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ABSTRACT 

The relationship between temperature and body size has attracted wide interest since the 

“Bergmann's rule” was introduced. While this rule originally dealt with endotherms, later 

studies have focussed ectotherms, including cell- and genome sizes. Because the final body 

size of an organism is largely the sum of its cells, any increase in cell size would lead to an 

overall increase in body size. For many ectotherms, the negative correlation between body 

size and temperature is also reflected in a corresponding relationship between temperature 

and cell- or genome size. For example changes in body size of ectothermic metazoans may 

partly reflect changes in cell size rather than cell number. While changes in genome size is 

generally expected to occur over longer time period (evolutionary), except for the case of 

polyploidization, changes in cell size (cytoplasmic volume) could occur at shorter time 

scales. For example the responses reflecting geographical (temperatures) clines may differ 

from those that occur during ontogeny. The main aim of this study was to test whether 

temperature could affect genome- and cell size in selected ectotherms. The experiments were 

performed on the following taxa and species; Daphnia (papers I and II), calanoid copepods 

(paper III), Drosophila melanogaster (paper IV), and Arctic charr (Salvelinus alpinus) (paper 

V). Genome and cell (nucleus) size showed that the strongest temperature responses were in 

Daphnia (papers I and II) compared with the other species. Increased body size of Daphnia  

at low temperatures could, at least partly, be caused by an increase in both DNA 

condensation and increased cell volume at low temperature (paper I). Our genome size 

estimates of Daphnia clones (papers I and II), some calanoids (paper III), and Drosophila 

(embryo and Schnider 2 cells; paper IV) are novel findings. In addition to the temperature 

effect, we also tested dietary stoichiometric effect on the genome and cell size of Daphnia, 

by growing it in phosphorus (P) limited versus P complete diet for several generations (paper 

II). Our genome and cell size results show that Daphnia magna and Daphnia pulex respond 
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differently to dietary P concentration change at different growth temperatures (paper II). We 

further show that diet with low P, negatively effect both genome and cell size in Daphnia 

(Daphnia magna), which supports our hypothesis; that small genome size may be an 

evolutionary consequence of P allocation from DNA to RNA under P deficiency (paper II). 

Experiments with Daphnia (papers I and II) and Drosophila (paper IV) were conducted in 

the laboratory, while calanoid copepods (paper III) and Arctic charr (paper V) were analysed 

from the field samples. 
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1. INTRODUCTION 

1.1. Ectothermic organisms 

An ectotherm, from the Greek εκτός (ektós) "outside" and θερμός (thermós) "hot", is an 

organism whose regulation of body temperature depends on external sources, such as 

sunlight or a heated rock surface (Davenport, 1992). The ectotherms include the fishes, 

amphibians, reptiles, and invertebrates. The body temperatures of aquatic ectotherms are 

usually very close to those of the ambient water. Ectotherms constitute the vast majority of 

organism biomass and about 99% of all species worldwide (Atkinson and Sibly, 1997; 

Wilson, 1999). Ectotherms acclimate by adjusting their biochemical composition and 

physiological rates, thereby favouring the maintenance of function at the acclimation 

temperature, but not necessarily at other temperatures (Guderley, 2004). For instance, 

seasonal changes in environmental temperature may lead to acclamatory responses that 

enhance performance under seasonal conditions (Packard et al., 2001; Guderley, 2004). The 

potential for acclimation thus influences an organism’s response to climate warming. 

 

1.2. The temperature‐size rule in ectotherms 

In 1847, Carl Bergmann first proposed a general rule for organism size with temperature 

based on intraspecific comparisons of size among endotherms; he noted that organism size 

tends to increase with latitude (Bergmann, 1848). Bergmann surmised that a smaller surface 

area to volume ratio, associated with a larger mass, might have evolved to reduce heat loss in 

colder environments. However, this biological rule was also found to apply to ectotherms. 

Approximately 80% of the ectotherms reviewed by Ray (1960) obeyed Bergmann’s rule. 

Moreover, the response of ectotherms to latitude was found, at least partly, to be a 

phenotypic response to rearing temperature. In general, animals found in colder climates tend 

to be larger as adults than their conspecifics in warmer climates. This pattern even holds 
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when altitude or latitude is used as a proxy for environmental temperature (Ashton, 2001; 

2002a; b; Ashton and Feldman, 2003). Laboratory studies support the notion that animals 

reared at lower temperatures grow to a larger body size. Studies show that more than 80% of 

ectothermic species studied in laboratories exhibited faster growth but smaller adult body 

size at higher rearing temperatures (Atkinson, 1994; Atkinson, 1995). This trend, dubbed the 

temperature - size rule (TSR) (Atkinson et al., 1996; Atkinson and Sibly, 1996), is a special 

case of Bergmann’s rule, where the relationship between environmental temperature and 

body size is the product of phenotypic plasticity (von Bertalanffy, 1960). Recognition of the 

TSR has caused a resurgence of efforts to understand how temperature affects growth and 

body size of organisms, as reviewed by Atkinson and Sibly (1997). 

 

1.3. Temperature, growth rate, and body size in ectotherms 

Ectotherms generally grow slower but often mature at a larger body size in colder 

environments. The relationships between environmental temperature, organismal growth, 

and adult body size have intrigued biologists for over a century, but a resurgence of interest 

in the last decade with the discovery of widespread patterns in diverse taxa as well as the 

potential size effect of global warming. Ectothermic species distributed over broad 

geographic ranges often exhibit thermal clines in body size, with the majority of species 

exhibiting larger adult size in colder environments (Partridge and French, 1996; Ashton, 

2004). During the last decade, intensive theoretical and empirical research has generated 

various explanations, both adaptive and non-adaptive, for phenotypic plasticity. Non-

adaptive plasticity of body size is hypothesized to result from thermal constraints on cellular 

growth that cause smaller cells at higher temperatures (Ghalambor et al., 2007), but the 

generality of this theory is poorly supported. Adaptive plasticity is hypothesized to result 

from greater benefits or lesser costs of delayed maturation in colder environments 
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(Ghalambor et al., 2007). These theories seem to apply well to some species, but not others 

(Mousseau, 1997; Arendt, 2007), which may reflect that TSR actually is a “concept cluster” 

with different drivers (Watt et al., 2010). Thus, no single theory has been able to explain the 

temperature-size relationships in ectotherms, and its relationships with life-history (Berrigan 

and Charnov, 1994). Other environmental variables that affect growth rate (e.g., food 

availability) may have a parallel effect on adult body size, such that better conditions result 

in faster growth to a larger final size. The fact that there may be various confounding factors 

operating argues for controlled experiments to reveal the net effect of temperature alone, or 

in combinations with parameters such as food quantity or quality, to explore these effects.  

