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Abstract

London orbitals allows for non-perturbative treatment of magnetic fields.
This can be used to explore how molecules behave in very strong finite mag-
netic fields, and also be used to probe complicated magnetic properties like
hypermagnetizability without resorting to response theory. Classical MP2 and
an atomic orbital based variant of MP2 with a Laplace transform ansatz were
introduced to the London program, and successfully used to perform different
quantum chemical calculations entailing magnetic fields of finite size.
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Chapter 1

Introduction and Motivation

1.1 Computational chemistry

Chemistry is an old scientific discipline, and traces its roots back to the ancient al-
chemists. It remained a purely empirical discipline for centuries. Classical physics
was the first branch of science to get a firm mathematical foundation, and there-
fore the first field where unknown systems could be predicted a priori. Since the
nature of electrons and nuclei are inherently quantum mechanical, chemistry could
not be treated in a fully theoretical manner until quantum mechanics was estab-
lished. However, in the early years of quantum mechanics, only small systems like
H2 and helium atoms could be treated accurately. For larger systems this was still
not feasible due to a lack of good methods and computational power. Resolving the
first problem is an ongoing process that has given rise to a large variety of different
many-body methods suited for specific purposes, and the latter was largely solved
with the arrival of the electronic computer.1

1.1.1 A different approach

Quantum chemistry today has become a popular tool in the toolbox of a modern
chemist: when experimental results are in agreement with the radically different
approach of quantum chemistry, then the observation has a very firm justification –
two paths, one based on meticulous observations of what happens as is, and another
that starts out in the very abstract realm of physical postulates and mathematical
methodology.

1Of course, more powerful machines are always in demand.
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From a practical perspective, quantum chemistry may be used to screen exper-
iments, remove large portions of unnecessary work, and of course, provide results
when experimental data are not available. The latter is actually a quite common
problem: some reactions require substances that are very difficult to deal with or
highly dangerous, and some conditions are simply impossible to replicate in a lab.
For example, one of the strongest continuous magnetic field produced in a lab to date
has a magnitude of approximately 45T,2 while certain stellar conditions may produce
fields that are larger by several orders of magnitude. Hopefully, better magnets will
be made in the future3 so that experiments and predictions may be compared, but
as of yet, chemistry in strong magnetic fields remains a purely theoretical exercise.
However, a molecule’s response to a magnetic field depends, amongst other things,
on it’s cross section area. Therefore, it is hypothesized that larger molecules will
experience such effects at smaller fields, and thus let theory and experiment meet in
a lab.

1.1.2 A complicated endeavor

Efficient numerical treatment of large electronic systems is difficult. This is partly
due the so-called “curse of dimensionality”: all electrons are described by three spa-
tial coordinates and one spin coordinate. The dimensionality of the total system
therefore becomes 4N where N is the number of electrons. Even a simple molecule
like C2H5OH will therefore represent an 80-dimensional object, only counting the
electrons. This is a quantum mechanical equivalent of the many-body problem that
is often encountered in classical physics, which is a set of systems that in general does
not have an analytical solution. Therefore, approximations must be made. However,
with approximations come errors, and knowing the strengths and weaknesses of the
methods involved is an important part of the trade. In computational chemistry
we deal with a large family tree where all different levels of theory have their own
branch. In this project, we will deal exclusively with ab initio computational chem-
istry methods. This family of methods are derived directly from quantum mechan-
ical postulates. Other schemes, like molecular mechanics, are founded on classical
physics.

2One of the strongest magnets in the world today resides at the the National High Magnetic
Field Laboratory in the USA and can produce a field of 45T.

3This kind of reasoning is less pretentious than it may seem at first glance – after all, Peter
Higgs predicted the existence of a certain boson back in 1964, a prediction that ultimately led to
the construction of the Large Hadron Collider at CERN.
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1.1.3 Methods, software and challenges

There are many methods and programs for solving quantum chemical problems. The
purpose of the program will often reflect the choice of methods included and the man-
ner in which they are implemented: a program constructed to solve a specific class
of problems very fast (typical for commercial programs) will be inherently differ-
ent to a program tailored towards more academic experimentation and modification.
The Dalton program suite is an example of the latter, and sports a vast array of
very different methods and can do anything from geometry optimization to response
theory.4

Some systems are inherently more complicated to solve than others, and one
family of problems that stands out as particularly difficult to deal with is magnetic
fields.

Chemistry in magnetic fields and magnetic properties

The term “magnetic properties” is something most people will associate with classical
ferromagnets, but all matter surrounding us has magnetic properties. All closed-shell
systems are diamagnetic, and will as such be repelled slightly from magnetic fields.
This effect is very weak, but is easily observable with the right equipment. Similarly,
some materials are paramagnetic, and are attracted to magnetic fields.

In very strong magnetic fields, molecular systems can behave radically different.
It should also be noted that there are a multitude of magnetic properties of bulk
matter that are relatively unknown outside of certain academic circles, like anti-
ferromagnetism, ferrimagnetism and parasitic ferromagnetism to mention a few [1].

How systems react to magnetic fields determine their magnetic properties, which
are highly relevant – NMR shielding constants are one very notable example.

Magnetizabilities and especially hypermagnetizabilities have seen less attention [2,
3].

The London program

Quantum chemical calculations in strong magnetic fields is riddled with difficulties,
and has as a consequence not seen very much attention. There are many ways to
handle magnetic fields, but the most elegant and robust solution requires different
atomic orbitals which are non-perturbative and gauge origin invariant. Normal quan-
tum chemistry software cannot handle such orbitals as it again entails more general

4Response theory is a perturbative method for determining molecular properties in time-
dependent potentials.
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function and integral evaluations. This is a lot of work to implement. Hence, it has
never been done – until London [4].

The purpose of London is to perform calculations on chemical systems in finite
magnetic fields in a consistent and reliable manner, and the program was written
from scratch with this in mind. The code is made to deal with the unexpected,
and should be generalizable to meet the criteria of more or less any new and strange
system. Therefore, generality is favored over numerical efficiency. This in turn means
that many of the assumptions and “tricks” that almost everyone use to simplify their
equations or speeding up their code may not be applicable. London has support
for both conventional Gaussian type orbitals and the gauge including London type
orbitals. Most endeavors so far are based on perturbative approaches, which are
known to behave erratically and unpredictably for strong magnetic fields. London
dispensed with this problem, but does not yet sport a full array of necessary methods.

1.2 The aim of this master thesis

This body of work consists of an implementation part and a calculation part. The
implementation part introduces Møller-Plesset Perturbation Theory (MPPT) of sec-
ond order (MP2) to London. This method was absent, and it fills an important
role: MP2 can be used to calculate correlation energy in London, and it is much
faster than the FCI method which was already present. It is not quite as accurate,
but since FCI calculations with a reasonable basis set can only include a hand full
of atoms at most5, an MP2 implementation is highly advantageous. In London,
speed was sacrificed for generality, and complex valued orbitals make several calcu-
lations intrinsically slower. For these reasons, faster methods like MP2 are essential.
MP2 was introduced in two variants: “classical” MP2 and atomic-orbital MP2 with
a Laplace transformation ansatz. The details will be dealt with in depth in chapter
5. Using these methods to calculate different properties of some molecules in various
magnetic fields comprise the second part of the project. The methods were used to
predict quantum chemical properties in some small molecules.

5Indeed, the London implementation cannot go much beyond four electrons. Other imple-
mentations that are more optimized can do a few more, but the FCI method is still restricted to
very small molecules. Larger molecules can be treated by FCI with very small basis sets, but the
results then obtained are largely useless.
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Chapter 2

A brief look at quantum mechanics

Scientists have always sought a complete theory that may be used to describe all
physical phenomena. Classical physics can be used for a startling number of real
problems, but it breaks down when things either move very fast or are very small.
For these two cases, we have the general theory of relativity and quantum mechanics.
They may of course be combined, but quantum electrodynamics is beyond the scope
of this thesis, and we shall limit our attention to “classical” quantum mechanics.
Quantum mechanics is inherently non-intuitive, but consistent experimentation over
the last hundred years has revealed it to be one of the sturdiest and most powerful
theories available [5]. Atomic units are assumed for the entirety of this thesis unless
otherwise specified.

2.1 The wave function

In the absence of a magnetic field, the quantum mechanical wave-function Ψ contains
all information about the system it describes.1 The wave-function rarely has a closed
form expression; only for the simplest systems is it even known. Also, while all
observables by necessity are real, the wave-function itself is frequently complex. A
large part of quantum mechanics is about the noble art of approximating the wave-
function in a sensible way.

1Indeed, all information that can be experimentally measured. What really constitutes a mea-
surement, however, is a question best left to the philosophers.

9
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2.2 The Schrödinger equation

The Schrödinger equation is perhaps the most important equation in the entire field
of quantum mechanics. The time-dependent non-relativistic one-particle variant is[

−1

2
∇2 + V̂

]
Ψ (x, t) = i~

∂

∂t
Ψ (x, t) (2.1)

where V̂ is a possibly time-dependent, possibly position dependent potential. The
time-independent equation is[

−1

2
∇2 + V̂

]
Ψ (x) = EΨ (x) (2.2)

where E is the energy of the system. These equations can be expanded to match a
multi-particle system. Then, the kinetic part becomes a simple summation of terms,
but the interactions between the electrons are complicated as all charged particles
depend on each other simultaneously. The time-dependent Schrödinger equation is
not relevant in this thesis.

2.3 Spin

Despite the name, spin is a purely quantum mechanical property. It is also an in-
trinsic property, just like mass, and all particles have spin of either integer value
(bosons) or half-integer value (fermions). The associated quantum number is la-
beled s. Electrons have spin ±1

2
. It is also a kind of angular momentum. Quantum

mechanics operates with two varieties: one is orbital angular momentum which de-
scribes a curved trajectory of a particle and corresponds to the concept of angular
momentum in classical physics. The other is spin angular momentum.

Half-integer spin imposes restrictions. The most important is that a wave-
function must be anti-symmetrical when two particles are interchanged. This is
a consequence of the Pauli principle, which states that two identical fermions cannot
possess the same set of quantum numbers.

Often, an electronic wave-function is described as a linear combination of one-
electron functions. These functions contain coordinates describing the position of the
orbital in space, and on spin coordinate describing the spin value. Such a one-particle
state is called a spinor.
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2.4 Operators

A mathematical operator is to a function what a function is to a variable. Differen-
tiation is one example of an operator. Operators are essential in quantum mechanics
as all observables are represented by operators. One neat thing about operators is
that they can all be represented as matrices, which is very useful when doing compu-
tational science. Operators are associated with eigenfunctions (or eigenvectors in the
matrix regime) and eigenvalues. The eigenvalues of a quantum mechanical operator
represent an observable, whereas the eigenfunctions are typically the wave-function
or some approximate variant thereof.

2.4.1 Bra-ket notation

The bra/ket-notation is a convenient notation when working with operators. A
quantum state is described by a ket-vector |p〉. The 〈p|-vector is the hermitian
conjugate, so that for two states p and q

〈p q〉 = δpq (2.3)

if the states are part of an orthonormal set. An expectation value of some operator
Ô is defined as

〈Ψ| Ô |Ψ〉 ≡
∫

Ψ (x)∗ ÔΨ (x) dx (2.4)

Where the Ψ is an eigenvector of Ô.

2.4.2 Hermiticity

An operator is said to be hermitian if it is equal to its own adjoint :

Ô = Ô† ≡ (O∗)T (2.5)

Of course, an operator is not the same as a matrix, and so it may seem inaccurate
to claim that an operator can equal its own complex transpose. However, if the
wave-function (or our approximation thereof) is represented as a vector, then the
operator can be represented as a matrix. The operator’s effect on a wave-function
is then described as a matrix multiplication, which from a numerical perspective is
very efficient. These mathematical objects also have many powerful properties, one
of them being that (

Ô1Ô2 |f〉
)†

= 〈f | Ô2Ô1 (2.6)
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If an observable represented by a hermitian operator Ô is measured, then the possible
measured values are eigenvalues of Ô. Since the operator in question is hermitian,
the eigenvalues must be real by definition. The most important observable by far is
energy, which is the eigenvalue of the Hamiltonian operator Ĥ.

