( ߬ିଵ) as a function ݍଶ  probes diffusion coefficient which was used to calculate 

the hydrodynamic radius of the particles. The linear correlation coefficient, R close to 1 is 

also a rather clear indication of the dominance of diffusion as a main relaxation mechanism 

of the system.  
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Figure 3-7 : Hydrodynamic radius of 1%loading SPIO-PNPs at 25 and 37℃ over one month 
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Figure 3-8 : normalized time correlation function data at scattering angle of 107°for solution of 1%loading SPIO-PNPs at 

25 and 37℃  .The curves are fitted with the aid of equation 4 
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Table 3 : ࢼ value obtained from fitting curve of correlation function at angle of 107°  at 25 and 37℃. 

 Day1 Day4 Day9 Day15 Day21 Day30 

25℃ 1 0.97 0.96 0.95 0.97 1 

37℃ 0.97 1 0.98 0.98 1 0.98 

 

 

 

Figure 3-9: First-order electric field correlation function vs. time and the decay rate (τ-1) as a function of q2 for 1% loading 

SPIO-PNP solution at 15th day 
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3.7. Transmission electron microscopy (TEM) 

The successful encapsulation of SPIO nanoparticles in polymer shell was visualized by 

Figure 3-10(a-c) shows iron oxide nanoparticle encapsulated in polymer shell. The electron 

dense iron oxide nanoparticles are clearly seen as dark regions in the micrograph which are 

surrounded by a gray-shaded polymeric shell [62]. The morphological observation of SPIO 

loaded polymeric nanoparticles by TEM shows roughly round-shaped nanoparticles. It should 

be mentioned that in morphological studies by TEM one should consider that TEM 

micrograph is not representative of the real state of nanoparticles in suspension since the 

dispersion medium is removed during sample preparation and the ‘’grape-like’’ organization 

of the particles in micrographs could be a consequence of that [63]. 

  

3.8. Cytotoxicity 

Apart from their supermagnetic properties, SPIO-NPs have attracted considerable 

attention due to their low toxicity in human body. A study conducted on breast cancer cells 

revealed that iron oxide nanoparticles coated with a surfactant are non-toxic in 

concentration range of 0.1-10 ߤg/ml while the particles show toxicity at 100 ߤg/ml[64]. 

One of the mechanisms by which iron overload can induce toxicity is via producing 

highly reactive hydroxyl radicals. SPIO-NPs are presumably degraded into iron ions by 

hydrolyzing enzymes. These iron ions can potentially pass the mitochondrial membrane and 

react with hydrogen peroxide and oxygen produced by mitochondria. This leads to formation 

of highly reactive hydroxyl radicals that could damage DNA, proteins, polysaccharides and 

lipids in vivo [65]. 
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Figure 3-10 : TEM image of (a-c) iron oxide nanoparticles encapsulated in polymer matrix (SPIO-PNP) (d)super-

paramagnetic iron oxide nanoparticles(SPIO-NPs) 
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Both SPIO and SPIO loaded polymeric nanoparticles showed negligible cytotoxic effect 

in the concentration range of 1-2 ߤg/ml up to 72 hours (Figure 3-11). The results within this 

concentration range are consistent with the previous work done on breast cancer cell lines 

[64]. The results also indicate that the oleic acid used as stabilizer on surface of SPIO-NP did 

not trigger toxicity. 

Cell viability of blank PSA-mPEG nanoparticles was also high (>85%) which is in 

agreement with the previous studies on sebacic anhydride copolymers [66] and makes this 

polymer a safe carrier for SPIO-NPs. Another interesting feature demonstrated by blank PSA-

mPEG nanoparticles is their high cell viability after 72 hours which could be an indication of 

low toxicity of degradation products of PSA-mPEG copolymer since it has been shown in this 

study that in vitro hydrolytic degradation of the copolymer has been started after 3 days.    

 

Figure 3-11 : Cell viability of blank PSA-mPEG nanoparticles (NP), SPIO-NP and SPIO-PNP with two concentrations 
(c1 and c2)   
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3.9. Cell uptake  

Since accumulation of nanoparticles in cancer cells is of great importance for cancer 

detection and treatment, TEM study on MDA-MB-231 human breast cancer cells was 

performed to visualize the presence and confinement of SPIO-PNPs within the cancer cells. 

To confirm that the nanoparticles were indeed internalized by target cells rather than simply 

binding to the surface of the cells, the nanoparticle treated cells were embedded then cross 

sectioned and studied by TEM. 

