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Chapter 1

Cosmology and Modified
Gravity

1.1 Introduction

Within cosmology, the study of the overall composition and history of the
universe, we are today in the position of having a well-tested standard
model that agrees with all observations while at the same time relying only
a few adjustable parameters. In this model the universe started out in an
extremely hot and dense state called the Big Bang some 14 billion years
ago. This was followed by a phase of extremely rapid expansion, called
inflation.

During inflation, the size of the universe increased exponentially by at
least a factor of 1025, leaving an almost perfectly flat and smooth universe,
but which contained small fluctuations which were generated by the mag-
nification of quantum fluctuations of the inflaton field(s).

After inflation had ended the universe continued expanding, but much
more slowly, and eventually cooling down enough so that neutral atoms
could form. The latter happened about 370 000 years after the Big Bang,
when the temperature of the universe had fallen to about 3000 K. Forma-
tion of atoms turned the baryon-photon plasma that had filled the universe
until then into a neutral gas, making the universe transparent for the first
time.

From the formation of atoms and until today, the small fluctuations
in the matter fluid grew over time by gravitational collapse to form all
the complex hierarchical system of stars, galaxies, groups of galaxies and
galaxy clusters we today see as a cosmic web of structures.

Over the last century, astrophysical and cosmological observations of
these structures has revealed a lot of what the universe is made of, what the
laws governing its evolution is, revealing many surprises along the way.

The first big discovery came when Edwin Hubble in 1923 discovered

9



10 CHAPTER 1. COSMOLOGY AND MODIFIED GRAVITY

that the recessional velocity of galaxies increases with distance from the
earth [1], implying the expansion of the universe.

Next came the discovery, by Jan Oort and later by Fritz Zwicky in the
1930s [2], that galaxy clusters contains more material than that could be
seen. Later, studies of galaxy rotation curves [3] and velocity dispersions
of galaxies [4] revealed that this missing matter could not be purely bary-
onic (atoms, photons, etc.). There have to be an unknown substance, now
called dark matter, which behaves just like normal baryonic matter under
gravity, but which interacts very weakly with photons so that we cannot
see it directly. Today we believe that around 80% of the matter content of
the universe is in the form of dark matter [5].

In 1964 American radio astronomers Arno Penzias and Robert Wilson
discovered [6], by accident, the cosmological microwave radiation. This
was the first major discovery that was predicted in advance and provided
proof for the Big Bang model. Almost immediately after this discovery,
searches began for anisotropies in the CMB - the signatures of the pri-
mordial fluctuations that grew to form the structures that we see today.
Convincing evidence for a dipole anisotropy was reported in [7], and the
detection of higher-order anisotropies came with the COBE satellite [8] in
1992. The COBE results established the existence of a nearly scale-invariant
spectrum of primordial fluctuations, consistent with the predictions of in-
flationary cosmology. These predictions have later been confirmed by the
much more accurate observations made by the WMAP [9] and Planck [5]
missions.

The last major discovery came in 1997 when studies of supernovae
[10, 11] revealed that the universe was not just expanding, but that the ex-
pansion was speeding up. Since gravity is attractive we would expect the
expansion to be slowing down and in order to have accelerated expansion
within general relativity we need something new. The simplest candidate
which can produce accelerated expansion is vacuum energy and the so-
called cosmological constant: a free parameter in general relativity which
is not fixed by requiring the theory to reduce to newtonian gravity in the
weak field regime. This unknown substance is refereed to as dark energy
[12].

When adding dark matter and dark energy (in the form of a cosmologi-
cal constant) together with inflation into the theory of general relativity we
obtain the standard model of cosmology, the ΛCDM model. This model
in its minimal form has only six free parameters: physical baryon density,
physical dark matter density, dark energy density, scalar spectral index,
curvature fluctuation amplitude and reionization optical depth. ΛCDM is
in excellent agreement with all observations we have made so far, and the
error-bars on the parameters have now become so small that we can talk
about being in the era of precision cosmology.

We know a lot more about the universe today than we did a century
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ago, but the process that has lead us here have revealed many new and
greater challenges like the questions what dark matter, dark energy and
inflaton really is. It could still be that these unknown ingredients reflect
our lack of understanding of the universe and that the seemingly perfect
ΛCDM model needs revision.

In this thesis our focus is on the way gravity works on large distance
scales. By considering modifications of gravity we aim to find novel ways
to test the theory of general relativity on cosmological scales and see if these
new models can share any insight for the challenges we face in cosmology
today. Such studies are important both to strengthen the case for the stan-
dard model or more interestingly to perhaps discover evidence for new
physics.

1.2 Modified Gravity

The first mathematical model for how gravity works, the inverse square
law, was proposed by Issac Newton in 1687. Newton’s law of gravity stood
for over 200 years until Einstein improved upon it by formulating his gen-
eral theory of relativity in 1916. In Einstein’s theory, gravity is no longer a
force, but spacetime is instead curved and matter (energy) acts as the source
for this curvature.

General relativity (GR) was able to explain effects like for example the
bending of light rays around the sun and the perihelion problem of mer-
cury [13], something Newtonian gravity was unable to account for.

For objects like planets and stars, GR basically reduces to Newtonian
gravity and for example in the solar-system the deviation is typically a very
small (of order v2

c2 ∼ ΦN
c2 ∼ 10−8) correction [14]. Thus Newtonian gravity is

an excellent approximation to GR in most situations, the exceptions being
strongly gravitational systems and gravitational lensing.

Since the invention of GR, the theory has been thoroughly tested on
Earth and in the solar-system [14]. Several high precision experiments have
over the last century been able to probe the small post-Newtonian correc-
tions predicted by GR and the theory has been in agreement with all exper-
iments performed so far.

For theories that aim to modify GR at large scales this is a severe chal-
lenge and the result is often that when the theory agrees with solar-system
tests then there is not much left of the theory: it behaves very much like GR
in most situations. If this is the case, then this would imply no modifica-
tions at all for the process of structure formation.

This view has changed over the last decade. It turns out it is possible
for a modified gravity theory to remain hidden in the solar-system, where
most experiments of GR have been performed, while at the same time give
rise to large deviations from GR at cosmological scales. If this is the case
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for a theory we say it possesses a screening mechanism [15].
A screening mechanism is a way of utilizing non-linear effects to hide

the modifications of gravity in regions of high matter density (relative to
the cosmological mean density) like on the Earth and in the solar-system1.

Such a mechanism works by explicitly breaking the super-position prin-
ciple of Newtonian gravity. As this principle follows from linearity of the
field equation, a screening mechanism is necessarily a highly non-linear
phenomenon which makes studies of such theories a challenging topic to
work with.

1.3 Why Modify Gravity?

GR is the simplest theory of a massless spin two field one can construct.
It agrees perfectly with all experiments so far. One might ask why bother
with looking at alternative gravity theories? This is a question that deserves
an answer and I will try to summarize the main motivations we have for
looking at modifications of GR.

First of all, we know from quantum field theory that physics change
with energy (and therefore with distance). GR is only well tested on dis-
tance scales ranging from a few millimeters up to the size of the solar-
system. On cosmological scales, the order of mega parsecs, we don’t yet
know if gravity operates precisely like GR predicts.

Then there are all these open questions in cosmology. As all these prob-
lems are found within the framework of GR it is a real possibility that some
of them can be evaded if a different theory of gravity operates on large
scales.

Next there is the problem of quantum gravity. As today we don’t have
a theory of quantum gravity that works for the energy scales in the early
universe. This is a hint that GR might not be the full story.

On the other side, modified gravity theories can often bring with them
new problems like fine-tuning of parameters, ghosts, tachyons and super-
luminality [16, 17]. For example, the theories we will discuss later on will
in some form or another have fine-tuned parameters. This makes this last
point perhaps the most important one.

Alternative theories can help us find new ways of testing the current
paradigm. When gravity was tested in the solar system, several models (see
e.g. [14] for a comprehensive list) was constructed that were competitors to
GR. As time went on and most of them became ruled out or rendered irrel-
evant, but they served a purpose nonetheless. Instead of testing a theory as
it is, it is often useful to expand the theory space and look at other models.

1The solar-system might seem like an empty space, but it is contained in our galactic
halo which contains dark matter. The average dark matter density in our solar-system is
about a million times the mean density in our universe today.
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These alternative theories will often have distinct signatures, which are not
found in the current theory, and these signatures serves as a smoking gun
for new physics. Therefore studying other candidate theories might help
us find new ways of testing and thereby either strengthening the case for
the current paradigm or finding evidence for new physics.

