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Abstract 

Latencies of button presses are a staple of cognitive science paradigms. Often 

keyboards are employed to collect button presses, but their imprecision and variability 

decreases test power and increases the risk of false positives. Response boxes and data 

acquisition cards are precise but expensive and inflexible alternatives. We propose to 

use open source Arduino microcontroller boards as an inexpensive and flexible 

alternative. These boards connect to standard experimental software using USB and a 

virtual serial port, or by emulating a keyboard. In our solution, an Arduino measures 

response latencies after being signaled the start of a trial, and communicates latency and 

response back to the PC over USB. We demonstrate the reliability, robustness and 

precision of this communication in six studies. Test measures confirm that the error 

added to the measurement has a SD of less than 1 ms. Alternatively, emulation of a 

keyboard results in similarly precise measurement. The Arduino performs as well as a 

serial response box, and better than a keyboard. In addition, our setup allows the 

flexible integration of other sensors and even actuators to extend the cognitive science 

toolbox. 

 

Keywords: response latencies; reaction times; response box; Arduino; E-Prime
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Using Arduino Microcontroller Boards to Measure Response Latencies 

Paradigms that measure latencies of responses are a staple of many areas of 

experimental research on cognition. In theory, latencies of many different actions can be 

measured: key presses, spoken answers, or movements of fingers, hands, eyes, or other 

body parts. 

Very often, however, experimental psychologists simply ask participants to react 

to computer-presented stimuli by pressing keys on regular keyboards. We believe this is 

unfortunate for two reasons: First, regular keyboards are notoriously imprecise input 

devices that add noise to the data. Second, key presses are most often arbitrarily 

matched to the outcome of some cognitive process, while other movements might index 

the investigated process more directly. Experimental psychologists may be aware of 

both shortcomings and still choose the keyboard out of habit, convenience, or lack of 

alternatives. 

With the current work, we propose an alternative platform that allows both more 

precise measurement and more creative dependent variables. It uses the open source 

Arduino microcontroller platform and thereby harvests the creativity of a large 

developer community. In the following, we will elaborate on the imprecision of regular 

keyboards, before we describe and test how the Arduino can be used as a response 

latency measurement platform. 

Keyboards and Response Boxes 

Before we discuss the quality of response time measurement, we need to define 

the terms for doing so. Following Plant and Turner (2009), we will use the terms 

accuracy and precision to denote two different concepts. A response latency 

measurement is accurate when it is close to the actual time a response took. Imagine 

you measure how long it takes a 1 kg ball with a radius of 10 cm to roll down a 30° 



MEASURING LATENCIES WITH ARDUINOS -- 4 

slope for 1 m, repeating it many times (Galilei, 1638). If the average time is 903 ms, the 

measurement is accurate. Most likely your measures will be distributed normally 

around the average. The narrower the distribution, the more precise we call the 

measurement. It is possible to have a very precise measurement (a very low standard 

deviation) around an inaccurate average. This would be unfortunate for determining g 

from your measures, but it is typical for measures of response latencies in cognitive 

science when the focus is on differences between conditions, and less on the absolute 

size (within certain limits). Note however that there are situations where accuracy is 

more important, for instance when ratios instead of differences between latencies are 

investigated. We will focus on precision in this paper, but also reflect on accuracy when 

we have the numbers. 

Even when using special software that synchronizes stimulus onset with the 

refresh cycle of the monitor, regular keyboards do not allow millisecond precise 

measuring of response latencies. Instead, the measured response latencies distribute 

normally around the true latency with a standard deviation that ranges from 1 to several 

milliseconds depending on the hardware (Voss, Leonhart, & Stahl, 2007).  

For instance, Plant and Turner (2009)
1
 found that a USB keyboard (Belkin) 

added an error with an average M = 18.30 ms and a standard deviation SD = 1.29 ms. 

Two other keyboards connected by serial port added different errors to the latencies, 

with M = 33.73, SD = 3.08, and M = 19.94, SD = 0.083. They also tested four computer 

mice connected by USB, and reported errors averages between 18 and 49 ms, and SDs 

between 0.7 and 4.28 ms. K. I. Forster and J. C. Forster (2003; see also J. C. Forster, 

2012) tested one keyboard that produced measured latencies with a standard deviation 

of 5.15 ms; several USB mice ranged from SD = 5.65 to SD = 6.74, and two gamepads 

produced lower SDs (1.33 and 2.61). It is easy to imagine that with such a range of 
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different distributions, using different equipment in a lab can quickly lead to erroneous 

results, and even sticking to one type of hardware adds noise to the data. 

To overcome such imprecision, experimenters can employ special hardware that 

allows more precise measurement, for instance so-called response boxes. These 

response boxes provide a few keys in a special and fixed layout, and typically promise 

millisecond-precise measurement of latencies. Software for experimentation assures 

synchronization with the stimulus display (visual or audio) and records the response and 

its latency. Response boxes are connected to the computer either using a serial port, or 

via USB, depending on the model. 

Increased precision of measurement provided by response boxes should translate 

into obvious methodological advances: Test power increases, and thus fewer 

participants and/or trials are needed to detect an effect, or smaller effects can be 

detected. At the same time, the risk of rejecting the null hypothesis because of a 

spurious result arising by chance should decrease.  

Nevertheless, the use of response boxes is by no means universal. In many cases, 

this may be due to the robustness of typical paradigms: Some paradigms produce effects 

large enough to make the noise introduced by keyboards negligible. In other cases, 

however, researchers may be motivated to use response boxes, but do not because of the 

cost of the hardware (especially when running many participants in parallel) or technical 

difficulties in setting them up. Often, commercial response boxes only function (well) in 

concert with one particular software. 

Viable alternatives to response boxes exist, but share some of the disadvantages. 

For instance, response boxes can be fashioned out of cheap equipment such as computer 

mice, and connected to the parallel port on a PC (Voss et al., 2007). However, parallel 

ports are disappearing fast from modern computers, and are not available on modern 
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laptops, although alternative USB solutions have been proposed (Canto, Bufalari, & 

D’Ausilio, 2011). Also, multi-purpose hardware can be used to create response box 

functionality: Data Acquisition Cards are microprocessor boards that are plugged into 

expansion slots of desktop PCs, and allow digital input and output. They can be 

connected to external buttons and measure the time at which those buttons are pressed 

(Harmon-Jones, 2011). For instance, this is currently the only way to provide 

millisecond-precise response latency measurement in the free software package DMDX 

(K. I. Forster & J. C. Forster, 2003).  

Empirical reports confirm the accuracy and precision of measurement that uses 

response boxes with serial connections, data acquisition cards, or parallel ports: The 

error added has typically a rather low average (around 6 ms), and a low standard 

deviation – in most cases less than or close to 1 ms (J. C. Forster, 2012; Plant, 

Hammond, & Whitehouse, 2003; Voss et al., 2007). Unfortunately, we know of no 

empirical report on the precision of USB-connected response boxes except the work by 

Li, Liang, Kleiner, and Lu (2010) on their own device. They showed a remarkable 

precision below 1 ms in concert with Matlab and the PsychToolbox software. 

An obvious downside to response boxes is that they measure only presses (and 

releases) of buttons. While it would be unfair to caricature cognitive science as the 

study of beings with only one eye and two fingers, there is reason to believe that 

cognitive science overly relies on investigating choice decisions enacted with pressing 

one of two buttons. Unfortunately, measuring the latencies of moving fingers, hands, 

heads, or feet requires special hardware that costs even more, is even more difficult to 

set up than response boxes, and often only used by large labs that have access to a 

specialized technician. 
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To sum up: Response boxes provide much more precise measurement of the 

latency of button presses; yet, they are often not employed, and inherently restricted 

because of their specialized nature. 

