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”A cryptic 
species is 
one that is 
commonly 
described 
in literature  
but never 
found in 
nature.”
Galina Gussarova, Brooks Range, Atigon pass, 
2009-07-19, after multiple attempts to find the “common” 
Silene uralensis, during our fieldtrip in Alaska.
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1. SUMMARY 
 

The main objectives of this thesis are to study patterns and processes of plant speciation in 

arctic and alpine diploid plants. Cryptic species are here referred to as morphologically 

similar individuals belonging to the same taxonomic species but that are unable to produce 

fertile offspring (i.e. 'sibling' species). 

The arctic flora is considered as one of the most species-poor floras of the world, and 

the latitudinal gradient with decreasing diversity from low to high latitudes is likely the oldest 

recognised pattern in ecology. However, these estimates are usually based on morphological 

differentiation into taxonomically recognizable species and may not provide accurate numbers 

of biological species. Previous intraspecific crossing experiments in three diploid circumpolar 

species of Draba (Brassicaceae) revealed the presence of numerous cryptic biological species 

within each taxonomic species. The present study expands the knowledge based on these 

previously published results and suggests that frequent formation of cryptic biological species 

may be a general pattern in the arctic flora. Intraspecific crossing experiments including 

several distantly related circumpolar diploid plant species revealed that intrinsic postzygotic 

isolation has developed multiple times, even at small geographical scales. This was shown for 

all five selfing species investigated, whereas crosses within one outcrossing species generated 

fully fertile F1 hybrids. This suggests that a selfing mating system may accelerate the 

accumulation of hybrid incompatibilities. The barriers have in addition developed very 

rapidly, apparently within a few millennia, suggesting that speciation rates are unexpectedly 

high in the arctic flora. Cryptic biological species, although not yet recognisable 

morphologically, are thought to represent starting points for new evolutionary lineages that 

given sufficient time may develop into full-fledged new taxa. Other factors may thus account 

for the low diversity of the contemporary arctic flora in terms of taxonomic species. It is 

likely that high extinction rates rather than low speciation rates have played an important role 

in shaping the extent diversity in the arctic flora, possibly associated with climatic shifts 

during the Pleistocene glacial cycles.  

 The genetic mechanisms involved in the build-up of reproductive isolation are of 

central importance in understanding the evolution of new species. This thesis presents further 

insights into the mechanisms underlying reproductive isolation in Draba nivalis 

(Brassicaceae) – a small, circumpolar, predominantly selfing diploid herb that demonstrates 

numerous cryptic biological speciation events. By performing genetic linkage mapping and 
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searching for quantitative trait loci (QTL) associated with reproductive isolation more 

knowledge about the mechanisms involved in the evolution of intrinsic postzygotic 

reproduction in this system has been gathered. The linkage map was produced by combining 

both codominant and dominant markers and resolved eight linkage groups that most likely 

correspond to the eight chromosomes of D. nivalis. Observed patterns of inheritance were 

consistent with the influence of both nuclear-nuclear interactions and chromosomal changes. 

In particular, all seed set QTLs and one pollen fertility QTL displayed underdominant effects, 

matching expectations of chromosomal speciation models. Theory struggles to account for the 

establishment of large and strongly underdominant chromosomal translocations. Draba 

nivalis may however be an exception as a selfing mating system, is conducive for the 

establishment of chromosomal rearrangements through genetic drift. Overall this study 

confirms that multiple genetic mechanisms are involved in the build-up of reproductive 

isolation in D. nivalis, suggesting the involvement of both nuclear-nuclear interactions and 

structural chromosomal changes. 

 As plants are sessile organisms, they depend largely on adapting to locally changing 

climatic conditions such as temperature, aridity, and day length. Natural selection acting on 

traits that respond to such changes has likely played an important role in the evolution of 

plants. Climatic cycles of the Pleistocene caused drastic changes to species’ ranges. For 

example, the Japanese alpine endemic plant Cardamine nipponica (Brassicaceae) probably 

diverged into northern and central populations during the Pleistocene climatic oscillations. 

The northern and central populations present highly diverged alleles of a particular 

photoreceptor gene phytochrome E (PHYE). Phytochromes such as PHYE monitor the 

surrounding light environment, and likely play an important role in the regulation of plant life 

cycles. The present study infers the evolutionary history of the PHYE in C. nipponica and its 

close relatives using maximum likelihood models. The resulting genealogical relationship 

suggested that standing genetic variation of PHYE, which diverged under positive selection 

prior to speciation, resulted in the selective differentiation between the northern and central 

Japanese populations of C. nipponica. This further suggests the importance of standing 

genetic variation in regard to quick responses to climatic changes. 
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2. LIST OF PAPERS 
 

I. A. Lovisa S. Gustafsson, Galina Gussarova, Liv Borgen, Hajime Ikeda, Jan Suda, 

Loren H. Rieseberg, Christian Brochmann. High speciation rates in arctic plants. 
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cryptic speciation within an arctic mustard, Draba nivalis. Submitted. 

 

III. Hajime Ikeda, A. Lovisa S. Gustafsson, Christian Brochmann, Hiroaki Setoguchi. 

Pre-speciation origin of selective divergence and balancing selection in a plant 

photoreceptor gene, phytochrome E. Submitted. 
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3. INTRODUCTION 
 

3.1 Speciation in plants 

The species concept is a heavily debated issue in evolutionary biology, and per date more than 

25 concepts have been proposed (Coyne and Orr 2004). The biological species concept may 

be the most generally accepted one, and was defined by Mayr as “species are groups of 

interbreeding natural populations that are reproductively isolated from other such groups” 

(Mayr 1995), and represents the species concept discussed in this thesis. Furthermore, cryptic 

species are referred to as morphologically similar individuals belonging to the same 

taxonomic species but that are unable to produce fertile offspring. 

Speciation in plants is characterized by the evolution of reproductive barriers 

preventing (or drastically reducing) genetic interchange between previously interbreeding 

populations (Rieseberg and Willis 2007). Plants vary dramatically in mating system, ploidy 

level, mode of dispersal, as well as life history, which gives us better understanding of how 

various ecological and evolutionary factors contribute to speciation (Brochmann et al. 1993, 

Levin 2000). 

Plant species are typically isolated by multiple reproductive barriers (Rieseberg and 

Willis 2007). The genetically based traits that prevent gene exchange can act before 

fertilization (prezygotic mechanisms: prepollination or postpollination) and/or after 

fertilization (postzygotic extrinsic or intrinsic mechanisms related to habitat or genetic 

background, respectively). Intrinsic postzygotic barriers may be caused either by changes in 

functional genes or chromosomal rearrangements. The Bateson-Dobzhansky-Muller (BDM) 

model accounts for the accumulation of genic incompatibilities among isolated populations 

without loss of fitness (Lexer and Widmer 2008), whereas chromosomal rearrangements 

result in reduced fitness in heterozygotes leading to 50% inviable gametes (Rieseberg 2001). 

Structural divergence that results from fixation of chromosomal rearrangements reduces gene 

exchange between lineages by interfering with meiosis or reducing the level of recombination 

(Stebbins 1971, Rieseberg 2001, Levin 2002, Butlin 2005). Cytonuclear interactions may also 

be important in raising reproductive barriers. Such interactions create asymmetric 

reproductive isolation (Lowry et al. 2008, Leppälä and Savolainen 2011) because of 

dysfunctional interactions between nuclear and cytoplasmic factors (Levin 2003). 
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Whether the origin of reproductive barriers is predominantly due to selection or drift is 

an unresolved question among evolutionary biologists. Selection has generally been 

considered the main evolutionary force, but drift may be more important in small inbreeding 

populations (Levin 2000). BDM incompatibilities have largely been favoured over 

chromosomal rearrangements for the general origin of instrinsic postzygotic isolation (Orr et 

al. 2004), but chromosomal rearrangements may be more important in plant genomes (Chester 

et al. 2012). Indeed, genome doubling which is prevalent in plants, is expected to restore the 

fertility of hybrids with chromosomal rearrangements, while not alleviating genetic 

incompatibilities due to BDM (Rieseberg 2001, Rieseberg and Willis 2007). Recent 

theoretical developments have, however, highlighted selection in heterogeneous environments 

as an efficient promoter of the establishment of chromosomal rearrangements (Rieseberg 

2001, Kirkpatrick and Barton 2006, Faria and Navarro 2010).  