When it comes to how gravity operates on large distance scales, cur-
rent observations leave a lot of room for deviations from GR. The study of
modified gravity can be seen as a way of expanding the parameter space
around GR, finding observable signatures, and then use observational data
to look for these.

Future large scale structure surveys which will culminate in the Euclid
mission [18] aims to test gravity to percent accuracy on large scales. These
results will largely settle the case for how gravity works on cosmological
scales.

1.4 Modifying Gravity with a scalar field

There are several ways of modifying gravity. The simplest cases involv-
ing a single scalar field and the most general gravitational sector for a
scalar-tensor theory (with second order field equations) was first derived
by Horndeski [19]. It is given by the Horndeski action

S =
∫ √−gdx4 [G2(X,φ)− G3(X,φ)�φ+ G4(X,φ)R

+ G4,X(�φ)2 −φ;μνφ
;μν + G5(X,φ)Gμνφ;μν

−1
6

G5,X

[
(�φ)3 − 3(�φ)φ;μνφ

;μν + 2φ;ν
;μφ

;λ
;νφ

;μ
;λ

]]
+ Sm(gμν ,ψm) (1.1)

where Sm is the matter action, ψm represents the different matter-fields, Gi
are free functions of the scalar field and X = 1

2 (∂φ)
2.

I will in this thesis only consider a sub-class of this action which takes
the simple form

S =
∫

d4x
√−g

(
R
2

M2
Pl −

1
2
(∂φ)2 − V(φ)

)
+ Sm(ψm, g̃(φ)μν) (1.2)

namely a canonical scalar field with some self-interacting potential and
where the dependence of the scalar field on the Ricci scalar have been re-
moved by a conformal transformation so that the metric felt by the matter
fields, g̃μν, is given by

g̃μν = A2(φ)gμν (1.3)
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for some function A(φ). Known examples of theories of this class are the
so-called chameleon/ f (R) gravity [20, 21, 22, 23, 24], symmetron [25] and
the environmental dependent dilaton [26].

We also have the possibility of formulating the theory in terms of the
metric g̃μν. In this formulation, the so-called Jordan frame, one can easily
see that gravity is modified directly from the action: we will no longer
have a Einstein-Hilbert term describing usual gravity and consequently the
Einstein-equation is explicitly modified.

In the Einstein-frame formulation Eq. (1.2) we have that the Einstein-
equation looks very similar to those in pure GR

Gμν =
8πG

3

[
A(φ)Tμν + Tφμν

]
(1.4)

The exception is that we now have an explicit coupling between the matter-
fields and the scalar field on the right hand side.

In the Einstein frame matter no longer moves on geodesics of the metric
gμν (for which the Einstein equations are formulated in terms of) and the
geodesics equation instead reads

ẍμ + Γ
μ
αβ ẋα ẋβ = −d log A

dφ
(∇μφ− ẋμ ẋα∇αφ) (1.5)

In the non-relativistic limit the right hand side corresponds to a fifth-force:

�Fφ = −d log A
dφ

�∇φ. (1.6)

This picture of the theory as GR supplemented by a fifth-force is intuitively
and mathematically much easier to work with than the Jordan-frame for-
mulation and is the chosen formulation in this thesis.

All the particular studies presented in this thesis are of models in the
class Eq. (1.2) discussed above.

1.5 Screening mechanisms

As I mention above, a screening mechanism is crucial to have a modified
gravity theory that agree with local experiments and at the same time pro-
duce deviations from GR on cosmological scales. Too see in more detail
how a screening mechanism might work, I will give a simple example.

We start with the action Eq. (1.2) and take A(φ) = e
βφ

MPl where β is a
dimensionless parameter. The potential does not need to be specified at the
present, but we assume that it is decreasing withφ and that limφ→0 V(φ) =
∞ so that the effective potential (defined below) has a minimum for any
given density ρm.
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Figure 1.1: Illustration of the effective potential. The dashed, dotted and
solid curves are respectively the bare potential V(φ) of the scalar field, the
coupling ρm A(φ) and the total effective potential Veff(φ). Left panel: Large
ambient matter density. Right panel: Small ambient matter density.

The equation of motion for the scalar field is determined by the Klein-
Gordon equation

�φ = V,φ − A,φTm (1.7)

where Tm is the trace of the energy momentum tensor for matter. For non
relativistic matter (dust) we have Tm = −ρm: the matter density. The dy-
namics ofφ is thus determined by an effective potential

Veff = V(φ) + A(φ)ρm (1.8)

which depends on the local matter density, see Fig. (1.1).
Lets consider a static spherical massive object of density ρc and radius

R embedded in a background of homogenous density ρ∞ and look at solu-
tions to the field equation Eq. (1.7). The minimum of the effective potential
inside (outside) the object is denotedφc (φ∞).

If we are in a regime where the field equation can be linearized we easily
obtain the solution2

φ(r) = φ∞ − βρcR2

2MPl

1
r

e−m∞r, r > R (1.9)

2We assume m−1
∞

� R and βφ
MPl

� 1. Thus the scalar field force is assumed to be long
ranged compared to the object in question.
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where m∞ ≡ √
Veff,φφ(φ∞) is the mass of the scalar field in the back-

ground. The fifth-force, Eq. (1.6), on a test-mass outside the object (with
r � m−1

∞
) becomes

�Fφ = 2β2�FGravity (1.10)

Thus for β = O(1) the fifth-force is comparable in strength to ordinary
gravity. For large separations, r � m−1

∞
, the force will be exponentially

suppressed.
The linearization done above is only valid for sufficiently small (mass

and size) objects. For very large objects the linearization breaks down and
one must solve the highly non-linear ODE Eq. (1.7) to find the solution. If a
few constraints are placed on the form of the potential and the coupling we
can show that quite generally [27, 23] there exists a critical solution given
approximately by

φ(r) =
{
φc, r < R
φ∞ − (φ∞ −φc)

R
r e−m∞r, r > R

(1.11)

Defining

ΔR
R

=
|φ∞ −φc|
2βMPlΦN

(1.12)

where ΦN is the Newtonian potential for the massive object, we find that
the fifth-force on a test mass outside our massive object is now

�Fφ = 2β2
(
ΔR
R

)
�FGravity (1.13)

It is thus suppressed by a factor ΔR
R ∝ 1

ΦN
compared to the linear, un-

screened, case. The more massive the object, the greater the gravitational
potential ΦN is and the more screened it becomes. The critical solution is
valid as long as the suppression factor ΔR

R � 1.
Physically one can explain this effect by looking at perturbations to the

exterior field when we increase the mass of our object. The contribution
to the exterior field from a mass perturbation in the interior of the object is
found to be exponentially suppressed. It’s only a fraction ∼ ΔR

R δM, namely
the mass of a small shell of size ΔR close to the surface, of the added mass
which contributes to pushing up the exterior field and thereby the fifth-
force. When the critical solution is reached the exterior solution and there-
fore the force field becomes independent of the mass of the object exerting
this force; a complete breakdown of the superposition principle.

This example is the so-called chameleon mechanism [20]. There exist
several examples of screening mechanisms in the literature and we can clas-
sify modified gravity theories by which screening mechanism they use to
screen the fifth-force in high density regions.
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For theories which have a conformal coupling to matter these different
screening mechanism roughly match the symmetries of the theory:

• Models with no apparent symmetry (apart from a trivial mirror sym-
metry) can screen via a chameleon-like mechanism [20, 25] (like the
one described in the example above). The screening condition is roughly
|A(φ) − 1| � ΦN , i.e. the local fifth-force potential must be much
smaller than the gravitational potential. This is the type of screening
we look at in this thesis.

• Models with a shift-symmetry, φ → φ+ c, can screen by having ∂φ
becoming large close to massive sources [28].

• Models with a derivative shift-symmetry, φ → φ + cμxμ + d, can
screen by having ∂∂φ becoming large close to massive sources. This is
the so-called Vainshtein mechanism [29, 30] and is the reason Galileon
models [31, 32] can evade local constrains.

On top of this we have models that employs a disformal coupling,

g̃μν = A2(φ)gμν + B(φ)φ,μφ,ν (1.14)

to the matter fields which can screen the fifth-force by making the field
static and smooth locally, for which the coupling becomes invisible in the
Solar System. This is the so-called disformal screening mechanism [33].

In summary, a screening mechanism allows for a fifth-force which can
be stronger than gravity in some regimes, while at the same time being
hidden in the solar system where most gravity experiments are performed.
The regimes for which the fifth-force is in full effect are regions with very
low matter density, like in the cosmological background. This makes the
cosmological study of these theories even more interesting.

1.6 The Cosmology of modified gravity

I will give a brief summary of the cosmology we get from the modified
gravity models we have focused on. A more complete discussion can be
found in the attached papers.