 

1.4. Temperature, genome, and cell size in ectotherms 

For a wide range of ectothermic metazoans it has been demonstrated that individuals reared 

under reduced temperatures reach larger cell sizes than conspecifics reared at higher 

temperatures (Robertson, 1959; Van Voorhies, 1996; Arendt, 2007; Kammenga et al., 2007; 

Daufresne et al., 2009). Individual body growth may occur either by increasing cell size or 

cell number (Timofeev, 2001; Arendt, 2007), or through both strategies (Partridge et al., 

1994) (Fig. 1). For both ectotherms with variable and fixed cell numbers, variation in body 

size may partly be attributed to changes in cell size (Partridge et al., 1994). Similarly, 

differences in adult body size among individuals and populations, or between closely related 

species are caused either by differences in cell number or cell size (Calboli et al., 2003). In 

principle, growth during certain life stages, e.g. until maturity, may be determined primarily 

by cell number (Fig. 1). For organisms with fixed cell number (e.g. nematodes and rotifers), 

body growth can only occur through changes in cell size (Stelzer, 2002; Kammenga et al., 

2007), while the situation is more complex in organisms with variable cell numbers. In 

Drosophila melanogaster, the observed phenotypic response of increased adult body size at 
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lower developmental temperatures has been explicitly linked to increased cell size, while 

conspecific populations sampled across climatic gradients, show increased body size in 

cooler environments mainly attributed to increased cell numbers (Partridge et al., 1994; 

French et al., 1998). 

The positive correlation between genome size and body size commonly observed 

among invertebrate taxa (McLaren et al., 1988; Ferrari and Rai, 1989; Finston et al., 1995; 

Gregory, 2005; Rasch and Wyngaard, 2006) indicates that the contribution from cell size to 

the difference in body size between related species may be significantly related. A coupling 

between low temperature, large genome, and large body size is typically found in many 

marine invertebrates (Atkinson, 1994; Timofeev, 2001; Rees et al., 2007; Hessen and 

Persson, 2009). Further, a positive correlation between genome size and cell size appears to 

be rather universal in both plants and animals (Cavalier-Smith, 1978; Bennett, 1987; Gregory 

et al., 2000; Gregory, 2005), also supported by the observation that expansion of genome 

size causes increased cell size (Gregory, 2001).  

Genome size may increase by an increase in number of base pairs (mainly in the intron 

regions), causing larger diploid genomes, or by partial or whole-genome duplication, the 

latter also known as polyploidization. However, genome structure that affects nuclear 

volume, e.g. chromatin packaging, mitotic processes or aneuploidy may also affect cell 

volume. Both on the intra- and interspecific levels, it is well documented that increases in 

genome size through polyploidization generally results in increased cell size (Gregory, 

2005). While both increased diploid genome size and polyploidization are potential means of 

increasing cell size, and both seem somehow related to low temperatures, the evolutionary 

drivers may be widely different and occur at different time scales.  
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Figure 1. The relationships between cell or genome size and body size. Body size may increase (A) 
by increase in cell number (1), or by a combination of increased cell numbers and cell size by 
genome size expansion or polyploidy (2), or by increase in cell size (3). Modified from Kozłowski et 
al. (2003). Potentially different slopes for cell or genome size versus body size (B) at different 
taxonomic levels (e.g. classes a, b and c within a phylum or order). Within a given class (a, b and c) 
may yield different slopes compared with the higher level, indicating different evolutionary 
strategies. Allometric effects in cell or genome size versus body size may occur during ontogeny, e.g. 
by somatic endopolyploidy (C). Figure obtained from Hessen et al. (2013). 
 

1.5. Genomic responses to different dietary phosphorous and temperature  

It is hypothesized that temperature and phosphorus (P) limitation can drive changes in 

genome size, which in many cases scale with cell size and body size. Increased risk of P 

limitation has been shown to reduced growth efficiency at high temperatures (Persson et al., 

2011). The specific content of P in food is important for consumer growth and metabolism 

because it is a key component of DNA, RNA, ATP, and membrane phospholipids (Sterner 

and Elser, 2002). Nucleic acids are especially P-rich compared with other molecules, and it 

has also recently been suggested that that an evolutionary reallocation of P from non-coding 
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DNA to RNA could results in decreased genome size and elevated RNA: DNA ratio (Fig. 2), 

boosting growth rate under P-limited conditions (Hessen et al., 2008; Hessen et al., 2010). In 

fact, even closely related organisms may show a striking variability in their genome size, and 

at least for invertebrates high growth rates generally go along with small genomes (Gregory, 

2005) and high levels of RNA (Elser et al., 2000; Hessen et al., 2008) has been taken as 

support of this hypothesis (Hessen et al., 2010). Also, previous studies with plants show that 

ploidy level could be reduced in response to P-limitation (Leitch and Bennett, 2004; Leitch 

and Leitch, 2008), suggesting a selective pressure to reduce material costs associated with 

DNA under P-scarcity. Similar responses have been detected in snails (Neiman et al., 2012).  

 

 

Figure 2. The effects of different evolutionary allocations of P to DNA or RNA. Under low selective 
pressure for high growth rate, a significant portion of P is allocated to DNA (and implicit large 
genome size) causing slow growth rate and low rate of protein synthesis (a). Under strong selection 
for high growth rate, there will be selective pressure for reallocating P from non-coding DNA to 
RNA, promoting high growth rate (b). Thickness of arrows indicates relative importance of P 
allocation or causality. Scenario (a) indicates large genome, high intron:exon ratio, slow rate of 
protein synthesis and slow cell division as opposed to scenario (b). The figure was obtained from 
Hessen et al. (2010). 
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2. MATERIALS AND METHODS  

2.1. Model organisms 

We used selected ectotherms partly as a model organism and partly as representative “cases” 

to study and understand particular biological phenomena of the link between genome and 

cell size at different temperatures, with the expectation that discoveries made in the organism 

model will provide insight into the working of other organisms. The following ectotherms 

(by order or genus) were used as model organisms in our study; Daphnia, calanoida, 

Drosophila and Salvelinus. The choice of Drosophila, Daphnia, calanoids, and Salvelinus as 

model organisms in our study was mainly based on their frequent use in temperature-size 

studies (reviewed in (Angilletta Jr and Dunham, 2003; Angilletta et al., 2004; Jonsson and 

Jonsson, 2009)). 

2.1.1. Daphnia (papers I and II) 

Daphnia (commonly called water fleas) is a genus of small, planktonic crustaceans, between 

0.2 and 5 mm in body length. They live in various freshwater environments ranging from 

acidic swamps to freshwater lakes, ponds, streams and rivers. The two most commonly used 

experimental “model” species of Daphnia are Daphnia pulex and Daphnia magna. These 

species are commonly used in ecophysiological studies, toxicological assays, genetic studies 

etc. The lifespan of a Daphnia is largely temperature-dependent, where some individuals can 

live up to 108 days at 3 °C, while others live for only 29 days at 28 °C (Lampert and Kinne, 

2011). They generally grow at a slower rate at low temperatures, but are larger than those 

under normal conditions (Lampert and Kinne, 2011). The genome of D. pulex is very small 

compared to many organism and was first sequenced in 2011, and is estimated to be 200-227 

Mb (Colbourne et al., 2011).  Sequencing of D. magna genome is under progress. Daphnia 

are usually filter feeders, ingesting mainly unicellular algae and various sorts of organic 
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detritus including protists and bacteria. Reproduction is normally clonal (allowing the 

maintenance of genetic lineages), but sex can be induced environmentally (allowing the 

production of inbred or outbred lineages).  The clonal nature of the organism provides an 

exceptional opportunity to study genomic and phenotypic responses to environmental 

stimuli, in our case change of growth temperature and dietary P concentrations. 