 

3.2 Cryptic speciation in the Arctic: the Draba case 

Contrary to expectations, completely sterile F1 hybrids were obtained in intraspecific crosses 

of the diploid Draba fladnizensis Wulfen after crossing plants from Svalbard and mainland 

Norway (Brochmann et al. 1993). To follow up these unexpected results, intraspecific 

crossing experiments were conducted on the full circumpolar scale of three diploid and 

circumpolar Draba species: D. fladnizensis, D. nivalis Lilj., and D. subcapitata Simmons 

(Grundt et al. 2006). Within all three species, crosses between individuals from different 

geographic areas (Alaska, Greenland, Svalbard and mainland Norway) produced mostly 

sterile F1 hybrids, revealing the presence of numerous cryptic biological species within each 

taxonomic species. For D. fladnizensis and D. nivalis as many as 92% of the within- and 

among-region crosses resulted in sterile or semisterile F1 hybrids, despite fully fertile parental 

plants. Furthermore, there was a positive correlation between the genetic distance among 

parents and the sterility of the resulting hybrids. The development of such reproductive 

barriers in other plant species is often associated with ecological and/or morphological 

divergence. In contrast, the genetic divergence and reproductive isolation in Draba were 

correlated with neither morphological nor ecological differentiation, suggesting that incipient 

speciation was caused by recent formation of intrinsic postzygotic isolation. The reproductive 

barriers must indeed have accumulated very rapidly as molecular data suggest that these three 

taxonomic species have arisen recently, most likely during the Pleistocene. The accumulation 
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of hybrid incompatibilities may have been facilitated by the predominant selfing mating 

system of all three species, possibly through genetic drift (Grundt et al. 2006).  

Grundt et al. (2006) concluded that “although the Arctic is comparatively poor in 

morphological species, it may be rich in cryptic, biological species as demonstrated here for 

three species of Draba”. 

 

3.3 Postzygotic isolation in Draba nivalis 

To better understand the genetic mechanisms underlying the discovery of recent intrinsic 

postzygotic isolation in Draba nivalis, linkage mapping and quantitative trait loci (QTL) 

analyses, searching for traits associated with reproductive isolation, was conducted (Skrede et 

al. 2008b). A large F2 population was raised by selfing a semi-fertile F1 hybrid generated from 

a cross performed by Grundt et al. (2006; paternal lineage originated from Norway and the 

maternal lineage from Alaska), and several traits related to hybrid incompatibility (pollen 

fertility, seed set, flowering time, number of flowers) were measured. In total, 383 F2 

individuals were genotyped with 50 microsatellite markers, and linkage mapping followed by 

QTL analysis was conducted. It was concluded that multiple genetic mechanisms were 

underlying intrinsic postzygotic reproductive barriers in this system, and QTL analysis 

identified five loci underlying seed fertility and two underlying pollen fertility. Average seed 

and pollen fertility was lower in the F2 population than in the parental species, but higher than 

in the F1 population, suggesting that under-dominant loci underlie hybrid sterility. However, 

some F2 individuals had lower fertility than any of the F1 individuals, suggesting that also 

BDM incompatibility could be involved in the origin of sterility barriers. Maternal alleles for 

pollen fertility QTLs were in addition consistently associated with higher hybrid fertility than 

paternal alleles, suggesting the possible involvement of cytonuclear incompatibilities. 

In summary, seed fertility was affected by under-dominant loci, most probably due to 

microchromosomal rearrangements since no obvious disruption was observed during meiosis, 

in addition to epistatic interactions due to reciprocal translocations and/or BDM 

incompatibilities. Pollen fertility was affected by BDM incompatibilities and possibly 

cytonuclear incompatibilities.  

The linkage map was nevertheless produced with 50 microsatellites only. Evidencing 

more linkage groups than the number of chromosomes, Skrede et al. (2008b) suggested that 
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less than half of the Draba genome was covered, thus possibly underestimating important 

fertility QTLs and epistatic interactions.  

 

3.4 Aims of the present thesis 

The present thesis aims to provide further insights into the patterns and processes involved in 

the evolution of new species in arctic and alpine regions.  

Paper I focuses on intraspecific crossing barriers in arctic diploid plants, elaborating 

on the possibility of the arctic flora containing numerous cryptic biological species. Including 

distantly related species, with contrasting mating system in circumpolar, intraspecific crossing 

experiments will allow generalisations. The hypothesis is that selfing species will reveal more 

cryptic biological species than outcrossing species.  

Paper II focuses on gaining further insights into the genetic mechanisms involved in 

the build up of intrinsic postzygotic reproductive isolation. The aim is to increase the genome 

coverage of Draba nivalis by adding a number of molecular markers to be mapped on 

reciprocal F2 populations, followed by QTL analysis searching for traits associated with 

reproductive isolation. This will increase the certainty to what extent chromosomal 

rearrangements, nuclear-nuclear interactions and cytonuclear incompatibilities are involved in 

the rapid accumulation of hybrid incompatibilities in this system.  

Paper III focuses on a particular gene: the photoreceptor phytochrome E (PHYE). This 

gene presents highly diverged alleles between northern and central populations of the 

Japanese endemic plant Cardamine nipponica. The present study address whether the 

selective differentiation in this species originated from alleles that coalesced prior to 

speciation (i.e. standing genetic variation) or from newly accumulated mutations. 
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4. SUMMARY OF PAPERS 
 

Paper I: High speciation rates in arctic plants. 

The Arctic is considered to be one of the most species-poor regions of the world, and the 

latitudinal gradient with decreasing species diversity from low to high latitudes is considered 

as the oldest recognized pattern in ecology. These estimates are, however, based on 

morphological differentiation and may not provide accurate numbers of biological species 

diversity. The present study followed up the previously demonstrated crossing barriers found 

within three circumpolar plant species, trying to elucidate if the formation of cryptic 

biological species is a common pattern in the arctic flora. After performing intraspecific 

crossing experiments in several distantly related circumpolar, diploid plant species, F1 hybrid 

fertility was measured.  

Living plant material was collected of 22 species in three main geographical regions 

(Alaska/Yukon, the North Atlantic archipelago of Svalbard, and mainland Norway). Crosses 

were successful in five selfing species and one outcrossing species. The results indicate that 

sterility barriers have formed frequently within single taxonomic species, suggesting that the 

formation of cryptic biological species is a general pattern in the arctic flora. All five selfing 

species demonstrated hybrid incompatibilities, whereas the hybrids in the one outcrossing 

species were fully fertile. This suggests that a selfing mating system accelerates the 

accumulation of hybrid incompatibilities. In addition, the barriers appear to have evolved very 

rapidly as investigated populations were genetically very similar in spite of being more or less 

reproductively isolated, suggesting surprisingly high speciation rates in the arctic flora. Thus, 

the results contradict previous explanations for the latitudinal diversity gradient that assume 

lower evolutionary rates towards the poles.  

A recent study of New World birds and mammals using birth-death models suggest 

that both speciation and extinction rates increase at higher latitudes. High extinction rates 

rather than low speciation rates may indeed account for the low species diversity in the arctic 

flora, possibly associated with climatic shifts during the Pleistocene glacial cycles.  

 

Paper II: Genetics of cryptic speciation within an arctic mustard, Draba nivalis. 

The origin and build-up of reproductive isolation is of central interest in evolutionary biology 

and has been the subject of considerable debate and discussion for decades. Here the focus 

was to get further insights into the mechanisms underlying intraspecific reproductive isolation 

in the diploid, circumpolar herb Draba nivalis (Brassicaceae). Multiple genetic mechanisms, 
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including nuclear-nuclear and cyto-nuclear incompatibilities as well as structural 

chromosomal changes, have previously been reported in the rapid evolution of postzygotic 

reproductive isolation in this system. Genetic linkage mapping of a large F2 population was 

conducted followed by quantitative trait loci (QTL) analysis searching for traits associated 

with reproductive isolation. The linkage map was produced by combining a dataset of 31 co-

dominant microsatellites with 63 dominant markers, including 52 amplified fragment length 

polymorphisms (AFLPs) and 11 sequence-specific amplified polymorphisms (SSAPs). The 

map resolved eight linkage groups that most likely correspond to the eight chromosomes of D. 

nivalis. The QTL-analysis revealed four QTLs associated with pollen fertility, three with seed 

set, three with flowering time and four with number of flowers. Among the 14 detected QTLs, 

patterns of inheritance reported for those QTLs associated with postzygotic isolation were 

consistent with the influence of both nuclear-nuclear interactions and chromosomal changes. 