The Hamiltonian

We define the Hamiltonian operator Ĥ so that

ĤΨ (x) = EΨ (x) (2.7)

which is a convenient way of writing the time-independent Schrödinger equation.
The complete Hamiltonian for a many-particle scenario takes this form:

Ĥ = −1

2

∑
i

∇2
i −

1

2

∑
I

∇2
I

MI︸ ︷︷ ︸
Kinetic energy

+
∑
i<j

1

||ri − rj||
+
∑
I<J

ZIZJ
|rI − rJ |︸ ︷︷ ︸

Coulomb repulsion

−
∑
i,I

ZI
|ri − rI |︸ ︷︷ ︸

Coulomb attraction

+ V̂︸︷︷︸
“Rest”

(2.8)

Upper and lower case indices refer to nuclei and electrons, respectively. V̂ is the
potential, in this case “the rest” – whatever field etc. is not already included. Often,
Ĥ is split into a kinetic part and the Coulomb interactions are treated as a part of
V̂ . In electronic structure theory, we usually deal with a simplified Hamiltonian;

Ĥ = −1

2

∑
i

∇2
i︸ ︷︷ ︸

T̂

+
∑
i<j

1

rij︸︷︷︸
gij

−
∑
i,I

ZI
riI︸ ︷︷ ︸

V̂ne

+
∑
I<J

ZIZJ
rIJ

+ V̂︸︷︷︸
“Rest”

(2.9)

where the nuclei-nuclei parts are removed. These are instead treated “classically”
as per the Born-Oppenheimer approximation (BO). This greatly reduces the dimen-
sionality of the system to be calculated.

The Born-Oppenheimer approximation

A proton has more than 1800 times the mass of an electron. Therefore, the nucleus
may be said to be relatively stationary compared with an electron, with the conse-
quence that the electrons will redistribute themselves with any new configuration of
the nuclei almost instantaneously. If we say that the nuclei actually are stationary, we



2.4. OPERATORS 13

can invoke the BO and freeze out the electron-nuclei interactions. Mathematically,
we split the wave-function into two parts:

ψ (r,R) ≈ ψe (r; R)χ (R) (2.10)

where R is the coordinates of the nuclei and r the coordinates of the electrons. The
electronic wave-function ψe depends only parametrically on the coordinates of the
nuclei. The function χ does not have the electrons as a parameter at all; the BO
assumes that the nuclei are not affected by the electrons. This assumption breaks
down in the case of highly excited rotational and vibrational states [6], but that is
beyond the scope of this thesis.

2.4.3 Second quantization

Second quantization provides a useful notation for describing the methods used in
quantum chemistry. An important concept is the Fermi level. Whether we have a
molecule or an atom, we do have a set of orbitals that the electrons can occupy.
These orbitals are lying at different energy levels. The Fermi level is a hypothetical
level lying immediately between highest occupied and lowest un-occupied orbital in
the ground state. The ground state must not be confused with the true vacuum
state |0〉, which is a state devoid of particles. A common convention, which will be
adopted here, is to denote particle states above the Fermi level by the indices abc...,
hole states below as ijk..., and arbitrary levels as pqr... Central to this notation is the
creation and annihilation operators â†p and âp. The creation operator will summon
a particle into the wave-function, the annihilation operator will banish it (or create
a hole, depending on how one chooses to see it).

â†p |0〉 = |p〉
âp |p〉 = |0〉

These operators are not hermitian, but they do have an interesting anti-commutation
relationship:

{âp, âq} =
{
â†p, â

†
q

}
= 0{

âp, â
†
q

}
= δpq

The true vacuum state |0〉 is not very useful, and so the state where all particles
fill up the lowest lying orbitals from bottom up is assumed to be the ground state.
All excitations must then consist of n holes under the Fermi level and n particles
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above. A one-particle-one-hole excitation gets the short form 1p1h and so on. In
bra/ket-notation, the 1p1h and 2p2h and npnh becomes

â†aâi |Φ0〉 = |Φa
i 〉 (2.11)

â†aâ
†
bâiâj |Φ0〉 =

∣∣Φab
ij

〉
(2.12)∏

ai

â†aâi |Φ0〉 =
∣∣Φabc...

ijk...

〉
(2.13)

A general excited state with an unspecified number of excitations involved is denoted∣∣ΦP
H

〉
. Some rules are

âi |0〉 = 0

â†a |a〉 = 0

which holds true for any state where said hole or particle is already present. Second
quantization is general enough to handle systems of varying number of particles and
it is therefore possible to change the total number of particles in a wave-function,
even though this is unphysical. Therefore, rigorous book keeping is essential.

2.4.4 Approximations of the wave-function

We can have exact wave-functions only for a small set of very simple systems. It
is therefore necessary to find a sensible approximation. One way is to write the
total wave-function as a product of one-electron functions. Normally, a molecular
orbital (MO) is written as a linear combination of atomic orbitals (AO). The MOs
are orthonormal, but the AOs are not. The AOs are extracted from a basis set and
are just a list of coefficients for one kind of function. The most common by far (and
the only one which is used within the scope of this work) are Gaussian type functions.

Given one-electron states φk, this seems a reasonable way to make a many-particle
wave-function;

Π (x1, x2, ...xN) =
N∏
i=1

φi (xi) (2.14)

however, this wave-function does not satisfy the Pauli principle. The Slater deter-
minant (SD) is a better solution:

ΨSD (x1, x2, ...xN) =
1√
N !

∣∣∣∣∣∣∣∣∣
φ1 (x1) φ1 (x2) . . . φ1 (xN)
φ2 (x1) φ2 (x2) . . . φ2 (xN)

...
...

. . .
...

φN (x1) φN (x2) . . . φN (xN)

∣∣∣∣∣∣∣∣∣ (2.15)
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where each φk is a spinor. Typically, we use MOs, but AOs can also be used. The
SD can be written more concisely

Ψ (x1, x2, ...xN) =
1√
N !

∑
p

(−1)pP
∏
i

φi(i) = Â
∏
i

φi(i) = ÂΠ (2.16)

where P is the permutation operator and p is the number of columns to be inter-
changed. The operator Â is the anti-symmetrization operator, which sums over all
sets of all possible permutations. This operator is hermitian and commutes with
any observable Ô – it must, because a permutation in the Slater determinant cannot
change the eigenvalues of the operators. Therefore, it has some interesting properties;

ÂÂ =
√
N !Â[

Â, Ĥ
]

= 0

A single Slater determinant cannot be used for accurate description of a system:
many phenomena cannot be described at all without 2p2h-excitations. Electron
correlation is one notable example.

The energy of a Slater determinant

If we recall the Hamiltonian from equation (2.8) and apply it on the Slater determi-
nant, we see immediately that the nuclei-nuclei parts becomes a constant Vnn – the
Slater determinant is a purely electronic entity. That leaves us with the kinetic part
T̂ , the Coulomb attraction, the Coulomb repulsion and the remaining potential V̂ .
This latter part will be ignored for the time being. The remaining entities can be
organized in terms of number of electron interactions; T̂ and the attraction between
nuclei and electrons are sums of one-electron operators, while the Coulomb repul-
sion constitutes a sum over all pairs of electrons.2 We can now define an electronic
Hamiltonian Ĥe: ∑

i

ĥi = T̂ + V̂ne (2.17)

Ĥe =
∑
i

ĥi +
∑
i<j

ĝij + Vnn (2.18)

E [ΨSD] =
〈

ΨSD Ĥe ΨSD

〉
(2.19)

2Fortunately, we don’t need to deal with three-body operators, but in certain fields of sub-atomic
physics, such forces are relevant.
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The expectation values of the one-electron parts are nothing but a sum of non-
interacting orbital energies

〈φi φj〉 = δij (2.20)〈
φi ĥi φi

〉
= hii (2.21)

⇒
〈

Π T̂ + V̂ne Π
〉

=
∑
i

〈
φi ĥi φi

〉
(2.22)

Therefore, the only thing left that needs to be evaluated is the two-body contribu-
tions. It is convenient to rewrite equation (2.16) so that we get〈

ΨSD V̂ee ΨSD

〉
=
〈
ÂΠ V̂ee ÂΠ

〉
(2.23)

=
∑
p

(−1)p
〈

Π V̂ee PΠ
〉

(2.24)

(2.25)

Only the identity and two-electron permutations can contribute according to Wicks
theorem. The operator gij only acts on MOs i and j (for reasons of readability, we
define φk(k) = k), such that

〈Π gij Π〉 = 〈1 1〉 〈2 2〉 ... 〈ij gij ij〉 ... 〈N N〉 (2.26)

This is the case for the identity operator; i.e. that P = I. For other permutations,
we see that the integral is zero unless the indices of P and g matches. We get two
possibilities:

〈Π gij IΠ〉 = 〈φi(i)φj(j) gij φi(i)φj(j)〉 = Jij (2.27)

〈Π gij PijΠ〉 = 〈φi(i)φj(j) gij φi(j)φj(i)〉 = Kij (2.28)

where Ĵ and K̂ are the Coulomb and exchange operators. The former is analogous to
classical electrostatic repulsion, the latter is purely quantum mechanical in nature.
A rewriting of equation (2.19) now yields

E [ΨSD] =
∑
i

hii +
1

2

∑
ij

(Jij −Kij) + Vnn (2.29)

Where the minus sign of Kij is caused by the permutation performed on the ket-
vector, and the factor 1

2
is an offset to the free summation over both i and j. The

next step is now to define the molecular orbitals. This will be dealt with in section
4.1.
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2.5 The Rayleigh-Ritz variational principle

Any approximated wave-function φ that occupies Hilbert space must by necessity be
a linear combination of the eigenstates of Ĥ. Therefore

φ =
∑
n

cnψn

Since the ground state energy by definition is

E0 =
〈
ψ0 Ĥ ψ0

〉
it follows that 〈

φ Ĥ φ
〉
≥ E0 ∀φ

As is implied by the name, the variational method employs a set of variational
parameters λ = {λ1, λ2, ...λN} so that〈

φ (λ) Ĥ φ (λ)
〉

= E (λ)

The optimal set of parameters is therefore a question of derivation with respect to
all parameters. Of course, if the wave-function is optimized with respect to energy,
then there is no a priori reason to assume it is also optimized for other variables.
However, in practice, a very precise calculation of energy can be used reliably for
other values as well. The beauty of the variational approach lies in the fact that
while it may not necessarily provide the exact energy of the system, it will provide
an upper bound. One way to test if a set of variational parameters λ is optimal is
to look at the derivatives of energy with respect to these parameters. If

dEλ

dλ
= 0

d2Eλ

dλ2 ≥ 0

holds, then that set provides a true minimum. Perturbative methods are unfor-
tunately not variational. However, the principle is important for understanding
Hartree-Fock theory.
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2.6 Size extensivity

If a system consists of N non-interacting parts, then there are two obvious ways
of treating it. One is to describe everything by a single wave-function, the other
is to treat the N subsystems individually. Since the systems are non-interacting,
any variant of the Hamiltonian should provide the same end-result. This property
is called size-extensivity [7]. One example where the importance of such behavior
is essential is chemical dissociation reactions like AB −→ A + B. As the fragments
move apart, the total energy of the system should be comparable with the individual
energies:

ΨAB = ΨAΨB

ĤΨAB =
(
ĤA + ĤB

)
ΨAΨB

⇒ EAB = EA + EB

In other words, the wave-functions are separable, and the Hamiltonian for each
subsystem does not affect other parts of it. If EAB 6= EA + EB, it is difficult to
evaluate the quality of the results.

Size extensivity holds true for all exact representations of the wave-function.
However, there is no mathematical necessity that all approximations must behave in
this manner, even though it is highly desirable.

In this project, we deal with a perturbed wave-function, and therefore it is inher-
ently size-extensive.



Chapter 3

Quantum chemistry in magnetic
fields

Quantum mechanics allows for great generality, but in practice, we usually impose a
number of restrictions and assumptions in order to simplify our calculations. For ex-
ample, in the presence of only electrostatic potentials, the system is symmetric under
time-reversal. The quantum mechanical time-reversal operation has two components:
one that affects only spin, and one that is essentially complex conjugation[8]. It is
therefore possible in this case to choose real wave-functions and energy eigenstates.
A magnetic field breaks this symmetry. Therefore, many common expressions are
slightly different in the presence of a magnetic field.

There are two ways in which magnetic fields are interesting from a chemists point
of view. One is how a chemical system behaves in a magnetic field. The other is to
determine magnetic properties of molecules.

One “standard” atomic unit of a magnetic field translates to 2.35 kT in SI units.
The fields employed in this thesis range from about 10−5 a.u. to 2 a.u.