In a flat, homogenous and isotropic universe the metric is on the FRLW
form

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2) (1.15)

where a is the scale-factor. In this metric, the late time background cos-
mology of the models given by the action Eq. (1.2) is determined by the



18 CHAPTER 1. COSMOLOGY AND MODIFIED GRAVITY

Friedmann equation [34]

3H2 M2
Pl = ρm A(φ) + V(φ) +

1
2
φ̇2 (1.16)

and the Klein Gordon equation for the scalar field

φ̈+ 3Hφ̇ = −Veff,φ = −
(

V,φ +
β(φ)

MPl
ρm A(φ)

)
(1.17)

where H(t) = ȧ/a is the expansion rate of the Universe. The minimum of
the effective potential acts as an attractor as the universe evolves. The field
adiabatically tracks this attractor from the early universe until the present.
By calculating the equation of state ω along this attractor we find that the
dark energy needs to be very close to that of a cosmological constant [27, 35]
and this means that these models are not novel dark energy candidates3 in
the sense that it’s usually very hard to distinguish the background evolu-
tion from that of ΛCDM.

However, at the level of perturbations we start to see clear signatures.
The equation describing the growth of the matter perturbations are mod-
ified relative to ΛCDM. For sub-horizon modes, and in Fourier-space, we
have [34] that the matter perturbations satisfy the equation

δ̈m + 2Hδ̇m =
3
2

H(a)2Ωm(a)
Geff(a, k)

G
(1.18)

which is similar to that in ΛCDM except we now have an effective gravita-
tional constant given by

Geff

G
= 1 +

2β(φ)2

1 +
m2
φa2

k2

(1.19)

On length scales smaller than the Compton wavelength of the scalar-field,
λφ = 1/mφ, we have

Geff

G
	 1 + 2β(φ)2 (1.20)

an enhancement of the strength of gravity while for larger length scales
Geff
G 	 1 and we recover the ΛCDM result.

This scale-dependence of the effective gravitational constant means that
the growth rate of perturbations,

f ≡ d log δm

d log a
, (1.21)

3There do exist some particular models that can have observable signatures on the back-
ground expansion, but this is the exception not the rule.
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Figure 1.2: The evolution of the growth index γ(z, k) for four different
wavenumbers k = 0.01, 0.05, 0.1, 0.2 h/Mpc (from top to bottom) for a par-
ticular modified gravity model known as the symmetron model [25]. The
solid line shows the prediction of ΛCDM.

will also be scale-dependent. In ΛCDM we have f = Ωm(a)γ where γ 	
0.55 almost constant in time and constant in scale.

In Fig. (1.2) we show the growth-index γ as function of scale and time
for a particular modified gravity model known as the the symmetron model
[25, 36]. The model parameters used here are in agreement with local con-
straints and indicate that quite large deviations are allowed. Current con-
straints on the growth index (see e.g. results from the WiggleZ survey [37]),
agree with the GR prediction, but cannot yet rule out a 5 − 10% deviation.
The Euclid mission [18] promises a 1% determination of γ and will be able
to settle the case of modified gravity on linear scales.

The scale where the growth rate of the perturbations start to deviate
from ΛCDM depends on the value λφ has in a particular model. This value
is indirectly dictated by local gravity constraints. For concrete models (and
one can make arguments why this holds for most models [27]) within the
class Eq. (1.2) one can show that local gravity experiments forces the Comp-
ton wavelength of the scalar field in the cosmological background to be
less then the order of mega parsecs [27, 35], putting the modifications in
the mildly to fully non-linear regime of structure formation. This is in the
regime where perturbation theory starts to break down and other methods
beyond perturbation theory is needed to obtain accurate predictions. One
such method is N-body simulations and is one of the main tools we have
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used in this thesis.



Chapter 2

N-body Simulations

2.1 Introduction

For studies of the early universe, like inflation and the CMB, the physics is
linear to a good approximation [38]. This is due to the fluctuations being
much less than unity. Linear theory is very well understood and the beauty
in study linear matter clustering for example is that when put in Fourier
space, all the different modes of the density field decouples and one can
solve them one by one.

However, the structures we see around us today have density contrasts
which are much larger than unity. The average density of our galaxy is
around a million times the average density of the universe today. In order
to study the formation of structures beyond the linear level one must rely
on other methods.

There exists semi-analytical models, like spherical collapse and the halo
model [39, 40], which can be used to obtain quantitative predictions in the
mildly non-linear regime, but the only known method of going far into
the non-linear regime and obtaining accurate trustworthy predictions is by
using N-body simulations.

In N-body simulations the matter density field is approximated with
particles and put in a periodic box. The particles are then evolved by cal-
culating the gravitational force from all the other particles and using this to
move them forward in time.

The initial conditions are found by calculating predications from linear
theory and using (for example) the Zeldovich approximation [41] to pro-
duce a realisation of particles that gives the desired linear matter power-
spectrum. The simulation is started sufficiently early so that the modes we
are interested in are indeed in the linear regime.

The equations used to evolve the system comes from perturbing GR
[42]. The end result are equations that are very similar to that of Newtonian
gravity, but in an expanding Universe.
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Figure 2.1: A snapshot from an N-body simulation showing the cosmic
web at the present time. Dark colors indicate underdense regions (voids)
while bright colors indicate overdense regions (halos). Image credit Volker
Springel, "The Millennium Simulation".

There are only two equations that form the basic for any N-body simu-
lation of dark matter. One first finds the gravitational potential from using
the Poisson equation

1
a2 ∇2ΦN = 4πG(ρm − ρm) (2.1)

and then move the particles using the geodesics equation

�̈x + 2H�̇x = − 1
a2
�∇ΦN (2.2)

In Fig. (2.1) we show the dark matter densify field at the present time taken
from an N-body simulation. The figure shows the complex structures of
dark matter halos, filaments and voids that make up the cosmic web.

From the output of a simulation one can study a wide range of ob-
servables [43], the simplest one being matter power spectrum and the halo
mass-function. See the appendix for a definition of these observables.
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2.2 N-body simulations of modified gravity

In order to do N-body simulations for our modified gravity theories the
most challenging part is to solve for the scalar field in the N-body code.

The scalar field is determined by the Klein-Gordon equation, which
reads

φ̈+ 3Hφ̇− 1
a2 ∇2φ+ V,φ +

β(φ)

MPl
ρm = 0 (2.3)

This is a very complicated equation to solve numerically as it depends on
both space and time and is usually highly non-linear. A simplification that
is often done is to neglect the time-derivatives1. This is called the quasi-
static approximations and the field equation reads [44]

1
a2∇2φ = V,φ − V,φ +

β(φ)

MPl
ρm − β(φ)

MPl
ρm (2.4)

When the scalar field solution is known the geodesic equation is as simple
as before. It reads

�̈x + 2H�̇x = − 1
a2

(
�∇ΦN +

β(φ)

MPl
�∇φ

)
(2.5)

and the new term on the right hand side is the scalar fifth-force.
Eq. (2.4) is similar to the Poisson equation for gravity Eq. (2.1), but there

are some important differences. First the source (right hand side) of the
field depends on the field itself. This means we cannot use an explicit
method to solve the equation. Secondly, as the equation is non-linear we
cannot use Fourier methods. Thirdly, the field φ might vary over several
orders of magnitude going from clusters to voids. This can pose a problem
for the accuracy of the numerical solver and one might need to redefine the
field φ to avoid this problem, but this creates a non-canonical kinetic term
which again complicates.

The main method we have used to solve for the scalar field is an implicit
Newton-Gauss-Seidel relaxation method with multi-grid acceleration. The
method is described in full in Paper VII, but I will give a short review here.

The equation we want to solve, L = ∇2φ− Veff,φ = 0, is discretisized
on a regular grid. For the differential operator (here in 1D) we use a second
order Taylor expansion

∇2φ→ φi+1 +φi−1 − 2φi

dx2 (2.6)

Then we loop over the grid changing the value of the field in each cell
according to the Newton-Gauss-Seidel algorithm

φnew
i, j,k = φi, j,k −

L(φi, j,k)

∂L/∂φi, j,k
(2.7)

1Or more correctly, neglect them for the perturbations around the background fieldφ.
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After doing N sweeps through the grid we have a tentative solution φ on
the grid. Denoting the true solution (the one which have L = 0) by φtrue

we define the residual as

r = L(φ)−L(φtrue) = L(φ) (2.8)

We expect that the relaxation on the fine grid has removed most small-
scale error modes, so the error mainly consists of longer wavelength modes.
To remove the error in the larger wavelength modes we use the multigrid
approach: we will solve for the error φ −φtrue on coarser grids and then
use this solution to correct φ on the finer grid. On the coarser grids the
residual equation reads

L(φ) = L(Rφ)−Rr (2.9)

where R is a restriction operator (averages the finer grid solution down to
the coarser grid). We solve this equation in the same way as we did on
the finest grid and this procedure is done iteratively down to the coarsest
grid. We now take the solution on the coarsest grid and use it to correct the
solution on the finer grid above using

φfine new = φfine + P(φcoarse −Rφfine) (2.10)

where P is a prolongation operator (interpolates the coarse solution up to
the fine grid). Again we do this iteratively all the way up to the finest
grid. One such cycle going down and up again is called a V-cycle. Af-
ter each V-cycle we check for convergence by calculating the RMS value
of the residual. If convergence is not found we repeat the process again.
The advantage of the multigrid approach is that the number of operations
needed to sweep though the finest grid is comparable to the number of op-
erations done on all the coarser grids put together. Also the coarser grids
can much more easily solve for the longer wavelength modes of the solu-
tion and thereby speed up the convergence.