In particular, all seed set QTLs and one pollen fertility QTL displayed underdominant effects, 

matching expectations of chromosomal speciation models. The establishment of 

underdominant chromosomal rearrangements may be facilitated in species such as Draba 

nivalis that are predominantly self-fertilizing. Selfing is likely to reduce gene flow and 

effective recombination between populations, as well as possibly increasing the speed of 

fixation of adaptive loci. The present study suggests that multiple genetic mechanisms are 

indeed involved in the build-up of reproductive isolation in D. nivalis, highlighting the 

importance of both nuclear-nuclear interactions and structural chromosomal changes, 

although no evidence of cyto-nuclear incompatibilities was demonstrated. 

  

Paper III: Pre-speciation origin of selective divergence and balancing selection in a plant 

photoreceptor gene, phytochrome E. 

Climatic oscillations during Pleistocene invariably caused drastic changes to species’ ranges. 

For species to respond to such shifts in their local environment, standing genetic variation 

would play a more important role than newly accumulated mutations. The focus in this paper 

was to investigate the importance of standing genetic variation in relation to genetic 

differentiation following Pleistocene climatic oscillations in Cardamine nipponica, a 

perennial herb endemic to the high mountains in the Japanese archipelago. The photoreceptor 

phytochrome E (PHYE) presents strong genetic differentiation between northern and central 

populations of C. nipponica and has evolved under balancing selection. A previous study 

revealed a firm sister relationship between C. nipponica and the arctic-alpine C. bellidifolia, 
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with C. alpina and C. resedifolia included in the same clade. Using this phylogenetic 

framework, the entire coding region of PHYE was sequenced along with two additional 

photoreceptor genes; phytochrome A (PHYA) and cryptochromes 1 (CRY1), used as reference 

loci. The genealogies for the three phytochromes were inferred using maximum likelihood 

models, and were consistent with previous phylogenetic studies for both PHYA and CRY1, 

where northern and central populations of C. nipponica formed a monophyletic group with C. 

bellidifolia as sister. In contrast, the genealogy for PHYE presented a robust paraphyletic 

relationship, with northern populations of C. nipponica forming a clade with C. bellidifolia, 

presenting central populations of C. nipponica as sister to this clade. Tests of natural selection 

further supported a model assuming positive selection on divergence for both clades. 

Accordingly, the differentiation of PHYE between northern and southern populations of C. 

nipponica was most likely caused by alleles under natural selection that diverged prior to 

speciation. This highlights the possible importance of standing genetic variation in regard to 

quick responses to climatic changes. 
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5. METHODS 
 

5.1 Crossing experiments  

In paper I the aim was to perform extensive crossing experiments to potentially reveal a 

general pattern of cryptic biological speciation in the arctic flora. The choice of species to be 

investigated was critical, and the following five criteria had to be fulfilled. The plants should:  

i) be diploid to avoid introducing additional complexity because of polyploidy. There 

are currently too few named diploid species in the arctic flora to account for the 

high diversity seen at the polyploid level adding to the interest to study diploids in 

regard to cryptic speciation (Brochmann et al. 2004).  

ii) have a full circumpolar range to maximize the possibility for detecting cryptic 

biological species, which may be most likely at large spatial scales. 

iii) be more or less common, to facilitate the field work. 

iv) represent divergent phylogenetic lineages, to investigate whether formation of 

cryptic biological species is common across diverse genera and families in the 

arctic flora, and not only confined to the three Draba species studied by Grundt et 

al. (2006). 

v) vary in mating system to test for potential differences between selfing and 

outcrossing species, as previous studies (Grundt et al. 2006, Skrede et al. 2008b) 

indicate that a selfing mating system might accelerate the formation of cryptic 

biological species.  

Twenty-two species representing ten plant families were selected, and a total of 1722 

specimens were collected (Supplementary Information, Table S1). Plant material was 

collected from three main geographical regions: Alaska/Yukon, the arctic archipelago of 

Svalbard, and mainland Norway in 2009. One population was defined as plants occurring 

within an area of 100 m  100 m, and individual plants were (if possible) collected at least 10 

m apart. For each population the aim was to collect a minimum of ten living plants, one plant 

as a voucher and leaves from five plants as silica samples. The living plants were cleaned for 

soil and wrapped in moist paper and plastic bags before shipped to Norway. In Alaska/Yukon 

this was performed twice, as widely separated sampling areas were visited, with intermediate 

stops in Fairbanks, where the living plants were replanted in the green house at the University 

of Alaska Fairbanks. Upon arrival in Norway the plants were once again replanted in a 

phytotron free from pollinating insects, at the University of Oslo (cultivation conditions as 
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specified in Brochmann et al. 1992). The plants were cultivated for two flowering seasons per 

year with three months of summer conditions and three months of winter conditions 

(vernalization). 

The crossing program was designed to cover three main spatial scales: within-

population crosses, within-region crosses and between-region crosses. The within-region 

crosses were performed among four subregions in Alaska/Yukon (Seward Peninsula, Brooks 

Range, Central Alaska along Denali Highway, and Yukon Territory). The between-region 

crosses were performed among the three main geographic regions Alaska/Yukon, Svalbard, 

and mainland Norway. For logistical reasons, collections in Svalbard were made only around 

Longyearbyen, and crosses performed among these closely located populations are referred to 

as Svalbard-population crosses. In each crossing experiment, flower buds were emasculated 

on the maternal plant long before anthesis to avoid self-fertilization. Pollen was transferred 2-

9 days later, depending on stigma receptivity. Whenever possible, reciprocal crosses were 

performed. Many of the species were, however, either difficult to cultivate or did not flower 

regularly under the specific phytotron conditions. Thus large portions of the crossing 

experiments failed. Ploidy level of parental populations was verified using DNA flow 

cytometry and type of breeding system was assessed based on ability to set seed after 

spontaneous self-pollination (paper II).  

F1-seeds were harvested and vernalized before sowing. Five F1 seedlings (if available) from 

each cross were raised to maturity. F1 hybrid fertility was estimated as percent stainable 

pollen and as percent seed set. Pollen stainability was estimated by counting the proportion of 

fully stained pollen grains after adding lactophenol in cotton blue on pollen transferred to a 

microscope slide, and about 200 pollen grains (Fig. 1) were counted for each plant (Radford et 

al. 1974). This is a commonly used method to estimate pollen fertility (see e.g. Brochmann 

1993, Kelly et al. 2002, Stucky et al. 2012), but it should  however be noted that it only 

measures the pollen stainability and might not necessary reflect the actual pollen fertility. For 

the selfing species, seed set was measured as percent fully developed seed set after 

spontaneous selfing, relative to total number of ovules. Also here it should be noted that the 

seed set does not necessarily reflect the actual number of fertile seeds as no germination tests 

were conducted. For simplicity, however, pollen stainability and seed set is referred to as 

pollen and seed fertility. Based on the high correlation between pollen and seed fertility 

estimates, it was possible to classify the F1 hybrids (and parents) as fertile (fertility  70%), 

semisterile (fertility 30% to <70%) and sterile (fertility < 30%). 
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Figure 1. Pictures of pollen grains of Cardamine bellidifolia stained by the addition of 

lactophenol in cotton blue on pollen transferred to a microscope slide. Showing stainable 

(potentially fertile) and sterile pollen grains. PHOTO: A. Lovisa S. Gustafsson 

 

 

Successful crosses (resulting in viable F1 hybrids) were obtained for six species out of 

which five were predominantly selfing; Cardamine bellidifolia L., Cochlearia groenlandica 

L., Saxifraga hyperborea R. Br., Ranunculus pygmaeus Wahlenb. and Silene uralensis 

(Rupr.) Bocquet, and one species predominantly outcrossing; Silene acaulis (L.) Jacq. (Fig. 

