
UNIVERSITY OF OSLO
Department of Informatics

Metadata and robots
for web analysis

Master Thesis

Nils Mathisen

November 2013

Abstract

Robots for the Internet are computer programs that perform automated tasks
online. Their functionality often involves interpretation of descriptive data,
sometimes referred to as metadata, which can be embedded in web content.

The goal of this master project is to create a small set of robots for
the Internet, and a command and control program that can manage their
execution. Furthermore the software will have a graphical user interface, as
well as functionality for storing and exporting the collected data.

To that end, the task starts with a study of the field of web analytics,
to find out what software tools already exist, and then attempts to use this
knowledge to design a new program. The software produced is not for general
collection of online data, but for collection of data that can be useful in a
research context, and for analyzing trends in how information is represented
on the Internet.

The resulting software is extensible, and can be used to analyze a broad
range of aspects of web pages. It includes scheduling functionality, allowing
the user to configure when the various robots should be activated, so that
the software can collect data independently, over longer periods of time.

Keywords: semantic, web, analytics, robot, bot, Internet, crawling, spi-
der, metadata, meta, tag

iii

iv

Acknowledgments

First and foremost, I wish to thank my supervisor, Gisle Hannemyr, from
the Institute of Informatics. He provided the ideas for a project that allowed
me to combine several of my favorite topics. Throughout the project he has
always found time to support me, and all my questions, whether complex or
naive, have been met with reflected and thorough answers.

My friends and family have also given me a lot of support, both in the
form of encouragement, as well as advice and suggestions. Thank you, Aslak,
Joakim, Janne, and many others. A special thanks goes to Jan Mathisen,
for invaluable help with statistics, Excel, and visualizations.

All mistakes made in this project are of course my own.

v

vi

Contents

Glossary xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Research focus . 2

1.3 Document outline . 2

1.4 Chapter summary . 5

2 Background 7

2.1 Web analytics . 7

2.1.1 Methods used in web analytics 8

2.1.2 Topics for analysis . 11

2.1.3 The structure of web content 11

2.2 The semantic web . 12

2.2.1 Metadata . 14

2.3 Web robots . 22

2.3.1 Functionality and architecture 23

2.3.2 Politeness . 25

2.3.3 Well known robots . 27

2.4 Chapter summary . 29

3 Research methods 31

3.1 Introduction to research methods 31

3.2 Study the field (R1) . 31

3.3 Conduct experimental design (R2) 32

3.4 Conduct experiments (R3) . 32

3.5 Analyze the findings (R4) . 33

3.6 Limitations and potential problems 34

3.7 Tools and software . 34

3.8 Chapter summary . 35

vii

viii CONTENTS

4 Program design 37
4.1 Prerequisites . 37
4.2 Programming languages and libraries 38
4.3 Command and control center 40

4.3.1 Program functionality 40
4.3.2 Standards and politeness 41
4.3.3 Modes of operation . 41
4.3.4 Communication between users and robots 41
4.3.5 Target URLs . 42
4.3.6 Scheduling . 42
4.3.7 Program components 43
4.3.8 Commands . 44
4.3.9 Persistence . 48
4.3.10 Files and directories 49
4.3.11 Packages and modules 50
4.3.12 Classes . 52

4.4 Robots . 53
4.4.1 Main robots . 53
4.4.2 Helper robots . 57

4.5 Visualizations . 59
4.6 Graphical user interface . 59

4.6.1 Output redirect . 60
4.7 Portability . 60
4.8 Extendability and API . 61

4.8.1 Importing extensions 61
4.8.2 Adding new robots . 62

4.9 Threads . 62
4.10 Documentation . 62
4.11 Chapter summary . 63

5 Implementation 65
5.1 Sourceforge project . 65

5.1.1 Distribution . 65
5.1.2 Download and installation 66
5.1.3 License . 66

5.2 Web address collections . 68
5.2.1 IP address generation 68
5.2.2 Manually built address collection 70

5.3 Data collection . 73
5.3.1 Automatic data collection with the robot Upcheck . . . 73
5.3.2 Manual execution of the robot Dublincrawl 74

CONTENTS ix

5.4 Boilerplate code for robots . 74
5.5 Revisions . 77
5.6 Program dependencies . 77
5.7 Chapter summary . 78

6 Findings 79
6.1 Output from the robot Upcheck 79

6.1.1 Data collection results 79
6.1.2 Visualization results 81

6.2 Output from the robot Dublincrawl 81
6.2.1 Data collection results 81
6.2.2 Visualization results 85

6.3 Discussion . 88
6.3.1 Choice of programming language 88
6.3.2 The open source experience 89
6.3.3 Unforeseen challenges 91
6.3.4 Usability . 91
6.3.5 Usefulness . 92
6.3.6 Shortcomings . 92

6.4 Conclusion . 95
6.4.1 Research objectives . 95
6.4.2 The project as a whole 97

6.5 Chapter summary . 98

7 Final word 99
7.1 Quality . 99
7.2 Future Work . 99

7.2.1 Desirable features . 100
7.3 Chapter summary . 101

Bibliography 103

A Online resources for this project 105
A.1 Sourceforge project . 105
A.2 Program source code . 105
A.3 Program download . 105
A.4 Online program documentation 106

A.4.1 User documentation 106
A.4.2 API . 106

List of Figures

2.1 Semantic web architecture . 13
2.2 Web crawler architecture . 24

4.1 Overview of AWW . 43

5.1 Graphical user interface . 66

6.1 Count of update intervals . 82
6.2 Average length of update intervals 83
6.3 Standard deviation in update intervals 84
6.4 Longest and shortest update intervals 85
6.5 Mean lengths of update intervals per URL 88
6.6 Dublin Core tags per site . 89
6.7 The most popular Dublin Core Tags 90
6.8 Tooltips . 94

x

List of Tables

4.1 The data set of a test robot 49

5.1 Statistics for the robot Urlgen 70
5.2 Top domains . 72

6.1 The sites with most Dublin Core tags 86
6.2 Observed Dublin Core tags . 87

xi

xii LIST OF TABLES

Glossary

Academic Web Watch The name of the software developed in this master
project.. xi

ACAP Automated Content Access Protocol. xi, 21

AWW Academic Web Watch. xi, 38–43, 45, 50, 58, 68, 74, 88, 91–94

Bot Common short form for web robot.. xi

CCC command and control center. xi, 3, 32, 37, 39, 40, 42, 43, 49, 50, 54,
58, 59, 62, 78, 96, 100

ccREL Creative Commons Rights Expression Language. xi

CDATA character data. xi, 17

Command and Control Center The part of a software program that con-
trols the flow of execution of smaller modules, in coordination with
users or scheduled tasks. xi

DoS attack denial-of-service attack. xi, 25

GUI Graphical User Interface. xi, 39, 77, 94, 100

HTML Hypertext Markup Language. xi, 11, 15, 16, 19

MVC Model View Controller. xi, 43

ORM Object-relational mapping. xi, 48

RDFa Resource Description Framework-in-attributes. xi, 1

xiii

xiv Glossary

Robot for the Internet Throughout the text there are many references to
web robots and to robots for the Internet. The two terms are often ref-
erences to the same type of computer program. Robots for the Internet
is a more general term, but web robots is a more commonly used term.
While robots for the Internet do not always operate on the web, robots
for the web are a type of robots for the Internet.. xi

Web robot (See robot for the Internet.) A robot for the Internet. The use
of the word web could indicate that the robot operates on the World
Wide Web, but it is a loosely used term. xi

XHTML Extensible Hypertext Markup Language. xi, 16

Chapter 1

Introduction

1.1 Motivation

The World Wide Web has been available to the general population for a
couple of decades, and since its early stages it has been searchable, by the
use of various search engines, and software tools. However, it was initially
problematic to search it in intelligent ways. The software performing the
searching had few means to judge the relevance of search results, other than
basic techniques for text comparison. This may be one of the reasons why,
around 2001, the vision of the semantic web[4] emerged.

The semantic web is a concept involving advanced descriptions of web
content. These descriptions can be interpreted by software programs, and
that made it possible to search and analyze the Internet in other ways. It
meant that programs could make more independent decisions in the cate-
gorization of web content, and participate more actively in the sorting and
navigating of that content.

Here comes a master project about analyzing the Internet. In spite of
all the tools in existence, there are still gaps in the available software func-
tionality. In web analysis for research, one may be interested in a particular
set of details, from selected online locations, at selected points in time. For
example, an experiment may require to monitor the changes in the amounts
of Resource Description Framework-in-attributes (RDFa) code used in ten
popular newspaper-websites, over a period of six months. There are tools
available for this type of search, but they are less developed than tools for a
general web search.

While there has been a significant amount of research into technology
for a general web search, it would also be useful to have more research into
technology for extracting precise and dynamic information from the Internet,

1

2 1. Introduction

in highly customizable ways. New software tools could be made, that enable
users to specify what data to download, and when to do so, with more options
than general search tools provide.

1.2 Research focus

In short, the task is to study the field of web analytics, and summarize the
types of analysis tools that are available as free software. When that is done,
the information will be used to design and implement a set of web robots,
and a software framework to handle their execution.

The resulting software should cover a broad range of aspects of web pages,
and execute at set intervals, over longer periods of time.

In other words, this project will focus on the use of metadata and web
robots in the context of web analysis. The details around this are described
in the chapter on research methods (chapter 3), but below are the main
research objectives.

R1 Study the field of web analytics and web robots, and summarize what
exists.

R2 Conduct experimental design by defining and creating a Command and
Control Center (CCC), a Graphical User Interface (GUI), and a couple
of sample robots.

R3 Conduct experiments with the sample robots, and produce data and
visualizations.

R4 Analyze the findings from the previous activity, and discuss the useful-
ness of robots in web analytics.

1.3 Document outline

This document comprises seven chapters, as described below.

Introduction In the first chapter there is a brief introduction to the field
of web analytics, and to specific topics for which further research could be
valuable. This forms a motivation, which in turn is used as a guide to formu-
late a research aim for this project, as well as individual research objectives.
At the end of the chapter there is an outline of the whole document, with a
short description of each chapter.

1.3. Document outline 3

Background is the name of the theory chapter. It has three main sections,
giving an introduction to web analytics, to the semantic web, and to web
robots.

In relation to the semantic web, several common standards for metadata
are discussed, with a focus on their intended use, their syntax, and how
they are integrated into web content. Then a typical architecture of for web
crawlers is described. This is followed by a discussion of common features
of web robots, such as politeness. The text continues with a discussion of
several implementations of web robots. They have user groups of various
sizes, and most of them are available free of charge.

Research methods This is where the various project-related tasks are
described in detail. The research objectives are discussed more thoroughly.
Then, the section on research strategy follows, where useful research methods
are selected. The intended use of these methods is then described for each
of the project tasks.

Data collection will be performed in the form of program execution, with
multiple configurations. Some details of this must be left for the design and
implementation chapters, but a general description is given at this point.

A plan for evaluation of the collected data follows, and lastly a few com-
ments are given about limitations and potential problems.

Program design A design proposal is created, resulting in a program that
should implement all the functionality specified in the introductory chapters.
The chapter starts with an overview of prerequisites, and available resources.
Then programming languages are chosen. When these choices are made,
more fine grained details can be resolved, such as which programming li-
braries to make use of, and what types of interfaces, control structures, etc.
can be used in the design.

The robots are created as extensions for the command and control center
(CCC). While these extensions are an important part of the project, a good
deal of the programming effort will concern the CCC, which handles their
execution. Therefore, a large part of the design chapter also revolves around
this topic. Details are specified for how extensions are added, how users can
control them, and how their execution can be scheduled. Solutions are also
found for the storage of datasets and of their descriptions.

When this has been taken care of, work is started on designing the two
main robots that are included in the software. Part of this work consists
of describing the functions all robots must implement, in order to interact
with the rest of the software, but there are also detailed explanations of the

4 1. Introduction

individual features of the robots.

The main functionality of the program will initially be controlled by a
command line interface. When all other components have been designed, an
attempt is made at designing a graphical user interface as well.

At the end of the chapter there is a section about portability, as portabil-
ity is expected to be beneficial to an open source project. There is also a short
discussion about thread programming. It was first attempted to avoid use of
threads in this project, to keep the the control flow as simple as possible, but
during the design process it becomes more relevant than first assumed.

Implementation Here there is information on inclusion of third-party robots
in the project. The next topic is data collection, and the address collections
used for this purpose. Some effort has been put into creating address collec-
tions representable for the Internet as a whole, but it was found to be more
challenging than first assumed. An attempt to generate random IP-addresses
automatically is described, followed by a discussion of the quality of the re-
sulting address collection. As an alternate approach, a manually constructed
URL-collection is also created. The latter should be sufficient for a reliable
analysis, as long as care is taken when generalizing over it.

With the collection of web addresses in place, the next topic is the data
collection itself, and details about its execution. This includes descriptions
of both scheduled and manual execution of robots, depending on what types
of data is collected. After the collection has been completed, the collected
data is used as input to the various visualizations.

At this point in the text, most of the program features have been im-
plemented, and the focus changes to evaluation of the program. Afterwards,
there is a description of revisions made as a response to the evaluation. Then
the chapter concludes with a note on program dependencies for the finished
version of the software.

Findings In the findings chapter the output of the data collection is de-
scribed. First the datasets and the data collection period are commented on.
Then the datasets are used for generating tables and visualizations. These
are then explained, and comments are made about what they can tell us
of the web pages they describe. The chapter includes a discussion of the
output from the data collection, and of the quality and usefulness of the
software. The software is evaluated based on how it performed during the
data collection.

The research goals are evaluated, and shortcomings are pointed out. It
is described where the development has taken different directions from what

1.4. Chapter summary 5

was expected, and the usefulness and usability of the finished product is
reviewed. This is then summarized, with a conclusion of the project work as
a whole.

Final word The final chapter is a comment on how the work has pro-
gressed, with some personal reflections about the experience. It contains
information about what will become of the software later on, and discusses
whether the quality of the software is high enough that other developers and
users might take an interest it. This is followed by suggestions about what
kind of improvements would be most useful.

1.4 Chapter summary

That concludes the introduction. A motivation has been given for the work
that is to come, followed by a definition of research goals. Then there was
an outline of the entire document.

Among the chapters to come there will first be a review of literature on
metadata and robots for the Internet, then a method chapter which outlines
how the required work will be done. The next chapters describe the program
design, and the implementation process. When the implementation has been
completed, the findings will be discussed.

6 1. Introduction

Chapter 2

Background

This chapter contains a literary review, that introduces the background ma-
terial relevant to the project. In accord with the first research goal, described
in section 1.2, this chapter begins with a study of the field of web analytics.
As this field is explored, we arrive at other topics that are relevant to the
project, namely the semantic web, metadata, and robots for web analysis.

By the end of the chapter it is hoped that enough has been learned to
understand our problem domain, and to make sound decisions during the
design process that will follow.

2.1 Web analytics

Before describing the topic of web analytics, a few words will be said about
the meaning of the term itself, to clarify the relation between the words
analytics and analysis. For the word analytics the most relevant definition
found was the following:

1. a. Chiefly Philos. The science or method of using analysis to
examine something complex; spec. the branch of logic that deals
with analysis, esp. with reference to the book of the same name
by Aristotle.[...]
b. The collation and analysis of data or statistics, esp. by com-
puter, typically for financial or commercial purposes; the data
that results from this; (also) software used for this purpose.[...] 1

1The Oxford English Dictionary:
http://www.oed.com/view/Entry/273413?redirectedFrom=analytics#eid (visited on
20th of October, 2013)

7

8 2. Background

The definition indicates that analytics can simply mean the use of anal-
ysis, possibly involves the use of computers, and is often used for financial
purposes. In addition it carries connotations to Aristotle’s works about logic.
The difference in meaning from the word analysis does not appear of great
importance to our context, but the word analytics is used because it is pop-
ular in relation to analysis of the web.

Among the articles available online, web analytics appears to mostly con-
cern site owners’ analysis of traffic on their own web sites. There is a natural
reason for this. For most people, it is not trivial to acquire data about activity
on other people’s web sites. Secondly, in a business context, the popularity
and performance of their own web sites is a main concern for the majority of
commercial companies on the Internet.

In our context, web analytics will be viewed as a general term, including
topics such as analysis of web content, usage patterns for web sites, the traffic
flow of data packages, and other related online phenomena.

2.1.1 Methods used in web analytics

Web analytics is a large field. In this project will be limited to the types of
analysis that involves the use of web robots. However, datacollection through
the use of cookies, and proxy servers are also common in use.

Cookies Among the types of data collection mentioned in the previous
paragraph, the use of cookies may be in most widespread use. It differs from
the other approaches, in that additional information is exchanged between
user computers and web servers.

Web-based applications often use cookies to maintain state in the
otherwise stateless HTTP protocol. As part of its response, a
server may send arbitrary information information, the ”cookie,”
in a Set-Cookie response header. This arbitrary information could
be anything: a user identifier, a database key, whatever the server
needs so it can continue where it left off. [13, p.153]

In other words, cookies can allow web servers to save information on the
computers of the users that request web pages from it. The maintenance
of a state, on the those computers, means that servers can add and retrieve
information, with details about the user and his/hers browsing history.

This solution will often require less resources than the other approaches,
because it is only necessary to configure a web server to send and retrieve
cookies.

2.1. Web analytics 9

Cookies can be categorized as first-party, or third-party, as described in
the quote below.

In the early use of cookies, users could assume that the site the
user had connected to would be the site the cookie would be re-
turned to. As cookie technology developed, third-party sites began
to make use of cookies, typically through the use of banner ads
but also through the use of one-pixel images, effectively invisible
to the user. Thus, users could no longer assume that a cookie
apparently being sent from the visited site would be returned to
that site. [16, p.49]

While first party cookies are exchanged between a user’s computer, and
web site that the user has navigated to, third party cookies may end up on
other web sites than the one that has been visited. This can be a problem for
privacy protection when the technique is used to collect personal information.

Google Analytics Google Analytics is a cookie-based tool for web analysis.
Code inserted in the site owner’s web pages causes traffic information to be
passed on to Google Analytics for registering.

The software is aimed at web developers who need information about
what consequences design changes have on popularity, and about which parts
of the sites the public find their way to.

