
Audition: a DevOps-oriented
quality control and testing
framework for cloud
environments
Gaute Borgenholt
master thesis spring 2013

Audition: a DevOps-oriented quality control
and testing framework for cloud environments

Gaute Borgenholt

23rd May 2013

ii

Abstract

The primary goal of this thesis is to discover a new method to quality
ensure, test and select the ideal virtual machine based on performance
quality and price for arbitrarily large setups, modeled into a concept that is
simple to understand and convey. This thesis demonstrates how theater
production processes can be used to reduce conceptual complexity in
automated release management for web environments. The prototype was
demonstrated on two cases, one wordpress blog comprising of a database
and server and one of a multi-tiered web-based application with five
separated layers of operation. A fully operational extendiable framework,
with a focus on simplicity is presented as a solution.

iii

iv

Contents

1 Introduction 1
1.1 Problem statement . 4

2 Background 7
2.1 Web . 7

2.1.1 An Introduction to the web 7
2.1.2 Web architecture for large sites 8

2.2 Direction of usage . 9
2.3 Saving time with Automation 9
2.4 Learning from different fields 11
2.5 DevOps . 12
2.6 Software testing . 12

2.6.1 Performance testing 12
2.6.2 System testing . 13

2.7 Related work . 13
2.7.1 Automated software testing 13
2.7.2 Capacity planing and resource management 13
2.7.3 The usage of analogies 14

3 Approach 15
3.1 Learning about the art of acting 16
3.2 Design phase . 16

3.2.1 Modeling . 16
3.3 Implementation phase . 18

3.3.1 Environment . 18
3.3.2 Deployment automation 20
3.3.3 Understanding puppet 20
3.3.4 Deployment of the environment 21
3.3.5 Brief introduction to MLN 21
3.3.6 Creating or reusing benchmark tools 23

3.4 Appraising properties . 24
3.4.1 A reduction in complexity 24
3.4.2 A working framework 25
3.4.3 Service optimization 25

3.5 Expected results . 25

v

4 Result 1 - Modeling 27
4.1 Introduction into theater . 28

4.1.1 The art of theater . 28
4.1.2 Improvisation within theater 30

4.2 Plan before acting . 31
4.2.1 Creating a manuscript 32

4.3 A casting call . 34
4.4 Audition . 36

4.4.1 Scene preparation . 37
4.4.2 Put to the test . 39
4.4.3 The uniqueness of improvisation 41

4.5 The grand premiere . 44
4.6 Summarization - audition architecture 47
4.7 Models to implement . 48

5 Result 2 - Prototype 51
5.1 System platform . 51

5.1.1 A controlling host . 51
5.1.2 Amazon storage . 52

5.2 The layout of the manuscript 53
5.2.1 Scenes . 54

5.3 How Audition works . 58
5.3.1 The supporting host 58
5.3.2 Candidate names and host names 59

5.4 The MLN template configuration 59
5.5 A complete Audition . 61

5.5.1 Host AMI’s and hardware types 61
5.5.2 Failing to learn the role 63
5.5.3 Creation of plugin . 63
5.5.4 The controller . 64
5.5.5 Benchmark and thresholds 64
5.5.6 The complete manuscript 65
5.5.7 The complete manuscript 66
5.5.8 Execution . 66
5.5.9 Audition output . 66
5.5.10 Improvisation output 67
5.5.11 Scripts created . 68

5.6 A more complex example . 68
5.6.1 Auditioning for the role as loadbalancer 69
5.6.2 Auditioning for the role as webserver 69
5.6.3 Auditioning for the role as middleware 69
5.6.4 Auditioning for the role as database 70
5.6.5 Auditioning for the role as storage 70
5.6.6 The complete manuscript 70
5.6.7 After the Audition . 71

5.7 Analysis of execution . 72
5.7.1 She simplicity in Audition 72
5.7.2 Cost a more complex example Audition 72

vi

6 Discussion 75
6.1 System administration based on theater 75

6.1.1 A system administrator approaching theater 75
6.1.2 The purpose of using theater 76
6.1.3 Strength of theater . 76
6.1.4 Weakness of theater 77
6.1.5 Inheritance challenges 78
6.1.6 Expectations for theater 78

6.2 Defining "simpler" . 78
6.3 Adopting theater in system administration 79
6.4 Usage of plugins . 79
6.5 Performance expectation . 79
6.6 Variations in results . 80
6.7 The cost of Audition . 80
6.8 The thesis experience . 80
6.9 The fields affected by this work 81

6.9.1 Broaden the understanding of system administration 81
6.9.2 Continuous software releases 82

6.10 Future work . 82

7 Conclusion 83

A The different plugin scripts 91

B Article written based on thesis work 105

vii

viii

List of Figures

2.1 Single web server, could have an internal database. 8
2.2 How a web environment looks now. 10

3.1 A standardized graphical design formalization. 17

4.1 Time line of events during the production of a play 27
4.2 Image selection based on predefined requirements 36
4.3 Image selection based on predefined requirements 37
4.4 Image selection based on predefined requirements 38
4.5 The dialogue performed during an audition 40
4.6 The improv dialogue performed during an audition 42
4.7 Role fulfillment with an actor 44
4.8 Role fulfillment, were multiple actors can be selected 45
4.9 The assembling of a cast . 46
4.10 Image selection based on predefined requirements 47
4.11 The overall view of the selected processes within an audition 49

5.1 The system platform setup . 52
5.2 The host controlling the Audition 53
5.3 Creating a name scheme for the hosts auditioning 60
5.4 Graphical display of the wordpress example environment . 61
5.5 Graphical display of a complete Audition 65
5.6 The result for an improvisation 67

6.1 The process of inheritance between two different research areas 75

ix

x

List of Tables

4.1 Combining theater and System administration 33
4.2 Models to implement in the prototype 48

5.1 EC2 price list . 63
5.2 Different files created . 69

xi

xii

Acknowledgements

First and foremost, I would like to express my sincere appreciation to
my supervisor, Kyrre Begnum. Without his suggestions and criticism, in
combination with dedication and enthusiasm. This thesis would not have
reached it’s potential. His guidance helped form this project, both the cre-
ative vision but also made the work interesting and fun. I can not express
with words how much i appreciate the work you have put into this thesis.

Secondly I would like to thank Hanne-Marte Sørlie for the introduction
into theater. Without her knowledge in theater, I would not have been able
to obtain the knowledge needed for writing this thesis.

I would also like to extend my gratitude to my family, for the support
and understanding during this thesis. Helping me in what ever way they
could and doing so continuously during the whole thesis.

xiii

xiv

Chapter 1

Introduction

Today, software services are transitioning from local services to web based
services. This change enables software not to be bound by any platform
dependencies and the service can be used from tablets, phones and com-
puters anywhere. This transition is in line with the users new needs, to
have access everywhere, on any device, at all hours of the day.

This transition makes the services more complex to manage in addition
to be more time consuming for the system administrator. With the soft-
ware and information being centralized instead of locally on each device,
the complexity of a system increases. In addition to system complexity, the
environment expands and becoming more complex. With the services be-
coming centralized, the workload for the system administrators increases.
Adding more task to the system administrator without adding human re-
sources, which often are the limitation.

Challenges with web services in a cloud environment

The challenges with web services are the uptime requirements and con-
sistency of service performance. Users expect services to have a high con-
sistency in service quality [30]. Furthermore, the service needs to be avail-
able 24/7. By centralizing the software, any service interruptions affect all
users. Furthermore, any change to the software is extremely time consum-
ing, with planing, testing in multiple environments, test implementation,
then production implementation.

Users expect frequently releases of new features

Users expect new features released regularly and frequently, with no de-
gradation in service quality. This request for continuous delivery of new
features, have lead to the creation of DevOps. A development paradigm
with a focus on automation and continuous deliveries. With all the daily
system administrating tasks and all the steps in maintaining a service, the
system administrator in addition have to release new features with shorter

1

and shorter intervals to attract new users and keep the current. The expect-
ation of new features and service quality, increases the work load on the
system administrators. Humans are not able to work day and night, there-
for humans do not scale along with computer systems. Thus, release man-
agement have become one of the major pains but also a solution for system
administrators managing highly complex service architecture coupled with
extreme uptime requirements.

Scalability through automation

Automation is a common approach [10] used to easily deploy software up-
grades quickly. Anderson conclude that automation is commonly used in
the field of system administration [5] [6]. Automation is scalable and heav-
ily used in large computer environments. Through automation, one can po-
tentially save human resources as the number of servers increases, and may
help limit human errors in critical stages of system deployment. Scalability,
can be a wanted side effect of automation.

Automations approaches exist today in software engineering concepts
such as continuous delivery [40] and continuous integration [62]. However,
the actual technical implementation or a framework are not defined, leav-
ing the sysadmin to develop complex local tools based on only process de-
scription. Furthermore, the concepts only deal with automated component
testing and deployment but do not cover other vital concepts such as fault
recovery and service optimization.

This results in locally created tools which are complex, both from a tech-
nical view and human perspective. When combining a locally developed
testing tool with a complex management tool, the end product will under-
standably be complex to understand and maintain. In addition, since all
tools will be locally developed, it becomes hard to increase the common
body of knowledge and for a system administrators across organization to
share and compare concepts in order to improve our field. A high level and
holistic approach to release management could enable system administrat-
ors to better understand and develop local solutions with a more evolved
architectural design.

Cloud computing changed how we think about hardware

With the introduction of cloud computing, the playing field of system ad-
ministration changed. The tradition have been to own hardware, with the
introduction of cloud a new approach to system administration where re-
leased, rent hardware on an hourly basis. This opens up for not planning
systems for years ahead, instead letting the system evolve with the users
load on the environment. However, there is no established framework that

2

is embracing this opportunity.

For example, imagine a system administrator using Amazon EC2 as the
base for running the web environment. Amazon EC2 provides the option
to use a standard installation of any operating system or any AWS image
from the Amazon AWS store. An AWS image is an image of a operating
system, optimized for a service or a tool. In the Amazon AWS store there is
a huge amount of images, from basic Linux or Windows images to optim-
ized web servers.

When the system administrator is planning to upgrading of a web en-
vironment, what is the best AWS image to select? Will an AWS image op-
timized in the AWS store be the best selection and will the AWS image
provide the necessary services to enable the server to be implemented into
the environment. A system administrator does not have time to test all the
available images in the AWS store because of the huge number of images
available and the time the system administrator has available. There is also
the possibility that a basic image will provide a better overall performance
than AWS store images, for a lower cost? How can a system administrator
make the bast selection without adding complexity and more work for the
system administrator?

Searching for knowledge outside the field of computer science

By mimicking other fields of science, one has in the past been successful in
simplifying computer processes. Examples of this is the use of biological
methods to explain behavior in system administration. Cohen [27] intro-
duced the term virus into computing, Finstadsveen [37] [49] used animal
behavior to broaden the field of system administration thinking and Wat-
son used the human nervous system to explain autonomic systems [51].

Using known terms from other areas is not only to simplify the explan-
ation. System administration is a new field of research. To implement
known processes from a older more evolved fields can be beneficial and ex-
plore new areas within the field of system administration. Simplification,
could be a positive side effect of inheriting from more established fields of
research.

Processes from the theater could help to simplify and explain the pro-
cesses of automated upgrades and testing, as previous mentioned in the
example. Theatrical processes have similarities with the different stages of
testing and implementation in system administration, using these known
terms can simplify the methods and help with understanding the technical
solutions. To develop and maintain systems is expensive, therefore com-
bining known tools, with a new interface, will shift the software updating
and bug fixing to the software publisher, and make the system more sus-
tainable for future use.

3

The importance of this approach is to address the problem of unneces-
sary complexity in upgrading large web based applications. Release man-
agement has become more important with time, based on the demand for
frequent updates. Solutions existing today focus on single objects or single
problems, like user friendliness, simplicity, automations, testing or deploy-
ment. All the different tools add to the complexity of the system and cre-
ates more layers to understand for the system administrators. The need for
a less complex solution is apparent. Using methods and expressions from
the acting industry in system administration, is a new and interesting way
of thinking and could help solve this growing problem.

1.1 Problem statement

Q1 - How can automated release management simplify the administration
of large scale web based applications through mimicking processes from
the acting industry.

Acting industry covers the entire field of acting, from theater to movies.
The definition of acting differs between fields within the acting industry.
Spolin, define acting as: "Avoiding (resisting) focus by hiding behind a
character; subjective manipulation of the art form; using character or emo-
tion to avoid contact with the theater reality; mirroring oneself; a wall
between players." [82] Spolin, where one of the the major contributors to
modern improvisation.

A more classical definition of acting is: Acting is the visible and prop-
erly "scenic" part of the performance, through which the spectator receives
the whole of the event with the for of it enunciation. [74]

In this thesis acting industry will be limited to the theatrical part of the
industry. Examples of the theatrical industry can be the process of hiring
actors or actresses using the casting call process or an audition to see how
the actor perform. The limitation will furthermore not include people or
the actors aspect of the profession, the focus is on the processes within the
industry. The same processes in acting industry have been used for gen-
erations and by mimicking them, one hope to inherit the simplicity and
experience into system administration.

Automated release management is a processes combining of different
elements. Automated means to convert to an automatic operation, to make
the process operating without the need for intervention. Release manage-
ment is the process to managing software releases effectively, and is a func-
tion which are scalable and used in large system administration environ-

4

ments .

The initial setup is the information needed before the upgrade process
start, in order for the upgrade process to be successfully completed. The
system is limited to a working concept, security, reliability and perform-
ance will not be the focus of this thesis.

Large scale system consists of multiple devices for different services.
Examples of this can be a layered network configuration, with multiple
webservers, databases, load balancers, caching servers and storage servers.
All the different elements creates a more complicated system architecture.
The infrastructure have to be large enough to benefit from automation of
testing and implementation processes. The limitation for this project will
be an environment consisting of a few servers, this will be enough to draw
a conclusion based on the results.

Web based applications is defined by Conallen as: "A web system (web
server, network, HTTP, browser) where user input (navigation and data in-
put) affects the state of the business [28]". The W3 organization defines it as:
"A Web service is a software application identified by a URI, whose inter-
faces and binding are capable of being defined, described and discovered
by XML artifacts and supports direct interactions with other software ap-
plications using XML based messages via internet-based protocols [89]"

Within web applications there are different technologies and program-
ming languages, the limitation will be to focus on one technology or one
basic web solution to prove if the concept is functional and can benefit from
the different processes inherited from the acting industry.

Mimicking is to reuse concepts and behavior in hope of inheriting the
properties of quality ensuring and optimization which are present in their
approach. The limitation will be the human aspect within theater, people
are more complex then computers. A human person can perform certain
actions, which a computer can not. Therefore the mimicking limitation will
be the computer and to what extent it can mimic processes created for a
human.

5

6

Chapter 2

Background

On the surface this paper attempts to combine two completely different
professions or areas of knowledge, the background chapter will further ex-
plain the reasons behind this concept. In the field of system administration,
the focus will be on automation of release management in addition to qual-
ity assurance. Further, mimicking processes from the acting industry in the
hope to inherit best practices from an older and more evolved profession.

2.1 Web

The World wide web or internet is today used by people of all ages, from
children to seniors. In the past to get on the internet, one had to use the
computer in addition to a dial-up connection. Today, users are always
online, using a phone, tablet, laptop or computer. With this explosion in
usage, the quality insurance and consistency in quality are becoming ex-
tremely important.

2.1.1 An Introduction to the web

World wide web were started in the late 60´s as an experimental network
called arpanet, and was intended to enable faster communication using less
reliable network components [31]. The initial connection were between re-
search laboratories and schools [34]. The reason behind the network was
to share what was at that time, expensive resources: processing time and
storage, between the different institutions. After a couple of years, new fea-
tures were designed and implemented, and within 3 years e-mail was the
resource using most of the networks resources [44]. This was the first shift
in usage and already then the users had power to change the direction of
usage based on need.

With the growth in e-mail usage, ARPANET grew in size and in 1989,
Berners-Lee from CERN came up with a proposal. This proposal developed
into what today is commonly known as the world wide web or internet

7

Internet

Webserver

Client

Figure 2.1: Single web server, could have an internal database.

[18]. Internet today has become a tremendous source of information, how-
ever, its usage has expanded to areas in all fields. Cline wrote in 2001 about
people searching for health information online [26], Fox on online banking
[41] to online gaming by Tyvand [87].

The web has become a hybrid, between communication and entertain-
ment [67]. The web is no longer a service available for a few system ad-
ministrators or researchers, but a ecosystem of services used all around
the world. In addition users have different experience and knowledge in
the field of computer science. The basic idea from the ARPANET has not
changed in 4 decades. The foundation of the internet is still to enable faster
communication over unreliable network components.

2.1.2 Web architecture for large sites

In web architecture there are differences in components needed, between
small and large service architectures. When running a small site, a web
server combined with a single database server can be adequate. In the past
this was enough to handle the majority of the users. However, with the
growth in users, the different components has more complexity and each
service have become more specified.

Figure 2.1 displays how a web environment was configured in the be-
ginning period of the internet.

8

Today, a web architecture can become extremely complex. The overall
goal is the same as before. However, a task is split into multiple tasks or
services to enhance performance. A large web architecture today consists
of multiple complex components, as demonstrated by figure 2.2. The multi
layer web architecture enhances the performance and enables higher num-
bers of users at the cost of complexity.

Figure 2.2 demonstrates the different layers in todays web environment
configuration. Services have been split into layers to enable for higher
performance.

2.2 Direction of usage

The usage of the web has been changing since the beginning of ARPANET
2.1.1, and is still continuous changing. The trends today moving towards
cloud computing [8] and mobile devices [54], including portable com-
puters, tablets and phones. This change in information availability is a
result of the information being available from the internet and not limited
to a local device. This has enabled information being available everywhere
at any time. The only limitation is that the device used needs an active con-
nection to the internet.

This shift in usage also changes the job of a system administrator. The
old model where the user updates most of the software himself locally is
not valid anymore. With the program or information being centralize, the
sysadmin have to do all the updates for the system. The problem with this
is the explosion in mobile devices and online users. The effect of system
down time is critical, thus it is extremely important to limit or in theory
eliminate all down time.

2.3 Saving time with Automation

Automation is a tool used to save time, resources, and eliminate errors if
the same process have to be completed on multiple units. Automation is
not a term limited to system administration, different areas have found the
benefits of automation. Manufacturers early found out that if a process or
unit have to be manufactured exactly the same each time, an automated
industrial robot can be used [43] [19]. This automation revolutionized the
manufacturing industry, both cost and production time went down [19].
The automations in system administration is not a new topic, its has been a
topic for decades [22] [61]. During the years automation in system admin-
istration have moved from a hot topic, to become a best practice.

Automation can be used for all system solution and sizes. However
the larger the system is, higher rewards or advantages are received from

9

Service
layer

Middleware
layer

Database
layer

Client

Internet

Loadbalancer

Webservers

Middleware

Databases

Storage

Figure 2.2: How a web environment looks now.

10

automation, this is because of scalability. With automation the work con-
sumption is mainly at the first server or first system to be automated, after
this there is little work with adding new servers with the same service con-
figuration.

There is different tools or solutions that deals with automation in the
field of system administration [94] [45] [73].The different tools have differ-
ences [70], but they all deal with the topic of automation within system
administration. The problem with automations tools is that they provide
a framework, how one use it is up to each department or each system ad-
ministrator. This is why each automated solution is unique , and often
complicated or undocumented. Benefits with standardization is document-
ation, information about errors and easier to learn. Research has shown
that standardization do not destroy creativity [35].

2.4 Learning from different fields

System administration or computer science is a relatively new field of re-
search, and because of this has changed radically over the last decades.
With these changes, it is important not to be focused on one technology,
but the process itself. Technology changes direction after trends, but the
process overall is stable over time. An example of this could be if one write
about upgrading a specific web technology, apache, it would be outdated
fast. However if one talk about the general process in upgrading web ser-
vices it will be long lasting. With mimicking different fields of research
one hope to inherit best practices, which have evolved over a longer time
period then system administration.

Examples of borrowing terms from other fields is when Cohen [27]
first used the expression virus to describe a program or feature attacking
a system, in the field of system administration. With this Cohen managed
to simplify the explanation of a complicated computer term, using a well
known biometrical term, virus. Cohen proved that combining two differ-
ent fields of research can be done, and with success.

Finstadsveen used the field of ethology [37] in order to discover and
learn if the animal behavior can help with autonomically systems, within
system administration. Finstadsveen simulating a herd using virtual com-
puters, and how a herd behaved in its natural environment. He manages to
create a more sustainable system environment, and in the process inhered a
way to express and explain the complex environment easier to both system
administrator, but also people out side of the computer profession. Fin-
stadsveen used the field of ethology to help explain autonomic processes,
Watson used biometrics or the human nervesystem to explain automatic
systems [51], this was not to inherit but to simplify the explanation. Two
completely different fields of research have been used to explain autonomic

11

within system administration, and with this approach broadened the field
of computer science.

All the papers have in common that the overall process is similar in both
fields, and the terms used are well known. The authors describes the gen-
eral purpose or process, and is therefore sustainable over time and trends
within computers and system administration.

2.5 DevOps

DevOps is a software development method, designed to help organizations
to rapidly produce services. Devops helps to create collaboration between
development and system administration, with the collaboration help to cut
down on time between development and implementation. The popularity
of DevOps have grown with the recent change in technology, since users
expect new features released in a frequent paste.

DevOps is a relative new method, however, there are multiple book
about the usage and best practices [78] [2]. DevOps adopted the agile de-
velopment method [47], which is designed to encourage for fast response
to changes. Agile development is about breaking up tasks, so that each
task require little planing and by that require no long time planing. The
tasks are called increments, and the iteration or time frame for each tasks is
between one week up to a month. The goal of agile development is to have
a release after each iteration.

The success of DevOps is partly linked to a release and configuration
management. With an increase in releases the success depends on having a
good automated process for releases, and thus can manage the increase in
releases without wast increase in time used by system administrators.

2.6 Software testing

Software testing is not a new term in system administration, Turings art-
icle in 1950 [86] started the automation of system testing. In time the topic
became popular and grow over time [32] [33]. Software testing is a broad
term, it deals with both black [16] and white [72] box testing, simulation
testing [66] and implementation [85]. However, system testing is also di-
vided into smaller groups based on testing methods and what it tests for
[64].

2.6.1 Performance testing

In performance testing [88] the goal is to test the efficiency or performance
of an object, this object can be a whole system or a single program or pro-

12

cess. The objective of a test can be response time, throughput, workload
or general performance. The test can be set up in an order that the object
will not satisfy its requirements, or performance objectives [64]. However
the test can be set up to test that the object or system will have the needed
performance based on a performance test, in way the test will not be con-
figured to fail but to have the minimum performance configured and see if
the object handles the workload given within the given time frame.

2.6.2 System testing

Software testing is testing the functionality of an object or objects and that
the objects actions is according to the wanted result of the given action or
input. This is also quality assurance, and test all features and report on
errors discovered but wrong input-output result. The data used in the test
phase depends on the object used for testing, and the objects functionality.
The goal is to discover bugs or errors in the system, errors created by com-
bining multiple systems, software changes, system upgrades or installation
errors.