2.1.2. Calanoida (paper III) 

Calanoid copepods are planktonic crustaceans, comprising around 40 families with about 

1800 species of both marine and freshwater copepods (Blaxter et al., 1998). There are about 

2300 described species of calanoid copepods worldwide, of which some 25% occur in 

freshwater (Bowman and Abele, 1982). The calanoids are primarily suspension feeders 

eating mainly phytoplankton and reproduction is only sexual (e.g. (Mauchline, 1988). The 

largest specimens reach 18 mm long, but most are 0.5–2.0 mm long (Blaxter et al., 

1998).  The duration of development from egg to adult is primarily temperature dependent 

(Breteler et al., 1982; Uye, 1988; Ban, 1994). According to Animal Genome Size Database, 

calanoid copepods show enormous genome diversity with genome size ranging from 616 to 

12185 Mb (Gregory, 2013).  

2.1.3. Drosophila (paper IV) 

Drosophila is a genus of small flies, belonging to the family Drosophilidae, whose members 

are often called "the fruit flies”. In nature, Drosophila feed on microorganisms, particularly 

yeast, on the surface of fruits. The life cycle of the fruit fly is temperature dependent and 

takes about 9 days to complete at 25 °C (Ashburner and Thompson Jr, 1978). After the egg is 

fertilized, the embryo emerges in ~ 24 hours. The embryo undergoes successive molts to 

become the first, second, and third instar larva. In particular, one species of Drosophila, 

Drosophila melanogaster, has been heavily used in genetics research and is a common 

model organism in developmental biology and temperature response studies (Partridge et al., 
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1994; Pétavy, 1994; Nunney and Cheung, 1997; Reeve et al., 2000). The fly genome, which 

was sequenced in the year 2001, is 165 Mb (spread over four chromosomes) (Adams et al., 

2000). The most commonly used Drosophila cell line is Schneider 2 cells (S2 cells). The S2 

cells are derived from a primary culture of late stage (20–24 hours old) Drosophila 

melanogaster embryos, likely from a macrophage-like lineage (Schneider, 1972). 

2.1.4. Salvelinus (paper V) 

Salvelinus alpinus (Arctic charr) is a cold-water fish in the Salmonidae family, native to 

Arctic (66° 33'N) and sub-Arctic (50°N and 70°N). It breeds in fresh water and populations 

can be either landlocked or anadromous, migrating to the sea (Webster and Lim, 2002). 

Individual fish can weigh 0.91 kg or more, and the body size up to 107 cm in length. 

According to Animal Genome Size Database the genome size of Arctic charr is ∼ 3246 Mb 

(Gregory, 2013). Temperature is one of the most important environmental cues for Arctic 

charr and effects feeding, growth, and maturation (Jobling et al., 1993). Arctic charr is 

considered the most cold-adapted species within the salmonid family (Balon, 1980). From 

field studies, Arctic charr seems able to feed, grow, and have relatively low mortality rates 

during winter periods with low water temperatures (Klemetsen et al., 2003; Byström et al., 

2006; Svenning et al., 2007; Amundsen and Knudsen, 2009; Siikavuopio et al., 2009). 

 

2.2. Culture and sampling setup 

2.2.1. Daphnia cultures 

In paper I and II, D. magna and D. pulex clones were used in our experiments. Daphnia 

clone Clone A, German, and LL4-15 was used in paper I, while only the two latter clones 

were used in paper II. All clones originated from temperate and functionally diploid 

populations (Baird et al., 1991; Weider et al., 2004; Pulkkinen, 2007). Prior to the 

experiments, all clones were raised at 20 °C for at least three generations and fed ad libitum 
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with the chemostat-grown chlorophyte Selenastrum capricornutum (Kilham et al., 1998). In 

paper I, Daphnia were analysed after one generation, while paper II presents a 

multigenerational study of Daphnia. Female juvenile D. magna and D. pulex were allowed to 

grow at either high or low temperature (20 or 10 ºC) (papers I and II). In paper II, the 

Daphnia were also fed high and low P diets for up to 35 generations to assess the eventual 

multigenerational impacts of genome- and nucleus size at different temperatures and diets. 

The high and low P diets were prepared in chemostats, according to previous experiments by 

Hessen et al. (2002), before fed to Daphnia.  

2.2.2. Calanoida sampling 

The calanoid copepods (five species) samples, in paper III, were collected from either the 

Oslo fjord on the southern coast (59°19.0'N; 10°35.0'E), the Lurefjorden on the western coast 

(60°41.0'N  5°8.0'E), the Arctic fjords Billefjorden (78°66.0'N; 16°7.0'E) and Rijpfjorden 

(80°66'N; 22°18.15'E) or the Fram Strait (78°0.8'N  8°0.2W). All samples were taken from 

the deeper part of the location (> 100 m) by use of WP2 nets with 0.5 m diameter and 200 

µm mesh size (Gabrielsen et al., 2012). The exact temperatures depend on depth and season 

as well as annually measurements; the typical summer temperature is 0 - 1.5 °C for the 

Arctic sites, while 5 – 10 °C for the southern fjords.  

2.2.3. Drosophila cultures 

In paper IV, we used both Drosophila melanogaster fly stocks and S2 cells. Both fly stocks, 

Oregon-R and w1118, were cultured at 24 °C and fed formula 4-24® instant medium 

following the Carolina™ Drosophila manual before start of experiment (Flagg, 1988). For 

the experiment, a cohort of first-instar larvae was produced by incubating flies (both sexes) 

in new vials at 24 °C followed by removing the flies from the vials after ∼ 24 hours and 

further randomly incubated at either 16 °C, 22 °C, 24 °C or 28 °C. Flies were randomly 

collected under anaesthesia and distributed to further flow cytometry (FCM) and 
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microscopic analysis. We also analysed S2 cells and 24 hour old Oregon-R embryos for 

cellular and genomic comparison between parameters. The S2 cells were grown in 

Schneider’s Drosophila medium initially stock cultured at 28 °C two weeks before the 

experiment. For the experiment, S2 cells were incubated at 16 °C, 22 °C, and 28 °C for 24 

hours.  

2.2.4. Arctic charr sampling 

In paper V, we wanted to test for eventually changes in Arctic charr erythrocyte volume and 

genome size during early development. Newly hatched Arctic charr juveniles from the same 

population were raised at different temperatures and two food regimes; HtHf, HtLf, LtHf, 

and LtLf. The low temperature group was held at 6 - 3 °C from October to late November, 

and at 2.5 - 1.4 °C from late November to late December. The other two groups were held at 

temperatures at 13.3 - 15.0 °C during the whole period. The experiment was run at Tromsø 

Aquaculture Research Station  (70°39'N; 23°41'E). Blood samples were taken initially before 

the split of the three test groups, and after 1 and 2 months. To assess the variability in 

erythrocyte volume and genome size within and between populations that varies strongly in 

habitat, size and life history, individuals were analysed from 4 different wild charr 

populations in northern Norway; Koifjordvatn (70o56'N; 28o09'E), Oksfjordvatn (69o53'N; 

21o23'E), Tromvikvatn (69o44'N; 18o24'E), Laksvatn (69o38'N; 19o40'E), plus the souther, 

large lake Tyrifjord (60o02'N; 10o08'E) which is known to have unusually large species of 

charr. 