2.3 Parameterisation of modified gravity

The theories we are concerned with in this thesis are highly non-linear and
how each model works in detail depend sensitively on the exact form of the
potential and coupling. We are therefore often forced to choose a particular
model, work out local constraints for this particular model and then go
look for cosmological signatures within the viable parameterspace. When
comparing observations with theory it is a cumbersome process to do this
model by model. This is where a parameterisation comes in handy.

There do exist useful parameterisations in the linear regime, see e.g. [45]
and references within. However, for us a linear parametrisation is of little
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use. Modifications of gravity are often found in the non-linear regime and
the most important ingredient of our models, the screening mechanism, is
absent in a linear parametrisation.

We shall show how we can build up a parametrisation that can be used
to study a large part of the whole class of models contained in Eq. (1.2).
This parametrisation is built upon physically intuitive quantities instead of
the more abstract potential V and coupling function A.

Scalar tensor theories given by the action Eq. (1.2) are uniquely defined
once we choose the coupling function A(φ) and the self-interaction poten-
tial V(φ). Another way to define the theory is to specify the two func-
tions β(a) and m(a), namely the coupling and the mass of the field at the
minimum of the effective potential Veff at time a in the cosmological back-
ground. As shown in [27], the minimum of the effective potential in the
cosmological evolution can be found from

φ(a) =
3

MPl

∫ a

aini

β(a)
am2(a)

ρm(a)da +φini (2.11)

and the potential at the minimum can be found from

V(a) = V0 − 3
M2

Pl

∫ a

aini

β2(a)
am2(a)

ρ2
m(a)da (2.12)

From these two relations one can reconstruct the potential V(φ) = V(a(φ)).
Likewise, from the relation β(φ) ≡ MPl

dA(φ)
dφ , we can reconstruct A(φ).

This demonstrates the equivalence of the two formulations [V(φ), A(φ)]
and [m(a),β(a)]. Explicit examples of such reconstructions can be found in
[27].

The minimum of the effective potential φ(a) is an attractor which the
field oscillates around as the Universe expands. Because of the large mass
of the field the oscillations are heavily damped and the field adiabatically
tracks the minimum since before BBN until the present. This implies that
m(a) and β(a) turns out to be very close to the true mass and coupling of
the field in the cosmological background for viable models in this class.

The advantage of this novel formulation is that the functions m(a) and
β(a) are more directly related to physical observables than V(φ) and A(φ).
For instance, we have that the linear perturbations in the sub-horizon limit
are determined by

δ̈m + 2Hδ̇m =
3
2
Ωm(a)H2(a)δm

(
1 +

2β2(a)

1 + m2(a)a2

k2

)
(2.13)

and this formulation can for example be used to directly engineer models
directly from their linear perturbations properties. Within this formulation
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we are not limited to study just simple background and linear perturba-
tions properties, but since we can reconstruct (analytically or numerically)
the exact form of the potential and coupling we can also use it to study,
among many things, non-linear clustering with N-body simulations. An-
other advantage is that we can usually calculate local constraints directly
from the functions β(a), m(a) [27].

In most known and viable scalar tensor theories of modified gravity
the mass m(a) and coupling β(a) turns out to be nice monotonic functions
(power-laws and exponentials) of time. Using this we can, by choosing a
convenient parameterisation for these two functions, parametrize a large
range of models in this entire model class.

It turns out that generalizing the well known chameleon, dilation and
symmetron models by using the mapping above gives rise to most of the
different situations (monotonic m(a) and β(a)) that can be viable. These
functions are given by

m(a) = m0a−r, (2.14)
β(a) = β0a−s, (2.15)

for the generalized chameleon model,

m(a) = m0a−r, (2.16)

β(a) = β0 exp
(

s
2r − 3

(a2r−3 − 1)
)

(2.17)

for the generalized dilaton model and

m(a) = m0

(
1 −

( a∗
a

)3
)m

, (2.18)

β(a) = β0

(
1 −

( a∗
a

)3
)n

, (2.19)

for the generalized symmetron model.
β0 and m0 are common parameters for all models that describe the

value of the mass and coupling at the present. On top of that comes two-
three parameters, r, s, n, m, a�, to describe the shape of the two functions.

These generalized models can be looked upon as a first try for making a
parametrisation of the whole class of viable modified gravity models given
by Eq. (1.2). In Paper IV and V we have performed systematic N-body
simulations of these models.

2.4 Cosmological Probes of modified gravity

One of the main objectives of this thesis was to find novel ways to probe
modified gravity via cosmological observations of the non-linear regime.
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We will go through some of the probes that we have looked at which can
be used to test for these theories from observations in current and future
surveys.

2.4.1 The matter density field

The main observable of modified gravity is the matter power-spectrum or,
in the linear regime, the so-called growth factor. The matter power spec-
trum describes the matter fluctuations in our Universe as a function of
scale. If gravity departs from GR on some scales at some time then this will
be imprinted on the matter power-spectrum. Studies have showed that a
modified gravity model of the type Eq. (1.2) will produce a bump in the
power-spectrum relative to ΛCDM, see Fig. (2.3). The location of the bump
depends on the Compton wavelength of the scalar field and the amplitude
depends on the coupling strength β. On large scales the results converge
to ΛCDM due to the limited range of the fifth-force.

An important lesson learned from N-body simulations of modified grav-
ity theories of the class Eq. (1.2) is that predictions made from linear the-
ory cannot be quantitatively trusted even in the linear regime. This seems
counterintuitive, but it is easy to understand. For GR, because of the super
position principle, the large scales do not feel what is going on small scales.
If the the mass contained in small scale halos were compressed into tiny re-
gions then the gravitational force this mass would exert on other far away
objects would remain the same. For modified gravity theories this is not
the case. If small scale halos are screened then they would not contribute
to the fifth-force on far away objects at all. This effect is shown in Fig. (2.2).
The same goes for small halos inside or close to very massive halos due to
the environmental screening effect.

Thus to obtain trustable, accurate, predictions for the matter power
spectrum in modified gravity theories simulations seems to be required at
least to check, and tune, semi-analytical approaches [46, 47].

2.4.2 The velocity field

Studies of simulations have showed that the velocity field might be the best
way, in terms of the signatures found in N-body simulations, to probe the
modifications of gravity.

One way to study this is to look at the velocity divergence field. Even
for models that produce a very small enhancement in the matter power-
spectrum the enhancement in the velocity divergence spectra can be many
times larger [48]. This is illustrated in Fig. (2.4) where we show the frac-
tional difference in the matter and velocity divergence power-spectra with
respect to ΛCDM for the chameleon simulation presented in Paper V. We
see that even when the matter-power spectra deviates less than ∼ 1% from
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Figure 2.2: This figure illustrates how large-scale clustering in modified
gravity, apposed to GR, depends on the small scale clustering. Above we
show the forces from five galaxies, spread out in one region of space, on
a single galaxy far away. Below we have the same situation, but we have
placed the same five galaxies on top of each other. The gravitational force
in the figure above is the same as that in the figure below (the superposition
principle). However, due to the screening mechanism, the fifth-force in the
situation below is suppressed.
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Figure 2.3: The fraction difference in the matter power spectra with respect
to ΛCDM for a f (R) gravity simulation taken from Paper VII.



30 CHAPTER 2. N-BODY SIMULATIONS

ΛCDM for scales k � 10 h/Mpc the deviation in the velocity divergence
spectra can be as large as 20%.

In GR, the average velocity field of the dark matter around galaxy clus-
ters is uniquely determined by the mass profile. This is not the case for
modified gravity theories. By comparing the measured mass density and
velocity profiles of galaxy clusters allows for a model-independent test of
Einstein gravity. One way this can be tested in future observations is to
combine lensing (to get the matter field) with stacking of redshifts (to get
velocities) of the surrounding galaxies of a cluster in a spectroscopic sample
[49].