2.7 Related work

This thesis involves several different areas of computer science. The differ-
ent areas are highly relevant in the direction which system administration
are shifting towards. Because they are highly relevant it is much ongoing
and completed research done, within these areas. However, although there
have been research done in the different areas, there is little to non when
combining the areas together.

2.7.1 Automated software testing

Automated software testing is a well established field, discussed in sec-
tion 2.6. There are different approaches on how to test a system, and how
to measure the success or failure of that system. Research has been done
with the combination of cloud computing and testing, such as cloud9 [25]
and TaaSD [23]. Both tools using Amazon EC2 cloud solution for the imple-
mentation and testing.

Within more tradition used tools, both httperf [63] and ApacheBench [21]
can be fully automated and have been used with success. Both tools are at-
tended for web testing, however, the tool is not aware if the web server
tested is running in a cloud or on local hardware.

2.7.2 Capacity planing and resource management

Red hat have released a solution named Red Hat CloudForms [75], a solu-
tion for capacity planning and resource management for virtual infrastruc-

13

tures. CloudForms is an IaaS designed framework with a goal to lower
costs, and increase service levels, using new, virtual-aware techniques.
The solution can be used across multiple cloud technologies, including
Amazon.

There are similarities with CloudForms and the intended framework
created in this thesis. However, there are differences between the two solu-
tions. The design and framework is openly available for using and further
development. The tool used in the framework is opensource and is free to
use, therefor no cost of using the framework. CloudForms is not available
for free and is limited to certain types of hardware [76]. The framework cre-
ated in the thesis is fully adoptable for all platforms and hardware types,
therefore in not limited to certain standardized images.

The thesis framework uses testing to optimize the network based on
price, meaning getting the lowest price for the environment which meet
the minimum requirements. After selecting the environment, the frame-
work leaves the environment to it self and the management tool. There is
no monitoring or environment adjustments after the Audition.

CloudForms do not perform benchmark evaluation on the system
specification in the creation phase, it monitors the network and evolves
the environment live after usage. This reflects that the two solutions
are not direct competitors, since they have different main tasks. Instead
they can be used to complement each other. The thesis framework can
automatically test and design the wanted environment, to the lowest price,
before CloudForms take over, create and monitor the environment.

2.7.3 The usage of analogies

The usage of analogies were discusses in section 2.4, however it has
been used in other fields than ethology and biology. David Blank-
Edelman have used different fields to explain system administration tasks
or problems [edelmanurl]. Using topics like cooking at the keyboard,
where writing cook books are compared to configuration management.
Preparing and having all in place is a key element in both cooking and
system administration.

14

Chapter 3

Approach

Every system administrator has their own approach on how to determine
what hardware to use, if the upgrade will be successful and how the newly
upgraded software will handle a normal user load. In order to handle this
there is a need for a system or framework, that will automatically deal with
the problems. In order to draw parallels or inherit best processes from
the field of theater, one has to have enough understanding or informa-
tion about the area. To best facilitate a successful outcome from combining
theater with system administration, it is important to have a deep under-
standing of both.

The approach chapter will explain how the action taken will help with
answering the problem statement: How can automated release manage-
ment simplify the administration of large scale web based applications
through mimicking processes for the acting industry. Within the problem
statement there are three key properties: A reduction in complexity (K1),
the complexity is defined from a system administrator view. A working
framework(K2), based on processes or best practices from the acting in-
dustry. Find out which processes can be inherited with success from the
acting industry. Service optimization (K3), how optimized is the current
system when comparing cost versus performance.

The design will be a combination of theater and system administration
with a focus on the key properties, based on the design, a framework will
be created. A subset of the framework will be implemented, resulting
prototype will help answering K2.

15

3.1 Learning about the art of acting

The processes around acting, hiring or production processes when setting
up a play is documented and known in the field of theatric. The processes
are based on best practices over centuries. To gather knowledge in the field
of theatric one could read books, published papers or interview profession-
als within the field. Reading books or papers could lead to misunderstand-
ings or misinterpretations, since the acting field is extremely creative and
fluctuating. In order to get background information and an overall view of
the acting industry, the information will be collected through interviews.
Based on the information retried, books or papers will support the findings
or supplement with more information.

3.2 Design phase

To better understand the complex system architecture of automating
release management, a structured method for displaying the design is
needed. A model can provide an overview of all functionality and
in addition break down the different modules which help with the
simplification in understanding the framework.

3.2.1 Modeling

To design and build the new framework, a modeling approach is a valid
option based on its features and strength. The modeling approach will en-
able an extensive overview of all processes, modules and tasks within the
design. Understanding the limitations of a modeling approach is import-
ant, more advanced decision making or choice scenarios can be modeled
with success, however it could become to extensive and thereby becoming
less understanding if modeled graphically.

The decision on what modeling language to use, is an important factor
in both designing the architecture but furthermore the explanation and un-
derstanding of the design. A modeling language could, if used properly,
help with simplifying the explanation of the software design, and help with
answering K3.

A graphical model has the strength of visually displaying a context.
Be that a context between modules or context between processes. This
method enables people to examine and understand the design, without
being dependent on a programming background, the capability to read
code or understanding non visual explanations. Within graphical mod-
eling, there are different languages. Unified modeling language (UML) is
one example [39]. Unified modeling language incorporates notation and
has inhered some best practices with using formalization [42]. However
UML has been reported to have inconsistencies, incompleteness and being

16

ambiguous [77] [36].

Actor Host

Manuscript
Configuration

file

Theater System
Administration

Figure 3.1: A standardized graphical design formalization.

Figure 3.1 displays the design formalization and the differences in
design between system administration and theater.

Pseudocode

An example of a non graphical model is pseudocode. Pseudo-code is a
high-level description of the process or principle cite . Pseudocode has
inherited the conventions of programming languages. Therefore, will
pseudo-code look like programming code. The difference is that code is
meant for interpretation by a computer, pseudocode is meant to be read
and interpreted by humans. Pseudo-code has been proven successful in
explaining new approaches [38], but the limitations is that a person with
the understanding of coding will read and easier understand pseudocode
then a person with limited code experience.

Pseudocode can complement diagrams or graphical model languages,
help with designing modules and can easily be converted into source code
[56]. The following example is a pseudocode where the score in a bench-
mark test has to be grater than 30 to be valid and if not stop the process.

Psudocode - Display a benchmark validation example

IF computer benchmark score greater then 30

17

THEN
Accept

Report success
END

ELSE
Stop process and report "low benchmark score"

The pseudocode in the example helps explaining a process. To explain
the same with words will be more complicated and could leave room for
different interpretations. Furthermore, a diagram would work but use
more space and with more advanced processes it could be unnecessary
complicated. Models will be used to display context or how different mod-
ules is combined and interact with each other, it will be used as a higher
view of the system, a higher view then pseudo-code.

3.3 Implementation phase

The designed framework will be the blueprint for the implementation.
The implementation will however not be a fully featured framework with
all the designed features implemented. Due to the time limitation of
this project the basic modules will be implemented in order to create a
operational prototype, the prototype will be used for answering K2.

3.3.1 Environment

To create a solution and answer the problem statement one has the option to
do a simulation or an implementation of the design in a real environment.
With an implementation in a real environment, the system is vulnerable for
external and internal noise. Two similar tests could have minor disruptions
in the result because of noise, and for this reason a perfect recreation of res-
ult may not be possible for some scenarios. The scenarios could be with a
benchmark of cpu using time pr compressed file, the result in two exper-
iments could have a very small time difference because of internal noise.
To minimize the risk of disruptions in result, the system needs to limit the
possibility for noise occurring, internally and externally.

With a real-life implementation a noise free environment is almost im-
possible, if not impossible. It is still possible to test the framework in a
noise free environment, but there will be a need for simulation. A simula-
tion of the system will be without noise both internally and externally. This
utopian system is a perfect environment, but could be considered to perfect
or unnatural.

In order to answer both P1 and P2 an implementation in a real life
environment will be beneficial, the noise is part of a system administrators

18

life. A system functional in utopia might not work as well under normal
environments, and normal environment will provide the best results and
answer both P1 and P3.

Local hardware or cloud

Where or on what, should the environment be tested on. To run the system
on local hardware for testing reasons could be costly, if the hardware is not
already available and need to be purchased. It is also time consuming to
install new hardware and it is not flexible when it comes to testing with
different hardware configurations. The flexibility problem can be solved
with local virtualization or setting up a local cloud service on the available
hardware, this will enable for creating a testing environment with multiple
computer options and can be expanded if more hardware added.

The down side that is a local cloud will create more work, and poten-
tially take time away from creating a framework to deal with problems
regarding the setup and maintenance of the local cloud. With virtualiza-
tion also the bandwidth between different components and the usage of
component have to be considered, if the hosts uses more resources then
available it will result in the system having to wait for resources. This wait-
ing will have a degrading effect on the performance for each hosts running
in the environment, therefore an increase in virtual hardware specifications
for a host might not lead to a increase in performance because the system is
already overloaded and therefore the hosts fight for the resources available.

A public cloud will provide the flexibility and at a low cost when test-
ing the framework. The problem with public clouds is the unstable per-
formance and the variety in performance even between virtual computers
with the same hardware specifications. The performance problem is based
on the same reasons as for a local cloud. The hosts fight for the resources
and when multiple host peeks in performance there might not be enough
available resources to handle the spike in performance. A public cloud will
enable flexible environments, when it comes to hardware specifications but
also number computers in an environment. The configuration and setup of
an environment is completed after seconds and there is no time consuming
maintenance of the cloud service.

Both localized cloud and public cloud is a hot topic, it is where the shift
in technology are moving and have been moving for a while. Testing the
design on a environment used today but also an environment for the fu-
ture, will help displaying the importance of this work.

The limitations of localized hardware both running the environment
on the physical hardware and in combination with a local cloud, the
disadvantages are to great. The advantages for testing the framework in
a public cloud are greater then the disadvantages, therefor the framework
will be implemented in a public cloud based environment.

19

Public cloud

With cloud services being a hot topic, there are a lot of distributers of cloud
services. The difference between the distributers are mainly price and SLA
or terms. A short list of a few of the the larger distributers are, Amazon[91]
[68], Rackspace [59] [1], Verizon [52] [29], IBM [93] [95] and Microsoft [57].
The are some differences in the computer specification for each distributer,
but the overall service provided are the same. The design could be tested
on the cloud provided from all distributers, however the design will only
be tested on one cloud technology.

The Amazon EC2 cloud is the most used cloud service today, Amazon
was one of the first to provide cloud services and has for years been the
largest or most used. The EC2 have the disadvantage that the virtual host
performance depends on where in the world it is located, in which data
center and on what rack. However the service are stable both in downtime
and in time used to create the virtual host.

3.3.2 Deployment automation

To automatically deploy software or configuration, a configurations man-
agement tool needs to be used. There are different configurations man-
agements tools available like, CFEngine, Chef and puppet. The mentioned
tools are used by companies of all sizes and have a strong community be-
hind the software published, there are more configurations managements
tools available. The differences between the tools are speed, resources used
under client configuration and code language.

For this project puppet was chosen, the reason for this was that puppet
have all the functions to successfully handle the automation part of the
framework. In addition puppet have a strong user community [84] and
being the most stable configuration management tool [48].

3.3.3 Understanding puppet

Puppet is a configuration management tool, and is used by the user to de-
scribe the wanted state for system resources.

Puppet is build up as a master and slave architecture, and the slaves
will inherit the configuration from the master. The connection between the
master and slave is restricted using certificates, the configuration inherited
is based on host name from slave. Puppet uses modules to distribute con-
figuration that can be used on different hosts and allows for dependencies
between configuration. Meaning that a service needs to be installed, before
the program is configured and the configuration need to be completed be-
fore the service is started.

20

The slave can be set up to contact the master one time or at scheduled
time periods. This allows for the host to get a one time configuration before
left alone, or continuously checked for state not wanted. If the situation is
an unwanted state, the host is returned to the wanted state.

An example of a puppet manifest can be seen below. The example show
how to install "apache" and then control that the service is running.

Puppet manifest

1 package { ’apache2’:
2 provider=>’apt’,
3 ensure=>’installed’
4 }
5

6 service { ’apache2’:
7 ensure=>’running’
8 }

3.3.4 Deployment of the environment

In order to deploy Amazon EC2 servers with a focus on limiting system ad-
ministrator interactions, a framework have to used. The option is to build
a new framework or reuse an excising framework, with creating a new
framework the life expectancy of the framework depending on the creators
time available and fulfilling a need in the marked. To keep a opensource
framework updated and with new releases the software is often depend-
ent on a community, not only for the coding but also for bug and security
reporting. Today there are tool out on the marked that handles the auto-
mation of deployment of computers, and for this project the benefits for
creating a new tool for this usage is not great enough.

The tool chosen for the deployment automation is MLN or Manage
Large Networks [12]. MLN have been used with success against Amazon
EC2 in the past [13]. In a teaching environment [15] MLN have proven to
reduce the management overhead when deploying virtual computers [14],
one of the reasons for this is MLN support a project feature. A project
is multiple or single virtual computers in one virtual environment, this
project is by default isolated from other projects created however they can
be joined together if wanted. This project feature can therefor with a start
command build multiple virtual computers at once, and by default creating
the virtual computers in a closed environment[14].

3.3.5 Brief introduction to MLN

MLN is a tool used in order to simply the deployment of environments
with multiple virtual computers. The tool uses different virtualization
technologies existing today and enables for the unique feature of arranging

21

virtual computer into projects. Each project can be controlled as one unit
or the different virtual computers under each project can be individually
controlled. MLN is built using perl, and the information used to create
the environment is located in MLN configuration files. MLN uses the
configuration file when creating the project, the project needs first to be
built before it can be started or stopped. Under the build stage, two scripts
are created for each host, start and stop scripts based on the information
given in the configuration file. The MLN configuration file is built on
keywords and blocks containing the configuration

MLN - Basic MLN configuration

1 global {
2 project mln
3 }
4

5 superclass basic {
6 }
7

8 host mln_example {
9 superclass basic

10 }

The example code here display a project called mln, the project has
one host mln_example. The host will have all the configuration stated
in the basic class, since the host is connected to the superclass. However
the host will also be configured with the configuration specified under
the host. The use of superclasses is beneficial when multiple hosts need
to have similar configuration, examples of this could be a program to be
installed, hostname needed to be set using a host variable. A superclass
can be connected to another superclass.

MLN - Usage of superclasses

1

2 superclass basic {
3 }
4

5 superclass basic_and_more {
6 superclass basic
7 }
8

9 host mln_example {
10 superclass basic_and_more
11 }
12

In this example the host mln_example will get all the configuration
defined in the superclass basic_and_more, but also from the superclass

22

basic. MLN has some built in features, the ability to run commands as
root after a host is started.

MLN - Amazon EC2 and MLN

1 host mln_example {
2 ec2 {
3 use_file {
4 apt-get update
5 }
6 }
7 }

The use_file feature will run the command apt-get update on the virtual
host after the host is successfully started. Use_file will run each line within
its block, the commands will handled by the system running on the virtual
host and not by the tool MLN. MLN supports the usage of plugins. The
plugins can be downloaded from the web page or be created. The usage of
plugins after being installed, is the same as for built in features.

MLN - Puppet and MLN

1 host mln_example {
2 puppet {
3 include {
4 mln_web
5 }
6 }
7 }

The example display the usage of the puppet plugin to MLN. This
will create a host file on the puppet master with the install information
regarding the mln_web puppet class. It will not connect the host to puppet,
this has to be done using the use_file feature. The mln_web information
has to be created in advance, as one normally would do in puppet before
connecting a host to the puppet configuration.

3.3.6 Creating or reusing benchmark tools

For the different servers in the environment, there have to different solu-
tions for benchmarking. A web server and a database server have different
services running and therefor the benchmarking configuration is different
between the two servers. An option is to create a new tool. Creating a new
tool enables for optimizing the tool specifically for the tasks needed for the
benchmarking. This could eliminate some complexity in the solution, how-
ever it could also lead to less viability for the framework. Creating a new
tool is time consuming and for the system to be stable over time patches
and security updates have to be released, without this the tool created will

23

be outdated.

Instead of creating a new tool from scratch an existing open source [58]
[92] tool can be forked[53] and used as a base for further development or
continue the development of the existing open source tool. This method
will enable for customization of the tool and the development is less time
consuming than creating a new. However time is spent on reading and
understanding the code, to little understanding of features could lead to a
unwanted result [55].

Using an existing tool eliminates development time. Instead the time
is used to understand the tool and the command line interface. Using
an existing tool eliminates future time spent on patches and security
updates and therefor the system has a greater chance of survival. However
the system have to be used as is, therefore no specification of the
software. However since performance testing of web environments have
been done for decades there are tools [63] [65] available that fulfills the
requirements of performance benchmarking of web environments. Based
on the elimination of development, patching, security updates and that
the performance benchmarking is not the unique factor of the framework,
reusing of existing software was the chosen method.

3.4 Appraising properties

To measure or determine the level of achievements of the key properties
there is a need to define the terms simpler, optimized or working. There are
several different definitions of each of the terms therefor the definitions can
vary between two persons, this thesis will have the following definitions of
the terms.

3.4.1 A reduction in complexity

A reduction in complexity means that the current solution (solution A) is
more complex the thesis (Solution B), but how is reduction in complexity
measured? Counting the steps or work from start using a solution until a
working solution is created or creating a solution where less experienced
system administrators can use the solution. Less technical skills are re-
quired. Solution A and B could be used and implemented by multiple
system administrators and the reduction of complexity question is solved
using a questionnaire based on the experience of the two solutions.

Complexity can be measured in the simplicity of the language the
system administrator has to know to use the framework, however this is
individual for each system administrator. How technical the framework
itself is, number of features available for solution A or B. For this thesis
a reduction in complexity will be based on the number of steps or words
written by a system administrator, in order to have a working system. This

24

approach was chosen based on that a questionnaire analysis would take to
long to complete, a step count will be fair for both solutions, furthermore
steps are often an indicator of the work spent on configuring a solution.

3.4.2 A working framework

A working framework in this scenario is a framework that, with the
use of automation completes a deployment or a deployment test of a
web environment. The deployment do not have to be completed if the
performance or the personal test is not fulfilled, in this scenario the
environment will not be built. The framework has to be able to run
benchmark tests on the chosen server, with a recommendation of system
usage based the results from the performed tests.

3.4.3 Service optimization

Service optimization is a broad term, and the definition variates between
system administrators. For this thesis service optimization will be the cost
of a server using Amazon EC2 and the servers performance level. The
cost of running a server in Amazon EC2 variates depending on computer
hardware specifications, backup routines, monitoring options and using a
server from AWS store. The mentioned selection are just a small sample
of the addition services provided for a small increase in costs, the cost of a
server is for each starting hour.

There are different methods for measuring or calculating service per-
formance, different metrics can be collected and based on this the perform-
ance level can be calculated. The metrics could be requests handled in a
second, response time, CPU or memory used and can be measured on both
the client-side and server-side [24]. A different option is defining a wanted
performance level, if a system perform equal or better then the wanted per-
formance level the server can be used in the environment. However if the
wanted performance level is not achieved then the server can not be used
in the environment.

With a combination of cost and performance level, all servers have the
wanted performance or better and therefor the selection will then fall on
the server with the lowest cost to use. Based on this the servers perform-
ance level is a boolean value, if the benchmark value is equal or higher then
wanted performance and the boolean value are set to success. However if
the benchmark value are less then wanted performance the boolean value
is set to failed.

3.5 Expected results

The objective of modeling is to identify processes within the theater, and
create a model based upon the processes. Models will describe a new ap-

25

proach of DevOps in cloud computing in combination with release man-
agement. The models designed is without following a known standard-
ization scheme, however, all models will follow the same design concept
throughout the modeling and process explanation. When processes is iden-
tified and designed they will be linked to system administration.

When linking the two fields together, new elements will be discovered
within the field of system administration. The results of modeling will be
the foundation of the implementation of a prototype. Modules and fea-
tures will be created, and if the element is new to system administration a
combination of pseudocode and models will explain the element, further-
more, explain the benefits gained in system administration using the new
element.

The prototype will be a fully operational prototype, however, with
some limitation in features. The prototype will be tested using a realistic
example scenario, in a real environment.

26

Chapter 4

Result 1 - Modeling

Theater have a long history of producing plays with a high quality in per-
formance. They have standardized processes to ensure the best possible
outcome. There are some milestones in the production of a play, creation of
manuscript, casting call with a following audition, rehearsals and premiere.
The different milestones, has different time length in time spent on the
milestone.

Designing a complete framework that covers the problem statement is a
challenge. A set of models will be created following the time line of theater
production:

Time

Creating a
manuscript

Casting call
and audition

Rehearsal Premier

Figure 4.1: Time line of events during the production of a play

The time line displayed in figure 4.1, show the different milestones dur-
ing the production of a play. The milestones are not equally spread, this is
to simulate the different periods have a different time frame.

The processes inherited down from theater are designed into models
usable for integration by system administrators. The models will be the
foundation for the creation of a prototype, the prototype in turn, will help
with answering K2.

27

4.1 Introduction into theater

The interview object is actor Hanne-Marte Sørlie, the interview will
provide information from an actors point of view. With this the goal is
to collect information about the processes regarding hiring, quality assur-
ance, names for processes and reasons behind the processes. Collecting this
information will help with answering K2, creating a working framework,
based on processes or best practices from the acting industry .

Hanne-Marte Sørlie‘s theater background is from Bårdar academy, and
a graduation from Rose Bruford College in England. She has traveled all
over Norway with different plays: A Traveling Doll’s House, based on texts
by Henrik Ibsen. Different plays at Soria under Moria, a theater in Norway.
The leading role in "Get set, ready, go", a play based on texts by Alf Prøysen.
After years of theater, she shifted to making movies and movie roles. Hav-
ing the lead role in "Rouquine" and played the role as Therese in the movie
"Dunderland".

4.1.1 The art of theater

Theater is an art form with a long background and emphasis on quality.
The western form of theater has its roots from Greece, dating back 2500
years [20]. Theater has always been a tool telling a story or delivering a
message to an audience. With a cast from one or up to hundreds, deliver-
ing a quality performance to tens, thousands, perhaps millions of people at
the same time using different medias.

Within the field of theater, there are different groups. The most com-
mon or most thought of when using the term theater, is traditional theater.
In traditional theater there is a pre-written script, with a set of roles. The
actors rehearse and the first official time they perform the whole act on a
stage with an audience, is called the premiere. After the premiere, the show
continuous to run until taken off the poster.

There are also free groups or alternative theater groups, one of the
groups are call fringe. Fringe is often more alternative then normal theater
and with this the methods or processes behind a play or performance are
a little different. The script might not be pre-written, instead the actors de-
velop the script under rehearsals using improvisation. However, they have
an overall idea or concept of where or in what direction the play will go, but
the steps or acts to get there are not decided. This process often is without
a director and consists of a small group of actors or single individuals per-
forming the play. Fringe plays are often located in smaller theaters or other
places with an audience. Some places these small theaters are even called
a fringe theater. Fringe theaters may also variate in the number of produc-
tions, from one night only to a series of performances.