The Current Research 

In this article, we propose to use the Arduino microprocessor platform as an 

alternative to keyboards and standard response boxes. We show how to connect an 

Arduino to standard reaction time software (using E-Prime), and report how precise the 

measurement is compared to standard response boxes. We also sketch how using the 

Arduino platform allows extending the experimental toolbox to include other measures 

beyond key presses. Thus, we describe how the Arduino can be used as a platform for 

measuring latencies of various kinds. 

Our empirical strategy is to first evaluate how best to communicate between 

experimental software on a PC and an attached Arduino in Study 1, and then to develop 

scripts for E-Prime and Arduino that implement this communication. The robustness of 

these scripts is evaluated in Study 2. Study 3 tests the speed of our platform by having it 

detect onset of stimuli on a screen. Study 4 compares the speed of the platform to a 

serial response box and a standard keyboard by using a “robot” that detects stimuli 

onsets and hits buttons with a solenoid. Study 5 takes a closer look at increasing 

accuracy of latency measurement. Study 6 investigates the performance of a simpler 

version of communication that can be used with any experimental software, not just E-

Prime. 

The Arduino Platform 

Arduino is the name of a family of microcontroller boards. The boards are a 

combination of an ATMEL microprocessor including RAM, flash memory, and 

input/output channels. Thus, these boards have the same general structure as common 
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personal computers, but their performance is of course only a fraction of those. In the 

current paper, we mainly use the recent reference model of the Arduino family, the 

Arduino Uno. It has 32 kilobyte of flash memory, operates at 16 MHz, and features 14 

digital input/output and 6 analog input pins. (Other, larger models provide more of those 

input and output options.) Part of the Arduino package is a programming environment, 

where code is written in a simplified C-like language, and transferred to the Arduino 

using a USB cable. After programming, an Arduino can work while being connected to 

a PC (and thereby transmit data), or operate standalone. 

Several features make the Arduino family an interesting tool as a measurement 

platform. First of all, it connects easily by USB to a Windows PC, Mac, or Linux 

machine, and can transmit data using a virtual serial port to these operating systems. 

Second, it is open source hardware, which means that everybody can access, modify, 

and use the board design. Likewise, the software is free and open source. This has led to 

both a low price of a board (around 20-30 €, or 35$) and a large community that 

develops hardware and software compatible with the Arduino.  

The boards can be connected to actuators and sensors, either commercial or 

build from scratch. Many extensions of a board come as so-called shields, additional 

small boards that are plugged into an Arduino board. For instance, some shields provide 

wireless access (WLAN or Bluetooth), while others allow storing data on flash memory 

cards. In addition, this idea of extending a board by plugging in components is taken 

further by rapid prototyping platforms, where smaller components are connected by 

plugging them into special connection shields. For instance, the prototyping platforms 

Tinkerkit and Seeedstudio Grove enable users to connect LEDs, small vibrating motors, 

buttons, accelerometers, gyroscopes, or hall sensors to the Arduino within minutes. 
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Together with the active community and freely available code, this guarantees a wide 

range of possibilities to create new kinds of measurements. 

Despite its simplicity and low price, the Arduino can function as a reliable 

controller for experimental settings. When investigating how an Arduino can replace 

more complicated hardware as a standalone controller of experimental input and stimuli, 

D’Ausilio (2011) confirmed that signals generated by an Arduino were reliably constant 

in length and delay. He also found that typical combinations of input and output were 

performed with remarkable accuracy and precision, often with standard deviations of 

only microseconds. However, he did not yet explore how to embed Arduinos into 

response latency measures run by a PC. 

Integrating Arduino into PC-Controlled Experimental Setups 

With its speed and flexibility, Arduino boards could serve as useful platforms to 

build response devices that allow experimental setups with buttons, other sensors, and 

even output hardware. The challenge is to connect the Arduino to experimental software 

in a way that allows fast and reliable measurement. 

In principle, there are several options to accomplish communication between an 

Arduino board and the computer that is executing the experiment. Here, we opt for a 

method that does not rely on additional or legacy hardware, namely to simply use the 

USB connection available on modern Arduino boards.
2
 Most Arduino boards are 

outfitted with additional chips that convert the serial communication from the 

microprocessor into USB that connects then to a PC (these converter chips are 

Atmega16U2 on the Arduino Uno R3, Atmega8U2 on earlier models, or FTDI Serial-

to-USB chips in older boards). Some Arduino boards come without such a connector, 

and it can then be added temporarily for programming. The more recent Arduino 
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Leonardo board uses the Atmel ATmega32u4 microprocessor that has built-in USB 

communication and thus does not require an additional converter chip.  

Irrespective of the hardware, the result is that a USB cable connects Arduino and 

PC, and provides a serial connection. On the PC side, driver software creates a virtual 

serial (COM) port. This serial port can be accessed with any software that can 

communicate with a serial port. The driver offers several baud rates; for instance, the 

driver for the Uno offers 57600 and 115200 baud as the fastest speeds. Note that other 

boards will offer other baud rates, including 128000 baud. 

Apart from choosing USB as the access hardware, there are at least two possible 

software strategies to access experimental hardware through the Arduino. One approach 

would be to use the Arduino as a relatively “dumb” gateway, another one would be to 

use its capabilities more fully, and in particular to have it measure latencies itself. Let us 

outline these approaches in more detail. As an example, imagine that two buttons are 

connected to the Arduino that are used as response keys in a reaction time study. 

Treating the Arduino as a dumb gateway, its programming would simply 

continuously read the states of the two input pins to which the buttons are connected. 

When one of the buttons is pressed, this input is detected by the Arduino. It is 

programmed to then send a signal via the serial interface, which could simply consist of 

one character indicating which button was pressed. The connected PC, running the 

experiment, would present a stimulus and then listen on the serial port for the response 

to arrive (or until a timeout is reached). 

Treating the Arduino as a microcomputer with timing capabilities, the procedure 

could take a different, second form. In this case, the PC would signal the Arduino via 

the Serial port when a response is expected (e.g., after presenting a stimulus to which 

the participant has to respond). When receiving this signal, the Arduino saves a 
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timestamp, and starts waiting for the response. When the response is detected, the 

Arduino again takes a timestamp. It then transmits the difference as the response 

latency, and which response was given. This is the approach taken by the RTBox 

response box (Li et al., 2010).  

The two approaches differ in several aspects. The first approach requires less 

programming. However, it is also less flexible; e.g., it would not afford the presentation 

of some stimuli or feedback via the Arduino itself. The two approaches also differ 

regarding robustness against lags in the serial connection. The first solution would only 

suffer from lag in serial communication from the Arduino to the PC, while the second 

solution would suffer only from lag in the serial communication from PC to Arduino. 

Study 1 was designed to investigate the lags of these two directions in order to decide 

which strategy is appropriate.  

 Study 1: Lags in USB Communication Between PC and Arduino  

For this test, we connected an Arduino board via USB to a PC running E-Prime 

2. Both the PC and the Arduino board were also connected to another PC with a data 

acquisition (DAQ) card equipped with a dedicated hardware clock. We had E-Prime 

send data to the Arduino, and the Arduino sent it then back. With the external clock in 

the DAQ card, we measured the duration of each leg.  

Method 

We used an Arduino UNO R1, and a PC (Intel Core 2 Quad Q6600, 2.4 Ghz) 

running Windows 7 and E-Prime 2.0.10.182. Serial port connections were set to 128000 

baud. The external DAQ was a CED Micro 1401 mk II (from Cambridge Electronics 

Devices, UK) Sampling at 10000 Hz. 

In each test trial, the sequence of events was as follows: (1) the E-Prime script 

sent an initial TTL pulse to the external timer to indicate the start of the trial. E-Prime 
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then sent an integer (two bytes) over the Serial port to the connected Arduino. As soon 

as the Arduino received two bytes, it set one of its output lines to HIGH, thereby 

signaling the external clock connected to this line that it received data. It then waited for 

300 ms (similar to a minimal response latency), and then sent the received integer back 

to the serial port. As soon as E-Prime received the integer, it again sent a TTL to the 

external clock, signaling the end of the roundtrip. We ran 990 of such trials. 

