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Abstract 

The platinum group elements (PGMs) Pt, Pd and Rh are used extensively in different 

industrial and technological applications. Particularly important is their use in autocatalysts in 

order to reduce emissions of harmful pollutants from car exhaust. Increased use of the PGMs 

has resulted in high interest of their recovery from spent autocatalysts in addition to 

determination of low concentrations of the PGMs in different sample matrices. 

In this study, separation of the PGMs (and selected base metals) in HCl solutions have been 

studied using solid phase extraction. Strong anion exchange (SAX) and strong cation 

exchange (SCX) resins was tested due to the PGMs forming (mostly) anionic 

chlorocomplexes in HCl solution, while the base metals are present as cations. Cyano (CN) 

and dioctyl sulphide (DOS) modified reverse phase was tested due to the PGMs having a 

large affinity towards N and S. The differences in adsorption due to HCl concentration and 

storage time of the solutions was investigated on SAX and SCX and optimum results were 

found using fresh solutions with 0.15 M HCl, in which Pt and Pd were quantitatively 

adsorbed on SAX and the base metals quantitatively adsorbed on SCX. Pd was found to be 

selectively retained on CN and DOS modified resin. Recovery of the analytes was tested 

using several elution solutions. Thiourea was found to be needed in order to recover Pt from 

SAX and Pd from DOS modified resins. 3 M HCl could be used for recovery of Pd from 

SAX, recovery of base metals from SCX and recovery of Pd from CN. None of the tested 

resins adsorbed Rh to any large degree. A separation scheme was proposed using SCX and 

SAX and a good, although not quantitative, separation was obtained. Additionally, high 

pressure liquid chromatography (HPLC) was tested using a SAX column and the ICP-MS as a 

detector, with a mobile phase containing a maximum of 2 M HCl. High background of Pt and 

Pd was found in the HPLC method, presumably due to previous contamination of the column. 

Rh was the only PGM showing peaks not present in the blank. 

Analyses of the samples were performed using inductively coupled plasma optical emission 

spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS). Both 

were found to be good techniques for determining low concentrations of PGMs in HCl 

solutions with detection limits ~ 0.1 – 0.9 ng mL
-1

 for ICP-MS and ~ 10 - 15 ng mL
-1

 for ICP-

OES. Determination of the selected base metals on the ICP-MS was problematic and this 

instrument was therefore only used for analysis of the PGMs.   
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Abbreviations 

CN Cyano 

DOS Dioctyl sulphide 

HPLC High performance liquid chromatography 
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ICP-OES Inductively coupled plasma optical emission spectrometry 
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1  Introduction and background 

1.1 Platinum Group Metals 

1.1.1 General 

Platinum group metals (PGMs) is a term given to the metals Ru, Rh, Pd, Os, Ir and Pt. The 

PGMs are part of the noble metals, which “resist chemical action, do not corrode and are not 

easily attacked by acids” [1]. Several of the PGMs have important properties, most 

importantly a high catalytic activity, which makes them important in many industrial 

processes and new technologies [2]. 

The PGMs are usually found in sulphur rich minerals, particularly in Ni, Fe and Cu sulphides 

[2-4]. The refineries have different approaches towards refining the metals depending on if 

they are seen as the main product (with Ni/Cu as bi-products) or as a bi-product itself in the 

Ni-Cu refining [2]. In addition, other transition metals are often found together with the 

PGMs, with gold, copper and iron being examples [5]. 

As with the other precious metals (Au, Ag), the amount of PGMs in the Earth's crust is low 

(approximately 1 ng g
-1

 per element) [4]. The demand for the PGMs, especially for Pt, Pd and 

Rh, is very high, as they have many important properties that are useful in industrial 

processes [6]. The process for refining and extracting the PGMs is a complex process [2] 

which in addition to the high demand and the scarcity of the elements makes them very 

expensive. There is therefore an increased interest in their recovery from waste products like 

spent catalysts, electronic scrap and metal wastes, due to the natural deposits getting 

exhausted [6, 7]. 

1.1.2 Applications 

The most important elements of the PGMs are Pt, Pd and Rh. The distribution of their 

demand by application in 2012 can be seen in Figure 1. The main demand is their use in 

autocatalysts which in 2012 comprised of approximately 40, 65 and 80 % of the total demand 

of  Pt, Pd and Rh, respectively [8]. Additionally, they are used in several other applications 

due to their different properties. They are resistant to corrosion and oxidation in addition to 
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having excellent mechanical properties, which is important for high temperature processes in 

the industry [2, 4, 9]. The elements are good catalysts and Pt based catalysts can eliminate 

volatile organic compounds that are emitted from many industrial processes [9, 10]. Platinum 

is among other used as a catalyst in organic synthesis [7] and the good electrical conductivity 

and high melting point of the PGMs makes them useful in the electrical industry [2, 4, 9]. 

Other applications are in ceramic capacitors, fuel cells, as catalysts in the chemical industry 

and in glass manufacturing [11]. Additionally, platinum is used in chemotherapy where 

cisplatin, [PtCl2(NH3)2], has been used as an anticancer agent [12]. Platinum is also used in 

jewellery due to its shiny and silvery appearance [7, 9, 13]. 

 

Figure 1 Total demand of Pt, Pd and Rh by application in 2012, values are in 103 oz [11] 
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1.1.3 Autocatalysts 

Increased awareness of environmental pollution from car exhaust has led to implementation 

of catalytic converters in cars. These autocatalysts reduces levels of carbon monoxide from 

petrol engines as the catalytic activities of Pt and Pd enables the complete combustion of 

hydrocarbons and convertion of CO into CO2. The three-way converters, which have Rh in 

addition to Pt and Pd also remove nitrogen oxides (NOx) by reducing them to N2. The 

catalysts are thermally stable and operate at relatively low temperatures [5, 10, 13-18]. The 

three-way autocatalysts has been the most important application for Pt, Pd and Rh the last 20 

years [4]. 

Although the PGMs in the autocatalysts have a positive impact on the environment by greatly 

reducing the amount of harmful pollutants and emissions released in nature, small amounts of 

PGMs are released from the autocatalysts by abrasion and thermal cracking due to the hot 

exhaust gases flowing through the catalytic converters [4, 15, 19, 20]. The emitted PGMs are 

mainly released in their biologically inert metallic state while still bound to metal oxides. 

Transformation into soluble forms can, however, occur in nature, which in turn can lead to 

bioaccumulation [12, 21]. The number of redox and complexation agents in soils and 

sediments can affect this mobilization greatly [12]. Increased levels of PGMs have been 

observed in ambient air and dust particles close to highways [4, 5, 12, 22]. Releases can also 

originate from point sources of production and recycling of the PGMs although the release 

from autocatalysts exceeds the other sources [4, 9, 12]. 

1.1.4 Chemistry 

The chemistry of the PGMs in solution is depending on the hydrochloric acid concentration 

and the oxidation state of the elements. The oxidation state of rhodium can be Rh(III) or 

Rh(IV), palladium can be found as Pd(II) and Pd(IV) while Pt can exist as Pt(II) and Pt(IV). 

The most stable oxidation states are noted in bold [7, 13, 22, 23]. They all form 

chlorocomplexes in strong hydrochloric acid solutions, creating mostly anionic complexes, 

with distribution depending on the pH and temperature in the addition to the concentration of 

HCl/chloride and the metals in the solution [7, 24, 25]. 
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For platinum, the octahedral complex hexachloroplatinate, [PtCl6]
2-

 predominates in strong 

acidic HCl solution (> 3 M) but with dilution, complexes of Pt(II) appear and coexist in 

solution as their square planar [PtCl4]
2-

 equivalent. The increased pH also allows aquation 

and hydrolysis to take place, where one or more chloride is exchanged by H2O or OH
-
. This 

is what is known as the “ageing” effect of the PGM solutions, which means that over time the 

speciation of the PGMs in a solution will change from its original composition. Normally, 

more aquated and hydrolysed complexes will appear and this effect is especially pronounced 

in weakly acidic solutions. It will lead to a mix of PGM chlorocomplexes with various 

degrees of aquation and hydrolyzation, which can make their separation challenging [7, 26, 

27].  

Palladium is mainly present as Pd(II) and there are limited knowledge of the chemistry of 

Pd(IV) complexes [28]. The Pd(II) oxidation state forms square planar [PdCl4]
2-

 complexes in 

hydrochloric solutions. The square planar complexes generally have a higher degree of ligand 

exchange than their octahedral counterparts, as they have less steric hindrance. Rhodium is 

present as the [RhCl6]
3-

 complex in strong HCl (> 6 M) solutions although lowering of the 

acidity causes many transformations, most importantly the aquation of the complexes, where 

one or more chloride is exchanged with a water molecule [23, 25]. Rhodium is more affected 

by this aquation than the other PGMs [16]. The aqua and hydroxo complexes are kinetically 

inert, which can lead to them being less readily extracted by ion exchange extractants [7, 25]. 

Due to the wide variety of possible complexes, it is hard to predict the distribution via 

thermodynamic constants although there is qualitative agreement that chlorocomplexes of Pt 

and Pd will occur in highly oxidizing, acidic solutions [22]. 

The PGMs have a large affinity to sulphur and nitrogen-containing ligands. This can be 

explained by the hard and soft acids and bases theory. The precious metals in their low 

oxidation state belong to the “soft acids” and has a strong affinity for the “soft base” donor 

atoms in the order of S ~ C > I > Br > Cl ~ N > O > F [22, 29, 30]. 
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1.2 Separation and preconcentration 

There are several reasons why separation of platinum, palladium and rhodium from both each 

other and from accompanying metals is an important area of research. The increase of PGMs 

in the environment has led to an increased interest in determining the elements in trace 

amounts from different matrices including environmental and biological samples. In order to 

increase sensitivity of the detection methods, it is often needed to remove matrix elements to 

minimize background noise and interferences. Additionally, there is often a need to 

preconcentrate the PGMs in the sample in order for the PGM concentration to reach the 

instrumental limit of detection [12, 15, 31, 32]. This is especially important when measuring 

for increased pollution of the metals in the environment as the PGMs are present only in trace 

amounts. 

There is also pressure from the industry to develop easier and less expensive ways of 

obtaining the pure metals, both from natural deposits and in regards to their recycling. A 

regular tree-way converter contains 1 - 5 g of the PGMs [22] and because of the rarity in 

nature and the high demand of these elements, it is important to find good methods of 

recovery [6, 25]. For this to be cost effective, generally a recovery higher than 95 % is 

needed [16]. The similar chemistry of the different PGMs and their complexes makes their 

separation challenging [33] and much research have been made in this field. Several review 

articles have summarized work that has been done so far in regards to separation and 

preconcentration of the PGMs [2, 4, 32, 34]. 

1.2.1 Traditional refining methods 

The refining of PGMs has traditionally been achieved with the use of a series of 

precipitations. Due to poor selectivity and contaminant PGMs, several intermediate and 

cleaning steps have to be made in order to obtain the pure metals. This makes the process 

prolonged and labour intensive. Liquid-liquid extraction (LLE) was implemented in the 

1970s, with the use of dialkyl sulphides as a complex forming selective extractant for Pd in 

addition to the use of anion exchange solvents to extract the metal chlorocomplexes [2]. LLE 

gives a higher selectivity than the precipitation methods, in addition to a higher purity of the 

PGMs and more complete removal of metals. This causes LLE to be superior to precipitation 
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methods both in terms of refining time and production costs. The main downside of solvent 

extraction is the use of large amounts of organic solvents which needs to be recycled [2, 35]. 

1.2.2 Solid phase extraction (SPE) 

In solid phase extraction, analytes are extracted from a liquid phase to a solid phase. The 

solid phase usually consists of particles made of either silica or polystyrene-divinylbenzene 

with added functional groups. Several types of these resins are commercially available and 

can be bought in bulk weight or pre-packed in syringe barrels or cartridges. The extraction 

can be done in batch mode, where a certain amount of resin is mixed with the solution 

containing the analyte and left to equilibrate. Agitation will usually decrease the time needed 

before equilibrium is reached. More practical is using a “column mode”, where the sample is 

passed through a column or cartridge containing the resin. This mode is faster, more user-

friendly and it is easier to back extract the analytes from the resin than for the batch mode. 

The extracted analytes can be removed from the solid phase by passing an appropriate eluent 

through the resin and collecting the effluent. SPE is more practical than LLE, as it is easier to 

separate the phases. Additionally it is faster, less labour intensive and can be easily 

automated. 

Normally there are four steps in the method of solid phase extraction [36].  The first is to 

condition the resin to activate the functional groups for analyte adsorption and to ensure a 

good contact between the mobile phase and the stationary phase. This is especially important 

for hydrophobic resins, as they often contain long chains of hydrocarbons which can collapse 

when the resin is dry. The second step is the sample application, where the sample is passed 

through the resin and the analytes are adsorbed. Normally a wash solution is then applied as 

the third step, to remove matrix components that may be adsorbed together with the analytes. 

Finally, the eluent is applied, to elute the analytes from the resin. Ideally the analytes are 

eluted in a small volume, as this ensures a preconcentration of the analytes. SPE can also be 

used to extract matrix components from the samples while the analytes pass through 

unhindered. 