2.4.3 The mass function

The halo mass-function n(M, z) is defined as the number density of halos
of mass M at redshift z. It is observationally, at least in principle, rela-
tively easy to obtain. We just have to go out and count clusters of galaxies
and measure their mass. To observationally determine the mass-function
one can use optical galaxy surveys, weak lensing, X-ray measurements of
hot gas in clusters and inverse Compton scattering of CMB photons (the
Sunyaev-Zeldovich effect [50]).

Modified gravity tends to increase clustering and thereby increasing the
number density of intermediate sized halos. The largest halos in our Uni-
verse are formed over a very long time and because of their large mass is
very likely to be screened. This means that the modified gravity predictions
usually converge to ΛCDM for large halo masses.

One can already use such observations to make constraints on modified
gravity as was done in [51] for the Hu-Sawicky f (R) model.

2.4.4 Shapes of clusters

If we have a non-spherical object then the fifth-force need not be pointing in
the same direction as gravity. As first shown in [52], the isocontours for the
scalar field, because of the short range compared to gravity, follows more
closely the shape of the object than does the gravitational potential. Due to
this and the fact that clustering is stronger in modified gravity models we
expect signatures on the shapes of clusters and voids.

An analysis of the shapes of dark matter halos in modified gravity was
performed in Paper VII. The results we found was that low-mass dark mat-
ter halos are more elongated than in ΛCDM while the most massive halos
on the other hand give similar results. Present observations show some
tension between the shape of real clusters [53] and the predictions obtained
from simulations. Our results indicate that if scalar fields make any differ-
ence, it is in the right direction to correct the apparent discrepancy.
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Figure 2.4: The fraction difference in the matter and velocity divergence
spectra with respect to ΛCDM for a chameleon simulation taken from Pa-
per V.



32 CHAPTER 2. N-BODY SIMULATIONS

2.4.5 Voids

The screening mechanism of modified gravity depends on having a large
ambient matter density to be effective. In regions where the density is low,
the screening is expected to be weak and the fifth-force will be in full oper-
ation. Voids are regions of the Universe where the average matter density
is lower than mean density which makes them very interesting for probing
modified gravity.

In a void, matter is being pulled out towards massive halos in the sur-
rounding clusters and filaments. Since the fifth-force is expected to play
a big role in voids, we expect larger and emptier voids in modified grav-
ity than we find in ΛCDM. This have been investigated in [54] and in our
upcoming paper [55] and the results confirm the intuitive predictions.

A problem with voids in observations is that results (like for example
the density profile of a void) depend sensitively on missing tracers. If for
some reason our observations don’t see some galaxies then this can bias the
results significantly. A way around this problem is to stack many voids of a
certain size on top of each other [56]. If we have enough voids this should
give us a spherical symmetric void (assuming homogenity and isotropy).
This procedure can be applied to observations as well as in simulations.

We have investigated stacked voids for f (R) gravity in our upcoming
paper [55]. The stacked voids in modified gravity have shallower density
profiles and a larger compensating profile outside the void than what we
find in ΛCDM. See Fig. (2.5) for an example.

Another interesting effect that can strengthen the modified gravity sig-
nal is redshift-space distortions [57] due to the streaming motions of halos
in and on the boundary of voids. Modified gravity gives rise to (on av-
erage) larger peculiar velocities which leads to a stronger redshift-space
distortion. Voids in redshift-space therefore appear more squeezed along
the line-of-sight than we find in ΛCDM.

2.4.6 Dynamical masses

Mass estimates obtained through observations can be grouped into two
categories: lensing and dynamical masses. The lensing mass is determined
by the lensing potential ΦL = Φ+Ψ

2 which for our class of models give the
same prediction as GR. The dynamical mass on the other hand is defined
as the mass contained within a radius r, inferred from the gravitational
force felt by a test particle at r. Since the dynamical mass probes forces it
is sensitive to the presence of a fifth-force and the prediction in modified
gravity theories will differ from GR.

The lensing mass and the dynamical mass can observationally be mea-
sured using strong lensing and the peculiar velocity dispersion respec-
tively.
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Figure 2.5: The density profile, in terms of the mean density of the Uni-
verse, of a stacked void of size R = 8 Mpc/h for a f (R) gravity model (red)
and ΛCDM (green).
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This effect have, using results from N-body simulations, been studied
in [58], [59] and [60]. The results show that the difference can be significant.
However, measurements of the difference between the two mass estimates
are likely to be contaminated by systematical effects.

2.4.7 Environmental dependence

The most intriguing signature of modified gravity is an environmental de-
pendence of observables as such environmental effects are something we
don’t expect to find within GR.

A galaxy which is not screened if put by itself in a region of space, might
indeed by screened if its located in a region of space with large ambient
density. This can be seen from the expression of the screening factor

ΔR
R

=
|φ∞ −φc|
2βMPlΦN

(2.20)

Here φ∞ is the scalar field value in the environment the object in question
lies in2. If the environment is very dense then φ∞ can be small enough so
that ΔR

R � 1 and the fifth-force is screened. If the environment is sparse
thenφ∞ will be larger and we can have ΔR

R ∼ 1 which means no screening
and a fifth-force in full operation.

For measurements of dynamical masses for example, a strong envi-
ronmental dependence of the dynamical mass may provide a way to get
around the problem of large systematical effects in the observations [59].
Observationally, one could divide galaxy samples into subgroups accord-
ing to the environment each galaxy lies in and measure the difference of
the two mass-measurements among those subsamples. If a correlation is
found, then it will be a smoking gun of a modified gravity signal.

2When solving for the scalar field of a spherical object, φ∞ comes in as the boundary
condition.
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Summary

This thesis represents an effort to try to gain more knowledge of a, so far,
largely undiscovered part of structure formation in models beyond ΛCDM,
namely the non-linear regime. These studies can serve to provide novel
ways to test gravity on large scales and to constrain models beyond ΛCDM.
With new satellite and ground based mission planned in the upcoming
years we will hopefully come closer to confirming GR or more excitingly
find evidence of new physics beyond the standard model.

Below I will give a short summary of the papers that I have produced dur-
ing my Ph.D studies and which are attached to this thesis.

Paper I

In this paper we studied structure formation in the symmetron model. We
looked at predictions from linear perturbation theory, we implemented the
model in the N-body code MLAPM, tested it and ran simulations. From
the simulations we looked at signatures in the non-linear matter power-
spectrum and the halo mass function.

Paper II

We used the results from the simulation in Paper I to look at a particularly
interesting signature of modified gravity effect namely the environmental
dependence of dark matter halos. By comparing the lensing mass with the
dynamical mass for dark matter halos found in the simulation we quanti-
fied the ratio between these two masses and we also looked at the environ-
mental dependence of this quantity.
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Paper III

We showed that all scalar-tensor theories within a certain class can be uni-
fied within a simple and intuitive formalism. From this formalism we con-
structed generalisations of the chameleon, symmetron and dilaton scenar-
ios.

Paper IV and V

We took the generalized models we constructed in Paper III and performed
systematic N-body simulations of these models. From these simulations we
studied the effects of modified gravity on the matter power-spectrum and
the halo mass-function.

Paper VI

In this paper we investigate the cosmological evolution of a particular mod-
ified gravity model inspired by supersymmetry.

Paper VII

In this paper we presented a code which can be used to perform N-body
simulations for a large class of modified theories of gravity. In this same
paper we also studied the signatures of modified gravity on the shapes of
dark matter halos. The main result we find is that halos tends to be more
elongated in modified gravity than the ΛCDM counterpart.

Paper VIII

In this paper I derived the Layzer-Irvine equation for scalar tensor theories
and showed how this equation can be used as a test of N-body codes.



Appendix

The matter power spectrum

In this appendix we give the definition of the matter power-spectrum which
measures the density contrast of the universe as a function of scale.

The matter density field in the Universe can be composed in a homoge-
nous part and a perturbation: ρ(r, t) = ρ(t) (1 + δm(r, t)).

The two-point correlation function of the matter field is defined as

ξ(r) = 〈δm(x)δm(x + r)〉 (3.1)

and measures the excess probability above the Poisson distribution of find-
ing a pair of objects with separation r.