Results 

For the leg from E-Prime to Arduino, we measured durations that varied 

between 1.2 and 1.5 ms; M = 1.251 ms, SD = 0.051 ms. For the leg from Arduino back 

to E-Prime, durations varied between 1.9 ms and 4.9 ms, M = 3.080 ms, SD = 0.417 ms. 

In all cases, the received integer was the one that was sent. 

These data suggest that sending data to the Arduino provides less absolute delay, 

but more importantly also a lot less variability of the delay. Thus, the more promising 

strategy is to (1) signal the Arduino the beginning of a trial, (2) have it measure the 

reaction time itself, and then (3) send the measured latencies back. This approach will 

be followed now, but we come back to the first approach in Study 6. 

Connecting an Arduino Response Box to E-Prime 

Scripting E-Prime to Interface Arduino 

In the following, we will demonstrate how an Arduino can be integrated into a 

common software for running experiments, namely E-Prime. E-Prime has a built-in 

interface to serial ports. It does not, however, treat the serial port as a built-in input 

device. To integrate the Arduino, we thus use a script (called InLine in E-Prime) that 

communicates with the Arduino, and updates the response logs accordingly.  

As a first step, a Serial device needs to be added to the Devices Tab of the 

experiment. We choose the Name Serial, 115200 Bits per second, 8 Data Bits, No 

Parity, and 1 Stop Bit as default values. The COM port and its specifications have to 
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correspond to those assigned to the virtual serial port of the Arduino (which can be 

checked in Windows Device Manager, where also the baud rate can be adjusted to the 

one used in E-Prime). 

Adding fields to the stimulus table. 

We then set up stimulus presentations inside a list, as it is commonly done in E-

Prime. Our list for the stimuli is called StimulusList, and for the stimulus presentation 

we use a TextDisplay Object named trialStimulus. In the StimulusList table, we add 

several additional properties: TrialDuration, which is transmitted to the Arduino and 

tells it the maximum time in milliseconds to wait for a response; this is the only 

additional field that the experimenter has to fill. Next, we add TrialNr, which will 

contain a random trial identifier number. We also add ArduinoTrialNr, ArduinoRT, 

ArduinoButtons, which are the three values that will be returned by the Arduino after a 

response, indicating the verification trial number, the response latency, and the pressed 

button(s), respectively. Finally, we add InlineRT, InlineStartTime, 

InlinePostSendingTime, and InlineEndTime, which are measured by our E-Prime script 

as a backup and control mechanism.  

In addition, if feedback should be given, there should also be an attribute that 

lists the correct answer (we use the attribute correct for this purpose). Note that in our 

current setup, we only transmit integers to and from the Arduino, so the answer should 

be a positive integer between 0 and 32767 (or an integer between 0 and 9 if input will 

be tested with the keyboard as well). Figure 1 shows an example of this table. 

Setup of the stimulus presentation object. 

In the setup of the stimulus presentation object trialStimulus, the duration is set 

to a short value (we use 50 ms), and the PreRelease is set to the same value (entering 

same as duration). If feedback should be given, then Keyboard should be added as an 
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Input Device, and the list attribute containing the correct answer will be added in the 

Correct field ([correct]). Time Limit is set to same as duration. 

Note that this arrangement implies that E-Prime closes the trialStimulus object 

after 50 ms, with two consequences. First, reaction time and response are set to null at 

this point, and have to be changed later. At the same time, these changes can only occur 

after that time. If reactions faster than 50 ms have to be measured, either the duration 

needs to be lower, or the script has to wait for a while. 

Adding an InLine script after the stimulus presentation. 

The trialStimulus is followed by an inline script that communicates with the 

Arduino. Setting the PreRelease to the same value as the duration assures that the inline 

script is executed immediately after the stimulus presentation is initiated. The script is 

shown in Listing 1 (posted as supplementary material)
3
 and consists of four parts: (1) 

Setting up values to be transmitted, (2) Transmitting the values to the Arduino, (3) 

Waiting for and receiving the response from the Arduino, and (4) Disassembling the 

response and storing the response attributes.  

As part of the setup, we fill trialNr with a random Integer value, giving each trial 

a unique identifier. In our example script, we send three integer values to the Arduino: 

(1) the trial number, which is also transmitted back by the Arduino as a control value; 

(2) the trial duration, and (3) a variable that could instruct the Arduino to do further 

action or output (and which we do not actually use in this example). The trial duration is 

read from the attribute TrialDuration set up earlier in StimulusList. Note that 

StimulusList is not referenced explicitly but through the Context object c. The three 

values are concatenated to one string, separated by commas, and ending with a dot. This 

string is written to the Serial device. Two timestamps are taken, before and after doing 

this (see Study 5).  
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The script then reads continuously from the serial device, adds any string that 

comes in to a temporary variable, and checks whether a dot is received – which is the 

stop signal from the Arduino. When that has happened, another time stamp is saved to 

document the process, but note that this is not the actual response latency. Instead, the 

script expects the Arduino to send back a list of three numbers: The trial number, the 

response latency measured by the Arduino in microseconds, and a number coding the 

answer registered in the Arduino. 

The received string is then disassembled into these three separate numbers, 

which are stored in the corresponding StimulusList attributes (based on Margolis, 

2011). Note that the response latency is of the type Long, which can be at maximum 

2
31

-1. As the unit is microseconds, the maximum response latency is thus 35 min. The 

two registered timestamps (also in microseconds) are also stored, along with the 

difference; this difference should obviously always be larger than the response latency 

registered by the Arduino.  

Because the trialStimulus object is already finished by the time the script 

receives the response, at that moment it contains only a null response, and the log will 

contain empty fields for reaction time and response. This is a problem if feedback needs 

to be provided. Thus, if an answer was registered, the script corrects the saved null 

response by storing the response time (but now in milliseconds to comply with E-Prime 

standards) and the response itself also in the attributes .RT and .RESP of the stimulus 

object. It also compares the response to the correct response, and adjusts .ACC 

accordingly. Any following FeedbackDisplay can then use trialStimulus object as its 

input object. 
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Programming the Arduino to Interface E-Prime 

Programs for the Arduino platform are called sketches. Our sketch (see Listing 

2, supplementary material)
3
 first sets up a serial connection (with the same values that 

are registered in Windows and E-Prime). It also sets up the pins to which the buttons are 

connected as input. It then waits for the transmission of three integers from E-Prime 

(separated by commas and ending with a dot). When these are received, it initiates a 

trial. At the beginning of a trial, the sketch stores a timestamp (starttime, in 

microseconds), and computes the maximum time by adding the read trial duration to the 

start time.  

Using a do… while loop, the sketch then continuously checks for one of the 

inputs to go HIGH, or for the allotted time to end. When one of these events occurs, a 

time stamp is taken, and used to compute the response time (which is equal or larger to 

the allowed trial duration if no response was given). 

The sketch then determines what should be given back as the response integer (0 

for no response, 1 or 2 for one of the buttons, and 3 if both buttons were pressed 

simultaneously). Then, three integers are sent back: the trial number, the response time 

(in microseconds), and the response, again separated by commas and ending with a dot. 

This is the string that will be analyzed by E-Prime. Note that in the Arduino program, 

start time and end time are of the type unsigned long, which can be at most 2
32

-1. The 

clock is started when the Arduino is reset by opening the serial connection at the 

beginning of the experiment; the timestamps will thus turn over after about 70 mins. 

Experiments that run longer than that should use alternative code that only measures in 

milliseconds. 
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Study 2: Checking the Robustness of the Communication 

In the E-Prime and Arduino code that we presented here, there are two 

safeguards built in. First, a random number is transmitted for every trial to the Arduino, 

and given back by it; both are saved by E-Prime. Second, E-Prime not only stores the 

response latency that the Arduino measures, but also the time that passed between 

sending the trial to the Arduino, and receiving the answer back. 