28

Before the rehearsals can begin in normal a theater or the fringe group
can start building the performance, a cast has to be hired or assembled. In
traditional theater the hiring process begins by the producer or director de-
tecting what roles will be possessed by an actor. Based on the role selection
the producer or director determine specific requirements for the selected
roles. The requirements could be weight, hight, language, dialect of speech
or features that will fulfill the roles the director has imagined for the play.
After the roles have been decided with specifications a casting call is dis-
tributed, this is a message to different agencies or job sites with information
about available roles and the specification of each role.

Actors responding to the casting call will be able to perform one or mul-
tiple auditions in front of a casting panel. The casting panel may consist of
the director, producer, casting director and lead actors. The auditions con-
sists of a monologue or small part of a play given to the actors in advance.
This will test the actors ability to perform a rehearsed part and the casting
panel can get a feeling of the person and their personality along with acting
performance.

The audition could also have a improv part, improv is shorten from
improvisation. Improv is a skill highly recognized within the field of the-
atrics. The skill of improvisation is taught at acting schools as part of the
foundation of becoming an actor. Improv will test the actors capability to
be creative and act in the moment without a prepared script or monologue.

The audience may not be limited only to the casting panel, it could also
be held in front of the competing actors. An audience adds pressure and
is one more stressful factor within the audition process. An audition can
vary in length, depending on the performance from the actor or number of
actors at the audition versus time available for the casting panel. After an
audition the actor can get a re-call. A re-call is the casting panel inviting
the actor for a new audition. In this process a lack of feedback is a negative
response, only the actors wanted for a new audition get notification.

After the auditions, the selected actors are contacted about the accept-
ance and the possibility for occupying the roles. The two parties now have
to come to terms about the contract. The emphasis is on overall quality
and obtaining the best actor matching the role, not on economics or overall
profits.

The hiring process in a fringe performance will vary, it can be a solo
performance and for that reason no hiring process. It could also be an-
nounced information about the performance, and people can respond. The
differences in hiring processes between the traditional theater and fringe is
based on the financial differences between the different groups. In tradi-
tional theater the actors normally get a monthly payment, from the same
time as rehearsal begin. This payment do not end before the play is taken of
the poster. Within fringe performances the work is often not paid, or only

29

paid after the premier of a performance. This is because the fringe groups
are mostly independent, and without finances to support payment under
rehearsals.

The difference in economics often leads to persons connected to a fringe
group have no alternative motives then the love for the art, they believe
in the performance and have a inner drive to express the message, and
all the economic reasons are gone. Being a part of a fringe group one
gain experience, and one is able to do performances whenever one have
some extra time. A fringe performance can often be more idealistic or try
different things, be untraditional, because there often are a less financial
risk involved, and for that reason can afford to appeal to a smaller crowed
when performing.

4.1.2 Improvisation within theater

Improvisation or improv, is basically a performance where there is non or
little pre-planning. The field of improvisation is wast, and there are differ-
ent forms of improvisation and how to perform it. Improvisation within
theater is not a newly discovered area, it have been practiced for centur-
ies. The field of improvisation started in the streets, by street performers.
With time it evolved in to a genre within theater, with there own acting the-
ory [46]. The different stream of acting focused on using the improvisation
as a tool in training in order to become a better actor.

The improvisation used today in modern theater is a product the
book Improvisation for the theater [79] and Impro: Improvisation and
the theatre [50]. Spolin explored and developed improvisation by creating
exorcises and techniques, to evolve as an actor using improvisation
as a tool. Jonhnstone, invented a new field in theater, theatersports.
Theatersports is a theater competition between different teams or groups,
the groups compete in creating a dramatic effect [17]. Theatersports are
using improvisation and because of this no competition is similar.

Improvisation groups

Evolving over time, improvisations groups or theater companies have been
assembled. From small groups performing on a local stages or bars, to large
groups performing in large theaters all around the world. There are dif-
ferent ways of organizing the groups, the groups can be inspiring actors
working for the experience and therefor might not get paid, to professional
groups with an economical founding.

Ways to use improvisation

Improvisation is not only used for one thing or one way, there are many
ways improvisation have been partly of fully implemented within a pro-

30

cess. There are shows where the cast get information from the audience,
and create a performance based on the information received from the audi-
ence. They have fully implemented improvisation and only uses this
method. This processes have been in the later years adopted by the TV
industry, and proved to be usable in other fields then theater.

In some groups improvisation is a tool used to create the plot in the
play. The actors know where they want with the plot, but the way there is
created using improvisation. This process is a part of the rehearsal stage,
and this process is often used for smaller independent groups and one per-
sons groups.

A different way of using improvisation is in form of a tool, a tool in
order to get to know the actors and the personalities of the different actors.
During an audition the actor in questioning perform a pre-rehearsed part of
a play, to show the acting quality but also the full range of skill possessed.
The improvisation is used with the purpose of putting the actor under
pressure, and see how he or she perform. There might not be a correct
respond to the improvisation challenge, more a personality test, see the
uniqueness of the actor.

Learning improvisation

Improvisation is a craftsmanship hard to master, it is part on a persons per-
sonality, but can be taught. There are multiple book used for teaching and
learning improvisation [80] [81] [82]. There are also different educations
and courses to attend to learn about improvisation and how to be good at
improvisation [71] [11] [83].

Improvisation is an attribute taught at schools with a theater or drama
course [83] [71], the theater field sees improvisation as a important part of
learning the theater trade.

4.2 Plan before acting

To increase the chance of a positive outcome of any action a plan is first
created, based on this plan, actions are taken to achieve the wanted goal.
A plan is the foundation which actions are build on, and increasing the
possibility for a quality outcome. The plan can have many names. In the
car service industry they have a service check list, to ensure that each car
gets the same quality of service and to maintain the status of the car. The
checklist is there to limit the possibility for the mechanic to forget to do a
test. In cooking it is called a recipe, you follow the recipe to create a quality
product and to ensure that food taste the same each time it is made. The
recipe helps to maintain a stable level of quality and the same quality for
all chefs.

31

4.2.1 Creating a manuscript

In theater this plan is a manuscript. The manuscript contains information
critical for the creative performance and contains information critical to
maintain a stable quality in performance. Breaking down the information
contained within a manuscript, there are different forms of informations.
The words spoken by the actors or the dialog between actors, in the ma-
nuscript every word the actors speak within the play is written down. The
reasons behind this is to ensure the quality and reliability of performance,
that it is a consistency in story told from the premiere to the last show. It
also enables the possibility for understudies, in theater an understudy is
a performer learning a role in a play, but will only perform the role if the
actor possessing the role becomes unable to perform.

In order for actors to know what words to say, when and how, roles
need to be defined. A role is a fictional person within the play or perform-
ance, played by an actor. When the director defines a role, he has a creative
picture defined in mind about how the ensemble should look and what it
will contain. An ensemble is the full cast of the play. The directors vision
defines the features needed to fulfill the creative image, he could define a
role to be a young girl with the name of Victoria which speak with a British
accent. However, a role could be just a voice, almost like a presenter, heard
but never seen in person within the play.

With dialog and roles as elements, a scene can be build. A scene de-
scribes actions within a single setting, often built up using three stages,
a beginning, middle part and an ending [69]. The manuscript describes a
scenario or environments of the scene, the surrounding elements. Further-
more, the state of the roles is described, for example if the role is upset or
frightened in the scene. What roles are participating in the scene and if the
roles have a dialog or not, the order of dialog and where on stage and how
the dialog is also expressed.

A manuscript often have the following layout

Manuscript - The layout

Name of play

Describing the environment, stage, props in use.

Roles used in the scene.

First scene

First Actor:
The dialogue line
Actions, mood or other information needed for the scene

32

Table 4.1: Combining theater and System administration
Combination of theater and System administration

Theater System administration
Manuscript Script

Role Service
A Scene A Scenario

Second Actor:
The dialogue line
Actions, mood or other information needed for the scene

By looking at system administration, this plan can be recognized not
only in general but also the overall processes a manuscript contains. Start-
ing with the concept of a plan. In system administration the plan is a script,
this script is not a perl script or an executable script, but a collection of con-
figuration files in combination with program information. The script has
information about what services that needs to be installed, and using con-
figuration files the service will be installed and configured after the spe-
cifications. This plan, combined with a configuration management tool,
can deploy a system and maintain the system over time. The plan describe
the wanted services in detail, the services it self but also the configuration
of the services.

Combining theater and System administration

Name of play

Describing general configuration, build information.

Services needed in the scenario.

First scenario

First host:
The different communications for the host

Second host:
The different communications for the host

The manuscript design need to be kept plain and simple, to fulfill the
problem statement, that the framework should be simpler to use than
similar solutions existing today.

33

4.3 A casting call

The manuscript contains the creative vision of the director and play writer,
and all the elements needed is located within the manuscript except the act-
ors to fulfill the roles. The roles have some predefined character elements
within the manuscript, for example if the role figure is a young girl or a
young boy. This character element dictates that the actor playing the role is
a young looking boy or girl. In addition, the director may have additional
features added to the specification to fulfill the creative vision of the play.
This could add to the character feature, the young boy will speak English
with a foreign accent. When all the features of all the roles in the play are
decided, a casting call is distributed. The casting call includes all the feature
for each role, the reason for this is if an actor does not posses the features
wanted for a specific role and can not in the time available learn the specific
task, it will only waste the casting panels and actors time to try out for the
part.

The casting panel would get a lot of actors trying out for each role, and
this would lead to an overwhelming number of results and an extreme
amount of time used by the casting panel. The director knows the ele-
ments needed to fulfill the role based on the information in the plan and
the creative path, therefore if the key elements are included in the casting
call, the number of actors trying out is decreased to only those who posses
the wanted set of skills. The first step in eliminating the unwanted or less
suitable actors, and the first step in finding the actor that is best fit for the
role.

Time saved is not for just one role, but for multiple roles. Since most
plays have more then one role, the number of actors trying out for a role
almost multiplies for each role in the play. The time saved with some spe-
cification for each role is therefore tremendous.

In system administration, traditionally the platform and service selec-
ted have often been an unwritten law in each sysadmin department or per-
sonal preferences from the responsible sysadmin. The selection has often
been done based on experience and what service type is commonly used.
For example a combination of debian and apache for the configuration of
a web server, based on the sysadmin configuring the system is a linux user
and the system administrator normally uses debian, and apache is a web
service software which have been popular for many years.

In the past, when an environment was set up, it was planned to run for
months, if not for years. The system administrators had to look at the util-
ization of the current system, predict how much system load the users will
use until the system is taken down, meaning the level of expected user load
in the future. The hardware was ordered after the specification in user load
for the future, high performance is economically expensive. To be more
specific, to push technology forward and be at the cutting edge of both

34

software and hardware have a significant cost. Is it best to buy equipment
meant to last 1 year, to a minimum of cost or order a system to last for 4
years to a high cost?

The 3-5 years replacement mentality is still used today among system
administrator, however today there is a problem with this line of think-
ing. In a cloud environment like Amazon, one pay for the hardware in use.
Therefore, if one continues to plan for a system to live for years, and cal-
culate the expected usage at the end of the three years. This will lead to
the company paying for unused performance for 2 or maybe even 3 years.
Instead, if the system administrator calculates the expected user load for
next month, then selecting the hardware that best matches the expected
performance in a cloud environment, the company will minimize the un-
necessary expense of hardware not being fully used.

Cloud environment enables for the usage of preconfigured images or
images that have been optimized for running a service at the same time
offering the option of basic an images with the operation system of choice
installed. In Amazon cloud, the images are located in the AWS market-
place. The marketplace contains a huge database of images with different
service running, operating systems, optimizations or tool installed. This
enables a system administrator department to not select software based on
old practice but on what is the best solution when taking in to considera-
tion price versus performance.

With this huge amount of images available for use combined with fre-
quent environment updates, one can not assess all the images with the
given time frame available. This is where theater and the casting call pro-
cess, can help the system administrator. Based on the manuscript created
and the information specified for each role, in sysadmin term, the script
with the role being a web or database server. The casting call process will
eliminate all the images in AWS store that do not fit the the requirements
of the service wanted, by doing that the list of images and hardware avail-
able is of a controllable size and the time used in order to test the images is
within a reasonable time frame.

Figure 4.2 displays the process in a casting call. Looking at the model,
the process starts with the information located in the script, it sorts out the
specified requirements regarding the its role or task, if its a web server or
database server. The controller then sends information to the AWS store
about the requirements needed, AWS store sends back a list over all im-
ages that match the requirements.

The controller then reads the list, to control that the content received
from AWS store is valid and contains at least one image. If the image
list is not valid the process will halt, and the requirements list needs
to be reconfigured or AWS store can not be used to build the wanted
environment. If the information received from AWS store is valid, the

35

Image requirements

Available images

Audition
Image provider

A Casting Call

Figure 4.2: Image selection based on predefined requirements

controller send the information to the next module.
Pseudocode - A casting call

for each scene {
define role
}

send image specification for each scene
retrieve image list

while (list is not received empty and still a new line) {
store image under its scene
}

The pseudocode elaborates the design and show the time line between
the different processes but also selections done.

4.4 Audition

When the casting call has been sent out with the requirements for each role
in the play, the auditions can begin. In an audition the actors get to display
their theatrical skill, using a scene or monologue they have rehearsed be-
fore the audition takes place. The scene is from the play and involve the
role they are auditioning for or it could be a scene the actor have chosen. A
rule known by actors, but not written down, is not to use more time then
given for the audition. The casting or audition panel have limited time and
therefor using more time then given, provides the panel a negative impres-
sion of the actor.

36

The purpose of the audition is getting to know the actor and to get a
feeling of the uniqueness of the actor, however this uniqueness could also
be the chemistry between two actors.

Time

Actors
auditioning

Improv Cast
selection

Audition

Scene
preparation

Display
capability

Figure 4.3: Image selection based on predefined requirements

Figure 4.3 is a time line for the audition stage. The different processes
have been placed on the time line based upon execution time. With
execution time, mean in what order the processes is executed, not the time
the execution takes.

4.4.1 Scene preparation

The actor might need help of other actors to perform a supportive role or
roles, in order for the actor to successfully display the full range of poten-
tial or to show that they posses the skills needed to perform the part. The
supporting role is performed not by people auditioning, and therefor the
supporting roles are prepared before the actors start the audition. To have
prepared the supporting roles in advances and the same people perform-
ing the supportive roles during the whole audition process, gives all the
actors auditioning the same performance from the supportive roles. If all
the actors auditioning get the same quality of feedback from supportive
roles, the quality of performance delivered by the different actors audition-
ing is easier to compare. The key for getting the real impression of an actor,
is equal conditions of competition.

Not only the supporting actors are prepared, but also the environment
where the audition will take place. There can be a stage in front of people
or in a small room with just the casting panel. Is there a need for props,
in that case the props need to be placed on stage in advance. The actors
trying out have been given a number in line, and a given time frame for the
audition.

In figure 4.4 the processes behind the scene preparation is explained.
For every role, there is a scene to be prepared. The supporting roles are

37

Supporting
role

ActorScene
prep.

Scene preparation

Rolle

Figure 4.4: Image selection based on predefined requirements

prepared in advanced, before each role can begin the audition.

Pseudocode - Scene preparation

for each role {
set the scene
if supporting roles {

start supporting roles
}
Start next part of audition

}

The pseudocode describes a semi translation from theater to the field
system administration, or a simplification. The role is a name used to de-
scribe the different services wanted for the environment. Then the scene
is set and if there is a supporting role it is started before the audition be-
gins. After the supporting role is started, the actor is put to the test. After
all the auditions for that role is done, the next role is up for audition. In a
real audition an actor can audition for multiple roles at the same time, the
actor does a general audition and the casting panel can hire the actor for
the role they think the actor fulfill best. However, there is multiple ways of
conducting an audition, so technically, non can be seen as incorrect.

In system administration the role would be looked at as a service or
services needed within the environment. The scene is a description of
what the role will do within the scene, its a name which are used to
separate different roles and dialogue form each other. The supportive host
will be hosts running services needed during the audition phase. This
supporting role could be database server containing information needed
by an audition for a web server, or a web server used in an audition for
a load balancer role. After the supporting roles have been set up and are
ready to be used, the actor can begin the audition.

38

4.4.2 Put to the test

The key feature of an audition is to experience or test the skills possessed
by the actor, to get as much information about the actor within a short time
span. To get a feeling if the actor could fit the role character and if who is
the best for the role.

Performing the dialogue

The audition dialogue can have many structures or different ways of se-
lecting the dialogue. The actor can perform a dialogue from a self chosen
scene, or the casting panel could have selected a scene for the all the actors
auditioning. To transfer this into system administration consider the fol-
lowing, the casting panel uses one specific scene to measure the skill set of
the actors.

The audition can be shorten down if the casting panel understand that
the actor do not posses the additional features wanted for the role, or don’t
possess the level of quality required. Theater life is no exception, time is
limited, therefore actors auditioning will be rejected quickly, if they do not
possess the wanted assets.

Figure 4.5 display the two different outcomes from an audition. The
dialogue on top, display a successful dialogue. The three dialogues where
performed with success, and the information about the actor is stored. The
example below, display a scenario where the first dialogue is completed
with success. However, the second dialogue failed. The dialogues is than
aborted, and the audition is over.

In system administration one often measure the quality or a service, us-
ing benchmark tools or other testing tools. The audition dialogue would
then be a sett of minimum requirements for the system, a service perform-
ance level required or minimum of service level accepted.

Pseudocode - The dialogue

If actor is ready {
foreach dialogue {

role perform dialogue
if (dialogue finished unsuccessfully) {

end dialogue
}

}
}
else

wait a little before a new attempt on dialogue
if still not ready end audition for actor

39

Performing dialogue

Dialogue
Result

Actor

Dialogue Actor

Figure 4.5: The dialogue performed during an audition

Configuring and performing the dialogue in Amazon cloud

The manuscript contain information about the minimum of accepted per-
formance from the service in the dialogue, all AWS images performing in
a adequate way is discarded from the list. However if the AWS image is
not build and the testing could not begin within a certain time limit, it is
also discarded. In comparison with hiring process, if the actor is not able
within the time given to perform the act memorized or could not learn a act
within the period from the casting call to the audition the actor is discarded,
classified as not fit for the role. The same logic is inherited to system ad-
ministration. If the image is not able to start and run the service within the
given time period, the AWS image is discarded as not fit for the environ-
ment.

With the change in environment form local to cloud, using a server from
the AWS store, the sysadmin know that the operating system and service
running is compatible with each other. However the system administrator
does not know if the additional services needed in the environment, is com-

40

patible with the operating system and service running. Today a web server
is not only limited to running just one service, the server have to run a
backup tool, monitoring of services, scripting for parsing of information
between services. Looking at only the performance of the specific web ser-
vices, for instance the connection per second. This will not be revealed if
the system is compatible with the services needed to maintain the environ-
ment.

4.4.3 The uniqueness of improvisation

During the audition, if the actor have shown a high quality performance on
the rehearsed part. The casting panel uses improvisation to explore the act-
ors personalty, but also improvisation help the casting panel to experience
if the actor posses features wanted for the role. To separate the good actors
from the actors perfect for the role. To find the uniqueness or something
special, that is wanted for the role. The improvisation is a tool used by the
casting panel to get a feeling of the actor, within a short period of time. Im-
provisation also adds to the already existing pressure of the audition, does
not allow the actor to relax during the audition process. This will relive
how the actors deal with the stressing factor.

With the improvisation part of the audition, the casting panel might not
have a quality range and are instead looking for how the actor responds to
the task given. How the actor handle a task without a clear answer, and
where the instinct of the actor is tested.

Translating this function of improvisation to the field of system admin-
istration needs to be done carefully. Think of this scenario: during the au-
dition the host auditioning for the role as a web server suddenly is asked
to be a firewall. There is no point for a web server also to be the firewall in
the environment, therefor the implementation of improvisation need some
boundaries or guidelines.

Improvisation can be used in order to uncover special methods and un-
cover hidden quality. Whenever a chef get a new pot he might have some
rituals to test the quality. Another example is when you are buying a car,
some people kick the tires. This action have no link to quality or perform-
ance of the car, but for the buyer it is an action he want to perform before
deciding to buy a car.

The improvisation needs to be some form of communication to uncover
wanted features from the system, which is not measured by a level of
quality, impro have no clear result. Instead, the dialogue result needs to
be interpreted by the system administrator, and based on the result get a
familiarity with the system.

Figure 4.6 explain how the improvisation part of the audition is
handled. The actor receives some key words and based on the key words

41

Performing improv

Improv

Result

Actor

Figure 4.6: The improv dialogue performed during an audition

the actors have to perform. The overall expression of the performance is
stored, and can be used in the selection phase later in the audition process.

Pseudocode - Improvisation

if (all dialogues completed successfully) {
while (impro to run) {

run improv
store result for improv

}
}

By inheriting the process, improvisation from the field of theater. The
system administrator can specify any task the server need to fulfill in order
to be usable for the environment. The plan will test the performance of the
system, therefore all AWS images performing less then the stated require-
ments have all ready been eliminated. Therefore the improvisation is one
more step closer to find the server best suited for the wanted environment,
but also the server that will blend in with the excising support services
already in use.

Audition evaluation and cast selection

In an audition the casting call makes notes on all actors auditioning. When
the audition is over the casting panel evaluates the actors. The casting panel
discuss and rank the actors before deciding who is allowed to do one more
audition. After further audition the best qualified actor is hired for the role.
In this process it is the purpose of the casting panel to find the best actor

42

for the role, often regardless of price.

The actors completing the audition do not normally get feedback on
the audition, if the casting panel want an actor to do a new audition or they
will offer the actor the role, they will contact the actor. If an actor is not
contacted by the casting panel, it means that the actor did not get the role
or is not wanted for any additional auditions.

When judging the result from a system administrator point of view, the
best is always preferable. If looked at from a economical point of view the
cost is often the most important element. For this project a combination
of the two options are wanted. The goal is to get the cheapest system that
exceeds the minimum system requirements.

Pseudocode - Evaluation and cast selection

foreach scene {
foreach role {

foreach actor auditioning {
if price of actor is cheaper the now lowest {

save price and actor information
}

}
}
display information about cheapest host for role

}

Figure 4.7 demostrates the process behind fulfilling a role after the
audition for all roles is completed. The actors completing the audition is
viewed, and the cost of the actor is assessed. The actor with the lowest cost
is selected, and given an ofter to fulfill the role.

Figure 4.7 demostrates the fulfilling of a role, if multiple actors have the
lowest cost. The actors with the same cost is then grouped together and
a selection will be based on the outcome of the improvisation part of the
audition.

After the audition process is completed, with one or more auditions
used to evaluate the actors, the actor chosen for the role and the crew of
the play have to reach an agreement on the hiring terms. The terms can
range from employment period, number of days traveling to perform the
actor money, normal contract terms for any contract related to work hiring.
If the two parts come to an understanding and the contract is signed, the
audition process ends and the rehearsal phase begins.