2). It is worth noting that the successful crosses thus included two species from the same plant 

genus, but with different mating systems (S. uralensis and S. acaulis; Caryophyllaceae).  

 

 

Stainable pollen

Sterile pollen
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Figure 2. The six species for which successful intraspecific crosses were obtained (resulting in 

viable F1 hybrids): Cardamine bellidifolia, Cochlearia groenlandica, Saxifraga hyperborea, 

Ranunculus pygmaeus, Silene uralensis and Silene acaulis. POTO: A. Lovisa S. Gustafsson: 

Cardamine bellidifolia, Cochlearia groenlandica, Ranunculus pygmaeus, Silene acaulis; Bjørn Erik Sandbakk 

(www.svalbardflora.net): Silene uralensis; Aud Else Berglen Eriksen: Saxifraga hyperborea. 
 

5.2 Molecular analysis of Cardamine bellidifolia and Ranunculus pygmaeus 

In paper I, molecular analyses were conducted for two species, i.e. Cardamine bellidifolia and 

Ranunculus pygmaeus. Eight nuclear genes (CHS, CO, COP1, DET1, DFR, F3H, FRI, and 

GA1) were sequenced to infer the level and timing of evolutionary divergence between the 

crossed populations of C. bellidifolia. The Japanese alpine endemic C. nipponica was inferred 
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as sister species of C. bellidifolia (Ikeda et al. 2012), and used as outgroup along with plants 

of C. alpina, C. resedifolia, and C. glauca. Maximum likelihood methods were used to assess 

phylogenetic relationships, and the isolation with migration (IM, Nielsen and Wakeley 2001, 

Hey and Nielsen 2004) model was used to infer the demographic history. To complement the 

IM results, additional divergence time estimates using *BEAST (Heled and Drummond 2010) 

were calculated.  

A range-wide genetic analysis was conducted for R. pygmaeus using Amplified 

Fragment Length Polymorphism AFLP (Vos et al. 1995). Very little AFLP variation was 

observed even though primer combinations with only two selective nucleotides also were 

tested. The final AFLP dataset included 34 polymorphic markers and reproducibility was very 

high (99.16%). To visualize the main structure in the data, Principal Coordinate Analysis 

(PCoA) was conducted and a neighbor-joining tree was produced using PAUP* 4.0b10 

(Swofford 2002). For details, see paper I. 

 

5.3 Phylogenetic analysis in Cardamine nipponica and its relatives 

A previous phylogenetic study revealed a robust sister relationship between the Japanese 

alpine endemic Cardamine nipponica and C. bellidifolia based on internal transcribed spacer 

(ITS) sequences and 10 nuclear genes (Ikeda et al. 2012). Among other material, this study 

used collections of C. bellidifolia initially gathered for crossing experiments (paper I). The 

study in paper III takes advantage of this previously demonstrated sister relationship in order 

to unravel the evolutionary history of a photoreceptor gene; phytochrome E (PHYE), 

determining whether standing genetic variation or newly accumulated mutations were 

involved in the selective differentiation of PHYE. Plants are highly dependent on being able to 

adapt to surrounding climatic conditions such as changes in temperature, aridity, and day 

length, and natural selection acting on traits that respond to such changes has likely played an 

important role in plant evolution. Accordingly, several studies have focused on photoreceptor 

genes such as phytochromes, which sense red and far-red light. PHYE is particularly 

important for germination and flowering at low temperature conditions (Halliday and 

Whitelam 2003, Heschel et al. 2007). Cardamine nipponica grows at high altitudes ranging 

from 2000-3000 m and is exposed to cool temperatures, suggesting an important role for the 

PHYE. Ikeda et al. (2009) reported that alleles of PHYE were highly diverged in populations 

from northern and central Japan, a pattern congruent with other Japanese plant species (e.g. 
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Fujii and Senni 2006, Ikeda et al. 2008b, a). The previous studies focused on intraspecific 

variation only, leaving the question of whether standing genetic variation or newly 

accumulated mutations formed the basis for the presented divergence between northern and 

central populations unanswered. The present study aims to determine the divergence history 

of the PHYE alleles in C. nipponica, investigating the importance of standing genetic 

variation in relation to genetic differentiation following Pleistocene climatic oscillations. 

 Cardamine nipponica was analyzed together with its close relatives C. bellidifolia, C. 

alpina, C. residifolia, and C. glauca was used as outgroup. The entire PHYE gene was 

sequenced, along with two additional phytochromes (used as reference loci); phytochrome A 

(PHYA) and cryptochrome 1 (CRY1), and added to previously published sequences of C. 

nipponica and C. resedifolia (Ikeda et al. 2009, 2011). The genealogical relationships for each 

gene were estimated using maximum likelihood models and implemented in TREEFINDER 

(Jobb et al. 2004). To confirm the significance of the obtained topology, the Approximately 

Unbiased (AU) test (Shimodaira and Hasegawa 1999) was conducted testing three alternative 

topologies (paper I). To examine non-neutral divergence for PHYE in C. nipponica, likelihood 

analysis was conducted based on the ratio of nonsynonymous to synonymous substitutions 

(dN / dS) using CODEML in PAML4.0 (Yang 2007). 

  

5.4 Linkage mapping and QTL analysis in Draba nivalis 

To investigate the impact of cytonuclear incompatibilities on reproductive isolation in D. 

nivalis, the aim was to raise a new mapping population, by crossing the same individuals as in 

Skrede et al. (2008b), but in the opposite direction (i.e. reciprocal cross). Furthermore, the 

strategy to characterize speciation loci was to increase the density of the linkage map 

produced in the previous study (Skrede et al. 2008b) genotyping reciprocal F2 populations 

with additional genetic markers. To compare traits on reciprocal F2 populations, quantitative 

trait loci (QTL) analysis would be conducted, further taking advantage of D. nivalis being a 

close phylogenetic relative to model plant species such as Arabidopsis spp. and Brassica spp. 

Investigating relatives in an evolutionary perspective offers ample opportunities to share 

knowledge and molecular tools (Mitchell-Olds 2001, Schranz et al. 2007). It is suggested that 

the compact genome of Arabidopsis thaliana (L.) Heynh. and its chromosome number n = 5 

are derived characters that evolved from close relatives (Schranz et al. 2006). It is likely that n 

= 8 is the ancestral chromosome number for the tribe Camelinae, to which Arabidopsis 
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belongs, and also potentially for most of the Brassicaceae. Integrating the search of co-linear 

portions of chromosomes across Brassicaceae into the concept of an ancestral genome with n 

= 8, Schranz et al. (2006) proposed a set of 24 conserved genomic blocks (Brassicaceae 

Building Blocks; BBB) that are mainly reshuffled to produce the different Brassicaceae 

genomes. This new paradigm represents an important step towards a unified comparative 

genomic system across the Brassicaceae. Using this genomic block system in a physical 

mapping context, (Schranz et al. 2007) demonstrated that the Boechera stricta Graham 

genome (n = 7) evolved from the ancestral genome (n = 8).  

By comparing the D. nivalis genome with the ancestral Brassicaceae genome the aim 

was to reconstruct the Draba genome evolution. Furthermore, since BBB-markers have been 

shown to be conserved and co-linear among Brassicaceae species, QTL characterization with 

such markers of known location in the Arabidopsis genome would provide outstanding 

information about their location and putative content, and would allow specific focus for 

investigation on candidate portions of the Draba genome. In addition to the BBB-markers, 

AFLPs and Sequence-Specific Amplification Polymorphism (SSAPs, specifically marking 

insertions of Transposable Elements (TEs, Syed and Flavell 2006) would further increase the 

map density. SSAPs are typically more polymorphic than AFLPs and would possibly 

determine whether or not TEs are involved in the origin of sterility barriers in D. nivalis. 

Three particular TEs showing evidence of recent transpositional activity in Brassicaceae were 

chosen; TRIM-Br, SB2 and AtC10 (paper II). 