3.1 Implications for quantum the mechanical for-

mulation

For this thesis, the most immediate difference is the distinction between different
types of momenta. In the absence of a magnetic field, we need only concern ourselves
with the canonical momentum operator p̂. The concept of momentum is analogous

19
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to classical physics where

p = mv (3.1)

EK =
1

2
mv2 =

1

2m
p2 (3.2)

describes the relationship between velocity, momentum and kinetic energy. In quan-
tum mechanics, the expression is usually written differently, but the meaning is very
much the same (SI units added for illustrative purposes):

p̂ = −i~∇ (3.3)

1

2m
p̂2 = − ~2

2m
∇2 (3.4)

In order to add magnetic fields to quantum mechanics, a more general definition of
momentum is required. Therefore, we introduce the a new momentum operator π̂:

π̂ = p̂− qA (3.5)

where q is the charge of the particle (which is −1 for an electron when we use atomic
units) and A is the magnetic vector potential. This is defined by

A =
1

2
B× (r− g) (3.6)

where g is the gauge origin. It must be emphasized that A satisfies the homogeneous
pair of Maxwell’s equations:

∇ ·B = 0 (3.7)

∇× E +
∂B

∂t
= 0 (3.8)

and so the kinetic energy of one particle is

1

2
π̂2 = −1

2
(p + A)2 = −1

2

(
p̂2 + p ·A + A · p + A2

)
(3.9)

A gauge transformation changes the magnetic vector potential, but not the mag-
netic field. The number of possible gauge transformations is infinite, and it is often
convenient to impose certain restrictions. A Coulomb gauge satisfies

∇ ·A = 0 (3.10)
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and will be assumed henceforth. If we also exploit the fact that

(a× b) · c = (b× c) · a (3.11)

and apply this to equation (3.6), we get

π̂2 = p̂2 + 2A · p̂ + Â2 (3.12)

= p̂2 + B× (r− g) · p̂ +
1

4
(B× (r− g))2 (3.13)

For a gauge origin g in a magnetic field, the physical angular momentum Ĵg and the

canonical angular momentum L̂g shares a similar relationship as p and π:

Ĵg = (r− g)× π̂ (3.14)

L̂g = (r− g)× p̂ (3.15)

This latter expression does not represent a physically meaningful quantity except
when B = 0. When this result is inserted into equation (3.13), we get

π̂2 = p̂2 + B · Lg + A2 (3.16)

where the term B · Lg is zero if the momentum is entirely perpendicular to the
magnetic field.

Finally, we can adjust the electronic Hamiltonian,

Ĥ =
1

2

∑
i

π2
i +

∑
i<j

1

rij
+ V̂ (3.17)

and see that the overall changes are minor. Similar arguments can be used to show
that also the Hamiltonian is gauge origin independent [9].

3.2 Chemistry in strong magnetic fields

It has been discovered that in strong magnetic fields, certain phenomena that are oth-
erwise regarded as impossible, can occur. One effect is that all matter is compressed.
The kinetic energy of the system increases the overall energy in many cases, but can
also induce bonding effects. One example to this is the so-called “atom-spaghetti”,
which are long chains of hydrogen atoms.
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Magnetic fields in the vicinity of 1 a.u. may produce some of the most interesting
and diverse chemical phenomena. This is easily seen if we return to the electronic
Hamiltonian with the canonical momentum operator p̂ from equation (2.9). If we
use the more general momentum operator π̂ as defined in equation (3.5), we get

Ĥ =
1

2

∑
i

(
p̂i + Âi

)2
+
∑
i<j

1

rij
−
∑
i,I

ZI
riI

(3.18)

where for the sake of convenience we have ignored any additional terms due to an
external potential and so on. Notice that as long as Â is small, the system is domi-
nated by Coulomb forces and the canonical momentum. If Â is slightly bigger, the
linear terms may be relevant, but when Â is on the same order of magnitude as
the other terms, at about 1 a.u., all terms are equally important. In this regime,
a multitude of possibilities exits, and several unknown chemical systems might be
encountered [10]. For example, the orbital Zeeman term (L ·B) will introduce a
splitting of the p-orbitals on the same order of magnitude as the Coulomb forces. It
follows that interesting chemistry of a different nature may happen when magnetic in-
teractions becomes as important as their electrostatic counterparts. Small molecules
have received most attention, but with MP2 theory installed in the London code,
larger molecules can be probed as well.

It was recently discovered [11] that entities that are known to be anti-bonding
in the absence of a magnetic field may be strongly bonding if the magnetic field is
powerful enough. This phenomenon is known as paramagnetic bonding and occurs
because the magnetic field compresses the orbitals. This is an entirely different sort
of chemical bond, and unlike anything that can be replicated yet in lab.

Antoher curious effect is paramagnetic stabilization. Paramagnetic molecules are
positively magnetized in a magnetic field, if the field is strong enough, the molecule
will change from paramagnetic to diamagnetic. In this point, where ∂E

∂B
= 0, the

molecule has a minimum energy. Therefore, it has been stabilized by the magnetic
field.

3.2.1 Strong and weak fields

What constitutes strong and weak magnetic fields is largely a question of perspective.
In daily life, we would certainly consider anything over 1T as strong – in that regime,
diamagnetic repulsion can be felt by human hands and the combination of MRI-
scanners and heavy metal objects have even caused deaths [12]. However, continuous
1 magnetic field is dwarfed by what can be found on white dwarfs and neutron stars.

1Pulsed magnetic fields up to several kilotesla have been achieved [13].
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On such stellar objects, fields from a few hundred tesla and up to several megatesla
are known to exist [14, pp. 896-906], [15].

3.3 Magnetic properties

A molecule may have a permanent magnetic dipole moment m0. This is the mag-
netic analogue of a permanent electric dipole moment. Likewise, a molecule has
a polarizability which determines how strongly it is polarized in an electric field.
The magnetic equivalent to this phenomenon is the magnetizability. However, where
electric properties can be grasped intuitively, magnetic properties are often more ab-
stract and describe physical phenomena that are difficult to understand. Some key
concepts need to be established first. The magnetic permeability µ is analogous to
electric permittivity. The vacuum permeability µ0 is defined as 4π · 10−7NA−2 and
the magnetizability2 χ is

χ ≡ 1− µ

µ0

(3.19)

(3.20)

The magnetization M is defined so that

M = χB (3.21)

where B is the strength of the external magnetic field. Magnetizability is an impor-
tant concept: if it is positive, then a molecule is positively magnetized by external
fields, and the molecule is paramagnetic. If negative, then the molecule is repelled by
a magnetic field and the molecule is diamagnetic. Both these effects are usually very
weak, and only in a very strong field is the repulsion or attraction observable with the
naked eye. However, once the field becomes strong enough, diamagnetic repulsion
can cause spectacular effects – one example is the famous “frog experiment”, where
researchers made a live frog levitate in a field of about 16T [16].

3.3.1 Magnetizabilities

The energy of a system as a function of magnetic field can be written as a Taylor
expansion in terms of the B, where the indices referring to various combinations of

2This entity is also often referred to as magnetic susceptibility.
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Cartesian coordinates:

E (B) = E0 +
1

2

∑
α

JαBα −
1

2!

∑
αβ

χαβBαBβ +
1

3!

∑
αβγδ

XαβγBαBβBγ + ... (3.22)

The angular momentum J is the first derivative of energy with respect to magnetic
field, the magnetizability χ is the second derivative, followed by the higher order
hypermagnetizabilities X. All calculations in this thesis were performed with closed
shell systems. In such cases, E (B) = E (−B), and all odd terms in the Taylor
expansion are zero for reasons of symmetry. That leaves us with χαβ and Xαβγδ

χαβ = − ∂
2E (B)

∂Bα∂Bβ

∣∣∣∣
B=0

(3.23)

Xαβγδ = − ∂4E (B)

∂Bα∂Bβ∂Bγ∂Bδ

∣∣∣∣
B=0

(3.24)

In this thesis, only the diagonal elements of the magnetizability and hypermagne-
tizability tensors are computed. Magnetizability is a rather abstract concept. Re-
garding it as the double derivative of energy with regards to the magnetic field has
one unfortunate implication: in order to get the entire magnetizability tensor, we
need all possible grid combinations of the magnetic field. If we are satisfied with
10 data points for each member of the tensor, we need 1000 calculations to be per-
formed, whereas 30 are enough to get the diagonal elements. However, one can also
regard the magnetizability as the first derivative of the momentum J as introduced in
equation (3.14). This approach has the propitious consequence that the off-diagonal
tensor elements can be computed with a minimum of effort. Unfortunately, this
approach relies on the Hellmann-Feynman theorem, which is not applicable in our
case for two reasons. One is that the Hellmann-Feynman theorem is only valid for
variational methods, which the MP2 method is not. However, as long as the system
can be described reasonably with MP2 theory, then an estimate of χ which relies
on the Hellmann-Feynman theorem will be approximately correct. The other reason
is more insidious: we rely on London orbitals, and since these include the magnetic
gauge, it can be shown that Hellmann-Feynman does not apply.

Computing magnetic properties

One way to determine the magnetic properties is to use response theory. High order
response theory is prohibitively complicated to program and at the MP2 level, no-
body has ever investigated magnetic response. Finite field is a much easier approach
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to static properties, but for the calculations to be reliable, gauge origin invariant
orbitals are a must. The body of this thesis revolved around implementing MP2 in
the London code, and so calculating magnetizabilities and hypermagnetizabilities
at the MP2 level was deemed appropriate. Magnetizabilities and hypermagnetizabil-
ities involve only a single perturbation, and are as such among the simplest response
properties to calculate. Comparison of these values at HF and MP2 levels may
provide insight into the importance of correlation effects in weak fields.

From a practical perspective, it simply entails a systematic variation of the mag-
netic field over a fixed geometry. The energy, as a function of magnetic field can then
be fitted with a polynomial, and the coefficients of this polynomial multiplied with
the Taylor factors are then representing magnetic properties order by order. The
Taylor factor is −1n+1

n!
for each order n [17].

3.4 Some pitfalls when dealing with magnetic fields

Since the Hamiltonian as such does not change, it means that all the methods we use
are just as valid with a magnetic field as without. However, many of the frequently
used short-cuts and assumptions cease to be valid. For example, a hermitian matrix
with only real numbers is symmetric. Symmetric matrices have some very powerful
properties that are highly advantageous from a numerical perspective. Some ma-
trices, like the Hamiltonian matrix, are always real if the basis functions are real.
Bringing such assumptions into the realm of complex values is bound to cause prob-
lems. For example, it is always true that

(pq rs) = (rs pq) (3.25)

but if we know that the integral is real, we get the additional symmetries:

(pq rs) = (pq sr) = (qp rs) = (qp sr)

= (rs qp) = (sr pq) = (sr qp)

Exploiting this can speed up a calculation, and therefore it as “always” done, and
many descriptions of various algorithms tacitly assume the real case. Such assump-
tions frequently break down when using complex orbitals. When developing new
methods it is very important to keep track of the assumptions and approximations
underlying the methods upon which the development is based.
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Chapter 4

London orbitals and gauge
invariance

Atomic and molecular orbitals are a somewhat artificial way of describing the elec-
tronic structure of atoms, but they are very practical and mostly correct.

4.1 Introduction to orbital theory

The exact wave-function is unknown, so we use linear combination of spinors that
approximately it instead. There are two things to consider here. One is that the
more the orbitals resemble the molecular system in question, the fewer orbitals are
needed to produce a good description. This is important since most methods scale
non-linearly with the number of basis functions. The other is that the orbitals in
question should be of a kind that is easy to deal with mathematically. Typically, a
certain kind of mathematical operation will be performed a great number of times,
and if such operations can be performed analytically, CPU-time is greatly reduced.

The “proper” atomic orbital is a contraction of primitive functions.

uk =
m∑
n=1

dnkfn (4.1)

fn = R (r)S (α, r) (4.2)

Equation (4.1) describes an atomic orbital for an atom labeled k. This contracted
orbital is a linear combination of basis functions whose form is described in equa-
tion (4.2). Here, R (r) is a function describing the coordinates of the orbital. This
is usually done by means of spherical harmonics as these functions have some very

27
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powerful mathematical properties and can significantly speed up a calculation. How-
ever, London only uses Cartesian basis functions. The function S (α, r) describes
the shape of the basis function. Three possible shapes are

χSTO (r; R, ζ) = R (r) exp [−ζ (r−R)] (4.3)

χGTO (r; R, ζ) = R (r) exp
[
−ζ (r−R)2

]
(4.4)

ωLGTO (r,A; R, ζ) = R (r) exp
[
−ζ (r−R)2

]
exp [−iA (R) · r] (4.5)

where equations (4.3), (4.4) and (4.5) describe Slater, Gaussian and London-type
orbitals respectively and ζ describes the shape of the orbital; the higher the value,
the higher and steeper the shape. Slater-type orbitals (STO) have a shape which is
close to the asymptotic decay of hydrogen-like wave-functions, but are tricky to deal
with. For example, analytical integrals are unavailable, and a large number of costly
numerical integrations must be performed instead. They see limited usage1 and will
receive no further attention in this thesis. Gaussian-type orbitals (GTO) are by far
the most prevalent. The do not resemble the actual system very well, particularly
close to the center and very far from the center. It is, therefore, often necessary to
add extra functions for these regions. Figure 4.1 shows the shapes of an STO and a
GTO.