For the PGMs, several sorbents have been used for adsorption of either the analytes or the 

matrix components. Most often used is anion exchange resins, in order to adsorb the anionic 

chlorocomplexes of Pt and Pd [6, 7, 24-26, 32, 37-40]. The tendency for the PGM chloro 
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complexes to form ion pairs with anion exchangers is reported to be MCl6
2-

 > MCl4
2-

 ≫ 

MCl6
3-

 [16]. In order to quantitatively adsorb the PGMs, the HCl concentration in the sample 

should be kept low, as the chloride ions compete with the analyte anions for the active sites 

of the sorbent. The downside to using this type of sorbent is the lack of selectivity, in addition 

to it being difficult to back extract the adsorbed platinum. Thiourea is often used in the eluent 

as it is a strong complexing agent for Pt [4, 9, 28, 41] and occasionally the resin is burned in 

order to recover the adsorbed elements [24, 32]. In weak acidic solutions, Rh do not adsorb to 

the anion exchange resins, presumably because of the many aquated species that are present 

in solution. These are more kinetically inert than the hexachloro complex and consequently 

less easily extracted [39]. Cation exchange resins have been used to adsorb matrix elements 

in the sample, as most of the other transition metals do not form stable chlorocomplexes as 

easily as the PGMs [38, 42, 43]. Other types of sorbents used are chelating or complexing 

sorbents, often containing sulphur donor atoms which have a particular affinity for the PGMs. 

These sorbents can either be synthesized or a reverse phase resin can be impregnated with a 

complex forming agent before sample application [21, 32]. 

1.2.3 High performance liquid chromatography (HPLC) 

High performance liquid chromatography works by the same principles as SPE, with the 

analytes interacting with the resin. The difference between HPLC and SPE is that in SPE a 

relatively large amount of sample is applied to the column and the analytes are completely 

retained before they are eluted with an appropriate eluent. With HPLC, however, a small 

amount of sample is applied as a plug in a continuous flow of mobile phase (MP) which is 

chosen so that the analytes move through the column at different speeds according to their 

affinity to the resin. This ensures a separation of the different analytes, as they will elute 

separately in time from the column. The column is also longer than for SPE, and the 

stationary phase (SP) consists of smaller particles which results in a high pressure over the 

column. 

For PGM separation, strong anion exchange HPLC has been used, although a strong eluent 

like sodium perchlorate or high amounts of HCl is often needed in the mobile phase in order 

to elute the analytes completely. Reverse phase HPLC has also been used. The SP in reverse 

phase HPLC is hydrophobic and the analytes are retained due to their hydrophobic parts. As 

the PGMs are not hydrophobic themselves, the sample has to be treated to form PGM 
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chelates before application on the column. Another way to use reverse phase HPLC is to use 

an ion pairing agent in the MP. These ion pairing agents have a hydrophobic part that 

interacts with the SP and a cationic part that interacts with the anionic PGM chlorocomplexes 

[19, 31, 44].  

1.3 Analytical methods 

As previously mentioned, there is an increased need for determination of low concentrations 

of PGMs in different sample matrices. Several techniques have been used, including 

adsorptive voltammetry, neutron activation analysis, electrothermal atomic absorption 

spectroscopy, inductively coupled plasma optical emission spectrometry (ICP-OES) and 

inductively coupled plasma mass spectrometry (ICP-MS) [12, 15, 21, 41]. Common for the 

techniques are low limits of detection, although preconcentration of analytes and/or 

separation from the matrix is often needed. Most applicable are the ICP-OES and ICP-MS, 

although both have challenges that need to be overcome. 

1.3.1 Inductively coupled plasma optical emission spectrometry (ICP-

OES) 

In ICP-OES, liquid samples are usually aspirated through a concentric nebulizer into radio-

frequency generated argon plasma. The analytical zone in the plasma reaches temperatures up 

to 8 000 K and this high temperature causes the sample components to atomize and ionize, 

before the atoms and ions are excited. The emission originating from the relaxation of the 

atoms and ions are then detected at specific wavelengths, chosen by the analyst. Around 60 - 

70 elements can be detected with this technique, with detection limits ranging from < 10 – 

300 ng mL
-1

 [45].  

ICP-OES has been applied to determination of trace concentrations of PGMs, although low 

analyte levels and complicated matrices means that preconcentration and/or matrix separation 

steps are often needed for their determination. Non-spectral interferences are usually not a 

big problem if the calibration solutions are acid matched to the matrix of the samples [15, 

20]. Spectral interference may be a problem if a high concentration of matrix elements is 

present in the sample matrix. This is most easily overcome by pre-treatment of the sample in 

order to remove the interfering elements [20, 23]. 
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1.3.2 Inductively coupled plasma mass spectrometry (ICP-MS) 

ICP-MS uses the same plasma source as the ICP-OES but in this technique the purpose of the 

plasma is to generate mono charged ions. These ions are then transferred into a mass 

spectrometer and separated according to their mass to charge ratio, before they are converted 

into electrical pulses which is counted by the instrument [46]. 

This technique is one of the few which can be directly applied for determining the ultra-trace 

levels of PGMs in the environment [15]. The main limitations for analysing trace level PGMs 

by ICP-MS is spectral interference arising from ions with the same mass to charge ratio as 

the analytes. These ions can be isotopes of other elements or molecular and doubly charged 

ions created in the plasma source [46]. This is further discussed in the method development 

section (3.3.1). The extent of the spectral interference depends on the concentration of 

elements present in the plasma gas and the sample matrix. Non-spectral interferences can 

arise from high concentrations of matrix elements, and can either suppress or enhance the 

analyte signal. This type of interferences is assumed to be less significant for analysis of 

PGMs [15]. 

Modification of the sample introduction by using a membrane desolvator [47] or a cooled 

spray chamber to give “dry” plasma conditions can reduce O and OH-containing polyatomic 

interferences from samples with a complicated matrix [12]. An increase in plasma power has 

been found to be of advantage in order to reduce the polyatomic interferences, although this 

will also increase the amount doubly charged ions [15, 48]. If the size of the analyte ion is 

significantly less than the polyatomic ions, a collision cell can be advantageous [12, 15, 46] 

although this seems to not be ideal for the PGMs [19]. The use of a reaction cell may also be 

an advantage, especially for the measurement of some of the base metals. In general, a 

chemical separation of the PGMs from the interfering elements seems to be the preferred 

choice [12, 49]. 

1.3.3 HPLC-ICP-MS 

It is of interest to use ICP-MS coupled with HPLC in order to have an on-line separation of 

the sample components before the analysis. The coupling of HPLC to ICP-MS is easy, by 

using a switching valve between the LC column and the ICP-MS sample introduction 
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components. This way, the mobile phase of the HPLC can be sent to waste during the column 

conditioning and rinsing steps while being directed into the ICP-MS for the analysis. It is, 

however, important to keep the tubing lengths as short as possible and to have a small dead 

volume in the connections, fittings and switching valves, in order to reduce band broadening 

[46]. 

The HPLC principle used for separation of the PGMs is most often anion exchange. The high 

affinity of some of the PGMs towards the anion resins means that the MP must contain high 

acid concentrations (> 1 M HCl) or ions like ClO4
-
 which has a strong affinity to ion 

exchanger sorbents. Complexing agents like thiourea and ethylenediaminetetraacetic acid 

have also been used in the MP to elute the PGMs [19, 27, 37, 44]. Short eluting times of 

approximately 3 min have been found when using NaClO4 concentrations of 300 mM 

coupled with UV detection [50] but this amount of sodium perchloride causes problems with 

the ICP-MS, as the total dissolved solids (TDS) in solution should not exceed 0.2 % when a 

concentric nebulizer is used [46]. This corresponds to 17 mM of NaClO4. Mobile phases 

containing 1.1 M HCl and 50 mM of NaClO4 have given elution times up to 45 min for Pt 

[19]. The problem of excess amounts of dissolved solids can be overcome by using post-

column dilution and the retention time can be reduced by using a short guard column instead 

of an analytical column [27, 44].  

1.4 Objective of the study 

The aim of this work was to study and develop methods for separation of the PGMs from 

both each other and from the matrix elements. This was done using mainly SPE, with 

analysis of the samples using ICP-OES and ICP-MS. In order to find a method that can be 

applied to a larger scale refining of recycled car catalysts, it is necessary to find sorbents that 

can selectively retain specific PGMs or eluents that can selectively elute the PGMs. Because 

of the similar chemical properties of the elements, this is a great challenge. Ideally, a HPLC 

method would be implemented coupled with the ICP-MS, using the findings from the SPE 

trials. In order to determine the purity of the separated metals, ICP-OES and ICP-MS was 

used, as these are specific detectors and have low limits of detection. The focus of the study 

was shifted from HPLC methods towards SPE, as the HPLC-ICP-MS coupling and 

subsequent analysis proved more difficult than originally hoped. 
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2 Experimental 

2.1 Vessels and reagents 

Borosilicate glass volumetric flasks were used throughout the study for preparing and 

collecting the PGM solutions and samples in order to minimize any possible adsorption of 

analytes to the vessels [12, 15]. A few samples were prepared in centrifuge tubes made from 

polypropylene with a high density polyethylene screw cap (SARSTEDT AG & Co, 

www.sarstedt.com) although this was only done for dilution of samples shortly before 

analysis on the ICP-MS. The polypropylene tubes were also used for preparation of some of 

the eluent solutions which did not contain any PGMs. 

Ultra-pure, deionized water from a Millipore Milli-Q system (Bedford, USA) was always 

used. Suprapur 30 % (m/m) HCl, Suprapur 65 % (m/m) HNO3, pro analysi 25 % NH3 and 99 

% pure thiourea were from Merck (www.merck.de). Dioctyl sulphide (96 %) was from 

Sigma Aldrich (www.sigmaaldrich.de). 99.8 % HPLC-gradient grade BDH PROLABO 

methanol and 95 % (m/m) Rectapur BDH PROLABO H2SO4 was from VWR 

(www.vwr.com). The analyte containing solutions were prepared using commercial single 

element stock solutions and their specifications can be seen in Table 1. All the single element 

solutions were from Teknolab (www.teknolab.no). 

Table 1 The specifications of the single element stock solutions in which the analyte solutions were prepared from. 

 Conc. (μg mL
-1

) matrix 

Pt 1000 ± 0.5 4.9 % HCl 

Pd 1001 ± 2
 

3.3 % (abs) HCl 

Rh 1000 ± 2 4.9 % HCl 

Al 1000 ± 3 2.5 % HCl 

Fe 1003 ± 2 1.4 % (abs) HNO3 

Zn 1000 ± 3 2.5 % HNO3 

Cu 1000 ± 3 2.5 % HNO3 

Cr 1000 ± 0.5 2.5 % HNO3 + 0.04 % HCl 
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Real converter sample was obtained from K.A.Rasmussen AS (www.ka-rasmussen.no) and 

the elemental composition specifications are given in Table 2. This sample was microwave 

digested with aqua regia by Dejene Kifle and the obtained digested solution consisted of 5 

mg total converter material per mL of 10 % aqua regia solution.  

Table 2 The given specifications for the real converter sample. 

Fe Ni Cu Pt Pd Rh Slag 

69.00 % 7.20 % 0.45 % 3.60 % 2.00 % 0.86 % 16.84 % 

 

2.2 Solid phase extraction setup and materials 

A Minipuls 3 peristaltic pump (Gilson, Paris) was used together with tubing of 0.76 mm inner 

diameter and 0.86 mm outer diameter. The tubes and SPE barrels were made from 

polypropylene which is tolerable to high acidic environment. Polypropylene could possibly 

adsorb Pd [4] but this was assumed not to be a problem over the short contact times between 

the PGM solutions and the materials. A picture of the setup can be seen in Figure 2. All 

experiments were carried out at room temperature, using a flow rate of 1 mL min
-1

 as a 

higher flow rate may result in lower ion exchange efficiency [30, 43]. The resins were always 

conditioned by a minimum volume of 10 mL water unless otherwise stated. All effluents 

were collected in borosilicate glass volumetric flasks and appropriate amounts of 

concentrated HCl was added before filling the flasks with water up to the volume indicated 

by the flask. 
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Figure 2 The setup for the solid phase extraction experiments. 

 

The SPE resins used were strong anion exchange (SAX), strong cation exchange (SCX), 

cyano (CN) and reverse phase (RP), obtained from Phenomenex (www.phenomenex.com) or 

Agilent (www.home.agilent.com) and some of their specifications are seen in Table 3. A 

picture of the SPE’s can be seen in Figure 3 and illustrations of the resins can be seen in 

Figure 4. The RP resins were modified using 200 μL Dioctyl Sulfide (DOS), which 

corresponds to 0.65 mmol DOS. The cartridges were initially conditioned with 10 mL 

methanol, then 10 mL water before applying the 200 μL DOS. This was either done with the 

help of a syringe (to pull the conditioning solutions and DOS through the cartridge) or by a 

peristaltic pump at 1 mL min
-1

. Immediately after the DOS had gone through the cartridge, 

the sample was applied.  
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Table 3 Some specifications of the SPE cartridges used. 

 Serial or  

part number 

Mass 

(mg) 

Capacity 

(meq g
-1

) 

Average particle size 

(μm) 

Pore size  

(Å) 

Bond Elut SAX Jr, Agilent 

 12162044B 500 0.7 – 0.9 47 - 60 60 - 87 

Strata SCX, Phenomenex 

 144802 500 1.0 56 70 

Strata CN, Phenomenex 

 141275 500 N/A 56 70 

Strata-X polymeric RP, Phenomenex 

 102613 500 N/A 28 - 34 81 – 91 

 

 

Figure 3 The SPE cartridges used, showing SAX, SCX, CN and RP, from left to right. 
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Figure 4 Illustrations of the SPE resins used. 