The Fourier transform of ξ(r) is called the matter power-spectrum

P(k) =
∫

d3rξ(r)e−ik·x (3.2)

which is related to the density field in k-space via

〈δm(k1)δm(k2)〉 = (2π)3P(k)δ(3)D (k1 + k2) (3.3)

where δD is the Dirac delta-function.
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ABSTRACT

Scalar fields, strongly coupled to matter, can be present in nature and still be invisible to local experiments if
they are subject to a screening mechanism. The symmetron is one such mechanism that relies on restoration of a
spontaneously broken symmetry in regions of high density to shield the scalar fifth force. We have investigated
structure formation in the symmetron model by using N-body simulations and find observable signatures in both
the linear and nonlinear matter power spectrum and on the halo mass function. The mechanism for suppressing the
scalar fifth force in high-density regions is also found to work very well.
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1. INTRODUCTION

Our current standard model of cosmology, ΛCDM, has been
very successful in explaining a large range of observations
probing a vast range of length scales. We should nevertheless
be open to the possibility that ΛCDM is just a first-order
approximation of some more fundamental theory. Many theories
of high-energy physics, like string theory and supergravity,
predict light gravitationally coupled scalar fields (see, e.g.,
Binetruy 2006; Linde 2008, and references therein). These
scalars may play the role of dark energy (quintessence). If these
scalar fields have non-minimal coupling to matter fields, then
they could mediate extra forces that are potentially detectable
in local experiments.

Over the past few decades, several laboratory and solar system
experiments have tried to detect a sign of such fundamental
coupled scalar fields (Adelberger 2002; Hoskins et al. 1985;
Decca et al. 2007; Bertotti et al. 2003), but the results so far
have been negative. Naively, the results of these experiments
have ruled out any such scalar fields. However, one should bear
in mind that a coupled scalar field might exist but is undetected
because of some sort of screening mechanism.

To date we know three types of theoretical mechanisms
(see Khoury 2010 for a review) that can explain why such
light scalars, if they exist, may not be visible to experiments
performed near the Earth. One such class, the chameleon
mechanism (Khoury & Weltman 2004; Brax et al. 2004; Clifton
et al. 2005; Mota & Barrow 2004a, 2004b), operates when the
scalars are coupled to matter in such a way that their effective
mass depends on the local matter density. In space, where
the local mass density is low, the scalars would be light and
deviations from general relativity (GR) would be observed. But
near the Earth, where experiments are performed, the local mass
density is high and the scalar field would acquire a heavy mass,
making the interactions short range and therefore unobservable.

The second mechanism, the Vainshtein mechanism
(Vainshtein 1972; Deffayet et al. 2002; Arkani-Hamed et al.
2003), operates when the scalar has derivative self-couplings
that become important near matter sources such as the Earth.
The strong coupling near sources essentially cranks up the ki-
netic terms, which translates into a weakened matter coupling.

Thus, the scalar screens itself and becomes invisible to experi-
ments. This mechanism is central to the phenomenological via-
bility of braneworld modifications of gravity and galileon scalar
theories (Dvali et al. 2000; de Rham et al. 2008; Nicolis et al.
2009; Hinterbichler et al. 2010; Mota et al. 2010; Gabadadze
2009; de Rham 2010; Brax et al. 2011a).

The last mechanism, the one explored in this paper, is
the symmetron mechanism (Hinterbichler & Khoury 2010;
Hinterbichler et al. 2011; Olive & Pospelov 2008; Brax et al.
2011b; Clampitt et al. 2012). In this mechanism, the vacuum
expectation value (VEV) of the scalar depends on the local
mass density, becoming large in regions of low mass density and
small in regions of high mass density. By taking the coupling
of the scalar to matter to be proportional to the VEV, we can
have a viable theory where the scalar couples with gravitational
strength in regions of low density but is decoupled and screened
in regions of high density. This is achieved through the interplay
of a symmetry breaking potential and a universal quadratic
coupling to matter. A similar screening mechanism applies in
the case of the environmentally dependent dilaton model (Brax
et al. 2010a).

In vacuum, the scalar field acquires a VEV that spontaneously
breaks the Z2 symmetry φ → −φ. In the regions of sufficiently
high matter density, the field is confined near φ = 0, and the
symmetry is restored. The fifth force arising from the matter
coupling is proportional to φ making the effects of the scalar
small in high-density regions.

In contrast to chameleons, where the strongest constraints
(Mota & Shaw 2006, 2007; Brax et al. 2007a, 2007b, 2008,
2010c; Gannouji et al. 2010; Gies et al. 2008) come from
laboratory experiments that in effect wash out any observable
effects in the solar system, the symmetron predicts a host of
observational signatures in experiments designed to look for
deviations from GR, which are just below the current bounds
and within reach of the next-generation experiments.

In the simplest formulation (Hinterbichler & Khoury 2010),
which is the one studied here, the symmetron cannot account
for dark energy (Hinterbichler et al. 2011). To have a success-
ful cosmology, a cosmological constant must be added to the
model. The model is nevertheless a concrete example of a vi-
able modification of gravity that can leave observable imprints

1



The Astrophysical Journal, 748:61 (18pp), 2012 March 20 Davis et al.

on cosmological scales. Indeed, the symmetron model was con-
structed as a scalar-tensor theory with a screening mechanism
to suppress fifth forces in solar system tests of GR. Whilst fifth
forces are screened in the solar system they could still have
observable effects cosmologically. In this paper we address this
issue. In particular we investigate the effect the symmetron has
on structure formation in order to obtain results that can be
compared with observation.

The cosmology of coupled scalar field models is usually
strongly constrained by local gravity experiments, which could
put limits on the range and the coupling strength of the scalar
field. There do exist several cases in which signatures on the
linear perturbations are found, but in most cases the range of the
field is well below linear scales. To proceed into the region of
nonlinear structure formation, one can use the spherical collapse
model to obtain the qualitative behavior, but in order to obtain
accurate quantitative results deep into the nonlinear regime, one
is almost required to perform N-body simulations.

Studies of coupled scalar field models, and other models
where a fifth-force is present, using N-body simulations (Zhao
et al. 2010, 2011; Brax et al. 2011c; Li & Barrow 2011a, 2011b;
Li et al. 2011a; Li & Zhao 2010; Ferraro et al. 2011; Oyaizu
et al. 2008; Schmidt et al. 2009; Schmidt 2009; Baldi et al. 2010;
Baldi 2009; Hellwing & Juszkiewicz 2009; Hellwing et al. 2010)
have revealed several interesting signatures that can in principle
be detected by observations in the near future. For example, in
Zhao et al. (2011) and Schmidt (2010) it was found that f (R)
theories can give rise to a dependence on the environment of the
dynamical to lensing mass ratio of halos; an observable feature
that is not found in ΛCDM. This signature is also present in the
symmetron model (Winther et al. 2011).

In this article we will study the effects a symmetron field
has on structure formation. By performing high-resolution
N-body simulations, we demonstrate explicitly how the sym-
metron mechanism works in screening the fifth force and obtain
observables such as the matter power spectrum and the mass
function.

2. THE SYMMETRON MODEL

In this section we review the symmetron model, explaining the
screening mechanism, and discuss the local constraints on the
model parameters. At the end of this section we reparameterize
the model parameters by introducing more physically intuitive
parameters that will help us discuss the results in the following
sections more clearly.

The action governing the dynamics of the symmetron model
is given by

S =
∫

dx4√−g

[
R

2
M2

pl − 1

2
(∂φ)2 − V (φ)

]
+ Sm(g̃μν, ψi), (1)

where g is the determinant of the metric gμν , R is the Ricci
scalar, ψi are the different matter fields, and Mpl ≡ 1/

√
8πG,

where G is the bare gravitational constant. The matter fields
couple to the Jordan frame metric g̃μν via a conformal rescaling
of the Einstein frame metric gμν given by

g̃μν = A2(φ)gμν. (2)

The coupling function A(φ) is chosen to be an even polynomial
in φ (to be compatible with the φ → −φ symmetry)

A(φ) = 1 +
1

2

(
φ

M

)2

+ O
(

φ4

M4

)
(3)

described by a single mass scale M. For the range of parameters
we are interested in we have (φ/M)2 � 1. Thus, we can neglect
the higher order correction terms. The potential is chosen to be
of the symmetry breaking form

V (φ) = V0 − 1

2
μ2φ2 +

1

4
λφ4, (4)

where V0 is a cosmological constant (CC). We will for simplicity
absorb all contributions to the CC into V0 by simply putting
V0 ≡ Λ. We will later see that Λ must be taken to be the
usual CC to obtain late time acceleration of the universe. Thus,
the symmetron model considered here cannot account for dark
energy. It will be interesting to see if a more complicated setup,
e.g., extensions of the proposals discussed in Hinterbichler et al.
(2011), can lead to dark energy. This is, however, beyond the
scope of this work.