 Performing linkage mapping on reciprocal F2 populations, including this wide variety 

of genetic markers (i.e. microsatellites, BBB-markers, AFLPs, SSAPs), followed by QTL 

analysis of fertility traits such as seed set, pollen fertility, and number of flowers, should 

result in a dense QTL map. However, finding markers polymorphic between the two parental 

lineages proved very difficult. Initial analyses of the BBB- markers were very promising and 

amplification in the available F2 population was successful: 25% of the initial screening of 

300 markers (primers provided by Eric Schranz, Amsterdam) amplified well. To test for 

polymorphism, the markers that amplified well in the F2 population were sequenced for the 

two parental lineages, but no polymorphism was observed. Thus the BBB-markers had to be 

excluded from further analyses. Unfortunately, the raising of a reciprocal F2 population also 

failed. 

Difficulties in finding polymorphic markers were encountered for the AFLPs and 

SSAPs as well, but after screening 72 AFLP and 36 SSAP primer combinations in eight 
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individuals (i.e. the two parents, three F1 hybrids and three F2 hybrids), 13 AFLP and seven 

SSAP of the most informative primer combinations were chosen for further analysis. Together 

with the microsatellites, a total of 128 loci were genotyped in 359 F2 individuals (Paper II). 

Markers presenting high transmission ratio distortion (TRD) were removed prior to linkage 

analysis as they might hinder accurate estimation of the genomic location and effects of 

QTLs. The linkage map was produced by pairwise linkage of estimated recombination 

fraction and minimum LOD (Logarithm of Odds) score, i.e. two markers were placed in the 

same linkage group if the estimated recombination fraction was  0.35 and LOD score  5, 

retained the marker order associated with a maximized likelihood score (error probability 

0.01) and minimized number of crossover events.  

QTL analyses identify loci that are linked to genes underlying traits. Composite 

interval mapping of the four phenotypic traits (i.e. pollen fertility, seed set, flowering time and 

number of flowers) was performed in R/qtl (Broman et al. 2003). Combining codominant 

(microsatellites) and dominant markers (AFLPs and SSAPs) allow genotypes of dominant 

markers to be inferred using the information from the codominant markers (i.e., Hidden 

Markov models (HMMs) estimated QTL genotype probabilities as a function of the genotypes 

at the nearest markers, assuming no crossover interference). A genome-wide LOD 

significance threshold for each trait was assessed with 1000 permutations (alpha=0.05).  

The previous study (Skrede et al. 2008b) suggested that structural chromosomal 

rearrangements might have contributed to the rapid build up of reproductive isolation in this 

system. If chromosomal rearrangements were responsible for reproductive isolation, then 

genome duplication could restore the fertility, as two identical copies of one chromosome are 

produced. Thus, experiments to double the chromosome set of F1 hybrids by treating 

seedlings with colchicine (that induces genome duplication) was conducted. The F1 seedlings 

were exposed to colchicine in many different concentrations and for variable periods of time, 

but unfortunately either died, or their genomes had not been doubled (ploidy level was 

investigated based on flow cytometry). Comparative chromosomal painting to highlight 

chromosomal changes was also attempted, in collaboration with Martin Lysak and Terezie 

Mandakova at the Masaryk University, Czech Republic, but without success.  
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6. RESULTS 
 

6.1 Crossing experiments 

The parental plants of all species were (with a few exceptions) fully fertile (Fig. 3). In total, 

742 F1 hybrids were analysed for pollen fertility and 709 F1 hybrids for seed fertility. The 

within-population crosses as well as the Svalbard-population crosses generated highly fertile 

F1 hybrids in all species, except for a few F1 hybrids in Cochlearia groenlandica that showed 

reduced seed fertility, and a few F1 hybrids in Saxifraga hyperborea that showed highly 

reduced pollen and seed fertility. Both the within-region crosses (Alaska/Yukon crosses) and 

the between-region crosses in all selfing species mainly generated F1 hybrids with pollen and 

seed fertility that was strongly reduced compared to parental plants. In the single outcrossing 

species, Silene acaulis, highly fertile F1 hybrids were generated from the within-population 

crosses, the Svalbard-population crosses, and the between-region crosses (Fig. 3).  

In Cardamine bellidifolia, 63 crosses were successful, and 238 F1 hybrids were 

analysed for pollen fertility and 236 F1 hybrids for seed fertility. The within-population 

crosses and the Svalbard-population crosses resulted in F1 hybrids almost as fertile as the 

parental plants (mean pollen fertility 78-85%, mean seed fertility 82-85%). All within- and 

between-region crosses resulted in F1 hybrids with strongly reduced pollen and seed fertility 

(mean pollen fertility 7-15%, mean seed fertility 7-8%). The reciprocal crosses resulted in 

similar hybrid fertility. In this species, not only the fertility but also the quantity of the pollen 

was reduced in the F1 hybrids (Fig. 4). In addition, the fruit set was also reduced (Fig. 4).  
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Figure 3. Fertility data for parental plants and intraspecific F1 hybrids in Cardamine 

bellidifolia, Cochlearia groenlandica, Saxifraga hyperborea, Ranunculus pygmaeus, Silene 

uralensis and S. acaulis. Fertility was estimated as % fully stainable pollen grains (out of ca. 

200 pollen grains) and as % developed seeds after spontaneous selfing, relative to total 

number of ovules. 
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Figure 4. Pollen and fruit production in F1 hybrids of Cardamine bellidifolia. A and C shows 

pollen and fruit from a fertile F1 hybrid generated from a within-population cross (Alaska). B 

and D shows pollen and fruit from a sterile F1 hybrid generated from a between-region cross 

(Alaska-Svalbard). POTO: Ulla Schildt (inflorescence in C, D) and Karsten Sund (A, B and fruit in C, D) 
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 In Cochlearia groenlandica, 55 crosses were successful, and 253 F1 hybrids were 

analysed for pollen fertility and 252 F1 hybrids for seed fertility (Fig. 3). The within-

population crosses and the Svalbard-population crosses resulted mostly in F1 hybrids with 

similar fertility as the parental plants (mean pollen fertility 92-95%, mean seed fertility 73-

69%). The within- and between-region crosses resulted in F1 hybrids with reduced fertility, in 

particular seed fertility (mean pollen fertility 79-60%, seed fertility 38-18%). The reciprocal 

crosses resulted in similar hybrid fertility. 

 In Saxifraga hyperborea, 48 crosses were successful, and 142 F1 hybrids were 

analysed for pollen fertility and 141 F1 hybrids for seed fertility (Fig. 3). Both the within-

population crosses and the Svalbard population crosses resulted primarily in fully fertile F1 

hybrids, although a handful of hybrids had strongly reduced pollen and seed fertility (mean 

pollen fertility 88-44%, mean seed fertility 80-34%). The within- and between-region crosses 

resulted in F1 hybrids with reduced fertility (mean pollen fertility 38-22%, seed fertility 32-

21%). All reciprocal crosses except for one cross in population 23 resulted in similar hybrid 

fertility. 

 In Ranunculus pygmaeus, 17 crosses were successful and 60 F1 hybrids were analysed 

for pollen and seed fertility (Fig. 3). No within-population crosses or Svalbard-population 

crosses were successful. Most within- and between-region crosses resulted in F1 hybrids with 

reduced fertility (mean pollen fertility 33-37%, seed fertility 32-36%). No reciprocal crosses 

were successful in this species. 

 In Silene uralensis, only one cross was successful and 14 F1 hybrids were analysed for 

pollen and seed fertility (Fig. 3). The between-region cross generated completely sterile F1 

hybrids (mean pollen and seed fertility 0%).   

 In Silene acaulis, 17 crosses were successful, and 33 F1 hybrids were analysed for 

pollen fertility and six F1 hybrids for seed fertility (Fig.3). The within-population crosses, the 

Svalbard-population crosses and the between-region crosses generated highly fertile F1 

hybrids (mean pollen fertility 85-97%). Seed fertility was only tested for a few between-

region crosses (mean seed fertility 70%). No reciprocal crosses were performed.  

 

6.2 Molecular analysis of Cardamine bellidifolia 

Consistent with Ikeda et al. (2012), C. bellidifolia was resolved as sister to the Japanese alpine 

endemic C. nipponica (paper I). The Maximum likelihood (ML) tree had poor resolution, 
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however, with virtually no geographic structure observed within C. bellidifolia, presenting 

plants from Alaska and Svalbard intermingled in the tree (paper I). 