43

Cast selection - selecting process

Wanted

Cost:10Cost:11
Cost:12

Cost:10

Cost:16Cost:9
Cost:17

Cost:10Cost:11
Cost:12 Cost:16Cost:9

Cost:17

Wanted

Cost:9

If the actor cost less then
the previous actors

If the actor cost less then
the previous actors

Figure 4.7: Role fulfillment with an actor

4.5 The grand premiere

After the manuscript is written, the casting call is finished, the auditions
phase are completed and the role where filled. The actors rehearsed and
rehearsed until the directors creative picture for the play, but also quality
is meet, its time for the grand premier. The grand premier its where all the
hard work gets paid for. The actors on stage performing the play in front
of an audience. Where the director hopes his or hers creation will contain
a higher quality of performance then what the people expect, that the play
will be a success. The premiere is just all the different parts, after rehearsal,
comes together and perform the whole play at once. All the roles, dialogs
and scenes, all at once.

44

Cost:9Cost:11
Cost:9 Cost:16Cost:9

Cost:17

Wanted

Cost:9

Cast selection - multiple actors selected

If the cost of the actor
is equal to the lowest

cost of previous actors

Add actor with the others

Figure 4.8: Role fulfillment, were multiple actors can be selected

In system administration one can relate this process to the release stage,
where the system is set into production. The production stage or the pro-
duction implementation is normally in the night time, or after work. In
oder to minimize the impact for the users, and to have time to roll back if
there is an error so the production environment do not work according to
plan. The processes is normally started at the testing phase, have a copy
of the production environment and do all the implementation on the test
environment. After the installation the system is tested, and if no errors are
discovered the process is repeated at the production environment. The pro-
cess is done by the system administrator and the process is time consuming,
and with the human interaction the error rate need to be considered.

People make mistakes, one have to take in to consideration that errors
will happen. The error rate will increase in certain situations, for instance:
if the system administrator is working to much and is tired, nervous and
with time differences. With shifting the work hours to allow for night work,
the body will be a little tired so the possibility for an error to be made is a
little higher. With combining the process of theater into system adminis-
trator, it enables for minimal human interaction.

Using the information in the audition module, the services are rated
based on a overall score in the selection phase. The different services have
been build in different settings and have been tested to work with other
services according to the plan. Using the AWS images that where rated as
best for the environment, for all the services in the environment. No hu-
man interactions is needed, since each role or service where individually

45

build and tested in the audition phase. The selected cast can now be build
and set in production.

The creation of the environment and cast needs no additional inform-
ation, since each member of the selected cast have been build and tested
within the different audition phases. The information regarding the hosts
and services within the manuscript is reused from the audition creation,
therefore the creation of a fully working environment can be created auto-
matically.

Premiere

Selected cast

Play

Figure 4.9: The assembling of a cast

In figure 4.9 the different actors selected become part of a cast, the
selected cast will rehearse and perform the play.

46

4.6 Summarization - audition architecture

When going back to the timeline in figure 4.1, all processes have some level
of design inheritance from theater and in most cases a strong inheritance.

Time

Actors
auditioning

Improv Cast
selection

Audition

Scene
preparation

Display
capability

Prepared dialogue
Performance control

Act in the moment

Casting call

Set scene
Preparing supporting roles

Selecting actor
Assembling a full cast

Figure 4.10: Image selection based on predefined requirements

Figure 4.10 show the different milestones in an audition process. The
theater processes have been dissected and a vital process in the field of
system administration have been created.

Figure 4.11 show all the different modules merged together, and dis-
plays how all the different modules is placed in the design and how they
work together. The manuscript dictates the different boundaries for the
audition and the play. Actors responding to the casting call, is evalu-
ated based on an dialogue and an improvisation part. The actors with the
wanted features and quality is available for cast selection. The actors selec-
ted for a role is then given an offer to be part of the permanent cast.

The manuscript is created in advanced and contains all the information
needed for the whole audition process. When the casting call is completed,
the actors comes to the audition and one by one audition for the role they
signed up for. The actor auditioning will perform a dialogue and if the
quality or performance meet quality wanted, the casting panel will give
the actor an improv challenge. When the audition is over, the casting panel
review all the actors and match each role to the most suited actor, and the
actors selected will be a part of the permanent cast.

47

Table 4.2: Models to implement in the prototype
Models to implement in the prototype
Manuscript No
Casting call Yes

Dialogue A Yes
Improv A Yes

Cast selection Yes
Play no

4.7 Models to implement

The module casting call will not be implemented, according to table 4.2.
Since the selection of Amazon as a cloud technology, they do not provide
an API for the Amazon AWS store. For that reason it is at the current time
not possible to create a function which will get a list of images or do an
image selection automatically.

The play module will not be implemented, because the goal is to create
a prototype and the play module will use all winning hosts and create
one MLN code for whole play. The code will already have been created
in the audition by the Audition script, however, there is not need for this
feature in order to help answering the problem statement. Therefor the
play module is not implemented.

48

Casting
call

Manuscript

Audition

Dialogue

ImprovQuality
controll

Actor auditioning

Cast

Role 1

Role 2

Scene 1

The audition design architecture

Figure 4.11: The overall view of the selected processes within an audition

49

50

Chapter 5

Result 2 - Prototype

Throughout the prototype chapter one example will be used to explain the
prototype and its features and how it is built. The example scenario will
involve a webserver using wordpress with a database connected. In the
scenario, it is the webserver that will be tested to figure out what kind of
image or hardware type will fulfill the systems requirements, at the lowest
cost.

5.1 System platform

The system will be built and run in Amazon EC2. The reason for this is
both cost, access to a variety of hardware and the amount of AWS images
in the Amazon store. However, the framework is not bound by Amazon
and can be changed to a different cloud service with little effort.

Figure 5.1 show how the platform and how the environment will be
built. Amazon EC2 will be the virtualization framework used to cerate and
run the virtual computers. To create, manage and configure the hosts, the
tools MLN and puppet will be used.

To fully automate the framework MLN is used in combination with
puppet, MLN has a built in plugin for Amazon EC2 that is tested
with success. MLN can be used on different environments (XEN [9],
VMware [12], Amazon [13]), and with few commands set up a virtual
computer or multiple computers because of this unique feature of setting
up multiple computers simultaneously, MLN is the perfect tool to be used
by the framework.

5.1.1 A controlling host

Figure 5.2 display the usage of a controller. The controller is the host
running the audition, this host contains the MLN and puppet configuration
in order to hold a successful Audition. The Audition is a script modeled
after an audition process, and the script is run on the controller.

51

PuppetMLN

Amazon EC2

Hosts

System platform setup

Figure 5.1: The system platform setup

5.1.2 Amazon storage

In Amazon EC2 when the virtual hosts instance is shutdown the local hard
drive is removed, but any EBS volume connected will continue to exist. A
shutdown could come from the shutdown command, however it could also
come from a system failure or another error within the system. Therefore,
the system could shut down without human intent, and with the system
shutting down the files and data collected is lost. This means that if the
controller instance goes down, not only will the framework stop working
but all the data collected until the shut down will be lost.

There are different methods to solve the accidental shutdown scenario,
since the framework is automated all the files and data needed already exist
and can be initiated again with much effort. With just recreating an amazon
instance for the controller the framework could start again, and when fin-
ished the only thing lost is time and the cost of running benchmarking on
different AWS images twice. A different method is to connect the control-
ler instance to a EBS volume, in case of a shutdown the information saved
would still exist after powering the instance again. Due to the fact that the
implementation is a prototype, the system will handle the case of a non

52

MLN
Puppet

Controller Hosts

Amazon EC2

Figure 5.2: The host controlling the Audition

planed shutdown of the controller after the kiss method. Since all the data
to perform a new run will be easily available, it will be simpler to restart
the test rather then to resume the previous run.

5.2 The layout of the manuscript

The manuscript is where the system administrator can define the entire
environment. In the manuscript the different roles, previously mentioned
in chapter 4 defines both the environment, but also all features which will
conduct the audition or the performance wanted from the environment.
The manuscript is built up using a block format. The block format is
commonly used by system administrators, therefore the syntax of this
approach should be familiar and easy to understand. The manuscript is
dependent on the usage of MLN, therefore the MLN template is used for
this performance needs to be stated at the beginning of the manuscript.
Further explanation of the MLN template will be conducted later in this
chapter 5.4.

Manuscript - An example manuscript

mln_file mln-template-wordpress.mln

scene frontpage {
role web

53

support_roles database

dialogue {
[web]: connect.db [database]
[web]: content.web /index.php Lorem Ipsum
[web]: benchmark.web 50 /index.php

}
improv {

./perl.pl
}

}

scene backend_performance {
role database

dialogue {
[database]: restore.db wordpress_base.sql
[database]: transactions.db 300

}
}

The manuscript above shows a manuscript with two scenes, the first
scene, scene frontpage, has only one role. However, there is a need for a
supporting role, to help the role in question with the audition. The role
will be tested with three different tests, and there is an improvisation part
within the audition.

The second scene, scene backend_performance, has one role with no
supporting roles. The hosts trying out for the audition will be tested using
two different test dialogues.

5.2.1 Scenes

Each scene is built up by the key word scene and the scene name, then the
block to hold the information regarding the current scene.

Manuscript - Create a scene

scene frontpage {

}

The scene created here is named frontpage. In order to create a scene
some information is required within it. The scene name has no other
function then to separate the different scenes and acts like a container for
all the information regarding the current scene.

54

The leading role

The design dictated that there had to be certain information mentioned for
each scene, in order to have a dialogue there had to be a role, and by that
dictates that there has to be a role. The role in this case is called web.

Manuscript - Create a role

scene frontpage {
role web

}

The role is not a specific server or a hardware type, it is a service or com-
bination of services. Web could in this case be apache [7] or lighttpd [60], a
services which provide a web service, hence the name web. However, the
specific service is not specified in the manuscript, the service specification
is located in MLN and will be explained later in this chapter. Therefore
"web" is just a name for the role.

Numbers of one role

In a theater the goal of an audition is to find one actor to fulfill a role, an
understudy can also be hired. Two actors can not have the same role, per-
forming at the same time. Two Romeo’s in Romeo and Juliet, does not make
the play two times better.

In system administration scalability is important, especially when
dealing with release management. In system administration there could
be the need for two webservers or more, in an environment. In system
administration two webservers, can be two time better then one. Therefore,
there is a need for multiple equal roles. This option is enabled using the
roles_available command, and the specify the number of roles. However,
if the line is not part of the manuscript created, Audition will assume the
roles wanted are one.

Manuscript - Numbers of roles wanted

scene frontpage {
role web
roles_available 2

}

The supporting roles

A role might need supporting roles in order to complete its dialogue. There
is no limitation to how many supporting roles the system can use. Different

55

supporting roles are separated with the use of "," in between the names,
instead of blocks. The key-word used to inform about any supporting roles
within the scene is supporting_roles.

Manuscript - Adding a supporting role

scene frontpage {
role web
supporting_roles database,loadbalancer

}

The dialogue

After the wanted environment has been described, the desired dialogue is
defined. The dialogue is built up stating: who is telling the dialogue, what
plugin is used and what information is sent to the plugin. The dialogue is
using blocks to hold all the dialogue for each scene.

Manuscript - Create a dialogue

scene frontpage {
role web
supporting_roles database

dialogue {
[web]: connect.db [database]
[web]: content.web /index.php Macbeth
[web]: benchmark.web 50 /index.php

}
}

The dialogue in the example shows the possibility of this feature, the
first dialogue (from top), let the web role connect to the role database. It
enables the web server to connect to the database, which has the content
stored. The next dialogue is also to the web role, and it will check the index
page on the web role for the word "Lorem". This is a quality check, it is
a check that the web role did connect to the database supporting role and
that the database is connected and displays the correct information. The
last line is the benchmarking, the performance check. It is the web role that
is under testing and the quality required to be available for the environ-
ment is 50.

In order for the dialogue to be completed successfully all the lines need
to be returned with success and by that pass the requirements needed for
the environment. In the case of a dialog returning failed and therefore not
meeting the requirements, the dialogue is aborted and no more dialogues
or improvisation will be conducted on the host. The host will be turned

56

off and a new host will be up for audition. In the case of all dialogues
returning success, the host will continue with the improvisation and add
the host information to a hash containing hostname for every host for each
scene, that successfully completed the dialogue.

The improvisation

The improv is not used in the automated selection process, but is used in
the situation where multiple hosts are tied for the first place in the selection
phase. The improvisation is not a pass or fail for the dialogue within the
improvisation, and therefore the system administrator has to assess which
AMI and hardware combination is wanted for deployment after looking at
the output from the improvisation.

The improv dialogue in the example below show how to set up the
improvisation. The improv part is usable using the keyword improv, the
audition will run all the information contained within the brackets. Improv
is only for the host in questining, therefore there is no information about
whom the improv is for. Furthermore, the improv is not relaying on any
plugins. The manuscript syntax is commandline commands, that will be
executed on the host.

Manuscript - How to improv

scene frontpage {
role web
supporting_roles database

dialogue {
[web]: connect.db [database]
[web]: content.web /index.php Macbeth
[web]: benchmark.web 50 /index.php

}

improv {
./perl.pl
ps aux

}
}

The improvisation commands run on the host during an audition, will
store the output in plain text in different text document. The document has
the same name as the host undergoing the audition, and located under the
folder "improv", where the audition script is run from. The improvisation
part is not a fail or pass in order to create output, the process will sent the
raw output to file. Therefore the content of the file could be nothing, if the
commands run is not compatible with the system running on the host.

57

5.3 How Audition works

Audition is a script written in perl, and run on the controller unit. The
controller unit in this case is a virtual computer running in Amazon cloud
environment.

Each role or service will have multiple different hardware configura-
tions and different AMIs, therefore each combination of the two needs to
be tested. In order to start and stop multiple computers in Amazon cloud,
the tool MLN was used. MLN also enables for the usage of excising EC2
commands distributed by Amazon. The roles are started when being used
and stopped when all the dialogue is completed or if a dialogue failed to
complete successfully. However the supporting roles are started at the be-
ginning of the scene, this can be further explained viewing the overall pro-
cessing of the audition script.

Pseudocode - An Audition

foreach role {
boot support roles
apply support roles configuration
foreach candidate {

boot the candidate
apply role configuration or finish
foreach scene {

run dialogue or finish
run improvisation
store results

}
shut down candidate

}
shut down support roles

}
display results

5.3.1 The supporting host

The supporting hosts are started and prepared before the host to be tested
is booted up, to have the supporting role up during the whole scene saves
time. Since the configuration only has to take place ones.

Amazon has elected to use a cost system which charges not for actual
run time but for commenced hours. Running a virtual host in Amazon for
1 minute or 59 minutes has the exact same cost, therefore to keep the virtual
machine used by the supporting role the same virtual machine, will lower
the cost of the audition.

58

The reason for using the supporting host for the whole scene is more
clear using some examples. If one host uses 19 minutes to complete the
audition, and there are 6 hosts auditioning. To get the supporting host up
and running with the configuration takes 3 minutes, and all hosts and sup-
porting hosts cost 1 dollar each commenced hour.

By creating a supporting host for each candidate, it will result in 6 hosts
times 1 dollar (6*1), and 6 supporting hosts times 1 dollar (6*1). The total
cost for an audition will be 12 dollars, six hosts hours plus six supporting
host hours.

If using the same supporting host for each host the cost would be: 6
hosts times 1 dollar (6*1), and 2 hours for one supporting role (19 minutes *
6 hosts = 114 / 60 = 1.9 = 2). The total cost for an audition is then 8 dollars.
The money saved using the same supporting role for the scene showed in
the examples is 1/3 of the initial price.

Not only will it lower the cost but it will also save time. Since the config-
uration will only have to be run once, the time used to set up the supporting
role will be a one time time expense, and not a time expense multiplied by
the combination of AMIs and hardware configurations.

5.3.2 Candidate names and host names

The candidates are defined in the manuscript under each scene. The ser-
vice and the different testing and commands for the candidate to perform
under the Audition phase. The information about the candidate is build
up using information from several different sources. The name scheme for
the candidate is a combination of service and information about the images
and hardware combination. This will create a unique name for all scenes,
services, candidates and any combination of AMI’s and hardware types in
Amazon EC2. See figure 5.3.

Figure 5.3 display how the name is created for the different hosts
auditioning. The candidatename consists of the role the candidate
is audition for, the AMI and hardware information for the candidate
auditioning.

5.4 The MLN template configuration

The MLN template stated in the manuscript using the command "mln_file""
connects the name of the role, to an actual configuration, be that a service
or specific software packages. The MLN template file consists of different
superclasses, the different superclasses is a definition for each of the roles
mentioned in the manuscript. The format for the template is dictated by
the tool, since the file is fully operational MLN code.

59

Manuscript Casting call

Ami-1
Ami-2

t1.small
m1.small

role web

web.ami-1-t1.small

Creating a name scheme

Figure 5.3: Creating a name scheme for the hosts auditioning

1

2 global {
3 project macbeth
4 }
5

6 superclass basic {
7 puppet {
8 nodename $hostname.$project
9 include {

10 ssh
11 }
12 }
13 ec2 {
14 key Enterprise
15 user_file {
16 apt-get update
17 apt-get -y install puppet
18 }
19 }
20 }
21

22 superclass wordpress_db {
23 superclass basic
24 puppet {
25 include {
26 wordpress_db
27 }

60

28 }
29 }
30

In the mln template file there is no information about any host except
superclass definitions. All the host information regarding MLN is created
by the Audition. The creation of hosts is based on the manuscript and
casting call and created automatically.

5.5 A complete Audition

The complete Audition will consist of an environment with a web server
and a database server. The web server is the role the test will be conducted
on, and the database server will be the supporting role. The role of a web
server will consist of the service wordpress, a popular web service.

Role

Wordpress
Apache

Supporting role

MySQL

Example environment

Figure 5.4: Graphical display of the wordpress example environment

Figure 5.4 show the environment wanted in the wordpress scenario.
The role auditioning for, is for a wordpress web sever. The wordpress
server will be connected to a supporting host. The supporting host will
run a MySQl database with the content displayed by the webserver.

5.5.1 Host AMI’s and hardware types

Due to Amazon not providing an API or any way to automatically re-
trieve a list over usable AMI’s, the AMI and hardware information needs
to collected in advance. Different AMI’s have a small differences in price,

61

however, using different hardware configurations the price for the different
hosts will not be the same.

For this Audition one AMI i selected, this AMI is used throughout the
Audition. The AMI is an Ubuntu 64-bit operating system. In Amazon EC2,
using this operating system adds no extra cost pr hour for the different
host.

Different hardware types

The different hardware types selected for the Audition concerning a
wordpress environment is:

The different hardware types selected

m1.small
m1.medium
m1.large
c1.medium

Based on the initial tests, the images chosen is the four images with a
performance closest to the minimum requirement for the environment.

M1.large instance specification

The M family in Amazon EC2 meaning the instances starting with
m1 or m3, are general purpose instances. The instances have some
compute power, but the instances have a balanced performance between
all resources.

C1.medium instance specification

The C family or the instances starting with C1 or CC2, is instances optim-
ized for compute power. The instances have a higher CPU performance,
and is recommended my Amazon for high-traffic web applications [4].

Cost

Due to the limitation in automation surrounding AMI’s and instances in
Amazon EC2, there is at the current time not possible to automatically get
hourly cost for each instance from Amazon. Therefore, the instance cost
had to be collected before Audition could begin. The AMI chosen for this
thesis, is a linux distro free to use. Therefore, there is no additional cost
other then the instance cost.

The on-demand hardware types or instances in table 5.1 are priced
according to Amazon EC2 instance prices May 2013 [3].

62

Table 5.1: EC2 price list
Amazon EC2 prices

Hardware type Cost per hour
m1.small 0.060 $

m1.medium 0.120 $
m1.large 0.240 $

c1.medium 0.145 $

5.5.2 Failing to learn the role

In certain scenarios the host auditioning did not send the correct inform-
ation to the Audition, and because of this did not receive any instruction
about the installation of service or host configuration. In the event of this
scenario, Audition will after some time terminate the host and continue
with a new host.

Due to time constraints it was not possible to further optimize the pro-
cesses running within an Audition. The Audition will treat the scenario as
if the host failed to meet the wanted quality in performance, and therefore
the host is not available in the upcoming cast selection phase.

Such a scenario is taken into consideration within the field of theater.
If the host is not able to show up for an audition, the next actor is sent in.
If the actor is not ready to start the audition or has not been able to learn
the scene the casting panel expect too see, the casting panel will stop the
actor and ask him leave. That way, the casting panel can use time more
efficiently.

5.5.3 Creation of plugin

The plugin is design and implemented as modules, each plugin file consist
of one or more plugins. All the plugins follow the same format.

Manuscript - How the plugin is built

[webserver]: connect.middleware [middleware]

First comes the role performing the line, in the example above it is the
webserver performing the line. Following the plugin used to in order to
execute the dialogue. After the plugin there are different information, that
can be used. In the example above the "[middleware]" will be changed by
Audition to the name or ip dependent on the supporting role. However,
there is also the option to send the whole line to the plugin.

Manuscript - How the plugin operates

[webserver]: performance.middleware 192.168.1.12 20

63

In the example above, the plugin performance.middleware is sent
"192.168.1.12 20". Then it is up to the plugin to interpret the information
and use it correctly. By allowing the plugin to handle the different informa-
tion, all the dialogues can be standardized. This also allows for system ad-
ministrators to simply create new plugins, since the plugin itself executes
the different action.

The plugin handles the validation of the result, based on the plugin
execution. The return value sent from the plugin back to Audition, is
fail (0) or success (1). This enables for a system administrator to crate
plugins without limitations, the Audition do not need information about
what the plugin does or how. Audition only want to know if the plugin
ran successfully or failed.

5.5.4 The controller

After starting testing the framework using the wordpress example environ-
ment with more hosts auditioning for the web server part, a new problem
was discovered. Audition used a lot more time than expected. Looking
at the different processes behind the Audition reveled that, the time used
were because of EC2 commands and host configuration time.

During the testing stage, the controller host started to experience some
problems. The problems were not consistent, therefore hard to investig-
ate. The controller was run on a host with limited hardware resources.
Therefore, the controller was migrated to a new host, with better hardware
available to the host.

After the controller was migrated to a host with hardware type
c1.medium, the time used for an Audition decreased. The new hardware
resulted in faster response from EC2 commands and host configuration.

5.5.5 Benchmark and thresholds

Since lowering the expectation to match the performance of the environ-
ment, the minimum requirements regarding performance for the part of
web server was set to 12 connections each second. The different testing
stages in creating Audition, with the usage of environment data based
on the wordpress example, displayed that using 12 connections pr second
would make some hardware types fail the audition. This is in itself not a
bad thing. A option were to go for massive VM’s, but for the test it was im-
portant to let several candidates successfully finish the dialogue and some
candidates failing the dialogue.

Requesting a performance higher than some selected hardware types
performs, helps to display the selection stage. It also ensure that the Audi-
tion prototype, working according to the model designed.

64

In this prototype implementation the controller is the host for conduct-
ing the dialogue and improvisation. Creating a situation where the control-
ler has no available resources left is unwise. The resource limitation could
interfere with the Audition and the outcome or result.