In relation to first-party and third-party cookies, Google appears to use
mainly first-party cookies. However, in the case of what is referred to as
Google Analytics for Display Advertisers, Google’s web pages explain that a
third-party DoubleClick cookie is used2

Robots As mentioned, web robots can also be used for analysis. While the
use of cookies can be less demanding to implement, one valuable aspect of
web robots is that they are not limited to analysis of sites you have access to,
because, in most cases no modification of the site content is necessary. No
code has to be added to web pages, for the robot to function. In some cases,
a robot can simply be informed of which site to analyze when it is activated.
Therefore, unless you have access to proxy servers for analyzing web traffic,
robots are one of the most efficient means for analyzing 3rd party web sites.

In this project, the data collection will be done through the use of robots,
and towards the end of this chapter their functionality will be given a more
thorough description.

2https://developers.google.com/analytics/devguides/collection/
analyticsjs/cookie-usage
(visited on the 26th of October, 2013)

10 2. Background

Proxies Proxy servers can be used to collect information about packages
sent across the Internet. This can be used to analyze traffic flow in the
geographical region of those servers, but you can also collect information
about the types of packages that are handled by the server. Analysis based
on the use of proxies is more valuable if you have access to a network of
servers, spread across a larger area. This is something average web site
owners do not have.

In 2011 an article was published, named Towards Understanding Modern
Web Traffic.[12] It presented results based on analysis of data from a globally-
distributed proxy system. This system is referred to as the CoDeeN content
distribution network (CDN).[12, p.296] The article states that it serves over
30 million requests per day [12, p.296] and is available to anyone[12, p.296]

The data set the article made use of was explained to include browsing
behavior of over 70.000 daily users from 187 countries [12, p.295], and this
made it possible to conduct a wide variety of analysis. For instance, it
was confirmed that more complex web pages have resulted in significant
downloads occurring after the initial download of web pages.

...half the traffic now occurs not as a result of initial page loads,
but as a result of client-side interactions after the initial page
load... [12, p.296]

Proxy servers are best suited for analysis of certain topics. They can
be used for analyzing traffic flow, or for comparing different types of traffic.
Among other things, the latter can give indications about what users are
interested in, as shown in the following quote:

... Brazil (not shown) shows a higher fraction of uncacheable
XML and audio traffic than other countries. This is due to the
popular use of real time update of sports games and live streaming
of audio. [12, p.304]

More general changes in the usage of the web were also found. For ex-
ample there is increasing use of multimedia content, and dynamic content,
as well as traffic related to web analytics.

... Flash video and Ajax traffic is consistently increasing, and
search engine/analytics sites are tracking an increasingly large
fraction of users. [12, p.307]

2.1. Web analytics 11

2.1.2 Topics for analysis

For commercial organizations, who want to measure the quality of their web
sites, a set of metrics must be chosen. These metrics should consist of things
that are convenient to measure, and which are expected to give a picture of
the web site activity that can be used for analysis from a business perspective.
Which metrics that are seen as useful, is a large topic in itself.

Over time, businesses have begun to find the use of basic met-
rics such as hits and pages views to be woefully inadequate for
assessing the success of Web sites, due to the fact that their sim-
plistic and ambiguous nature can induce misleading conclusions
(for example, the spidering of a Web site can indicate lots of hits,
the use of frames can greatly increase the number of page views,
etc.)[18, p.285]

The quote shows that some of the factors that are easiest to measure
may not be useful for analysis. The first example says that, since much of
the online traffic is caused by web robots, the number of page downloads
does not indicate the number of human users. The other example mentions
the use of frames in Hypertext Markup Language (HTML) code, which is
a technique that combines multiple web pages into what can look like one
single page. Viewing this combined page means downloading multiple HTML
files, and if parts of the combined page are updated it may be counted as a
page download, even though only a small part of the display is altered.

The article goes on to promote the need for advanced web metrics, which
they describe in the following way:

Advanced web analytics aims to measure and understand the re-
lationship between the customer and the web site.[18, p.286]

After this, the article introduces different approaches, where the type of
organization, and its customers becomes an important part of the analysis.

The analysis of companies and their customers seems to have much in-
fluence on the development of web analytics. But in a scientific setting, web
analytics may have an entirely different purpose. Consequently, web analyt-
ics for scientific purposes may be more likely to require custom made software
tools.

2.1.3 The structure of web content

After examining the concept of web analytics, we are now familiar with
common topics for analysis in the context of the web. In order to propose new

12 2. Background

forms of web analysis, it is also important to be familiar with the different
ways that web content can be structured. Standards for structuring and
describing web content have changed considerably in recent years. Today
web content is more dynamic than before, changing appearance based on
various conditions, like a users location, or preferred language. It has also
come to include more semantic descriptions. This means that web documents
contain information that can aid computers in classifying the contents. This
development is often referred to as the development of the semantic web.

2.2 The semantic web

If computers can interpret web content on a semantic level, it enables them
to categorize and process that content in a more efficient way. This is a key
concept in the context of the semantic web.

Discussions of the semantic web often begin with a reference to an article
by Tim Berners-Lee et al., submitted to the Scientific American in 2001.
In a way it represents a turning point in the development of the web. The
article is titled The Semantic Web, and directly after the title you can find
the phrase, A new form of Web content that is meaningful to computers will
unleash a revolution of new possibilities.[4, 35]

In the article it is discussed how a selection of internet standards provide
a foundation for the development of something that is referred to as the
semantic web. The word semantic is often understood as relating to the
meaning of utterances. To some extent, this is also the case here. It signifies
that web content can be augmented with descriptions of its type of content,
in a way that can be interpreted by computers. Ideally this will enable
computer programs to make judgments about the relevance of web content,
depending on the context it will be used in.

For instance, if a web search is made for the word java and the results
found contain information describing which language they are written in, the
results returned by the search tool can be made to consist only of web pages
written in the user’s preferred language. If more descriptive information is
available in the results, then they may be filtered depending on whether
they concern java, as in coffee, geographical locations named Java, the Java
programming language, and so on. The search results can then be adjusted
to match what is expected to be interesting for the user.

Figure 2.1 on page 13 shows technologies used in the realization of the
semantic web. As can be seen, it still depends on older technology, but with
layers of new standards added, that when used in combination provides new
types of functionality. Lower layers, like the RDF layer, and the XML layer,

2.2. The semantic web 13

provide the means to create something known as an ontology. The ontology
can be used for logic inference. Among other things, these inferences can be
used for establishing proofs and trustability of web content.

Figure 2.1: A representation of various layers in the architecture of
the semantic web. Downloaded from http://www.w3.org/2000/Talks/

1206-xml2k-tbl/slide10-0.html (on the 18th of October, 2013)
Tim Berners-Lee, Copyright © 2000 W3C, All Rights Reserved

Semantic web mining Traditional data mining is a way to extract inter-
esting patterns from homogeneous and less complex data. [19, p.IIM] How-
ever, the semantic web requires that different techniques are used. The re-
sulting is called semantic web mining.

Semantic Web Mining is a new and fast-developing research area
combining Web Mining and Semantic Web.[19, p.IIM]

One of the goals of semantic web mining is to make data mining more
efficient by utilizing the features of the semantic web.

a) using semantic structures in the Web to enrich the results of
Web Mining [19, p.IIM]

14 2. Background

Another motivation for semantic web mining, is that it may assist in the
development of the semantic web itself.

b) to build the Semantic Web by employing the Web Mining tech-
niques [19, p.IIM]

Ontologies The term ontology is important to the understanding of the
semantic web. In an ordinary context, the word can be defined as The science
or study of being3, but in discussions of the semantic web it is used differently.
One article describes ontologies as containing the following.

...a set of knowledge terms, including the vocabulary, the semantic
interconnections, and some simple rules of inference and logic for
some particular topic. [10, p.30]

An ontology provides tools that can enable software to make use of data
in advanced ways. The ontology incldues a vocabulary, with names for the
concepts that some system involves. There is information about how these
concepts relate to each other, and there are logical rules, that software can
use to derive new information from from existing information.

Standards used in the semantic web

On the Internet, the ontologies are realized through the use of metadata
frameworks. In other words, various standards for marking up web content
with metadata is used to describe how the contents relate to the various
ontologies in use online. This is what makes metadata an important tool for
web analytics, and for this master project. For that reason, the remaining
part of this section will be used to introduce various standards of metadata.

2.2.1 Metadata

Metadata can take many forms, and there are many different definitions of
the word. In this text it will be used as data that is used to describe web
content. Sometimes metadata will be invisible to the reader, but embedded
in a document, as a summary in the page header of a text, or in HTML-
tags scattered throughout the text. Other times it will be readable both by
machines and humans, as part of the actual text, but following strict rules

3The Oxford English Dictionary:
http://www.oed.com/view/Entry/131551?redirectedFrom=ontology#eid (visited on
20th of October, 2013)

2.2. The semantic web 15

for markup syntax, and thereby making it convenient for machines to process
the document. Additionally, metadata can also be located outside of the file
or content that it describes.

Several articles discuss the meaning of the term metadata. However,
in relation to web robots the distinction between metadata and other data
is not always important. Robots will often look at any type of document
content, whether it is metadata or not. It is not interesting whether a part
of a document is metadata or not, but rather if it can be used as a selector.
By the term selector is here meant any data which can be used to locate
sections of document content that a robot is meant to extract.

When collecting data using robots, we have other options than when
doing it manually. It is faster, so we can afford to go through much larger
quantities of text. We can work with any kind of file, as it does not need to
be human-readable. The stricter the mark up of the documents, the better,
but it is possible to work with plain text documents as well.

However, robots have the following disadvantage: You can not rely on
common sense to decide whether something is relevant. How material is se-
lected must be defined beforehand. This is challenging, because web content
is often highly dynamic. If the web page in question is redesigned often,
then structural changes are likely to create problems for navigating the con-
tent. One solution can be to search for for a printable version of the page,
as redesign tends to have less impact on those versions:

If the information you want is available only embedded in an
HTML page, try to find a Text Only or Print this Page variant
[9, p.5]

Another technique is to focus on as small a part of the web page as
possible, making structural changes outside that region irrelevant.

There are numerous standards for metadata, and several with over-
lapping functionality. Which ones to utilize depends on the purpose of the
software that is being built. Here follows a quick introduction to some of
those standards.

RDFa

This section introduces the standard called Resource Description Framework-
in-attributes, based on a paper named the RDFa Primer [3].

More and more traffic on the Internet is made from requests sent by web
robots, instead of humans. Robots have different requirements to documents

16 2. Background

than human readers. The structure of the document markup becomes more
important. To meet this increasing need for machine-friendly documents
W3C has worked out a framework for more detailed descriptions of document
contents. It is described as:

...a set of XHTML attributes to augment visual data with machine-
readable hints. [3]

With these Extensible Hypertext Markup Language (XHTML) attributes,
they hope to improve the machine-readable versions of documents. If soft-
ware tools can have more detailed descriptions of web content, they will
hopefully be able to parse and distribute it in more efficient and meaningful
ways. Browsing web content is no longer so much about typing in specific ad-
dresses, as a process of letting automated programs pass you the information
that they interpret as useful. Making use of software for locating information
on the web seems to be a core feature of the semantic web vision. However,
the RDFa is just a way of describing the content. This can be used for many
purposes. Here follows an outline of its workings.

RDFa in brief The main idea of RDFa is to insert some attributes into al-
ready existing XHTML-tags, to augment human-readable data with machine-
readable descriptions. This is done by adding property- and rel - attributes
to XHTML-tags. A property is an URL. It can be an absolute path, or the
document in question can have something like namespace defined. The prop-
erty links the tag to a concept, in a taxonomy at that address. Then the
rel-attribute is used to link HTML elements together.

This can be used to a greater or lesser extent, describing things of various
complexity:

...markup for items as simple as the title of an article, or as
complex as a user’s complete social network. [3]

At the time the article was written XHTML-documents with RDFa would
validate, but HTML documents did not. This could be a problem for pro-
moting widespread use.

After giving an outline of RDFa, the RDFa Primer [3] provides examples
of usage.

The first example Inserting rel=’license’ into a link on a page, explains
in machine-readable language that the link leads to a definition of the license
for the current page. Thus a relation is described between two documents
on the web, the current page and the page that defines the license.

2.2. The semantic web 17

The second example Insert property=’dc:title’ into a header tag. Here
the argument to the property is a relative path, to a property described by
the Dublin Core. Whether describing relative or absolute paths, all property
names are URLs.

In a way this can help computers to understand what they are processing,
almost on a semantic level. Semantics, or even understanding things on a
cognitive level, is often described simply as knowing the relations between
those things. Implementing this in web content would enable computers to
perform complex tasks with the data. That is, if we can write software that
handles this complexity in a useful way.

Flavor The RDFa Primer [3] refers to adding meta-info to web-pages as
adding flavor.

Social network - the properties of a person There exists a RDFa
vocabulary named FOAF, or Friend-of-a-Friend. In the article’s example
this is used in combination with the typeof -attribute to create a new data
type, called Person. This type is then filled with attributes relating to people.

After this, the example in the RDFa Primer [3] explains how this vocab-
ulary can be used to set up a structured version of an entire social network.
It requires little code, and makes the RDFa appear as a highly efficient tool.

Types and nodes Two important concepts in the RDFa are types and
nodes. A node can be created, and given a type. If a URL is not specified
for the node, it is known as a blank node. Setting the node’s type indicates
what kind of data it will contain. There are predefined types, but it is also
possible to create new ones.

Usability Creating complex metadata-structures through RDFa enhances
the HTML with semantic machine-readable text. Having this kind of func-
tionality embedded in readable character data (CDATA) could prove valu-
able. If human readable language and machine readable language are con-
nected in that way, it may improve the usability of information on the Inter-
net.

Still, the example-user in the RDFa Primer [3], appears to have more
technical skills than should be expected from an average user. The stan-
dard is more likely to be successful if it is implemented on a software level,
and thereby made more available, e.g. through a CMS for average users.
This, however is not discussed in the RDFa Primer.[3] It describes how the
metadata should be formatted, but not how it will be generated. It appears

18 2. Background

important that insertion of the RDFa-metadata is automated. There may
not be many people willing to write it out manually, only to adhere to a
standard.

ccREL

Metadata can assist in many different aspects of handling web content. When
it comes to administration and distribution of data, copyright is of essence.
Here follows a discussion of The Creative Commons Rights Expression Lan-
guage based on a paper by the same name.[2] The ccREL is a system for
including machine readable copyright information in web pages. The objec-
tive is to:

...make it easy to publish and read rights expression data... [2,
p.32]

ccREL is Creative Commons’ attempt at using RDFa for their purposes.
Copyright is only a small part of what metadata is used for, but the principles
are the same as in other contexts.

Creative Commons use W3C’s technology. Both of these organizations are
trend-setters, and not acting purely out of financial motivation. Copyright
has long been difficult to express online. Material changes hands in different
ways there than in the real world, and there are many small distributors.

CC provides easily embeddable copyright-notices, with simple categories
of distribution. Previously, more research was required for including licenses
in web publishing. With CC’s solution, one only have to select one of their
licenses and copy the appropriate code into the published documents.

By the use of ccREL it also becomes more convenient for software pro-
grams to process web content depending on copyright. The most obvious
application for this is in web-search. If you needs to find free material, soft-
ware can ensure that a search exclusively returns results fitting specified
license requirements.

One place such a search can be made is at http://search.creativecommons.
org/ There, one can utilize a number of search-engines, automatically em-
bedding license preferences along with search words in the requests.

A good design? ccREL is a fast and accessible way to incorporate copy-
right into web content productions. It is in widespread use. The paper about
ccREL[2] gives us an example:

Flickr hosts approximately 50 million CC-licensed images (as of
October 2007). [2, p.21]

2.2. The semantic web 19

Microformats

Microformats are based on using old technology for new purposes:

Microformats are about using the standards we all know and love
to convey as much semantic meaning as possible. [...] all you
need to do to get started with them is familiarize yourself with
the best ways to apply the tags and attributes you already use. [7]

The quote, from the Microformats Primer [7], illustrates this by describing
a business card according to the vCard standard, but doing it through the
use of plain XHTML code. This is accomplished by using a collection of
div -tags, that are assigned class names corresponding to the attribute names
required by the vCard standard.

BEGIN:VCARD

VERSION:3.0

N:Çelik;Tantek

FN:Tantek Çelik

URL:http://tantek.com

ORG:Technorati

END:VCARD

Above is an example of a vCard, from the Microformats Primer.[7]

<div class="vcard">

Tantek Çelik

<div class="org">Technorati</div>

</div>

The HTML code above, also from the Microformats Primer [7],
shows the same vCard, described through the use of XHTML.

Schema.org

http://schema.org provides collections of schemas that can be used in the
markup of web pages. It is a collective effort, by companies behind several
of the largest search engines.

20 2. Background

A shared markup vocabulary makes it easier for webmasters to
decide on a markup schema and get the maximum benefit for
their efforts. So, in the spirit of sitemaps.org, search engines
have come together to provide a shared collection of schemas that
webmasters can use. 4

If the schemas are widely adopted, those search engines will be able to
improve their service, and as large companies they have the opportunity to
promote them. As is stated in the quote above, it would be beneficial to the
search engine companies, because the more people adhere to the standard, the
easier it becomes to create advanced algorithms for cataloging web content.

Schema is a young project, and a more clearly defined approach than
older standards, such as Microformats. How it develops depends on how the
web community responds to it. Few relevant academic articles were found,
when searching for schema.org, so the research community does not yet seem
to have become involved.

Dublin Core

The Dublin Core provides vocabularies intended to be used as metadata.
Using these terms means classifying web content in categories common across
the web. When many people use the same terms, it becomes more convenient
for search engines to make use of that metadata. The name of the standard
comes from a workshop in Dublin, Ohio.

The development of the Dublin Core metadata standard is guided
by the DCMI. The DCMI had its beginnings in 1995 in Dublin,
Ohio, where the first of the Dunlin Core Series workshops was
held. [8, p.41]

The standard is called core because the terms chosen are few, with broad
meanings, which enable them to be used in a very wide range of contexts.

... Dublin Core metadata were intentionally designed to provide a
basic set of elements that is both easy to apply, especially by non-
library professionals, and suitable for a wide array of resource
description communities. [8, p.41]

Although an important focus appears to be on usage in web documents,
Dublin Core can be used in many contexts, as it is readable by both machines
and humans. The set of elements is small, but extendible.