The London program relies on London orbitals, and may handle very large mag-
netic fields intrinsically. The London factor may be added to both GTOs (LGTO)
and STOs (LSTO), but London uses only the former. The mathematical expression
for LGTOs is seen in equation (4.5). The London factor describes a vector potential
at the center of the basis function. Note that in the absence of a magnetic field, the
London factor is exactly one [18].

It should be noted that orbitals need not be described by any of the mentioned
classes of functions. One can in principle use any set of functions, but it is advan-
tageous if the members of that set resemble the actual system to as large a degree
as possible – if a the quality of a description quickly converges towards the system
to be described, then a good approximation can be made from a linear combina-
tion of relatively few basis functions. When dealing with bulk systems, it is often
advantageous to use plane waves [4].

4.2 Magnetic gauge and its implications

The magnetic vector potential was defined in equation (3.6). There are infinitely
many different A that may give the same magnetic field B. However, not all mathe-

1ADF is a notable exception.
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Figure 4.1: An STO and a GTO, both with all quantum numbers set to

zero. The GTO does not diverge at x = 0 as it should and falls off too

quickly. This image is simply an illustration of the general shape of the

polynomials, hence the lack of labeling.
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matical degrees of freedom of A and V correspond to a change in physically observ-
able properties. Using an arbitrary f (r):

A′ = A +∇f (r) (4.6)

φ′ = e−if(r)φ (4.7)

π′ = −i∇+ A′ = π +∇f (r) (4.8)

such a gauge transformation does not affect physical degrees of freedom. Example:

π̂′φ′ = (−i∇+ A +∇f) e−if(r)φ (4.9)

= e−if(r) (−i∇−∇f + A +∇f) (4.10)

= e−if(r) (−i∇+ A)φ (4.11)

= e−if(r)φπ̂φ (4.12)〈
φ′ π̂′ φ′

〉
=

∫
φ∗eif(r)e−if(r)π̂φ dr (4.13)

=

∫
φ∗π̂φ dr = 〈φ π̂ φ〉 (4.14)

A similar approach can be used to show that Ĥ and other relevant operators are
gauge invariant as well. Hence, we are free to choose whichever gauge is most conve-
nient, much like the origin of a Cartesian coordinate system is arbitrary. However, a
gauge transformation will affect the phase of the wave-function and the Hamiltonian,
but not the expectation value. Therefore;

〈E〉 =
〈

Ψ Ĥ Ψ
〉

=
〈

Ψ′ Ĥ′ Ψ′
〉

(4.15)

While this does not correspond to an actual physical effect, it will affect a numerical
approximation: both the orbitals and the Hamiltonian must be affected similarly by
the gauge transformation. The Hamiltonian is trivial to adjust, but the orbitals must
be represented in a basis. Hence, in the limit of an infinite basis, gauge invariance is
exact. In practice, they are not. LGTOs include the gauge origin. For London- and
Gaussian-type orbitals (ωLGTO (r) and χGTO (r), respectively) in a uniform field B,
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we get

A =
1

2
B× (r− g) (4.16)

ωLGTO (r) = e−iA(c)·rχGTO (r) (4.17)

= e−i
1
2
B×(c−r)·rχGTO (r) (4.18)

πωLGTO (r) = (−i∇+ A) e−iA(c)·rχGTO (r) (4.19)

= e−iA(c)·r
(
−i∇− 1

2
B× (c− g) +

1

2
B× (r− g)

)
χGTO (r) (4.20)

= e−iA(c)·r

−i∇− 1

2
B× (r− c)︸ ︷︷ ︸

g is gone

χGTO (r) (4.21)

Similar results can be shown for Ĥ and other relevant operators.
Therefore, London-type orbitals always provide exactly the same results, regard-

less of the gauge origin. It should be noted that London type orbitals are not enough
by themselves for fields of arbitrary size: at some point, ignoring the relativistic
effects will produce large errors. Therefore, most calculations in this thesis were
restricted to fields lower than 2a.u., and no calculations were conducted above 10
a.u. Also, if the magnetic field is inhomogeneous, an even more general approach is
required.
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Chapter 5

Quantum Chemical methods

As discussed in chapter 1, some approximations are necessary. One of these is al-
ready mentioned; the Born-Oppenheimer approximation which freezes out the added
complexities of the nuclei. However, pure electron calculations can be complicated
enough all by themselves. There are numerous methods for calculating molecular
properties; new ones are constantly being made and old ones refined, modified and
tweaked for various purposes. In this chapter a brief overview over some methods
will be discussed, as well as an attempt to place MP2 sensibly amongst them.

5.1 Hartree-Fock Theory

Hartree-Fock (HF) is a quantum chemical method developed in the late 1920s, and
is the oldest many-body method produced that still sees extensive usage today [19].
The wave-function approximation is based on a single SD, as described in equation
(2.15). A key concept to HF theory is the Fock operator

F̂ =
∑
k

εk |ψk 〉〈 ψk| (5.1)

whose eigenvectors are the MO-coefficients. The HF procedure is about the opti-
mization of the orbitals in the SD. This method is variational, so this is usually done
iteratively: one start out with orbitals constructed from the canonical MOs, and it-
erate until the calculation has converged. Mathematically, we fill the MO-coefficients
into a matrix C so that

FC = SCε (5.2)

33
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where S is the overlap matrix and ε the orbital energies. This system of equations
is known as the Roothan-Hall equations. Determining the HF energy is therefore
reduced to a series of eigenvalue evaluations, which is desirable from a numerical
perspective [20].

It must be mentioned that Hartee-Fock theory exists in several different variants.
Restricted Hartee-Fock theory (RHF) assume that all orbitals are filled with two
electrons whenever possible. Therefore, all orbitals are used twice, one for each spin
type electron. Logically, this setup works best for closed shell species. In Unrestricted
Hartee-Fock theory (UHF), different orbitals are used for α and β electrons. We then
get two Fock matrices, and two sets of equations that must be solved independently:

FαCα = SCαεα (5.3)

FβCβ = SCεβ (5.4)

However, since the underlying ansatz is still based on a single SD, UHF suffers from
spin contamination, which means that excited states interfere with the ground state.
Another approach is the Restricted Open Hartee-Fock (ROHF) method, which relies
on RHF as far as possible, and uses UHF for the remaining unpaired electrons. The
most powerful method is probably the General Hartee-Fock (GHF) method, where
there are no restrictions on the orbitals. Both RHF and UHF are special cases of
GHF[21].

The HF method is size extensive and variational. It is also quite fast; it formally
scales asN4, which is better than most other methods, and it is not very flop-intensive
to begin with. With integral screening and other optimizations, it can be made to
scale linearly. The main disadvantage is that it does not include correlation energy,
and is therefore a less than optimal choice of method if highly accurate results are
needed. Many phenomena, like dispersion, cannot be treated at all without including
correlation energy. The method is also vulnerable to convergence problems in the
SCF-procedure, but a good initial guess will obviate this obstacle.

A HF calculation will often provide a good starting point for more refined meth-
ods.

Post-Hartree-Fock methods

Many methods are based on HF, improving it in some way or another. These methods
known as post-Hartree-Fock methods. Some common post-Hartree-Fock methods are
Møller-Plesset perturbation theory (MPPT), Configuration Interaction theory (CI),
Coupled Cluster theory (CC) and various compound methods.
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5.2 Perturbative methods

One way to deal with the correlation energy is to treat it as a perturbation to the
uncorrelated system.

5.2.1 Perturbation theory

Conceptually, perturbation theory attempts to simplify a complicated system by the
following approximation: first, a system that is easier to deal with and which, to as
large degree as possible, resembles the actual problem is assumed to be the unper-
turbed system. Then, the difference between the real system and the unperturbed
system is treated as a perturbation. In other words, we get

ĤΨ =
(
Ĥ0 + λĤI

)
Ψ (5.5)

where Ĥ is the actual Hamiltonian, Ĥ0 the Hamiltonian for the unperturbed system
and λ describes the strength of the perturbation ĤI . There are two important
assumptions at work here. One is that the perturbation is relatively small, i.e that
Ĥ0 accounts for most of the energy. The other assumption is that the solutions of
Ĥ0;

Ĥ0Φi = EiΦi ∀i ∈ N (5.6)

form a complete set. Since λ is a variable and Ĥ is hermitian, it follows that both
Ĥ0 and ĤI by necessity must be hermitian as well. This in turn implies that the set
of solutions to Ĥ0 can be chosen to be orthonormal. The true solution

ĤΨ = EΨ (5.7)

can now be written as a Taylor expansion of λ;

W =
∞∑
i=0

λiWi (5.8)

Ψ =
∞∑
i=0

λiΨi (5.9)

corresponding to the unperturbed wave-function and eigenvalue plus all the higher
order corrections. Since the set of {Φ0,Φ1...} is complete and orthonormal and a
member of Hilbert space, it follows that 〈Ψ Φi〉 = 1 ∀Φi. Also keep in mind that



36 CHAPTER 5. QUANTUM CHEMICAL METHODS

this must hold true for all values of λ, allowing us later to separate the equations
order by order. Reinserting equations (5.8) and (5.9) into equation (5.7) we get

(
Ĥ0 + λĤI

) ∞∑
i=0

λiΨi =

(
∞∑
j=0

λjWj

)(
∞∑
i=0

λiΨi

)
(5.10)

Sorting this by the order of λ, the ith order correction becomes

Ĥ0Ψi + ĤIΨi−1 =
i∑

j=0

WjΨj (5.11)

Notice that the zeroth order perturbation is reduced to the Schrödinger equation for
the unperturbed system. In the limit where all corrections up to infinite order are
included, this is exactly true, but of course, that is hardly an improvement. However,
this series of corrections can be truncated at any point. This has several appealing
consequences. Chief amongst them is that the level of accuracy can be chosen rather
arbitrarily, and if higher accuracy or lower cost is required, a different truncation
may be used. Since our chosen normalization requires that

〈Ψi Φ0〉 =

{
0 ∀ i 6= 0

1 if i = 0
(5.12)

then multiplying equation (5.11) from the left with 〈Φ0| allows us to pick out the
expression for Wi directly:

Wi =
〈

Φ0 Ĥ0 Ψi

〉
︸ ︷︷ ︸

0

+
〈

Φ0 ĤI Ψi−1

〉
(5.13)

This can be exploited even further; Wigner’s (2n+ 1)-rule states that for each order
n to which the perturbed wave-function is computed, the expectation value of the
perturbed Hamiltonian can be calculated to order 2n+ 1[22]:

W2n+1 =
〈

Ψn ĤI Ψn

〉
−

n∑
k,l=0

W2n+1−k−l 〈Ψk Ψl〉 (5.14)

At this point, the problem is that both the λ’s, energies and wave-function corrections
are undetermined. We therefore need a systematic setup for finding these. Our
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fundamental assumption is that we have everything we need for finding the reference
energy;

W0 =
〈

Φ0 Ĥ0 Ψ0

〉
(5.15)

which can then be used for finding first order contributions.

|Ψ1〉 =
∑
i

ci |Φi〉 (5.16)(
Ĥ0 −W0

)
|Ψ1〉 =

(
Ĥ1 −W1

)
|Φ0〉 (5.17)

We multiply both sides by 〈Φ0| : (5.18)

⇒ W1 =
〈

Φ0 Ĥ1 Φ0

〉
(5.19)

The clue here is that even though we don’t yet know the expansion coefficients ci for
Ψ1, we do not need them to find W1. And, with W1 in place, they are now the only
set of unknowns in the equation, and we can find them without too much hassle:

ci =

〈
Φj ĤI Φ0

〉
E0 − Ej

∀i > 0 (5.20)

The first order corrections can then be used to find the second order corrections and
so on. The expressions quickly become very complicated, so we only state W2 as we
shall use this one later:

W2 =
∑
i 6=0

〈
Φ0 ĤI Φi

〉〈
Φi ĤI Φ0

〉
E0 − Ej

(5.21)

Of course, this expression breaks down in the case of degeneracies, but that can be
amended by various means.