In our second test, we checked the robustness of these safeguards. Running the 

code described above, we repeated the test several times for different baud rates of the 

serial connection. Our goal was to test both whether the random number was always 

correctly transmitted, and how the standard deviation of the total duration was affected 

by serial port speed. In addition, we checked how long the Arduino waits in comparison 

to what it is instructed to wait. 

Method 

We used an Arduino Uno R3 for this test. An Atmega16U2 chip handles its USB 

connection. The board was connected to a Sony Laptop with Intel Core i5 processor, 

running E-Prime 2.0.10.242. We used the scripts introduced above. For each trial, the 

trial duration sent to the Arduino was 100 ms. Two buttons were connected but not 

pressed.
4
 The Arduino thus only waited for the assigned 100 ms (while checking the 

button states), and then sent back the time it actually waited. We ran 500 consecutive 

trials for each of the following baud rates: 14000, 38400, 57600, 115200, and 128000 

(all set in the Arduino code, E-Prime, and Windows’ device manager).  

Results  

In all 2500 trials, the random number was correctly returned. The Arduino was 

instructed to wait 100 ms. To do this, it had to check the time it already waited in a 

loop. In the loop, it also continuously checked the state of both buttons. Out of all trials, 

it reported waiting 100 ms in 28.0% trials, 100.004 ms in 38.6% of trials, 100.008 ms in 
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32.4% of trials, and 100.012 or 100.016 in .9% of trials. (The resolution of micros() is 4 

µs on 16 MHz Arduino boards.) 

To compute the delay introduced by the USB communication, we subtracted the 

time the Arduino reported having waited from the response latency as measured by E-

prime – the time between sending to and receiving from the serial port. Table 1 shows 

that this delay decreases steadily with increasing baud rate, from 22.73 ms with a baud 

rate of 14400 to 5.67 ms with 128000 baud. The standard deviation is also affected, 

dropping from 1.40 to 1.11.  

Remember that the total delay is composed of the communication to the Arduino 

and the communication back from the Arduino. When using Arduino as a response 

platform, the communication to the Arduino will be performed in addition the response 

latency measured by the Arduino. These data show that in order to keep the added time 

as short and as least variable as possible, and in order to have these measures as a 

backup, the highest possible baud rate should be set. Furthermore, the data also assure 

that with a similar setup, the added noise is quite low even when factoring both legs of 

communication. 

In sum, this test confirms the robustness of the code in terms of accurately 

communicating values back and forth. Note that a similar check can be performed with 

any data set collected with the code above: One can always subtract the Arduino-

measured RT from the inline-measured RT, and check the average and variability of this 

delay. Finding low values for the roundtrip assures even lower values for its first leg. 

Study 3: Testing the Variability of the Response With a Photo Diode 

The previous test did not actually involve any response; the Arduino simply 

waited for the allotted time. In a next step, we intended to test speed and variability of 

the script and setup with an actual measurement by the Arduino.  
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Method 

We connect a photodiode circuit to one of the pins of an Arduino Uno R2. The 

circuit compares the state of a photodiode (Osram BPW 34) to the resistance by a 

potentiometer using a comparator (Fairchild LM 311), and sets the connected pin HIGH 

or LOW accordingly.
5
 The photodiode was placed on the upper half of a LCD flat 

screen (ASUS VE278), running at 60 Hz, connected by HDMI to a Sony Core i5 laptop. 

The potentiometer was adjusted such that the pin was HIGH when the screen was white, 

but LOW when the screen was dark blue. The Arduino sketch was changed such that it 

analyzed the state of the pin connected to the photodiode circuit. Either a HIGH value or 

a timeout resulted in the sketch returning response time and response. 

On the E-Prime side, a script presented test stimuli with either a white or a dark 

blue background, which always followed a black screen that was presented for 300 ms. 

There were in total 500 trials with a white background and 500 trials with a dark blue 

background in random order. The Arduino received a waiting time of 250 ms. Duration 

of the trial presentation was set to 50 ms, and pre release to same as duration. Because 

the reactions from the Arduino were faster than those 50 ms, the script also waited for 

an additional 100 ms after receiving the response to allow the trial object to finish 

before changing .RT and .RESP in its logs. Baud rate was set to 128000 baud. 

Results 

In all of the 1000 trials, the photodiode correctly identified the screen as white or 

dark blue. One trial however showed an outlier low response time of 12 microseconds 

(for a white trial), probably due to volatility in the photo diode, and was removed from 

the analysis. The data for the blue trials resemble Study 2, and we do not report them 

here. 
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For the white trials, the response time reported by the Arduino ranged from 5.43 

to 6.68 ms, M = 6.031 ms, SD = 0.117 ms. We again computed a delay as the difference 

between the response time measured by the e-prime script (including both legs of 

communication) and the Arduino-measured response time. The delay varied between 

3.12 ms and 10.43 ms, M = 5.350, SD = 1.176 ms.  

Assuming the screen had a perfect constant switch time from black to white,  

these data show that when using the full potential of the Arduino, it is possible to 

measure these switching times with a standard deviation of little more than a tenth of a 

millisecond. Even if the timing is left to E-Prime itself, we still only get noise with a SD 

of about 1 ms.  

One might think that the SD = 0.117 ms overestimates the precision because the 

communication from E-Prime to the Arduino has an additional variability that is not 

captured here. However, note that to then explain the low variability of the times 

measured by the Arduino, one would have to assume that the true switching of the 

screen counteracted the variability in the communication, which is very unlikely. Thus, 

the tenth of a millisecond is likely close to the true precision. 

Study 4: Comparing an Arduino Response Box to Other Response Boxes 

Test 3 was instructive concerning the absolute performance of the Arduino 

platform; however, a comparison to commercial response boxes would be interesting. In 

Study 4 we thus compare the accuracy of a response box built using the Arduino to a 

standard serial response box and a keyboard, always using E-Prime. 

Method 

To improvise an Arduino response box, we connected two Cherry MX key 

modules to the Arduino in the standard way (http://arduino.cc/en/Tutorial/Button), using 

an Arduino-compatible rapid prototyping kit (Seeed Studio Grove Base Shield and its 
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screw terminal connector). The Arduino sketch was adapted such that it continuously 

read the states of both input pins and the timeout. The key modules were mounted on 

Lego Duplo bricks for a solid foundation (see Figure 3). 

As a comparison, we used a PST Serial Response Box connected via a serial port 

to a desktop PC running Windows 7 and E-Prime 2.0. We also compared the 

performance of a standard USB Microsoft keyboard. 

We created an E-Prime experiment that displayed 100 very simple trials: In each 

trial, a black waiting screen was followed by a white target screen. The program then 

waited for a button on the response device to be pressed. To press the button in response 

to the white screen onset, we constructed a “robot”, using a second Arduino that was not 

connected to the computer itself. This Arduino featured the photodiode circuit also used 

in Study 3, placed on the screen (Asus VG236H set to 60 Hz). In addition, it was 

connected to a 12 V push solenoid (Intertec ITS-lz-2560 d-12vdc). This solenoid was 

placed above the button of the response box, pushing it when turned on. The sketch 

running on this second Arduino continuously checked whether the photodiode pin was 

set HIGH or LOW; when it was HIGH, the solenoid was fired, which pressed the button 

and triggered the end of the trial, releasing the solenoid. The code reading the 

photodiode was adapted such that a change in brightness was only registered if two 

continuous readings resulted in the same value, to make the program more robust.
5
 

Results 

We ran two tests of 100 items with each hardware; we report both separately to 

convey the reliability of the measurement. Because we compared the Arduino 

measurement to the E-Prime measurement for the two devices, the Arduino also only 

measured in milliseconds.  
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The crucial numbers in this test are the standard deviations. The total reaction 

times should be interpreted with caution because they are based on completely different 

hardware, and it is possible that the solenoid hit the different buttons in slightly different 

ways, with different travel distances, etc.  