 

3 Method Development 

In this work, both ICP-OES and ICP-MS were used for analysis of the samples. Most often 

used was the ICP-OES as this could often be applied without additional dilution of the 

samples containing approximately 1 μg mL
-1

 of analytes. For samples with lower 

concentration of analytes (~ 100 ng mL
-1

) the ICP-MS was used. The ICP-MS was also used 

in some experiments where the collected sample would have too high concentration of 

analytes for analysis on the ICP-OES with the pre-made calibration solutions and therefore 

had to be diluted in any case. 
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3.1 Limit of detection and limit of quantification 

The limit of detection (LOD) and limit of quantification (LOQ) is calculated from the 

minimum distinguishable analytical signal of the instruments. This can be found by 

measuring the blank signal multiple times, finding the standard deviation (s) of this signal 

and multiplying it with an integer. When using an analysis method that reports concentrations 

directly, the LOD can be found by calculating 3s of the concentration given for the blank 

samples. The LOQ is often set as 10s [45, 51]. In order to find the LOD and LOQ of the 

entire method, the instrumental LOD and LOQ has to be corrected for dilutions of the sample 

previous to the analysis. As the samples analysed in this study were mainly model solutions 

made from single element standards, only the instrumental values were calculated. 

3.2 ICP-OES method 

The instrument used was a Varian (Australia) Vista AX CCD simultaneous axial view ICP-

OES equipped with V-groove nebulizer and a Sturman-Masters spray chamber. Figure 5 

shows a picture of the instrument. Fitted background correction was used in order to subtract 

the background emission and the standard operating conditions used can be seen in Table 4.  

Four multielement calibration standards were made, with analyte concentrations of 0.2, 0.5, 

1.0 and 1.5 μg mL
-1

 in addition to a blank standard. A 2.0 μg mL
-1

 standard was also made, in 

order to increase the range of the calibration for analysis of a diluted solution of the real 

sample in an SCX experiment (see section 4.8). Initially, the matrix used for the calibration 

solutions consisted of 1.2 M HCl, in order to matrix match the SPE samples eluted with high 

concentration of HCl. Later, calibration solutions with 0.4 M HCl were made, as high 

concentration of acid was no longer used. Blank samples were regularly analysed after 

samples with high concentration of PGMs in order to check for any memory effects, as the 

analytes are known to easily adsorb to surfaces so that prolonged rinse times have been 

needed [41]. In general there did not seem to be any memory effects with the PGM 

concentration used in this study. 
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Figure 5 Picture of the ICP-OES instrument used for analysis. 

 

Table 4 The operating conditions for the ICP-OES. 

Parameter  Value 

RF Power (kW) 1.00 

Plasma gas flow (L min
-1

) 15.0 

Auxiliary gas flow (L min
-1

) 1.50 

Nebulizer gas flow (L min
-1

) 0.75 

Sample flow rate (mL min
-1

) 1.0 

Replicate time (s) 1.000 

Number of replicates 3 
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3.2.1 Wavelength selection 

In order to select the best wavelengths for analysis, four wavelengths from each element were 

initially monitored (five, in the case of Al). These were selected according to the wavelengths 

recommended by the ICP-OES software and can be seen the appendix, section 7.1.1. The 

selected wavelengths were then narrowed down to two wavelengths for each element, after 

careful consideration of the possible interferences, the spectra, calibration curves and the 

limit of detection of each wavelength. One of the wavelengths for each analyte was chosen as 

the best and used for reporting the concentration, while the other was monitored to ensure 

that no interferences were present. The spectra of the blank and the 1.5 μg mL
-1

 standard for 

the two monitored wavelengths can be seen in the appendix, section 7.1.2 – 7.1.4, together 

with the calibration curves and statistics of the wavelengths selected for the analytical result 

(7.1.5 – 7.1.6). 

The selected analytical wavelengths are given in in Table 5. In most cases, they correspond to 

the analysis wavelength recommended in the instrument software, except from Al and Cr, 

which was the second most recommended wavelength. Images from the software showing 

possible interferents of the analytical wavelengths can be seen in the appendix, section 7.1.7.  

The PGM wavelengths used are also the same that are regularly used in the literature [3, 10, 

41]. While there are a few possible interferences from other metals, this is not a problem as 

long as the interfering elements are not present in several orders of magnitude higher than the 

analytes. In real samples, however, the PGMs are normally present in a low concentration 

compared to the more common metals, and possible interferences should be carefully 

considered. 

Table 5 The wavelengths selected as the analytical wavelengths for the ICP-OES. 

Al: 396.152 Cu: 327.395 Cr: 205.560 Fe: 238.204 

Pd: 340.458 Pt: 214.424 Rh: 343.488 Zn: 213.857 
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3.2.2 LOD and LOQ 

The literature gives LOD for the PGMs ranging from 10 to 300 ng mL
-1

 using ICP-OES [3, 

21, 32]. In order to check this limit, the blank solution was measured ten times and the LOD 

and LOQ were calculated from the standard deviation of these measurements. The replicates 

and the s values can be seen in the appendix, section 7.4.1, and the resulting instrumental 

LOD and LOQ for the elements are seen in Table 6. 

Table 6 The instrumental LOD and LOQ for the analytes on the ICP-OES (ng mL-1). 

 

LOD LOQ  LOD LOQ 

Pt 14.8 49.4 Al 4.5 15.2 

Fe 1.5 5.1 Cu 2.5 8.3 

Rh 15.2 50.6 Cr 5.9 19.6 

Pd 10.6 35.4 Zn 1.3 4.3 

 

3.3 ICP-MS method 

For the ICP-MS analysis a NexION 300 instrument from PerkinElmer (Norwalk, USA) was 

employed, equipped with three quadrupole mass analysers, a cyclonic spray chamber and a 

concentric nebulizer. The peristaltic pump of the ICP-MS was fitted with PVC flared pump 

tubing with an inner diameter of 0.38 mm and the pump used a fixed rotation of 20 rpm for 

the analysis. This corresponds to a flow rate of 0.3 - 0.5 mL min
-1

. An image of the 

instrument can be seen in Figure 6. The ICP-MS was controlled via a PC running the 

NexION software. 

Daily performance was performed using a Smart Tune solution (PerkinElmer) consisting of 1 

μg mL
-1

 Be, Ce, Fe, In, Li, Mg, Pb and U in 1 % HNO3. The daily performance adjusts the 

nebulizer gas flow in order to minimize the formation of oxides (
156

CeO
+
/
140

Ce
+
 ≤ 2.5 %) and 

adjusts the auto lens voltage to maximize ion transmission of Li, Mg, In, Ce, Pb and U. The 

daily performance check is passed if the criteria 
9
Be > 3000, 

24
Mg > 20 000, 

115
In > 50 000 

and 
238

U > 40 000 are met, in addition to 
70

Ce
2+

/
140

Ce ≤ 3 % and the previously mentioned 

oxide criteria. The average operating conditions of the method can be seen in Table 7. 
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Figure 6 Picture of the ICP-MS instrument used for analysis. 

 

Table 7 Average operating conditions of the ICP-MS. 

Operating conditions  

RF power (W) 1000 

Plasma gas flow (L min
-1

) 13.0 

Auxiliary gas flow (L min
-1

) 1.2 

Nebulizer gas flow (L min
-1

) 0.94 

Running vacuum (torr) 7.80 x 10
-7

 

 

For the method development, isotopes of all the sample analytes were initially included in the 

analysis, but poor calibration curves for the base metals resulted in a decision to use the ICP-

MS only to determine the PGMs. As the ICP-OES showed good results for the base metals it 

was decided to use the optical instrument for determining these elements. Analysing trace 

levels of certain elements by ICP-MS can be challenging due to interferences and the use of a 

reaction gas in a dynamic reaction cell could possibly have been of interest. A study by 
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Danadurai et al. [49] showed that of 43 measured elements, more accurate and precise 

measurements was found for Al, V, Cr, Fe, Ni, Cu and Zn when using a reaction cell with 

NH3 as the cell gas. This includes all of the 5 base metals used as analytes in this work. 

Another possible reason for the poor calibration curves of the base metals is contamination. 

Fe, Al, Cu, Cr and Zn are all common elements and the low concentration (ng mL
-1

) in the 

solution is easily affected by contamination. 

External calibration were used, with four multielement standards of concentrations 25, 50, 75 

and 100 ng mL
-1

 and a matrix of 0.3 M HCl. Initially, simple linear calibration curves were 

used, but this resulted in a negative intercept. As the signals from the ICP-MS can never be 

negative, this resulted in the blank solutions showing positive values of 2 - 3 ng mL
-1

. 

“Linear through zero” calibration curves was then used instead, as the correlation coefficients 

still had values above 0.9999 and this resulted in blank values of approximately zero ng mL
-1

.  

The rinse time was increased from the standard settings in order to leave enough time for the 

sample to reach the spray chamber. The read delay was also increased so it would serve as a 

continued rinse period. As the sample was analysed without an autosampler, the wash step is 

not significant, since the analyst has to manually introduce wash solution between analyses. It 

was still included in case an autosampler were to be used during one of the analyses. The 

total analysis time is determined by the timing parameters, which can be seen in Table 8 

together with the sampling parameters. The selected timing parameters were the same 

parameters as set in a standard quantitative analysis method included in the NexION 

software. 

Table 8 The timing and sampling parameters for the ICP-MS method. 

Timing parameters Sampling parameters 

Sweeps/reading 20  seconds rpm 

Readings/replicate 1 Sample flush 25 30.0 

Replicates 3 Read delay 25 20.0 

Dwell time per amu 50 ms Analysis - 20.0 

Integration time 1000 ms Wash 30 30.0 

Scanning mode Peak hop transient    
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Memory effects have been reported for the PGMs in ICP-MS analysis, resulting in a need for 

extended wash periods or the use of more aggressive cleaning solutions, including aqua regia 

or high concentration of HCl [42, 48]. In order to check for any memory effects, blank 

samples were analysed after the standards of higher concentration. A small possible memory 

effect could sometimes be seen for Pd, although as the blanks always showed concentrations 

below 1 ng mL
-1

 it was seen as negligible for the samples analysed in this study. 

3.3.1 Isotope selection and possible interferences 

The selected isotopes can be seen in Table 9. 
103

Rh was monitored as it is monoatomic and 

195
Pt was monitored as it is the most abundant isotope in addition to it having the least 

interferences of all the Pt isotopes. 
105

Pd was monitored because the two more abundant 

isotopes (
106

Pd and 
108

Pd) have isobaric overlap from Cd isotopes. The three isotopes used for 

the analysis is also the ones regularly used in the literature [3, 38, 48]. The potential 

interferences are also shown in Table 9 together with the relative abundance [12, 15, 18].  

Table 9 Mass, abundance and possible interferences for the isotopes chosen for analysis. 

Analyte mass Abundance (%) Interferences 

Pt 195 33.832 HfO 

Pd 105 22.33 SrO, YO, ArCu, RbO,
 
SrO, Cl3

 

Rh 103 100 SrO, ArCu, SrOH, Pb
2+

, ArZn, RbO 

 

If high amounts of Cu are present in the sample matrix, the ArCu
+
 ions can be important 

interferences and cause a false positive on the Pd and Rh signals. For most of the ICP-MS 

analyses, however, the base metals had been previously separated from the PGMs. More 

importantly, the concentration of base metals did not exceed the concentration of PGMs in 

the calibration solutions, so any interference would be negligible. For real samples, however, 

this can be a major source of interference, as Cu is a common element and would likely be 

present in a much higher concentration than the PGMs. Matrix separation before detection 

would therefore be strongly suggested. Cation exchange seems to be a good way to remove 

the metals that may cause intereference. 
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3.3.2 LOD and LOQ 

A blank sample was measured ten times over a period of 80 minutes, between regular 

samples and with a recalibration after about half the time. The LOD and LOQ were 

calculated in the same way as for ICP-OES. The raw data from the ten replicates can be seen 

in the appendix, section 7.4.2, and the LOD and LOQ are seen in Table 10. Possible memory 

effects was found for the first two replicates of Pd, which accounts for the increased LOD 

and LOQ values of this element. The parenthesis show the values if the first two replicates 

are omitted, which could possibly be obtained with the use of a longer rinse period in the 

method. 

Table 10 Instrumental LOD and LOQ for the ICP-MS (ng mL-1-), calculated from 10 blank measurements. The 

parenthesis show the LOD and LOQ for Pd if replicates with memory effects are omitted. 

 LOD LOQ 

Pt 195 0.13 0.4 

Rh 103 0.08 0.3 

Pd 105 0.94 (0.12) 3.1 (0.4) 

 

3.4 HPLC-ICP-MS 

For the HPLC, a four channel Flexar LC pump equipped with a vacuum degasser was used 

together with a Flexar LC Autosampler. The pump had been converted to an inert system in 

order to allow for introduction of highly acidic mobile phases. An Agilent (USA) Zorbax 

SAX 250 mm x 4.6 mm silica based analytical column was used, containing 5 μm particles. 

This was coupled to the ICP-MS via PEEK tubing and a switching valve, in order to allow 

for the mobile phase to go directly to waste during conditioning and rinsing steps. 