 

2.3. Body size measurements 

We measured body size of Daphnia (paper I), calanoid copepods (paper III), Drosophila 

(paper IV), and Arctic charr (paper V) at different temperatures (and treatments). Body size 

of Daphnia, calanoids, and Drosophila was directly measured from photographs taken by 
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light microscope. Body size measurements of Daphnia in paper II was not included since the 

animals were not in the same physiological age at the time before FCM analysis. Drosophila 

(paper IV) was also collected for wing and eye size measurements by microscopy. 

Measurements of wing and eye cell area were also included in paper IV. In paper V, weight 

and length was measured of four wild anadromous (migratory) or resident charr populations 

individuals. 

 

2.4. Nuclei extraction and DNA staining 

The nuclei extraction steps were performed on Daphnia (papers I and II), calanoid copepods 

(paper III), and Drosophila (IV) following the protocol of Korpelainen et al. (1997), but with 

modifications. Whole animals were ground in grinding buffer (Korpelainen et al., 1997) 

followed by RNase A treatment and DNA staining with propidium iodide (PI) (papers I – 

IV) or ethidium bromide (EB) (paper I) or DAPI (paper I).  FCM analysis was performed on 

FACS Calibur (papers I – IV) and BD LSR II (paper I) machines. Fresh blood cells of Gallus 

gallus domesticus (CRBC) and 2.5 μm alignment beads were used as standard (Galbraith et 

al., 1983; Galbraith et al., 2001). Similar nuclei extraction steps were also preformed on 

Drosophila S2 cells (paper IV). Treatment of cells with GB dissolved both the cytoplasm 

and the cell membrane, leaving intact nuclei for DNA measurements (papers I – IV). To 

access the potential of DNA condensation status in Daphnia (paper I and II) at low and high 

growth temperature, DNA was also stained with nuclear-ID green which specifically binds to 

condensed DNA (Park, 2011). Condensation status of Drosophila (fly and S2 cell) and 

copepod nuclei were also tested, but not included in this study. 
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2.5. The temperature reversal experiment 

In paper I, we tested whether temperature during Daphnia sample preparation could induce 

effects on genome and nucleus size estimates by FCM analysis. Nuclei suspension from 

clones raised at low temperature were prepared following the standard nuclei extraction 

protocol (see section 2.4.), stained with PI, and split in two parts before the incubation 

procedure. One part was cold incubated following our standard protocol, and the other part 

was incubated at high temperature (i.e. “reversal incubation”; paper I).   

 

2.6. Cellular permeabilization and DNA staining 

Cellular permeabilization was performed of Drosophila S2 cells (paper IV) and Arctic charr 

blood cells (paper V). Phosphate buffered saline solution and ethanol was used to 

permeabilize Arctic charr and S2 cells, respectively. Treatment of S2 cells with ethanol 

preserved both the cytoplasm and cell membrane for cellular DNA measurement. 

 

2.7. Genome, nucleus, and cell size estimation by flow cytometry 

The genome and cell (or nucleus) size estimations in papers I – V were measured by FCM. 

FCM, which is commonly used in the medical field and in plant biology, provides an 

accurate determination of differences in genome size (Ulrich, 1990; Michaelson et al., 1991; 

Lauzon et al., 2000) and is considered to be highly reliable for detecting tiny differences in 

genome size, such as a difference of 1.5% (Kent et al., 1988). According to Animal Genome 

Size Database, FCM is the second most widely used method for estimating genome size 

(Gregory, 2013). The recorded fluorescent signal of a fluorochrome bound to DNA is 

assumed to be directly proportional to the amount of DNA in the nucleus (Shapiro, 2003). 

The measurements of relative fluorescence intensity of stained nuclei were performed on a 

linear scale and 10 000 nuclei (or cells) were analysed for each sample (Galbraith et al., 
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1983). The absolute DNA amount of a sample was calculated based on the values of the 2C 

peak means. C-value = pg DNA nucleus-1 was calculated following method of Galbraith et 

al. (2001): Sample 2C DNA content (pg nucleus-1) = [(Sample 2C peak mean) / (Standard 2C 

peak mean)] ∗ Standard DNA content (pg DNA nucleus-1). The standard DNA content used 

was CRBC = 2.5 pg (Vergilino et al., 2009) for all experiments.  

Cell or nucleus size was measured in forward light scatter (FSC) detector (cf. (Swat et 

al., 1991; Neufeld et al., 1998; Johnston et al., 1999; Weinkove et al., 1999). Cell granularity 

or complexity was measures by side light scatter (SSC) detector. 

The quality of a DNA histogram is usually estimated from the width of the peak of 

DNA of 2C cells (Ormerod and Imrie, 1990). This is measured by the coefficient of variation 

(CV) across the peak and is calculated from the standard deviation (SD): CV = 100 x SD / 

(peak channel) %. The peak channel is the mean channel number of the DNA peak. Thus, the 

peak channel represent the “midpoint” of fluorochrome intensity distribution of each ploidy 

peak (Ormerod and Imrie, 1990). In theory, acceptable CVs for DNA estimates has been set 

to 6% (Baretton et al., 1994; Vilhar et al., 2001; Darzynkiewicz et al., 2010), with CVs < 3% 

as ideal (Marie and Brown, 1993). 

 

2.8. Confocal laser scanning microscopy 

Fluorochrome staining of Daphnia (paper I), calanoid copepods (paper III), and Drosophila 

(paper IV) DNA was also confirmed by observation of nuclei using confocal laser scanning 

microscopy. Confocal images were obtained using an Inverted Olympus FluoView 1000 

confocal laser scanning microscope - IX81 (Olympus Imaging America Inc., USA) equipped 

with 488 nm and ultra violet laser lines. Confocal microscopy settings were calibrated with 

2.5 μm alignment beads and CRBC nuclei. 
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2.9. Statistics   

The comparison between groups of body size, genome size, and nucleus (cell) size of 

Daphnia (paper I) and Drosophila (paper IV) at different temperatures were computed by 

one-way ANOVA after testing for homogeneity of variance and normal distribution in 

Sigmaplot software. The pairwise multiple comparison procedures for genome size 

estimations were also measured by Holm-Sidak method in paper I and IV.  

In paper II, comparison between groups of genome size, and nucleus size of Daphnia 

species at different temperatures vs. diets vs. generations were computed using the 

generalized linear model* (GLM) (Nelder and Wedderburn, 1972) in R (Team, 2005).  

In paper III, the relations between the five different species of calanoid copepods body 

length and genome size was tested by linear regression. Also the correlation between genome 

size and nucleus size was tested by linear regression. Differences between species were 

tested by non-parametric all-pair Tukey HSD-test. One-way analysis of calanoid copepods 

genome estimates was included by category.  

In paper V, the relations between cell size (volume) or genome size and weight in both 

the experimental and wild populations was tested by linear regression. Population differences 

were tested by non-parametric all-pair Tukey HSD-test due to rather small and non-

homogenous sample size between populations. 