 In the isolation with migration (IM) analyses the estimated demographic parameters 

for each pair of regions were consistent among three independent replicates and an 

unambiguous peak of posterior probability was obtained for each parameter. Divergence 

between Alaska and Svalbard was estimated to be most recent (2600 yr. before present [BP], 

95% HPD (Highest Posterior Density) 0 - 35600 yr. BP), while divergence between Alaska 

and Scandinavia was estimated as the oldest (22000 yr. BP, 95% HPD 3000 - 186600 yr. BP). 

Although the HDP intervals were quite large, divergence among the contemporary 

populations of C. bellidifolia across the entire circumpolar region seems to have occurred 

during the last glacial cycle, possibly even after the last glaciation. 

In the *BEAST analysis, the oldest divergence was estimated between Scandinavia 

(Norway) and the other regions (Svalbard, Alaska and Yukon; 38800 yr. BP, 95% HPD = 

14800-59600 yr. BP). The most recent divergence was inferred between Yukon and Alaska, 

but this estimate was not significant due to poor geographic structure within C. bellidifolia in 

the gene trees. 

 

6.3 Molecular analysis of Ranunculus pygmaeus 

Very little genetic variation was observed in Ranunculus pygmaeus. The final AFLP dataset 

included only 34 polymorphic markers despite the large number (41) of primer combinations 

initially tested. The reproducibility was very high (99.16%). Virtually no variation was 

observed in the northern North Atlantic area (Scandinavia, Svalbard and Greenland). The 

neighbour-joining tree revealed two major groups: one Central European group consisting of 

the populations from the Alps and the Tatra Mountains, and one arctic group (paper I). The 

arctic group obtained 90% bootstrap support but virtually no support for internal branches. 

The PCoA plot revealed some geographic structure that was largely consistent with the NJ 

tree, with the Central European and Russian Taymyr populations placed at one extreme of the 

first axis and the Scandinavian/Svalbard/Greenland populations at the other extreme of the 

axis (paper I).  
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6.4 Phylogenetic analysis in Cardamine nipponica and its relatives 

The lengths of the aligned sequences of CRY1, PHYA, and PHYE were 2,247-2,304 bp, 3,691-

3,720 bp and 3,623-3,671 bp, respectively (paper III). The ML trees revealed monophyly for 

all three genes for the northern Japanese populations of C. nipponica, as well as for PHYA and 

PHYE in central Japanese populations. Among these photoreceptor genes, no alleles were 

shared between northern and southern populations of C. nipponica. In the CRY1 and PHYA 

trees, C. nipponica was retrieved as monophyletic (i.e. including both central and northern 

populations). In contrast to PHYA and CRY1, PHYE resolved northern populations of C. 

nipponica together with C. bellidifolia as sister to the central populations of C. nipponica. The 

likelihood ratio tests examining non-neutral divergence for PHYE indicated that positive 

selection had been involved in amino acid replacements accumulating on the basal branches 

of C. nipponica and C. bellidifolia.  

 

6.5 Linkage mapping and QTL analysis in Draba nivalis 

A total of 128 loci were genotyped in 359 F2 individuals. Twenty-nine markers (22.6%) were 

excluded from the map construction because of TRD. The final map (see paper II) was 

constructed using 94 markers (31 microsatellites, 52 AFLPs and 11 SSAPs), with a total map 

length of 894 cM, forming eight linkage groups (LG1-LG8) that most likely correspond to the 

eight chromosomes of D. nivalis. A total of 14 significant QTLs were detected, of which four 

were associated with pollen fertility, three with seed set, three with flowering time and four 

with number of flowers. 

Pollen fertility QTLs were detected on LG2, LG3, LG4 and LG7 and showed 

considerable variation in gene action (as assessed based on the marker closest to the LOD 

peak). This includes intermediate dominance (LG2; marker AFLP41), additivity (LG3; 

marker D11), dominance (LG4; AtC10_7), and underdominance (LG7; AtC10_17; Fig. 5). 

The maternal allele was dominant to the paternal allele for the QTLs on LG2 and LG4. Seed 

set QTLs were detected on LG1, LG2 and LG7. All three QTLs were underdominant (marker 

closest to LOD peak on LG1; AFLP21, LG2; A214, LG7; AtC10_17; Fig. 5). Flowering time 

QTLs were detected on LG2, LG4 and LG5. The QTLs on LG2 and LG4 had intermediate 

dominance effects (marker closest to LOD peak; AFLP33 and AFLP69 respectively), whereas 

the QTL on LG5 displayed additive gene action (marker closest to LOD peak; AFLP5; Fig. 

5). Number of flower QTLs were detected on LG2, LG3 and LG5. The QTLs on LG2, LG5, 
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and LG7 had additive effects, whereas for the LG3 QTL, the paternal allele was dominant to 

the maternal allele (Fig. 5).  

 

 
 

Figure 5. Effect plots for fertility QTLs as assessed based on the marker closest to the LOD 

peak for each trait. AA is homozygote for the maternal allele and BB is homozygote for the 

paternal allele.   
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7. DISCUSSION 
 

The present study proposes that the formation of cryptic biological species is a general pattern 

in the arctic flora, and indicate that hybrid incompatibilities arise very rapidly, even at small 

spatial scales, suggesting high speciation rates in the arctic flora. All five selfing species 

investigated produced sterile or semisterile hybrids whereas hybrids from the one outcrossing 

species were fully fertile, further suggesting that a selfing mating system appears to accelerate 

accumulation of hybrid incompatibilities.  

Highlighting the importance of both nuclear-nuclear interactions and structural 

chromosomal changes, the present study suggests that multiple genetic mechanisms are 

involved in the rapid build-up of reproductive isolation in Draba nivalis. All traits associated 

with seed fertility and one pollen fertility QTL demonstrated underdominant effects. The 

selfing mating system of this species may be an important factor in the fixation of 

chromosomal changes, which in addition is the main reproductive mode of many arctic 

diploid plants.  

The major advance in paper III was that the evolutionary origin of intra-specific 

divergence in the Japanese endemic Cardamine nipponica was elucidated. The differentiation 

of PHYE between northern and southern populations of C. nipponica was most likely inferred 

from alleles under natural selection that diverged prior to speciation, i.e. in the ancestor of C. 

nipponica and C. bellidifolia.  

 

7.1 Cryptic speciation in the Arctic 

Despite the full fertility of parental populations, all selfing species mainly produced sterile or 

semisterile F1 hybrids on the circumpolar scale, usually also at the regional scale 

(Alaska/Yukon), and mostly fertile F1 hybrids at the local scale. These results are based on 

large data sets (>200 crosses and >750 F1 hybrids), and include many populations both at 

local, regional and circumpolar scale, indicating that numerous cross-incompatible cryptic 

biological species have developed within single taxonomic arctic plant species. In total, 98% 

of the crosses between geographic regions and 96% of the crosses between sites in the 

Alaska/Yukon region produced sterile or semisterile hybrids. The one outcrossing species 

generated highly fertile hybrids both at the local and circumpolar scale. No apparent 

morphological or ecological differences between the populations that were isolated by 

postzygotic reproductive barriers were found. Thus, supporting previous work (Grundt et al. 
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2006) suggesting that a selfing mating system may accelerate the accumulation of hybrid 

incompatibilities both by reducing gene flow between diverging lineages, and by increasing 

the fixation rate of hybrid incompatibilities, possibly via genetic drift.  

In the two selfing species investigated for genetic diversity (Cardamine bellidifolia 

and Ranunculus pygmaeus), investigated populations were genetically very similar in spite of 

being more or less reproductively isolated. Molecular analysis of C. bellidifolia suggests a 

very recent divergence, possibly after the last glaciation. This implies that hybrid 

incompatibilities have arisen very rapidly, even among closely related populations. 

Accordingly, the present study not only show that intrinsic postzygotic isolation has 

developed multiple times and at small geographic scales within single named taxonomic 

species, but also that postzygotic isolation may develop very rapidly, apparently within a few 

millennia.  