Two mobile phases, C and D, were used in order to create a gradient system. The MP 

compositions were 2 M HCl (C) and ultrapure, deionized water (D). A mobile phase 

composition of 5 % C and 95 % D is therefore equal to 0.1 M HCl. This was chosen as the 

MP for the equilibration and rinsing steps, as it is similar to the sample solution of 0.15 M 

HCl. After a 10 min equilibration step, 10 μL of the sample was injected using the 

autosampler. The entire pump program can be seen in Table 11. 
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Table 11 The pump program used in the HPLC method. The 1.0 value of the curve means a linear change in MP. 

Step Step type Step time (min) Flow (mL min
-1

) % C % D Curve 

0 Equil 10.0 0.5 5.0 95.0 1.0 

1 Run 4.0 0.5 5.0 95.0 1.0 

2 Run 2.0 0.5 100.0 0.0 1.0 

3 Run 18.0 0.5 100.0 0.0 1.0 

4 Run 1.0 0.5 5.0 95.0 1.0 

5 Run 5.0 0.5 5.0 95.0 1.0 

 

4 Results and discussion 

4.1 Adsorption effects of storage in different vessels  

It is known from literature that Pd and Pt can be adsorbed to different polymers under long 

storage in weak acidic conditions. According to literature, Pd will adsorb to both 

polypropylene and polyethylene [4] and Pt adsorbs to polyethylene [15]. Quartz vessels are 

seen to be the best choice of storage for these analytes [4, 12, 15]. The autosampler for the 

ICP-MS uses tubes made from polypropylene with a high density polyethylene cap, so 

adsorption effect was checked by storing part of a 30 ng mL
-1

 multielement calibration 

solution (matrix was approximately 0.2 M HCl) for two weeks in one of these tubes. It was 

then analysed as a sample. The 30 ng mL
-1

 calibration solution which had been stored in a 

borosilicate glass flask was also analysed as a sample. The result (including the instrumental 

standard deviation) can be seen in Table 12. 

Table 12, The concentration of analytes (ng mL-1)  in an initially 30 ng mL-1 PGM solution, after 2 weeks of storage in 

different vessels. 

Analyte Stored in quartz flask Stored in polypropylene tube 

Rh 30.1 ± 0.48 29.9 ± 0.33 

Pt 30.2 ± 0.15 29.1 ± 0.15 

Pd 30.2 ± 0.20 15.7 ± 0.12 
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As seen in Table 12, the amount of Pd in the solution has decreased by almost 50 % over the 

two weeks of storage. This is likely adsorbed to the walls of the polypropylene tubes. It also 

seems as some Pt has been adsorbed, although this effect is much less significant than for Pd. 

The result shows that the vessels are inappropriate for storage of the PGM solutions, at least 

when using low acidity solutions (0.2 M HCl). The borosilicate glass volumetric flasks were 

as such used for all PGM solutions that were going to be stored for more than a few hours. 

4.2 Strong anion exchange (SAX) 

Strong anion exchange has been used for adsorption of the PGMs because they form anionic 

complexes with chloride in solution. Pd and Pt are strongly adsorbed to the SAX resin, while 

Rh is often unretained. This is likely due to the speciation of Rh in the chloride solution. As 

previously discussed, the Rh chlorocomplexes are more prone to aquation, which could lead 

to neutral aqua-chloro complexes [6, 25]. Most other transition metals are present as cationic 

species and will flow freely through the resin [38]. Elution from strong anion exchangers is 

normally performed using solutions with high amounts of ions in order to exchange the 

adsorbed chlorocomplexes from the sorbent. This can be done using acidic solutions, 

although the strong adsorption of the PGM chlorocomplexes necessitates a high acid 

concentration for the substitution of [MClx]
n-x

 by the anions in the acid [39].  An often used 

approach is the addition of thiourea (TU) in the eluent, as this is a stong complexing agent for 

the PGM. A mix of thiourea and HCl is often applied [7, 16, 25, 41]. 

4.2.1 Adsorption  

4.2.1.1 Effects of sample solution acidity 

Differences in adsorption depending on the acid content in the sample solution were 

investigated using four 5 μg mL
-1

 multielement feed solutions with different HCl 

concentrations; no added acid (called 0 M), 0.15 M, 0.5 M and 1.0 M HCl. 5 mL of the feed 

solution was applied to a SAX cartridge and the effluent was collected and analysed on ICP-

OES. Reference solutions were obtained from each of the four feed solutions and the 

adsorbed percentage was calculated as described in the appendix, section 7.3. Figure 7 shows 

the adsorbed percentage of all the elements in the four feed solutions. 
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Figure 7 The effect of sample acidity on the adsorption of analytes in HCl solution by SAX sorbent (one replicate). 

As can be seen by the figure, the acidity of the feed solution is an important factor for the 

adsorption of Pt. Pd is still quantitatively adsorbed over the range of acid concentrations 

tested. This is similar to results found in the literature [6, 16]. With a higher amount of HCl in 

the feed solution, however, it is likely that Pd will be less adsorbed as well. Too low 

concentration of Cl
-
 in the feed solution will hinder the formation of PGM chloro complexes 

while a high concentration of Cl
-
 will cause increased ion strength in the solution, resulting in 

less adsorption of the analytes. The experiment was only done with one replicate for each 

feed solution but gave an indication that 0.15 M HCl is close to the optimal amount of HCl in 

the feed solutions. This concentration of HCl was therefore used in the feed solution in most 

of the later experiments. The literature also indicates that a limited amount of HCl should be 

used in the feed solution and have been explained by an increase of HCl2
-
, which is a strong 

ion displacer, in the solution [16, 24, 25].  

The base metals are generally not retained on SAX although a small amount of Fe seems to 

be adsorbed from the 1 M HCl feed solution. This indicates that iron may form 

chlorocomplexes when the chloride concentration is increased. Where the adsorbed 

percentage is negative, this means that the concentration of elements in the effluent was 

higher than in the reference solution. This can be explained by uncertainties in the analysis 

method as only one replicate was used, in addition to the common nature of the non-PGMs 

which makes them easily influenced by contamination of the sample solutions. 
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4.2.1.2 Differences in adsorption from fresh versus stored solutions 

The time in which the solution has been stored is an important factor in the distribution of 

complexes of the PGMs in the solution. This is particularly important for Rh in low acidity 

conditions, where kinetically inert hydrated species become prevalent [25]. To investigate 

this effect, a fresh solution of 5 μg mL
-1

 PGMs and 0.15 M HCl was made and applied to a 

SAX cartridge by the same method as previously described. The adsorbed amount of PGMs 

from the fresh solution was compared to the adsorbed amount in the 3 months old 0.15 M 

HCl solution mentioned in the last section and the compared result can be seen in Figure 8. 

 

Figure 8 Differences in the adsorption of the PGMs between a fresh solution and a solution that had been stored over 

3 months in ambient temperature (one replicate). 

 

As seen in the figure, rhodium and platinum shows differences in adsorption depending on 

how long the solution has been stored. Platinum is completely retained in the fresh solution 

whereas approximately 10 % was found in the effluent from application of the aged solution. 

This may indicate an increased amount of hydrated platinum complexes over time, as these 

are more inert and therefore less readily adsorbed [7]. Rhodium shows a significant amount 

of retention in the fresh solution but not in the aged solution. This is also likely an indication 

that neutral chloro-aquo complexes of Rh form over time, while initially some [RhCl6]
3-

 may 

be present [25]. Palladium adsorption seems to be unaffected by the three months of storage 

when 0.15 M HCl is used as the matrix. This was also confirmed later in the separation 

scheme (see section 4.7). 
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4.2.2 Recovery 

Several solutions were tested as eluents in order to check for specific desorption of the 

analytes. The eluent solutions tested consisted of HCl, HNO3, H2SO4 and thiourea + HCl in 

different concentrations. The different solutions used and their concentrations can be seen in 

Table 13. Recovery percentage was calculated as described in the appendix, section 7.3. 

Figure 9 shows the recovery percentages for the different eluents. The amount of eluent was 

10 mL unless otherwise stated and all samples were analysed by ICP-OES. 

Table 13 The different eluent solutions tested to elute Pt and Pd from the SAX sorbent 

Solution Concentrations tested 

HCl 0.5, 1, 3 and 6 M solutions. 1 M was tried with both 10 and 20 mL 

HNO3 0.5, 1, 3 and 6 M solutions. 

H2SO4 Only 1 M was tested 

TU + HCl 0.1 M TU + 1 M HCl, 3x5 mL, successively 

 

 

Figure 9 Recovery percentage of Pt and Pd on SAX with different eluents, relative to the amount adsorbed on the 

sorbent. The error bars in the 3 M solutions indicate the standard deviation for three replicates, while the rest of  the 

results had one replicate each. 10 mL of eluent solution was used unless otherwise stated. 
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As can be seen, palladium was over 90 % recovered by all eluents except when using HCl 

concentration of 1 M or lower. This is in accordance with the results showing that Pd is 

quantitatively retained when using a feed solution of 1 M HCl. Platinum was recovered by 

various degrees in all solutions. In order to check if 10 mL was a sufficient volume to elute 

the retained Pt, 20 mL of 1 M HCl was tested as well. No practical difference in elution was 

seen for these two samples, which indicates that the eluted Pt is a specific species which is 

easier eluted than the rest of the adsorbed Pt. For the thiourea containing eluent, 3 x 5 mL of 

eluent was applied and collected successively and the cumulative recovery is shown by the 5, 

10 and 15 mL bars. As thiourea is complex forming, it is likely that a slower flow rate could 

give increased recovery of Pt with a smaller volume of eluent solution. A higher 

concentration of thiourea in the eluent could also be of advantage. All the retained Pd was 

recovered in the first 5 mL of the thiourea-containing eluent, which can be likely explained 

by steric effects of the chlorocomplexes. As the Pt(II) complexes are square planar, their 

ligands are more easily exchanged than the ligands in the octahedral Pt(IV) complexes and 

thus more readily extracted by thiourea [29]. 

Additional tests were performed to try to quantitatively recover the retained Pt. Four different 

solutions of thiourea + HCl were tested as eluents, using combinations of 0.1 M and 0.5 M 

thiourea with 0.5 M HCl and 0.9 M HCl. The reason for choosing 0.9 M HCl instead of 1.0 

M was because of easier pipetting of the concentrated HCl. After loading the cartridge with 

Pt, 3 x 5 mL of eluent was successively applied and collected and the recovered percentage 

can be seen in Figure 10. The samples were analysed on ICP-MS and diluted prior to analysis 

in order to get the theoretical maximum concentration of analytes down to an amount 

appropriate for the calibration solutions for the ICP-MS. This also assured that the TDS (of 

thiourea) was below the 0.2 % appropriate for introducing into the ICP-MS. The figure also 

shows the cumulative recovery for the three eluent fractions as the “total” bars. 
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Figure 10 The recovery percentage of Pt adsobed to SAX sorbent, by solutions containing different amounts of 

thiourea (TU) and HCl. Each of the elution steps consisted of 5 mL of the eluent and the total shows the cumulative 

recovery for the 15 mL of eluent. One replicate was used for each thiourea solution. 

 

As the figure shows, an increased amount of thiourea in the solution leads to a higher 

recovery of platinum in the first 5 mL fraction of the elution. The HCl concentration appears 

to be less important, although the total recovery seems to be slightly higher where the higher 

HCl concentration was used. This may well be within the experimental error, as only one 

sample replicate was made for each eluent solution. 

4.2.3 Breakthrough 

The breakthrough capacity is defined as the amount of metal ion that can be adsorbed per unit 

mass of solid before being detected in the outlet of the column. The breakthrough point is 

often set as when the effluent are showing 5 % of the initial concentration of elements, as it 

can be hard to detect very low concentrations. The breakthrough capacity is specific to the 

conditions used in the setup including, but not limited to, temperature, acidity of the solution, 

flow rate and presence of other ions in the sample [6, 25]. 
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Breakthrough of a SAX cartridge was estimated by using 80 mL of a 50 μg mL
-1

 solution of 

Pd with 0.15 M HCl matrix. This feed solution was continuously applied to the SAX 

cartridge with a flow rate of 1 mL min
-1

. Effluent samples were collected in 10 or 5 min 

fractions, corresponding to 10 or 5 mL of feed solution, respectively and collected in 25 or 10 

mL volumetric flasks. The first samples were analysed directly on the ICP-OES, after only 

adding HCl to matrix match with the calibration solutions and dilution to the volume 

indicated by the volumetric flask. Extra diluted samples were made for the last four samples, 

in case the nondiluted samples had analyte concentrations which exceeded the calibration 

range (100 % recovery corresponds to 25 μg mL
-1

 concentration of analytes in the undiluted 

final sample when 5 mL was collected on 10 mL flasks). The molar amount of Pd applied to 

the cartridge was calculated and Figure 11 shows the amount of Pd found in the effluent 

samples, relative to the initial feed concentration. 

 

Figure 11 The relative concentration of Pd found in the effluent from a SAX cartridge. The samples marked as 

undiluted were analysed directly. Additionally, dilutions of the last four samples (10 times diluted) was made in case 

the undiluted samples had Pd concentrations above the calibration range of the ICP-OES.  

 

Only palladium was tested for breakthrough on the SAX resin as the purpose of this 

experiment was to ensure that the resin is not overloaded with sample. Palladium is lighter 

and has a higher molarity per weight unit in the sample than platinum. Pd is also less retained 

than Pt by the SAX  resin [25] and both are reasons for choosing Pd over Pt for the 

breakthrough test. The figure shows that approximately 35 μmol Pd can be applied to the 

cartridge without reaching 5 % breakthrough in the given conditions. This corresponds to 75 
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mL of a sample solution with Pd concentration of 50 μg mL
-1

 or a total of 70 μmol applied Pd 

per gram resin. Assuming the retained Pd is present as [PdCl4]
2-

, this is equivalent to a 

breakthrough capacity of 0.35 meq g
-1

 compared to the given total capacity of 0.7 – 0.9 meq 

g
-1

 of the SAX. 