 

                                                
* The dependent variable in the GLM model is linearly related to the factors and covariates by a specified link 
function. The model allows for the dependent variable to have a non-normal distribution. Each outcome in 
GLM of the dependent variables, Y, is assumed to be generated from a particular distribution in the exponential 
family, a large range of probability distributions that includes the normal, binomial, Poisson and gamma 
distributions, among others. The mean, μ, of the distribution depends on the independent variables, X, through: 
E(Y) = μ = g-1 (X β). E(Y) is the expected value of Y; Xβ is the linear predictor, a linear combination of 
unknown parameters, β; g is the link function. In this framework, the variance is typically a function, V, of the 
mean: Var(Y) = V(μ) = V(g-1(Xβ)). It is convenient if V follows from the exponential family distribution, but it 
may simply be that the variance is a function of the predicted value. The unknown parameters, β, are typically 
estimated with maximum likelihood, maximum quasi-likelihood, or Bayesian techniques. 
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3. MAIN FINDINGS  

3.1. Temperature, cell size and genome configuration of Daphnia (paper I) 

In this study we assessed responses of adult body size at different temperatures in two 

species of Daphnia, and applied FCM together with confocal laser scanning microscopy to 

reveal whether the body size response to temperature could be related to structural effect at 

the genomic level.  

  

Figure 3. Adult body size (A-C), nucleus size (D-F) and DNA content (G-I) of three Daphnia clones 
from 20 °C (shaded bars) and 10 °C (open bars) growth. The Daphnia clones include; D. magna 
Clone A (A, D, and G), D. magna German clone (B, E, and H), and D. pulex LL4-15 (C, F, and I). 
Error bars represent SD of the mean of three independent experiments. (Paper I) 
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The experiments with D. magna and D. pulex raised at 10 and 20 °C yielded larger 

adult body size at the lower temperature (Fig. 3). FCM results of both nucleus and genome 

size estimates were elevated at low temperature, (Fig. 3), suggesting that larger body size at 

low temperature could partly be accredited to an enlarged nucleus and thus cell size. 

Confocal microscopy observations confirmed the staining properties of fluorochromes. As 

differences in nucleotide numbers in response of growth temperature within a life span is 

unlikely, these results seem accredited to changes in DNA–fluorochrome binding properties, 

presumably reflecting increased DNA condensation at low temperature.  

 

3.2. Long term effect of P and temperature on Daphnia genomics (paper II) 

In this study we addressed the multigenerational impact of both dietary P and temperature on 

genome size (Fig. 4), nucleus size (Fig. 5) and the prevalence of endopolyploidy in two 

species of Daphnia that have different sensitivity to P limitation. D. magna and D. pulex 

were kept for up to 35 generations at high and low temperature and fed high and low P diets. 

FCM revealed significant increases in nucleus size for both species in response to low 

temperature (Fig. 5). Under dietary P deficiency, D. magna, but not D. pulex, showed a 

reduced genome size (Fig. 4), most likely reflecting structural changes in DNA (as 

previously confirmed with same clones in paper I). The larger nuclei found at 10 °C also had 

increased CVs of FCM DNA histograms, especially in D. magna. In this species, the nucleus 

size was also elevated in individuals raised on P sufficient compared to P deficient food, 

while the opposite effect was found in D. pulex. Additionally, the degree of endopolyploidy, 

measured as cycle value, was species specific and responded to temperature and dietary 

composition. Dietary effects on endopolyploidy were observed in D. magna at both 

temperatures, with increasing prevalence in the P deficient.  
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Figure 4. Responses to diet and temperature in C-values (y-axis) versus generation (x-axis) in D. 
magna (A and B) and D. pulex (C and D) at 10 and 20 ˚C. Each data point represents one replicate, 
containing 6-10 pooled individuals. Measurements (circles) and model predictions (curves) from 
daphniids consuming the low-phosphorus diet (LP; open circles and red line) and daphniids 
consuming the high-phosphorus diet (HP; solid circles and blue line). Inset of a representative DNA 
histogram from D. magna at generations 10 (10°C) and 20 (20°C) and D. pulex at generations 5 
(10°C) and 32 (20°C) consuming the HP diet, with CRBC as an internal standard. (Paper II) 
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Figure 5. Nucleus size (FSC; y-axis) versus generation (x-axis) in D. magna (A and B) and D. pulex 
(C and D) at 10 and 20 °C. Measurements (circles) and model predictions (curves) of 2C (black), 4C 
(red), and 8C (blue) nuclei from daphniids consuming the low-phosphorus (LP; open circles and 
dashed curves) and high-phosphorus (HP; solid circles and solid curves) diets are shown at each 
temperature. Inset of FSC histogram of D. magna at generations 10 (10 °C) and 20 (20 °C) and D. 
pulex at generations 5 (10 °C) and 32 (20 °C) fed the HP diet, with CRBC as an internal standard (red 
line). (Paper II) 
 

3.3. Body and genome size variation in calanoid copepods (paper III) 

In accordance with temperature-size expectations (i.e. Bergmann′s rule), larger species 

generally had the northernmost distribution, and the same was seen at the population levels. 

Our data showed that size of the surveyed species covered 2.5 - 6.6 mm body length, 

including substantial intra-specific (population) differences. Genome and nucleus size was 

measured by FCM, and confocal microscopy observations confirmed the flourochrome 

staining of nuclei (Fig. 6). Species genome sizes (C-value) ranged from 5.5 – 33.8 pg haploid 
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Figure 6. Representative DNA (A and B) and nucleus size (C and D) histograms of copepods and 
CRBC; C. finmarchicus (red), Metridia longa (blue), C. glacialis (green), C. hyperboreus (purple), 
and Paraeuchaeta norvegica (PN). (Paper III). Example of three closely related marine copepod 
species that show both a body-size and genome-size variability along a temperature gradient, with the 
larger species living in the coldest waters and also having the lowest growth rate and most prolonged 
life cycle (E). Average genome size in pg DNA cell−1 (in parentheses) is from the Animal Genome 
Size Database: http://www.genomesize.com/ (Gregory, 2013). Picture obtained from Hessen et al. 
(2013). Confocal microscopy images of C. glacialis (F and G), D. magna (H and I), 2.5μm beads (J), 
and CRBC nuclei (K). All stained with PI. Scale bar 50 μm. (Paper III) 
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Drosophila melanogaster stocks (Oregon-R and w1118). The fly stocks raised at 16, 22, 24, 

and 28 °C yielded larger adult body size at the lower temperature. Female flies showed larger 

body and cell size at all temperatures. Development at lower temperature also resulted in 

larger wing size, but size of the eye was not as much affected as the size of the wing at lower 
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temperatures (Fig. 7). The effect of temperature on wing size was caused by an increase in 

cell area in both males and females (Fig. 7). 