5.5.6 The complete manuscript

To get a more complete picture over all the different modules and how
the act together, a graphical display of the Audtion architecture has been
created.

Dialogue
Improv

Manuscript

MLN Puppet

Supporting
role

Candidate
in questining

Candidates
in line to audition

Candidates
completed

Amazon
market

Casting
call

Role
definition

Role
configuration

Controlling
the VM´s

The Audition

Figure 5.5: Graphical display of a complete Audition

Figure 5.5 show how all the different modules works together in
an Audition. Audition will begin with reading the manuscript, before
proceeding with a casting call. Audition will use MLN and Puppet to
help with the establishing of candidates and supporting roles. Once the
candidate are up, Audition will run the dialogue and improvisation on the
candidate.

65

5.5.7 The complete manuscript

The manuscript uses the mln-config.mln file, in order to define the different
roles. The scene frontpage contains the wordpress host, with database as
supporting host. There are three different dialogues, first dialogue connect-
ing the database to the web server. Then the dialogue validate the content
displayed by wordpress, then the performance testing.

The improvisation part contains two different commands, there is a
need to check the folder structure on the host computer. The other
improvisation test is to get the timezone used by the host.

A manuscript for wordpress environment

mln_file mln-config.mln

scene frontpage {
role wordpress-web
support_roles wordpress-db

dialogue {
[webserver]: connect.db [database]
[webserver]: content.web /index.php Lorem
[webserver]: benchmark.web 12 /index.php

}

improv {
ls -l /
date

}
}

5.5.8 Execution

The Audition is executed from the controller host, the execution is
command based using the command line.

Execution of Audition

\$ audition wordpress.manuscript

The Audition need to be run with root access, the Audition will write
files used by MLN and Puppet.

5.5.9 Audition output

The output produced in the selection phase in the audition of a wordpress
environment, reports two hosts completing all the dialogue with a better

66

performance than the minimum requirements.

Output from Audition

Role: wordpress_web
2nd place: m1.large with ami-def89fb7
\$0.240 per instance-hour
1st place: c1.medium with ami-def89fb7
\$0.145 per instance-hour

The output shows that there where two hosts selected, m1.large and
c1.medium, Audition selected c1.medium as the best solution for the
wordpress environment.

5.5.10 Improvisation output

Under the impro folder, for the wordpress environment, two files are found
under the Audition. There is one file for each host completing the dialogue
with success.

wordpress.web.ami-def89fb7-m1.large

wordpress.web.ami-def89fb7-c1.medium

Improv files

total 80
drwxr-xr-x 2 root
drwxr-xr-x 3 root
drwxr-xr-x 12 root
drwxr-xr-x 90 root
drwxr-xr-x 3 root
lrwxrwxrwx 1 root
drwxr-xr-x 2 root
drwx------ 2 root

total 80
drwxr-xr-x 2 root
drwxr-xr-x 3 root
drwxr-xr-x 12 root
drwxr-xr-x 90 root
drwxr-xr-x 3 root
lrwxrwxrwx 1 root
drwxr-xr-x 2 root
drwx------ 2 root

Figure 5.6: The result for an improvisation

Figure 5.6 displays the file nameing scheme used in the prototype, and

67

the result from the improvisation for selected hosts.

The files can be located under the folder "improv", in the same path as
Audition. The content for the files are almost the same, with a small differ-
ence in time the "date" command where run at. The reason for this is they
use the same AMI, and therefore they will give the same response for the
commands given in the improvisation stage.

The content from the Audition improv

total 80
drwxr-xr-x 2 root root 4096 Jan 24 07:07 bin
drwxr-xr-x 3 root root 4096 Apr 30 16:44 boot
drwxr-xr-x 12 root root 3880 Apr 30 16:43 dev
drwxr-xr-x 90 root root 4096 Apr 30 16:46 etc
drwxr-xr-x 3 root root 4096 Jan 24 07:07 home
lrwxrwxrwx 1 root root 33 Jan 24 07:06 initrd.img

-> /boot/initrd.img-3.2.0-36-virtual
drwxr-xr-x 18 root root 4096 Jan 24 07:06 lib
drwxr-xr-x 2 root root 4096 Jan 24 07:05 lib64
drwx------ 2 root root 16384 Jan 24 07:07 lost+found
drwxr-xr-x 2 root root 4096 Jan 24 07:03 media
drwxr-xr-x 3 root root 4096 Feb 9 02:53 mnt
drwxr-xr-x 2 root root 4096 Jan 24 07:03 opt
dr-xr-xr-x 89 root root 0 Apr 30 16:43 proc
drwx------ 4 root root 4096 Apr 30 16:46 root
drwxr-xr-x 16 root root 620 Apr 30 16:47 run
drwxr-xr-x 2 root root 4096 Jan 24 07:07 sbin
drwxr-xr-x 2 root root 4096 Mar 5 2012 selinux
drwxr-xr-x 2 root root 4096 Jan 24 07:03 srv
drwxr-xr-x 13 root root 0 Apr 30 16:43 sys
drwxrwxrwt 3 root root 4096 Apr 30 16:46 tmp
drwxr-xr-x 10 root root 4096 Jan 24 07:03 usr
drwxr-xr-x 13 root root 4096 Apr 30 16:46 var
lrwxrwxrwx 1 root root 29 Jan 24 07:06 vmlinuz

-> boot/vmlinuz-3.2.0-36-virtual
Tue Apr 30 16:47:10 UTC 2013

5.5.11 Scripts created

A perl script and plugin files where created for this thesis. The name and
description for the different files is located in table 5.2.

5.6 A more complex example

The wordpress example used for testing the implementation, is too small to
show of all features provided by the framework. One of the benefits with

68

Table 5.2: Different files created
Scripts used

Type Name Description
Audition audition.pl Main script, runs the audition process

Plugin
connect.db Connects host to database

content.web Confirms a valid displayed
httperf benchmarking a webserver using httperf

Audition, is the scalability. With the change of one line for each scene, one
can specify how many servers of that role is wanted.

In figure 2.2, the new way of separating the environment into layers was
shown. The figure displayed an environment consisting of: loadlancer, six
webservers, one middleware server, three databases and a storage server.
The complete manuscript can be found in section 5.6.6.

Based on the manuscript, each scene will be tested with a combination
of all different AMS’s and instances. For all scenes the improvisation is the
same, to test if the system is compatible with the monitoring tool used in
the current environment. All other scenes are then specially designed to
test the role, with the usage of supporting hosts.

The first step in all scenes is to first start up and configure all the
different supporting roles for that scene, before starting the audition for
the role in questioning.

5.6.1 Auditioning for the role as loadbalancer

After the configuration of the webservers, the audition for a loadbalancer
can begin. The host auditioning first run the connect.load dialogue, this
will connect the loadbalancer to the webservers. If successfully connected
the perform.load is started. This dialogue will test if the loadbalancer can
send 50 or more requests, to the webservers.

After the dialogue is completed, the improvisation check the hosts
compatibility to the existing monitoring tool. The result is stored for usage
in the cast selection in a later stage of the Audition.

5.6.2 Auditioning for the role as webserver

The webserver auditioning will connect to the database using connect.db
plugin, the content of the page delivered from the database is controlled.
Before a benchmark test of the webserver is performed.

5.6.3 Auditioning for the role as middleware

After completion of the configuration regarding the host, the middleware
server connect to the database using the connect.db plugin, before checking

69

the correctness of the information in the database. Then the webserver is
tested, tp ensure the middleware can communicate with the webserver and
the database. The last dialogue ensures that all services are running and no
compatibility problem on the middleware server.

5.6.4 Auditioning for the role as database

The database first connects to a storage unit, the storage unit in this case
could be a SAN. After connecting to the storage server, the database
is tested on the transactions rate, using the transaction.db dialogue.
The minimum requirement for the database is equal or more then 100
transactions pr second. There are three roles to fulfill.

5.6.5 Auditioning for the role as storage

The storage server first connect to the database, before testing the database.
This will test to make sure the database is compatible with the storage
solution. Then the storage server is tested writing and reading to the drive,
with a minimum requirement in performance.

5.6.6 The complete manuscript
A more complex manuscript

scene frontpage_load {
role loadbalancer
support_roles webserver1,webserver2
dialogue {

[loadbalander]: connect.load [webserver1][webserver2]
[loadbalander]: perform.load [webserver] /home.php 50

}
improv {

monitoring.pl
}

}

scene frontpage_web {
role webserver
roles_available 6
support_roles middleware, database, storage
dialogue {

[webserver]: connect.middleware [middleware]
[webserver]: benchmark.web 50 /index.php

}
improv {

monitoring.pl
}

}

70

scene frontpage_middle {
role middleware
support_roles webserver, database, storage
dialogue {

[webserver]: connect.db [database]
[webserver]: content.web /index.php Lorem
[webserver]: benchmark.web 12 /index.php
[middleware]: services.middle

}
improv {

monitoring.pl
}

}

scene frontpage_database {
role database
roles_available 3
support_roles storage
dialogue {
[database]: connect.db [storage]
[database]: transactions.db 100
}
improv {

monitoring.pl
}

}

scene frontpage_storage {
role database
support_roles database
dialogue {
[database]: connect.db [storage
[database]: transactions.db 100
[storage]: read.storage 200MB
[storage]: write.storage 100MB
}
improv {

monitoring.pl
}

}

5.6.7 After the Audition

At the completion of Audition, one will ha a fully deployed, quality and
compatibility controlled, multi layered environment, consisting of six dif-
ferent layers. The environment have been tested for compatibility for

71

services running on the different layers, but also the additional services
already integrated into the environment. The network will have the exact
configuration as the shown in figure 2.2

5.7 Analysis of execution

Using the wordpress example, an Audition where successfully executed.
The example did not show the all the feature of Audition, however, it
proved that the prototype works according to the models created.

The Audition used to test the wordpress environment, with four dif-
ferent hosts and one supporting host, used 26 minutes to complete. In the
wordpress scenario there were three dialogues and two improvisations per-
formed by the different hosts.

5.7.1 She simplicity in Audition

The more complex manuscript created and deployed 12 hosts, with five dif-
ferent roles. Each combination between selected AMI’s and instances was
tested, for every role. The different roles where tested, on both perform-
ance but also compatibility with the layer over and under the role and with
services existing in the environment.

The manuscript contains 61 lines, including bracket ending and space
between different scenes. With the more complex example, the Audition
used in average 5 lines for each host in the environment. To fully
understand the framework and to see how the system scale, think of an
example: You want the same environment, but you need more hosts. Three
loadbalancers, 15 webservers, five middleware severs, 10 databases and 10
storage server. To create this using Audition would require a manuscript
consisting of 64 lines, because three more scenes needed the roles_available
option. From there to the next scaling of the environment would require no
more added lines.

5.7.2 Cost a more complex example Audition

If one uses the same four instances, introduced in the wordpress example,
however this time with three different AMI’s, the cost of an full Audition
using the manuscript created in section 5.6.6, would be:

((5 ∗ 0.060) + (5 ∗ 0.120) + (5 ∗ 0.240) + (5 ∗ 0.145)) ∗ 3 = $8.475.

However, there are also some supporting roles needed:

8 ∗ 0.240 ∗ 2 = $3.84.

72

The assumptions is that each supporting role is up for two hours to com-
plete the scene.

The total cost for the audition is $12.315. For this price, one gets a
fully deployed, multi layered environment. The environment consists of
5 layers, and the environment is performance and compatibility tested
between the different layers and with the existing solutions. All this for
less than $13 and with minimal effort from the system administrator, is not
costly.

73

74

Chapter 6

Discussion

This chapter will discuss all aspects regarding this project, approach,
design, prototype, result and the overall process. An answer to the problem
statement will be proposed, based on the processes leading up to this
chapter.

Theater Modeling Implementation

Figure 6.1: The process of inheritance between two different research areas

Figure 6.1 show the inheritance processes. The process resulting in R1
and R2.

6.1 System administration based on theater

Inheriting processes from a completely different field has different
strengths and weaknesses, and merging the processes has different
obstacles.

6.1.1 A system administrator approaching theater

Being a system administrator with little knowledge about theater, the field
of theater was harder to learn than previously thought. Theater is a vast
area of knowledge and experience. To get an understanding of the area,
different methods were used. An interview with Hanne-Marte Sørlie,
books and other written materials recommended by professionals.

75

Peoples assumptions

At first contact with various professionals, most though the request was
initiated by an actor after job information. Therefore, establishing a
dialogue was harder then expected. However, by having to explain the
project repetitively to non-professional system administrator, helped to get
a better understanding of the thesis.

6.1.2 The purpose of using theater

The goal of using the field of theater and the processes within, was to
help simplify release management in system administration. To explore
the possibility for an inheritance between the two fields, and would the
outcome be simpler to use then existing solution? Are there processes that
will explain and design a perfect framework.

6.1.3 Strength of theater

Theater productions have been using their processes for centuries, there-
fore the processes have a long track record of success. Each play is differ-
ent, each character is different, each scene is different, the monologues are
different. Considering all this, the process behind a play is still the same.
Small modifications to the process have been done over the years, however
the overall processes have kept their general form over time.

The processes have been adopted by similar fields of work like, the
movie and television industry. They adopted the processes behind theater,
and the adopted work is still used today.

Scalability

The processes from theater work on plays of all sizes. They work for pro-
fessionals, amateurs and even for school plays. This proves that the pro-
cesses are scalable and will suit any project, no matter size, large or small.
Some adjustments to the processes are needed, for example, a school play
involving small children.

Simplicity

System administration analogies are for most people without special know-
ledge in the field hard to understand, because system administration is a
large and technical field. Non-professional do not possess enough know-
ledge in system administration to understand and relate technical terms
and solutions. By relating system administration terms to other similar
terms in fields more widely known, overall information and the relation
between processes is easier to understand. This method has be used and
proven functional in the past [37] [27].

76

Theater is culture, an cultural activity to perform and to watch. Theater
is also used in schools and after school activities, this means that humans
get first hand experience about theater from a young age. By using
theater, most people will have some understanding of the processes.
Combining the two fields of knowledge a technical and complex solution
in system administration, can be explained to a person without education
in computing. More precise, a technical and complex solution can be
explained to persons in a company without a technical background.

6.1.4 Weakness of theater

The two different fields are completely different. This means that the fields
do not often cross, in a processional way. This results in that people with a
high level of knowledge in both fields are rare.

The field of theater is based on creativity and the human drive to evolve
and make it better, the people in the industry are playful and spontaneous.
Setting up a play is a creative process, and the final project evolves during
each step. In computer science the human part can be creative, a computer,
however, is not creative and can no evolve without human interactions.

Learning the field of theater, one discovers there is more to learn then
first though. There are terms, methods and processes. There are also the
reasons behind a process, and the wanted outcome of a process. The theater
field has different areas, same as for the field of computing. There are
high levels of education in acting, directing, writing, scenography and set
design. Therefore to gain an understanding behind and about the processes
in theater, requires a lot reading and learning from people with a under-
standing of the field. Knowledge within theater can be found by reading
and doing research, but the methods are not one way or the other. In com-
puter science there are one or zero, yes or no, right or wrong. In theater
there are different levels, there is most of the time many ways of doing
things.

Humans have personalities, and all persons are a little different. This
also applies to actors, or even applies extra to actors. An actor might be or
become a prima donna or diva, with resulting in conflicts between the cast.
This conflict between the cast, might delay the premier, the final product is
influenced by conflict, or result in actors or other personnel quiting.

To implement the diva into system administration, could as an example
be: Programing a webserver to suddenly and without warning stop talking
to the middleware. If testing monitoring tools or disaster recovering, this
feature could be beneficial. However, for the Audition this feature would
not bring any wanted side effects with implementing a diva into Audition.

77

Limitations

Many theaters have a high focus on creativity and delivering the best per-
formance, the economical part is often overlooked. Resulting in that many
theaters depend on extra funding to not be closed down because of negat-
ive balance.

6.1.5 Inheritance challenges

In theater the advantage and weakens is the human aspect. A person will
make a mistake at some point, it is only to be expected. One attempt to limit
the mistakes using rehearsals and trial performances. The advantages with
interaction between people is if the person makes a mistake, the other per-
son can react and help to minimize the impact. To transfer this feature into
computer science is to wast for this thesis, this feature is a separate research
area. Since the mistake can happen in all stages, the computer would need
to know all errors possible to happen and a solution for that.

6.1.6 Expectations for theater

Start working on this thesis one had some expectation about the theater,
these expectations were meet. However, improvisation proved to be
much more used and the area was deeper then expected. Discovering the
different usage helped with designing the framework. Not only allowing
for performance testing, but discovering the uniqueness of the system.
Improvisation helps the system administrator get a feeling for the server.

6.2 Defining "simpler"

Defining the term simpler is hard. To define simple, is something that is
easy. However, a hard solution to a solution almost impossible can also be
defined as simpler. By that statement, simpler is something that is easier
then something else.

Then the question is, how to measure if something is simpler then some-
thing else? There are many different ways of this, time spent on the process,
lines of code, how understandable something is, reusability or usability.
There are different ways of collecting the information, survey, line count,
time testing or implementation time.

The processes in theater are not used to make something simpler, it
is too ensure quality and the best performance. However, by adopting
processes from theater, one hope in the process to inherit simplicity through
peoples common knowledge about theater. By using a common area of
knowledge, will help to explain complex solutions simpler.

78

6.3 Adopting theater in system administration

The interview resulted in a set of models which was created in R1. Based on
the models, a framework where implemented in R2. The different stages
designed, were implemented in different phases. This allowed for each
stage could be tested, before a new stage was added.

After the implementation of all stages were completed, a full scale test
was executed. The test was a simulation of a real environment. In the test
the wanted role was a webserver, and the webserver needed help from a
database to serve the webpage. Different hosts auditioned for the role, if
a host did not execute the dialogue correctly the host was eliminated. The
hosts not eliminated went through an improvisation part, were the system
administrator can get a better understanding of the host. One of the sur-
viving hosts, would then be selected for the role. The selection was based
on the overall cost of different hosts.

The implementation although simplistic, show that the models de-
signed worked according to plan. Demonstrating the Audition can work
using a script. The system administrator is still a vital part of the process.
The manuscript have to be written and puppet classes need to be created if
not already existing.

After the Audition is completed, the system administrator have to
maintain the environment until the next Audition. The day-to-day tasks
for the system administrators has not been eliminated, and is still a vital
part of the environment.

6.4 Usage of plugins

During the Audition the dialogue used the plugin with success. However,
the plugins are not confined to only the ones created for this thesis. System
administrators can create their own plugins, with the wanted content. The
plugin wrap in features, usable in the dialogue. By standardizing how the
dialogue is written in Audition, it is easy for system administrators to reuse
plugins written by other.

6.5 Performance expectation

When conducted a full scale test of the prototype using the wordpress en-
vironment, no AMI-images or hardware types completed the audition with
success. The problem occurred when shifting from a low scale Audition,
including only one web server and no supporting host. After giving the
supporting host more and better CPU cores and more memory, still none

79

of the hosts auditioning did complete the audition with success.

At that stage the benchmark limit where lowered, and after a new
Audition all hosts completed with success.The problem was that the
expectations to the performance of the environment was such that they
where not fulfilled buy the actual performance. However, performance
is not one of the key elements of this thesis. Based on this the expected
environment performance were lowered to match the performance of the
environment.

6.6 Variations in results

When collecting the results from the full scale wordpress environment and
from initial prototype testing, there were occasionally a different result in
the cast selection. After bug testing the prototype for any errors within the
selection phase of Audition, the focused shifted towards interferences or
differences outside of Audition.

The problem was the instances provided by Amazon EC2, they had
some variation in performance. This fluctuation in performance may be
enough to decrease the performance of the host, so that the minimum
requirements is no longer meet. The fluctuation in performance using
Amazon EC2 have been documented in other research papers [90].

The change in the selected cast is therefore a sign that the framework
is working according to the model created, and not an error within the
selection process of an audition.

6.7 The cost of Audition

The economical cost of Audition, I would argue is inexpensive. As stated in
section 5.7.2, the cost of Audition using the complex example manuscript
cost a little over 12 dollars. The return for 12$ is: A environment consisting
of 12 host, which have been tested on performance and compatible with all
the new hosts in the environment. The whole environment is optimized on
price, however, the system performs better than the minimum performance
wanted from the network.

However, it is important to know that the 12$ is for the Audition. The
running cost of the network after the Audition is completed, will be in
addition according to the Amazon EC2 pricing.

6.8 The thesis experience

My initial thought was "How can theater help system administration, and
how can I explain it?". The project started with learning about the field of

80

theater, and the field proved to be a larger then expected. Luckily i met a
person with great knowledge about the theater field, and this started the
creative phase of creating models.

Implementing theater processes into a framework, is time consuming.
Not all ideas could be used, and I learned that it is never wrong to go back
and try again. The thesis required thinking outside the box, to be creative
and see solutions. To see how Audition evolved and the potential within
it, was one of the best experience during this thesis.

6.9 The fields affected by this work

Using visualization technology the well establish 3-5 year hardware life-
time is obsolete. With cloud computing one can lease a server on a hourly
basis, instead of buying the hardware. Therefore, the environment can
change frequently without any large economical cost. The system adminis-
trator wants to maintain a stable quality of service, while at the same time
considering the economical situation. Thus, the goal is to have an environ-
ment which meets the performance generated by users, to a lowest price
possible. This is a win-win situation for both sides.

A way to enable for these frequently changes in environment and soft-
ware, without adding more work pressure to the system administrator, is
using an automated release management tool. The usage of automated re-
lease management has increased after system administrator discovered the
benefits. Automated release management enables for scaling, the number
of system administrator is stable as the number of servers and services in-
creases.

6.9.1 Broaden the understanding of system administration

During the thesis, it has been shown that using terminology form a differ-
ent field of research has been used with success. The key is using a well es-
tablished term, to explain a complex system within system administration.
This enables for non technical personnel to understand complex systems,
and based on this can better understand the reasons behind, how system
administration works.

As an example, think of the following scenario: In a meeting the system
administrator is told about a completely new design that is ready to be im-
plemented as soon as possible. The system administrator explains, that in
order for the implementation to be deployed in production, different EC2
instances need to be tested. Then software validation, to ensure the soft-
ware versions for the new page need to work with the environment. Next
a test implementation, performance validation, quality assurance, then the

81

final deployment.

At that time, the non-technical person would understand little, and
have little basis for setting a deadline. Instead, by referring to theater one
could explain the process in a more understanding way: First there needs to
be an audition to assess the quality of the actor, the audition will detect any
compatibility problems regarding the excising actors. After the audition,
the play need to be rehearsed, before the grand premiere.

6.9.2 Continuous software releases

Automating the deployment of large scale environments in combination
with quality control, and reducing the complexity of the system. This is
not an attempt to reduce the need for system administrators. It is more an
attempt to release the system administrator from static and time consuming
tasks. Furthermore, trying to embrace DevOps thinking of constantly new
releases, combining this thinking with system administration. Instead of
an software release, why not a complete environment release?

6.10 Future work

The framework is designed with a focus on extensibility, this enables for
the system administrator to add features wanted with little effort.