4.3 Strong cation exchange (SCX) 

Cation exchange has been used for group separation in order to separate matrix elements and 

interferences from PGM solution containing HCl. The anionic PGM chloro complexes will 

flow freely through the cation exchanger while most contaminant metals are present as 

cations and will be adsorbed to the resin. This type of group separation will remove many of 

the potential interferences for the ICP-OES and ICP-MS. The adsorption efficiency is 

dependent on the amount of HCl in the solution. Too low concentration will limit the 

formation of PGM chloro complexes and too high concentration will limit the adsorption of 

the matrix elements. Several studies have used an HCl concentration of approximately 0.5 M 

HCl [38, 42, 43, 48]. 

4.3.1 Adsorption 

The adsorption of of elements on SCX was investigated using five 5 μg mL
-1

 multielement 

feed solutions of differing age and HCl concentration. 10 mL of the feed solutions was 

applied to the SCX syringe barrels while collecting the effluent. The same amount of H2O 

was then applied as a wash step and collected in order to remove any residual elements. 

Reference samples were also collected from each feed solution and all samples were finally 

analysed by ICP-OES. The amount of analytes in the effluent and in the wash step were 

added up and used as the [M]effluent from the equations seen in the appendix (7.3). The 

adsorbed percentage of each of the elements can be seen in Figure 12 and instrumental 

standard deviations are noted by the error bars. There were a few notable differences between 

the analyte compositions of the different feed solutions. The 216 days old feed solution did 

not contain Zn, as this element was not included in the first multielement trial experiments in 

which the feed solution was initially prepared for. The fresh  

1 M HCl solution did not contain PGMs due to analyst error. However, since the PGMs are 

not adsorbed on the cation exchange resin in lower acidic samples it is not likely that it would 

adsorb in a solution with a higher HCl concentration.  
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Figure 12 Adsorbed percentage of the metals on a cation exchange resin. The different feed solutions vary both by 

age and HCl concentration and each result is found after analyzing the effluent and the wash solution. The error bars 

show the instrumental standard deviation (three instrumental replicates).  

 

As seen in the figure, a small amount of PGMs appears to be adsorbed to the SCX sorbent 

when using ≤ 0.5 M HCl in the feed solution. The fresh solution and the 216 days old 

solution show that age is insignificant for SCX adsorption when this low HCl concentration 

is used. Only one replicate was used for each feed solution, so the small adsorption of PGMs 

may be within the analytical uncertainty, which is further indicated by the error bars showing 

the instrumental uncertainty. The figure does, however, show that the effect of acidity and 

age on the adsorption of base metals is important. With higher acidity in the feed solution, 

less matrix elements are adsorbed, which is consistent with the increased elution strength of 

the solution. This effect can be seen for Cr and Zn on the 0.5 M HCl feed solution while Al, 

Fe and Cu are still practically quantitatively adsorbed. For the 1 M HCl solutions however, 

adsorption is supressed by the additional ions in solution. For this acid strength, the ageing 

effect is also obvious and much less base metals are adsorbed from the old solution than the 

fresh one. In order to ensure quantitative adsorption of the base metals, 0.15 M HCl was used 

as the standard solution matrix, although the literature shows that acidic solutions up to 0.6 M 

HCl have been successfully used for adsorption of base metals on SCX [48]. 
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4.3.2 Recovery 

The base metals can be easily eluted from the SCX cartridge by high concentration of HCl. 

As indicated by the reduced amount of base metals adsorbed by the SCX cartridge when 

using 1 M HCl as the feed solution, a large amount of the metals should be eluted even by 1 

M HCl. In order to quantitatively elute and clean the sorbent for reuse, 100 – 300 mL of 4 – 6 

M HCl have been used in the literature, although a higher amount of sorbent (3.5 g) was also 

used in one of these cases [38, 48]. Figure 13 shows the recovered amount of base metals 

from the SCX resin, using 10 mL of 1 M HCl for elution. Although the previous section 

showed that a good portion of the base metals is adsorbed to the resin when 1 M HCl is used 

as the feed solution matrix, most of the elements are practically quantitatively eluted by the 

10 mL of 1 M HCl eluent solution. Elution recovery of Fe and Cu was later shown to be 

quantitative when using 5 mL 3 M HCl (see section 4.8). 

 

Figure 13 Recovery of base metals from SCX resin, using 10 mL of 1 M HCl for elution. Only one replicate was used 

and the sample was analysed on ICP-OES. 
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4.3.3 Breakthrough 

4.3.3.1 Multielement 

The breakthrough capacity of the SCX cartridges was initially investigated by continuously 

applying a multielement solution containing Fe, Al, Cu, Cr and Zn (20 μg mL
-1

 of each 

element, in 0.15 M HCl) onto a SCX cartridge using 1 mL min
-1

 flow rate and collecting 

every 5 mL of the effluent in volumetric flasks with the help of a stop watch. After matrix 

matching and dilution to the volume indicated by the volumetric flasks, the samples were 

analysed by ICP-OES. The breakthrough curves for the elements is seen in Figure 14. As can 

be seen, there is a breakthrough around 25 mL of introduced sample (2.5 mg total metals).  

 

Figure 14 Multielement breakthrough curves of the base metals on 500 SCX sorbent, showing the percentage of 

elements found in the effluent compared to the feed solution composition. 

 

For the samples 40 mL – 60 mL, the recovery of Cu and Zn is above 100 %. This means that 

a higher concentration of the elements was found in the effluent than in the feed solution. 

These two elements are most commonly found as divalent ions while Cr, Fe and Al are 

commonly trivalent, and as the affinity of an ion towards an ion exchange resin generally 

increase with its charge [52], it is likely that previously retained Cu and Zn are exchanged 

with the trivalent ions of higher resin affinity. This means that the adsorbed ions are eluted 

0

20

40

60

80

100

120

140

160

5 10 15 20 25 30 35 40 45 50 55 60

%
 o

f 
fe

e
d

 s
o

lu
ti

o
n

 

mL feed solution applied 

Breakthrough on SCX, multielement 

Cu Zn Cr Fe Al



  36   

 

while a constant amount of elements is still applied on the SPE, resulting in a recovery above 

100 %. An estimation of the breakthrough capacity was made using the assumption that Cu 

and Zn are divalent while Cr, Fe and Al are trivalent. The calculated capacity of the SCX 

cartridge was then found to be 0.28 meq g
-1

. The amount of elements adsorbed to the 

cartridge at 25 mL is approximately 53 μmol. 

4.3.3.2 Aluminium 

For further investigation on the breakthrough capacity, a solution containing 50 μg mL
-1

 

aluminum in 0.15 M HCl was made and applied to a new SCX cartridge using the same 

method as previously described. Every 5 mL was collected and analysed by ICP-OES. Figure 

15 shows the relative amount of aluminium in the effluent, compared to the feed 

concentration. The breakthrough point seems to be around 1.5 mg Al, which corresponds to 

approximately 55 μmol applied Al. The molar amount is comparable to what was found 

around the breakthrough point of the multielement solution. The calculated capacity from 55 

μmol aluminium is 0.33 meq g
-1

 and the total capacity given for the SCX cartridge is 1 meq 

g
-1

. The total capacity is a measure of the number of ion exchange sites in the resin, but in 

practice, the analytes will start to bleed through before the resin is fully loaded. This is due to 

the lower number of active sites available as more of the active sites are occupied by the 

analytes. 

 

Figure 15 Breakthrough curve of Al on a 500 mg SCX cartridge, showing the percentage of Al in effluent compared 

to the feed solution. 
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4.4 Cyano (CN) sorbent 

The commercially available CN SPE has recently been shown to be able to selectively adsorb 

Pd and Au from hydrochloric solutions. This was explained by the hard and soft acids and 

bases theory [53]. Both Pd(II) and Au(III) have a low oxidation state and belong to the “soft 

acids” which has a strong affinity towards “soft base” donor atoms, including both C and N. 

While Au is readily adsorbed to the CN resin even from highly acidic media (up to 5 M HCl), 

Pd was only shown to be quantitatively adsorbed when the hydrochloric acid concentration is 

less than 0.15 M [29].  

4.4.1 Adsorption 

Adsorption was investigated by applying 5 mL of a 5 μg mL
-1

 multielement feed solution 

(with 0.15 M HCl) on a conditioned CN cartridge with a flow rate of 1 mL min
-1

. The 

effluent was collected on volumetric flasks before 5 mL of water was applied as a wash 

fraction and collected separately. A reference sample was also made, in order to calculate the 

relative amount of analytes adsorbed to the resin. The experiment was done in triplicate and 

the obtained samples were analysed by ICP-OES. Figure 16 shows the relative amount of 

elements adsorbed to the sorbent before and after the wash step.  

 

Figure 16 The adsorbed percentage of the analytes on 500 mg CN resin from a 0.15 M HCl multielement solution, 

before and after a 5 mL wash with H2O. The error bars shows the standard deviation for 3 sample replicates. 
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The figure shows that palladium is the only analyte adsorbed by the CN SPE after the 5 mL 

wash step. Although Pd is not quantitatively retained (approximately 5 % was found in the 

effluent), this was consistent with previous findings. A lower flow rate has been found to be 

advantageous for obtaining a quantitative adsorption of Pd on this type of sorbent [29]. A 

small part (5 – 10 %) of the other elements is adsorbed on the cartridge after the initial 

sample application. This is likely due to some sample being retained in the pore volumes of 

the resin and shows the importance of including a wash step in the SPE procedure. The wash 

solution will flush out the remaining part of the initial feed solution from the cartridge and 

remove the last traces of the matrix elements without sorbent interaction. 

4.4.2 Recovery 

For the elution study, three CN cartridges loaded with Pd (from the previous section) was 

treated with three different eluent solutions. The solutions consisted of 3 and 6 M HCl in 

addition to a solution of 1 M HCl + 0.1 M thiourea. Only 5 mL of the HCl solutions were 

used for elution of Pd, in order to avoid having samples with a higher HCl concentration than 

the calibration solutions. The recommended elution volume for these silica based CN 

sorbents is 6 mL (8 bed volumes) so 5 mL of eluent solution should therefore be a large 

enough volume for complete desorption [54]. For the thiourea containing solution, 10 mL 

was used as the eluent in order to ensure as good an elution as possible. The recovered 

amount of palladium by the three elution solutions can be seen in Figure 17. All three eluents 

elute over 85 % of the adsorbed Pd although only the thiourea containing solution gave a 

quantitative elution. A lower flow rate or the use of larger volumes of eluent may give a more 

quantitative recovery.  
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Figure 17 Recovery of adsorbed Pd from 500 mg CN sorbent, using 3 M HCl, 6 M HCl and 1 M HCl + 0.1 M thiourea 

as eluents (one replicate each). 

 

4.4.3 Breakthrough 

Breakthrough of palladium on the CN cartridges was tested several times with different 

conditions. Initially, it was tested whether the cartridge had a higher capacity if it was 

conditioned with methanol instead of water. After conditioning with approximately 10 mL of 

either methanol or water, volumes of 5 mL feed solution consisting of 2 μg mL
-1

 Pd in 0.15 

M HCl was successively applied to the cartridges and collected on volumetric flasks at a flow 

rate of 1 mL min
-1

. After adding appropriate amount of HCl and diluting to the mark 

indicated by the volumetric flask, the samples were analysed on the ICP-OES. These two 

sample collections can be seen as the “methanol-cond.” and “water-cond. 1” curves in Figure 

18. In case the use of non-continuous sample application caused Pd to elute early, a 

continuous sample application was also tested (with water as conditioning), using the same 

concentration of feed solution and flow rate. These samples were collected by changing the 

collecting volumetric flask every 5 min, before dilution and being analysed as previously 

described. The results from this experiment can be seen as the “water-cond. 2” curve. In all 

the three experiments, the amount of Pd in the effluent reached 20 – 40 % of feed solution 

within the first 10 mL of applied feed solution. One last experiment was then done, collecting 
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each 2 mL fraction. These samples were analysed on the ICP-MS due to their low maximum 

Pd concentration. Results from this can be seen as the “water-cond. ICP-MS” curve. 

 

Figure 18 Breakthrough curves of Pd on 500 mg CN resin. Four different experiments was done, all using a flow rate 

of 1 mL min-1 and a feed solution of 2 μg mL-1 Pd. Samples were analysed by ICP-OES or ICP-MS. 

 

One point of the “water-cond. 2” curve has been removed due to it showing a lower relative 

concentration of Pd (~70 %) than the previous and later sample. The lower amount of Pd was 

likely due to a mishap with the timer as it got turned off by accident and an educated guess 

had to be taken as to when to stop the collection and move on to the next sample.  

For the methanol-conditioned sample and the first water-conditioned sample, the percentage 

of recovery was calculated using reference solutions from their respective feed solutions. For 

the last two sample collections, a reference solution was not made, and the relative recovery 

was calculated by using the theoretical concentration of the feed solution. This may be a 

reason for why the “water-cond. 2” curve flattens off at 90 % recovery instead of 100 %, as 

the feed solution may have a slightly lower concentration than the theoretical concentration. 