5.2.2 Møller-Plesset perturbation theory (MPPT)

The missing feature from HF theory is correlation energy. This value typically is
significant, which violates the assumption that a perturbation should be small. How-
ever, with a good starting extent, such as what is provided from a HF calculation,
this is rarely a problem. We define Ĥ0 in terms of the Fock-operator from equation
(5.1):

Ĥ0 =
∑
i

F̂i (5.22)
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A Fock-operator sees an average field of electron-electron repulsions. Since we sum
over all electrons, but the repulsions are between electron pairs, this value is doubled.
At this point, we recall that the eigenvalues of the Fock-operator are the orbital
energies. Therefore, if we insert the above equation into equation (5.15) we see that
W0 is simply the sum of orbital energies;

W0 =
∑
i

εi (5.23)

The first order correction is W1 =
〈

Φ0 ĤI Φ0

〉
. In short, the unperturbed MPPT

solution is the orbital energies, and if we add the first order perturbation, we get the
HF energy. Simply put, MPPT to first order is nothing but a reformulation of the
HF method – a reformulation that relies on the HF method for finding the orbitals
to begin with. Clearly, MPPT is only interesting for higher order perturbations. The
implementations in this thesis deal exclusively with second order corrections, so we
will limit our attention to that. We must now consider the singly excited SDs;

|Φa
i 〉 = â†aâi |Φ0〉 (5.24)〈

Φ0 Ĥ0 Φa
i

〉
= 0 (5.25)〈

Φ0 ĤI Φa
i

〉
= 0 (5.26)

and the doubly excited SDs: ∣∣Φab
ij

〉
= â†aâ

†
bâiâj |Φ0〉 (5.27)

The summation can be reduced significantly by restricting the summation to the
possible excitations. In London, classical MP2 was implemented only for a RHF
starting point. In this case, only the indices of the two-electron integrals matter.

W2 =
F∑
i<j

N∑
a>b=F

〈
Φ0 ĤI Φab

ij

〉〈
Φab
ij ĤI Φ0

〉
E0 − Eab

ij

(5.28)

(ia jb) =

∫
i(1)j(2)

1

r12
a(1)b(2)dr1dr2 (5.29)

⇒ W2 =
∑
i,j,a,b

2 |(ai bj)|2 − (ai bj) (ib aj)

εa + εb − εi − εj
(5.30)

EMP2 = EHF −W2 (5.31)

[23, 7]
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Advantages and disadvantages

All quantum chemical methods have their strengths and weaknesses. Some advan-
tages to MPPT methods are:

• MPPT-methods are size extensive.

• Speed. MP2 formally scales as N5, which is very good: MP2 is canonically the
fastest ab initio method that can calculate dynamic correlation.

• Ease of implementation. The method itself is easy to implement, and can be
a useful addition to programs that already have more sophisticated methods
implemented.

• Several highly accurate composite methods use various contributions from
MPPT-methods. Thus, a proper implementation can be reused.

There are some drawbacks to MPPT-methods as well, including

• MPPT-methods are not variational. This, however, is more of a missing feature
than actual flaw, and it holds true for a lot of methods, the CC-family included.

• Methods founded on MPPT cannot be systematically improved simply by
adding higher order perturbations – in the absence of an infinite basis, results
will at some point diverge. However, results can be improved systematically
consequently get better results since there is a close link between MPPT meth-
ods and couple cluster methods. This will be explained briefly in section 5.3.2.

5.3 Two other methods worth mentioning

Quantum chemical methods often share some key principles, or are in some way
logically related. Understanding related methods provides a valuable insight into
the common mathematical formulation of the field. Of particular interest is Coupled
Cluster theory since it is a logical extension to Møller-Plesset perturbation theory.
Configuration Interaction theory is also important to see in relation with the others.

5.3.1 Configuration Interaction theory

In Configuration Interaction theory (CI), the wave function is written as a linear
combination of determinants where the HF wave function is the first term:

ΨCI = C0ΨHF +
∑
ai

Ca
i Ψa

i +
∑
abij

Cab
ij Ψab

ij + . . . (5.32)
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The wave function ansatz ΨCI is which is sorted by number of excitations. The
problem to be solved is reduced to determining the expansion coefficients C. These
coefficient are variationally determined. The elements of the CI-matrix H is simply

Hmn =
〈

Ψm Ĥ Ψn

〉
(5.33)

which leaves us with set of secular equations;

HC = EC (5.34)

Solving these equations entails diagonalizing the CI matrix, whose lowest eigenvalue
is the ground state energy of the system.

It is possible to truncate the series of excitations, or one can include all of them.
This gives rise to two different methods: full CI (FCI) and truncated CI. The latter
is given its name depending on where it is truncated. For example CISDT includes
singles, doubles and triples. Mathematically, the difference between truncated CI
methods and the FCI method is small, but practical implications are enormous:
truncated CI methods are not size-extensive. It also depends on reference orbitals
(which in practice will always be HF orbitals). FCI has neither of these restrictions.
Truncated CI methods see little usage, but FCI is extremely useful. In this thesis,
FCI1 was used for comparing and validating results produced with MP2. FCI is
possibly the most accurate method available, and it is easy to implement. The only
drawback is that it is extremely slow for all but the smallest systems: it does not
scale in polynomial time, not even exponentially – the scaling is factorial with the
system size.

5.3.2 Coupled cluster theory

In coupled cluster (CC) theory, the cluster operator T̂ is very similar to the correla-
tion operator found in perturbation theory. Here, the unknown variables that need
to be identified are the cluster amplitudes t̂PH .

|ΨCC〉 = eT̂ |Φ0〉

≈
N∑
n=1

1

n!
T̂ n |Φ0〉

T̂ n =

(
1

n!

)2 ∑
ijk...n,abc...n

tabc...nijk...nâ
†
aâ
†
bâ
†
c...â

†
nâiâj âk...ân

1FCI is implemented as a sub-routine in the CAS-solver in London.
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If a CC calculation were to be performed for all possible excitations, it would simply
be a complicated way of doing FCI. However, when truncated, the difference becomes
apparent: as previously mentioned, truncated CI methods are not size-extensive, but
they are variational. For truncated CC methods, the situation is exactly the opposite;
the methods are size-extensive, but not variational[24].

CC theory revolves around determining amplitudes. This can be seen as a mini-
mization problem, and is usually done iteratively. This is where the link to MPPT
becomes evident: MP2 describes the single and double excitations perturbatively.
Coupled cluster at the corresponding level (CCSD) treats these values in an itera-
tive fashion – the MP2 contribution is simply the results from the first iteration in
a CCSD-calculation. The beauty of coupled cluster methods lies in the exponen-
tial Taylor ansatz: adding higher order contributions does not cause divergence like
higher order perturbations in MPPT. There is also a natural system here; the triples
can be treated as a perturbation to the doubles, which results in CCSD(T). Then, if
even better results are required, we can solve the amplitudes for the triples iteratively
as well, a method known as CCSDT. This can then be improved step by step until
all possible excitations are included. However, this setup scales as N4+2k+p where
k is the number of excitations beyond singles and p is either 1 or 0 depending on
whether perturbative expansions are added or not. A higher order coupled cluster
calculation quickly becomes prohibitively expensive for all but the smallest systems,
but it can provide extremely accurate results in cases where FCI is impossible.
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Part III

Implementation and results
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Chapter 6

Implementation

I have implemented MP2 theory in the London code in two different variants. One
is a classical MP2 method as described in section 5.2.2. This was implemented in
the CAS-CI/CAS-SCF-code, and also as a free-standing class.

The other implementation is of Laplace-MP2 theory. This was the most work
intensive and difficult programming endeavor.

6.1 Implementation of classical MP2

Since London has several modules for performing two-electron integrals and doing
SCF-optimization, almost everything needed to implement an MP2 method was al-
ready available. It was implemented in three different places, but in a very similar
way. First, when CAS-SCF and CAS-CI calculations are run, the MP2-energy is
printed rather early in the routine. This is done on the grounds that MP2 is much
faster than either of these methods and because CAS-type methods does not com-
pute dynamic correlation unless all excitations are included (which in effect is FCI).
The MP2 method was also implemented as a free-standing module.

The actual MP2 contribution to the energy as implemented in London is seen
in Code 6.1. This method was implemented and compared with the MP2 method
of Dalton, CCSD in London and FCI. When the veracity of the method was
confirmed, Laplace-MP2 was implemented. That way, all results produced could
easily be checked against a known, working method in the same program, which
greatly facilitated debugging and testing.

45
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1 int ix , jx , ax , bx ;
2 for ( i x = 0 ; ix < num occ orb ; i x++) {
3 for ( jx = 0 ; jx < num occ orb ; jx++) {
4 for ( ax = num occ orb ; ax < num orb ; ax++) {
5 for ( bx = num occ orb ; bx < num orb ; bx++) {
6 MP2 twoints = c int−>ge t two in t ( ax , ix , bx , jx ) ;
7 MP2 twoints ∗= qc<cnum t> : : conjg ( MP2 twoints ) ;
8 MP2 twoints ex = cint−>ge t two in t ( ax , ix , bx , jx )
9 ∗ c int−>ge t two in t ( ix , bx , jx , ax ) ;

10 OrbEloc =
11 − OrbEnergy−>e c o n s t ( ix , 0)
12 − OrbEnergy−>e c o n s t ( jx , 0)
13 + OrbEnergy−>e c o n s t ( ax , 0)
14 + OrbEnergy−>e c o n s t (bx , 0 ) ;
15 MP2 E += ( ( cnum t ( 2 . 0 )∗MP2 twoints
16 − MP2 twoints ex )/ OrbEloc ) ;
17 }
18 }
19 }
20 }

Code 6.1: Simple evaluation of the MP2-contribution. In this case, all

two-electron integrals were already available.



6.2. IMPLEMENTATION OF LAPLACE-MP2 47

6.2 Implementation of Laplace-MP2

The implementation of Laplace-MP2 was much more time consuming since the al-
gorithm is more complicated.

6.2.1 The Laplace transform ansatz

The expression for the MP2 contribution was outlined in equation (5.30). However,
computing the two-electron integrals

(ia jb) =

〈
i(1)j(2)

1

r12
a(1)b(2)

〉
(6.1)

is associated with a costly transformation from molecular orbitals (MO) to atomic
orbitals (AO),

(ia jb) =
∑
νµχλ

(νµ χλ)C∗νiCµaC
∗
χjCλb (6.2)

which is the step that scales as N5, where N is the number of basis functions. The
Laplace transform ansatz circumvents this step and everything is done in the AO
basis. Writing this denominator as

x = εa + εb − εi − εj (6.3)

where i, j are occupied orbitals of the ground state and a, b virtual, the values can
be brought over to the AO basis by means of a Laplace transformation. Thus, we
get

1

x
=

∫ ∞
0

e−xtdt ≈
τ∑

α=0

wαe
−xtα (6.4)

where w are the integration weights and the values of t are some reasonable expo-
nents. This ansatz was first proposed by Almlöf in 1991 [25].

6.2.2 Implementing the Laplace-MP2 algorithm

The algorithm, as described by Häser [26], 1 is a sequential recipe where the critical
components can be implemented independently. The algorithm will be explained

1We chose the in-core, multiple pass variant.
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Input
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grid
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Last trans-
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Figure 6.1: The L-MP2 algorithm as implemented. Each box defines a natural

part or function of the code.
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step by step as it is implemented in the London code. This is largely done in
accordance with Häser’s description, but some modifications are involved. A simple
sketch of the algorithm is seen in figure 6.1. It must be stressed that this is a pilot
implementation, and it is not fully optimized.

6.2.3 Setting up the calculation and fitting

First, a regular HF calculation is run to get the HF-orbitals. With these in store,
the integral weights are computed. This is determined by a least squares condition;

∫ xmin

xmax

f(x)

[
1

x
−

τ∑
α=1

wαe
−xtα

]2
dx = min! (6.5)

This can be solved as a simple matrix problem

AW = C (6.6)

where W represents the needed weights. Due to numerical instability, we took an
extra step of matrix decomposition. Since A by necessity must be hermitian, it is
also square and positive-definite. Assuming all capital letters are matrices, and that
a represents the eigenvalues of A, the following substitution is possible:

A = UaU† (6.7)

UaU†W = C (6.8)

⇒W = Ua−1U†C (6.9)

For such operations, we use routines from the Lapack library. These routines are
highly optimized and extremely fast. Since a is diagonal, it is easy to invert. However,
if certain elements of a are very small, they will not contribute much to the overall
result, but it may cause numerical instability. Therefore, we filter those offending
values away and set their contribution to zero.

Defining the grid over which the integration should take place is non-trivial.
Initially, it was assumed that a bad fitting procedure would merely provide slower
convergence or results of inferior quality at increased cost, but otherwise not be that
critical. It was certainly not expected to provide results that were uniformly wrong
and where the number of integration points held little or no promise of convergence.
Evidently, we must also have good exponents t to insert in equation (6.4). A rea-
sonable assumption for a two point fitting is one where the approximation replicates
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both end points and the first derivative in these points. Since(
de−xt

dt

)
e−xt

=
x−2

x−1
(6.10)

t =
1

x
(6.11)

we can simply insert the endpoints as

tA =
1

xmax

(6.12)

tB =
1

xmin

(6.13)

where max and min refers to highest and lowest value of x. It turned out that a linear
grid between these two points was not sufficient. Therefore, the following solution
was implemented: the grid between tA and tB was stretched out by a factor bN

3
c. If

seven grid points (N = 7) were requested, then there would be on point at these two
locations, three in between, and two extra beyond t2:

a = tA (6.14)

l = bN
3
c (6.15)

tB = abN−1−l (6.16)

tB+k = abN−1−lbk∀k ≤ l (6.17)

so that the fitting got more points in the region where the curve is steepest. The
spacing between the points is regular, but the extra points have a value based on a
logarithmic approach.