A test implementation was presented in thesis, however to use Audi-
tion in a real working environment would result in more information about
how the framework works. Generating more data about the Audition, as
the environments evolves. This data could help the framework to evolve
and design and implement new features.

Allow for integration to Amazon AWS marketplace, this would allow
for third-parties to register an image which could be used by the Audi-
tion. This feature can not be implemented before Amazon provide an API
to the marketplace. However, when the API is released, the images could
be assigned a general role-description. A general role-description like web
server, which the Audition can use in the casting call.

The implementation is limited to using Amazon EC2 virtualization. Im-
plementing the possibility for choosing different technologies, could lead
to cost saving using a local cloud technology, for instance OpenStack or
Xen. Implementing new virtualization technologies would create a larger
marked for third-parties images.

82

Chapter 7

Conclusion

Cloud technology and DevOps have and will continue to influence the field
of system administration in the future, due to the change technology and
how users interact with technology. Adopting processes from theater has
been a small step in the right direction regarding automated system de-
ployment in a cloud environment.

Inheriting elements from the theater enabled for complex technical
solution to be simplified, and in the process opened up for a new think-
ing regarding cloud computing. By not owning the hardware, enables for
a continuous evolving environment. The processes inherited have resulted
in designing a prototype to demonstrate the possibility within the design.

The thesis discovered a new method to quality ensure, test and select
the ideal virtual machine based on performance quality and price for ar-
bitrarily large setups, modeled into a concept that is simple to understand
and convey. The prototype was demonstrated on two cases, one word-
press blog comprising of a database and server and one of a multi-tiered
web-based application with five separated layers of operation. A fully op-
erational extendiable framework, with a focus on simplicity is presented as
a solution for the problems with release management in cloud computing.

The processes behind the theater have survived for centuries, the
processes focus on quality. Which have resulted in millions of people
laughing, crying and smiling, over the last millennium. Using a different
field to share resources, can produce a positive or negative outcome.
So far theater has not been a part of system administration, but now
that door has been opened, different thoughts, strengths and weaknesses
have been detected. This thesis demonstrates how theater production
processes can be used to reduce conceptual complexity in automated
release management for web environments.

83

84

Bibliography

[1] Hussam Abu-Libdeh, Lonnie Princehouse and Hakim Weather-
spoon. ‘RACS: a case for cloud storage diversity’. In: Proceedings of
the 1st ACM symposium on Cloud computing. ACM. 2010, pp. 229–240.

[2] John Allspaw and Jesse Robbins. Web Operations: Keeping the Data on
Time. O’Reilly Media, 2010.

[3] Amazon. Amazon EC2 Pricing. http://aws.amazon.com/ec2/pricing/.
[Online; accessed May 2013]. May 2013.

[4] Amazon EC2 Instances. http://aws.amazon.com/ec2/instance-types/.
[Online; accessed May 2013]. May 2013.

[5] Paul Anderson. ‘System configuration.’ In: Short Topics in System
Administration (2006).

[6] Paul Anderson. ‘Towards a high-level machine configuration sys-
tem.’ In: Proceedings of the 8th USENIX conference on System admin-
istration (1993), pp. 19–26.

[7] Apache. http://www.apache.org/. [Online; accessed April 2013].
Apr. 2013.

[8] M. Armbrust et al. ‘A view of cloud computing’. In: Communications
of the ACM 53.4 (2010), pp. 50–58.

[9] William D Armitage, Alessio Gaspar and Matthew Rideout. ‘A UML
and MLN based approach to implementing a networking laboratory
on a scalable Linux cluster’. In: Journal of Computing Sciences in
Colleges 23.2 (2007), pp. 112–119.

[10] R. Barrett et al. ‘Field studies of computer system administrators:
analysis of system management tools and practices’. In: Proceedings of
the 2004 ACM conference on Computer supported cooperative work. ACM.
2004, pp. 388–395.

[11] BATS School of Improvisational Theatre. http://www.improv.org. [On-
line; accessed May 2013]. May 2013.

[12] Kyrre Begnum. ‘Managing large networks of virtual machines’.
In: Proceedings of the 20th Large Installation System Administration
Conference. 2006, pp. 205–214.

[13] Kyrre Begnum, Nii Apleh Lartey and Lu Xing. ‘Cloud-oriented vir-
tual machine management with mln’. In: Cloud Computing. Springer,
2009, pp. 266–277.

85

[14] Kyrre Begnum, John Sechrest and Steven Jenkins. ‘Getting more from
your virtual machine’. In: Journal of Computing Sciences in Colleges 22.2
(2006), pp. 66–73.

[15] Kyrre Begnum et al. ‘Using virtual machines in system administra-
tion education’. In: Proceedings of 4th International System Administra-
tion and Network Engineering Conference. System and Network Engineer-
ing. 2004.

[16] B. Beizer. Black-box testing: techniques for functional testing of software
and systems. John Wiley & Sons, Inc., 1995.

[17] Lynda Belt and Rebecca Stockley. Improvisation through theatre sports:
a curriculum to improve acting skills. Thespis Productions, 1991.

[18] T. Berners-Lee. ‘Information management: A proposal’. In: (1989).

[19] T. Brogårdh. ‘Present and future robot control development—An
industrial perspective’. In: Annual Reviews in Control 31.1 (2007),
pp. 69–79.

[20] John Brown. What is Theatre?: An Introduction and Exploration. Focal
press, 1998.

[21] Justin F Brunelle and Michael L Nelson. ‘Evaluating the SiteStory
Transactional Web Archive With the ApacheBench Tool’. In: arXiv
preprint arXiv:1209.1811 (2012).

[22] M. Burgess and R. Ralston. ‘Distributed resource administration
using cfengine’. In: Software: practice and experience 27.9 (1997),
pp. 1083–1101.

[23] George Candea, Stefan Bucur and Cristian Zamfir. ‘Automated
software testing as a service’. In: Proceedings of the 1st ACM symposium
on Cloud computing. ACM. 2010, pp. 155–160.

[24] Y Diao Chess et al. ‘Managing Web server performance with
AutoTune agents’. In: IBM Systems Journal 42.1 (2003), pp. 136–149.

[25] Liviu Ciortea et al. ‘Cloud9: A software testing service’. In: ACM
SIGOPS Operating Systems Review 43.4 (2010), pp. 5–10.

[26] R.J.W. Cline and KM Haynes. ‘Consumer health information seeking
on the Internet: the state of the art’. In: Health education research 16.6
(2001), pp. 671–692.

[27] Fred Cohen. ‘Computer viruses: theory and experiments’. In: Com-
puters and Security (1987), pp. 22–35.

[28] J. Conallen. ‘Modeling Web application architectures with UML’. In:
Communications of the ACM 42.10 (1999), pp. 63–70.

[29] Andrew Conry-Murray. The Public Cloud: Infrastructure As A Service.
TechWeb, 2009.

[30] H.M. Deitel et al. ‘Web services: a technical introduction’. In: (2003).

[31] Y. Deswarte and D. Powell. ‘Internet security: an intrusion-tolerance
approach’. In: Proceedings of the IEEE 94.2 (2006), pp. 432–441.

86

[32] M.S. Deutsch. Software verification and validation: Realistic project
approaches. Prentice Hall PTR, 1981.

[33] R.H. Dunn and RH Dunn. Software defect removal. McGraw-hill New
York et al., 1984.

[34] P.N. Edwards. ‘Infrastructure and modernity: Force, time, and social
organization in the history of sociotechnical systems’. In: Modernity
and technology (2003), pp. 185–225.

[35] J. Farrell and G. Saloner. ‘Standardization, compatibility, and innov-
ation’. In: The RAND Journal of Economics (1985), pp. 70–83.

[36] Harald Fecher et al. ‘29 new unclarities in the semantics of uml 2.0
state machines’. In: Formal Methods and Software Engineering (2005),
pp. 52–65.

[37] Johan Finstadsveen. ‘If your Webserver was an Animal, how would
you describe it?’ In: (2011).

[38] David A Forsyth and Jean Ponce. Computer vision: a modern approach.
Prentice Hall Professional Technical Reference, 2002.

[39] Martin Fowler. UML distilled: a brief guide to the standard object
modeling language. Addison-Wesley Professional, 2004.

[40] M. Fowler and J. Highsmith. ‘The agile manifesto’. In: Software
Development 9.8 (2001), pp. 28–35.

[41] S. Fox and J. Beier. Online banking 2006: surfing to the bank. Pew
Internet & American Life Project, 2006.

[42] Robert France et al. ‘The UML as a formal modeling notation’. In:
Computer Standards & Interfaces 19.7 (1998), pp. 325–334.

[43] Mikell P. Groover. Automation, Production Systems, and Computer-
Integrated Manufacturing. 3rd. Upper Saddle River, NJ, USA: Prentice
Hall Press, 2007. ISBN: 0132393212.

[44] K. Hafner and M. Lyon. Where wizards stay up late: The origins of the
Internet. Simon and Schuster, 1998.

[45] V. Hendrix, D. Benjamin and Y. Yao. ‘Scientific Cluster Deployment
and Recovery–Using puppet to simplify cluster management’. In:
Journal of Physics: Conference Series. Vol. 396. 4. IOP Publishing. 2012,
p. 042027.

[46] Alison Hodge. Twentieth-Century Actor Training. Taylor and Francis,
2000.

[47] Ming Huo et al. ‘Software quality and agile methods’. In: Computer
Software and Applications Conference, 2004. COMPSAC 2004. Proceed-
ings of the 28th Annual International. IEEE. 2004, pp. 520–525.

[48] Rahman Md Jahidur. ‘Investigating Configuration Management
Tools Usage in Large Infrastructure’. In: (2012).

87

[49] Kyrre Begnum Johan Finstadsveen. ‘What a webserver can learn
from a zebra and what we learned in the process’. In: CHIMIT ’11
Proceedings of the 5th ACM Symposium on Computer Human Interaction
for Management of Information Technology (2011).

[50] Keith Johnstone. Impro: Improvisation and the theatre. Routledge, 1981.

[51] O. Kephart and D. M. Chess. ‘The vision of autonomic computing.’
In: Computer (2003).

[52] Eric Knorr and Galen Gruman. ‘What cloud computing really
means’. In: Infoworld, April 7 (2008).

[53] Bruce Kogut and Anca Metiu. ‘Open-source software development
and distributed innovation’. In: Oxford Review of Economic Policy 17.2
(2001), pp. 248–264.

[54] D. Kotz and R.S. Gray. ‘Mobile Agents and the Future of the Internet’.
In: Operating systems review 33.3 (1999), pp. 7–13.

[55] Charles W Krueger. ‘Software reuse’. In: ACM Computing Surveys
(CSUR) 24.2 (1992), pp. 131–183.

[56] Anthony A. Lekkos and Carl M. Peters. ‘How to develop module
logic using pseudo-code and stepwise refinement’. In: Proceedings of
the 15th Design Automation Conference. DAC ’78. Las Vegas, Nevada,
USA: IEEE Press, 1978, pp. 366–370. URL: http://dl.acm.org/citation.
cfm?id=800095.803116.

[57] Alexander Lenk et al. ‘What’s inside the Cloud? An architectural map
of the Cloud landscape’. In: Proceedings of the 2009 ICSE Workshop on
Software Engineering Challenges of Cloud Computing. IEEE Computer
Society. 2009, pp. 23–31.

[58] Josh Lerner and Jean Tirole. ‘Some simple economics of open source’.
In: The journal of industrial economics 50.2 (2002), pp. 197–234.

[59] Ang Li et al. ‘CloudCmp: comparing public cloud providers’. In:
Proceedings of the 10th annual conference on Internet measurement. ACM.
2010, pp. 1–14.

[60] Lighttpd. http://www.lighttpd.net/. [Online; accessed April 2013].
Apr. 2013.

[61] J. Loope. Managing Infrastructure with Puppet. O’Reilly Media, 2011.

[62] C. Mann and F. Maurer. ‘A case study on the impact of scrum
on overtime and customer satisfaction’. In: Agile Conference, 2005.
Proceedings. IEEE. 2005, pp. 70–79.

[63] David Mosberger and Tai Jin. ‘httperf—a tool for measuring web
server performance’. In: ACM SIGMETRICS Performance Evaluation
Review 26.3 (1998), pp. 31–37.

[64] G.J. Myers, C. Sandler and T. Badgett. The art of software testing. Wiley,
2011.

[65] AB MySQL. MySQL. 2001.

88

http://dl.acm.org/citation.cfm?id=800095.803116
http://dl.acm.org/citation.cfm?id=800095.803116

[66] Thomas H Naylor and Joseph Michael Finger. ‘Verification of
computer simulation models’. In: Management Science 14.2 (1967), B–
92.

[67] J. Nielsen. Hypertext and hypermedia. Vol. 263. Academic Press San
Diego, CA, 1990.

[68] Daniel Nurmi et al. ‘The eucalyptus open-source cloud-computing
system’. In: Cluster Computing and the Grid, 2009. CCGRID’09. 9th
IEEE/ACM International Symposium on. IEEE. 2009, pp. 124–131.

[69] Raymond Obstfeld. Novelist’s Essential Guide to Crafting Scenes.
Writers Digest Books, 2000.

[70] F. Önnberg. ‘Software Configuration Management: A comparison of
Chef, CFEngine and Puppet’. PhD thesis. University of Skövde, 2012.

[71] Oslo National Academy of the Arts. http://www.khio.no/Engelsk/.
[Online; accessed May 2013]. May 2013.

[72] T. Ostrand. ‘White-Box Testing’. In: Encyclopedia of Software Engineer-
ing ().

[73] S. Pandey. ‘Investigating Community, Reliability and Usability of
CFEngine, Chef and Puppet’. In: (2012).

[74] Patrice Pavis and Christine Shantz. Dictionary of the theatre: Terms,
concepts, and analysis. University of Toronto Press, 1998.

[75] Red Hat CloudForms. http://www.redhat.com. [Online; accessed May
2013]. May 2013.

[76] Red Hat Unveils Hybrid Cloud, PaaS Plans. http://www.pcworld.com.
[Online; accessed May 2013]. May 2013.

[77] Gianna Reggio and Roel Wieringa. ‘Thirty one Problems in the
Semantics of UML 1.3 Dynamics’. In: OOPSLA. Vol. 99. Citeseer.
1999.

[78] Matthew Sacks. ‘DevOps Principles for Successful Web Sites’. In: Pro
Website Development and Operations. Springer, 2012.

[79] Viola Spolin. Improvisation for the theater: A handbook of teaching and
directing techniques. Northwestern University Press Evanston, IL,
1983.

[80] Viola Spolin. Theater games for the classroom: A teacher’s handbook.
TriQuarterly Books, 1986.

[81] Viola Spolin, Carol Bleackley Sills and Rob Reiner. Theater games for
rehearsal: A director’s handbook. Northwestern University Press, 2011.

[82] Viola Spolin, Paul Sills and Carol Sills. Theater games for the lone actor.
Northwestern University Press, 2001.

[83] The Julilliard school. http://www.juilliard.edu. [Online; accessed May
2013]. May 2013.

[84] Aleksey Tsalolikhin. Summary, Configuration Management Summit.
2010.

89

[85] Tugkan Tuglular. ‘Test case generation for firewall implementation
testing using software testing techniques’. In: Proceedings of the
International Conference on Security of Inform. and Networks. 2008,
pp. 196–203.

[86] A.M. Turing. ‘Computing machinery and intelligence’. In: Mind
59.236 (1950), pp. 433–460.

[87] J.E. Tyvand and Universitetet i Oslo Institutt for informatikk. On
the Predictability of Server Resources in Online Games: An Investigative
Approach. J.E. Tyvand, 2011. URL: http://books.google.no/books?id=
U5NLMwEACAAJ.

[88] F.I. Vokolos and E.J. Weyuker. ‘Performance testing of software
systems’. In: Workshop on Software and Performance: Proceedings of the 1
st international workshop on Software and performance. Vol. 12. 16. 1998,
pp. 80–87.

[89] W3C. Web services architecture requirements, W3C Working Draft.
http://www.w3c.org/TR/2002/WD-wsa-reqs-20020429. (Visited Jan.
2013). 2002.

[90] Guohui Wang and TS Eugene Ng. ‘The impact of virtualization on
network performance of amazon ec2 data center’. In: INFOCOM,
2010 Proceedings IEEE. IEEE. 2010, pp. 1–9.

[91] Lizhe Wang et al. ‘Scientific cloud computing: Early definition and
experience’. In: High Performance Computing and Communications,
2008. HPCC’08. 10th IEEE International Conference on. IEEE. 2008,
pp. 825–830.

[92] Steve Weber. The success of open source. Vol. 368. Cambridge Univ
Press, 2004.

[93] Aaron Weiss. ‘Computing in the clouds’. In: Computing 16 (2007).

[94] D. Zamboni. Learning CFEngine 3: Automated System Administration
for Sites of Any Size. O’Reilly Media, 2012.

[95] Jinzy Zhu et al. ‘IBM cloud computing powering a smarter planet’.
In: Cloud Computing (2009), pp. 621–625.

90

http://books.google.no/books?id=U5NLMwEACAAJ
http://books.google.no/books?id=U5NLMwEACAAJ

Appendix A

The different plugin scripts

91

1 sub connect_db {
2

3 my $hostname = $_ [0] ;
4 my $params = $_ [1] ;
5

6 open (SSH , " ssh $hostname /root/connect−db . sh ↪→
←↩ $params |") ;

7 while (my $ l i n e = <SSH>) {
8

9 i f ($ l i n e =~ /OK/) {
10 c l o s e (SSH) ;
11 return 1 ;
12 }
13 }
14 c l o s e (SSH) ;
15 return 0 ;
16 }
17

18 1 ;

92

1 sub content_web {
2

3 my $hostname = $_ [0] ;
4 my $ s t r i n g = $_ [1] ;
5 (my $url , my $content) = s p l i t /\s +/ , $ s t r i n g ;
6

7 my $checkurl = " ht tp :// $ { hostname } $ur l " ;
8 print " Url : ’ $checkurl ’ content : ’ $content ’\n" ;
9

10 open (WGET, " wget −O − −q $checkurl |") ;
11 while (my $ l i n e = <WGET>) {
12 i f ($ l i n e =~ /$content/) {
13 c l o s e (WGET) ;
14 return 1 ;
15 }
16 }
17 c l o s e (WGET) ;
18 return 0 ;
19 }
20

21 1 ;

93

1 sub benchmark_web {
2

3 my $webip = $_ [0] ;
4 my $arguments = $_ [1] ;
5 my $num_call = 1 ;
6 my $num_conn ;
7 my $ l i m i t ;
8

9 (my $rate , my $page) = s p l i t /\s +/ , $arguments ;
10

11 $ l i m i t = ($rate −2) ;
12 $num_conn = ($ r a t e * 1 0) ;
13

14 open (HTTP, " h t t p e r f −−server=$webip −−u r i=$page ↪→
←↩ −−port 80 −−r a t e $ r a t e −−num−conn ↪→
←↩ $num_conn −−num−c a l l $num_call |") ;

15 while (my $ l i n e = <HTTP>) {
16 print "LINE : $ l i n e " ;
17 i f ($ l i n e =~ ↪→

←↩ /Request\s+ r a t e :\ s +(\d+.?\d ?) \s . * /) {
18 i f ($1 >= $ l i m i t) {
19 c l o s e (WGET) ;
20 return 1 ;
21 }
22 }
23 }
24 c l o s e (HTTP) ;
25 return 0 ;
26 }
27 1 ;

94

1 # ! / usr / b in / p e r l
2

3 use Data : : Dumper ;
4 use Cwd qw() ;
5

6 my $ p r o j e c t = " macbeth " ;
7

8 our %PLUGIN_LIST = () ;
9

10 f indPlugins () ;
11

12 foreach (keys %PLUGIN_LIST) {
13 my $ f i l e = $PLUGIN_LIST { $_ } ;
14 print " $ f i l e \n" ;
15 requi re " $ f i l e " ;
16 }
17

18 open (FILE ,$ARGV[0]) or die ("AAAAHHH $!\n") ;
19

20 my %SCENES ;
21 my %RESULT ;
22 my %RANK;
23

24 my @supportip ;
25 my @supportdns ;
26 my @supportr ;
27

28

29 my $mln_f i l e ;
30 my $importantro le = 0 ;
31 my $importantinprov = 0 ;
32 my $ n r l i n e s d i a l o g =0;
33

34 while (my $ l i n e = <FILE>) {
35 i f ($ l i n e =~ /m l n _ f i l e\s (\S+)/) {
36 $mln_f i l e=$1 ;
37 print " F i l e i s named : $mln_f i l e\n" ;
38 }
39 i f ($ l i n e =~ /scene\s +(\S+)\s +{/) {
40 my $scene = $1 ;
41 print " found scene $scene\n" ;
42 $ l i n e = <FILE >;
43 while (not $ l i n e =~ /}/) {
44 print " parsed l i n e $ l i n e " ;
45

46 i f ($ l i n e =~ /dialogue\s {/) {
47 my $dialogue = " dialogue " ;
48 $ l i n e = <FILE >;

95

49 my $dialognr = 1 ;
50 while (not $ l i n e =~ /}/) {
51 $SCENES{ $scene } { $dialogue } { $dia lognr } ↪→

←↩ = $ l i n e ;
52 $dia lognr ++;
53 $ l i n e = <FILE >;
54 }
55 $ n r l i n e s d i a l o g =($dialognr −1) ;
56 }
57

58 i f ($ l i n e =~ /improv\s {/) {
59 my $improv = " improv " ;
60 $ l i n e = <FILE >;
61 my $improvnr = 1 ;
62 $importantinprov = 1 ;
63 while (not $ l i n e =~ /}/) {
64 $SCENES{ $scene } { $improv } { $improvnr } = ↪→

←↩ $ l i n e ;
65 $improvnr ++;
66 $ l i n e = <FILE >;
67 }
68 }
69

70

71 i f ($ l i n e =~ /\s +(support_ro les) \s + (. *) /) {
72 $ l i n e =~ s/\r\n//;
73 $ l i n e =~ /\s +(support_ro les) \s + (. *) / ;
74 my @support = s p l i t (’ , ’ , $2) ;
75 $m=0;
76 while ($m <= $# s u p p o r t) {
77 $ s r o l e =$support [$m] ;
78 $SCENES{ $scene } { $1 } { $ s r o l e }= " 1 " ;
79 $m++;
80 }
81 $importantro le = 1 ;
82 }
83

84

85 e l s i f ($ l i n e =~ /(\S+)\s + (. *) /) {
86 $SCENES{ $scene } { $1 } = $2 ;
87 }
88 $ l i n e = <FILE >;
89 }
90 }
91 }
92

93 c l o s e (FILE) ;
94

96

95 open FILE , "<" , " c a s t i n g " or die ("AAAAHHH $!\n") ;
96 my @IMAGES;
97 while (my $ l i n e = <FILE>) {
98 push (@IMAGES, $ l i n e) ;
99 }