4http://schema.org/ (visited on 26th of October, 2013)

2.2. The semantic web 21

...Dublin Core was never intended to be a comprehensive metadata
solution for all possible needs. Instead, it is more appropriate to
view the 15 Dublin Core metadata element set as a common foun-
dation upon which various communities can build more complex
metadata schemes to meet their own specific needs. [8, p.41]

If the elements of the Dublin Core is in widespread use on the Internet,
then websites may be using some, or all of the core elements. In addition
they can define their own metadata tags. If software is made in order to
analyze the usage of Dublin Core metadata, it would be uncomplicated to
compare the popularity of the core elements. The names of the elements
that are added as extensions, on the other hand, would be more difficult to
predict.

ACAP

The Automated Content Access Protocol (ACAP) concerns rights manage-
ment for web content. It is a protocol that can be used by web publishers
to mark up their web documents with information about distribution rights.
This metadata can then be processed, for example by search engines. On the
official web site, it is described in the following way.

It is a non-proprietary protocol, developed by publishers, which is
designed to ensure that anyone who publishes content on the web
and who wants to ensure that the web ”crawlers” used by search
engines and other online aggregators can read and understand the
terms and conditions of access and re-use. In other words, ACAP
is all about making copyright work on the web.5

According to the above quote it appears that search engines and aggrega-
tors are expected to take an active part in copyright management, by filtering
the web content they direct users to, based on how that content has been
labeled.

The standard does not appear to be in widespread use. At the time
of writing a search on scholar.google.no for ”Automated Content Access
Protocol” appeared to return very few, if any relevant results. This was also
the case for a search on emeraldinsight.com. The scarcity of academic
material about the standard indicates that its use could be highly limited.
One way to investigate this further could be to crawl web sites, and look for
presence of ACAP-code. This is a typical example of the type of tasks the
software developed in this project could be made to perform.

5http://www.the-acap.org/FAQs.php (visited on 5th of October, 2013)

22 2. Background

Robots.txt

The main purpose of the Robots Exclusion Standard, or robots.txt, is to in-
form web robots how to behave on websites. It should always be taken into
consideration when crawling a site. On web forums, discussions can some-
times be seen about how polite the behavior of e.g. the Googlebot is. When
a robot is created, it can be made to overlook the directions in robots.txt,
but this can cause it to be banned from the site.

Sometimes a robots meta tag will be present in a HTML file, serving a
similar purpose to that of robots.txt.

Metadata summary

We have reviewed different types of metadata for the Internet. Next we will
examine the types and architectures of common web robots.

2.3 Web robots

We have now looked at several common standards for metadata. The purpose
of this master project is to use that information to build robots for the
Internet. Before this can be done, we must also look into what robots for the
Internet are, and how they function.

Robots for the Internet are known by many names, and have various types
of functionality. Robots for the Internet, robots for the web, or web robots,
are fairly general terms, that often refer to software programs operating in-
dependently or automatically on the Internet. In this dissertation we will
mostly use the term web robot, because it is short. The distinction between
the terms the Internet and the web is not stressed.

Traditionally the word robot is often associated with mechanical ma-
chines that perform automated tasks, for example at an assembly line. This
understanding of the word is strongly linked to a Czech play from 1920, by
Karel Čapek. In English, the play is called Rossum’s Universal Robots [5],
and the Oxford English Dictionary explains the use of the Czech word rob-
ota, meaning forced labour, as leading to the following definition of the word
robot:

Chiefly Science Fiction. An intelligent artificial being typically
made of metal and resembling in some way a human or other
animal. 6

6The Oxford English Dictionary: http://www.oed.com/view/Entry/166641?rskey=
CYWcKG&result=2&isAdvanced=false#eid (visited on 20th of October, 2013)

2.3. Web robots 23

If we do not look at their implementation, but rather at their functionality,
the most important feature of robots could be said to be that of automation,
or independent operation. When there is a task that is too big, or too tedious
for people to perform, we can create something to do the task for us. If we
include this in our understanding of the term robot, then the term also makes
sense in a software context.

Web robots are not necessarily only information gatherers, but can also
have sophisticated functionality for post processing of data. For this project,
the robots created will both retrieve and process metadata and other infor-
mation from the Internet.

2.3.1 Functionality and architecture

Some more examples of names referring to web robots are: robots, bots,
scripts, indexers, scrapers, crawlers, spiders, drones, scutters. Several of
these terms can be used interchangeably. Bot is short for robot. A script is
usually a small sized program in a high level programming language. Neither
of these have to be related to the Internet. An indexer is sometimes a program
that goes through data and creates an overview of the contents. In the most
extreme cases, like that of the Googlebot, this can mean sorting through
a larger portion of the whole Internet, and may require days to complete,
if it ever stops at all. A scraper may process acquired data, and extract
something from it. Spiders and crawlers often perform similar tasks, and
may use sophisticated algorithms for navigating the web (crawling), and
searching out content.

Strict definitions of the different terms will not be made here, as they
are often used freely and interchangeably, and because their functionality is
often overlapping.

Besides describing their function, names of web robots often say some-
thing about the robot’s purpose. Spambots and botnets are common names
for malicious web robots. A spider may be a malicious robot, if it is used
for scraping, and then republishing content. On the other side, if it is col-
lecting information for a search engine, this is likely to be appreciated by
site owners. Other categories of robots are political robots, votebots, finan-
cial robots, trading robots, search engine agents, knowbots, chatterbots, IRC
robots, update detection robots, gaming robots, etc.

Web crawlers Web crawlers are a useful example for discussion. A pos-
sible architecture can be seen in figure 2.2 on page 24. Crawlers often work
independently over longer periods of time. Sometimes they never finish, but

24 2. Background

Figure 2.2: Possible implementation of a web crawler. The image is in
the public domain, and was downloaded from http://en.wikipedia.org/

wiki/File:WebCrawlerArchitecture.png

instead download content over and over, to check whether it has been up-
dated. They are usually provided with one or more web addresses to use as
a starting point. When they download what those addresses point to, more
addresses are attempted extracted, and then placed in a queue. By having a
scheduler that selects addresses from this queue, the crawler can keep down-
loading data, and exploring a partition of the web, until all suitable addresses
have been used. Aside from extracting addresses from the downloaded data,
it can be processed further in various ways, depending on the purpose of the
crawler..

For different crawler different crawling techniques will be useful. For
example an incremental web crawler can be used can suitable for indexing.

An incremental crawler [5], is one, which updates an existing set
of downloaded pages instead of restarting the crawl from scratch
each time. This involves some way of determining whether a page
has changed since the last time it was crawled. [14, p.403]

2.3. Web robots 25

If the web sites crawled contain a high number of static (rarely updated)
web pages, this approach can ensure that only the pages that have been
updated are downloaded, and in this way reduce the network load.

Another optimization is the use of parallel crawlers. Parallel crawlers are
crawlers utilizing multiple processes, in order to divide the work load. If you
want to reduce the network load caused by crawling, the case of a distributed
parallel crawler is relevant.

Distributed crawler: When C-proc’s run at geographically distant
locations connected by the Internet (or a wide area network), we
call it a distributed crawler. For example, one C-proc may run in
the US, crawling all US pages, and another C-proc may run in
France, crawling all European pages [6, p.126]

The word C-proc in the above quote refers to separate crawling processes
cooperating to conduct a web crawl. Since the processes are geographically
distant from each other, the network load is lower in the respective locations.
How efficient this is, is described in the article as dependant on how the
processes coordinate their work.

When C-proc’s run at distant locations and communicate through
the Internet, it becomes important how often and how much C-
proc’s need to communicate. [6, p.126]

In other words, if the processes must communicate in order to decide
whether to download web pages, this may create a significant amount of
additional web traffic.

2.3.2 Politeness

When building web robots, and especially when building web crawlers, effi-
ciency is an important criteria. Although it is important to be efficient, this
efficiency should be tempered with politeness. By politeness is here meant
that the robots execute in a way that is not provoking to owners of web
servers, web sites, or web content.

An example of impolite behavior by robots could be to download a high
number of web pages from one single server at a high rate. From a program-
mer’s point of view this may seem like a minor detail, and one may hope
that it will be overlooked. However, if it is done on a large enough scale it
may create an unacceptable load on the server in question. In a worst case
scenario, this could be equal to a denial-of-service attack (DoS attack), and

26 2. Background

punishable by law. On a smaller scale, it may simply lead to the IP address
of the crawler being blacklisted on the server.

If the behavior of common web robots is an indication, politeness is seen
as something worth investing in. Below is a quote that supports this. It
concerns the design of a well known web crawler, named Mercator.

Despite the need for speed, anyone running a web crawler that
overloads web servers soon learns that such behavior is consid-
ered unacceptable. At the very least, a web crawler should not
attempt to download multiple pages from the same web server si-
multaneously; better, it should impose a limit on the portion of a
web server’s resources it consumes. Mercator can be configured
to obey either of these politeness policies. [1, p.26]

It is common for web robots to supply a user agent string included with
their HTTP requests. This contains a name describing the software making
the request, possibly along with a version number. Not including this can
also be seen as impolite behavior.

The robots.txt file described in section 2.2.1 can contain different rules for
individual robots. To have an effect the directives contained in the robots.txt
file depend on the robots being designed to obey them.7 On the other hand,
not adhering to robots.txt is also considered impolite, and may lead to the
robot, or its IP-address being blacklisted.

Although requests from robots can be a burden for site owners, it also
valuable to them, if it helps their site become more visible, for example in
search engines.

Deep web No one have access to the entire Internet. When search engines
are indexing the web they often try to comply with what site owners want to
be visible in a web search. This means that a lot of the web is not accessible
through average search engines. When referring to web content that is not
discoverable through search engines, and public web sites, the word deep web
is sometimes used. This type of web content may or may not be protected by
passwords, or other security measures. What is important, is that it is not
intended to be searchable. For example, a web site may generate its pages
dynamically, from a database, but search engines will normally not try to
explore the content of the database exhaustively. They will only go through
the versions of these dynamic web pages that are pointed to by URLs that
they discover while crawling the Internet. Attempting to explore web sites

7http://www.robotstxt.org/faq/blockjustbad.html
(visited on 9th of October, 2013)

2.3. Web robots 27

on deeper levels, extracting content which there are no links pointing to, is
likely to be disapproved of by the site owners. In certain contexts, it may
also be illegal.

To sum up, here are some guidelines that should be followed in the cre-
ation of web robots for this project.

• Respect the instructions in the robots.txt file, and in W3C’s Robot
META Tags.8

• Limit the download rate of pages from individual web sites. When
crawling multiple sites, it would be beneficial alternate between them,
to reduce the load on the individual sites.

• The load on the local network should also be considered.

• Do not generate new URLs based upon pattern recognition extracted
from analyzing existing URLs, or from URL query options.

2.3.3 Well known robots

Googlebot

Googlebot is the name of one of Google’s crawlers, and it collects data that
is used for indexing the web. Even if site owners have not registered their
sites with Google, Googlebot is likely to find the sites, by following URLs
linking to it on other web pages that it crawls.

Heritrix

Heritrix is a crawler belonging to the Internet Archive9. Development of the
crawler was started in 2003, and it is presented as an open source archival
quality web crawler.[17]

Mercator

Mercator is a scalable, extensible web crawler written entirely in Java.[11]
It is an old crawler. The quote above is from an article written in 1999,

and few relevant results were found online, so the crawler may be in little use.
However, the name is sometimes mentioned in relation to crawling algorithms
(for example in section 2.3.2, about politeness). It was also included search
products sold by AltaVista [11, p.14]

8http://www.w3.org/TR/html4/appendix/notes.html
9http://archive.org/

28 2. Background

Webcheck

Webcheck is an open source tool that creates reports about web sites. It is
written in Python, and presents its output as HTML pages. The web site
for the project states that it is possible to add extra functionality10

Scrapy

Scrapy is a web crawler developed in the Python programming language.

Scrapy is an application framework for crawling web sites and
extracting structured data which can be used for a wide range of
useful applications, like data mining, information processing or
historical archival. [21, p.153]

As can be seen from the quote, the crawler has a many possible areas
of application. The website for the project also informs that it is simple,
extensible, and a has a healthy community11

Nikita the spider

According to the official website, Nikita the spider was discontinued in 2008.12

It deserves mentioning because the website provides much information about
how a crawler can be implemented in Python. The project is open source, and
still available. The project also provides an alternative to Python’s parser
module for robots.txt files.

Robot catalog

There is no obvious place to refer to in order to get an overview of freely
available web robots. Robotstxt.org maintains a robot database.13 Searching
the Python Package Index14 for web, robot, or web robot, gives several results
containing the words spider, crawler, or similar. The website cpan.org 15

provides a large, searchable archive of modules for the Perl programming
language, and has categories for web related modules.

In addition a web search for web robots may return discussions recom-
mending popular robots, but these will often be commercial, and the majority
appear to be intended for general purposes.

10http://arthurdejong.org/webcheck/ (visited on 9th of October, 2013)
11http://scrapy.org/(visitedon24thofOctober,2013)
12http://nikitathespider.com/ (visited on 24th of October, 2013)
13http://www.robotstxt.org/db.html
14http://pypi.python.org/
15http://www.cpan.org/

2.4. Chapter summary 29

2.4 Chapter summary

After defining the problems to be solved in this master project, we have now
been through enough literature to start out work. This knowledge will be put
to use in the next chapter, where decisions are made about which research
methods to use.

30 2. Background

Chapter 3

Research methods

3.1 Introduction to research methods

As described in the introduction, the research objectives are the following:

R1 Study the field of web analytics and web robots, and summarize what
exists.

R2 Conduct experimental design by defining and creating a Command and
Control Center (CCC), a Graphical User Interface (GUI), and a couple
of sample robots.

R3 Conduct experiments with the sample robots, and produce data and
visualizations.

R4 Analyze the findings from the previous activity, and discuss the useful-
ness of robots in web analytics.

Below follows a more detailed description of the tasks related to each of
the research objectives. After that potential problems are discussed, as well
as the tools and software to be used.

3.2 Study the field (R1)

The background chapter includes a study of web analytics, to help in getting
to know the field. The semantic web is introduced, along with various stan-
dards for metadata used on the Internet. A closer look is taken at analysis
conducted by the use of web robots, and several well known web robots are
introduced. The method used for this study is reading of relevant academic
literature, but also seraching the web and Wikipedia. It is a young research
field, and some of the topics are not yet covered by peer-reviewed literature.

31

32 3. Research methods

3.3 Conduct experimental design (R2)

In the design chapter it is decided what kind of software shall be constructed.
The method used is experimental design, and to that end a selection of robots
will be proposed, that can be used for for experimentation. A CCC will also
be designed, that can control the execution of the robots. The CCC will
also provide the users’ interface to the system. The value of this part of the
software lies in automation of tasks, by allowing control of several robots
from one access point, and setting them up to run at specified intervals. The
GUI will be an alternate way to access the CCC.

The goal is to gather a selection of web robots, with different types of
functionality, that can be used in combination, for a wide range of tasks.

Some examples of interesting aspects of web pages are: page size, page
complexity, content, growth, problems, quality, degree of semantic web func-
tionality.

3.4 Conduct experiments (R3)

Two main robots will be designed. The first will create a time series, per-
forming a relatively simple task against a high number or URLs, over a longer
period of time.

The second robot will be less oriented towards change over time, but give
a more complete picture of the current situation of web sites. This requires
more complex functionality. First the robot must crawl the site, mapping
out which web pages are to be gone over. Then it will investigate the pages
found, recording degree and type of use of a selected standard of metadata.
This robot can be run sporadically. It will not be included in the scheduled
data collection, but be activated manually instead.

The first robot will look at specific web pages, the second at web sites as
a whole.

The findings from these experiments will be used for discussion. Visual-
izations of the collected data will be created using Microsoft Excel.

Data collection

The software will run independently over time, and collect information about
web sites. It will also be operated manually, for some parts of the data
collection.

3.5. Analyze the findings (R4) 33

Program execution

The software will be run with two separate configurations, utilizing different
types of web robots. One configuration will run periodically for a longer time
period, collecting fairly trivial data, which is likely to change over time. The
second configuration uses a more complex robot, which crawls entire web
sites, instead of looking at single web pages. It will be executed manually.

The details of these robots will be specified in the design chapter. Their
functionality will be chosen based on what was learned from the literary
review, as well as on input from the supervisor of this master project.

URL collections used

When executing the software a collection of URLs must be supplied, giving
the robots something to operate against. Which addresses are chosen will
have an impact on our results. The focus is not on any particular subset of
the Internet, but rather on general trends. Therefore the selection of URLs
should ideally be representative for the whole of the Internet.

Automatically generated IP addresses will be used, if such a collection
can be created in an efficient way. If it is found to be too time consuming,
manually collected addresses will be used instead. The details around this
are described in the implementation chapter.

3.5 Analyze the findings (R4)

The output from the robot execution will be used for discussion, as well for
creation of visualizations in Microsoft Excel. The coding experience will also
be discussed. The design and experiments will be the basis for an evaluation
of the usefulness of robots in web analytics. The experience with development
and application of the software will serve as material for a discussion of
challenges and possibilities in similar projects.

Evaluation of the software

There will not be time to make large revisions in the program, but evaluation
will be done of the quality of the design and implementation. Afterwards, it
will be proposed ways in which the program can be improved.

Promotion of the software will not be a focus. It will require much time
to implement all of the required functionality, and there will be little time
left to make the interface intuitive for common users.

34 3. Research methods

3.6 Limitations and potential problems

The main limitations are restrictions on time and equipment. There will
be no traditional fieldwork, where the software is deployed with users who
perform user testing. But the software will be tested in the real world, where
it is used for collection of data from web pages for evaluation.

It is likely that some unexpected challenges will occur. The choice of
programming languages and libraries will have a large influence on the out-
come of the project. If the work is done in programming languages that have
not been used before, then tasks will take more time. Unfamiliar languages
can also turn out to lack features supporting the solutions that have been
planned implemented.

It may also be problematic to achieve a data collection that is repre-
sentable for the Internet as a whole. This depends on requiring a URL
collection to use as input to the web robots, that is representable for the
Internet as a whole. It also depends on avoiding any unintended side effects
occurring during the data collection itself. If the robots collect data in a
non-uniform way, the collected data may be compromised.

Should this happen, the results will hopefully still be usable, but it will
be important to be careful when generalizing over them.