This is not unlikely, as it was prepared using only 200 μL of a 1000 μg mL
-1

 stock solution. 
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The “water-cond. ICP-MS” curve is uneven, which can likely be explained by the low 

effluent volume collected in each sample, as small inaccuracies in the timing of collection 

will have a larger influence on the final concentration.  

The four experiments show that CN resin does not seem to have a large capacity for Pd when 

using large volumes of sample application. This indicates that this resin is not suited for 

preconcentration of Pd from large volumes containing a low concentration of Pd. Higher 

capacity has, however, been found with the use of a higher concentration of Pd in the feed 

solution so although the resin seems to be unsuitable for preconcentration, it may be of use 

for isolating Pd from other PGMs in an industrial scale [29]. 

4.5 Dioctyl sulphide (DOS) impregnated reverse phase 

(RP) 

Dioctyl sulphide and other thioethers have previously been used to extract Pd from 

hydrochloric solutions. DOS is a coordination extractant, as it only has one sulphur atom that 

can form complexes with the metal. Previously, it has been used in LLE, to extract Pd from 

an aqueous phase to an organic phase in the form of [PdCl2(R2S)2] where the rate limiting 

step is the reaction of PdCl3(H2O)
-
 with R2S [55]. In this work, DOS have been immobilized 

on a reverse phase sorbent as described in section 2.2 and is based on work by a previous 

master student in our group [34].  

4.5.1 Adsorption 

For the adsorption studies, 5 mL of a 5 μg mL
-1

 multielement feed solution (in 0.15 M HCl) 

was applied to the modified resin while collecting the effluent as samples. 10 mL water was 

then applied to the cartridges and the effluent was collected separately as “wash”. This was 

done in triplicate and analysed on the ICP-OES. A reference solution was made from the feed 

solution, and the concentration of elements in this solution was used as the [M]feed to 

calculate the relative amount of elements found in the effluent and wash fractions. In addition 

to the three replicates mentioned, a fourth replicate was collected at a later time (for the 

elution studies). Figure 19 shows the relative amount of elements adsorbed to the resin after 

the sample application and after the wash step. The error bars indicate the standard deviation 

of the four replicates, except for Zn, where one of the replicates was removed due to it being 
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an outlier according to Grubb’s test for outliers [51]. Calculation of G the statistics can be 

seen in the appendix, section 7.4.3.2. 

 

Figure 19 The relative amount of elements adsorbed on a RP resin modified with 0.65 mmol DOS before and after a 

wash step. The error bars show the standard deviation for four replicates, except for Zn which uses three replicates 

due to an outlier having been removed. 

 

It can be seen from the figure that palladium is completely retained on the resin and the 

measured amount of Pd in the effluent samples was below the LOD of the method. Platinum 

is over 90 % retained during the sample application although the adsorbed amount is eluted to 

a large degree by water in the wash step. Approximately 18% of Pt is still adsorbed to the 

cartridge after the wash step. The adsorbed Pt and Pd may be in the form of square planar 

[MCl4]
2-

 complexes. These will undergo ligand substitution easier than the octahedral 

[MCl6]
2-

 which has more sterical hindrance [13]. Additionally, Pt(IV) has less affinity for the 

sulphur atom as it not as soft as Pt(II) according to the hard and soft acids and bases theory 

[44]. It is also known that interaction of the PGM chlorocomplexes with complexing sorbents 

is kinetically hindered at room temperature, with the exception of Pd(II) complexes [21]. 

More Pt could possibly be adsorbed if the flow rate was decreased, as the Pt chlorocomplexes 

would have more time to interact with the sorbent. The rest of the analytes are less than 6 % 

retained on the resin after the wash step. 
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4.5.2 Recovery 

For recovery of the adsorbed palladium, six different eluents was tested. This was 99.8% 

methanol, 6 M HCl, 1 M HCl + 0.1 M thiourea, 1, 3 and 5 % NH3. The methanol was tested 

because it has high elution strength for reverse phase sorbents. The idea was that it might 

elute the [PdCl4-n(R2S)n] complexes adsorbed to the RP resin. 6 M HCl was tested because it 

has a high elution strength for ion exchange sorbents, in addition to the complexing abilities 

of the Cl
-
 ions towards the PGMs. The thiourea containing solution was tested due to thiourea 

being a very good complexing agent for the PGMs, as previously described. Finally, NH3 was 

tested in three different concentrations, as ammonia has been used in the industry to remove 

Pd from n-alkyl sulphides in liquid-liquid extraction [35]. 

After loading the cartridges with the feed solution as described in the adsorption study, 5 mL 

(10 mL for HCl + TU) eluent solution was applied to the cartridge and effluent was collected 

in volumetric flasks. When 5 mL eluent was used, another 5 mL of water was applied and 

collected together with the eluted fraction in order to ensure that all possible elements were 

eluted. This was done because 5 mL is the practical minimum elution volume for 500 mg 

polymer based sorbents [54]. 

The relative recovered amount of Pt and Pd can be seen in Figure 20. The Pt elution is the 

recovery relative to the adsorbed amount, while the Pt tot recovery shows the total amount of 

Pt accounted for in the effluent, wash and eluent step, relative to the amount in the feed 

solution. As Pd was quantitatively adsorbed, only the relative elution is shown. Only one 

replicate was collected for each eluent, which were applied to the loaded SPE syringe barrels 

used in the adsorption study. 

It seems as the thiourea solution is most efficient in eluting both Pt and Pd from the modified 

RP resin. Ethanol and 6 M HCl does not elute any Pd and the recovered amount in the 

samples was < LOD of the ICP-OES when using these two eluents. Ammonia elutes up to 

approximately  45 % of the retained Pd. Both thiourea and ammonia contain “soft base” 

donor atoms (S and N, respectively), which can form complexes with Pd(II) and Pt(II). The 

affinity for the sulphur atom is higher than for nitrogen, which can explain the higher elution 

percentage by using the thiourea-containing solution compared to ammonia. A lower flow 

rate and higher concentration of complexing agent in the eluent may cause increased 
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recovery.  The similar result of 3 % and 5 % NH3 on Pd seems to indicate that recovery is not 

very dependent on the NH3 concentration. 

 

Figure 20 Recovery of  Pt and Pd from DOS impregnated RP sorbent by different eluent solutions.  Pt total recovery 

accounts for the Pt recovered in the effluent and wash solutions in addition to the eluted amount. Pd total recovery 

was not included as this would be identical to the Pd elution. One replicate was made for each eluent solution. 

 

4.5.3 Breakthrough 

4.5.3.1 Multielement 

The first experiment on the breakthrough of a DOS-modified RP SPE used the same feed 

solution as in the adsorption study; 5 μg mL
-1

 multielement standard of all analytes in 0.15 M 

HCl. 5 mL equivalents of the 5 μg mL
-1

 feed solution was applied successively until a total of 

40 mL had been applied and each 5 mL effluent was collected in volumetric flasks and 

analysed using ICP-OES after matrix matching with concentrated HCl and dilution to the 

indicated volume. A reference sample was also obtained from the feed solution. Figure 21 

shows the relative amount of elements recovered in each sample solution. It is seen that 

palladium has no breakthrough within the 40 mL applied. This corresponds to 200 μg (or 
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approximately 2 μmol) Pd having been applied. Platinum seems to have some interaction 

with the modified SPE, although quantitative retention is not obtained. The rest of the 

elements are not retained by the modified resin. 

 

Figure 21 Breakthrough curves of a multielement solution on a RP resin modified with 0.65 mmol DOS. Samples 

were analyzed on ICP-OES and the wavelengths can be seen in the legend. 

 

4.5.3.2 Palladium 

The breakthrough was also tested using a single element solution containing 50 μg mL
-1

 Pd 

(Replicate 1) and a solution containing 100 μg mL
-1

 Pd (Replicate 2), both in 0.15 M HCl. 

The feed solutions were applied and collected as described for the multielement solution and 

reference samples was collected from both feed solutions to obtain the relative amount of Pd 

in the effluent. Figure 22 shows the breakthrough curves found from the two replicates. 
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Figure 22 Breakthrough curves of two solutions of different Pd concentration on a RP resin modified with 0.65 mmol 

DOS. One of the sample groups were analyzed on the ICP-OES and the other on ICP-MS. 

 

For Replicate 1, most of the samples were measured without additional dilution, as the 

amount of Pd found in the samples was within the 0 – 100 ng mL
-1

 calibration curve of the 

ICP-MS (100 % recovery would give a Pd concentration of 25 μg mL
-1

). When it was seen 

that the Pd concentration started to rise, the last samples was diluted in order to keep the 

concentration within the calibration range. 

For Replicate 2, the undiluted samples were measured by ICP-OES. They showed a higher 

concentration of Pd in the effluent than the samples from Replicate 1 (> 100 ng mL
-1

) which 

is likely due to the feed solution having a higher concentration while the flow rate was kept 

constant. As the figure shows, the relative amount of Pd in the samples of the two replicates 

are quite consistent and the modified SPE seems to have a quite high capacity for Pd. 

Breakthrough are not seen until at least 9 mg Pd have been applied. This corresponds to 

approximately 85 μmol Pd applied on 500 mg resin modified with 0.65 mmol DOS.  
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4.6 Chromatography (LC-ICP-MS) 

In order to see if an on-line separation of the PGMs could be accomplished, it was tried using 

a SAX analytical column coupled to the ICP-MS as described in the method development 

section. Initially a mobile phase gradient of 0 – 1 M HCl was used in order to compare the 

results with what had been previously done in our group [34]. A measurement of the base 

metals showed that with increasing HCl concentration, relatively large amounts of these 

elements was introduced into the ICP-MS while the PGMs did not seem to be eluted. As the 

system was not converted to an inert system at that time, the experiment was put on hold until 

the inert system was implemented. 

After the inert system was in place, the method described in the method development (section 

1.3.3) was tested, using a maximum concentration of 2 M HCl in the mobile phase. The flow 

rate was set to 0.5 mL min
-1

 after experiencing problems with one of the couplings inside the 

autosampler due to high pressure when using 1 mL min
-1

. The 0.5 mL min
-1

 flow rate also 

corresponds better with the normal flow rate of the ICP-MS in which the instrument is 

optimized with in the daily performance. During the pump program, the MP was left at 2 M 

HCl for 18 minutes in order to minimize memory effects from retained PGMs. 

10 μL of a blank sample consisting of 0.15 M HCl was introduced via the autosampler in 

three separate runs and it could be seen that the background of Pt decreased for each time. 

Even after the three runs which amount to approximately one hour of rinsing with 2 M HCl, 

there still seemed to be Pt eluted in wide peaks as the background. This can likely be 

explained by the fact that the column was used by the previous master student, who 

introduced relatively large amounts of PGMs (10 μg mL
-1

 solution) into the column while 

using a gradient elution of 0.01 – 1 M HCl, seemingly without obtaining any elution peaks 

[34]. Rh and Pd also showed a reduction of the background over the runs of the three blank 

samples. 

Despite the apparent problems with the column, it was decided to see what would happen 

when introducing 10 μL of a 80 ng mL
-1

 PGM sample using the mentioned pump program. 

As with the blank samples, this was done three times in order check if any elution peaks 

would be reproducible. For Pt and Pd, the only peaks found were also present when 

introducing the blank solution as a sample. For Rh, however, there seems to be a few 

distinctive peaks that are not present when introducing the blank sample. A chromatogram 
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showing the signals from all the PGMs in the last of the three sample introductions is seen in 

Figure 23 and Figure 24 shows the chromatogram comparing the Rh signal from the last of 

the three introduced blanks and samples.  

The peak positions in the chromatograms are quite reproducible, as can be seen by the 

chromatogram in Figure 25. This shows the signals from the three sample introductions of 

Rh. The rest of the chromatograms can be seen in the appendix, section 7.5. 

 

Figure 23 Chromatogram showing the signals from Pd, Rh and Pt over the 30 min run using the gradient and step 

pump program described in the method development section, with MP composition ranging from 0.1 M HCl to 2.0 M 

HCl. 
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Figure 24 Chromatogram showing the Rh signals from the introduction of 10 μL of a blank sample and a PGM-

containing (80 ng mL-1) sample over the 30 min run using the gradient and step pump program described in the 

method development section, with MP composition ranging from 0.1 M HCl to 2.0 M HCl. 

 

Figure 25 Chromatogram showing the Rh signal from introduction of three replicates (10 μL) of the PGM sample (80 

ng mL-1) over the 30 min run using MP composition ranging from 0.1 M HCl to 2.0 M HCl, as described in the 

method development section. 
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4.7 Separation scheme 

On the basis of the findings from the adsorption and elution on the SCX and SAX SPE, a 

separation scheme was proposed. This can be seen in Figure 26.  

 

 

 

 

 

 

Two feed solutions containing 5 μg mL
-1

 analytes and 0.15 M HCl were tested in triplicates. 

One of these was prepared from a one year old 100 μg mL
-1

 multielement solution which 

included all of the elements shown in Figure 26. The other was freshly prepared from 1000 

μg mL
-1

 single element stock solutions, and contained the PGMs in addition to Fe. A flow 

rate of 1 mL min
-1

 was always used. As the SAX is a cartridge type SPE, it was connected 

directly to the male luer tip of the SCX syringe barrel. The resins were conditioned with 

water before 15 mL feed solution was applied while collecting the effluent. 10 mL H2O was 

then applied as a wash step. The two SPE’s were then disconnected and the SAX cartridge 

was connected to an empty syringe which functioned as an eluent reservoir. 2 x 5 mL of 1 M 

HCl was then applied and collected as two samples. Then, 10 mL of water was applied and 

collected as another rinse step. This was repeated with 2 x 5 mL HNO3 before another rinse 

step and finally 2 x 5 mL of a solution containing 0.5 M HCl and 0.5 M thiourea.  