100 c l o s e (FILE) ;
101

102 chomp(@IMAGES) ;
103

104 my $ f i l e t o w r i t e ="MLN_CONFIG" ;
105 my $ f i l e t o r e a d ="MLN_TEMPLATE" ;
106 my $mlnhosts=$#IMAGES ;
107

108 open MLN_TEMPLATE, "<" , $mln_f i l e or die ("Where ↪→
←↩ i s the f i l e , a r r r r $!\n") ;

109 open MLN_CONFIG, ">" , "mln−conf ig . mln" or ↪→
←↩ die (" The f i l e could not be created , a r r r r ↪→
←↩ $!\n") ;

110 while (< $ f i l e t o r e a d >) {
111 print $ f i l e t o w r i t e $_ ;
112 } # c l o s e w h i l e t e m p l a t e
113

114 foreach my $scene (keys %SCENES) {
115 $ i =0;
116 while ($ i <= $mlnhosts) {
117 $ h o s t i n f o = "$SCENES{ $scene } { r o l e } " ;
118 $ h o s t i n f o =~ /(\w*) /;
119 print $ f i l e t o w r i t e " host $IMAGES[$ i]−$1 \{\n" ;
120 print $ f i l e t o w r i t e " s u p e r c l a s s " ↪→

←↩ . $SCENES{ $scene } { r o l e } . "\n" ;
121 print $ f i l e t o w r i t e " ec2 \{\n" ;
122 print $ f i l e t o w r i t e " type $IMAGES[$ i]\n" ;
123 print $ f i l e t o w r i t e " ami ami−3fec7956\n" ;
124 print $ f i l e t o w r i t e " \}\n" ;
125 print $ f i l e t o w r i t e " \}\n" ;
126 print $ f i l e t o w r i t e "\n" ;
127

128 $ i ++;
129 } # end m l n ho s t s w h i l e
130

131

132 i f ($ importantro le == " 1 ") {
133 while (($key) = ↪→

←↩ each ($SCENES{ $scene } { support_ro les })) {
134 print $ f i l e t o w r i t e " host " . $key . " \{\n" ;
135 print $ f i l e t o w r i t e " s u p e r c l a s s " . $key . ↪→

←↩ "\n" ;
136 print $ f i l e t o w r i t e " ec2 \{\n" ;

97

137 print $ f i l e t o w r i t e " type m1. medium\n" ;
138 print $ f i l e t o w r i t e " ami ami−def89fb7\n" ;
139 print $ f i l e t o w r i t e " \}\n" ;
140 print $ f i l e t o w r i t e " \}\n" ;
141 print $ f i l e t o w r i t e "\n" ;
142 }
143 }
144

145 } # end s c e n e f o r w a c h
146

147 c l o s e MLN_CONFIG;
148 c l o s e MLN_TEMPLATE;
149

150 system (" mln bui ld −r −f mln−conf ig . mln") ;
151

152 $mlnhosts=$#IMAGES ;
153 $ t e s t d a t a b a s e ;
154

155 foreach my $scene (keys %SCENES) {
156 print " Scene\n" ;
157 $p =0;
158 i f ($ importantro le == 1) {
159 while (($key) = ↪→

←↩ each ($SCENES{ $scene } { support_ro les })) {
160 $output = ‘mln s t a r t −p $ p r o j e c t −h $key ‘ ;
161 s leep (6 0) ;
162 $output =~ /.*\ s (i−\S *) \s . * / ;
163 my $ec2id = $1 ;
164 $ec2din = ‘ ec2din $ec2id ‘ ;
165 $ec2din =~ / . * (ec2 − . * . amazonaws . com) . * / ;
166 $sdns = $1 ;
167 $supportdns [$p] = $1 ;
168 $outputsupport = ‘ ssh − i ↪→

←↩ /home/ubuntu /. ssh/ e n t e r p r i s e −o ↪→
←↩ " StrictHostKeyChecking no " ↪→
←↩ ubuntu\@$sdns " i f c o n f i g " ‘ ;

169 $outputsupport =~ ↪→
←↩ /\s+ i n e t \s+addr : (1 0 . \ d+.\d+.\d+)\s +/;

170 $supportip [$p] = $1 ;
171 $ t e s t d a t a b a s e = $1 ;
172 $supportr [$p] = $key ;
173 $p++;
174 s leep (6 0) ;
175

176

177 }
178 }
179

98

180 $ j =0;
181 while ($ j <= $mlnhosts) {
182 $ h o s t i n f o = "$SCENES{ $scene } { r o l e } " ;
183 $ h o s t i n f o =~ /(\w*) /;
184 $ h o s t r o l e = $1 ;
185 $imagename = "$IMAGES[$ j]−$1 " ;
186 print " imagename : $imagename\n" ;
187 print " projectname : $ p r o j e c t \n" ;
188 $output = ‘mln s t a r t −p $ p r o j e c t −h $imagename ‘ ;
189 $output =~ /.*\ s (i−\S *) \s . * / ;
190 my $ec2id = $1 ;
191 $ec2din = ‘ ec2din $ec2id ‘ ;
192 $ec2din =~ / . * (ec2 − . * . amazonaws . com) . * / ;
193 my $hostdns = $1 ;
194 print " $hostdns\n" ;
195 s leep (6 0) ;
196 $puppetsuccsess = 0 ;
197 $hostrun =0;
198 while ($puppetsuccsess != 1) {
199 $outputhost = ‘ ssh − i ↪→

←↩ /home/ubuntu /. ssh/ e n t e r p r i s e −o ↪→
←↩ " StrictHostKeyChecking no " ↪→
←↩ ubuntu\@$hostdns " c a t /tmp/puppet . t x t ↪→
←↩ 2>/dev/n u l l " ‘ ;

200 i f ($outputhost and $outputhost != 4 && ↪→
←↩ $outputhost != 6) {

201 $puppetsuccsess = 1 ;
202 print " puppet s u c c s e s s f u l l y i n s t a l l e d \n" ;
203 }
204 e lse {
205 $hostrun ++;
206 s leep (6 0) ;
207 print " cant connect to host , run nr ↪→

←↩ $hostrun\n" ;
208 i f ($hostrun == 10) { l a s t ; }
209 }
210 }
211

212 $wholel ine ;
213 $restemp ;
214 $dropimprov =0;
215 $nrimgdialog =0;
216 $dia lognr =1;
217 i f ($puppetsuccsess == 1) {
218 print " s t a r t i n g bacnmark t e s t i n g \n" ;
219 @dialog = keys %{$SCENES{ $scene } { dialogue } } ;
220 $ d i a l o g u e l i n e s = s c a l a r (@dialog) ;
221 $d =1;

99

222 $dialoguehost =0;
223 $dialogueplugin =0;
224 $dia loguecontent =0;
225 while ($ d i a l o g u e l i n e s >= $d) {
226 $wholel ine = $SCENES{ $scene } { dialogue } { $d } ;
227 $wholel ine =~ ↪→

←↩ /\s +\[(\w+) \] :\ s +(\w+\.+\w+)\s (. *) / ;
228 $dialoguehost = $1 ;
229 $dialogueplugin = $2 ;
230 $dia loguecontent = $3 ;
231 $w=0;
232 my $inshos t ;
233 while ($dia loguecontent =~ ↪→

←↩ /\[(database) \]/) {
234 my $temphost = $1 ;
235 $u = $# s u p p o r t r ;
236 while ($w <= $u) {
237 i f ($1 eq $supportr [$w]) {
238 $ inshos t = $supportip [$w] ; # f i n d ↪→

←↩ t h e IP
239 }
240 $w++;
241 }
242 $dia loguecontent =~ ↪→

←↩ s /\[$temphost \]/ $ t e s t d a t a b a s e /;
243 } # end d i a l o g u e c o n t e n t w h i l e
244 $dialogueplugin =~ s /\./_/g ;
245 $restemp = &$dialogueplugin (" $hostdns " , ↪→

←↩ " $dia loguecontent ") ;
246 i f ($restemp == 0) {
247 print " done with : $imagename\n" ;
248 print " The host f a i l e d the dia log\n" ;
249 $dropimprov =1;
250 l a s t ;
251 }
252 e lse {
253 $nrimgdialog ++;
254 print " done with : $imagename\n" ;
255 print " The host compelted the dia log with ↪→

←↩ s u c c s e s s\n"
256 }
257 $d++;
258 }
259

260 i f ($nrimgdialog == $ n r l i n e s d i a l o g) {
261 $RESULT{ $scene } { $ h o s t r o l e } { $imagename } { $wholel ine } ↪→

←↩ = $restemp ;
262 }

100

263

264 i f ($importantinprov == 1 and $dropimprov == ↪→
←↩ 0) {

265 my $improtemp = Cwd : : cwd () ;
266 $path = " $improtemp/improv/" ;
267 print " s t a r t i n g improv t e s t i n g \n" ;
268 $ i m p r o f i l e = " improv−$imagename " ;
269 @idialog = keys %{$SCENES{ $scene } { improv } } ;
270 $ i d i a l o g u e l i n e s = s c a l a r (@idialog) ;
271 $d =1;
272 while ($ i d i a l o g u e l i n e s >= $d) {
273 $wholel ine = $SCENES{ $scene } { improv } { $d } ;
274 $wholel ine =~ s/\r\n//;
275 $ iwhole l ine = $wholel ine ;
276 $improvout= ↪→

←↩ &improv (" $hostdns " , " $ iwhole l ine ") ;
277 $fpath = " $path$improf i le " ;
278 open (MYFILE , ">>" , $fpath) or ↪→

←↩ die ("AAAAHHHasd $!\n") ;
279 print MYFILE $improvout ;
280 c l o s e (MYFILE) ;
281 $d++
282 }
283 } # end i n p r o v
284

285 ‘ ssh−keygen −f "/root / . ssh/known_hosts " −R ↪→
←↩ ec2−54−235−248−54.compute−1.amazonaws . com ‘ ;

286 }
287

288 $ j ++;
289 } # end mln h o s t s
290

291 } # end s c e n e
292

293 @pricename ;
294 @price ;
295

296 open (PRICE , " p r i c e l i s t . t x t ") or die ("AAAAHHH $!\n") ;
297 while (my $ l i n e = <PRICE>) {
298 (my $name , my $pr ice1) = s p l i t (/\s +/ , $ l i n e) ;
299 print "name : $name and the p r i c e i s : $pr i ce1\n" ;
300 push (@pricename , $name) ;
301 push (@price , $pr i ce1) ;
302 }
303 c l o s e (PRICE) ;
304

305 my $ i m a g e l i s t = $# p r i c e n a m e ;
306 $ i m a g e l i s t = $ i m a g e l i s t +1;

101

307

308 foreach my $scene (keys %RESULT) {
309

310 my %ROLEHASH = %{$RESULT{ $scene } } ;
311

312 foreach my $ r e s u l t r o l e (keys %ROLEHASH) {
313 my %HNAMEHASH = %{$ROLEHASH{ $ r e s u l t r o l e } } ;
314 print " r o l l e : $ r e s u l t r o l e \n" ;
315

316 foreach my $hname (keys %HNAMEHASH) {
317 $n =0;
318 my %HBENCH = %{$HNAMEHASH{ $hname } } ;
319 print "hname : $hname\n" ;
320 $hname =~ / (. *) − .*/;
321 $fimagetype = $1 ;
322 while ($ i m a g e l i s t >= $n) {
323 i f ($fimagetype eq $pricename [$n]) {
324 $RANK{ $ r e s u l t r o l e } { $hname}= $ p r i c e [$n] ;
325 }
326 $n++;
327 }
328 foreach my $ h r e s u l t (keys %HBENCH) {
329 }
330 }
331 }
332

333 }
334

335

336 foreach my $frank (keys %RANK) {
337 $imgprice =999999999999;
338 $cheapestimg=" " ;
339 my %RANKROLE = %{$RANK{ $frank } } ;
340 foreach my $ r e s u l t r o l e (keys %RANKROLE) {
341 print " Image : $ r e s u l t r o l e and p r i c e : " . ↪→

←↩ $RANKROLE{ $ r e s u l t r o l e } . "\n" ;
342 $tempvalue = $RANKROLE{ $ r e s u l t r o l e } ;
343 i f ($imgprice >= $tempvalue) {
344 $imgprice = $tempvalue ;
345 $cheapestimg = $ r e s u l t r o l e ;
346 }
347 }
348 print " Image : $cheapestimg and p r i c e : $imgprice ↪→

←↩ \n" ;
349 }
350

351

352 sub improv {

102

353 my $hostname = $_ [0] ;
354 my $command = $_ [1] ;
355 $ r e s u l t = ‘ ssh − i /home/ubuntu /. ssh/ e n t e r p r i s e ↪→

←↩ −o " StrictHostKeyChecking no " ↪→
←↩ ubuntu\@$hostname " $command " ‘ ;

356 return $ r e s u l t ;
357 }
358

359

360 sub f indPlugins {
361

362 my $temp = Cwd : : cwd () ;
363 $path = " $temp/plugins " ;
364 i f (−d $path) {
365 my $plugin ;
366 my @ d i r l i s t = ‘ l s $path ‘ ;
367 foreach $plugin (@ d i r l i s t) {
368 chomp($plugin) ;
369 i f (not ($plugin =~ /^\./ or $plugin =~ /~/)) {
370 my $key = $plugin ;
371 $PLUGIN_LIST { $key } = " $path/$plugin " ;
372 }
373 }
374 c l o s e d i r (DIR) ;
375 }

103

104

Appendix B

Article written based on thesis
work

105

Audition: a DevOps-oriented service optimization and testing framework for
cloud environments

Gaute Borgenholt
University of Oslo

Institute of Informatics
gautebo@ifi.uio.no

Kyrre Begnum, Paal E. Engelstad
Oslo and Akershus University College

of applied sciences
Department of Computer Science
{kyrre.begnum—paal.engelstad}@hioa.no

Abstract

This paper demonstrates an approach to automated test-
ing and quality assurance in cloud environments, which
also takes deployment cost into consideration. With a
distributed service architecture and some given perfor-
mance goals, the end result will be a suggestion of the op-
timal resource type and filesystem with the lowest price
point for each function of the architecture. Our solution
is modeled after the auditioning process in the theatre in-
dustry, which provides a process that fits well into our
context and is easy to understand and follow. The result-
ing tool, Audition, is a working implementation of our
model and is extendable in several ways, allowing for in-
tegration with local technologies.

Keywords

DevOps, Automation, Configuration Management, Vir-
tualization, Cloud, Tools

1 Introduction

Deploying a site in an IaaS cloud environment provides
incredible flexibility and streamlined operations logic.
Sysadmins can boot new virtual machines in seconds
and, when combined with modern configuration manage-
ment tools, they can start being productive in minutes.
The Cloud is proposed as a universal panacea for all our
operations logic and DevOps ailments, but with it comes
new challenges that are not yet addressed:

• Price. The overall cost picture has become more
difficult for the individual sysadmin to control prop-
erly. There is a wealth of cost-related variables tied
to usage, time and resource allocations.

• Complexity. Modern services consist of many
building blocks. Finding the cheapest option that

still meets performance goals is a cumbersome pro-
cess and leads to old-fashioned over-provisioning,
which in turn drives costs up.

Overall, the current cloud APIs and consoles do a good
job at presenting the cost and parameters relative to sin-
gle virtual machines. However, most large-scale sites
operate with a multitude of virtual machines, which are
assigned different roles and configured in very specific
ways. Doing the selection of the right set of virtual ma-
chines running in the right constellation, can be a work-
intensive process, given the complexity in terms of the
building blocks of a service and the often strict cost re-
quirements associated with it. To address this problem,
we propose Audition, which is a tool to automate this
complex and work-intensive analysis process. Audition
will find a constellation that meets the given performance
requirements of the service at the minimum cost. The
cloud paradigm already provides cost benefits in terms
of the ability to scale resources based on demand. Audi-
tion may augment the scaling and provide additional cost
benefits by minimizing the cost for the current constella-
tion of virtual machines given the current performance
requirements.

Imagine a company who’s primary business is running
a website. Using agile development and streamlined re-
leases in the DevOps spirit, they anticipate releases often,
sometimes only a week apart between rollouts. Every
time they deploy a new build, they also create a new ver-
sion of their environment in a cloud, which then starts to
receive new traffic as the old site winds down.

For every new release, the operations engineer is faced
with the same decision: What instance type should be
used for each role in the site? Roles, such as web-server,
database, loadbalancer and middleware server, all have
their specific performance requirements. The easy an-
swer would be to go for a powerful type, but that would
drive the price up. Furthermore, since the current version
of the site only lives for a relative short time (weeks),

there is no use over-provisioning it for years to come.
Once the type is decided upon, there is the question of

what appliance image to use for each role. Since config-
uration is centralized using tools like Puppet, Cfengine
or Chef, the actual Linux version and distribution can be
changed at every release. This allows for a great free-
dom, and one can avoid “lockdown” to a single distri-
bution or family of them. Moreover, cloud providers,
such as Amazon AWS [1], have their own marketplace
for virtual machine images, which enables sysadmins to
virtually cherry-pick the right, specialized image for the
job. In practice, however, it is a problem of navigating
through a wealth of available images, and the amount of
testing required would be impractical. Remember, since
the site changes very often, these changes can impact the
requirements regarding hardware type (performance) and
Linux distribution (libraries and versions) every time.

With the Audition tool presented in this paper, we
demonstrate a way to streamline site optimization for
complex virtualized environments, which are tightly in-
tegrated with configuration management. We build a pro-
cess of automated testing and benchmarking along with
cost analysis, which takes into account the different roles
of servers and presents a recommended constellation for
each new deployment. Even though Audition sounds
familiar to ordinary test frameworks, the software de-
veloped is not the only focus of Audition. Instead, the
uniqueness of Audition is that it is the machine image
combined with the hardware type that is tested when run-
ning the software.

Our project modeled the process after the well-
established auditioning process of the acting industry.
Figure 1 shows a high-level diagram of the concept we
adopt. More details can be found in Figure 2 when the ar-
chitecture and implementation is described. We decided
on mimicking their process based on the following argu-
ments:

• We find a group of actors auditioning for a play to
have many similarities to our case. The entire de-
ployment can be seen as a play, where each server
plays a distinct role with a very clear description
from a manuscript. The sysadmin resembles the di-
rector, who manages the manuscript, but needs to
find the right actor for each role.

• The auditioning process establishes two important
properties with each actor:

– Quality assurance. Can the actor perform from
the manuscript to the level of quality as de-
manded by the director?

– Price optimization. From a business perspec-
tive, the best actor for each role is the one

Manuscript

Actors

Audition

Selected cast

Audition

AMI + Instance type
combinations

Manuscript

Selected cast

Webcache
Proxy

Web-servers

Database

Adaption of process

Audition concept

Figure 1: Concept illustration. Just like actors audition-
ing for a role, so do virtual machines in a cloud envi-
ronment. The resulting cast will be the chosen virtual
machine types and images for the architecture in ques-
tion.

who performs within acceptable limits and de-
mands the least pay. (Actors who drive ticket
sales by being famous are not part of our
model.)

• Easy to understand. In our field, using analogies
and loaded terminology is a common way to con-
vey basic functioning of a tool. Good examples
of such are Puppet [12], Chef [2] and Autopsy [5].
Blank-Edelmann and Lee have with an entertaining
and comical perspective demonstrated that there are
similarities between our profession and other, more
established ones [8]. The deeper and inspiring mes-
sage is that they face similar challenges and often
have developed strategies within their own domain
in order to cope. This may be transferred to our
field.

We find that the need to assess the behavior of a virtual
machine is especially important for cloud environments.
A virtual instance may not only vary in its resources, but
one is also free to pick images from different operating
system distributions and third parties. Furthermore, these
images may be featured with certain specializations in
order to work smoothly in a cloud setting. Some of these
modifications might not cause problems during regular

2

testing but may pose problems later while integrating
other infrastructure services. For example, non-standard
device naming may confuse monitoring toolkits or miss-
ing libraries for the backup system to work properly.

In the next section we present the auditioning model
and how we have applied it to our case. Section 3 de-
scribes the architecture and implementation while Sec-
tion 4 explains the intended workflow. Section 5 will
discuss our solution.

2 The casting model applied on release
management

In this section we provide a brief introduction to the au-
ditioning process in the world of theatre. For every part
described, we link it to the domain of system administra-
tion and describe how it is incorporated into the model.

2.1 The manuscript
At the heart of every major theatre and movie production
is the manuscript, or script. The manuscript contains de-
tails about each role along with the dialogue and other
descriptions of the environment and context. The dia-
logue is organized into scenes and only a subset of roles
may be present at each scene. Every role is occupied
by an actor, who interprets the role. The director is re-
sponsible for managing the actors in such a way that their
interpretations match with the manuscript and the overall
theme of the play.

The manuscript and its components translate well into
our context. Our systems are assigned roles too, such
as database, web-server and monitoring host. Together,
they function as one large ensemble performing together
for a single purpose: a service. The roles are defined as
manifests in a configuration management system which
clearly defines what each role should do. The basic
elements of configuration management are specifying
which software packages to install, setting the content
of configuration files and ensuring that desired services
are running. Our model expands that list with ensuring
correct functioning of the software as well as desired per-
formance levels for each role in relation to the SLA.

The interpretation is still left with each system, as they
may vary in version, distribution type and performance.

2.2 The casting call
Before actors can become part of a play, they need to
audition for a role. The audition is advertised through a
casting call, which is sent to agencies and job boards.
The casting call provides details about what roles are
available and the traits and skills the role requires. Such
traits can be physical appearance or the ability to speak

with an accent. This is an early sorting mechanism in or-
der to limit the number of applicants for each role. The
actors who fit the bill will sign up for the audition.

In our field, this phase would normally be handled by
the operation or solution architects before a system is de-
ployed. There would not be a call per se. One would, on
the other hand, identify key hardware traits which would
follow each role. Examples are the minimum number of
CPU cores or number of network interfaces.

Our model assumes that most cloud environments
have a wide range of machine images, which can used
for as a base for a virtual instance. In some cases, like
Amazon AWS, there is even a marketplace where third-
parties can sell specialized images for a premium. We
consider all of these images as potential candidates for
a role in our service. However, in order to create an in-
stance, it has to be coupled with a hardware type. In
Amazon, these types range from small single-core hard-
ware resources to high-memory, high-CPU configura-
tions. In OpenStack[3]they are called flavors and serve
the same purpose. Therefore, any image/type combina-
tion essentially constitute a potential candidate for a role.
We imagine a process where a casting call can be sent to
a cloud environment, and a list of candidate image/type
combinations would emerge from it. The resulting audi-
tion would be the opportunity for each candidate to dis-
play their conformance with the manuscript.

2.3 The audition

The success of each actor is decided based on their au-
dition. There are some unwritten rules, for example, one
should never waste time during the audition. Sometimes,
every actor has a fixed time-slot in order to help organize
the days of audition.