The standard in this test is set by the Serial Response Box, usually regarded as 

millisecond-precise. Table 2 shows indeed two standard deviations between 1 and 1.4 

ms; the range of responses is impressively low. These small numbers confirms that our 

Arduino-solenoid-robot is also performing quite reliably – at least with the precision 

found here. The overall latency is rather high, between 56 and 58 milliseconds. We 

assume that this is due to the large travel of the solenoid and the specifics of the circuit. 

Our Arduino response platform performs almost as well as the PST Serial 

Response Box, with two SDs of 1.28 and 1.29 ms. This shows that the combination of 

PC-to-Arduino USB communication and having the Arduino measuring the RT makes 

up for the disadvantage of having no real direct serial connection to the PC. 

The keyboard performs worse than the two other devices, but still with an 

acceptable noise SD of about 3 ms. Note however that that this cannot be generalized to 

USB keyboards in general, and hardware details can vary even within one product line. 

To compare the variance in the various tests, we computed Levene’s tests for 

equality of variances. Regarding their variances, the two Arduino measures did not 

differ from each other, and neither did the two keyboard measures, both Fs < 1. 

However, the variances of the two response box measures did differ, F(1,198) = 4.63, 

p = .033.
6
 Importantly, the two Arduino measure variances did not differ from the two 

response box variances, Fs(1,198) < 1.81, ps > .180. The keyboard variances differed 

from all other variances, Fs(1,198) > 51, ps < .001. Figure 4 shows the distributions. In 

sum, both Serial Response Box and Arduino performed much better than a keyboard; 
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and the difference between Arduino and Response Box seem to be not larger than the 

difference between two different tests with the Response box. 

Study 5: Estimating the Delay from Trial Initiation in E-Prime to Start of Clock in 

Arduino 

In the script developed here, we send a signal from E-Prime to the Arduino at 

the start of a trial. This signal prompts the Arduino to start its time measurement. 

Obviously, the time the signal takes to travel from E-Prime to the Arduino is not 

included in the final response latency reported back by the Arduino. In Study 1 we 

found that the average of this additional delay was 1.25 ms, with a very low SD. 

Nevertheless, ignoring this delay reduces the accuracy of the measurement, and may be 

undesirable in some contexts. 

Above, we mentioned that the E-Prime scripts stores two timestamps, one 

immediately before sending the signal, and another one upon receiving the data back 

from the Arduino. By testing how much longer this difference is than the latency 

reported by the Arduino, researchers can judge the reliability of the USB speed, but this 

delay will include both legs of communication, not the first delay in particular. 

This problem was already tackled by Li et al. (2010) in the development of their 

RTbox. Their software similarly sends a start trial signal to an external microprocessor, 

and records timestamps right before and after that operation. In addition, their 

microprocessor software takes and reports a timestamp upon receiving the trial start 

signal. This differs slightly from our approach so far, because on the E-Prime side, we 

only analyzed the timestamp before sending a signal, and on the microprocessor side, 

we only report back the time difference. 

Li et al. discussed three different methods for estimating the true moment of 

sending the signal from computer to microprocessor. Each relies on taking several 

samples (at least 20). One possibility is to compute the difference of the two computer 
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timestamps before and after sending, and to select the shortest one. This has to include 

the true time of sending the signal, and to estimate that moment, Li et al. simply average 

the two timestamps associated with that shortest delay. 

In another method, they compute the difference between the computer 

timestamp before sending and the microprocessor timestamp upon receiving. Note that 

these will have an unknown offset because the clocks of the two processors are started 

at different times. Li et al. then select the minimum difference of the two timestamps, 

and then use the associated computer timestamp before sending as an estimate of the 

true moment of sending.
7
 

In order to demonstrate how the methods devised by Li et al. can be applied in 

our scripts as well, we ran another study in which we record both timestamps before and 

after sending the serial signal, and investigate the differences between these timestamps 

and their distributions.  

Method 

On the Arduino side, we changed the script such that the timestamp of starting 

the trial is also returned, in addition to the latency. On the E-Prime side, we store this 

additional timestamp from the Arduino. We used an Arduino Leonardo, connected with 

128.000 baud to E-Prime 2.0.10.242 running on a Windows 7 laptop. 

We ran consecutive 300 trials. In each, E-Prime initiated a trial with 100 ms 

duration, saving timestamps before and after sending serial communication. The 

Arduino only waited the allotted time without any further measurement. In E-Prime, 

before each trial we added a random delay between 1 and 100 ms to desynchronize the 

process from the computer’s USB cycles, as it would be the case in a normal 

experiment. Additional constant delays were present as well. The complete test took 

about 12 minutes. 
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Results 

We first checked the delay between the timestamps taken by E-Prime before and 

after sending the serial communication. The average delay was 0.341 ms, ranging from 

0.16 to 0.55 (SD = 0.087). Following Li et al., we selected the minimum delay and used 

the average of the two associated E-Prime-recorded timestamps (before and after) to 

estimate the true sending time. In our experiment, this arrived at an offset of 

777411.246 µs between the two clocks (due to unequal starting times of the experiment 

on computer vs. Arduino). 

We then investigated the difference between the E-Prime timestamp before 

sending, and the Arduino timestamp upon receiving the start trial signal. The average of 

this delay is uninformative because they are taken with two different unsynchronized 

clocks. The SD was rather large with 7.926 ms. However, note that these 300 

measurements were taken over the course of 12 minutes. Li et al. (2010) have shown 

that due to small differences in the actual speed of clocks, drifts between them occur 

that have to be removed. When we regressed the differences on the number of trial, we 

found a large linear effect of trial number, β = .999, t(299) = 495, p < .001. After 

removing this linear influence, the unstandardized residuals had a much lower SD of 

0.28 ms. Again following Li et al., when using the sending time associated with the 

shortest difference residual, we arrive at an offset of 777411.325 µs, almost identical to 

the first method. 

Discussion 

In the scripts above we ignored the communication delay between sending the 

trial start signal from E-Prime and receiving it in the Arduino. However, if concern 

arises or the paradigm requires it, the true time of sending, and thus the true response 

latency including the communication delay, can be estimated following the methods 



MEASURING LATENCIES WITH ARDUINOS -- 26 

devised by Li et al. (2010). For this purpose, the two timestamps taken by E-Prime 

before and after sending can be used effectively. Essentially, this approach synchronizes 

the clock in the Arduino and the clock in the computer, which are always started at 

different times with an unknown offset.  

Li et al. actually propose the synchronization of clocks in this manner before 

each trial, implementing between 20 and 100 communication cycles between computer 

and microcontroller in order to estimate the true RT. Note that while this increases 

accuracy of the latency measurement in terms of getting closer to the true value, it does 

not increase precision, because the measurement itself is again a new random sample 

from the distribution identified for the duration of communication.  

Given that all our results (and theirs) show that this delay is shorter than 1 ms, 

we do not believe that this is necessary for most purposes. However, we definitely 

recommend checking both a) the duration of sending the serial communication and b) 

the difference between Arduino-reported latency and total E-Prime measured latency for 

all trials to assure against general malfunctioning and sudden drops in performance. 

As already noted, this approach only estimates the delay between start of a trial 

and start of time measurement in the Arduino. To get an accurate measurement instead 

of an estimate, it would be necessary to program the Arduino such that it detects the 

onset of a trial itself. This could be implemented by signaling the onset of a trial with a 

cue on the screen (e.g., a dot in a corner), and equip the Arduino with a light sensor that 

allows it to save a timestamp at the true onset. While we will not implement this in the 

present paper, it can be easily done. Together with Study 3, the following study will 

provide a background for the precision of such an approach. 
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Study 6: Emulating Human Interface Devices with the Arduino Leonardo 

 In Study 1 we determined that communication from the computer to the 

Arduino board was faster and less variable than communication from the Arduino back 

to the computer. We therefore developed scripts that used only the first direction under 

time critical conditions, and then let the Arduino measure the response latency, and 

report it back when timing was not critical anymore. This allows the Arduino also to 

receive instructions for stimulus presentation. The cost is that we need to add special 

scripts to the latency-collecting software. 