The collected samples were diluted before analysis in order to get the maximum theoretical 

concentration in the samples within the 0 – 100 ng mL
-1

 calibration range of the ICP-MS. 

This also ensured that the total dissolved solids in the samples were below the 0.2 % required 

for ICP-MS. As the water samples and the second 5 mL fraction of HNO3 and HCl elution 

contained elements below the LOD, the undiluted samples of these fractions were analysed as 

well. Where possible, the results from the undiluted samples were used for the results. 

Finally, the effluent from the solution prepared from the single element standards (containing 

Pt, Pd, Rh, Fe, 
Al, Cu, Cr, Zn 

0.15 M HCl 

Fe, Al, Cu, Cr, Zn 

SCX 

Pt, Pd 

SAX 

Rh 

3 M 

HCl 

Fe, Al, Cu,  

Cr, Zn 

0.5 M 

HNO3 

HCl + TU 

Pt Pd 

1 M 
HCl 

Pt 

Pt, Pd, Rh 

Figure 26 Proposed separation scheme for a solution containing the PGMs in addition to selected base metals. The 

horizontal arrows indicate the effluent from the different SPE cartridges and the vertical arrows indicate elution by 

different eluents. Results from this separation scheme can be found in Table 14 and Figure 27. 

Rh 

effluent 
Feed solution 
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the PGMs in addition to Fe) was directly analysed on the ICP-OES in order to measure for 

any traces of Fe. It was found that Fe was 99.9 ± 0.09 % adsorbed. Although only Fe was 

measured for complete adsorption, the previous results from the SCX studies indicate that all 

the other base metals are equally quantitatively adsorbed. 

Three of the samples had a deviating replicate. Two of these were outliers according to 

Grubb’s test for outliers [51], while the third could not be discarded. The calculation of the G 

statistics can be seen in the appendix, section 7.4.3.1. Figure 27 shows a visual representation 

of the average relative recovery of Pt, Pd and Rh for all sample fractions and Table 14 shows 

the relative recovery including standard deviations for the three sample replicates. The 

standard deviation is not included where one replicate was discarded. Raw data and statistics 

of the separation scheme can be seen in Table A9, Table A10 and Table A11 in the appendix 

(section 7.6.1). 

The total recovery shows that the PGMs are not always quantitatively accounted for. This is 

especially true for Pt in the fresh solution, where approximately 20 % is unaccounted for. 

Some of this may be adsorbed to the SCX resin, which has been shown to be the case from 

the previous SCX studies. Additionally, there may still be Pt left on the SAX resin. There are 

also distinct differences of the adsorption and elution of elements between the fresh and the 

aged solutions. The most notable differences are that Pt is not quantitatively adsorbed to the 

SAX in the aged solution as opposed to the quantitative adsorption from the fresh solution, 

and that Rh is partly adsorbed to the SAX in the fresh solution (~ 25 %) while only to a small 

degree (~ 3 %) from the aged solution. 
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Figure 27 The recovery of Pt, Pd and Rh found in each fraction of the separation scheme, using a fresh and an aged 

solution of PGMs in 0.15 M HCl. The results are averages of 3 replicates, except for Rh and Pt in the effluent of aged 

solution, where two replicates were used due to the third being outliers according to Grubb’s test. The percentage 

values can be seen in Table 14. 
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4.8 Real sample 

The solution containing a 5 mg mL
-1

 digest of real converter sample in 10 % aqua regia was 

diluted in order to obtain 200 μg mL
-1

 of total converter sample in 0.15 M HCl. 10 mL of this 

feed solution was then applied to a SCX cartridge with a flow rate of 1 mL min
-1

 before 6 mL 

H2O was applied as a wash step. The effluents from both steps were collected in the same 50 

mL volumetric flask. In order to elute the adsorbed elements from the SCX resin, 5 mL of 3 

M HCl was applied to the resin and this effluent was collected in a separate 50 mL 

volumetric flask. Lastly, 10 mL of the feed solution was pipetted into another 50 mL 

volumetric flask in order to serve as a reference solution. All the samples were matrix 

matched to the ICP-OES calibration solutions with appropriate amounts of HCl before 

diluting to the mark with water. The theoretical concentration of each of the analytes in the 

final samples was then calculated and can be seen in Table 15.  

Table 15 The theoretical concentration of each element (μg mL-1) for the diluted real converter sample. 

Fe Ni Cu Pt Pd Rh Slag 

27.6 2.88 0.18 1.44 0.8 0.334 6.7 

 

As Ni was not present in the ready-made calibration solutions for the ICP-OES, this was 

omitted from the analysis. As mentioned in the method development, an additional 2.0 μg 

mL
-1

 multielement calibration standard was made especially for analysis of these samples in 

order to increase the linear range. The reference solution was analysed and the results 

compared to the theoretical amount in the solution. Figure 28 shows the relative amount of 

elements found in the reference solution compared to the theoretical amount found from the 

specifications. The effluent sample and the sample eluted with 3 M HCl were then analysed. 

These values were compared to the amount found in the reference solution and the recovery 

percentage in the effluent and eluted solutions can be seen in Figure 29. 



  55   

 

 

Figure 28 The amount of elements found in the reference sample of the real converter digest, relative to the 

theoretical amount calculated from the specifications. Only one replicate was used. 

 

 

Figure 29 The amount of elements recovered in the effluent of a SCX SPE application and after using 5 mL 3 M HCl 

to elute the adsorbed elements from the SPE. Relative to the amount found in the reference solution and with one 

replicate. 

 

It is seen that good correlation is found between the concentration of analytes in the reference 

solution and the theoretical amount. As the theoretical amount of Fe was approximately 15 

times higher than the calibration solution with highest concentration, the calibration curve for 

Fe was extrapolated in order to get an estimate of the concentration in the sample. This is 

generally advised against, although for an estimate it gave a very good fit with the theoretical 
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amount. The result was therefore kept, but it must be stressed that this is only an estimate. 

The rest of the elements had theoretical and measured concentrations covered by the 

calibration curves. 

The effluent sample showed that Fe and Cu were retained quantitatively on the SCX while Pt, 

Pd and Rh were not retained. The adsorbed Fe and Cu were then quantitatively eluted in the 5 

mL of applied 3 M HCl. The results show that even with high concentrations of base metals 

compared to the PGMs in solution, SCX can be used to adsorb the base metals while the 

PGM are passed through unretained. This can likely be up-scaled for industrial clean-up of 

base metals from PGM solutions in weakly acidic solutions. 

5 Concluding remarks 

In this study, the adsorption and subsequent recovery of PGMs and selected base metals in 

HCl solutions has been investigated using SAX, SCX, CN and DOS modified RP resins in 

solid phase extraction. It was found that a concentration of 0.15 M HCl was ideal for 

quantitative adsorption of Pt and Pd on SAX as well as for the base metals on SCX. As Pt 

and Pd is likely present as [PtCl6]
2-

 and [PdCl4]
2-

, respectively, these are retained on anion 

exchange resins while the anions of the base metals flow freely though the resin. For the 

cation exchange, the anionic base metal ions are retained while the PGM chlorocomplexes 

have no interaction with the resin. It was also found that the use of solutions which had been 

stored over time resulted in a decrease in Pt adsorption on SAX resins. This is presumably 

due to formation of some neutral aqua-chloro complexes over time. Rh was not retained on 

any of the resins tested and is likely present as the neutral aqua-chloro complexes 

[RhCl3(H2O)3]. There was an exception when using freshly made PGM solutions, where 

about 15 % of Rh was retained on SAX. This is presumably due to presence of [RhCl6]
3-

 and 

the equilibrium having not yet been reached. While Pd could easily be recovered from the 

SAX resin using 0.5 M HNO3 or 3 M HCl, Pt showed a strong adsorption and could only be 

quantitatively recovered with the use of thiourea. SCX was found to be very effective as a 

matrix separation tools, as it can adsorb large amounts of base metals. 

The CN and the DOS-modified RP resins have complexation abilities due to the presence of 

N and S, and these were found to selectively retain Pd. For CN, the retention is weak and the 

capacity is low when using low concentration of Pd in the solutions. Most of the retained Pd 
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was recovered using 3 M HCl. For the DOS modified resin, however, the use of 6 M HCl did 

not elute any of the adsorbed Pd and quantitative recovery was only found when using 

thiourea in the eluent. 

With the results obtained from the SPE trials, a separation scheme was proposed using SCX 

to remove the base metals and SCX to adsorb Pt and Pd while Rh was collected in the 

effluent. Pd and Pt were then recovered using 0.5 M HNO3 and a thiourea containing 

solution, respectively. Although a good separation was obtained, the need for thiourea to 

elute Pt is a drawback of the method. It should also be possible to use the Pd selective resins 

in a separation scheme, although SAX would still be needed to separate Pt and Rh. 

ICP-OES was found to be a good instrument for analysing samples containing both the 

PGMs and the base metals, and the LOD was found to be 10 – 15 ng mL
-1

 for the PGMs and 

1 – 6 ng mL
-1

 for the selected base metals. While providing superior LOD for the PGMs, in 

the range of 0.1 – 0.9 ng mL
-1

, there were problems using the ICP-MS for analysis of the base 

metals and good calibration curves was not found. One explanation of this is the common 

nature of the base metals, as samples are easily affected by contamination. Another 

explanation is the presence of spectral interference from polyatomic ions. For further work, it 

would be of interest to use a dynamic reaction cell in order to remove some of the polyatomic 

interferences and more accurately determine the base metals.  

The use of LC-ICP-MS for on-line separation of the PGMs was only investigated using a 

SAX column, and a MP containing up to 2 M HCl only seemed to efficiently elute Rh. A 

high background of Pt and Pd was also seen, presumably due to high amounts of PGMs 

having been previously applied to the column. Modifying the MP with NaClO4 or thiourea 

could help elute the PGMs, although then a more complicated sample introduction system 

would have to be implemented, to reduce the % TDS introduced into the ICP-MS. The late 

implementation of an inert pump system restricted the time available for testing other 

columns. It would be interesting to test a SCX and a CN column, to see if a better separation 

of the analytes can be achieved. Additionally, it could be of interest to try the HPLC method 

on a new SAX column, in case elution peaks was masked by the high background. It seems, 

however, that SPE could be implemented on an industrial scale without a need for a 

continuous column separation.  
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7 Appendix 

7.1 Method Development ICP-OES 

In the method development 4 wavelengths (5 for Al) were initially monitored for each 

element. These can be seen in Table A1. These were narrowed down to two wavelengths for 

each element, which were monitored for all the samples analysed. The signal data from the 

blank, calibration solution 1 and calibration solution 4 can be seen on the following pages, in 

addition to the calibration curves for all the 16 wavelengths monitored (2 for each element). 

Calibration statistics are included for the wavelengths selected for the final results.  

7.1.1 Wavelengths initially monitored 

Table A1 Wavelengths initially monitored for each element in the ICP-OES method development, in order to select 

the best wavelength for the analysis. 

 1 2 3 4 5 

Al 167.019 396.152 237.312 208.215 394.401 

Cr 268.716 205.560 206.158 206.550  

Cu 327.396 324.754 213.598 224.700  

Fe 238.204 259.940 234.350 239.563  

Pd 340.458 229.651 360.955 342.122  

Pt 214.424 203.646 177.648 217.468  

Rh 343.488 396.236 249.078 233.477  
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7.1.2 Signal data for the blank 
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7.1.3 Signal data for Standard 1 (0.2 μg mL
-1

) 
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7.1.4 Signal data for Standard 4 (1.5 μg mL
-1

) 
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7.1.5 The calibration curves 
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7.1.6 Calibration statistics for the analytical wavelengths 
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7.1.7 Possible interferences on the analytical lines for the ICP-OES  
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7.2 Method development ICP-MS 

7.2.1 Calibration curves and statistics for Pt, Pd and Rh  

 

The calibration curve statistics for the calibration curves of Pt, Pd and Rh in ICP-MS can be 

seen in Table A2. 

Table A2 Calibration statistics for the calibration curves of Pt, Rh and Pd for the ICP-MS. 

A Mass Curve Type Slope Intercept Corr.Coeff 1 2 3 4 Unit 

Pt 195 Linear Thru Zero 5468.038 0 0.999993 25 50 75 100 ppb  

Rh 103 Linear Thru Zero 55499.61 0 0.999907 25 50 75 100 ppb 

Pd 105 Linear Thru Zero 10647.79 0 0.999965 25 50 75 100 ppb 
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7.3 Calculation of retained and recovered percentage 

The amount of elements adsorbed on the SPE cartridges, [M]adsorbed was calculated from the 

concentration of elements found in the effluent [M]effluent and the concentration of metals in 

the feed solution [M]feed using equation 1. Where available, the [M]feed was found by 

analysing a reference solution of the feed solution, in case the actual concentration differed 

from the theoretical value. The theoretical value was used when a reference solution was not 

available. 

                                     (1) 

The percentage of element found in the effluent, compared to the feed solution, was found by 

using equation 2. This is the equation used for the breakthrough curves. 