3.7 Tools and software

The work is mainly performed on the Linux based computers of the University
of Oslo. Eclipse is primarily for Java programming, but was also found
to work well with Python, after installing the plug-in Pydev. That proved
difficult to set up with the standard installation of Eclipse, so another version
of Eclipse was downloaded.

Version control and backup of the dissertation has been done with SVN
against the Institute of Informatics’ servers. For the software produced, GIT
was used on SourceForge.

Running the finished product requires little preparation, aside from ob-
taining a basic Python installation. Some additional Python modules are
used, but the main functionality should always be available. Support for
visualization is a desireable feature in the program, but for this project vi-
sualization is done by exporting datasets as text, and importing them in
Excel.

3.8. Chapter summary 35

Online representation

A project is created on sourceforge.com. Although focus will not be put
on building a user community, Sourceforge provides useful tools for version
control, ticket management, and software distribution.

3.8 Chapter summary

That concludes the method chapter. The research objectives have been de-
scribed in detail. Details were also given about how the program develop-
ment and data collection will be performed. When these tasks have been
completed, the output will be used for analysis and evaluation. By creat-
ing the software, using it, and analyzing the outcome, we will have gained
knowledge that is then used to evaluate the quality of the software and the
usability of robots in relation to web analytics.

The next chapter is the design chapter, where decisions are made about
how the software should be constructed.

36 3. Research methods

Chapter 4

Program design

The previous chapter described in detail the work to be done in this master
project. In the current chapter there will be a detailed description of the
structure and functionality of the software that is to be built. In other
words, the work now starts on a design proposal. A choice will be made for
a suitable programming language. Then the structure of the Command and
Control Center (CCC) will be planned in detail. Solutions will be found for
how it can relay communication between users and robots. Functionality is
needed for registering and scheduling tasks in the system. There is also need
for a programming hook, that can give extensions (e.g. robots) access to
some form of storage functionality.

Although the main focus of this master project is web robots, the bulk of
the coding done will be an investment in the CCC that controls the execution
of those robots. The robots themselves will be lightweight in comparison.
They will mostly perform single, clearly defined tasks, and each of them will
only contain a small number of functions.

One of the reasons the web robots are lightweight is that details around
their execution are managed by the CCC. Another reason is that common
functionality for robots will be made available in a shared module, so that it
does not have to be recreated each time a new robot is made.

4.1 Prerequisites

As described in the method chapter, the software will be developed on the
machines at the University of Oslo. Portable solutions are used where pos-
sible, but the software is developed for use on Linux systems. The user
interface will require some prior knowledge of how the program is meant to
be operated. The installation process should be straightforward. Ideally the

37

38 4. Program design

software can be run directly after downloading and unpacking it. However,
since the software will have dependencies it may not be so simple in all cases.
Still, the goal is that it should be possible to install the program, and its de-
pendencies, in a user’s home directory, without any administrator privileges.
This means that most users with access to a Linux shell can make use of the
software.

A name for the program The program is named the Academic Web
Watch (AWW). It is called academic because it is intended to be used for
research, and web watch is used because it is a tool for monitoring changes
on the Internet.

4.2 Programming languages and libraries

The Python programming language appears to be suitable for the system
that will be developed. As it should be possible to integrate already ex-
isting robots, it is useful that Python has bindings for other programming
languages, as well as functionality for communicating with other programs,
for example via pipelines. Some robots are also available, that are written
in Python.1 Dynamic language features, such as passing function names as
variables, are also useful when integrating third party code.

In addition, the language should have well developed functionality for
web-related tasks. Three programming languages that are often mentioned
in relation to web programming are Python, PHP, and Perl. Among these,
Python stands out because it also provides well developed libraries for visual-
ization and GUI-implementation. That could mean the entire main structure
of the software can be implemented using one single programming language.

One case where Python is possibly not the best choice, is if the program
should be web-centric. By web-centric is here meant that the system can be
used via a web browser, from a remote location. In that case PHP could
be a better choice. Web-centering makes it easy to give access to many
users. It also means displaying results can be done almost anywhere. The
drawback is a more advanced program installation. PHP requires a web
server, and storing results requires access to an online database. Adding
new robots would require support for uploading files. Still, a web centered
solution is very appealing, but there are two main reasons why it will not
be used. Firstly, the program should be easy to download and run, with as
little overhead as possible. Secondly, focus will be put on supporting existing

1For example Scrapy: http://scrapy.org/

4.2. Programming languages and libraries 39

robots that are written in Python. The last could be combined with a web-
centric solution, but is simpler with a standalone Python based program.

Regarding persistence, Object-relational databases appear useful. It would
be convenient to work with an object model, but still have access to all the
benefits of having a database underneath. However, a simpler solution will
be used for this project. It is described later in this chapter, in the section
named persistence (section 4.3.9).

Perl is also much used for web programming. It is a powerful tool for
text processing, but using it for AWW could mean that some features must
be implemented in other programming languages. It is possible to create
Graphical User Interface (GUI), visualizations, and database functionality
via Perl, but its strength appears to be text processing.

Graphics libraries

The GUI for the CCC will be discussed in section 4.6, but the possibilities of
visualizing collected data should also be mentioned. Such functionality will
not be implemented in this project, but the programming hook will be made
in a way that it can be utilized both by robots as well as for the purpose of
visualization. If extensions for visualization are developed at a later stage,
Python has well developed libraries for this too.

The ImageMagick software suite has a Python interface, called Python-
Magick. GNU-plot is available through Python. However, the Python pack-
age called EasyViz could prove even more useful:

Easyviz is a unified interface to various packages for scientific vi-
sualization and plotting. [...] Both curve plots and more advanced
2D/3D visualization of scalar and vector fields are supported. The
Easyviz interface was designed with three ideas in mind: 1) a sim-
ple, Matlab-like syntax; 2) a unified interface to lots of visualiza-
tion engines (called backends later): Gnuplot, Matplotlib, Grace,
Veusz, Pmw.Blt.Graph, PyX, Matlab, VTK, VisIt, OpenDX; and
3) a minimalistic interface which offers only basic control of plots:
curves, linestyles, legends, title, axis extent and names. More
fine-tuning of plots can be done by invoking backend-specific com-
mands.[15]

As can be seen from the quote, Easyviz can utilize various backends, such
as Gnuplot, Matlab, etc. This means that using Easyviz for visualization can
be done without considering which visualization engine will be used. This
gives increased portability.

40 4. Program design

4.3 Command and control center

This section will be used for a description of the CCC. The topics include
program structure, program behavior, user interfaces, user commands, per-
sistence, program tasks, scheduling, etc. But first some important concepts
in the program will be explained.

Note on terminology: In the following discussion of the software a few
reoccurring words need to be explained:

• Command: A text string, usually from the command line interface,
or an instance of the class Command, containing information about a
specific function call.

• Task: A command string, and details concerning when and how it
should be executed.

• Robot: A python module/file representing a web robot, and conting
required functions for being activated by the CCC. A robot is a type
of extension for AWW.

• Visualization: A python module/file that can generate visualizations,
based on collected datasets. A visualization is another type of extension
for AWW. No visualizations will be made in this project, except for a
template, but the program is designed to support this.

4.3.1 Program functionality

AWW will be created as a Python package. Starting the program in its
default mode, will open up a user interface to the CCC.

The CCC will provide several types of functionality. It can be used to
activate the various web robots included. It also can also be used to export
or truncate the data sets that those robots produce. If visualizations are
created for AWW at a later time, functionality will be in place in the user
interface for activating them.

A simple scheduling functionality will also be included. The scheduler
can be started from the user interface, and will run in a loop, which iterates
a list of tasks, and runs their associated commands when the time is right.

The user interface supports the creation of tasks. A task can contain any
kind of command that is understandable by AWW’s command line interface.
This means tasks can be used for robot activation, but also for other things,
such as setting up automatic export of data sets. Lists of URLs can be read

4.3. Command and control center 41

from file, and stored in a task. When a task is used to activate a robot, this
list can be passed to the robot as an argument.

It will be possible to extend the system, by adding extensions in the form
of robots and visualizations. These extensions can be added to subpackages
of the Python package AWW. In Python packages there should always be a
file named init .py. If extensions are listed in the init file of the subpackages
they are placed in, then AWW will import them the next time it is started,
and call one of their functions, to make them register their information and
datasets in AWW’s database.

4.3.2 Standards and politeness

It will be attempted to make AWW’s robots adhere to common standards
and conventions for web robots, such as metatags, politeness, and robots.txt.
Number of requests per minute, and bytes downloaded per minute will also
be controlled

4.3.3 Modes of operation

By passing command line parameters at start-up, it should be possible to
start AWW in different modes. There will be a command line mode, a
GUI mode, and a non-interactive mode which only starts the scheduler. In
addition there will be a mode that executes one single command, given along
with the parameters, before exiting.

4.3.4 Communication between users and robots

The robots will be relatively independent. What this means is that they are
commanded to start, and then they operate on their own. A robot’s creator
can program it to do most anything possible within the Python language, and
include additional modules as needed. Robots made in other programming
languages can also be utilized. You only have to create a Python module to
represent them in in AWW, and make this module activate the actual robot,
for example via a system call.

When robots need to store data, they are free to create new tables in the
database. Controlling this through AWW’s interface would be difficult to
facilitate, as the users would have to know the details of the robot’s workings.
However, at some point some robots will need input from the user. For now,
this will be solved by setting variables in the source code of the robots.

42 4. Program design

4.3.5 Target URLs

In most cases robots will need information about which URLs to target.
This information can be specified through parameters in the user interface of
AWW. The URLs can also be loaded from file and assigned to a task. The
database contains a table with names of tasks, and URLs they are meant to
be used with them.

When a robot is activated, URLs can be passed along as arguments. If
no parameters are passed to the robot, it can request the CCC to pass on
any default URLs that are stored for that particular robot, or it can perform
tasks that do not require any input-URLs.

Parameters

If a robot should be able to perform more than a single, clearly defined
task, some additional parameters will usually be needed. Exactly which
parameters is impossible to predict, and therefore difficult to include in the
user interface. Python is dynamic, and allows functions to receive arguments
of changing numbers and types, but the user interface is more rigid.

In this project the interface will not have support for additional param-
eters, and the problem must be solved in another way. For example, the
robot designer can include a configuration file, and inform about it in the
description of the robot. Alternatively, since Python is an interpreted lan-
guage, configurations can also be modified in the source files themselves.
That would mean that the most basic users will only be able to use the
robots with the default configuration, performing one single task, but can
enable more functionality with only a little learning required.

4.3.6 Scheduling

In the previous section we looked at grouping URLs, and assigning them to
the various tasks. When we have such a structure in place, only a little work
is required to enable scheduling in our program. Since we have frequency of
execution in the information contained in our tasks, scheduling only requires
starting a thread that monitors this information and activates the appropriate
robots. Therefore this will also be attempted implemented.

If AWW is running in the default mode, the user can activate the sched-
uler manually, and leave the program running. In one of the other program
modes, no user interface will open, but the scheduler will start automatically.
Ideally the process could then automatically be set to run in the background.

If the internal scheduler should should turn out to be unstable, it is

4.3. Command and control center 43

possible to use an external one, and specify the command to be executed
along with the start-up parameters for AWW.

Frequency of task execution will be described in a similar way as it is in
the Crontab on Linux systems.

4.3.7 Program components

The program is structured after the Model View Controller (MVC) pattern.
The CCC represents the controller. The views are represented by the com-
mand prompt and the GUI. The Model contains the database, which contains
what is collected by the bots. It also contains all file handling functionality.

By default the program will start in GUI-mode, but by passing flags, or
if a window manager is not detected, a command line mode may be opened
instead. The GUI will show the command line, as well as other ways to
access the functionality. The GUI has access to the controller directly, as
well as through the command line.

Figure 4.1: An overview of the modules that AWW is made of, as well as
their intended access patterns.

Figure 4.1 on page 43 shows an overview of the program structure. The
boxes represent Python modules, and the arrows specify access. Although

44 4. Program design

Python does not enforce access control, modules only make use of functions
in other modules if this is indicated by the arrows in the figure.

Most of the program will be located in one folder. There will be two sub-
folders where users can add more functionality to the program, one for visu-
alizations, and one for robots. Information about visualizations and robots
will be stored in the database, when they are registered. On start-up the
program goes through lists of robots and visualizations, and tries to register
those that are not already present in the database.

Visualizations appear in the GUI, or in a spearate window if the GUI is
not running. They can also be opened in the default browser, or exported to
file as a raster image.

4.3.8 Commands

All the functionality of the program should be available through one-liners.
This is done because it enables the design of graphical frontends to be similar
to that of the command line. For example, if all access to program function-
ality can be summed up as single, complete statements, then they can easily
be designed as forms on a web page.

Now comes descriptions of the various commands, sorted into groups
of similar functionality. It is included in this document because it gives an
overview of the programs functionality. Arguments to commands are marked
with angle-brackets in this way: <argument>. In some places, arguments of
commands are marked with a ’+’. This also is also used in the help text at
run time. It means that the syntax requires one or more the given argument.
This is a type of notation commonly used in computer science, and expected
to be understood by the type of users that AWW is intended for.

Command group - Robots

Commands:

• bot list
list available robots

• bot run default <bot name>+
run robot, possibly with URLs from a task with frequency not set

• bot run url <bot name> <url>+
run a robot once, with specific URLs

• bot run with task urls <bot name> <task name>
run a robot once, with URLs belonging to given task

4.3. Command and control center 45

New robots are automatically imported on start-up. Bot list prints the
robots that have been successfully imported. When activating a robot, it
is possible to pass on a list of URLs, specify a task name for URL look-up,
or run the robot without any arguments. There is a Python module called
robot tools, with commonly used functionality, and HTTP-request functions
that monitors web traffic for the entire program.

Command group - Visualization

Commands:

• viz list
list visualizations

• viz <dataset name> <viz name>
open a visualization

• viz browser <dataset name> <viz name>
open a visualization in the default browser

• viz export <dataset name> <viz name>
export visualization in png format

The visualizations for this project will be made by the use of Excel, with
exported data sets. So at the end of this project, these viz commands will
not be meant to be used. They are only included to make it convenient to
create extensions for visualization at a later time.

The viz commands can be run, but only to display a demo-visualization,
that does not make use of any data sets. In addition to opening the visualiza-
tion in AWW’s GUI, it can also be opened in the system’s default browser,
in an external window, or written to disk.

Command group - Dataset

Commands:

• set list
list datasets

• set peek ¡set name¿
print 10 entries from a dataset

• set export <file-format> <set name>+
export dataset to file (xml/html/txt/sql)

46 4. Program design

• set truncate <set name>
delete all data in a set

The datasets are stored in the database during the execution of the web
robots. The robots are free to create new datasets when it is needed. As a
convention the sets should always have names that start with the name of the
robot that uses it, followed by an underscore, and then something describing
its contents.

Datasets are accessed by the visualizations through a programming hook.
They can also be exported to several file formats, for further processing, or
storage.

Command group - Tasks

Commands:

• task list
list tasks

• task run <task name>+
execute the command belonging to a task

• task info <task name>
list URLs in a task

• task create <task name> <command>
create a task

• task frequency <task name> <minute hour dom month>
set frequency for execution of a task (you can use ’manual’ and ’de-
fault’)

• task add url <task name> <url>+
add a URL to a task

• task import urls <task name> <filename>
import URLs from file

• task remove url <task name> <url>+
remove a URL from a task

• task remove task <task name>
delete a task, and its collection of URLs

4.3. Command and control center 47

Tasks are created manually. They contain a task name, a command, and
an execution frequency. It is also possible to add URLs to a task, regardless
of what command the task contains. If the task is to activate a robot, the
URLs will be passed along to the robot. Adding URLs to a task can also be
done by importing them from a file.

On creation no execution frequency is assigned to a tasks. It must be
specified manually afterwards, in a syntax similar to that of Cron2, with
a syntax where minute, hour, day of month, month are typed as integers
separated by a whitespace character.

Command group - Scheduler

Commands:

• scheduler start
automatically iterate and execute tasks

• scheduler stop
stop automatic execution of tasks

The scheduler will be started when the program is started is a certain
mode. It can also be started from the user interfaces.

Command group - Miscellaneous

Commands:

• gui
open the gui

• help
display list of available commands

• quit
exit the program (Ctrl-D)

Help prints a list of all commands, along with explanations for each com-
mand. Gui opens the graphical interface, and freezes the shell until it is
closed again. Quit exists the command loop, and with no interfaces open, or
the scheduler running, the main module will exit.

2Cron is a program available on Linux systems that enables users to schedule executions
of commands.

48 4. Program design

4.3.9 Persistence

The robots may collect large amounts of data, so there is need for a database.
This can be solved in many ways, but to simplify installation, the database
will be stored as a file. The use of Object-relational mapping (ORM) has
been considered. It would be convenient to specify classes that robots can
instantiate and fill with collected data before passing them on to be stored
by the model. This would make it convenient to control what datatypes
are accepted for storage, as well as which additional parameters must be
provided. In the end the library SQLite3 was chosen for this project. It is
available through the package Pysqlite4, which is included in newer versions
of the standard Python distribution.

This means objects are not used. The database is managed by SQL-
statements in the Python code, but these statements are all placed in the
module called Model, and the other modules are not affected by this choice.

SQLite is a software library that implements a self-contained,
serverless, zero-configuration, transactional SQL database engine.
SQLite is the most widely deployed SQL database engine in the
world.[20]

During execution the robots may insert into the database at any time.
This is done by calling functions in the hook module, passing the data in the
form of tuples (which is a datatype in Python). Control with which tables
belong to which robots is not enforced, but the robots can ask for these to
be created.

When requesting a table to be created, the robots supply their name,
and an additional name as arguments. The table name is constructed by
combining the two. The robot also provides names and descriptions for
the columns in the table. In SQL it is originally possible to store column
descriptions along with the tables. This functionality could not be found in
the sqlite library, so column descriptions are not stored in the current version
of the program.

There are some tables in the database used my the main module, but
most of the tables are created by the robots, and referred to as datasets.
Table 4.1 show and example of what a dataset can contain.

3http://www.sqlite.org/
4http://www.pysqlite.org/

4.3. Command and control center 49

timestamp host path http code
2013 02 19 15:40:22 www.uio.no /tjenester/it

/brukernavn-
passord/ikke-
logge-inn.html

202

2013 02 19 16:00:00 www.mn.uio.no.no /ifi/tjenester/it
/hjelp/latex/

404

2013 02 20 10:00:13 www.barejazz.no /live.php 202

Table 4.1: The table shows contents of an SQL-table belonging to the test
robot Awwhttp.