 

Figure 7. Drosophila wing and eye size from different growth temperatures. Eye (A-F) and wing size 
(G-L) estimates of male (solid) and female (open) flies from growth temperatures (x-axis). The 
average size and cell area values of both stocks are listed in table 1. Error bars represent standard 
deviations of the means of three independent experiments. Presented is sample pictures of a female 
Oregon-R eye (C and F) and wing (I and L), all from 16 °C; the vertical (C; a) and horizontal (C; b) 
lines of the eye indicate the size, and the square indicates the average cell area (C) of the cells 
counted (F; magnified). The length of the fourth longitudinal vein of the wing (I; line) represents the 
size, and the square represents the average cell area (I) of the cells counted (L; magnified). Scale bars 
are shown on pictures. (Paper IV) 
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Figure 8. DNA content and nucleus (cell) size of Drosophila flies and S2 cells from different growth 
temperatures. 2C DNA content shown for male (shaded bars) and female (open bars) Oregon-R (A) 
and w1118 (B) flies from growth temperatures. S2 cells 2C nuclear DNA (pg) from ethanol-treated 
(red bars) and GB-treated (dark bars) treatment (C). The 2C nucleus size of the male (solid quadrat) 
and the female (open quadrat) Oregon-R (D) and w1118 (E). S2 cells 2C (solid circles) and 4C (open 
circles) nucleus sizes of GB (F) and ethanol (G) treated S2 cells. (Paper IV) 
 

The two fold larger genome size of S2 cells (C  0.42 pg) compared with fly DNA (C 

 0.21 pg) was confirmed to be due to development stage, by analyzing Oregon-R embryos 

(C  0.40 pg) from 22 °C growth. Any change in nucleus size is directly linked to change in 

size of rest of cells membrane and cytoplasm, as documented by cellular versus nuclear size 

change of S2 cells with temperature (Fig. 8). While nucleus and cell size varied, genome size 

was kept relatively constant at all temperatures for fly stocks and S2 cells (Fig. 8). The 

observed increase of body size (and wing size) at low temperature may thus at least be linked 

with cell size change, while corresponding changes in genome size was not observed. 
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3.5. Temperature, cell- and genome size in Arctic charr (paper V) 

In this study we assessed the linkage between temperature, food ration, body size, 

erythrocyte cell volume, and genome size in Arctic charr raised under different temperatures 

and populations with strong intrapopulation variability in body size.  We found differences in 

cell volume related to age, but not to temperature or final body size. These differences were 

recorded in cell volume between wild populations, but not associated with body size. 

Genome size, assessed by FCM, did not vary at all under experimental conditions, but again 

some interpopulation differences were recorded. No strong correlation was found between 

genome size and cell size (Table 1). Assuming that erythrocytes serve as a proxy of somatic 

cell volume in general, these results suggest minor effect of body size and temperature on 

cell- or genome size at least in early stages, while intriguing inter-population cellular 

differences do occur. 

Table 1. C-value (in pg cell-1), cell volume (FSC) and cellular complexity (SSC) of erythrocytes 
from the temperature versus food treatments. FSC and SSC mean values in arbitrary units.  Standard 
deviation in brackets. (Paper V) 

 

29.11.2011  22.12.2011 

Treatment 

 

C-value 

(pg/cell) 

Cell size  

(FSC) 

Cell complexity 

(SSC) 

 C-value 

(pg/cell) 

Cell volume  

(FSC) 

Cell complexity 

(SSC)   

HtHf 2.78 85.8 6.53  2.75 94.35 6.34 

  [0.154] [3.747] [0.469]  [0.096] [3.304] [0.254] 

         

LtHf 2.77 83.42 5.92  2.80 92.88 5.72 

  [0.225] [4.812] [0.464]  [0.058] [3.255] [0.204] 

         

HtLf 2.67 84.375 5.475  2.84 92.51 6.43 

  [0.237] [2.744] [0.618]  [0.096] [2.293] [0.353] 
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4. DISCUSSION 

4.1. Ectotherms obtain larger body size at low temperature 

The enlargement of body and nucleus size in Daphnia (paper I) and Drosophila (paper IV) 

when raised at low temperature (body size; Fig. 9) is consistent with previous findings 

(Atkinson, 1994; Van Voorhies, 1996; Angilletta et al., 2004; Blanckenhorn and Llaurens, 

2005; Atkinson et al., 2006; Arendt, 2007). Like most ectotherms, both Daphnia (papers I 

and II) and Drosophila (IV) grew and matured faster at high temperature (Mc Kee and Ebert, 

1996; Seebacher, 2009). Also, a number of studies have demonstrated that aquatic 

ectotherms obtain larger body size in colder environments in support of a Bergmann-type 

TSR (Bergmann, 1848; Van Voorhies, 1996; Angilletta et al., 2004). Body size at maturation 

can also vary across different populations and clones of Daphnia, independently of food 

concentration (Ebert, 1992; Pangle and Peacor, 2010), but body size may reflect a fitness-

promoting adaptation to lower temperature (Mitchell and Lampert, 2000). Also, evolutionary 

oriented experiments with Drosophila raised under different thermal regimes has highlighted 

the importance of temperature as a selective force increased body size seem to be a general 

adaptation to lower temperatures (Partridge et al., 1994; Partridge and French, 1996; Nunney 

and Cheung, 1997; Kari and Huey, 2000).  

In addition to body size response, the enlargement of Drosophila wing size at low 

rearing temperature (paper IV) has been shown to be mainly a consequence of an increase in 

cell size and delayed growth rate (Partridge et al., 1994; French et al., 1998; Azevedo et al., 

2002; Arendt, 2007). Robertson (1959) and James et al. (1995) found that genetically 

controlled differences in wing size under optimal conditions were mainly due to differences 

in cell number. In consistence with our findings (paper IV), several studies have also shown 

that the change in wing area in response to rearing temperature is mediated mainly by a 

change in cell area (Alpatov, 1930; Partridge et al., 1994; James et al., 1995; Potter et al., 
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2001). On the other hand, cell number seem to be predominantly effected by food abundance 

and quality (Robertson, 1959). 

 

Figure 9. The presented sample pictures of Drosophila and Daphnia at low and high temperature. 
Drosophila Oregon-R (A) and w1118 (B) show each stock from both 16 °C and 28 °C growth 
temperatures (paper IV). Daphnia sample pictures of D. magna (German clone) from 20 °C (C) and 
10 °C (D) growth (paper I). Scale bar shown on pictures. 
 

Female Drosophila body and wing size was larger than males at all temperatures, 

which indicate that the temperature - size response happens in parallel order during 

development (paper IV); meaning that female flies are still larger than males at all 

temperatures, because they grow in parallel order. Interestingly, size of the eye was not as 

much affected as the size of the wing at lower temperature, which may be due to the fact that 

the structures originally are derived from different imaginal disc (Hartenstein, 1993). The 

two structures may therefore respond independently to rearing temperature.  
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Typically, TSR predict lower growth rate but larger adult size at low. Our study 

revealed a striking variability calanoid copepods body size both between and within the 

surveyed species (paper III). Three of the species from both southern and Arctic population 

also followed typical “Bergmann clines” with larger species and genomes in the northern 

populations (paper III). At the intraspecific level, notably the Calanus-species displayed a 

strong inter-population variability more attributed to body size and geographical site. 