In our final Study 6 we also want to explore how an Arduino response box can 

be constructed without relying on specialized scripts. For this purpose we take 

advantage of the recently introduced Arduino Leonardo. This board does not feature a 

separate chip that handles the communication with USB. Instead, the main processor, an 

Atmel ATmega32u4, also handles this communication. In all other respects this board is 

similar to the Arduino Uno R3.  

To estimate the performance of the Leonardo, we first repeated the fastest 

condition of Study 2 (128000 baud) with the Leonardo board. We encountered a higher 

percentage of longer waiting times, but note this concerned only microsecond 

differences: The program was scheduled to wait only 100 ms; it reported waiting 

exactly that long in 25% of trials. About half of the trials (47.2%) it waited 100.004 ms, 

in a fourth of the trials (26.4%) it waited 100.012 ms, and in 1.4% it waited 100.016 or 

100.020 ms. The last line of Table 1 shows the delay, computed as the difference 

between time of the total roundtrip measured by E-Prime and the time waited by the 

Arduino. This delay has an average of 3.10 ms, with an SD of 0.53 ms, ranging from 

1.97 to 9.22 ms. These values indicate that the distribution is quite narrow with only a 

few outliers. Indeed, 99.4% of the delays were below 3.72 ms, and there were three 
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outlier values between 7.2 and 9.23 milliseconds. This suggests that the Leonardo could 

be a viable alternative to the Uno despite the fact that the main processor handles also 

USB communication. At least with simple tasks like in this test (checking the status of 

two input pins), USB communication seemed to be even faster than with an Uno, 

although there were 0.6% outliers with higher delays. 

However, the main advantage of the Leonardo is another feature. Running USB 

connection in the main processor allows the Arduino to emulate a keyboard or a mouse 

when connected by USB. In other words, the Leonardo can be programmed to simulate 

the press of a keyboard button in response to events, and response latency software 

recognizes this button press as if it came from a regular keyboard. Of course, this signal 

still has to go through the regular polling process of the operating system, but there is a 

chance that noise coming from the construction of a regular keyboard is avoided in this 

way (Li et al., 2010). 

Method 

To evaluate this option, we connected an Arduino Leonardo to a light dependent 

resistor (LDR), in the form of the TinkerKit LDR Sensor sold by Arduino.cc. We 

intentionally chose this module to demonstrate accuracy using standard commercial 

components, and to our best knowledge there is no photo diode module for any of the 

Arduino rapid prototyping platforms. The LDR was placed in the right top corner of the 

screen of a Sony Vaio laptop. We programmed the Arduino such that it would 

continuously read the state of the LDR, and simulate the pressing of key A when the 

measurement surpassed the level 200. 

Note that the LDR was connected to an analog pin on the Arduino. Reading such 

a pin takes longer than reading a digital pin, about 0.1 ms. We added a further delay of 

10 microseconds to allow complete settling of the analog to digital converter. As a 
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result, all internal reading on the Arduino should have values multiple of approximately 

0.11 ms. 

On the Windows side, we programmed a simple experiment in both E-Prime 

2.0.10.242 and DMDX 4. In both cases, there were 200 trials. Each trial first showed a 

black screen for 2000 ms, and then a white screen, waiting for the pressing of the button 

A. The key press was measured with the regular functions in E-Prime and DMDX.  

As a comparison, we added one condition in which we used the script developed 

above (E-Prime only because DMDX does not support a serial interface), thereby 

measuring response latency on the Arduino directly. In this case, the Leonardo was 

connected with a speed of 128.000 baud, and the script checked the state of the LDR. 

Results and Discussion 

Note that E-Prime usually reports measurements in milliseconds, while our E-

Prime script and DMDX report in microseconds. When the Leonardo was programmed 

to return the letter A upon the screen turning white, DMDX recorded latencies between 

5.53 and 6.69 ms, M = 6.09, SD = 0.31 (condition DMDX/Emulation). E-Prime reported 

latencies between 6 and 9 ms, M = 7.31, SD = 0.52 (condition E-Prime/Emulation). 

When E-Prime and Leonardo were programmed with the scripts developed in the 

current paper (Study 2), latencies ranged from 4.10 to 5.26 ms, M = 4.65, SD = 0.29 

(condition Arduino Measurement). We compared the variances and means with 

Levene’s tests and t-tests, respectively. DMDX/Emulation and Arduino Measurement 

did not differ from each other regarding variances, F < 1, but regarding means, t(398) = 

47.78, p < .001. E-Prime/Emulation differed from both other conditions regarding 

variances, Fs(398) > 94, ps < .001 and means, ts > 28, ps < .001. 

These tests show a remarkable accuracy of the Arduino Leonardo even when it 

is used simply to emulate a keyboard device. We achieved SDs of half a millisecond in 
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both E-Prime and DMDX. DMDX even rivaled the script developed above, as the SD of 

its measurements was not significantly higher than the measurements run on the 

Arduino itself. E-Prime performs less well, perhaps simply because it measures only in 

milliseconds, but still very good. This suggests that if the Arduino is not used to present 

other stimuli triggered by the communication it receives from E-Prime, using an 

Arduino Leonardo and emulating a HID device might be sufficiently accurate.  

In addition, together with Study 3, these results suggest that adding a light sensor 

can be a valid approach to allow the Arduino registering the onset of a trial, and thereby 

increase accuracy of measurement.  

General Discussion 

Current response time measurement in cognitive science relies heavily on 

measuring latencies of key presses on standard keyboards. Although our Study 4 

showed that the precision of such measurements could be acceptable, this hinges 

immensely on the particular keyboard and paradigm. Furthermore, key presses might 

not always be the ideal movement to measure. More precise response boxes are 

expensive and often rely on legacy interfaces or on specific software. Instruments that 

measure other movements are even more expensive and difficult to program. 

In the present article, we described a way out of this dilemma. We show how the 

open source microcontroller platform Arduino can be combined with a standard 

software package, E-Prime, to measure response latencies as precisely as a serial 

response box does. We show that flexible millisecond precision is within the reach with 

hardware investments of less than 50 €.  

In Study 1, we saw that communication in the direction from the PC to the 

Arduino is faster and less noisy than the return way. We therefore program the Arduino 

such that it gets signaled when a trial starts, measures the response latency itself, and 
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then reports back both the latency and the response. We developed an E-Prime inline 

script that signals the trial to the Arduino, waits for the measured values, and saves them 

to the database. Study 2 showed that this communication is reliable and fast when high 

baud rates are selected. Study 3 confirmed that with this script, the setup of PC, 

Arduino, and E-Prime can measure an event (here a change on the screen) with 

excellent precision (an SD of < 1 ms). Study 4 confirmed that a response box built with 

this setup performs as well as a serial response box, the current gold standard, and better 

than a keyboard. Study 5 showed that by taking additional timestamps into account, 

accuracy can be enhanced. Finally, Study 6 demonstrated that even without using 

special scripts, the Arduino Leonardo board could be used to construct a millisecond 

precise response box that can be used with any software. 

Our script includes two quality assurance mechanisms: a check of the correct 

match of E-Prime and Arduino trial via a random number, and a backup measurement 

of the latency via the script. Both should be used to verify the correct implementation of 

the script (see a check list in the Appendix, posted as supplementary material with the 

article). 