4.3.10 Files and directories

The program is built as a common Python package. The the folder structure
and contents reflect the guidelines from the Python documentation. The
program files can be run from any location. Program output is written in
a separate folder. The most relevant folders of the Python package are the
following:

• AWW This is the main folder of the package. In addition to the
program code, it contains files and folders that are usually present in
Python packages, such as a readme file, a license file, a setup file, source
code for the documentation, etc.

• AWW/aww This folder holds the source code of the CCC.

• AWW/aww/robots This folder contains a subpackage, named robots.
When new robots are created, their source files should be placed here.
The folder also contains a file named robot tools.py, with functionality
that is useful for web robots.

• AWW/aww/visualizations This folder contains a subpackage, named
visualizations. If visualizations are created, their source files should be
placed here. The folder also contains a file named visualization tools.py,
with functionality that is useful when visualizing datasets.

Output folders

Output produced by the program is placed in a sub folder of the user’s home
directory, called aww data. There lies the database file, aww.db, containing
the program’s configuration and all collected datasets. This is also the loca-
tion of the log file, aww log.txt, which is used for output that is considered

50 4. Program design

uninteresting for average users. If AWW is started in a limited mode, where
only the scheduler is running, all output will be written to this file. There is
also a sub-folder named output. When datasets are exported, they should be
written to this folder.

4.3.11 Packages and modules

In .py-file in the AWW-package corresponds to a Python module. Below are
descriptions of all the modules in AWW.

Modules in the package aww

The aww -package is the implementation of the CCC. For a better under-
standing of how the modules described below work together, refer to the
overview in figure 4.1 on page 43.

• aww Passing this module to the Python interpreter will cause the
controller module to be imported, and started.

• commandline A command line interface.

• controller This module represents the CCC. The user interfaces and
the scheduler module accesses other program functionality through this
module. The controller module, the scheduler module, and the hook
module are the only modules that accesses the model module.

• gui The graphical user interface.

• hook An access point for extensions. The functions here call similarly
named functions in the controller module.

• model Most of the access to disk is done via this module. It contains
all the database functionality.

• scheduler Some functions here are called by the controller module.
The scheduler module itself accesses functions in the controller, and in
the model, to retrieve and execute tasks.

Modules in the sub-package robots

Except for the modules robot tools and upcheck ext, all the following modules
are robots, that can be activated by the CCC.

4.3. Command and control center 51

• findsitemap This robot will download the robots.txt for all the URLs
that are given. URLs marked with sitemap in these files are collected,
and stored in the database.

• httpcodes This robot will be used for testing while implementing the
software. It will collect and store the HTTP status codes, from requests
made for all the URLs that are passed to it.

• plaincrawl Plaincrawl will be a basic web crawler. By default it will
only extract URLs from web pages, but it can be imported by other
robots, and they can provide their own functions for further processing
of the web pages.

• upcheck This robot will make HTTP-requests for URLs, and store var-
ious information about the replies, concerning when the corresponding
web pages were last updated. It also calculates hash values for the web
pages, for comparison with earlier, or later downloads.

• upcheck ext This module will be used for post-processing of content
downloaded by the robot Upcheck. It will create an additional table in
the database, that represents the data from Upcheck in a way that is
more useful for export and visualization.

• dublincrawl This robot makes use of the robot Plaincrawl, but pro-
vides extra functionality, which extracts information about the presence
of Dublin Core-metadata in the web pages.

• robot tools This module is not a robot, but it contains functionality
that is needed by several of the robots.

• urlgen Urlgen generates random IP-addresses, and use them to make
HTTP-requests, in order to confirm whether the address points to a
web server. If a reply is received, the address is stored.

• url list refiner This robot will use provided URLs for making HTTP-
requests. When no error code or exception results, the address is stored
in the database. The robot is meant as a tool to remove broken links
from URL lists.

Modules in the sub-package visualizations

No visualizations will be developed in this project, but the system will be
made to support that type of extensions too. A template is included.

52 4. Program design

• surface A template visualization. It will draw an example visualiza-
tion, by using the Easyviz package.

• visualization tools There will some functionality here, that may be
useful when implementing visualizations.

4.3.12 Classes

There is little use of classes in AWW, but here are descriptions of a few of
them.

AWW GUI is a subclass of the Frame class from the Tkinter package.
An efficient way to build a GUI is to subclass Frame and add the necessary
widgets. In the case of AWW, the widgets are added to standard instances
of the Frame class, which in turn are added to AWW GUI. Starting the GUI
means instantiating AWW GUI. When it opens, standard Frame instances
added to it cause visible borders to be drawn around different groups of
functionality.

Dataset info This class is defined in the module robot tools. Its purpose is
make robot creation more convenient, by letting the robots create one object
of this class for each of their datasets, and fill them with all the information
needed to create the corresponding tables in the database.

Robot info This class is also defined in the module robot tools. Instances
of the Dataset info class can be added to an instance of this class, along
with other details about a robot, such as its name and description. This
object can then be passed to the hook-module, supplying all the information
necessary for registering the robot and its datasets.

PoliteOpenHandler HTTP-requests can be performed in Python through
the use of various modules and functions. The module urllib2 5 defines the
classes OpenerDirector and BaseHandler. By subclassing BaseHandler and
passing it to an instance of OpenDirector it is possible to customize how
HTTP-requests are made. AWW’s PoliteOpenHandler class is such a sub-
class. If robots utilize functions available in AWW’s robot tools module the
PoliteOpenHandler is used. In that way the correct user agent string is added
to all HTTP-requests.

5http://docs.python.org/2/library/urllib2.html

4.4. Robots 53

Additionally, the PoliteOpenHandler ensures that global variables for
traffic monitoring are updated, and that the program pauses execution for a
given number of seconds if the network load is considered too high. If the
network load is too high when execution resumes, the request fails and None
is returned. The handler also makes use of the Python package robotparser 6

to determine whether requests can be allowed. If the parser returns False
when requesting permission to retrieve a URL, the request is cancelled and
None is returned to the robot that made the request.

One potential problem with the HTTP-functionality in the robot tools
module is that HTTP-redirects will be hidden. If a request is sent and a
redirect code is received, the OpenDirector will follow the redirect, by mak-
ing a new request, and return that result instead. This means that in robots
where the identity of the received URL is important, care must be taken in
choosing functions to use for making HTTP-requests. In some cases it may
be necessary to implement individual functionality for the robot in ques-
tion. However, if requests are made by robots, without going through the
robot tools module, the programmer should attempt to mirror the function-
ality of PoliteOpenHandler, to ensure that the correct user agent string is
used, and to update global traffic info.

4.4 Robots

Here follows a detailed description of the main robots that are implemented,
and used for data collection.

4.4.1 Main robots

2 main robots are created, and given the names Upcheck and Dublincrawl.
Much of the functionality needed for Dublincrawl, is created as a separate
robot, named Plaincrawl. Several other robots will be made, for example
to aid in the creation of address collections to use as input for the data
collection, but Upcheck and Dublincrawl are the robots that perform the
actual data collection.

Robot: Upcheck

Upcheck’s purpose is to find out whether web pages have changed. It does
not use a crawler, but is handed a set of specific web page URLs. It has
a much simpler functionality than Dublincrawl. All it does is to download

6http://docs.python.org/2/library/robotparser.html

54 4. Program design

pages from the web, and store information about them. Below follows a
detailed description.

Name Upcheck

Purpose Determine whether web documents have changed or not.

Summary Takes one or more URLs as arguments, then downloads and
computes an MD5-hash value. Stores the value, along with the last-
changed value from the HTTP-header.

Scheduling Upcheck is meant to be scheduled, to describe how web pages
change over time.

Arguments to main function page URLs (in our case sitemap addresses)

Execution time Average page download time multiplied by the number of
URLs supplied.

Network load Depends on the number of URLs specified, and traffic set-
tings in the CCC Only the URLs specified are downloaded, no URLs
are added during execution.

Involved metadata standards None

Other standards HTTP

Data collected There are 3 datasets, named start urls, res urls, and com-
bined. The last one is used by an additional module, named upcheck ext,
which is meant to be activated before exporting the collected data.

Table signatures:

• start urls (rowid, timestamp, timestamp excel, start url)

• res urls (rowid, fkey, seq nr, received url, reply code, calculated md5,
header md5, last modified, expires)

• combined (rowid, fkey, timestamp excel, start url, seq nr, re-
ceived url, reply code, calculated md5, header md5, last modified,
expires, t since last change)

Requirements Packages/modules: AWW
Anything else than Python: No

Modules upcheck, upcheck ext

4.4. Robots 55

Robot: Dublincrawl

Dublincrawl makes use of the robot Plaincrawl, to crawl web sites. It supplies
a custom function of its own, that counts the numbers and types of Dublin
Core tags present in the web pages that are downloaded. Below are the
details about the robot.

Name Dublincrawl

Purpose Determine degree and type of usage of Dublin Core tags in web
pages.

Summary A number of URLs are given as arguments. Through the use of
the crawler Plaincrawl, the corresponding sites are crawled. As the web
pages are downloaded the numbers of different Dublin Core tags are
recorded. When the crawling of a site is finished, a summary is stored
in a dataset. When all the given sites have been crawled, values from
counters for all encountered types of Dublin Core tags are transferred
to another dataset.

A parameter named crawl depth influences how many pages that are
downloaded. The URLs extracted from the web page corresponding to
the starting URL represents the first level of crawl depth. The URLs
acquired via those URLs represents the second level, and so on.

Scheduling This robot can be scheduled, but it is not its intended use.
It is intended to create a snapshot of sites, more than investigating
development over time.

Arguments to main function The function must receive at least one site.
The robot will then perform crawling, and obtain new page-URLs on
its own.

Execution time Depends on a parameter named crawl depth, as well as
a limit on the number of pages crawled for each level. By default,
2 levels are crawled, with 30 pages on each level. Adding the seed
URL, this means the execution time may be something like (1+(30x2))
multiplied by the average time required for downloading and parsing
the web pages, and then multiplied with the number of web sites that
are crawled.

Network load Dublincrawl is programmed for polite behavior, and does
not exceed a set number of HTTP-requests per site, per minute. It
does not follow inter-site URLs.

56 4. Program design

Involved metadata standards Dublin Core

Other standards HTTP, HTML, Robots exclusion protocol

Data collected Some data is stored in datasets belong to the robot Plain-
crawl. Dublincrawl has 2 datasets, one containing summaries for indi-
vidual web sites, and one containing total numbers of all Dublin Core
tags found.

Table signatures:

• summaries (rowid, timestamp, timestamp excel, site url, page count,
dc page countdc total, dc coverage, dc description, dc type, dc relation,
dc source, dc subject, dc title, dc creator, dc publisher, dc rights,
dc date, dc format, dc identifier, dc language)

• tagsfound (rowid, tag name, count)

Requirements Packages/modules: AWW, BeautifulSoup, Lxml
Anything else than Python: The Lxml package has dependencies, that
may require something in addition to Python.

Modules dublincrawl, plaincrawl

Dublincrawl gives a complex picture of an entire site. It is the most bot-
like of the two main robots, in that it acts on its own and processes web
content in a sophisticated way. It is not only an automated download of one
specific web resource at specific intervals.

Robot: Plaincrawl

To provide crawling functionality for the robot Dublincrawl, another robot
is created. It is named Plaincrawl. By default it simply crawls web sites,
and stores discovered URLs in the database, but it can be passed Python
functions via a set-function, in order to add processing of downloaded web
content.

Name Plaincrawl

Purpose Crawls web sites, but as default includes no processing of the con-
tent.

Summary Plaincrawl crawls one or more web sites, that are specified on
activation. The crawling is divided into levels, that correspond to the
number of URLs that had do be followed to get from the starting URL

4.4. Robots 57

to some other URL. There is a limit on how many web pages will
be downloaded on each level. A collection named crawled is used to
prevent the same page from being downloaded multiple times, but this
has no effect if different URLs point to the same web page.

Scheduling Execution can be scheduled, or started manually, depending on
the type of datacollection.

Arguments to main function The same in Dublincrawl.

Execution time The same as in Dublincrawl.

Network load The same as in Dublincrawl.

Involved metadata standards None

Other standards HTTP, HTML, Robots exclusion protocol

Data collected All URLs discovered in the downloaded web pages will be
stored temporarily, but when the crawling of a new web site is started,
all the datasets are deleted, except for the one named summaries. Dur-
ing a crawl URLs are filtered, depending on whether they are judged
to point to locations on the same site, or to somewhere else. The
robots.txt for the site is also consulted, and may result in URLs being
place in a dataset named disallowed.

Table signatures:

• crawled (rowid, url)

• disallowed (rowid, url)

• outgoing (rowid, url)

• summaries (rowid, site, crawl depth, page limit, disallowed, out-
going, crawled, level0, level1, level2, level3)

Requirements Packages/modules: AWW, BeautifulSoup, Lxml
Anything else than Python: The Lxml package has dependencies, that
may require something in addition to Python.

Modules plaincrawl

4.4.2 Helper robots

A few robots will be made to assist the robots described above in their tasks,
or to be used during the development.

58 4. Program design

Robot: Findsitemap The robot Upcheck, that was described in section
4.4.1, can be used with URLs pointing to many kinds of web content. In the
data collection of for this project, it is used to monitor updates of sitemaps.
In order to produce a collection of sitemap-URLs, another robot is created.
Its name is Findsitemap.

Findsitemap works by downloading the robots.txt file corresponding to all
the URLs that are passed to it. Robots.txt sometimes contains a sitemap at-
tribute. The sitemap-URLs registered to this attribute is what Findsitemap
collects and stores.

Allthough not all robots.txt files contain references to sitemaps, the ones
that do often include several. Therefore this technique can potentially pro-
duce as many, or even more sitemap URLs, than the number of URLs passed
to the robot.

Robot: Url list refiner The list of sitemap URLs that is generated by
the robot Findsitemap is likely to contain broken links. Url list refiner is
developed to make HTTP requests, and store the URLs for which a reply
was received. The resulting set of URLs can then be used for a more time-
efficient data collection.

Robot: Upcheck ext Some processing of Upcheck’s datasets will be re-
quired before they are exported, but should not occurr every time Upcheck
is activated. A separate module is created for this purpose. It is not a robot
in itself, but is implemented in a similar way, to give users access to it via
AWW’s interface.

Robot: Httpcodes A simple robot named Httpcodes is created. All it
does, is to make HTTP requests for URLs that are passed to it, and register
the HTTP reply codes. Httpcodes is used while developing the CCC, to
help make it clear what functions are needed for communication between the
framework and the robots.

Robot: Urlgen A robot by the name Urlgen is built with the purpose of
generating random IP-addresses. The details around this are described in
the implementation chapter. The word URL in the name of the robot can be
misleading, but is something remaining from the early stage of the design,
when it was hoped that it would be possible to obtain random URLs, instead
of IP-addresses.

4.5. Visualizations 59

4.5 Visualizations

For this master project, visualizations will be produced in Excel, using ex-
ported versions of the datasets. Functionality for visualization was originally
intended to be included in the program design. This task turned out to be too
demanding for this project, but some of the functionality has been included.
Throughout the text there are references to it, and in the user interface, op-
tions can be seen for running visualizations. However, it is not included in
the goals of the project, and it will not be used for the data analysis.

The CCC will have functionality that lets visualizations be written to an
image file, opened in the graphical user interface, in a separate window, or
in the default browser. Opening in a browser means that the visualization
is exported to an image file, which location is then passed to the system’s
default browser. No complete visualizations will be included with the pro-
gram, but there will be a demonstration module, named surface that draws
an example image, without making use of anything from the database.

4.6 Graphical user interface

Two solutions have been considered for a graphical user interface. One is
to design both the GUI and visualizations to be displayed in a browser.
The other is to use common Python libraries for graphics. Both options
give a high degree of portability. Using Python means a large part of the
system can be implemented using one single programming language, but it
may require use of packages that are not included in all Python installations.
Using a browser, on the other hand, is very convenient on the display side,
as most systems provide a browser, but creating web pages with forms for
the GUI may require installation of a PHP-server, or software with similar
functionality.

Eventually, Python was chosen for the GUI, in line with my preferences,
as well as to provide a simple installation, and to reduce the number of lan-
guages in use. Python will be used for as much as possible in the software.
If possible the GUI and display output will be displayed in one and the same
window. The python package used in Tkinter. Newer packages provide more
functionality, but this one seems to be included in most standard distribu-
tions of Python.

As mentioned, visualizations can be displayed in a browser as well. That
means that even if AWW runs in a shell without support for window man-
agement, it can be run in command line mode, and write the visualizations
to disk, and then they can be displayed in a browser instead. This is a highly

60 4. Program design

portable solution.
Some rarely needed functionality will only be available through the com-

mand line, and not in the GUI. However, the command line is also displayed
as a part of the GUI, so that functionality is still available. Aside from this
both the command line and the GUI will have very similar functionality.
The difference is mainly in how parameters are input. In the previous sec-
tion about commands it is described how the commands are sorted in groups
of similar functionality. For each of these groups, bot, viz, etc., the GUI will
contain a button. Next to the buttons are text fields and drop down menus
to select options for the commands.

In this manner complete commands can be pieced together. When a
button is pressed in the GUI the functions called in the controller module
are exactly the same as those called from the command line. If, at a later
time, someone decides to make web centric solution for the software, the
same design can be used for a layout of forms on web pages. In this way,
when a button is pressed the information from the text fields and drop down
menus will be sufficient to build a command, which in turn can be passed to
the controller via the system command line.

4.6.1 Output redirect

When the GUI is opened output for the whole program should be redirected
to a text widget in that interface. That way output from the whole system
can be printed in exactly the same way as before. This is convenient, es-
pecially in relation to output from the robots. The robots are ignorant of
anything but the functions included in the program hook, and that mod-
ule supplies no printing functionality. However, with output redirected, the
robots can call on the standard print function, and the output will still be
printed in the GUI.

4.7 Portability

The aim is for the software to have a high degree of portability. It should
be possible to start it for anyone with a standard Python installation. Some
of the Python dependencies, may not come with the standard installation.
Robots and visualizations can make use of additional modules, so the num-
ber of dependencies is bound to grow along with the number of extensions.
However, the main features of the program should always be available. The
program will simply report that it is unable to start the GUI, or some robots
or visualizations. Database support is the biggest challenge. It is based on

4.8. Extendability and API 61

the Pysqlite package, which is only included in newer distributions of Python.