Once the integration points are computed, the energy contribution for each point
can be determined independently of the others. This is by far the most time con-
suming part of a calculation and there is no need for intercommunication – each
contribution is summed up to a total estimate of the energy of the system. As such,
this loop can be parallellized without any further ado. Of course, there is little need
to go beyond 8-10 weight points, so even though the algorithm could be efficiently
implemented in a distributed fashion at this point, there is little practical purpose
in doing it. However, for local calculations on a multicore machine, this is excellent
news. Parallellization is not implemented as of today.
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The energy weighted density matrices

The D and D-matrices describe the occupied-occupied and virtual-virtual blocks of
the exponential of Fock matrix. This setup allows for a frozen core, but that is not
part of our implementation. These matrices are needed for the transformations, and
must be computed first.

D
(α)

νµ =
∑
i

Cνie
tα(εi−εF )C∗µi (6.18)

D(α)
νµ =

∑
a

Cνae
tα(εF−εa)C∗µa (6.19)

This is an example where things becomes different when dealing with orbitals that are
inherently complex: with the London factor and a magnetic field, the MO coefficients
C are complex. In more regular implementations, they are real 2 and so there was
no complex conjugation of the equivalent of these equations in the original recipe.
These matrices will be sparse if the electrons are well localized, a property that can
be exploited in the name of celerity [27].

Computing the energy contributions

The next step is to calculate the energy contribution at the point tα. First, the
D-matrices are decontracted in order to fit a primitive basis set. This is not strictly
necessary, but it makes it much easier to split the basis set later in the procedure.
This is important if the system requires a lot of memory, and the splitting itself is
not very time consuming.3 The splitting of the basis set simply entails looping over
the number of primitive centers. In practice a primitive center corresponds to a shell
with a specific principal quantum number n. If n > 1, then the azimuthal quantum
number l assumes different values. It is sufficient to calculate the integrals for to the
highest angular momentum as all the others are provided as intermediary steps in
the calculation thereof. This only holds true if all the orbitals belonging to the n
in question are kept together. If the basis is split on a center, then these redundant
integral evaluations must be performed anyway. We add centers together until they
form a block of predefined size, and loop over all pairs of blocks in order to get all

2They need not be real, but they can be chosen to be real. Real numbers are easier to deal with,
so this is done whenever it is possible.

3A proper splitting can in theory allow calculations of arbitrary size to be performed, the only
restriction being total available CPU time.
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the contributions. The energy contribution of one integration point tα is

eα =
∑
νµχλ

(
νµ χλ

)
[2 (νµ χλ)− (νλ χµ)] (6.20)

where (for each α)

|ν〉 =
∑
µ

|µ〉Dµν (6.21)

and |ν〉 is a basis function in the AO-basis. These relate to the MO basis so that

|p〉 =
∑
ν

|ν〉Cνp (6.22)

as usual. At this point, the expression for the energy contribution is set, and the
next logical step is to do the transformations so that

(
νµ χλ

)
can be computed.

However, the total transformation process is split into two different modules. One
performs the first three quarter of the total transformation, producing

(
νµ χλ′

)
while the second deals with the last step. This splitting is simply a convenient way
of facilitating the future implementation of integral screening.

The two-electron integral tensor with the entire basis and the second of the two
chosen blocks (M2) of basis functions is computed. We exploit equation (3.25) so that
M2 can be put in the second place. This leads to numerical efficiency: the TensorND

objects are row-major, while the Matrix objects are column-major. This corresponds
to the typical setup in C-type languages and FORTRAN, respectively. In essence,
it is a question of whether the left or right index should be the innermost index in
a loop.4 Since implementing the necessary equation often entails both Matrix and
TensorND objects, such tricks are necessary for reducing CPU-time. For contraction,
we need both the entire transposed D-matrix and the part of it which corresponds
to the block M2 of the basis set.

Finally, it is time for the transformations. The original integral tensor is con-
tracted with the decontracted D matrix and the relevant slice of D. The result is

transposed, contracted with the entire D
T

, and transposed back again. The next
step of the algorithm is a bit counter intuitive. An expression that superficially
resembles equation (6.20) is calculated, but the last contraction is withhold

Rλ,λ′ (M,M ′) =
∑
ν∈M

∑
µ,χ

(
νµ χλ′

)
[2 (νµ χλ)− (νλ χµ)] (6.23)
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1 TensorND<4, cnum t> h rsPQ ;
2 i f ( ! h rsPQ . c o n t r a c t l a s t i d x p a i r ( g rspq , DMoverT , ∗D underbar prim ) ) {
3 qout << ”lmp2 : : th r e equa r t e r t r an s f o rm : f a i l e d to cont rac t h rsPQ” << endl ;
4 return fa l se ;
5 }
6 g rspq . r e s e t ( ) ; // don ’ t need g r spq anymore , f r e e memory !
7 TensorND<4, cnum t> h sPQr hreord ;
8 i f ( ! h sPQr hreord . t ranspose ( h rsPQ , 1) ) {
9 qout << ”lmp2 : : th r e equa r t e r t r an s f o rm : t ranspose h sPQr hreord f a i l e d ”

10 << endl ;
11 return fa l se ;
12 }
13 h rsPQ . r e s e t ( ) ; // don ’ t need i t anymore , f r e e memory !
14 TensorND<4, cnum t> g sPQR reord ;
15 i f ( ! g sPQR reord . c o n t r a c t l a s t i d x ( h sPQr hreord , D overbarT ) ) {
16 qout << ”lmp2 : : th r e equa r t e r t r an s f o rm : f a i l e d to cont rac t g sPQR reord”
17 << endl ;
18 return fa l se ;
19 }−
20 h sPQr hreord . r e s e t ( ) ; // don ’ t need i t anymore , f r e e memory !
21 i f ( ! g PQRs . t ranspose ( g sPQR reord , 1 ) ) {
22 qout << ”lmp2 : : th r e equa r t e r t r an s f o rm : f a i l e d to t ranspose h sPQr hreord ”
23 << endl ;
24 return fa l se ;
25 }
26 return true ;

Code 6.2: These are the final steps of the 3
4-routine, and where the actual

transformations of the integral tensor takes place.
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1 for ( int S = 0 ; S < N prim ; S++) {
2 for ( int s = 0 ; s < m2 end−m2 start ; s++) {
3 cnum t tmp = cnum t ( 0 . 0 ) ;
4 for ( int P = 0 ; P < m1 end−m1 start ; P++) {
5 for ( int Q = 0 ; Q < N prim ; Q++) {
6 for ( int R = 0 ; R < N prim ; R++) {
7 tmp+=(g QPSR . e (Q,P, S ,R)−0.5∗g QRSP . e (Q,R, S ,P) )∗ g PQRs . e (P,Q,R, s ) ;
8 }
9 }

10 }
11 R. e (S , s ) = tmp ;
12 }
13 }

Code 6.3: Adding up the contributions from the chosen pair of basis set

blocks, preparing for the last contraction to be performed.

which is carried out in the function make_R. Code 6.3 shows the relevant excerpt.

EMP2 =
τ∑

α=1

wαeα (6.24)

The next step is to perform the last transformation (code 6.4) and sum up the

1 for ( int S = 0 ; S < N prim ; S++){
2 for ( int s = 0 ; s < m2 end − m2 start ; s++) {
3 e M1 M2 += R. e (S , s ) ∗ D underbar prim . e ( m2 start+s , S ) ;
4 }
5 }
6 energy += r e a l t ( 2 . 0 ) ∗ qc<cnum t> : : r e a l p a r t ( e M1 M2 ) ;

Code 6.4: Last contraction. S runs over the total number of primitive

basis functions while s runs over the block M2.

contributions from each pair of basis set blocks. The energy contribution from one
weight point is now complete, and when all these contributions are added together,
the evaluation of the MP2 energy is complete.

4This is due to memory allocation: array iterations are can be performed much faster if the
memory addresses of the values are logically ordered.
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6.2.4 Integral screening

There are many integral evaluations that need to be performed. If one can determine
a priori that a certain costly calculation by necessity must be smaller than some
acceptance criteria – for example some typical error inherent to the method employed
– then it is not necessary to waste time computing the integral in question. The AO-
basis is ideal for integral screening since the chosen orbitals corresponds to a specific
atom, and thus a position in the molecule – quite unlike the MO-basis, where each
orbital is a linear combination of all the AO-orbitals of the system. If an orbital has
a localized position in space, we can safely exclude interactions with orbitals that
are sufficiently far away. AO-MP2 with integral screening can be used to perform
calculations on large bio-molecules with thousands of atoms with a 6-31G** basis
set [28].

6.2.5 A small test case

In order to determine the quality of a Laplace-MP2 calculation based on the number
of weights, then it makes most sense to compare the Laplace-MP2 energy with the
MP2 energy, and see if the values converge with the number of grid points. Table
6.1 holds all the diagonal elements of the magnetizability and two first hypermagne-
tizability tensors for the water molecule. Figure 6.2 visualizes some aspects of this
table. As is clear, the method converges rapidly with the number of weight points.
Three points is not enough, but four or five provides good results for all but the high-
est order properties. If hypermagnetizabilities are needed, it may be reasonable to
increase to as many as eight, but there is no purpose in going higher: improvements
are negligible, and for 15 and 20 points, the quality is often reduced when compared
with classical MP2. Häser observed that between 5 and 8 weight points were usually
enough[26], which also fits experience with the London implementation.

The reason why 15-20 weights in some cases reduce the quality of the results is
probably because fitting a sum of exponentials is known to be a numerically deli-
cateproblem that easily leads to a near-singular system of equations.

6.2.6 Scaling

A naive example of linear scaling is counting the electrons in a chemical system –
as the molecule increases, so does the computation time. This is a trivial case, and
in this thesis, we will define linear scaling as a relationship of the form t = an + b
between computation time t and number of atoms n. The constant a represents how
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(a) Hypermagnetizabilities in all directions.

(b) Magnetic properties in z-direction.

Figure 6.2: Magnetic properties of water as a function of weight points.

For each number of weights w, the found values are divided with the

corresponding values found at the MP2 level. The y-axis is therefore

dimensionless. The basis set is cc-pVDZ.
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Table 6.1: The magnetic properties of H2O calculated with classical MP2 and

Laplace MP2, the latter with different number of weight points. Basis set

is cc-pVDZ. The letter u refers to a Cartesian coordinate x, y, z.

Method, u Weights χuu Xuuuu X6u

L-MP2, x

3.0 -2.882 77.911 -117728.432
4.0 -2.731 3.172 2143.418
5.0 -2.727 3.502 1855.036
6.0 -2.727 3.502 1855.032
7.0 -2.728 4.463 219.926
8.0 -2.728 4.637 -0.218
9.0 -2.728 4.637 -0.059
10.0 -2.728 4.614 40.543
15.0 -2.728 4.601 59.738
20.0 -2.728 4.592 89.376

MP2, x N/A -2.728 4.595 69.554

L-MP2, y

3.0 -2.841 5.343 -101.319
4.0 -2.802 2.677 798.322
5.0 -2.800 2.694 790.554
6.0 -2.800 2.694 790.552
7.0 -2.800 2.714 782.013
8.0 -2.800 2.720 780.285
9.0 -2.800 2.720 780.338
10.0 -2.800 2.719 780.866
15.0 -2.800 2.718 781.386
20.0 -2.800 2.714 799.919

MP2, y N/A -2.800 2.718 780.900

L-MP2, z

3.0 -2.793 9.139 1289.554
4.0 -2.811 9.353 1855.827
5.0 -2.811 9.478 1784.745
6.0 -2.811 9.478 1784.738
7.0 -2.811 9.505 1780.755
8.0 -2.811 9.501 1778.264
9.0 -2.811 9.501 1778.342
10.0 -2.811 9.499 1779.272
15.0 -2.811 9.501 1769.643
20.0 -2.811 9.499 1786.654

MP2, z N/A -2.811 9.500 1778.841
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computationally costly each basis function is and and b indicates computation time
that is spent regardless of basis functions like initialization and file handling.