We focused here on replicating response box and keyboard functionality because 

this is the current norm. However, the Arduino has potential for building new kinds of 

response measures. It can be connected to a multitude of sensors to develop new 

paradigms in an easy fashion. Rapid prototyping toolkits offer gyroscopes, 

accelerometers, light-dependent resistors, hall sensors, compasses, touch sensors, and 

much more. Here we only demonstrate the precision using keys (Study 4), photodiode 

(Study 3), and light-dependent resistors (Study 6). Tests with other hardware have to be 

conducted in the future.  
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Interestingly, the script that we developed here can be directly used to also 

implement the presentation of stimuli via the Arduino. For instance, in some paradigms 

vibration or LEDs have to be used (e.g., Pavani & Castiello, 2004). LEDs and small 

vibrators can easily be connected to an Arduino, and the Arduino can control them in 

response to the trial signal. We believe that controlling external actuator and 

measurement hardware from experimental software like E-Prime via an Arduino can 

greatly enhance the experimental psychologist’s toolbox. 

Caveats and Future Directions 

Perhaps the biggest problem for anybody who wants to implement our solution 

right away is that in rapid prototyping kits for the Arduino, there seems to be shortage 

of good button modules. While this situation remains, we suggest three solutions. Most 

easily, any button can be connected to an Arduino directly.
8
 We recommend employing 

Cherry key modules.  

Second, it is clear that our E-Prime InLine script requires basic knowledge in 

scripting, and is not as easily deployed as simply choosing an input device in E-Prime. 

However, there are very few changes that experimenters need to make in a standard 

experiment. We are currently working on packaging the script such that it is more easily 

employed. 

Third, we are certainly aware that other software packages exist that also 

implement serial ports (e.g., Presentation). We expect that our script can be easily 

ported to these packages. We make our script available under the GNU GPL v3 public 

license and encourage porting to other environments. 

We focused here on standard Arduino USB communication, but we would like 

to point out that alternatives are available. For instance, it is conceivable to use parallel 

ports where they are still available to communicate with an Arduino, or to employ a 
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DAQ card. Another option is to circumvent the hardware that an Arduino offers for 

USB connection, because this is not optimized for extreme speeds. For instance, it is 

possible to connect the hardware serial port of an Arduino board to a special FTDI chip, 

which then talks to the computer via USB and specialized drivers. In initial tests we 

have found an improved accuracy using this setup. 

Finally, we want to reiterate that despite its many advantages, the use of 

additional hardware may not be necessary in some paradigms. Studies on response 

latencies have been successfully conducted over the Internet, which presents the most 

noisy environments imaginable, with many different hardware configurations (Nosek, 

Banaji, & Greenwald, 2002). The challenge is to judge a priori based on expected effect 

size, desired test power, and response latency distribution, what noise induced by the 

particular hardware is acceptable. Providing guidelines for this remains a task for the 

future.  

We hope that experimental psychologists increasingly abandon the keyboard as 

a response device when it is not the ideal index of cognition. For many researchers in 

cognitive science, programming their own paradigms has become an elementary part of 

developing studies. We believe that building suitable hardware can become similarly 

useful and natural. 
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Footnotes 

 
1
 Using Windows XP SP2 and E-Prime 1.3, and the Black Box ToolKit 

(www.blackboxtoolkit.com), see Plant, Hammond, and Turner (2004). 

2
 We can think of three alternatives: First, Arduino boards can be outfitted with 

serial connectors, which would allow connecting them to a PC with a serial input. 

Second, Arduino output pins can be connected to a data acquisition card’s input pins or 

to a parallel port. Both would result in fast and flexible solutions, but also require legacy 

or additional hardware that we want to replace. A third solution would establish a 

wireless connection via WLAN or Bluetooth; however, time lags added to the 

transmissions would have to be evaluated carefully. 

3
 All scripts and an E-Prime template file are also available at 

http://openscienceframework.org/project/cuzj5/ 

4
 This means essentially that a pull-down resistor connected the pin to ground. 

Reading an unconnected pin would result in random fluctuation. 

5
 See https://reactiontimes.wordpress.com/electro-mechanical-turk/ for the 

layout and further details. 

6
 The difference between the two tests for the Response Box is surprising but 

remains unclear. We ran two more tests with 100 trials each, but the results resemble 

those of the run with the larger variance. 

7
 A third method, which is shown to be slightly inferior, uses the difference 

between microprocessor timestamp and computer timestamp after sending, but we will 

not discuss this here further. 

8
 See http://www.arduino.cc/en/Tutorial/button for a tutorial. 
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Tables 

 

Table 1 

Total delay introduced in USB communication (E-Prime measured response latency 

minus Arduino-reported waiting time; all values in milliseconds; Studies 2 and 6). 

Arduino Baud rate M SD Minimum Maximum 

Uno R3 14400 22.7323 1.40497 18.48 26.21 

 38499 10.6446 1.10654 7.23 12.71 

 57600 8.1994 1.07971 5.56 10.76 

 115200 5.7482 1.12930 3.28 8.37 

 128000 5.6715 1.10581 3.40 7.82 

Leonardo 128000 3.0997 0.52883 1.97 9.22 
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Table 2 

Latencies of responses (in milliseconds) by the “robot” (Second Arduino equipped with 

photodiode and Solenoid) to react to onset of a white screen (Study 4). 

Hardware Test SD M Min Max 

PST Serial Response Box 1 1.08 56.28 54 59 

2 1.34 57.54 54 61 

Arduino 1 1.29 42.38 38 45 

 2 1.28 41.87 40 46 

Microsoft USB keyboard 1 2.99 69.67 63 77 

2 3.09 72.25 65 79 
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Figure 1 

E-Prime Table (separated in two parts) with added fields for communication with and control of the Arduino: TrialDuration, TrialNr, 

ArduinoTrialNr, ArduinoRT, ArduinoButtons, InlineStartTime, InlinePostSendingTime, InlineEndTime, and InlineRT. Only TrialDuration has to 

be filled by the programming experimenter. 
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Figure 2 

Properties of the E-Prime stimulus presentation object, here a TextDisplay. Duration is 

set to a very short value (actual duration is controlled by TrialDuration in the 

StimulusList table). Keyboard and Correct are added to allow feedback and testing. 

Data Logging is turned on. 
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Figure 3 

Connecting two buttons to the pins 6 and 7 of an Arduino, realized with Cherry key 

modules (inset a), screw terminals (inset b), and a rapid prototyping base shield (inset 

c). 

 

 

a 

b 

  

c 
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Figure 4 

Histograms of measurements in Study 4. For each periphery, two measures with 100 

trials each were taken. SRB = Serial Response Box, ARD = ARDUINO, KB = 

Keyboard. 
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Appendix 

Checklist before collecting data 

1. Is the same highest possible baud rate set in E-prime, Arduino sketch, and device 

manager? 

2. Are all necessary columns added to the list containing the stimulus object or a 

higher order list? 

3. Are the names of the stimulus object used in the final part of the E-Prime InLine 

adjusted to names actually used? 

4. Does the E-Prime script leave a grace period of ca. 2 s after the start, before the first 

communication with the Arduino is attempted? 

5. Is data logging turned on for the stimulus object? 

6. Does the Arduino script define the correct pins for input and ouput? 

 

Checklist after collecting data 

7. Is the TrialNr (which is sent to the Arduino) the same as ArduinoTrialNr (which is 

received from the Arduino) for all trials? 

8. Compute the difference inlineRT – arduinoRT, and check its distribution. If the 

average is large or the standard deviation is high, ArduinoRTs are going to be 

inaccurate or imprecise, respectively, as about 1/3 of the delay happens before 

ArduinoRT is measured. 

9. Compute the difference InlinePostSendingTime – InlineStartTime. Trials with 

outlier differences may be unreliable, as the trial onset stimulus might have been 

delayed. 