Temperature is likely to play a role, also because it affects growth rate and life cycle but 

there may be several confounding factors. However, larger Calanus species at high latitude 

may also reflect differential predation regimes in these waters, and that the dominance of the 

large C. glacialis in the temperate western coast (Norway) is preferred by the lack of visual 

predator in the turbid water (Kaartvedt, 2000; Eiane et al., 2002). 

Our study, in paper V, showed that neither body size nor erythrocyte or genome size 

did adhere to TSR as judged from our data. Hence to fully reveal TSR in fish, body size 

development should be assessed at various temperatures for the entire life span, and clearly 

species with a faster growth and maturation than Arctic charr could be for this purpose. 

 

4.2. Ectotherms obtained larger cell and nucleus size at low temperature 

The positive correlation between nucleus, cell, and body sizes of Daphnia (papers I and II) 

and Drosophila (IV) has been shown to be a general trend widespread among ectotherms 

(Gregory, 2001; Rees et al., 2007; Hessen and Persson, 2009). For a wide range of 

ectotherms metazoans it has been demonstrated that individuals reared under reduced 

temperatures reach larger cell sizes than conspecifics reared at higher temperatures 

(Robertson, 1959; Van Voorhies, 1996; Arendt, 2007; Kammenga et al., 2007; Daufresne et 

al., 2009). This fits the argument from van der Have and De Jong (1996) , that cell growth is 

more sensitive to thermal constraints than is cell division, meaning that organisms with a 
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rather constant cell number would be smaller due to reduced cell size at elevated 

temperatures. Our study revealed that the apparent enlargement of Daphnia somatic nuclei at 

low temperature (paper I) came along with increased DNA condensation (see section 4.4). 

The DNA condensation was more obvious in D. magna compare with D. pulex at low 

temperature (paper I). Thus, we propose a theory that temperature response of nucleus size 

may be somewhat linked to modified cell shape owing to “local” chromatin condensation 

(Versaevel et al., 2012). The link between condensation status, rearrangements within the 

nucleus, and concomitant nucleus size effects could then be responsible for the observed 

effects in larger animals, where the cell changes could again impact their body size. 

 

4.3. Genome and cell size variation in calanoids 

Our data revealed variability in genome and nucleus size both between and within the 

measured copepod species (paper III). Three of the species from southern and Arctic 

population also followed typical “Bergmann clines” with larger species and genomes in the 

northern populations. Large genome size is common found among organisms in arctic 

habitats (Rees et al., 2007; Rees et al., 2008), or extreme habitats, such as fluctuating 

habitats or habitats causing some physiological factors like osmotic stress that could be more 

pronounced in semi-terrestrial or freshwater habitats (cf. (Libertini et al., 2008). Also, the 

commonly occurring gigantism in deep-water crustaceans is tightly linked with low 

metabolic rates, extended life span and large cell size. In fact this has been advocated as a 

general explanation for the Bergmann’s rule (Timofeev, 2001). Generally, calanoid copepods 

have large genome size compared with other typical crustacean zooplankton species (cf. 

comparison with Daphnia). Especially the genome size found for Paraeuchaeta is truly 

remarkable, although very large genome has also been found in some in amphipods and 

decapods (Hessen and Persson, 2009; Gregory, 2013).  While many crustaceans, especially 
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cladocerans, have high levels of somatic endopolyploidy (Beaton and Hebert, 1989), this 

seems not to be the case for copepods. 

 

4.4. Genome size of ectotherms at low temperature 

Increased genome size and polyploidization are potential means of increasing cell size, and 

both seem somehow related to low temperatures, the evolutionary drivers may be widely 

different and occur at different time scales (cf.(Hessen et al., 2013). Elevated genome size 

estimates at low growth temperature was confirmed in Daphnia (papers I and II), but not in 

calanoid copepods (paper III), Drosophila (paper IV) and Arctic charr (paper V). The 

genome size estimates of calanoid copepods (paper III), Drosophila (paper IV) and Arctic 

charr (paper V) were relatively constant at all temperatures with coefficient of variation of 

DNA histogram 2C peak within the acceptable range (Marie and Brown, 1993; Baretton et 

al., 1994; Vilhar et al., 2001; Darzynkiewicz et al., 2010). The elevated Daphnia genome 

size estimates came along with elevated coefficient of variation (CV > 6%) of DNA 

histogram 2C peak at low compared with high temperature (papers I and II). These genome 

size estimates were further shown to be due to change between DNA - flourochrome binding 

prosperities caused by elevated DNA condensation at low temperature (Fig. 10 and paper I). 

The DNA condensation status was also tested in Drosophila and copepods nuclei, and 

showed (similar to that genome size) no effect at all temperatures (data is not included in this 

study).  
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Figure 10. Nuclear DNA content versus DNA condensation for D. magna. FCM contour plot shows 
nuclear-ID green negative (no DNA condensation) nuclei as gate 1 (G1), as set by gating PI-stained 
nuclei of nuclear-ID green negative control sample (inset) of 20 °C (A) and 10 °C (B). Gate 2 (G2) is 
positive-stained nuclear-ID green nuclei and was set by gating nuclear-ID green positive 20 °C 
nuclei, and gate 3 (G3) thus represent high DNA condensation. The G1–G3 populations were further 
displayed in nucleus size versus DNA condensation (C & D) and nucleus size versus nuclear DNA 
content (E & F) colour dot plot as blue = G1 nuclei; red = G2 nuclei; green = G3 nuclei. Nuclei of 20 
°C (C) and 10 °C (D) with high DNA condensation (green) were larger in size compared with nuclei 
of low DNA condensation (red). G1 nuclei were identified as part of 2C population at (E) 20 °C and 
were smaller in size compared with nuclei with condensed DNA (red and green; E). 2C–8C at 10 °C 
are labelled with asterisks, indicating artefact values. (Paper I) 
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Figure 11. The “reversal incubation” experiment; nucleus size versus DNA presented as FCM 
contour plot of PI stained D. pulex (A & B) and D. magna (C & D) nuclei from 10 °C growth were 
incubated at 20 °C or cold prior FCM analysis. DNA content as measured from histogram (insets) 
show narrower peaks of 20 °C compared with cold incubation. 2C DNA content / CV values 
decreased from 0.56 ± 0.00 pg / 8.90 ± 0.06 % to 0.44 ± 0.01 pg / 5.90 ± 0.06% for D. pulex, and 
from 0.81 ± 0.03 pg / 9.06 ± 0.40 % to 0.66 ± 0.00 pg / 4.73 ± 0.06 % for D. magna at 20 °C 
incubation, respectively. The size of nuclei decreased by 11.40 ± 0.62 % for D. pulex and 8.80 ± 1.79 
% for D. magna when incubated at 20 °C. The density (%) of nuclei per ploidy level was digitized in 
colour codes (from very to less dense: purple, blue, green, yellow, orange, and red). 2C – 8C at 10 °C 
are labelled with asterisk indicating artefact values. (Paper I) 
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Furthermore, “the temperature reversal experiment” (Fig. 11) revealed that the elevated 

Daphnia genome size estimations at low temperature was not linked to increased number of 

nucleotides, but is rather due to artefact genome size estimations (paper I).  However, the 

genome size estimations of Daphnia (all clones) were nearly consistent with previous 

published values (Korpelainen et al., 1997; Vergilino et al., 2009; Gregory, 2013), thus 

minor differences could be ascribed as clonal and methodical (papers I and II).  