The arctic flora is one of the most polyploid-rich floras on earth, with many species 

formed via reticulate rather than divergent evolution (Brochmann et al. 2004, Brochmann and 

Brysting 2008, Brochmann et al. 2013). This type of speciation occurs via hybridization and 

genome doubling and may take only a single or a few generations for completion. The present 

study provides additional evidence that rapid speciation may also take place via divergent 

evolution in arctic diploid plants, extending the previous finding of cryptic biological 

speciation events in the three Draba species (Brochmann et al. 1993, Grundt et al. 2006, 

Skrede et al. 2008a) to other genera and plant families. 

The results obtained in this study indicate that speciation rates are surprisingly high in 

the arctic flora, suggesting that other factors should account for the low species diversity in 

the Arctic. It is tempting to suggest that high extinction rates, rather than low speciation rates, 

possibly related to Pleistocene climatic oscillations, account for the present low species 

diversity. Results presented here are in agreement with those obtained for New World birds 

and mammals (Weir and Schluter 2007) that, based on birth-death models, suggest that both 

speciation and extinction rates increase at higher latitudes. There are not many studies on how 

extinction rates vary with latitude and quantifying extinction rates is problematic (Dowle et al. 

2013). However, a study investigating marine bivalve genera based on fossil data over the 

past 11 million years indicate higher extinction rates at higher latitudes (Jablonski et al. 2006).  

The origin of the latitudinal diversity gradient has long been the subject of lively 

discussions and many different hypotheses have been proposed. While a generally accepted 

explanation for the latitudinal diversity gradient remains elusive (Mittelbach et al. 2007), 
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ecologists have speculated that elevated temperatures may influence speciation rates via 

higher mutation rates, shorter generation times and/or faster physiological processes (Davies 

et al. 2004a, Davies et al. 2004b, Wright et al. 2006, Rohde 2013). However, changes in 

diversification rates could result from variation in both speciation and extinction rates. Many 

estimates of tropical diversity are based on net diversification, which could result from 

differences in either speciation and/or extinction rates (Mittelbach et al. 2007), highlighting 

the importance of studies incorporating both factors, such as the study of New World birds 

and mammals by Weir and Schluter (2007). 

 

7.2 Reproductive isolation in Draba nivalis 

The genetic linkage map is based on robust linkage analysis combining 99 codominant and 

dominant markers, resolving eight linkage groups, possibly corresponding to the eight 

chromosomes of D. nivalis (2n=16).  

The higher fitness of selfed F2 hybrids as compared to F1 hybrids, as well as the 

mapping of underdominant QTLs for pollen fertility and seed set, suggest the importance of 

chromosomal rearrangements in the build-up of reproductive isolation (RI) in this system. In 

particular, the underdominant seed set QTLs detected on LG1, LG2 and LG7 are consistent 

with multiple restructuring events among lineages, promoting RI in D. nivalis following 

chromosomal models of speciation. These results are congruent with the previous study of 

Skrede et al. (2008b) that also highlight the importance of chromosomal speciation in this 

system. Only a few recent studies have examined the processes underlying the fixation of 

chromosomal rearrangements among plant lineages and their impact on RI. Adaptive QTLs 

underlying prezygotic isolation between Mimulus lewisii and M. cardinalis mapped to regions 

of suppressed recombination corresponding to reciprocal translocations and inversions, 

suggest that chromosomal rearrangements have a crucial impact on the build-up of RI 

(Fishman et al. 2013). Other studies indicate that selection may drive the fixation of 

chromosomal rearrangements and thus lead to chromosomal speciation (Rieseberg 2001, Faria 

and Navarro 2010, Lowry and Willis 2010, Glemin and Ronfort 2013). No morphological or 

ecological differentiation between the populations in D. nivalis was observed, suggesting that 

selection has not been a primary force in the build-up of RI in this system.  

Earlier studies suggest an important role of genetic drift in speciation (Wright 1941, 

Mayr 1963, Key 1968, Grant 1971), but theoretical studies in the latter part of the 20th century 
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imply that fixation of chromosomal rearrangements by genetic drift was unlikely to 

effectively drive RI (Hedrick 1981, Walsh 1982). The probability of maintaining 

chromosomal rearrangements with large underdominant effects was shown to be extremely 

low, except in very small, inbred populations, leading to a broad consensus that BDM 

incompatibilities predominate over chromosomal rearrangements in the origin of intrinsic 

postzygotic isolation (Orr et al. 2004).  

Draba nivalis is a predominantly self-fertililizing plant (Brochmann and Steen 1999). 

Populations examined here have in addition a small effective population size, with low levels 

of molecular diversity, that most likely have experienced repeated periods of extinction and 

recolonization events during the Pleistocene climatic oscillations (Grundt et al. 2004). These 

are all characteristics that may promote establishment of chromosomal rearrangements 

(Hedrick 1981, Walsh 1982, Lande 1985, Levin 2002, Gavrilets 2004). The predominantly 

selfing strategy of D. nivalis most likely contributed to the rapid build up of RI, possibly by 

reducing gene flow and effective recombination between populations. Despite recent 

speciation literature that emphasize the importance of BDM incompatibilities (Coyne and Orr 

2004), chromosomal speciation may very well be more important in highly selfing plants such 

as the majority of arctic diploid plants. 

The two QTLs on LG7 (i.e. near AtC10_17) showing underdominant effects for both 

pollen fertility and seed set, were associated with a polymorphic insertion of the 5000 bp LTR 

retrotransposon AtC10. Previous work has shown that retrotransposons may contribute 

significantly to genome evolution (Kidwell and Lisch 2001, Bennetzen 2005, Biemont and 

Vieira 2006). However, plant genomes usually contain hundreds of such insertions (Wicker et 

al. 2007, Gaut and Ross-Ibarra 2008) and QTLs may map to such intervals without any 

significant effect on focal phenotypes. The association revealed here is, however, not 

necessarily coincidental. Polymorphic insertions may indeed modify local recombination rates 

by disrupting co-linearity and/or inducing heterochromatinization (Dooner and He 2008, 

Colome-Tatche et al. 2012, Melamed-Bessudo and Levy 2012). Accordingly, such 

microchromosomal change or the resulting linkage between previously segregating BDM loci 

would behave as an underdominant locus (Hoffmann and Rieseberg 2008) without the 

involvement of disproportionately strong genetic drift for their fixation (Rieseberg 2001, 

Levin 2002).  

BDM incompatibilities is largely favoured over chromosomal rearrangements as they 

account for the accumulation of genetic incompatibilities among isolated populations, without 
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loss of fitness (Rieseberg and Willis 2007, Lexer and Widmer 2008). The present study also 

shows evidence of nuclear-nuclear incompatibilities. QTLs underlying pollen fertility 

displayed additive to dominant effects in addition to underdominance. In contrast to Skrede et 

al. (2008b) and other studies suggesting the importance of cytonuclear incompatibilities in RI 

(Lowry et al. 2008, Leppälä and Savolainen 2011), maternal alleles for pollen QTLs were not 

consistently associated with higher fertility. Maternal alleles were indeed associated with 

increased fertility in F2 hybrids for the QTL on LG3 (i.e. near D11) and LG4 (i.e. near 

AtC10_7), but the QTL on LG2 (i.e. near AFLP41) showed the opposite pattern and most 

likely represents a nuclear-nuclear BDM incompatibility. This is consistent with the 

importance of BDM incompatibilities in the evolution of new species (Coyne and Orr 2004, 

Rieseberg and Willis 2007).  

 

7.3 Evolutionary history of PHYE in Cardamine nipponica  

The genealogical analysis of PHYE in C. nipponica and its close relatives revealed that the 

northern populations of C. nipponica formed a monophyletic group together with those of C. 

bellidifolia, whereas the alleles observed in the central populations of C. nipponica formed a 

monophyletic sister group. This paraphyletic relationship of PHYE is discordant with the 

previously demonstrated monophyly of C. nipponica based on ten nuclear loci (Ikeda et al. 

2012). The reference loci PHYA and CRY1, supported populations of C. nipponica as 

monophyletic, even though CRY1 did not differentiate between northern and southern 

populations. Furthermore, the topology constraining paraphyly of northern and central 

Japanese populations of C. nipponica was significantly rejected both for CRY1 and PHYA as 

well as for the concatenated data of the eight nuclear genes. Accordingly, the paraphyletic 

relationships among the PHYE alleles in C. nipponica likely represent the gene specific 

evolutionary history, suggesting divergence prior to speciation, i.e. in the ancestor of C. 

nipponica and C. bellidifolia. It is also possible that introgression occurred after speciation. 