The beauty of linear scaling is that even if it is infeasible to perform calculations
on a certain system today due to lack of computational power, we can be certain that
it will be doable in a few years – the famous Moore’s law states that the performance
of a computer at a given price doubles every nine months, and this relationship has
been remarkably stable over time. This implies that every seven and a half years,
we can treat systems a thousand times larger. If a linearly scaling method can
deal with small amino acids today, then the computers of tomorrow could perform
equally accurate calculations on large bio molecules within a few years. Most methods
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Figure 6.3: Plot of calculation time t as a function of system size N for

various scaling regimes.

however, are not linearly scaling – double the number of atoms and the computation
time typically increases as Nn where n is a number depending on the method in
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question. Indeed, for Hartee-Fock, n = 4. The consequence of this is that as system
size increases, computation time may soon exceed the age of the universe by several
orders of magnitude, and then it is simply impossible to get results. This can be
seen easily from figure 6.3. It is interesting to note that even if the linear scaling
regime goes as 100N , it will still be the best choice for a system five times larger
than whatever is defined as 1 – at some point, the lines will cross. It also follows
that even if linear scaling is unavailable, it will still be worth the effort to reduce the
order of the problem; 100N4 is a lot better than N5 if the system in question is big
enough.

There is a difference between formal scaling and typical scaling. Formal scaling
is the mathematically worst case scenario, but this often correspond to very pecu-
liar molecular systems which are rarely or never encountered in practice. As such,
the implemented variant of the Laplace-MP2 method could hypothetically scale as
N2 [26] in most cases or even linearly, provided integrals are properly screened [29].



60 CHAPTER 6. IMPLEMENTATION



Chapter 7

Results

The quality of the Laplace-MP2 method was tested and compared with regular MP2
theory for various systems. For smaller molecules, FCI was used for reasons of
comparison, and for determining the reliability and quality of MP2 in magnetic
fields. Most properties were calculated primarily with regular MP2 as it is faster
than Laplace-MP2 in its present form. Several properties of small molecules were
probed.

7.1 Molecules in magnetic fields

The behavior of some molecules in different magnetic fields was explored. He2 re-
ceived by far most attention, but also He3 and BH were probed.

7.1.1 Helium clusters

In all situations, regardless of magnetic field, MP2 theory predicted a lower energy
than HF theory, and slightly higher than FCI when that comparison was made. Also
interesting to note is the bond distance and bond lengths as a function of magnetic
field. This is seen in Table 7.1. When B = 0, only dispersion forces are relevant, and
HF theory does not detect any optimum distance, as expected. The MP2 and FCI
methods do produce a very slight lowering of energy as the atoms are quite far apart.
The MP2 calculation overestimates the optimum distance and underestimates the
energy of this attraction, as it should: MP2 does not account for all of the correlation
energy. The optimal bond length as predicted by MP2 becomes equivalent with FCI-
geometry for magnetic fields slightly stronger than 1.5 a.u., and the HF-geometry
improves steadily. This is clearly seen in figure 7.1. The HF calculations only account

61
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Table 7.1: Bond length and bond energy of He2 (oriented in the x-direction)
as a function of magnetic field (varied in the z-direction) at the HF, MP2

and full CI theory levels. The basis set is aug-cc-pVTZ. Bz is magnetic

field (a.u.), R is optimal distance between nuclei (bohr) and Eb is the

bond energy (a.u.).

Bz Eb
HF RHF Eb

MP2 RMP2 Eb
CI RCI

0.00 0.0 8.48 1.77 · 10−5 5.84 2.66 · 10−5 5.68
0.10 5.70 · 10−11 8.42 2.06 · 10−5 5.72 3.08 · 10−5 5.56
0.20 7.49 · 10−8 7.58 3.24 · 10−5 5.38 4.73 · 10−5 5.24
0.30 5.50 · 10−7 6.24 5.71 · 10−5 4.96 8.06 · 10−5 4.84
0.40 3.59 · 10−6 5.42 1.03 · 10−4 4.54 1.40 · 10−4 4.46
0.50 1.35 · 10−5 4.80 1.77 · 10−4 4.20 2.32 · 10−4 4.12
0.70 6.15 · 10−5 4.06 4.15 · 10−4 3.62 5.22 · 10−4 3.56
0.80 9.90 · 10−5 3.78 5.85 · 10−4 3.38 7.26 · 10−4 3.34
0.90 1.51 · 10−4 3.52 7.98 · 10−4 3.18 9.76 · 10−4 3.14
1.00 2.23 · 10−4 3.30 1.06 · 10−3 3.02 1.28 · 10−3 2.98
1.25 4.99 · 10−4 2.86 1.90 · 10−3 2.66 2.23 · 10−3 2.64
1.50 9.50 · 10−4 2.54 3.02 · 10−3 2.40 3.47 · 10−3 2.38
1.75 1.72 · 10−3 2.30 4.54 · 10−3 2.18 5.09 · 10−3 2.18
2.00 2.94 · 10−3 2.12 6.53 · 10−3 2.02 7.19 · 10−3 2.02
2.25 4.61 · 10−3 1.96 8.93 · 10−3 1.88 9.69 · 10−3 1.88
2.50 6.67 · 10−3 1.84 1.17 · 10−2 1.78 1.25 · 10−2 1.78
2.75 9.13 · 10−3 1.76 1.48 · 10−2 1.70 1.57 · 10−2 1.70
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Figure 7.1: Dissociation curves for He2 calculated at three different

theory levels (HF, MP2 and FCI) and at three different magnetic fields

orthogonal to the molecular axis. Energy are in atomic units, distances

in bohr. The basis set is aug-cc-pVTZ.



64 CHAPTER 7. RESULTS

Figure 7.2: Dissociation curve calculated at the MP2 level for He2 at Bz = 2
a.u. The basis set is aug-cc-pVTZ.

Table 7.2: Bond length and bond energy of He2 (oriented in the x-direction)
as a function of magnetic field (varied in the z-direction) at the HF,

MP2 and FCI theory levels. The basis set is aug-cc-pVTZ. Bz is the the

magnetic field (a.u.), R is the optimal distance between nuclei (bohr) and

Et is the total energy of the molecule.

Bz RHF Et
HF RMP2 Et

MP2 RCI Et
CI

0.0 8.48 -5.72244546 5.84 -5.79009657 5.68 -5.8017051
1.0 3.30 -5.37597054 3.02 -5.44336931 2.98 -5.45438541
2.0 2.12 -4.57770328 2.02 -4.64699537 2.02 -4.65775641
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for about half of the bond energy. In other words, the HF method may produce a
decent estimate of the molecular structure in strong magnetic fields, but it will
underestimate the bond strength. MP2 on the other hand, predicts a bond strength
that rapidly converges with FCI. All methods are in better agreement for both bond
length and bond energy as the field increases. It must be stressed that these bonds
are very weak and that Figure 7.2 shows a selected cut of the dissociation curve at
Bz = 2 a.u.

Dependence on orientation

Figure 7.3: Optimal bond length for He2 as a function of the angle of

the magnetic field. The angle θ was varied from 0 to π
2 relative to the

molecular axis, and the total size of the field varied from 10−4 a.u. to

2 a.u. The x-axis is the orientation of the field, the y-axis is the

optimum bond length in bohr. The basis set is aug-cc-pVTZ.
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Figure 7.3 shows how the optimal geometry of He2 changes as a function of mag-
netic field strength and orientation to the molecular axis. For weak fields, the orien-
tation is irrelevant, which is hardly surprising. As the field increases, the molecule is
invariably compressed, but much less so if the field is parallel to the molecular axis.

Helium trimers

The trimer of helium was also explored. Previous research indicates that clusters
of helium atoms in magnetic fields will assume a planar grid of nearly equilateral
triangles orthogonal to the field [30]. To simplify calculations, all He3 molecules
were given the shape of such a regular polygon in the xy-plane, and the field varied
in the z-direction. The total energy of the system increased with the magnetic field,
but the size of the triangle decreased consistently. These two trends are seen in
figures 7.4a and 7.4b respectively. The distance between the lines in the latter figure
is nearly uniform for the entire interval, indicating that HF produces systematic
errors. One interesting thing to note is that HF and MP2 calculations corresponds
better as the magnetic fields increases: for zero field, MP2 predicts a much shorter
optimal distance than HF. This is not surprising by itself, since the only attraction
at zero field is dispersion, and HF theory does not pick this up at all1 in contrast to
MP2 theory. The “bump” of the graph is of course extremely small. As the magnetic
field gets stronger, the difference in predicted geometry disappears, and both HF and
MP2 produces the exact same optimal paramagnetic bond length at 10a.u. These
calculations would cause the SCF-routine in London to fail to converge for larger
distances.

7.1.2 An example of paramagnetic stabilization

The boron monohydride molecule (BH) was briefly scanned using a pre-optimized
bond length of 2.3342 and perpendicular fields of increasing size. As is seen in Figure
7.5a, both the HF and MP2 calculations predict a significant minimum energy for
magnetic fields in the vicinity of 0.23 a.u. This is an example of paramagnetic
stabilization, and agrees well with previous estimates [31]. The MP2 contribution
to the energy is interesting, however: it is always negative, thus lowering the total
energy as expected. But, the difference between the HF and MP2 estimates is largest
at the two extremes. In effect, the MP2 contribution modifies the HF estimate of the
influence of the field, making the lowest energy be found for a slightly stronger field at
the MP2 level. The MP2 contribution is least negative at Bz = 0.1355 a.u. It should

1The fact that it seemingly does could be caused by basis set superposition.
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(a) Total energy as a function of magnetic field strength.

(b) Lattice length with lowest energy as a function of magnetic field

strength.

Figure 7.4: The shape of the equilateral triangles and their energy depends

on the strength of the magnetic field.
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(a) MP2 and HF total energy.

(b) MP2 contribution to energy

Figure 7.5: BH in a perpendicular field. The basis set is aug-cc-pVTZ.
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be noted that the difference between the largest and smallest MP2 contribution in
this data set is only 1.2 · 10−3a.u. The MP2 corrections in this case has little effect
on relative energies.

7.2 Magnetizabilities and hypermagnetizabilities

Magnetizabilities and hypermagnetizabilities were calculated for some small molecules.
Table 7.3 shows results for H2O and He2. We see immediately that the method is
consistent; regardless of the orientation of the magnetic field, E0 does not change.
Also, in the case of the dimer (which is aligned at the x-axis, all values are identical
for a field lying in y- or z-direction. All the diagonal elements of χ are negative for
both molecules. For H2O this corresponds with observations: water is diamagnetic.
He2 has obviously not been probed experimentally. Table 7.4 holds data for H2O and
HF as calculated with decontracted basis sets at HF and MP2 levels. The molecular
geometry of water was identical to those used in the article by Tellgren et al. [32] and
is seen in section A.1.2. The geometry of the HF molecule was manually optimized,
and is therefore slightly different. For the water molecule, all values at the HF level
are identical to those in the article. For hydrogen fluorine, where the bond length is
slightly different, all values except the hypermagnetizabilities perpendicular to the
molecular axis are identical as well.

Table 7.4 also shows how important correlation energy is for higher order trends:
for both HF and H2O, E0 differs by about 0.5%. The values of χ differs with 3% and
the discrepancies between the HF and MP2 estimates of the hypermagnetizabilities
are sometimes as large as 70%.

Table 7.3: The magnetic properties in three directions of H2O and He2,

calculated with MP2. The basis set is aug-cc-pVTZ. (u ∈ [x, y, z])

Molecule Orientation E0 χuu Xuuuu X6u

H2O
x -76.381991 -3.041863 25.881052 781.946641
y -76.381991 -2.996323 18.736066 -1248.301506
z -76.381991 -3.041540 16.684437 751.719729

He2

x -5.790096 -0.794617 1.935470 -52.175107
y -5.790096 -0.794045 1.976424 -172.552017
z -5.790096 -0.794045 1.976424 -172.552017
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Table 7.4: Magnetic properties of water and hydrogen fluoride at the HF and

MP2 level. The HF-values agrees with previous publications [32]. Basis

set is decontracted aug-cc-pVTZ. The hydrogen fluoride molecule is aligned

in the z-direction and the bond length is 1.739 bohr.

Molecule Method E0 χxx χyy χzz Xxxxx Xyyyy Xzzzz

H2O
Hartree-Fock -76.062 -2.953 -2.899 -2.942 22.424 14.949 12.873
MP2 -76.382 -3.042 -2.996 -3.042 18.736 25.881 16.684

HF
Hartree-Fock -100.062 -2.228 -2.228 -2.117 8.022 8.022 5.814
MP2 -100.398 -2.303 -2.303 -2.192 9.870 9.871 7.678

7.2.1 Magnetic properties of He2

Since the magnetic properties are defined by a Taylor expansion around B = 0 and
the properties at equilibrium are most relevant, He2 was geometrically optimized
with MP2 and FCI with the aug-cc-pVTZ basis set. The energetically optimum
distance was found to be 5.68 bohr at the FCI level, a geometry used for all following
explorations. The magnetic field was systematically varied along the Cartesian axis
with ten points in the interval 0.00 a.u. to 0.09 a.u. Figure 7.6 shows how the MP2
correlation energy and the MP2 total energy behave as a function the magnetic field.
The magnetic field is held to be 0 in the x-axis. Figure 7.6b is not very surprising:
as the magnetic field increases, so does the total energy. However, figure 7.6a shows
how the correlation energy varies with the magnetic field. For one thing, we get the
same profile that can be excellently approximated by a second order polynomial. The
HF energy already behaves this way (and is by far dominant). So, the correlation
energy serves to slightly increase the effects we see; namely that the total energy of
the system rises with the magnetic field.