 
               

           

       
        (2) 

The percentage of elements adsorbed was calculated from the [M]adsorbed and the [M]feed using 

equation 3. 

 
             

           

       
        (3) 

Finally, the percentage recovered was calculated from the concentration of elements 

recovered in the eluent step, [M]recovered and the [M]adsorbed using equation 4. 

 
             

            

           
        (4) 
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7.4 Statistics 

7.4.1 LOD and LOQ for ICP-OES 

The ICP-OES has an implemented way of saying the result is under the limit of detection. 

The instrument LOD was still checked by analysing 10 replicates of the calibration blank. 

The Raw data obtained from the ten replicates is seen in Table A3 and the statistics 

(including LOD and LOQ) obtained from these replicates is seen in Table A4. The calibration 

curve used multielement standard solutions ranging from blank to 1.5 μg mL
-1

 for each 

element. 

Table A3 The raw data (ng mL-1) obtained from 10 measurements of the calibration blank on the ICP-OES 

 LOD1 LOD2 LOD3 LOD4 LOD5 LOD6 LOD7 LOD8 LOD9 LOD10 

Pt 214.424 -9.7 -7.7 -1.7 -13.3 -10.1 -8.1 -15.0 -5.5 1.4 -7.3 

Fe 238.204 -5.4 -5.4 -5.8 -5.3 -5.3 -5.7 -6.6 -6.4 -6.2 -6.4 

Rh 343.488 2.6 2.0 3.2 12.9 6.0 10.3 -2.3 6.2 9.7 -1.7 

Pd 340.458 -1.8 -2.7 2.1 -1.5 -8.4 -3.9 -3.4 -6.4 3.4 -0.7 

Al 396.152 -2.8 -8.4 -5.3 -6.9 -6.0 -7.0 -6.4 -5.8 -7.2 -7.0 

Cu 327.395 -3.1 -3.4 -2.7 -3.4 -3.2 -1.8 -2.0 -1.0 -2.7 -3.7 

Cr 205.560 -3.4 -4.1 -1.4 -2.1 -0.3 -6.4 -3.8 -5.6 -4.5 -5.4 

Zn 213.857 -1.0 -0.8 -1.1 -1.2 -1.3 -2.0 -1.8 -2.0 -1.8 -1.6 

 

Table A4 The statistics from the ten measurements of the calibration blank on the ICP-OES, in addition to the LOD 

and the LOQ. Values in ng mL.1. 

 
average St.Dev 

LOD 
3 x St.Dev 

LOQ 
10 x St.Dev 

Pt 214.424 -7.7 4.9 14.8 49.4 

Fe 238.204 -5.9 0.5 1.5 5.1 

Rh 343.488 4.9 5.1 15.2 50.6 

Pd 340.458 -2.3 3.5 10.6 35.4 

Al 396.152 -6.3 1.5 4.5 15.2 

Cu 327.395 -2.7 0.8 2.5 8.3 

Cr 205.560 -3.7 2.0 5.9 19.6 

Zn 213.857 -1.5 0.4 1.3 4.3 
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7.4.2 LOD and LOQ for ICP-MS 

The raw data output for ten readings of a blank solution in the ICP-MS can be seen in Table 

A5. This was done over an 80 minute run on the ICP-MS, using a “linear through zero” 

calibration curve ranging from blank to 100 ng mL
-1

 of the elements. Recalibration was done 

between replicate five and six. The two first replicates of Pd were much higher than the last 

eight. This is likely due to memory effects from the high-concentration calibration solution 

analysed previous to the two blank replicates. The two measurements is included in the 

calculation of the LOD and LOQ in order to more accurately account for the actual 

conditions used in the analyses of the samples. Standard deviation was calculated using the 

MS Excel function for standard deviation. The LOD and LOQ values can be seen in Table 

A6. 

Table A5 The raw data from 10 measurements of the blank solution measured in ICP-MS. Values in ng mL-1. 

  1 2 3 4 5 6 7 8 9 10 

Pt 195 -0.04 -0.05 -0.13 -0.03 -0.03 0 0 0.02 0 0 

Rh 103 -0.04 -0.05 -0.07 -0.01 -0.01 0.01 0 0 0 0 

Pd 105 0.76 0.75 -0.05 -0.01 -0.01 0.04 0.01 0.02 0 0 

 

Table A6 Statistics from the 10 measurements of the blank solution. Values in ng mL-1. 

 

 Average St.Dev 

LOD 

3xSt.Dev 

LOQ 

10xSt.Dev 

Pt 195 -0.025 0.044 0.13 0.44 

Rh 103 -0.018 0.026 0.08 0.26 

Pd 105 0.166 0.312 0.94 3.12 

 

If the first two Pd measurements are omitted, the LOD is reduced to 0.12 and the LOQ is 

reduced to 0.39 ng mL
-1

. This corresponds better with the values obtained for Pt and Rh. 
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7.4.3 Grubb’s test for outliers 

Grubbs’ test is the ISO recommended test for outliers. It can be used for sample population 

down to 3. The null hypothesis H0 is used, which tests that all samples are from the same 

population. The G statistic is calculated using the  ̅ and s with the suspected value included 

and can be seen in equation (5) 

 
  

|               ̅|

 
 

(5) 

The critical value for the G statistic for a two-sided test with P = 0.05 is 1.155 for n = 3 and 

1.481 for n = 4. If the calculated G statistic is larger than the critical value, the sample can be 

rejected [51]. 

7.4.3.1 Separation scheme 

The replicates of Pt and Rh in the effluent of the aged solutions from the separation scheme 

(section 4.7) can be seen in Table A7. The calculation of the G statistics is seen below.  

Table A7 Replicate values from the separation scheme data sets, containing suspected outliers. Values in ng mL-1. 

 1 

Pt aged 

(flowthrough) 

2 

Rh aged 

(flowthrough) 

3 

Pt fresh 

(TU+HCl first 5mL) 

Rep 1 23.86 168.71 56.83 

Rep 2 13.92 95.68 56.34 

Rep 3 14.12 97.2 83.89 

Average 17.30 120.53 65.69 

St.dev 5.68 41.73 15.77 

 

   
|           |

    
       

   
|             |

     
       

   
|           |

     
       

The critical value for 3 replicates is 1.155 so the suspected outliers from G1 and G2 are 

rejected while the suspected outlier from G3 is not rejected. 
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7.4.3.2 Effluent and wash of Zn from DOS-impregnated RP-SPE  

The replicate values of Zn in the effluent and H2O wash of the adsorption of analytes on 

DOS-impregnated RP SPE (section 4.5.1) can be seen in Table A8.  

Table A8 Replicate values from the data sets of DOS-impregnated SPE, containing suspected outliers. Values in μg 

mL-1. 

 4 

Effluent 

5 

H2O wash 

Rep 1 0.851 0.124 

Rep 2 1.067 0.261 

Rep 3 0.854 0.116 

Rep 4 0.865 0.128 

Average 0.909 0.157 

St.dev 0.105 0.069 

 

   
|           |

     
       

   
|           |

     
       

Both G4 and G5 is higher than the critical value of 1.481 (for four replicates) and both 

suspected outliers are rejected. 

 

 

 

 

 

 

 

 

 

 



  77   

 

7.5 LC-ICP-MS chromatograms 

 



  78   

 

 



  79   

 

 

 



  80   

 

 

 

7.6 Selected Raw Data 

7.6.1 Raw data from the separation scheme 

The raw data results from the separation scheme can be seen in the tables A9, A10 and A11.  

Table A9 Results and statistics of the content of Pt in the different samples from the separation scheme. Flowthrough 

and the sum of Pt aged has 2 replicates while the rest have 3. Values are in ng mL-1. 

    Pt aged (%) ± stdev RSD (%) Pt fresh ± stdev RSD (%) 

1 flowthrough 14.0 ± 0.14 1 <LOD 
 

    

2 5mL 1M HCl 4.4 ± 0.35 8 2.0 ± 0.41 21 

3 5mL 1M HCl 4.9 ± 0.31 6 3.1 ± 0.19 6 

4 10mL water <LOD 
 

  
 

0.059 ± 0.0042 7 

5 5mL 0.5M HNO₃ <LOQ 
 

  
 

<LOQ 
 

    

6 5mL 0.5M HNO₃ 0.71 ± 0.066 9 0.7 ± 0.12 18 

7 10mL water <LOD 
 

  
 

0.13 ± 0.034 25 

8 5mL 0.5M TU + 0.5M HCl 68 ± 1.6 2 66 ± 16 24 

9 5mL 0.5M TU + 0.5M HCl 6.5 ± 0.42 6 9.4 ± 0.37 4 

  sum 98.8 ± 0.5 0.5 81.0 ± 15.9 19.7 
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Table A10 Results and statistics of the content of Rh in the different samples from the separation scheme. 

Flowthrough and the sum of Rh aged has 2 replicates while the rest have 3. Values are in ng mL-1. 

    Rh aged (%) ± stdev RSD (%) Rh fresh ± stdev RSD (%) 

1 flowthrough 96 ± 1.1 1 67 ± 7.4 11 

2 5mL 1M HCl 3.2 ± 0.27 8 25.64 ± 0.83 3 

3 5mL 1M HCl <LOD 
 

    0.10 ± 0.018 19 

4 10mL water <LOD 
 

    <LOD (ud) 
 

    

5 5mL 0.5M HNO₃ <LOD 
 

    <LOD 
 

    

6 5mL 0.5M HNO₃ <LOD 
 

    0.006 ± 0.0016 26 

7 10mL water <LOD 
 

    <LOD(ud) 
 

    

8 
5mL 0.5M TU + 0.5M 
HCl <LOD 

 
    <LOD 

 
    

9 
5mL 0.5M TU + 0.5M 
HCl <LOD 

 
    <LOD 

 
    

  sum 99.7 ± 1.3 1.3 92.9 ± 8.1 8.7 

 

Table A11 Results and statistics of the content of Pd in the different samples from the separation scheme. All results 

have got 3 replicates. Values are in ng mL-1. 

    Pd aged (%) ± stdev RSD (%) Pd fresh ± stdev RSD (%) 

1 flowthrough <LOD 
 

    <LOD 
 

  
 2 5mL 1M HCl <LOD 

 
    <LOD 

 
  

 3 5mL 1M HCl <LOD 
 

    0.6 ± 0.68 115 

4 10mL water <LOD 
 

    0.3 ± 0.30 91 

5 5mL 0.5M HNO₃ 87 ± 1.3 2 93 ± 4.6 5 

6 5mL 0.5M HNO₃ <LOD 
 

    0.5 ± 0.35 66 

7 10mL water <LOD 
 

    0.10 ± 0.048 49 

8 5mL 0.5M TU + 0.5M HCl 4 ± 1.9 47 3 ± 1.8 56 

9 5mL 0.5M TU + 0.5M HCl <LOQ 
 

    <LOD 
 

  
   sum 91.5 ± 1.0 1.1 97.7 ± 5.2 5.3 
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7.7 Raw data ID’s from all the figures containing data 

Adsorption effects by sample solution acidity, Figure 7 

0 M TB-008 

0.15 M TB-024 

0.5 M TB-009 

1 M TB-010 

 

Adsorption effects from storage over time, Figure 8 

Fresh TB-029 

3 months TB-024 

 

Recovery of adsorbed Pt and Pd from SAX, Figure 9 

0.5 M HCl TB-029 

10 mL 1 M HCl TB-001 

20 mL 1 M HCl TB-007 

3 M HCl TB-008, TB-009, TB-010 

6 M HCl TB-008 

0.5 M HNO3 TB-004 

0.5 M HNO3 TB-005 

3 M HNO3 TB-008, TB-009, TB-010 

6 M HNO3 TB-008 

1 M H2SO4 TB-006 

5, 10 and 15 mL TU + HCl TB-030 

 

Adsorption on SCX, Figure 12 

216 days, 0.15 M HCl TB-011 

Fresh, 0.15 M HCl TB-012 

154 days, 0.5 M HCl TB-014 

154 days, 1.0 M HCl TB-013 

Fresh, 1.0 M HCl TB-028 

 

Elution on CN, Figure 17 

5 mL 6 M HCl TB-034 

5 mL 3 M HCl TB-036 

10 mL 1 M HCl + 0.1 M TU TB-035 
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Breakthrough Pd on CN, Figure 18 

Methanol-cond. TB-043 

Water-cond.1 TB-044 

Water-cond.2 TB-047 

Water-cond. ICP-MS TB-048 

 

Recovery of Pt and Pd from DOS-impregnated sorbent, Figure 20 

5 mL methanol TB-031 

10 mL HCl + TU TB-032 

5 mL 6M HCl TB-033 

1 % NH3, 3 % NH3, 5 % NH3 TB-040 

 

Pd breakthrough on DOS-impregnated RP, Figure 22 

Replicate 1 TB-045 

Replicate 2 TB-046 

 

Separation scheme, Figure 27 

Aged solution TB-052, TB-053, TB-054 

Fresh solution TB-056, TB-057, TB-058 

Other 

SAX elution. TU solutions, Figure 10 TB-051 

SAX breakthrough, Figure 11 TB-049 

SCX elution, Figure 13 TB-003 

SCX breakthrough, multielement, Figure 14 TB-016 

SCX breakthrough, Al, Figure 15 TB-050 

CN adsorption, Figure 16 TB-034, TB-035, TB-036 

DOS-mod RP adsorption, Figure 19 TB-031, TB-032, TB-033, TB-040 

DOS-mod breakthrough, multi, Figure 21 TB-038 
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