Listing 1: E-Prime InLine script 

'============== PART 1 – SETUP ============== 
 
'variables to save timestamps of start and end 
'note: Double can hold values from 4.94066E-324 to 1.797693134862315E308 
Dim startTime As Double 
Dim postSendingTime As Double 
Dim endTime As Double 
 
'variables to be transmitted to Arduino 
'note: Integer can hold values from –32768 to 32767 
Dim trialNr As Integer 
Dim trialDuration As Integer 
Dim trialMessage As Integer 
 
'generate random number as check number to verify correspondence of trial  
'and what Arduino returns 
trialNr = CInt(Random(0,32767)) 
 
'reads TrialDuration using the context object.  
trialDuration = c.GetAttrib("TrialDuration") 
 
'the following is just reserved, not currently used.  
trialMessage = 999 
 
'============== PART 2 - TALKING TO ARDUINO ============== 
 
'construct and send String to Arduino.  
'Arduino expects 3 Integers separated by a comma and ending  
'with a non-integers sign other than a comma 
'we End With a dot 
Dim sendString As String 
sendString = CStr(trialNr) & "," & CStr(trialDuration) & "," & 
CStr(trialMessage) & "." 
 
'remember when sent 
startTime = Clock.ReadMicrosec 
 
'send 
Serial.WriteString sendString 
 
'also save time after sending 
postSendingTime = Clock.ReadMicrosec 
 
'print them to debug 
'uncomment following for debugging 
'Debug.Print sendString 
 
'============== PART 3 - LISTENING TO ARDUINO ============== 
 
'now read and wait until the string terminator is in 
Dim strData As String 
Dim incoming As String 
Dim nRead As Long 
 
Dim waiting As Boolean 
waiting = True  
 
While waiting  
 'read new data and add them to complete string 
 nRead = Serial.ReadString(incoming) 
 strData = strData & incoming 
 'Anything come in yet? 
 If Len(strData) > 0 Then 
  'last sign of complete string is a . ? 



  If Mid$(strData, Len(strData), 1) = "." Then 
   endTime = Clock.ReadMicrosec 
   waiting = False 
  End If 
 End If 
Wend 
 
'============== PART 4 - SAVING DATA ============== 
 
'print them to debug 
'uncomment following line for debugging 
'Debug.Print strData 
 
'disassemble string into integers, based on algorithm that is also used  
'on the Arduino side 
'here we expect 3 fields returning from Arduino: trialNr, RT, buttonStates 
Dim NUMBER_OF_FIELDS As Integer  
'how many comma separated fields we expect 
NUMBER_OF_FIELDS = 3 
 
'the current field being received 
Dim fieldIndex As Integer  
fieldIndex = 0 
 
'array holding values for all the fields 
Dim values(NUMBER_OF_FIELDS) As Long    
 
Dim i As Integer 
Dim ch As String 
Dim chasc As Integer 
 
For i = 1 To len(strData) 
 ch = Mid$(strData, i, 1) 
 chasc = Asc(ch) 
 'is this an ascii digit between 0 and 9? 

If chasc >= 48 And chasc <= 57 Then  
     'yes, accumulate the value 
     values(fieldIndex) = (values(fieldIndex) * 10) + ch 

' comma Is our separator, so move On To the Next field 
 ElseIf ch = "," Then   
  If fieldIndex < NUMBER_OF_FIELDS-1 Then 
         fieldIndex = fieldIndex + 1   ' increment field index 
  End If 
    End If 
Next i 
 
'compute a check RT that is the difference between starting the inline  
'and receiving the full Return String from arduino - should be longer  
'than what RT says 
Dim InlineRt As Double 
InlineRT = endTime - startTime 
 
'store generated random check number 
c.Setattrib "TrialNr", trialNr 
 
'uncomment following line for debugging 
'Debug.Print values(0) & "\t" & values(1) & "\t" & values(2) 
 
'save values returned from Arduino in three attributes of the StimulusList 
c.SetAttrib "ArduinoTrialNr", values(0) 
c.SetAttrib "ArduinoRT", values(1) 
c.SetAttrib "ArduinoButtons", values(2) 
 
'store timings measured by script 
c.SetAttrib "InlineStartTime", startTime 
c.SetAttrib "InlinePostSendingTime", postSendingTime  



c.SetAttrib "InlineEndTime", endTime 
c.Setattrib "InlineRT", InlineRT 
 
'wait 100 ms to allow the trialStimulus object to finish 
'uncomment if you expect reaction times less than the duration  
'of the stimulus object 
'sleep(100) 
 
'save values also in .RT and .RESP, overwriting the no-response there 
 
'CHANGE NAME OF STIMULUS OBJECT IN FOLLOWING LINES IF YOU  
'USE A DIFFERENT ONE 
 trialStimulus.RT = values(1)/1000 
 trialStimulus.RESP = values(2) 
 
 'now set ACC so that Feedback Display can evaluate it 
 'this needs to be done manually here because trialStimulus 

'object is already finished,  
 'And would not check the .RESP again to determine ACC 
 If trialStimulus.CRESP = trialStimulus.RESP Then trialStimulus.ACC = 1 
 If trialStimulus.CRESP <> trialStimulus.RESP Then trialStimulus.ACC = 0 
 
'reset values to zero 
For i = 0 To NUMBER_OF_FIELDS-1  
 values(i) = 0 
Next i 
fieldIndex = 0 

 



Listing 2: Arduino Sketch  

#define led1 13 
#define button1 6 
#define button2 7 
const int NUMBER_OF_FIELDS = 3; // how many comma separated fields we expect 
int fieldIndex = 0;            // the current field being received 
int values[NUMBER_OF_FIELDS];   // array holding values for all the fields 
 
void setup()  
{ 
  // Initialize serial port to same speed as set in e-prime 
  Serial.begin(128000);  
  pinMode(led1, OUTPUT);      
  pinMode(button1, INPUT);  
  pinMode(button2, INPUT);  
} 
 
void loop()  
{ 
  readTrial(); 
} 
       
void readTrial()  
{ 
  if( Serial.available()) 
  { 
    char ch = Serial.read(); 
    if(ch >= '0' && ch <= '9') // is this an ascii digit between 0 and 9? 
    { 
      // yes, accumulate the value 
      values[fieldIndex] = (values[fieldIndex] * 10) + (ch - '0');  
    } 
    else if (ch == ',')  // comma is our separator 
    { 
      if(fieldIndex < NUMBER_OF_FIELDS-1) 
        fieldIndex++;   // increment field index 
    } 
    else 
    { 
      // any character not a digit or comma ends the acquisition of fields       
      runTrial(values[0], values[1], values[2]);       
      //clear values again; otherwise they multiply up 
      for (int i=0; i <= fieldIndex; i++)  
      { 
        values[i] = 0; 
      } 
      fieldIndex = 0;  // ready to start over 
    }  
  }    
}      
 
void runTrial(int trialNr, int trialDuration, int trialMessage) 
{ 
  //uncomment following line to see board LED go on during trial 
  //digitalWrite(led1, HIGH);    
     
  unsigned long starttime = micros(); 
  unsigned long endtime = starttime + (unsigned long) trialDuration * 1000; 
  unsigned long nowtime; 
  int button1State = 0; 
  int button2State = 0; 
   
  do  
  { 
    button1State = digitalRead(button1); 



    button2State = digitalRead(button2); 
    nowtime = micros(); 
  } while (button1State == 0 && button2State == 0 && nowtime < endtime); 
 
  //uncomment if you turned it on above 
  //digitalWrite(led1, LOW);   // set the LED off again 
 
  unsigned long rt = nowtime - starttime; 
  //constructing answer string 
  String buttonStates = "0"; // no response 
  if (button1State == 1) {buttonStates = "1";} 
  if (button2State == 1) {buttonStates = "2";} 
  if (button1State == 1 && button2State == 1) {buttonStates = "3";}  
   
  sendBack(trialNr, rt, buttonStates); 
} 
 
void sendBack(int trialNr, unsigned long rt, String message)  
{ 
  Serial.print(trialNr,DEC); 
  Serial.print(","); 
  Serial.print(rt,DEC); 
  Serial.print(","); 
  Serial.print(message); 
  Serial.print(".");  
} 
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