However, the genealogy of PHYE showed reciprocal monophyly of the northern Japanese 

clade of C. nipponica and C. bellidifolia, without sharing any alleles. In addition, the 

speciation history of C. nipponica and C. bellidifolia indicated that gene flow after speciation 

occurred solely from the former to the latter (Ikeda et al. 2012). It is therefore unlikely that the 

present genetic similarity at PHYE between C. bellidifolia and northern Japanese populations 

of C. nipponica is the result of introgression. 
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 Tests of natural selection significantly supported the model assuming positive 

selection on the divergence of central Japanese populations of C. nipponica, northern 

Japanese populations of C. nipponica and C. bellidifolia. This indicates that positive selection 

was involved in the divergence of PHYE in the ancestral species, potentially reflecting 

functional differences that could be involved in adaptation. For instance, the photoperiod in 

the growing season is different between northern and central Japan (~0.5-1 hour in the 

summer). Cardamine bellidifolia grows in habitats with longer photoperiod and at higher 

latitudes as compared to C. nipponica. This suggests that selection in regard to different 

photoperiods may have been important in the divergence of PHYE. Previous studies have 

indeed shown that natural variation in phytochromes is associated with latitudinal clines of 

ecologically important traits such as flowering time (Balasubramanian et al. 2006) and timing 

of bud-set (Ingvarsson et al. 2008). The involvement of PHYE in local adaptation to 

environmental changes along latitudes has also been suggested for another alpine plant, 

Arcterica nana (Maxim.) Makino (Ikeda and Setoguchi 2010). Thus, PHYE probably played 

an important role in local adaptation of northern and central populations of C. nipponica, 

resulting in the present genetic differentiation. 

Although genetic drift following climate oscillations also might have been important in 

inducing the observed genetic differentiation of PHYE between northern and central 

populations of C. nipponica, natural selection was most likely important for shaping the 

extant differentiation. Because local or temporal adaptation following climate change requires 

immediate response to the changing environment, standing genetic variation would contribute 

more to adaptation than newly accumulated mutations. The present study suggests that 

standing genetic variation of PHYE, which diverged under positive selection prior to 

speciation, resulted in the selective differentiation between the northern and central Japanese 

populations of C. nipponica, further suggesting the importance of standing genetic variation 

in regard to quick responses to climate changes. 

 

7.4 Strengths and limitations 

The conclusions in paper I are based on results from a very large data set, and present direct 

evidence of reproductive isolation within several phylogenetically distantly related plant 

species. This is contrary to many other studies that only rely on indirect measurements of 

reproductive isolation using molecular methods. In addition, including results from one 
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predominant outcrossing species allowed interpretations of underlying evolutionary forces 

(such as drift and selection). In paper II the linkage map and following QTL-analysis of the F2 

population in Draba nivalis was conducted using a large set of markers, a large F2 population 

and performed using solid analytical tools. The resulting eight linkage groups likely represent 

the eight chromosomes of D. nivalis suggesting that substantial parts of the genome have been 

covered. Combining both codominant and dominant markers allowed genotypes of the 

dominant markers to be inferred, generating more information from the dominant markers 

than otherwise possible. In addition, the present map was constructed after removing distorted 

markers, enabling a more accurate estimation of the genomic location and effects of QTLs as 

compared to the previous published map (Skrede et al. 2008b). In paper III the major advance 

was that the evolutionary origin of intra-specific divergence in Cardamine nipponica was 

elucidated. The present study revealed that the selective divergence in the photoreceptor gene 

PHYE, was inferred from ancestral polymorphisms. Previous works on population genetics 

found evidence for natural selection within species, but did little to clarify its evolutionary 

origin i.e., ancestral polymorphisms or newly accumulated mutations.  

A major limitation in paper I was that no direct calculations of speciation rates were 

conducted. Furthermore, no direct estimates of extinction rates could be performed to test the 

hypothesis of high extinction rates (in addition to high speciation rates). A selfing mating 

system appeared to aid the accumulation of hybrid incompatibilities, with the outcrossing 

species investigated presenting fully fertile F1 hybrids. However, results were only obtained 

from one outcrossing species (due to difficulties with cultivation and crossing experiments of 

the other outcrossing species initially collected). No obvious morphological differences were 

observed for the different populations showing hybrid incompatibilities, but no morphometric 

analysis was conducted to provide firm evidence of this. A major limitation in paper II was 

that no mapping of parental populations was conducted. The probable involvement of 

chromosomal rearrangements in the evolution of hybrid incompatibilities in this system could 

have been corroborated if the genetics of parental lineages were known. In addition, genome 

duplication and chromosomal painting could have shown the importance of chromosomal 

rearrangements. However these experiments failed. Difficulties with finding polymorphisms 

between the parents limited the number of markers included in the genetic linkage mapping. 

With more markers, the Draba genome could have been covered even further. A primary aim 

was to produce a reciprocal mapping population to compare traits between them, and possibly 

elucidate the involvement of cytonuclear incompatibilities. Unfortunately this failed, leaving 
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the question of the importance of cytonuclear incompatibilities largely unanswered. In paper 

III it would have been interesting to include studies on the functions of PHYE alleles and 

confirm their ecological and evolutionary importance, but no such studies were conducted. 
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8. PERSPECTIVES 

The presence of numerous cryptic biological species in the Arctic strongly calls for further 

studies. Could the same pattern be found in other regions with similar climatic conditions, or 

perhaps in other systems with many selfing species or even in other organism groups? Arctic 

regions are characterized by low temperatures, short growing seasons, and drought. 

Traditionally, these extreme environmental constraints, especially low temperatures, have 

been postulated to cause very low evolutionary rates in the arctic ecosystem. The present 

study contradicts this view, suggesting that speciation rates are in fact exceptionally high. 

Crossing experiments for other areas with similar climatic conditions, such as mountainous 

regions, should be conducted to investigate if evolutionary rates are in fact high in these 

regions as well. 

 Selfing is the main reproduction mode for a large proportion of the arctic flora. The 

present study suggests that a selfing mating system facilitates the accumulation of hybrid 

incompatibilities. All selfing species generated fully sterile or semisterile F1 hybrids, in 

contrast to the one outcrossing species that generated fully fertile F1 hybrids. Including more 

species with contrasting reproductive modes would enable better generalizations. To see 

whether similar patterns are observed in other regions containing large proportions of selfing 

species, it would further be interesting to perform crossing experiments in other areas where 

selfing is a main reproduction mode. One such habitat could be semideserts. 

 The present study does not provide any direct calculations of speciation rates, 

something that definitely should be conducted to confirm that speciation rates are 

exceptionally high in the Arctic. Estimating speciation rates among a wide range of 

populations representing a broad taxonomic sampling will provide generalizations, and such 

analyses are presently being conducted in our group. Providing information about past 

extinction rates would also be very interesting, but harder do perform as data for such 

calculations does not exist. 

Weir and Schluter (2007) suggested that both speciation and extinction rates increase 

at higher latitudes in New World birds and mammals. However, in contrast to the present 

study, the results were based on birth-death models and not empirical crossability data. 

Performing crossing experiments including other organism groups could provide additional 

support for the latitudinal correlation. 

Numerous genetic mechanisms are involved in the rapid accumulation of hybrid 

incompatibilities in Draba nivalis. With the improved access to conducting whole genome 
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sequencing, the parental lineages in this species should be sequenced. This would provide 

information about to what extent chromosomal rearrangements are important in the up-rise of 

reproductive isolation in this system, including the potential involvement of transposable 

elements. Furthermore, genome sequencing of parental lineages would yield additional 

polymorphic markers that could be used in genetic mapping, thereby increasing the coverage 

of the Draba genome even further.  

With the present study more knowledge about the genetic mechanisms involved in the 

evolution of reproductive isolation in Draba nivalis has been gained. Including more species 

in genetic mapping would provide useful comparisons. Cardamine bellidifolia would be an 

interesting candidate. This species clearly demonstrated cross-incompatibilities at large and 

small spatial scales and is a suitable study plant as it is easily cultivated and generating 

reciprocal mapping populations should be feasible.  
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