The field equation for φ follows from the variation of the
action Equation (1) with respect to φ and reads

�φ = Veff, φ. (5)

The effective potential is given in terms of the trace, Tm, of the
matter energy-momentum tensor by

Veff(φ) = 1

2

(
− Tm

M2
− μ2

)
φ2 +

1

4
λφ4 (6)

= 1

2

( ρm

M2
− μ2

)
φ2 +

1

4
λφ4 (7)

depending on the two mass scales μ, M and the dimensionless
coupling constant λ. It is convenient to define the critical matter
density (and the critical redshift) as

ρSSB ≡ μ2M2 = 3H 2
0 M2

plΩm(1 + zSSB)3, (8)

where SSB stands for spontaneous symmetry breaking, Ωm is
the matter density parameter in the universe today, and H0 is
the Hubble parameter. In regions where ρm > ρSSB (where ρm

is the local matter density) the symmetry φ → −φ is upheld
and the effective potential has a minimum at φmin = 0, whereas
in regions where ρm < ρSSB the symmetry is spontaneously
broken and the field acquires a VEV

φmin = ±φ0

√
1 − ρm

ρSSB
, (9)

where φ0 ≡ μ/
√

λ is the symmetry breaking VEV for ρm → 0.
The mass of small fluctuations around the minimum of the
effective potential is given by

m2
φ ≡ Veff, φφ =

(
ρm

ρSSB
− 1

)
μ2 + 3λφ2

min

=
⎧⎨
⎩

μ2
(

ρm

ρSSB
− 1

)
, ρm > ρSSB

2μ2
(

1 − ρm

ρSSB

)
, ρm < ρSSB.

(10)
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The symmetron field acquires the longest range, λφ ≡ 1/mφ , in
low-density regions where

λφ = λ0 ≡ 1√
2μ

. (11)

For future convenience we introduce the dimensionless quantity
L ≡ λ0/(Mpc h−1), which is the maximum range of the force
mediated by the symmetron in units of Mpc h−1.

The gravitational field equation for gμν is given by

Gμν = 8πGTμν (12)

where the total energy-momentum tensor Tμν is the sum of the
matter and scalar field parts:

Tμν = A(φ)T m
μν + φ;μφ; ν − gμν

(
1

2
(∂φ)2 + V (φ)

)
. (13)

Note that the matter part itself is not conserved, but instead
satisfies

∇νT
μν
m = d log A(φ)

dφ

(
Tm∇μφ − T μν

m ∇νφ
)
. (14)

In N-body simulations we are interested in describing the
matter sector by particles. The energy-momentum tensor of an
individual particle with mass m0 at position r0 is given by

T μν
m (r) = m0√−g

δ(r − r0)ṙμ

0 ṙ ν
0 , (15)

where r is the general spatial coordinate. Taking the divergence
of Equation (12) and using the Bianchi identity, we get the
geodesic equation for the matter particles

r̈
μ

0 + Γμ
αγ rα

0 r
γ

0 = −d log A(φ)

dφ

(∇μφ + φ̇ṙ
μ

0

)
(16)

which for A ≡ 1 reduces to the standard geodesic equation
in GR.

From Equation (16) we see that the symmetron field gives
rise to a fifth force on the matter fields that, in the nonrelativistic
limit, is given by

�Fφ = φ

M2
�∇φ = β

Mpl

(
φ

φ0

)
�∇φ, (17)

where we have introduced the coupling constant β ≡
φ0Mpl/M

2.
The static, spherically symmetric solutions of the field equa-

tions were found in Hinterbichler & Khoury (2010). For two
test masses in a region where φ = φB it was shown that the fifth
force is simply

Fφ

FN

= 2β2

(
φB

φ0

)2

. (18)

In a low-density region (ρ � ρSSB) we have φB = φ0 and the
fifth force is comparable with gravity for β = O(1).

For very large bodies, the situation is quite different. The
symmetry is restored in the interior of the body and the fifth
force on a test mass outside becomes

Fφ

FN

= 2β2

(
φB

φ0

)2 1

α
, α−1 = 2

ρSSB

ρbody

(
λ0

Rbody

)2

. (19)

The fifth force is suppressed by a factor α−1 � 1 − similar
to the thin shell factor found in chameleon theories (Khoury &
Weltman 2004).

We also see that if the test masses are inside a screened region
(φB/φ0 � 1) the force will be further suppressed.

Since the field is long ranged (and universally coupled) in
almost all situations today, the theory is best constrained by
solar system experiments that have been performed with high
precision.

It turns out that as long as our Galaxy is sufficiently screened
(10 � αG), our Sun will also be screened and the combined
effects discussed above are enough to evade the current param-
eterized post-Newtonian (PPN) constraints.

By assuming that φ → φ0 outside our Galaxy, i.e., that
our galactic neighborhood is not screened, these constraints
were derived in Hinterbichler & Khoury (2010) and Brax et al.
(2011b) and require

M � 10−3Mpl. (20)

If the assumption about the value of φ outside our Galaxy, which
is very likely to be true, can be relaxed, then the bound above
can be relaxed somewhat as well. The constraint on M turns into
a constraint on the range of the field and the redshift in which
the SSB takes place:

λ0 � 2.3

√
0.3

Ωm

(1 + zSSB)−3/2 Mpc h−1. (21)

Thus, for transitions that take place close to the present time,
the fifth force can have a range of at most a few Mpc h−1.

In the rest of this article, instead of working with the param-
eters {μ,M, λ}, we will instead choose to work with the more
physically intuitive quantities {L, β, zSSB} : the cosmological
range of the fifth force in Mpc h−1, the strength of the fifth force
relative to gravity, and the redshift at which the SSB takes place
in the cosmological background, respectively.

The transformation between the two sets of parameters is
given by

μ

H0
= 2998√

2L
(22)

M

Mpl
= 10−3

√
Ωm

0.27

(
L

2.36

)
(1 + zSSB)3/2 (23)

λ =
(

1060H0

Mpl
· 0.27

Ωm

)2
1.38 × 10−100

β2L6(1 + zSSB)6
. (24)

For typical parameters L ∼ β ∼ 1 and zSSB ∼ 0 we have
μ ∼ 103H0, M ∼ 10−3Mpl, and λ ∼ 10−100. Thus, the
symmetron is very weakly self-coupled. As with other models
with screening mechanisms, our parameters require a certain
degree of fine-tuning. This means that SSB is a rather late-time
phenomenon.

We will choose to work with values of the parameters that are
close to the local constraints and in which the symmetron can
produce observable cosmological effects. This means we will
be most interested in the parameter space L = O(1), β = O(1),
and 0 � zSSB � 2.
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3. SYMMETRON COSMOLOGY

In this section we discuss the cosmological evolution of the
symmetron field from the background evolution to linear pertur-
bations and derive the nonrelativistic limits of the field equations
to be implemented in the N-body code. The analysis in this sec-
tion is mainly for comparison with the N-body simulations. For
a more thorough discussion regarding the background cosmol-
ogy and linear perturbations in the symmetron, see Hinterbichler
et al. (2011) and Brax et al. (2011b), respectively.

3.1. Background Cosmology

The background evolution of the symmetron in a flat
Friedmann–Lemaitre–Robertson–Walker (FLRW) metric

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2) (25)

is determined by the field equation

φ̈ + 3Hφ̇ + Veff, φ = 0 (26)

together with the Friedman equations

3H 2M2
pl = ρmA(φ) + ρφ (27)

ρ̇m + 3Hρm = 0 (28)

where

ρφ = Λ − 1

2
μ2φ2 + λφ4 +

1

2
φ̇2. (29)

When the field follows the minimum of the effective potential,
we have ∣∣∣∣ρφ − Λ

Λ

∣∣∣∣ � μ4

λΛ
= β2 ρSSB

Λ

(
M

Mpl

)2

(30)

� 10−6β2(1 + zSSB)3. (31)

Thus, for β, zSSB ∼ O(1) the dynamical part of the potential
is too small to contribute significantly to the energy density of
the universe and we are left with the cosmological constant to
account for dark energy.

In the same regime, the coupling function A(φ) satisfies

|A(φ) − 1| = 1

2

(
φ

M

)2

� β2

(
M

Mpl

)2

� 10−6β2 (32)

which is also too small to produce an observable effect on the
background expansion. This implies that the symmetron evades
Big Bang Nucleosynthesis (BBN) bounds on the variation of
masses of the standard model particles (see Section 3.5). It
might be possible to make the symmetron responsible for dark
energy by changing the form of the potential and coupling.
One such modification was proposed in Hinterbichler et al.
(2011); however, it was shown that additional fine-tuning of
the parameters was required to yield the desired late-time
cosmology.