Every actor may be handed a part of the manuscript
beforehand for preparation. This part could be a mono-
logue or a dialogue where a supporting actor will be
present on the stage. The first part of the audition is ob-
viously to assess the quality of the performance of the
provided piece from the manuscript. Next, the director
or casting director may ask the actor to engage in im-
provisation (or improv) in order to gauge how well the
actor responds to direction as well as to get a sense of
the overall skill set. The improv session may involve sit-
uations that are not directly relevant to the manuscript at
hand, but which may reveal other skills and traits of the
actor. The director may have prepared a set of improv
directions that are not known to the actor. The instruc-
tions may challenge the flexibility and imagination of the
actor, such as ”You have a banana and a bowling ball,
now rob a bank!” Improvisation skills are often highly
regarded amongst actors. There are classes as well as
several books devoted to the subject [15, 16]. One can

3

understand the value for the director to assess the ability
of the actor to follow instructions. It will reveal to the
director how well they are able to work together during
rehearsal and later during the actual performance.

For sysadmins and test managers, an audition does
sound familiar to ordinary test frameworks. The differ-
ence here is that the software developed is not the only
focus of the test. Rather, it is the machine image com-
bined with the hardware type that is tested when running
the software. It will be tested based on the instructions
in the manuscript. The audition follows these steps in
order:

• Role characteristics
Configurations belonging to the role that are applied
by a configuration management system.

• Dialogue
Automated interaction to check for correct function-
ing

• Improvisation
Assessment of general qualities

For the three first items, success can be determined au-
tomatically. The configuration has to apply successfully
before automated interaction can begin. The Dialogue
can be anything from simple checks to comprehensive
performance tests. For performance tests will then be pa-
rameterized with goals and will only be tested if the pre-
ceding dialogue was correct. Success in a performance
benchmark means that the described performance goals
are met.

One might ask how a computer system can possibly
improvise anything. However, we believe that the in-
troduction of the improv concept fills a gap in our pro-
fession. Improv corresponds to a process we often do,
but which does not have a common name, as will be ex-
plained in the next paragraphs.

Whenever seasoned technicians, be that car mechan-
ics or system administrators, works with their hardware
and systems, they have their own rituals in order to gauge
some sort of quality or confidence. They are often unre-
lated to the actual purpose of the system, but can loosely
be described as “taking the car for a spin around the
block”. This might be certain benchmarks or commands
that may stress one or two aspects of the system. For
sysadmins, we argue that this phase is important because
one becomes familiar with the system and its perfor-
mance by comparing it to how others have performed in
similar tasks before. Even if the direct output from the
commands are not actually saying anything important,
the fact that the familiar tools can be installed and that
the favorite editor has the correct version are of interest
to the sysadmin. Overall, this process of familiarization

will give the sysadmin a sense of “how will it be for me
to work with you?”. Using the theater analogy, this is a
similar question as faced by the director during an audi-
tion. The way to measure co-operability and flexibility of
an actor is to engage the actor in improvisation (improv)
exercises. We argue that the sysadmin subconsciously
does the same by running some ”good old commands”.

For the improvisation part there is no clear success.
The result of the improvisation will be recorded and pre-
sented to the sysadmin for review only if the candidate
had success in the three preceding steps.

2.4 Cast selection and contract negotia-
tions

The actor will not get an offering at the audition, but will
instead wait for a call-back in the time after the auditions.
The call-back may ask for another audition or offer the
role. Normally, no news means the actor was not se-
lected.

Once the offer has been extended to the selected ac-
tor for a role, contract negotiations begin. Even though
a director is in charge of the quality of the performance,
there is an obvious business dimension. Bluntly put, if
two actors perform equal, the one with the most reason-
able price may get the role.

In our model, the selection is also done when all can-
didates have finished their audition. For each role, there
will be a remaining set of candidates who had success
on the first elements of their audition. They are ranked
based on their cost, which will be determined based on
the price of the instance type combined with the possi-
ble premium of the machine image. This means that it
is not the fastest performing candidate who wins, but the
cheapest who performed within the desired performance
thresholds. In the case of a tie between several candi-
dates, the decision will have to be made by the adminis-
trator based on the output from the improv section.

The end result is a suggested cast of machine im-
age/instance type combinations for each role along with
a total price point for the entire ensemble. This list will
form the blueprint of the actual deployment of the new
production environment.

3 Audition prototype

Audition aims to re-use as many established and trusted
tools from system administration as possible. It also
needs to be extendable and configureable so that it can
be adapted to local practices. Below is a short descrip-
tion of the building blocks which Audition uses.

4

3.1 Chosen technologies
• Cloud platform

The implementation of Audition presented in this
paper focuses on Amazon Web-Services (AWS),
because the cost aspects are easy to define and
clearly visible. However, Audition may apply
equally well to other platforms, such as local Open-
Stack, VMware, Xen or KVM.

• Virtual machine management
MLN is an extendable management tool for virtual
machines in local or cloud environments [6, 7]. It
provides a powerful descriptive language which Au-
dition utilizes.

• Configuration management
Our implementation of Audition relies on Puppet to
manage internal configuration of each virtual ma-
chine. However, Audition can easily be expanded
through plugins to support other tools, such as
Cfengine [7].

3.2 Implementation
The tool is implemented as a command-line tool, written
in the Perl programming language. The supplied input
is the manuscript, which is written in a block-based con-
figuration file format. It provides the roles, scenes and
dialogue. The roles correspond to the roles needed in the
project, like webserver or database. The role has a corre-
sponding puppet class representing the technical details,
such as the required packages and configuration of ser-
vices. This means that the manuscript does not focus on
what attribute each role entails, but instead connects the
role with the appropriate class.

The dialogue is in the form of benchmark commands,
which are sensitive to the specific role and in addition
have specified performance constraints. The dialogue is
collected in scenes. For example, there might be a scene
where a webserver has to serve a page within a certain
rate and where the webserver depends on a database for
content. Here, the database acts in a support role that is
provided by the Audition tool as part of the preparation
for the scene, i.e. before the candidates play that scene.
The support role is presented in the manuscript, but is not
a candidate for a role itself.

When executed, Audition will parse the manuscript
and run the casting call. From the casting call a series
of candidates are established. The next step will be to
organize the actual audition in which each combination
of Amazon Machine Image (AMI) and type can audition
for each role. This list is manifested in a MLN project
description. Audition will populate the MLN template
with all the image/type/role combinations with specific

links to superclasses representing the role-specific con-
figurations.

All roles are defined specifically as classes in the
Puppet configuration management framework. MLN is
aware of this and will register each candidate in puppet
with the appropriate class by creating a node-block for
each candidate. This is achieved using a Puppet plugin
in MLN. See Figure 2 for an overview of the architecture.

When the organization of the casting is finished, the
rest of process will have the following form:

foreach role {

boot support roles

foreach candidate {

boot the candidate

apply role configuration or finish

foreach scene {

run dialogue or finish

run improvisation

store results

}

shut down candidate

}

shut down support roles

}

Audition will utilize MLN to start/stop each candidate
and insert commands to make it install the puppet agent
and connect to the puppet master for configuration. The
Audition tool will monitor whether the role-specific pol-
icy is implemented successfully, as there is no use con-
tinuing otherwise. If the policy was successful, all scenes
are played out in order. However, if one of the candidates
does not meet the specified outcome in a specific scene,
the entire audition is finished for that candidate to save
time. Finally, if all scenes are successful, the improv part
will be run and its output stored. Improv does not have
specific end-requirements.

Each scene includes a dialogue, which may be one or
more lines which the candidate or support roles will ex-
ecute in order. The dialogue may vary depending on the
role and the type of action, so it is implemented in a plu-
gin fashion. Every line of the dialogue is a separate plu-
gin, which can be written and modified by third parties.
The only requirement is that the dialogue plugin returns
whether or not the line was executed successfully. An
examples of a dialogue is a web benchmark, where the
desired url and response rate will be the parameters. The
dialogue plugin will then return true if the candidate was
able to meet the required rate. Another example could
be a URL checker that looks for a specific regular ex-
pression match in a webpage. This plugins may be run
before the benchmark to first ensure correctness of the
page. The scene may include support actors, as well, and
have dialogue lines that involves them too. The dialogue

5

Puppet
master

Audition

Manuscript

Current
CandidateCandidates

in waiting

Role configuration
through class inclusion

Dialogue

VM
Definitions

Role
Assignment

MLN

 VM
- Configuration
- Start/Stop

Support
Roles

Casting
call

The Audition Architecture

Figure 2: The Audition tool will read the manuscript before issuing the casting call. Once candidates are established,
they are configured and booted using MLN and Puppet. The dialogue is in the form of tailored commands, like
benchmarks.

may be as complex as desired and allows for coordinated
orchestration if necessary.

3.3 Example: A Wordpress site
In the following example, we see the deployment of a
Wordpress site which consists of two roles: a webserver
(web) and a database (db). The manuscript describes
two scenes, each with a dialogue specific to the role be-
ing tested. The first scene will be played by all candi-
dates who audition for the webserver role. This scene
has three lines for the webserver. First, it needs to suc-
cessfully connect to the database, next it has to provide
the content ”Lorem Ipsum” on the url /index.php and fi-
nally it needs to deliver the page /index.php at a rate of
50 pages per second. The plugin that corresponds to
each line is responsible for executing the task. For ex-
ample, the benchmark.web plugin executes the httperf
benchmark tool and compares the results to the required
performance. A database is mentioned as a support
role. Support roles are not candidates and are already
known to support the required performance. The support
role database will be a special virtual machine which is
booted in the beginning of the audition and re-used each
time this scene is played by a candidate.

mln_file mln-template-wordpress.mln

scene frontpage {

role web

support_roles database

dialogue {

[web]: connect.db [database]

[web]: content.web /index.php Lorem Ipsum

[web]: benchmark.web 50 /index.php

}

}

scene backend_performance {

role database

dialogue {

[database]: restore.db wordpress_base.sql

[database]: transactions.db 300

}

}

The database is a different role and here the dialogue
is about first restoring a database from a provided backup
file. This will provide content for the next line, which is
a database benchmark test to check if the performance
level of 300 transactions per seconds can be reached.

6

dialogue {
 [web]: connect.db $[database]

 [web]: content.web /index.php Lorem Ipsum
 [web]: benchmark.web 50 /index.php

}

Web Database

connect.db

benchmark.web

content.web

AuditionDialogue
plugins

Dialogue Illustration

Support
RoleCandidate

Figure 3: Dialogue illustration. Each line in the dialogue
is handled by a plugin. This enables the audition to easily
be tailored to local needs.

4 The Audition workflow

An audition is always for a specific play. In our case, it
means it is specific to the project and the desired techni-
cal solution. The project architects along with the tech-
nical release and test leads, need to write the manuscript
in the beginning of the project. The manuscript might
change along the way, as more features need to be tested
for each role.

The MLN project template, which contains the super-
classes and definitions for each role, has to be established
early but will probably not change. We anticipate that
larger organizations have standardized services to such
an extent that the role ”webserver” will mostly be the
same platform throughout all solutions. The Puppet con-
figurations may evolve along with the project and will
be maintained by the DevOps personnel. The plugins,
which make out the dialogue, are relatively simple and
may be shared across the organization and community
as a whole. The idea is that a plugin written for a web
benchmark can be re-used every time this functionality
is required in a role. The parameters of the lines will be
specific to the manuscript, in order to localize the way it
works.

Running the audition will be the task of the test and
release group, but assisted by developers and operations.
One may either go directly to a deployment based on the

global {
 project wordpress
}

superclass basic {
 puppet {
 nodename $hostname.$project
 include {

 ssh
 }

 }
 ec2 {
 key ec2_key
 user_file {

 }
 }
}

superclass web {
 superclass basic
 puppet {
 include {
 web
 }
 }
}

superclass database {
 superclass basic
 puppet {
 include {
 database
 }
 }
}

superclass sup_database {
 superclass basic
 puppet {
 include {
 sup_db
 }
 }
 ec2 {
 type m1.large
 ami ami-894221e
 }
}

Configuration
management installation
and agent initialization to
the master. Executed
when instance boots

Specialized superclasses
for each role in the
manuscript. Each
candidate wil inherit the
properties from one of
them.

A support role has a
superclass also, but more
specialized with regard to
type and image.

MLN template

Figure 4: Dialogue illustration. Each line in the dialogue
is handled by a plugin. This enables the audition to easily
be tailored to local needs.

7

recommended cast from the audition or one might review
the cast in more detail. This can provide interesting infor-
mation about the overall performance of the solution. For
instance, if the database code has been modified heavily
from one release to another, one might check if the cast
has changed, e.g., if the database role is played by a more
powerful server than in the last release. Remember, Au-
dition will pick the cheapest server that still is able to
perform relative to the requirements in the manuscript.
Therefore, the resulting deployment may scale as the so-
lution matures, driving costs up.

4.1 Execution

Audition is executed from the command line:

$ audition -m wordpress.manuscript

The output focuses on listing only the candidates which
completed successfully and highlights the most afford-
able of them:

<omitted output>

Role: wordpress_web

2nd place: m1.large with ami-def89fb7

$0.240 per instance-hour

1st place: c1.medium with ami-def89fb7

$0.145 per instance-hour

Creating MLN code for role:

wordpress_web: c1.medium/ami-def89fb7

From the output, we see that two candidates were suc-
cessful. The both use the same machine image but vary
in price. The best pick is the hardware type which favors
CPU performance (c1.medium) as opposed to memory
(m1.large).

5 Discussion

DevOps is all about adopting methodologies that bring
developers and operations closer together [14]. A strong
focus on automation is needed to facilitate the release cy-
cles of agile and continuous integration processes. The
approach used by Audition is in line with DevOps as it
supplies a tool that can automate an otherwise cumber-
some analysis process. With this automation in place,
the project is allowed to use tailored deployments for
each release, which continue to respect the SLA and
keep avoiding over-provisioning. Furthermore, it is a
tool where both operations and developers partake. For
instance, setting up the configuration management and
MLN project will be the focus of operations, while the

dialogue in the manuscript will be something the devel-
opers have best knowledge of.

The dialogue may not be all about performance,
though. We see the following applications for Audition:

• As a tool to track how performance demands in-
crease across releases

• As a tool to test configuration management policies

• As a simple smoke-test that checks for correct func-
tioning of software before deployment.

Since there is no real difference between puppet
classes for the manuscript and for the production envi-
ronments, Audition allows for heavy re-use of configura-
tion code.

Obviously, components such as configuration manage-
ment, need to be in place before one can start with Au-
dition. Audition is meant to enhance automation with-
out replacing the established tools used in-house. Puppet
was used in our implementation, but others could be im-
plemented as Audition is really oblivious to it. The con-
nection to the configuration management is in the MLN
project description, which can be expanded through plu-
gins to support other tools, like Cfengine [7]. In addition,
other platforms can be used for deployment as well, such
as local OpenStack, VMware, Xen or KVM, as long as
the corresponding MLN plugin is utilized. However, we
chose AWS as it showcases the price dimension.

One of the benefits of cloud deployments is the ability
to scale resources based on demand. One may therefore
question the need to assess the performance of a deploy-
ment, when scaling already is in place. We do not see
Audition and scaling as mutually exclusive. In fact, just
because one can scale, does not mean one should not
pay attention to the performance of webservers and to
minimize the cost for the current constellation of virtual
machines. Automatic scaling does not provide a cost-
projection in the same way Audition does. Furthermore,
knowledge from the Audition will supply the adminis-
trator with useful insight that can be used to optimize
scaling decisions.

5.1 The cost of an Audition
The execution time of one audition is mostly influenced
by the number of candidates, roles and comprehensive-
ness of the dialogue. The cost model of Amazon AWS is
based on a per-hour price. Meaning that even if a can-
didate is running for only 5 minutes, a whole hour is
charged. The support roles are kept running for as long
as it takes to let all candidates for a role play the scenes.
If Audition runs from an Amazon instance as well, then
the network traffic would be internal and constitute no
extra cost.

8

As an example, consider an audition with three images
and the instance types m1.large ($0.240/h), m1.medium
($0.120/h), c1.medium ($0.145/h) and m1.small (
$0.060/h). This makes for a total of 12 candidates. Con-
sidering only a single role which with booting, scenes
and dialogue amount to 10 minutes each. Additionally
a support role using the instance type m1.large is used.
The number of candidates would require the support role
to be up for 120 minutes, rounding to 3 hours charged.
Considering only charges for time used, the cost for the
audition would only be $2.415. For practical, additional
improvements should be considered to cut the time of the
audition through parallel testing of candidates. However,
this would not reduce the cost of each candidate as one
is charged for a full hour.

6 Related work

Automated software testing is a well established field
with many approaches to assert the correct execution
of applications when certain inputs are given. Several
projects within this domain are moving towards cloud-
based solutions, such as Cloud9 [10] and the TaaSD
framework designed by Candea et.al [9]. Likewise, the
Test support as a service (TSaaS) by King et.al suggests
that more existing tools are utilizing the scalability and
orchestration of virtualized infrastructures through mi-
gration [13]. However, their advances are within execu-
tion simulation for developers in order to establish soft-
ware quality. Our approach is from the perspective of
operations where we build on existing concepts of con-
figuration management and automated virtual machine
deployment. Audition as such comes in at a later stage
where deployment configurations are optimized relative
to software. The quality of the software itself is not tested
explicitly.

There are industry solutions, such as RedHat
CloudForms[4], for automated capacity planning and re-
source allocation. However, we argue that our approach
is freely available and adaptable to various workloads
and tools from the ground up. CloudForms, on the con-
trary, uses a specific set of tools for management and
does not utilize third-party images in the same way as
offered by Amazon AWS. It is possible to use Audition
as a supplement to other solutions, e.g. as a preliminary
testing tool before architectures are orchestrated through
CloudForms.

The use of analogies and mimicry is a known ap-
proach to simplify otherwise complex processes. Fin-
stadsveen used concepts from biology and animal sur-
vival strategies to model how a group of servers could
collectively ensure a high level of service. The result was
a terminology and concept which allowed non-technical
people to engage in discussions about advanced scal-

ing approaches and intrusion prevention for cloud-based
services[11].

7 Future work

While the test implementation presented in this paper has
been of limited scope and time span, a future work item
is to utilize Audition in a development project and ob-
serve how much the cast changes as the developed solu-
tion matures.

Furthermore, allowing for a closer integration with
other arenas, such as the AWS Marketplace, would be
very helpful as it would allow third-parties to register
their DevPay images for auditions in order to compete
for business. This form of API is not present at the time
of writing. A general role-description, like apache2 web-
server and loadbalancer, could be made available so that
the third-party images could be tailored and optimized
for that purpose.

References
[1] Amazon aws. https://aws.amazon.com/, April 2013. [Online;

accessed April 2013].

[2] Chef. http://www.opscode.com/chef/, April 2013. [Online; ac-
cessed April 2013].

[3] Openstack open source cloud computing software.
http://openstack.org, April 2013. [Online; accessed April
2013].

[4] Red hat cloudforms. http://www.redhat.com/products/cloud-
computing/cloudforms/, April 2013. [Online; accessed April
2013].

[5] The sleuth kit. http://sleuthkit.org/, April 2013. [Online; accessed
April 2013].

[6] BEGNUM, K. Simplified cloud-oriented virtual machine man-
agement with mln. The Journal of Supercomputing 61, 2 (2012),
251–266.

[7] BEGNUM, K., BURGESS, M., AND SECHREST, J. Adaptive
provisioning using virtual machines and autonomous role-based
management. In Autonomic and Autonomous Systems, 2006.
ICAS’06. 2006 International Conference on (2006), IEEE, pp. 7–
7.

[8] BLANK-EDELMAN, D. Selected talks by david blank-edelman.
http://www.otterbook.com/the-talks/, April 2013. [Online; ac-
cessed April 2013].

[9] CANDEA, G., BUCUR, S., AND ZAMFIR, C. Automated soft-
ware testing as a service. In Proceedings of the 1st ACM sympo-
sium on Cloud computing (2010), ACM, pp. 155–160.

[10] CIORTEA, L., ZAMFIR, C., BUCUR, S., CHIPOUNOV, V., AND
CANDEA, G. Cloud9: A software testing service. ACM SIGOPS
Operating Systems Review 43, 4 (2010), 5–10.

[11] FINSTADSVEEN, J., AND BEGNUM, K. What a webserver can
learn from a zebra and what we learned in the process. In Pro-
ceedings of the 5th ACM Symposium on Computer Human Inter-
action for Management of Information Technology (2011), ACM,
p. 5.

[12] KANIES, L. Puppet: Next-generation configuration manage-
ment. The USENIX Magazine. v31 i1 (2006), 19–25.

9

[13] KING, T. M., AND GANTI, A. S. Migrating autonomic self-
testing to the cloud. In Software Testing, Verification, and Valida-
tion Workshops (ICSTW), 2010 Third International Conference
on (2010), IEEE, pp. 438–443.

[14] SACKS, M. Devops principles for successful web sites. In Pro
Website Development and Operations. Springer, 2012, pp. 1–14.

[15] SPOLIN, V., SILLS, C. B., AND REINER, R. Theater games
for rehearsal: A director’s handbook. Northwestern University
Press, 2011.

[16] SPOLIN, V., SILLS, P., AND SILLS, C. Theater games for the
lone actor. Northwestern University Press, 2001.

10

	Introduction
	Problem statement

	Background
	Web
	An Introduction to the web
	Web architecture for large sites

	Direction of usage
	Saving time with Automation
	Learning from different fields
	DevOps
	Software testing
	Performance testing
	System testing

	Related work
	Automated software testing
	Capacity planing and resource management
	The usage of analogies

	Approach
	Learning about the art of acting
	Design phase
	Modeling

	Implementation phase
	Environment
	Deployment automation
	Understanding puppet
	Deployment of the environment
	Brief introduction to MLN
	Creating or reusing benchmark tools

	Appraising properties
	A reduction in complexity
	A working framework
	Service optimization

	Expected results

	Result 1 - Modeling
	Introduction into theater
	The art of theater
	Improvisation within theater

	Plan before acting
	Creating a manuscript

	A casting call
	Audition
	Scene preparation
	Put to the test
	The uniqueness of improvisation

	The grand premiere
	Summarization - audition architecture
	Models to implement

	Result 2 - Prototype
	System platform
	A controlling host
	Amazon storage

	The layout of the manuscript
	Scenes

	How Audition works
	The supporting host
	Candidate names and host names

	The MLN template configuration
	A complete Audition
	Host AMI's and hardware types
	Failing to learn the role
	Creation of plugin
	The controller
	Benchmark and thresholds
	The complete manuscript
	The complete manuscript
	Execution
	Audition output
	Improvisation output
	Scripts created

	A more complex example
	Auditioning for the role as loadbalancer
	Auditioning for the role as webserver
	Auditioning for the role as middleware
	Auditioning for the role as database
	Auditioning for the role as storage
	The complete manuscript
	After the Audition

	Analysis of execution
	She simplicity in Audition
	Cost a more complex example Audition

	Discussion
	System administration based on theater
	A system administrator approaching theater
	The purpose of using theater
	Strength of theater
	Weakness of theater
	Inheritance challenges
	Expectations for theater

	Defining "simpler"
	Adopting theater in system administration
	Usage of plugins
	Performance expectation
	Variations in results
	The cost of Audition
	The thesis experience
	The fields affected by this work
	Broaden the understanding of system administration
	Continuous software releases

	Future work

	Conclusion
	The different plugin scripts
	Article written based on thesis work