4.8 Extendability and API

Extending the functionality of AWW can be done by adding robots and
visualizations. This is done through an API, as described below.

What robots and visualizations will be added later is difficult to predict,
and so is the functionality they will require. This will be solved by letting
the extensions decide everything on their own. The user interface will only
support passing along URLs to robots. If more parameters or configuration
is needed, this must be modified manually in the code files for the extensions.
This means standard execution will be a simple procedure, but also that even
the smallest change in configuration of extensions requires the user to have
a basic understanding of Python as well as the program structure.

In the API extensions are meant to use three access points. There is
a Python module called hook, which mostly provides functions for modify-
ing or listing contents in the database. The folder containing robots has a
module name robot tools, and the folder with visualizations has the module
visualization tools. These two modules provide commonly used functionality
for robots and visualizations, and they are not strongly connected to the
main part of the program. All the modules, and most of their functions, are
described in the user documentation for AWW.

In reality all the functions of AWW are accessible to any Python program
that imports it. For example, a new type of user interface, or a browser plug-
in, can import the module aww, and call any function in it. Other modules
than the ones named above are not designed to be accessed directly, but
there does not appear to be much access control in Python.

4.8.1 Importing extensions

When robots or visualizations are added, they should be copied to the folders
with the same names. They can be written in any language supported by
the operating system, but the link to the main program has to be through
a Python module. The name of the module should be added to the list of
extensions in the file init .py (which exists in both folders). The list are
iterated every time AWW is started, and new entries are automatically added
to the database.

When an extension is to be used, its Python module must be imported.
This does not rely on a file path, but on the package hierarchy. For example,
by importing ’robots.’ + ’some robot’ instead of ’robots/’+’some robot’ one

62 4. Program design

can avoid challenges concerning path syntax, location of program files, or
determining the current working directory.

4.8.2 Adding new robots

As described in the user documentation, creators of robots must include
a set of functions for AWW to call. An example of how the code for a
robot can look will be given in the implementation chapter, under the section
Boilerplate code for robots (5.4).

4.9 Threads

There are many points in the execution where threads could be useful in
this software: when the GUI is opened from the command line, when the
scheduler starts a task, when a robot makes HTTP-requests to a list of
URLs, during execution of any command with multiple robots or tasks as
arguments.

A thread is created when the scheduler is started, but that is the only
place threads are used in this project. Therefore the software may be slow and
possibly fail under some conditions. For example, if two tasks are scheduled
to execute at very close points in time, starvation may occur in the scheduler.

Another example is when the program pauses due to high traffic load. If
the limit that was breached concerns numbers of HTTP-requests per minute,
to one specific web site, we could still continue making requests to other sites.
Instead, in the simple solution used here, the whole CCC will pause execution
for several seconds.

4.10 Documentation

Program documentation and API, as well as the user documentation is dis-
tributed with the software. All the documentation can also be viewed online.
The location is described in appendix A.

Additionally the graphical interface will have text labels that can be
clicked, to open windows with information about the program, and how to
use it.

Tooltips7 do not seem to be available by default in the standard Python
distributions, but some third party code has been found, that will be at-
tempted added to buttons and checkboxes.

7Help text that is displayed when the mouse moves over a graphical component.

4.11. Chapter summary 63

More information about commands can also be acquired through the
command line. Examples of this are descriptions of robots, datasets, and
visualizations. It would be useful if these descriptions could be displayed
as graphical components, but the space in the program window is limited.
If there was time to implement a more complex interface, different types of
functionality could be split up into separate displays. That would make it
possible to include more detailed information about each type of functional-
ity.

4.11 Chapter summary

The design is finished. We now have a lot of details about how to implement
the software. In the following chapter, this is put to use in the implementation
and use of the software.

64 4. Program design

Chapter 5

Implementation

The software created for this project continues to grow, and at the time of
writing the source code contains more than 4600 lines of code and comments.
Initially the program was controlled via a command line interface, but when
most of the functionality had been implemented, a graphical user interface
was also added. Figure 5.1 on page 66 contains a screenshot of the graphical
interface. It is programmed using an old Python graphics package, called
Tkinter, which is included in most common distributions of Python.

5.1 Sourceforge project

Project name: Academic Web Watch

An account was registered at http://sourceforge.net, under the user-
name Fivecode. This account was then used to create a project, named the
Academic Web Watch. Sourceforge has provided several online tools. It
has not been attempted to recruit other developers or users there, but ser-
vices like version control, ticket management, project description, download
support, and license selection has been useful.

5.1.1 Distribution

The software created in this project can be downloaded from Sourceforge at:

http://sourceforge.net/p/wwatch

65

66 5. Implementation

Figure 5.1: This is the graphical interface. The command line interface is
included as a part of it, so that less frequently used functionality can still be
accessed.

5.1.2 Download and installation

There are downloads for different versions of the program. They contain
executable sourcecode structured as a Python package. One way to install
the software would be to first acquire a working Python installation, then
add the required modules described in the program documentation. After
this the downloaded code can be executed from the commandline or imported
while running Python. However, as it is structured as a Python package, it
can also be added to the Python installation, making it available for import
whenever Python is run, regardless of current working directory.

5.1.3 License

Soureforge allows their developers to chose between a selection of open source
licenses for projects. AWW has been published under a GNU Affero General

5.1. Sourceforge project 67

Public License. The choice of license is meant to make the code available
to as many developers as possible, while ensuring that anyone who starts a
new branch of development must share their code. In short, the source code
should be open, and stay open.

One of the things that sets the chosen GNU license apart from other
alternatives, such as the Creative Commons licenses, is that it includes the
feature copyleft. Copyleft specifies that that, not only distributed copies, but
also modified versions of code must preserve the same rights as the original
version.1 This means that with copyleft other developers can make commer-
cial branches of software, as long as the source code is still distributed along
with the software.

In addition to the common features of GNU licenses, the Affero license has
qualities that are meant to close a loophole related to web centric projects.
For some previous GPL licenses, distribution of source code can be omitted
when the software in question is a web service.

If your software can interact with users remotely through a com-
puter network, you should also make sure that it provides a way
for users to get its source. For example, if your program is a web
application, its interface could display a ”Source” link that leads
users to an archive of the code.2

Before people could make a web interface, and then be except from the
requirement of distributing the source code, but as the above quote points
out, that is not acceptable under the GNU Affero GPL.

Using Python also encourages open source code. The qualities of Python
are suitable for open source projects. It is not common to distribute it with-
out the source code, and the compiled code can usually be reverse-engineered.

Regardless of whether the software from this project is further developed,
it is still hoped that it contributes something to the open source society, in
that it limits what other developers can claim rights to, by being previous
art. If someone else create software that works in the same way, they can
not claim the design patterns as their own invention.

To label the project with the chosen license, two thing have been done.
The license has been chosen, under the project settings on Sourceforge. Addi-
tionally a text file, named LICENSE.txt, has been added to the code repos-
itory. The file is added to comply with a description of Python package
creation.3. The content of the file is a text describing the AGPL license,

1http://www.gnu.org/copyleft/copyleft.html
2https://www.gnu.org/licenses/agpl.html
3http://guide.python-distribute.org/creation.html

68 5. Implementation

copied from http://www.gnu.org/licenses/agpl-3.0.txt, on the 19th of
June, 2013. Afterwards, the name of the text file was then written as the
value of the variable license, in the file setup.py.

The dependencies of AWW are controlled by various types of licenses.
This does not affect AWW’s license, because the dependencies are not dis-
tributed with the AWW Python package. Dependencies are listed, in the file
setup.py, but must be acquired by the end user, as seems to be the standard
for Python packages.

If a bundled installer is made for AWW, then some dependencies may
have to be included. In that case the licenses for those dependencies must
also be considered. If it is legal for the dependencies to be distributed along
with AWW, then a copy of each license could be placed in a sub folder (e.g.
the docs folder), and listed in an appropriate place.

An appropriate place is likely to be the setup.py file. Another common
practice is to list dependencies and their licenses in a file named manifest.
Files named MANIFEST and MANIFEST.in already exist in the program
folder, but are used for other purposes, and may not be suited for inclusion
of license descriptions.

Initially AWW was registered at Sourceforge with the Creative Commons
Attribution License. Later, GNU Affero GPL was found to be a more suitable
choice, and selected in the project settings. Due to technical problems on
Sourceforge, this change was not reflected in the project’s introduction page.
Dialog with the staff makes it clear that this has to do with caching, and
updates, and that it is not clear how long it will take before the information
is displayed correctly.

5.2 Web address collections

5.2.1 IP address generation

Before the data collection can be initiated a collection of Internet addresses
must be created. It is unrealistic, and maybe impossible to analyze the whole
web, so a small sub-set will be used. It is desireable that the sub-set should
be representative of the Internet as a whole, as that would make an analysis
of collected data more valuable. Without representative data, it is impossible
to draw any final conclusions based on the results.

Using randomly generated IP-addresses is a common approach to
randomization of Internet addresses. The reason is that if there is no access
to the whole set of possible addresses (URL-addresses or IP-addresses), it is

5.2. Web address collections 69

difficult to introduce randomness in any other way. An attempt was made to
generate such a random collection. This turned out to be a more challenging
task than first assumed.

A web robot Urlgen is created for this purpose. It is made on the same
form as the other robots included with AWW, but ignores arguments to the
start function. When activated it enters a loop that repeats 250 000 times.
For each round in the loop 4 random numbers from 0 to 255 are generated,
and used to build an IP-address.

The IP-address is then tested, to determined whether it describes a re-
served address. If this it not the case, the string ’http://’ is prepended to
the address, and a HTTP-request is made for the header of whatever web
page should happen to be located at the address. If the request succeeds,
the address is stored in the database, along with the Received-URL attribute
from the header. The socket timeout is set to 2 seconds. Therefore slow
servers may be ignored, even though a working IP-address is used. When
the address is stored, or the request has timed out, the end of the loop is
reached.

During the experimentation with this robot several problems were en-
countered. One of them is automatic handling of redirects. The HTTP-
request is made by the use of a function, polite get header(), provided among
the functions available for all AWW-robots. It is preferred that those func-
tions are used, because they also adapt to, and update the current network
load. However, the function used here hides page redirects.

There are many factors that can be said to reduce the representability
of this address collection. The low socket timeout may cause some valid
addresses to be ignored. A server may be offline momentarily. Further-
more, there is not a one-to-one relation between IP-addresses and websites.
Sometimes multiple IPs refer to one and the same web site. In addition,
IP-addresses are likely to lead to certain types of web pages. They are more
likely to lead to the main web pages of web sites, rather than their sub-pages.

Results of IP address generation

In the end the randomly generated collection was not found suited for use
in the data collection. It is instead performed with a manually built URL
collection. Therefore the results produced must not be viewed as represen-
tative for the Internet as a whole. It should still be possible to use them for
analysis, as long as care is taken when generalizing over them. Aside from
this, it should also be unproblematic to use the collection in a demonstration
of how the software works.

70 5. Implementation

Proc Start
time

End
time

Gener-
ated

Rese-
rved

Failed Hits

1 18:06:22 07:46:45 250 000 34518 215465 17
2 18:06:25 07:28:26 250 000 34656 215340 4
3 18:06:29 07:31:56 250 000 34354 215646 0
4 18:06:32 07:42:33 250 000 34235 215764 1
5 18:06:35 07:53:18 250 000 34170 215816 14
6 18:06:39 07:37:58 250 000 34469 215531 0
7 18:06:42 07:40:49 250 000 34431 215568 1
8 18:06:46 07:50:09 250 000 34164 215829 7
9 18:06:49 07:48:47 250 000 34322 215675 3
10 18:06:52 07:38:45 250 000 34143 215841 16

Table 5.1: Information about the performance of the robot Urlgen, run as
10 separate processes.

5.2.2 Manually built address collection

A few general categories for web pages are described below. To obtain a broad
selection, an attempt is made to collect URLs from all of those categories.
Examples of categories are: geographic location, static and interactive web-
sites, rarely updated and frequently updated web pages. Other categories of
web pages can be found at Wikipedia’s article about websites.4 They also
have a selection of lists of websites, including listing by popularity.5

Below is a list of URL sets that will be used, sorted by the names of the
files they are stored in.

URL-collection files

urls top100 mostpopular.txt
Amount: 100
The first 100 of Today’s Most Popular Web Sites, collected on April 4th,
2013, from:
http://mostpopularwebsites.net

urls bottom100 mostpopular.txt
Amount: 100
From the Worst Performance within the Top 1,000,000 Websites, collected

4http://en.wikipedia.org/wiki/Website
5http://en.wikipedia.org/wiki/Lists_of_websites

5.2. Web address collections 71

on April 4th, 2013, from:
http://mostpopularwebsites.net/losers/1000000/

urls all.txt
All the collections, merged into one file.

urls sitemaps.txt
In short, it is a collection of sitemap-URLs. The file urls all.txt was used
with the robot named findsitemap. This produced a collection of URLs that
findsitemap extracted from the sitemap-attribute for robots.txt-files for the
given URLs.

urls top100 alexa.txt
Amount: 100
100 of the top 500 sites on the web, collected on April 4th, 2013, from:
http://www.alexa.com/topsites

urls top100science alexa.txt
Amount: 100
The first 100 of Top Sites in:All Categories > Science, collected on April 4th,
2013, from:
http://www.alexa.com/topsites/category/Top/Science

urls countries.txt
Amount: 100
This collection has 4 URLs from each of the 25 top domain names corre-
sponding to the countries listed in table 5.2 on page 72. The only criteria
used, is that the countries should be spread out, and ideally with variation
in quality of Internet service.6 The names are chosen from a list on this web
page: http://www.computerhope.com/jargon/num/domains.htm.

Most of the URLs have been found by searching Google with searches on
the form: site:.<domain name> Some are also found by searching Wikipedia
with a ’.’ followed by the domain name. Many of the URLs are site-addresses,
which means a re-direct is likely, if sending a HTTP-request for the pages.

urls misc domains.txt
Amount: 50

6Quality here means difference in reply time, or other features that contributes to
reliable and efficient Internet service.

72 5. Implementation

Location Domain
name

Australia au
Afghanistan af
Argentina ar
China cn
Faroe Islands fo
France fr
Germany de
Hong Kong hk
Iceland is
Morocco ma
Montenegro me
Mexico mx
New Zealand nz
North Korea kp
Norway no
Russia ru
Somalia so
South Africa za
South Korea kr
Spain es
Sudan sd
Sweden se
Taiwan tw
Trinidad and
Tobago

tt

United Kingdom co.uk
Zimbabwe zw

Table 5.2: Names of a selection of countries and areas, along with corre-
sponding top level domains.

5.3. Data collection 73

This collection has 5 URLs from each of the 10 top domain names described
below. Here we use other categories than country, and the names are chosen
from a list on this web page:
http://en.wikipedia.org/wiki/List_of_Internet_top-level_domains

As with the country domain suffixes, most of the URLs have been found
by searching Google with searches on the form: site:.<domain name>

The domains are:

net, org, edu, gov, mobi, int, travel, aero, pro, info

urls newspapers.txt
Amount: 100
These URLs are collected from a list of World Newspapers Online, on 8th of
May, 2013. They were found here:
http://actualidad.com/

urls universities.txt
Amount: 100
These are university web sites, sampled on 8th of May, 2013, from this URL:
http://www.shanghairanking.com/ARWU2012.html

5.3 Data collection

With the contruction of the address collections complete, the data collection
can be started. Data collection is described in the method chapter, but since
the robots had not been designed, there were few details available. Here
follows a detailed explanation of how the robots are executed in order to
collect material for visualization and analysis.

5.3.1 Automatic data collection with the robot Up-
check

The first attempts

For a larger part of the duration of this project, one or more configurations
of AWW has been set up to run automatically. For most of that time they
did not generate useful output. There have been difficulties in getting the
program to run in a stable manner. Processes have been terminated by the
operating system, when taking to long to finish, or running with too high
priority. At times most of the http requests made failed, for various reasons.

74 5. Implementation

Other times everything appeared to run as planned, but nothing was written
to the database.

Final setup of automatic execution

Upcheck was scheduled to run twice per day, starting from the 16th of
September, 2013. At this point the system was stable enough that, even
though problems arise, it should be possible to see from the output what
kind of events have occurred.

The data used for analysis, and for producing visualizations, was exported
on the 30th of September, but the software was allowed to run until the 25th
of October, 2013.

5.3.2 Manual execution of the robot Dublincrawl

The robot Dublincrawl was activated manually, instead of through scheduled
activation. The visualizations are based on one single execution, that was
done on the 27th of October, 2013.

Dublincrawl uses the largest URL collection, referred to as urls all.txt in
section 5.2.2. This URL collection contains over 1000 web addresses. In
addition, 30 addresses are added, from a web site that lists them as using
Dublin Core tags.7 If the average use of Dublin Core tags on the web is low,
the latter should ensure that there is still some useful output. The robot had
the parameter crawl depth set to 2, but in order to complete the execution
in a reasonable time it was only allowed to crawl 20 URLs on each level of
this crawl depth.

5.4 Boilerplate code for robots

Here is the code from a test robot for AWW. The code is included here,
because is an efficient demonstration of how AWW works, and because it is
useful for creation of new robots. To create a new robot, simply copy this
code, and modify it to perform new tasks.

The functions aww register and aww run(hosts=None) are the only func-
tions that must be present in all AWW’s robots.

#!/usr/bin/env python

7http://trends.builtwith.com/feeds/Dublin-Core (visited on 16th of September,
2013)

5.4. Boilerplate code for robots 75

"""

.. module::httpcodes

:synopsis: This module’s purpose is to save reply codes

for HTTP requests.

When aww_run is called a HTTP request is made for each

of the URls that are supplied as arguments. The HTTP

status code of the reply is stored to the database.

.. moduleauthor:: fivecode <fivecode@users.sourceforge.net>

"""

import some standard python packages

import time, datetime

import urllib2, hashlib

import hook

import some of aww’s functionality for web robots

from robot_tools import Robot_info, Dataset_info, HttpError

from robot_tools import get_timestamp, make_well_formed

from robot_tools import polite_open, get_standard_fields

bot_name = ’httpcodes’

def retrieve_code(url):

"""

Obtain and store a HTTP reply code for the URL given as

parameter.