Drosophila genome size estimation correspond well to those previously estimated by 

FCM analysis (Bennett et al., 2003), but somehow higher than estimated from sequencing 

(Adams et al., 2000) (paper IV). Furthermore, FCM results of fly DNA also showed somatic 

polyploidy up to 8C at all temperatures, which has been previously observed in Drosophila 

cell line cultures (Mosna and Dolfini, 1972). These 8C cells were not observed during DNA 

analysis of S2 cells from all treatments and growth temperatures. Similar to fly DNA, the S2 

cells did not show low temperature response on genome level at all treatment (paper IV). 

However, the genome size of S2 cells was estimated to be twice as large as fly DNA at all 

temperatures and cellular treatments. This genome doubling was further shown to be 

approximately similar to (Oregon-R) embryo genome size estimates, which confirmed that 

the genome size difference between flies and S2 cells is due to different stage of 

development (paper IV). With this we would like to remark that it currently does not exist 

any published data on genome size of S2 cells, so our genome size estimates are genuine 

(paper IV). 

The genome size estimates for all Arctic charr populations under all treatments was 

somewhat lower than previously reported for Arctic charr (Hartley, 1990; Hardie and Hebert, 

2003; 2004), which may reflect methodological disparities since the former studies were all 

based on Feulgen staining and densiometry (paper V). 
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4.5. Dietary P also effects genome and cell size of Daphnia 

The multigenerational study of Daphnia suggests responses in genomic size, nucleus size 

and distribution of 2C, 4C and 8C cell populations on temperature and P diet (paper II). The 

differing responses between the two species may reflect their different demands for P, where 

D. magna is far more susceptible to P limitation than D. pulex (Mcfeeters and Frost, 2011).  

Diet also seems to effect 2C CV estimates, as lower CV´s is observed for P deficient diet of 

Daphnia. The elevated CV and its bearings on DNA fluorescence and structure may hinge 

on different mechanisms for temperature and dietary P (paper II). In both cases DNA 

condensation could play a role.  A higher degree of DNA condensation may require higher 

quantities of P since P-concentration has been found to affect the distribution of chromatin 

compaction within nucleosomes (Bazett-Jones and Ottensmeyer, 1981; Bazett-Jones et al., 

1999; Fussner et al., 2011). Previous experiments found corresponding temperature effects 

within one single generation for both species (paper I), while this response was maintained in 

D. magna over the generations, it was not observed for D. pulex. Also the two species 

different in their dietary response, where only D. magna (with the larger genome) responded 

clearly to P limitation both in genome and nucleus (paper II). While this study point to an 

intriguing structural response at the subcellular level, with potential effects on cell size and 

even body size (paper I), the mechanistic behind these effects will have to await following-

up studies and sequencing. 
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5. CONCLUSIONS AND FUTURE PERSPECTIVES 

This thesis provides novel insights in to the link between genome, cell, and body size of 

popular ectotherms at different temperatures. Paper I highlights the importance of FCM as a 

fast and reliable method in measuring instant change in genomic, nuclear, and cellular level 

at low vs. high temperatures. This, I believe, is essential when studying fluctuating 

parameters such as temperature change in ectotherms, especially in light of increasing global 

warming. The fact that lower temperature may increase condensation of the DNA molecule 

in ectotherms is novel theory and should call for caution when estimating genome size from 

FCM, as well as from other methods. Of course, as for all methods, FCM has its advantages 

and disadvantages, but at least FCM is the fastest method in genome size estimation with 

minor modification of DNA helix, which make it easy to reveal “natural” modifications of 

the DNA helix. According to Davy and Kell (1996) there are three main advantages of FCM, 

which include multiparameter data acquisition and multivariate data analysis, high-speed 

analysis, and the ability to effect cell sorting. Furthermore, they mention that the only 

disadvantageous of FCM is mainly the highly cost of many of the various FCM machines 

and the need of skilled operator to run samples by the sophisticated FCM instruments (Davey 

and Kell, 1996).  

Because D. magna showed highest DNA condensation response at low temperature 

compared with D. pulex (paper I), indicate that our method is important to evaluate the 

critical aspect in genome size analysis of different ectotherms. However, the term genome 

can refer to either all the nuclear DNA or to only some of it, and a completely sequenced 

genome is a relative concept (Bork and Copley, 2001). It can mean that every type of 

sequence in an organism has been sequenced, but it need not mean that all copies of all types 

have been sequenced, or that their copy numbers are all known. Without this information 

total genome size (C value) cannot be determined based on genome sequencing. There 
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fore, from my point of view, it is important to at least include FCM as method when 

estimating genome size in thermal studies, because that will strength the estimation by 

excluding artefact measurements (such as condensation) as shown it this study.  

Another important aspect is the effect of DNA condensation on cell size as response to 

low temperature, should at least considered to be the major cause of enlargement of body 

size in ectotherms (paper I). In fact, increased polyploidy have been shown to cause severe 

damage to organisms, and is also linked to cancer (by production of aneuploidy cells). A 

review by Comai (2005) indicate that becoming polyploid has several disadvantages 

compared to only three advantages. The main disadvantages of polyploidy include the 

disrupting effects of nuclear and cell enlargement, the propensity of polyploid mitosis and 

meiosis to produce aneuploid cells, and the epigenetic instability that results in non-additive 

gene regulation (Comai, 2005). Our study shows that ectotherms (e.g. Daphnia) prefer to 

enlarge the largest cell pool (diploid cells) by DNA condensation, rather than 

polyploidization at low temperature. This is because some ectotherms (e.g. Daphnia) may 

find it easily to shift to more relaxed DNA structure when temperature rises in a sudden 

within a generation, as documented by “the temperature reversal experiment” (paper I). This, 

I think, is especially effective among Daphnia (magna), because of its actively swimming 

behaviour across different temperature gradients during life time (Gerritsen, 1982). 

Further knowledge about the DNA sequences responsible for the temperature 

dependent genome configuration can be identified by more nucleotide selective experiments 

such as sequencing. Also culturing of cells with microscopically analysis might give more 

information about the kind of cell size enlargement at different temperatures, for instance; is 

it cell expansion or cell deformation? Is the condensation local, scattered as foci, or is it 

aggregated in the cell? Which chromosome is condensed at low temperature? Is the 

condensation epigenetically related? How to place this condensation in evolutionary 
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perspective? Why highly condensation (or FCM CV estimation) of DNA in Daphnia 

compared to other ectotherms at low temperature?  

Final conclusions on the temperature effects on genome size, and not the least the 

corresponding effects on cell and body sizes, are premature. If one can demonstrate that 

natural selection favours a reaction norm in which organisms at low temperatures delay 

maturity until reaching a relatively large body size, then a single explanation might account 

for much of the variation in body size observed in laboratories and natural populations. 

However, the TSR is still one of the most taxonomically widespread “rules” in biology. As 

with all biological “rules,” clear exceptions to Bergmann's rule and the TSR exist. Still, 

biologists have had more difficulty finding plausible explanations for these rules than they 

have had finding causes for exceptions. 
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