 TEM images confirmed that SPIO-PNPs with average diameter between 150-200 nm 

crossed the cell membrane via endocytic pathway and internalized inside vesicles. 

Endocytosis is a mechanism by which mammalian cells internalize small molecules, 

macromolecules, and particles and target them to sealed organelles within the cytoplasm[67]. 

Observing this internalization via endocytosis is compatible with the previous research done 

to investigate SPIO-PNPs uptake by breast cancer cells [27]. Furthermore as predicted from 

cytotoxicity experiments cancer TEM observations showed that cellular structures were well 

preserved and no visible abnormalities were observed in cells treated with SPIO-PNPs. 

Cell uptake is described as a two-step process: the first step is binding to the cell 

membrane, via cell surface receptors and the second is the actual internalization event [68]. 

The first step is demonstrated in Figure 3-12-b which shows a particle binding to the cell 

membrane before crossing it. In Figure 3-12-c and d one can clearly recognize the second 

step of the cell uptake process which is the successful internalization of particles within 

vesicles of diameter between 1.5-2 	݉ߤ. Figure 3-12-a is the image of control cell. 
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Figure 3-12 : TEM image of (a) control cell (b) particles before crossing the cell membrane (c-d)after confinement 

within the cell. 



Page | 43 
 

4. Conclusion 

Block copolymer of poly (sebacic anhydride)-block-methylether-poly (ethylene glycol) 

(PSA-mPEG) was synthesized via melt-condensation. The polymer was characterized using ܪ	ଵ  

NMR and FTIR which verified the success of copolymerization. The molecular weight 

 .and poly dispersity index (PDI) were obtained by GPC (௡ܯ	௪ܽ݊݀ܯ)

The degradation behavior of (PSA-mPEG) was studied in PBS at pH 7.4 at 37℃. As the 

degradation preceded conversion of anhydride bonds to acid and weakening of anhydride 

linkage was observed in FTIR spectra. The change in molecular weight was also investigated 

during the degradation. After 3days the polymer maintained 86% of its initial molecular 

weight this reached to 77% after 10 days. 

Nile red was encapsulated as a hydrophobic drug model. The encapsulation efficiency 

and dye content was measured by HPLC. The main focus of this study was encapsulation of 

SPIO-NP within a biodegradable and biocompatible polymer synthesized in this research. The 

successful loading of SPIO-NPs in the polymer shell was confirmed by TEM. The size and SPIO-

NPs content for four polymer-SPIO ratios were studied to find an optimal carrier system for 

cancer therapy applications. Considering the required size for reaching the tumor site, 1% 

SPIO loading was recognized to be a good carrier of choice. 

Zeta potential of SPIO-PNPs, SPIO-NPs and blank PNPs were investigated in deionized 

water and PBS. No considerable change of zeta potential for SPIO-NPs was observed after 

encapsulation with polymer shell and all the carriers except PNPs had enough surface charge 

to be stable in deionized water. The value of zeta potential of SPIO-PNPs decreased after re-

suspending them in PBS due to the screening of the charges in a medium with high ionic 

strength.   

The changes in hydrodynamic radius of SPIO-PNPs were investigated by DLS at room 

and body temperature over one month. The hydrodynamic radius did not change 

substantially during this period of time. This could be attributed to the repulsive force 

between negatively charged particles and the surfactant-like behavior of amphiphilic di-block 
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copolymer used as a matrix for encapsulation of SPIO-NPs. 

The cytotoxicity of SPIO-PNPs in two different concentrations, SPIO-NPs and PNPs were 

studied over course of three days on MDA-MB-231 breast cancer cell line. The cell viability 

for all the above mentioned systems was high (over 85%) which means that that they did not 

induce toxicity. 

The successful internalization of SPIO-PNPs was visualized by TEM. The cells were fixed 

and cross sectioned to make sure that the particles were inside the cell. TEM micrographs 

confirmed that the particles were successfully internalized and confined within vesicles via 

endocytosis mechanism. 

Magnetic nanocarriers with an iron oxide core and a biodegradable and biocompatible 

polymer shell can greatly enhance the targetability of drug delivery systems. PSA-mPEG could 

be promising for magnetic drug delivery systems due to its biocompatibility and 

biodegradability. Besides PSA block can provide a sustained drug delivery system while the 

PEG block increases the circulation time in blood stream. These magnetic nanocarrier 

systems can be combined with other targeting systems like ligand targeting to form a more 

efficient drug delivery system. 
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