If the HTTP request results in a redirect, an exception

will be raised. This is just a test bot, and the

redirect will not be followed

Of the 3 functions in this robot, this is the only

one that is not required in all robots for AWW.

:param url: A complete URL to use for a HTTP request

"""

try:

file1 = polite_open(url)

if not file1: # open failed

return None

76 5. Implementation

result = get_timestamp(), url, file1.getcode()

file1.close()

rowid = hook.dataset_insert(bot_name, \

’results’, \

result)

except HttpError, e:

if e.http_code == 301 or e.http_code == 302 or \

e.http_code == 303 or e.http_code == 307:

print bot_name +’ received redirect’

print ’This test robot does not follow redirects.’

else:

print ’HttpError ({0}) received: {1}’.\

format(e.http_code, e.args)

except Exception, e:

print bot_name + ’ received exception: ’ + str(e)

def aww_run(hosts=None):

"""

A function with this signature must be present in all

robots for AWW.

This function may be different in different

robots, but should always handle the hosts-argument

for the cases None, not None, and list

:param hosts: URLs that can be used by this robot.

"""

if hosts is None:

hosts = hook.get_default_urls(bot_name)

if hosts is None:

print ’Could not acquire host URLs’

return

if type(hosts) is not list:

aww_run([hosts]) # convert hosts to a list

else:

for url in hosts: # for all URLs given

retrieve_code(make_well_formed(url))

def aww_bot_register():

"""

A function with this signature must be present in all

5.5. Revisions 77

robots for AWW.

Its purpose is to register the robots name,

description, and datasets in the main framework.

"""

bot_info = Robot_info(bot_name, \

’Stores HTTP reply codes’)

SET 1

set1 = Dataset_info(’results’, ’(rowid, timestamp, ’

+ ’url, reply_code)’)

set1.add_field(’timestamp’, ’text’, \

’Time of execution’)

set1.add_field(’start_url’, ’text’, \

’URL provided by the user’)

set1.add_field(’reply_code’, ’text’, \

’Reply code from HTTP header’)

bot_info.add_dataset(set1)

hook.bot_register(bot_info)

5.5 Revisions

The scheduled execution of Upcheck was performed with version 0.0.9 of the
software. The robot Dublincrawl used version 0.1.0. The last changes done to
the software in this project resulted in version 0.1.1. All these distributions
are available at the Sourceforge project.

5.6 Program dependencies

It has been attempted to chose well established, widely used software li-
braries. For example, because the old graphics package, Tkinter, has been
used for implementing the GUI, it is likely to be usable on most common
Python distributions. Concerning persistence, the package pysqlite is a newer
addition to the standard Python distribution, but also in widespread use.

When a system does not support a part of AWW’s functionality, it is
hoped that AWW will fail gracefully. In other words, remaining functional-
ity should still be useable. For example, if GUI libraries are not available,
command line mode should be started instead. If individual dependencies
for robots or visualizations are not available, other robots and visualizations

78 5. Implementation

should not be affected. Lastly, if the program runs on a system unable to
display graphics, it should still be possible to write visualizations to disk.

Additionally, all dependencies for main program functionality are Python
packages. Generally, Python packages can be installed to a user’s home direc-
tory, without any need for special privileges. Sometimes these dependencies
will have other dependencies, and rely on non-Python software. If that soft-
ware is not installed on the system, it may be a problem. For example, the
Python package easyviz is crucial for visualization. In theory it should be
possible for the user to install it, but if none of the backends for easyviz are
available (GNU-plot, Matplotlib, etc.), then installation will require special
user privileges.

The dependencies for the CCC are listed in a file called setup.py, as this
seems common for Python packages. An average Python installation is likely
to be missing some of these dependencies, but they can be added, for example
by the use of one of Pythons package managers. Most of these dependencies
can be installed on a linux home directory without requiring any extra user
privileges.

The dependencies for the robots must be handled individually.

5.7 Chapter summary

That concludes the implementation chapter, and the development of the
software. The chapter described the creation of a project on sourceforge.

net, details on how the program design was implemented, and how the data
collection is performed. In the next chapter the result of the data collection
and the outcome of the project will be discussed.

Chapter 6

Findings

Now follows descriptions and discussion of the output from the data collec-
tion. After that the project outcome and the completion of the research
objectives will be discussed, resulting in a conclusion for the whole project.

6.1 Output from the robot Upcheck

The visualizations for Upcheck are based on a data collection period of 2
weeks, during which the robot was scheduled to run twice per day. The
software collected data for more than a month, as described in section 5.3.1,
but the visualizations are based on data from the first 2 weeks of that period.
This is partly because there was no more time left for working with the data,
but also because the resulting table for those 2 weeks in itself resulted in a
table containing 40076 entries. Importing the data for the entire period into
Excel could be difficult without further processing of the dataset.

6.1.1 Data collection results

Initially the robot Upcheck stores its results in two separate tables. An
extension is then run, which combines the results in a third table. This table
has the following columns:

• rowid An automatically included index present in all tables

• fkey An integer describing the location of the entry with the start URL
in the table start urls

• timestamp excel The time at which a sitemap download occurred

79

80 6. Findings

• start url The URL that was used for the initiating request (which are
sometimes followed by redirects)

• seq nr In the case of redirects, a sequence number is used to describe
the order of resulting table entries. In this table only the final HTTP
reply is included, but the sequence number shows how many redirects
occurred.

• received url The URL of the downloaded document (When redirects
occur, this differs from the start URL.)

• reply code The HTTP reply code of the last request

• calculated md5 An MD5 value for the download, calculated by Up-
check

• header md5 An MD5 value extrated from the HTTP header

• last modified The last-modified value from the HTTP header

• expires Expiry date/time from the HTTP header

• t of previous change A timestamp describing when a different MD5
value was last calculated for this start URL

• change interval If the MD5 value calculated is different from the pre-
vious entry, then it is calculate how long the previous value lasted

The column start url describes URLs that were passed to the robot from
the CCC. When the robot is activated each such URL may result in multiple
entries in the dataset, if redirects should occur, but the same timestamp
and start URL are used for all of these entries. When we look at update
frequencies of web pages, the start URL will be used as a label. If a URL is
redirected to a different location between two subsequent program executions,
this will be viewed as if a page has been updated - except if the MD5-values
are exactly the same.

Post-processing For the analysis in this project only a few of the columns
are used, but there is another important reason for creating the robot exten-
sion that outputs the table. It allows for post-processing to be performed
on the data. This way two variables can be calculated here, by the use of
Python, instead of in Excel, which would be more complex.

The two values calculated are t of previous change and change interval.
The are created in an iteration of the whole combined dataset. t of previous change

6.2. Output from the robot Dublincrawl 81

is set to 0 for the first entry. For following entries the value is updated when-
ever a URL is noticed to result in a different MD5. This means each entry
in the set has a value in this column, describing when a URL was last mod-
ified. This value is used to calculate values for the column change interval,
which describes the duration of time between two updates. During the
iteration, when a URL is discovered to have changed, the timestamp in
t of previous change for the previous entry is subtracted from the new times-
tamp, that is generated for the current entry. The result is the duration
of the duration the URL was in its previous state - in other words, the
change interval.

6.1.2 Visualization results

On the following pages are figures describing the output from the robot Up-
check. Most of them concern results for single URLs, and they give informa-
tion about something referred to as update intervals. During the execution
of the robot, if a URL is found to have been updated, this marks the end of
one such update interval.

In figure 6.1 on page 82 the number of updates (or update intervals) found
is reported for a small number of URLs.

As can be seen, the number of intervals varies greatly, which is another
way to say that the change frequency for different URLs varies greatly. An-
other way of describing change frequency is to compute the average time
between updates. This I will call the average interval length. Figure 6.2 on
page 83 displays this information, again only for a handful of URLs.

The standard deviation from the average update intervals can be seen in
figure 6.3 on page 84.

Figure 6.4 on page 85 contrasts the minimum and maximum update in-
terval length for a selection of URLs.

Figure 6.5 on page on page 88 may be the most useful visualization,
because it displays trends that describe the whole dataset, instead of just a
selection of URLs. We can see that there is significant amount of URLs that
have average update intervals with a length between 0.04 and 0.05 days.

6.2 Output from the robot Dublincrawl

6.2.1 Data collection results

After completing the crawl of a website, Dublincrawl transfers its findings
to the dataset dublincrawl summaries. Several of the columns in the table

82 6. Findings

Figure 6.1: Numbers of updates (or update intervals) for a selection of
URLs during two weeks.

contain numbers of tags found, for the most common Dublin Core tags. The
selection of tags was done based on a list from dublincore.org.1

• rowid An automatically included index present in all tables

• timestamp The time at which a crawl ended

• timestamp excel The timestamp converted to Excel’s time format

• site url The URL of the site that was crawled

• page count Total number of pages crawled on one web site

• dc page count Total number of crawled pages where Dublin Core tags
were found

1http://dublincore.org/documents/2001/04/12/usageguide/generic.shtml
(visited on the 29th of October, 2013)

6.2. Output from the robot Dublincrawl 83

Figure 6.2: The average length of update intervals for a selection of URLs.

• dc total Total number of Dublin Core tags found on a web site

• dc coverage A type of Dublin Core tag

• dc description A type of Dublin Core tag

• dc type A type of Dublin Core tag

• dc relation A type of Dublin Core tag

• dc source A type of Dublin Core tag

• dc subject A type of Dublin Core tag

• dc title A type of Dublin Core tag

• dc creator A type of Dublin Core tag

• dc publisher A type of Dublin Core tag

84 6. Findings

Figure 6.3: Standard deviation in the length of update intervals for a se-
lection of URLs.

• dc rights A type of Dublin Core tag

• dc date A type of Dublin Core tag

• dc format A type of Dublin Core tag

• dc identifier A type of Dublin Core tag

• dc language A type of Dublin Core tag

Dublincrawl also inserts data into another table, named dublincrawl tagsfound.
This table contains all categories of Dublin Core tags found, as well as the
number that was found of each. The table contains the following columns:

• rowid An automatically included index present in all tables

• tag name Names of all the types of Dublin Core tags found

• count The total number of tags found of the individual tags

6.2. Output from the robot Dublincrawl 85

Figure 6.4: The longest and shortest update intervals for a selection of
URLs.

Observed Dublin Core tags

Table 6.1 on page 86 shows the sites with most DC tags. Table 6.2 on page
87 shows the names of all the Dublin Core tags found.

6.2.2 Visualization results

Figure 6.6 on page 89 shows the number of Dublin Core tags per site. A
total of 1027 sites were crawled, 52 sites had some Dublin Core tags, 975 had
none.

Figure 6.7 on page 90 shows the Dublin Core tags that were found to be
used most frequently.

86 6. Findings

Site Pages
with DC
tags

Average
DC tags
per DC
page

nhs.uk 70.5 % 13.0
weather.gov 90.2 % 8.4
canada.com 44.3 % 16.0
census.gov 96.7 % 5.9
loc.gov 59.0 % 7.5
dailykos.com 83.6 % 5.0
www.milblogging.com 26.2 % 11.0
regis.edu 25.9 % 11.0
store.usps.com 47.5 % 5.0
cdc.gov 78.7 % 1.8
diamond.jp 54.1 % 2.0
www.memepool.com 96.7 % 1.0
hotelsone.com 90.2 % 1.0
ers.usda.gov 30.0 % 4.0
www.washingtonpost.com 39.3 % 1.4
resumegenius.com 20.0 % 4.0

Table 6.1: The sites with most Dublin Core tags, found by the robot Dublin-
crawl.

6.2. Output from the robot Dublincrawl 87

tag name count tag name count
dc.title 431 dc.subject.epappt 1
dc.language 412 dc.subject.epasubstance 1
dc.subject 383 dc.subject.epahealth 1
dc.description 317 dc.robots 1
dc.creator 279 dc.date.disposal.review 1
dc.publisher 200 dc.format.medium 1
dc.rights 187 dc.subject.epacat 1
dc.date.created 161 dc.publisher.address 1
dc.identifier 144 dc.date.archivedate 1
dc.format 125 dc.coverage.x 1
dc.type 119 dc.subject.epachannel 1
dc.date.issued 109 dc.date.issue 1
dc.coverage 94 dc.date.x-

metadatalastmodified
1

dc.date.reviewed 62 dc.creator.personalname 1
dc.date.modified 59 dc.subject.eparat 1
dc.contributor 58 dc.lmusitename 1
dc.date 48 dc.subject.epaopt 1
dc.source 45 dc.coverage.y 1
dc.keywords 44 dc.subject.epaect 1
dc.date.valid 27 dc.subject.eparit 1
dc.relation.ispartof 16 dc.subject.eparegulation 1
dc.coverage.spatial 15 dc.subject.epaindustry 1
dc.author 15 dc.rating 1
dc.unused 14 dc.subject.epaemt 1
dc.coverage.temporal 4 dc.description.abstract 1
dc.robot 3 dc.rights.copyright 1
dc.distribution 3 dc.subject.epabrm 1
dc.audience 2 dc.title.alternative 1

Table 6.2: Names of all Dublin Core tags found by the robot Dublincrawl.

88 6. Findings

Figure 6.5: Mean lengths of update intervals per URL. The horizontal axis
shows the mean intervals between updates, and the vertical axis shows the
percentage of URLs that have this update interval.

6.3 Discussion

6.3.1 Choice of programming language

The choice of Python as the language for implementation has mostly been a
positive experience. It was not based on previous experience with Python. I
had never used Python before this project. The choice was instead based on
online descriptions, and praise of Python by programmers at the University
of Oslo.

One master project later much has been learned. It turns out that many
problems can be quickly solved in Python. The user community is active
online, and good advice has been easily available from sites like http://

stackoverflow.com 2

However, Python’s standard libraries are sometimes not as complete as
hoped. For example, there are multiple packages with functionality for the

2Questions asked in relation to the AWW project:
http://stackoverflow.com/questions/16759035/python-variables-discord-across-modules
http://stackoverflow.com/questions/17127306/row-pop-function-in-pysqlite

6.3. Discussion 89

Figure 6.6: Number of Dublin Core tags per site.

web, but their implementations change significantly between Python ver-
sions, and they have overlapping functionality implemented through different
algorithms. Likewise, the Pyslqlite library works well for common purposes,
but some sqlite-functions, like sqlite3 last insert rowid(), do not appear to
have been implemented in the Python bindings. Furthermore, documenta-
tion is often available, but is structured more freely, than for example Java’s
APIs. This means getting an overview of packages, modules, and functions
can sometimes be challenging.

Exceptions from 3rd party code, for example from Python’s robots.txt
parser, have also been hard to debug. At times data collection has not
functioned at all, and the only clues to go by were short error messages that
can not be understood without knowledge of the internal workings of 3rd
party libraries.

To sum up, despite some complications, Python has been found to be a
good choice for this type of project.

6.3.2 The open source experience

Working in an open source environment has been fairly unproblematic. Open
source software is often very straight forward, and does what is claimed,
without any more formality than necessary. 5 minutes can be enough to

90 6. Findings

Figure 6.7: The most popular Dublin Core Tags found, extracted from 52
sites and 763 pages.

register a project on Sourceforge,3 and fill in the required details. Then one
can simply start coding.

In retrospect, it would have been interesting to try GitHub,4 or maybe
Google Code,5 instead of Sourceforge. Still, Sourceforge provides many of
the most common development tools. For example, you can chose between
using Subversion (SVN) or Git6 for version control.

Developing software under an open source license has created no prob-
lems. Then again, that is more of an issue for a commercial project. How-
ever, after this project, I would be interested in participating in a commercial
project, under an open source license. Open source appears to mean simply
that anyone can take up competition with your product, and competition
could be a healthy influence, especially when it comes to ensuring quality in
software.

3http://sourceforge.net
4http://github.com/
5http://code.google.com/
6http://git-scm.com/

6.3. Discussion 91

6.3.3 Unforeseen challenges

Hidden redirects

There are many ways of downloading web content with Python. In the robots
sub-package functions are written, that provide an uniform way for AWW’s
robots to do this, which also add a user-agent string, and update variables
for traffic monitoring. This was implemented through the use of an instance
of the OpenDirector class from the Python library urllib2. This is an object
to which handlers can be added.

The default handler automatically follows redirects. After a custom
redirect-handler sub-class was added, redirects are now handled by raising
exceptions, to which robots may respond in individual ways.

Problems with the robotparser package

The use of the robotparser module, which is included in the Python instal-
lation, has been problematic. This module is meant to assist in the parsing
of robots.txt files. If a URL is listed as disallowed in the robots.txt file, it
means that robots should not follow that URL, but during the develpment of
the robot Plaincrawl, several sites were crawled without a single URL being
registered as disallowed. When the data collection with the robot Dublin-
crawl was done, many URLs were registered as disallowed, but it is uncertain
whether the correct ones were registered.

Online discussions were found about the quality of the robotparser mod-
ule, stating that sometimes it seems to ’work’ and sometimes it seems to fail.
7

This might be the reason why Nikita the spider was developed with its
own parser for robots.txt files.8 A similar solution could be considered for
AWW.

6.3.4 Usability

AWW is a young program, and has a good deal of unintended behavior.
Little emphasis has been put on the user experience, and the interface can
be challenging to understand. The command line interface has been used
more than the GUI, and should be manageable to most users that have a
general understanding of what the program does. Although the GUI works,
it needs to be developed further before it can be said to add to the usability of

7http://stackoverflow.com/questions/15344253/robotparser-doesnt-seem-to-parse-correctly
(visited on the 30th of October, 2013)

8http://nikitathespider.com/python/rerp/ (visited on the 30th of October, 2013)

92 6. Findings

the program. At present, although the GUI requires less typing, the choices
in the menus are difficult to understand for new users.

The program functionality is easy to extend, but only for those who have
thorough knowledge of how the program is structured.

6.3.5 Usefulness

This project has attempted to investigate how well web robots are suited for
use in web analytics. We have managed to collect a significant amount of
data, and were able to produce meaningful statistics with it. It appears that
both the use of web robots, and, specifically the use of the software developed
in this project, can be a powerful tool for analyzing the web.

On the other hand, a significant amount of work still remains before the
software will be an efficient tool for research. The program is highly versatile
- it can be modified to perform a very wide range of tasks online, but it can
be challenging to configure for those who don’t know it well.