7.2.2 Magnetic properties of water

The magnetizabilities and hypermagnetizabilities of water were also calculated. In
these cases, the molecular geometry seen in section A.1.1 was used. As Figure 7.7a
shows, the energy of water increase with the magnetic field, and the term is negative,
serving to place the total energy lower than the HF energy. Still, this difference is
small.
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(a) MP2 contribution (a.u.)

(b) MP2 total energy.

Figure 7.6: The energy and MP2 contribution as a function of magnetic

field for He2. The molecule is parallel to the x-axis, and B-field in

x-direction is 0.
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(a) MP2 correlation energy.

(b) MP2 total energy.

Figure 7.7: E (B) for H2O, MP2 contribution and MP2 total energy of water.

The B-field in x- and y-direction is 0. Basis set is aug-cc-pVTZ.
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7.2.3 London orbitals and basis set convergence

Figure 7.8: MP2 total energy of He2 as a function of gauge origin. The

molecule is oriented along the x-axis, with each atom at 2.84 bohr from

origo. Therefore, the electronic center is at the Cartesian center.

The magnetic field was set to 1.0 a.u. along the y-axis, and the

gauge-orgigin was varied in the z-direction. The basis set is aug-cc-pVQZ

The importance of the gauge origin invariance has been briefly explored. First,
the effects of the gauge-origin was explored, as seen in Figure 7.8. The LGTOs
produce the same result regardless of the position of the gauge origin, and provides a
lower estimate of energy in all cases. GTOs does not include the gauge origin, and the
results gets gradually worse as it is moved from the electronic center of the molecule.
The error is symmetric, which matches the symmetric nature of the molecule. Table
7.5 shows magnetic properties calculated with different basis sets. As expected, E0
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Table 7.5: Magnetic properties of He2 calculated with different basis sets,

with and without the London-factor.

Orbital type basis set E0 χyy Xyyyy

GTO

6-31G -5.73272023 -8.84518347 0.51378280
6-311G -5.74559493 -8.85802672 0.94526240

cc-pVDZ -5.76198308 -4.23452672 18.20072371
cc-pVTZ -5.78888261 -2.40420539 24.59658956

aug-cc-pVTZ -5.79009576 -0.86640656 -8.83870848
aug-cc-pVQZ -5.79498075 -0.81182282 -3.00327551

LGTO

6-31G -5.73272023 -0.77969875 0.52411332
6-311G -5.74559493 -0.79256658 0.97308743

cc-pVDZ -5.76198308 -0.77819428 0.51563609
cc-pVTZ -5.78888261 -0.79000889 1.24848925

aug-cc-pVTZ -5.79009576 -0.79404334 1.97094529
aug-cc-pVQZ -5.79498075 -0.79236025 1.94556773

is not affected by choice of orbital type, and the calculated energy decreases as the
size of the basis increases. This is typical for all methods, even the non-variational
variants. Calculating magnetizabilities with GTOs requires large basis sets in order
to approximate similar calculations with LGTOs, but the convergence is evident –
the differences between LGTOs and GTOs decrease as bigger basis sets are used.
The difference between the lowest and highest estimate is about one hundred times
larger for the GTO based calculations. For the hypermagnetizabilities, GTO based
calculations do not appear to converge at all. With the London factor included,
hypermagnetizabilities calculated with the smallest and largest basis sets have the
same sign, and vary by less than a factor 20. In other words, a small basis and
LGTOs provide a reliable estimate of what larger basis sets will reproduce. GTOs
do not.

7.2.4 Order of polynomial fitting

Table 7.6 shows how the calculated values converge as the order of the polynomial
used for fitting the data points increase. As long as there are enough data points to
use a higher order polynomial, this is an advantage: one can get higher order values,
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Table 7.6: Magnetic properties and their dependency on the order of the

polynomial used to fit the data.

Molecule Order E0 χuu Xuuuu X6u X8u

H2O

2 -76.381983 -2.982008
4 -76.381991 -2.996141 18.125155
6 -76.381991 -2.996323 18.736066 -1248.301506
8 -76.381991 -2.996328 18.768817 -1410.359583 460827

He2

2 -5.79497995 -0.79086871
4 -5.79498075 -0.79234445 1.89255574
6 -5.79498075 -0.79236025 1.94556773 -108.32170260
8 -5.79498075 -0.79236205 1.95690449 -164.41841189 159517

and the quality of lower order values seems to increase. Convergence is very fast, so
it is probably enough to use a polynomial one degree higher than the highest order
term needed. This table contains more decimals than the quality of the methods
used (MP2 and polynomial fitting) can justify, so these values should not be taken
to be exact for this number of digits. The extra digits are simply included since
the trends would not be visible otherwise – the polynomial fitting is a numerically
stable approach, and the values of lower order properties are affected less and less as
additional terms are included.

7.2.5 An example of MP2 failing

For all quantum mechanical methods, it is important to know what the method
can do, what it cannot do, how consistent it is and what systems it cannot reliably
describe. The main purpose of introducing MP2, as per the discussion in section
1.2 is to enable calculation of electron correlation for larger systems. Therefore, it is
important to know how the MP2 contribution compares with the FCI contribution.
Table 7.7 shows a comparison. The optimum bond length at zero field is 5.68 bohr,
while at a perpendicular field of 1a.u., it is about 2.98 bohr. MP2 consistently
reproduces between 80% and 87% of the correlation energy, except when the atoms
are very close. It should be noted that when the atoms in a He2 molecule are very
close, the entire specimen will electronically start to resemble a a beryllium atom.
In this case (B = 0), we go from two atoms in the 1s2 configuration to one atom
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Table 7.7: The correlation energy of He2 at the MP2 and CI theory level

and the quotient between them at different magnetic fields and at two

different geometries. Basis set is aug-cc-pVTZ.

Bond length B(z) EMP2 ECI
EMP2

ECI
× 100%

0.50

0.0 -0.06294907 -0.11190677 56.25
0.1 -0.06936125 -0.11895458 58.30
0.2 -0.06868727 -0.08444630 81.33
0.3 -0.07048593 -0.08535466 82.58
0.4 -0.07193852 -0.08633541 83.32
0.5 -0.07304683 -0.08691569 84.04
0.6 -0.07393125 -0.08727561 84.71
0.7 -0.07467418 -0.08755163 85.29
0.8 -0.07531498 -0.08779496 85.78
0.9 -0.07586539 -0.08800778 86.20
1.0 -0.07632837 -0.08818009 86.55

5.68

0.0 -0.06767372 -0.07928305 85.35
0.1 -0.06765035 -0.07924431 85.36
0.2 -0.06758480 -0.07913506 85.40
0.3 -0.06748527 -0.07896806 85.45
0.4 -0.06736330 -0.07876122 85.52
0.5 -0.06722925 -0.07853143 85.60
0.6 -0.06709100 -0.07829198 85.69
0.7 -0.06695442 -0.07805257 85.78
0.8 -0.06682327 -0.07781965 85.86
0.9 -0.06669963 -0.07759729 85.95
1.0 -0.06658401 -0.07738715 86.04
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with 1s22s2. However, the 2p orbital is very close in energy, and so we get nearly
degenerate states. This indicates the presence of static correlation, and so MP2 is no
longer a adequate for describing the system. When the field is increased, the orbital
Zeeman term is sufficiently large to force the 2p−1 orbital to have lower energy than
2s, and the degeneracy disappears.
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Chapter 8

Conclusion

8.1 About the implementation

A regular MO-based MP2 algorithm and an AO-based, Laplace transform variant
was successfully introduced to the London program. Both methods can successfully
reproduce known results, and can reliably be used to perform quantum chemical
calculations with or without finite magnetic fields. Even more, the combination of
MP2 theory and LGTOs can be used to explore properties that at present are not
accessible by any other means.

8.1.1 MP2 in the CAS-type methods

The MP2-solver implemented in the CAS-CI and CAS-SCF modules has been com-
pleted. It is fairly well optimized as it is, and further optimization is unnecessary –
CAS-type calculations are invariably much more time consuming than MP2, so the
time spent on determining the MP2 contribution is negligible in comparison. This
is likewise true for the free-standing module of the same implementation.

8.1.2 Laplace MP2

The L-MP2 method is to date a pilot implementation, and several improvements
can be made. L-MP2 only accepts a RHF starting point, but UHF and GHF can
(and will) be implemented in the future. Integral screening is missing, and the L-
MP2 method is only competitive with this in place. Also, there are many possible
optimizations that can be implemented with the potential to drastically reduce ex-
ecution speed. Most of this work is about replacing the brute-force multiply nested
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loops in the transformation routines with the built-in tensor functionality and Lapack
routines. This kind of work is time consuming and error prone, and so a working
prototype of the method was deemed more relevant than a fully optimized solver, at
least initially. However, the ambition is to be able to use London for more involved
calculations, and for that to happen, such improvements are required. Especially
since the program is not optimized primarily for speed, it is vitally important to save
some computational resources wherever possible.

This, in turn, may open up for calculations at the MP2-level on molecular sys-
tems hitherto impossible, especially in strong magnetic fields. Molecules in strong
magnetic fields is a largely unexplored area of quantum chemistry, and gauge invari-
ant implementations of MP2 have not been done until now. Laplace-MP2 has been
implemented elsewhere by others [33, 27, 34], but it is not a commonly encountered
method.

Another feature that is missing is parallellization. The memory consumption of
a calculation can be tailored because of the basis set splitting, and so parallellization
can be exploited very efficiently. Also, since a calculation for each weight point can
be run independently of the algorithm could possibly be performed on a distributed
level.

8.2 Discussion of the results

MP2 theory consistently produces energy estimates that are lower than those pre-
dicted at the HF level, and slightly higher than those computed with FCI theory.
The MP2 method does not exhibit any aberrant behavior in weak or strong mag-
netic fields. It must be emphasized that none of the systems probed in this thesis are
known to cause trouble at the MP2 theory level. A dissociation of H2 for example,
would certainly cause an MP2 calculation to diverge. Helium clusters, on the other
hand, constitutes “nice” systems, as dispersion are important and MP2 theory is
known to handle dispersion very well.

When helium nuclei are very close, MP2 theory is significantly outperformed by
FCI calculations. This is expected, since MP2 theory cannot handle static correla-
tion.

One of the most interesting results was that the MP2 contribution changes very
little with the magnetic field. This implies that while HF theory overestimates the
energy, it is fairly systematic and consistent and the errors produced are largely
independent of the magnetic field.
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8.2.1 Geometrical properties

A magnetic field usually raises the total energy of a system. If strong enough, it can
cause otherwise anti-bonding specimens to occur. MP2 can be used to accurately
predict these bond lengths, especially as the strength of the field increases. The
MP2 method outperforms the HF method at all tested magnetic fields for geometry
optimizations. HF theory produces bonds that are too weak and too long, even at
strong magnetic fields. The MP2 method on the other hand, underestimates the bond
strength (thus overestimating bond length) for weak fields, but much less so than
the HF counterpart. For strong fields, it is in excellent agreement with calculations
performed at the FCI level. In the absence of magnetic fields, MP2 is known to
produce good estimates for most molecular geometries. It appears to do equally well
in the more general case.

8.2.2 Magnetic properties

Magnetizabilities and hypermagnetizabilities have not been calculated at the MP2
level until now. When compared with values at the Hartree-Fock level, MP2 in
general apparently provides estimates of the magnetizabilities that are quite similar,
whereas the values for hypermagnetizabilities can be quite different. This implies
that correlation is not the most important contribution to these magnetic properties,
but that it should not be neglected, especially for higher order properties as per the
observations in section 7.2.

8.2.3 Future systems to be explored

The most immediately desirable purpose of the Laplace-MP2 method is to use it to
perform calculations on as large molecules as possible. We know very little about
how moderate to large molecules behave in strong magnetic fields, since the only
available ab initio method that can handle such systems is HF, which does not
include correlation.
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Appendix A

Input data

A.1 Molecular geometries

A.1.1 Water

This geometry was used for most calculations performed on the water molecule.

O 0.00 -0.188 0.00

H 1.42 0.881 0.00

H -1.42 0.881 0.00

A.1.2 Water II

This geometry was used in Tellgren et. al.’s article of 2008 [32].

O 0.0 0.0 0.124144424

H 0.0 1.43153 -0.985265576

H 0.0 -1.43153 -0.985265576
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