6.3.6 Shortcomings

Towards the end of the project most of the goals have been realized. A
program has been made that provides most of the prescribed functionality.
Still, there are many features that could have been implemented in better
ways, as well as problems for which no solutions were found.

Due to lack of time no user testing has been conducted. The program
reached a usable state too late in the master thesis period for it to be pro-
moted online, and users recruited. Feedback from other users would give a
more thorough evaluation of AWW.

Using the software for more meaningful analysis of the web, with more
specific goals, and a better URL collection, would also increase the value of
this work. If visualization of the results was also supported by the software,
it would be a more complete tool for ananlysis. For these too, the problem is
the same. Namely that more work on the software would be needed, as well
as time to plan and conduct further experiments.

I have learned from this project that programming can be a time-consuming
task and many more months were spent writing the code than originally esti-
mated. I also experienced that some of the Python libraries, that I expected
to work, were less stable than desirable. When exceptions are raised by
these libraries, the explanations they contain can be difficult to understand
for someone without knowledge of the internal workings of the libraries.

Due to the previous, the outcome of the project is experimental software,
that currently is only usable by those who have thorough knowledge of it.

6.3. Discussion 93

Since AWW now is an online open source project, and a program with
a wide range of functionality, I would suggest that any further development
is done in smaller steps. For example, programmers or students could be
asigned tasks concerning the functionality of individual modules.

Dataset descriptions When robots are registered they supply a short
description of themselves, and of all the fields in their datasets. SQL is said
to support storing of such information in a database, but this was not found
possible with the Pysqlite library that AWW is implemented in. As a partial
solution names of datasets, and their descriptions are stored in a dedicated
table. The descriptions of fields, on the other hand, are lost.

More functionality for handling datasets Only entire datasets can be
exported. Viewing or exporting data from specific time intervals would be
useful.

Exceptions raised by 3rd party code Exceptions are raised and caught
several places in the code, but it is difficult to interpret or predict exceptions
raised by 3rd party code. For this reason such exceptions are often simply
caught and discarded, after which the execution resumes in the next place
that is assumed to be safe.

An example of this is exceptions resulting from HTTP requests. If the
exception is the result of a redirect, with an error code of 301, 302, 303, or
307, then the exception is passed on for the individual robots to handle. If
the exception is of another type, None is returned instead, and the exception
is written to the command line or to a log file.

Visualizations Visualization internally in the program would be very use-
ful. Although several required features for this are in place, it is not opera-
tional on any useful level. The remaining work required to make it this work
properly could be enough to make up another master project.

GUI design The graphical user interface is hard to understand for users
who have not had an introduction to the program. All the functionality is
visible at all times, giving a large number of items that the user must relate
too. Some functionality can still only be reached through the command
line. For example, descriptions of robots can only be shown by typing the
command bot list.

94 6. Findings

Graphics libraries The choice of Python’s Tkinter library for building
the GUI created some difficulties. No support was found for tabbed panels,
and it was difficult to add tooltips. Furthermore, it was inconvenient to
display generated images in the GUI. The images had to be saved to file,
then converted from PNG to the GIF format, and finally reloaded. At some
point it may become relevant to display HTML code in the GUI, in relation
to visualization, but this too does not seem convenient to do by the use of
Tkinter. Although Tkinter is portable, other libraries, like Wxpython may
have solutions for all of the above problems.

Scitools and its Easyviz package, on the other hand, appear very powerful,
portable, and simple to use. If the graphics produced by Easyviz can be
drawn, for example to the Canvas class of Wxpython, then the combination
of Scitools and Wxpython would be sufficient for many types of tasks that
AWW can be designed to perform.

Tooltips The GUI was intended to include tooltips. Support was not found
for this in Python’s TKinter library, so third party code was used to imple-
ment it instead. That was later removed due to uncertainty around whether
it was appropriate to use the code. Figure 6.8 on page 94 shows how some of
the tooltips looked in version 0.0.9 of AWW. The origins of the third party
code is described in the module tooltips.py of that distribution. The module
can be re-integrated if this seems appropriate to future developers.

Figure 6.8: A few of the tooltips that could be seen in version 0.0.9.

6.4. Conclusion 95

Command parsing All the commands listed for the command line inter-
face work, but the autocompletion functionality can be improved.

6.4 Conclusion

6.4.1 Research objectives

The research goals will now be considered again, to evaluate whether they
have been realized.

Study the field (R1)

Study the field of web analytics and web robots, and summarize
what exists.

In the background chapter (chapter 2) an introduction was given to web
analytics, the semantic web, and robots for web analysis. In relation to
the semantic web, several standards for metadata were introduced, in order
to explore what type of data web robots can be programmed to extract.
In section 2.3, about web robots, descriptions were given of different types
of web robots, as well as examples of their architecture and variations in
implementation.

Although there are several references to academic texts, many of the
references are to more short-lived, and un-evaluated online documents. This
is largely due to the nature of the topics discussed. For some of them, online
discussions is a more available source of information, than academic material,
since program designers often write blogs, or user documentation, instead of
academic articles.

Conduct experimental design (R2)

Conduct experimental design by defining and creating a Command
and Control Center (CCC), a Graphical User Interface (GUI),
and a couple of sample robots.

In this project, the amount of time invested in programming may well
exceed that which was needed to write the dissertation.

The choice of designing the software in an experimental way has been
a good one. Without experience in creating this specific type of program,
or prior experience with the programming language used, creating a more
complete design before starting implementation would most likely result in

96 6. Findings

poor design choices. During the process several unforeseen issues appeared.
For example similar functionality in the robots led to redundancy in the
code. This was later solved by creating a common toolset in a separate
Python module, called robot tools. Incidentally, this could later be used by
the robots to monitor the network activity, in a way that the total network
load is visible to all robots. This is not very relevant if the robots do not
execute simultaneously. If the use of threads is further developed they may
well operate at the same time, but at that point a new challenge appears -
namely that of racing conditions, and the possibility of starvation the traffic
control functionality. These are all issues that were not considered in the
original design.

Some of the functionality in the CCC was a prerequisite to building the
robots. Its construction came to require a lot of time, and so less time was
left for work on the robots. To those who are familiar with the system,
creation of new robots can be done in a short amount of time. Had there
been more time left in this project, it would have been very rewarding to try
out various types of robots, and further develop the support they rely on in
the CCC. In early distributions of the software, there are included several
python modules which are beginnings of new robots, with a wide range of
functionality. Developing this further would have been an efficient way to
test and improve the system.

The research goal concerning experimental design is considered as having
been met. The end product has much of the desired functionality, but is not
yet suitable for average users.

Conduct experiments (R3)

Conduct experiments with the sample robots, and produce data
and visualizations.

Data has been collected from the Internet through the use of the robots
named Urlgen, Findsitemap, Upcheck, Plaincrawl, Dublincrawl. A URL col-
lection has been filtered through the use of the robot Url list refiner. Two
datasets were processed to create a third, by the use of the robot Upcheck ext.

The robot Upcheck has run for several weeks, creating a timeseries, while
the robot Dublincrawl was used spontaneously, to investigate the state of
web sites at the current time. Both robots received URL lists with hundreds
of URLs as input, and performed large numbers of HTTP requests to collect
data.

The data collected from both Upcheck and Dublincrawl has been used
to generate several visualizations in Microsoft Excel. This was done more

6.4. Conclusion 97

as a demonstration of the software, than to test theories about information
representation on the Internet, but there has been a discussion of the results,
explaining how the visualizations display various characteristics of the web
sites that they are represent.

Analyze the findings (R4)

Analyze the findings from the previous activity, and discuss the
usefulness of robots in web analytics.

The previous tasks produced several forms of output, which was evaluated
in the current chapter (chapter 6 - Findings).

Discussion of the visualizations produced shows that the software can be
used to examine features of web pages in a way that is valuable in scientific
contexts, and for web analytics.

Aside from the output, the project has also given experience with de-
signing robots for web analytics. It is felt that robots has potential for use
in web analytics. At the same time, the project shows that the creation of
custom robots for analysis can require a large amount resources. If a future
project can continue to build on the software produced in this project, that
will hopefully reduce the amount of work needed to achieve results.

Custom robots for web analytics can perform a very wide variety of tasks,
and they may have applications, for which a cookie based approach is not
practical. For example, robots give easier access to web sites owned by other
people than yourself, because the way they function does not require any
modifications of content on the web sites.

6.4.2 The project as a whole

The research objectives have been gone over. To sum up, the objectives
have been achieved. A software program has been created, according to the
specification, and has been used for data collection and analysis.

Although development has taken more time than estimated, the finished
product was shown to be useful for data collection on the Internet. The
visualizations display usable information about how web pages change over
time, and how Dublin Core metadata is made use of in a selection of web
sites. This indicates that web robots can be a valueable tool in the field of
web analytics.

98 6. Findings

6.5 Chapter summary

In this chapter the output of the project has been described, and then dis-
cussed. First the output produced by the data collection was presented, and
next the visualizations generated from this output.

All this was then used for discussion. The discussion partly concerns
how the work has progressed, as well as observations about the Internet in
general, that have been made through the software produced. However, the
discussion’s main purpose is to provide an evaluation of the software itself.
This is accomplished by discussing its usability, usefulness, and whether or
not it has enabled realization of the research goals formulated for the project.

At the end of the chapter the discussion draws to a close in a short
conclusion, stating that all the main objectives have been achieved.

There is one final chapter remaining of this text. In it some comments
will be given, about the quality of the work performed, and about the future
of the software project on Sourceforge.

Chapter 7

Final word

7.1 Quality

In the previous chapter (section 6.3) there is a discussion of the outcome
of this project. To sum up, the research goals have been met, and several
features of the desired software have been implemented. Still, as the software
became more complex, I also experienced some unintended behavior.

It has been demonstrated that it is possible to use the software for the
collection of data that can be used for research purposes. However, it has
also become clear that making a tool usable by average users will require
more work. As it is now, the software is most useful to expert users - users
who know the software’s architecture well enough to modify it, and who can
figure out the cause, when something unexpected occurs.

7.2 Future Work

Although some analysis has been performed in this project, the main focus
has been put on implementing the software. The visualization and analysis
that has been performed is useful for demonstrating possible applications for
the software, but a more thorough analysis of trends in metadata usage on the
Internet will require more resources, such as time for data collection, as well
as further development of the web robots. Now that some of the groundwork
is out of the way, it would be interesting to see if other master projects, or
perhaps a research project can use the resulting software for more extensive
analysis of metadata.

99

100 7. Final word

7.2.1 Desirable features

Precision in dataset export When datasets grow, it is useful to be able
to work with subsets of them. Dataset export could therefore be improved
by allowing parameters to the export functions, for both the time period to
use, and for which table columns to export.

Perhaps a query generator could be created, for even more control over
the database. A panel in the GUI could provide functionality for assisting
the user in generating Pysqlite-queries, which can then be applied to the
database. This would not only improve the export functionality, but make
it more convenient to maintain, and update the various datasets.

Database queries could also be used to give robots and visualizations more
control over their datasets, eliminating the need for specific Python functions
to be created for every type of access.

Should query functionality be created, the use of query language should
be given some consideration. Pysqlite has some limitations. Creating an
abstraction layer, and for example using pure SQL instead, would make it
easier to replace the database at a later time.

Improved scheduler The scheduler presently included in the software
allows repetition of tasks at given intervals, but the specification of these
intervals is could be improved. It works well for for specific points in time,
or for one execution per minute/hour/day, but executions at given intervals
specified in minutes or hours requires multiple tasks to be created. The time
format used for scheduling is inspired by the Cron tool on Linux systems. It
would be useful if this was fully implemented.

Threads More use of threads in the CCC would be useful. For example,
threads could be used when robots are activated. Presently, users must wait
for the robots to complete, before they can continue to use the interface.

If more threading should be used, it is important to consider implica-
tions for the control functionality relating to network load, in the module
Robot tools. If multiple robots are downloading at once, they will be using
the same counters for traffic load. Racing conditions could cause some robots
to terminate their execution, if the traffic load is too high for too long.

Dynamic parameters for execution of robots It should be possible
to pass more parameters for the robots through the user interface. At an
optional list of URLs can be passed on, but to keep the structure of the
command strings simple, all other parameters must be set in the source code
of the robots.

7.3. Chapter summary 101

An example where the current conditions are impractical is the robot
Plaincrawl. It contains settings for crawl depth, as well as a limit on the
number of pages to crawl on each level. The robot is meant to be re-used by
other robots, but setting these values in the source code of Plaincrawl itself
would mean that all the robots utilizing it would use the same parameters.

The problem is currently solved by letting the individual robots call set
functions in plaincrawl, before they start crawling web sites, but it would
be a cleaner solution if any kind of parameter could be passed from the
user interface. This would allow any robot to be used for multiple tasks,
with multiple configurations, without requiring its source code to be altered
between executions.

Visualization As mentioned in the discussion, creating useful functional-
ity for visualization internally in the program could require enough work for
another master project to be initialized. Should such a project be initialized,
one of the first things that should be done is to reconsider the selection of
graphics libraries to use. I believe that scitools and easyviz is one of the
strongest candidates for providing what is needed for the actual visualiza-
tions. But integration of visualizations into the user interface, as well as any
redsign of the user interface would likely benefit from replacing the Tkinter
package with something more up to date.

For instance, by default Scitools produces PNG files as output, and Tkin-
ter does not support PNG. The package Wxpython, on the other hand, can
handle PNG files. Should there be need for it, it can also work with OpenGL
content.1 If it is desirable to output some visualizations as HTML tables,
Wxpython can also render HTML in the GUI.

At present the GUI is very hard to understand for anyone without prior
knowledge of the program. Wxpython can be used to split the GUI into tabs,
containing different categories of functionality, thus reducing the number of
items visible in the interface. Wxpython also has native support for tooltips.2

7.3 Chapter summary

We are now at the end of this chapter, and of the dissertation. In the chapter
a few final words have been given, about the quality of the work that has been
done, as well as the quality of the resulting software. Suggestions were also
given for topics, that could be relevant to those who might wish to continue
developing the software, or who work on similar projects.

1http://www.wxpython.org/docs/api/
2http://wiki.wxpython.org/wxGrid%20ToolTips

102 7. Final word

Bibliography

[1] Abello, J., Pardalos, P. M., and Resende, M. G. Handbook of
massive data sets, vol. 4. Kluwer Academic Publisher, 2002.

[2] Abelson, H., Adida, B., Linksvayer, M., and Yergler, N.
ccrel: The creative commons rights expression language. http://wiki.
creativecommons.org/images/d/d6/Ccrel-1.0.pdf, 2008. [Online;
accessed 14-May-2013].

[3] Adida, B., and Birbeck, M. Rdfa primer. http://www.w3.org/

2006/07/SWD/RDFa/primer/, 2008. [Online; accessed 14-May-2013].

[4] Berners-Lee, T., Hendler, J., and Lassila, O. The semantic
web. Scientific american (2001).

[5] Čapek, K. RUR (Rossum’s universal robots). Penguin. com, 2004.

[6] Cho, J., and Garcia-molina, H. Parallel crawlers. Proceedings of
the 11th international conference on World Wide Web (2002), 124–135.

[7] Dimon, G. Microformats Primer. http://www.digital-web.com/

articles/microformats_primer/, 2005. [Online; accessed 14-May-
2013].

[8] Guinchard, C. Dublin core use in libraries: a survey. OCLC Systems
& Services 18, 1 (2002), 40–50.

[9] Hemenway, K., and Calishain, T. Spidering Hacks. O’Reilly, 2004.

[10] Hendler, J. Agents and the semantic web. IEEE Intelligent Systems
Journal 16 (2001), 30–37.

[11] Heydon, A., and Najork, M. Mercator: A scalable, extensible web
crawler. World Wide Web 2, 4 (1999), 219–229.

103

104 BIBLIOGRAPHY

[12] Ihm, S., and Pai, V. Towards understanding modern web traffic.
Proceedings of the 2011 ACM SIGCOMM conference on Internet mea-
surement conference (2011), 295–312.

[13] Kristol, D. M. Http cookies: Standards, privacy, and politics. ACM
Trans. Internet Technol. 1, 2 (Nov. 2001), 151–198.

[14] Kumar, D. K. S. Web crawler: A review. International Journal of
Computer Science and Managment Studies 12 (2012), 401–405.

[15] Langtangen, H. P., and Ring, J. H. Easyviz documenta-
tion v1.0. http://home.simula.no/~hpl/easyviz/easyviz_sphinx_

html/tmp_easyviz.html. Accessed: 21/05/2012.

[16] Millett, L. I., Friedman, B., and Felten, E. Cookies and web
browser design: toward realizing informed consent online. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems
(New York, NY, USA, 2001), CHI ’01, ACM, pp. 46–52.

[17] Mohr, G., Stack, M., Rnitovic, I., Avery, D., and Kimpton,
M. Introduction to heritrix. In 4th International Web Archiving Work-
shop (2004).

[18] Phippen, A., Sheppard, L., and Furnell, S. A practical evaluation
of web analytics. Internet Research 14, 4 (2004), 284–293.

[19] Quboa, Q. K., and Saraee, M. A state-of-the-art survey on semantic
web mining. Intelligent Information Management 5, 01 (2013), 10–17.

[20] Sqlite.org. Sqlite. http://www.sqlite.org/. Accessed: 30/05/2012.

[21] Wang, J., and Guo, Y. Scrapy-based crawling and user-behaviour
characteristics analysis on taobao. International Conference on Cyber-
Enabled Distributed Computing and Knowdedge Discovery (2012), 44–
52.

Appendix A

Online resources for this
project

A.1 Sourceforge project

http://sourceforge.net/projects/wwatch

A.2 Program source code

The source code can be viewed online, via the URL given below, and it can
be downloaded via the URL given in the section Program download (A.3).

http://sourceforge.net/p/wwatch/code

A.3 Program download

The download is provided as a Python package, which includes the source
code of the program. The package also includes the source files for the
program documentation, written as reStructuredText.1

http://sourceforge.net/projects/wwatch/files

1http://docutils.sourceforge.net/rst.html

105

106 A. Online resources for this project

A.4 Online program documentation

The program documentation can be viewed online, by following the URLs
given below, and it can be downloaded as a PDF file, by following the URL
given in in the section Program download (A.3).

A.4.1 User documentation

http://wwatch.sourceforge.net/userdoc.html

A.4.2 API

http://wwatch.sourceforge.net/api.html