In Figure 1 we see the background evolution φ(z) for zSSB = 2
together with the analytical minimum. Note that the field does
not start to follow the minimum immediately after SSB. This has
important consequences for the evolution of the perturbations,
which will be discussed in Section 3.4.

Figure 1. Background evolution of the symmetron for β = 1, L = 1, and
zSSB = 2 together with the analytical background (dashed lines). The symmetry
is broken at z = 2 and the field settles at one of the two branches.

3.2. Linear Perturbations

The most general metric in a perturbed FLRW space-time is
given by

ds2 = − (1 + 2α)dt2 − 2aB, idtdxi

+ a2((1 + 2ψ)δij + 2γ, i;j )dxidxj , (33)

where the covariant derivative is given in terms of the spatial
metric, which in the case of our flat background reduces to δij .
We decompose the field φ into the background and perturbated
parts: φ(x, t) = φ(t) + δφ(x, t). The energy-momentum tensor
of nonrelativistic matter can be decomposed as

T 0
0 = −ρm(1 + δm), T 0

i = −ρmvi, (34)

where v is the peculiar velocity of nonrelativistic matter and δm

is the matter density perturbation defined by

δm ≡ δρm

ρm

− ρ̇m

ρm

v ≡ δρm

ρm

in the comoving gauge. (35)

The equation determining the evolution of the perturbations,
neglecting anisotropic stresses, follows from the Einstein equa-
tions. The scalar perturbations can be read off from the formu-
lation of Hwang & Noh (2002), which is independent of gauge.
In the following we use units of Mpl ≡ 1. After solving for the
different metric potentials, we find that the scalar perturbations,
in the comoving gauge (v = 0), are determined by

δ̈m + 2Hδ̇m − 1

2
ρmδm

− φδφ

M2

(
6H 2 + 6Ḣ + ΩmH 2 − k2

a2
+ 2φ̇2

)

− φ

M2
( ¨δφ + 5H ˙δφ) − 2φ̇

M2
( ˙δφ + Hδφ)

+ Veff, φ

(
1 +

1

M2

)
δφ − 2φ̇ ˙δφ = 0 (36)

¨δφ +

(
3H +

2φφ̇

M2

)
˙δφ +

φρmδm

M2
− φ̇δ̇m

+

(
m2

φ +
k2

a2
− 2φ

M2
Veff, φ +

2φ̇2

M2

)
δφ = 0. (37)
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Figure 2. Evolution of the growth index γ (z) when zSSB = 1 (left) and zSSB = 2 (right) for four different wavenumbers k = {0.01, 0.05, 0.1, 0.2} Mpc h−1 (from top
to bottom in each figure). The solid line shows the prediction of ΛCDM.

In studying the perturbations it is convenient to introduce the
growth index

γ (z, k) =
log

(
d log δm

d log a

)
log(Ωm(z))

. (38)

In ΛCDM we have γ ≈ 0.55 (for 0.2 � Ωm � 0.3), which
is scale and almost redshift independent. In modified theories,
however, γ can have significant scale and redshift dependence
as shown in Gannouji et al. (2010) and Mota & Winther (2011)
for the case of chameleon models, Tsujikawa et al. (2009),
Brax et al. (2008, 2010b), Motohashi et al. (2010), Narikawa
& Yamamoto (2010), and Appleby & Weller (2010) for f (R)
modified gravity, and Baldi (2011) for interacting dark energy.

If we assume that the field is rolling slowly along the mini-
mum, we can neglect all terms proportional to φ̇ and the oscillat-
ing term Veff, φ . The perturbations in φ will evolve more slowly
than the perturbations in δm for scales deep inside the Hubble
radius. Thus, the terms ρmβ,φ δm and (m2

φ + (k2/a2))δφ will
dominate over the δφ time derivatives in Equation (37). Under
these assumptions, we can simplify Equation (36) to

δ̈m + 2Hδ̇m = 3

2
ΩmH 2 Geff

G
δm (39)

Geff

G
= 1 +

2β2φ2/φ2
0

1 + a2

λ2
φk2

(40)

which are the equations we use to integrate the perturbations.
At times before SSB we have φ ≈ 0 and therefore Geff ≈ G.

After SSB the field approaches the minimum φ = φ0, in this

regime we have

Geff

G
=

{
1 a

k
� λφ

1 + 2β2 a
k

� λφ.
(41)

Thus, small scales will feel a stronger gravitational constant.
In Figure 2 we show the redshift evolution of γ for several

different wavenumbers, and in Figure 3 we show contour plots
for γ (k, z = 0) for two comoving wavenumbers. The evolution
of the growth index is very similar, with a minimum at some
redshift z > 0, to the behavior found in other coupled scalar field
models in the literature (see the references below Equation (38)).

The growth rate on really large scales (k � 0.01 h Mpc−1)
is not affected by the symmetron fifth force unless L, β � 1.
However, on the smallest, linear scales we can still have a devi-
ation from the predictions of GR. Note that we have integrated
the perturbations using the approximation Equation (39) instead
of the full equations (36) and (37). The explanation for this is
given in Section 3.4.

3.3. Linear Power Spectrum and the CMB

In Figure 4 we show the factional difference of the linear
power spectrum of the symmetron to that of ΛCDM, defined
as ΔP (k)/P (k) ≡ (P (k) − PΛCDM(k))/PΛCDM(k). Note that
on linear scales (k � 0.1 h Mpc−1) the power spectrum is
very close to ΛCDM. Going down to scales comparable to the
length scale of the symmetron (k ∼ L−1 h Mpc−1) the power
spectrum starts to deviate significantly. However, in this regime
the perturbations are already nonlinear and we cannot trust the
results of the linear perturbation theory. Once we discuss the
N-body results, we will see that the symmetron mechanism
is at work in this regime, thereby suppressing the fractional
difference from ΛCDM in the power spectrum predicted by
linear perturbation theory.
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Figure 3. Growth index γ (z = 0) for zSSB = 1.0 (left) and zSSB = 2.0 (right) for two comoving wavenumbers: k = 0.2 Mpc h−1 (above) and k = 0.01 Mpc h−1

(below). The red region shows the GR regime γ � 0.555, the blue region shows the regime where 0.5 < γ < 0.55, the green region shows 0.4 < γ < 0.5, and the
white region shows γ < 0.4.

(A color version of this figure is available in the online journal.)

Figure 4. Linear power spectrum relative to that of ΛCDM for three different
SSB redshifts: zSSB = 0.5 (dotted), zSSB = 1.0 (dashed), and zSSB = 2.0
(solid). We have fixed L = 1 and shown the results for the two values β = 0.5
and β = 1.0.

The short range (�Mpc) of the fifth force means that it will not
affect the cosmic microwave background (CMB) unless L, β �
1. Take L = 1 and β = 2 as an example: we find a maximal
increase in power (due to the integrated Sacks–Wolfe effect)
of ∼ 0.25% for multipoles around l ∼ 100. One needs a much
larger β and/or L to have a detectable signature in the CMB. The
second case is not allowed by local experiments, while the first
case implies a growth rate of the linear perturbations that should
have difficulty satisfying constraints coming from large-scale
structure surveys.

A more thorough analysis of the linear perturbations in the
symmetron model can be found in Brax et al. (2011b). There
it was shown that strong signatures appear in other interesting
linear observables such as the weak-lensing slip parameter and
the modified gravity parameter.

3.4. Tachyonic Instability in the Perturbations

The perturbations in Section 3.2 were integrated using the
approximate Equation (39), which is equivalent to using the
analytical minimum as the background field. The reason we did
not use the full equations is because perturbation theory breaks
down close to zSSB.

Immediately before zSSB the field is still close to φ = 0; as
z → zSSB the mass of the field vanishes. This means that the
field cannot follow the minimum and starts to lag behind as
seen in Figure 1. The global minimum of the effective potential
φ = 0 now becomes a local maximum, and the mass squared of
the field becomes negative, leading to an exponential growth in
the perturbations.

To see what happens, we can simplify Equation (37) by
discarding all but the most important terms:

¨δφ +

(
m2

φ +
k2

a2

)
δφ � 0. (42)

If m2
φ + k2/a2 < 0, then the solution to the above equation reads

δφ ∝ exp(t
√

|m2
φ+k2/a2|), which is exponentially growing.

In a realistic situation the field would roll very quickly down
from the false minimum φ = 0, making m2

φ positive and thereby
stabilizing the field close to the symmetry breaking minimum
(Felder et al. 2001). Since perturbation theory is only valid as

6
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long as the perturbations δφ are small, we get a breakdown of the
perturbation theory when using the true background solution.
The blowup in δφ, in turn, leads to a blowup in the matter
perturbations, and the numerical results cannot be trusted.

We have investigated this further by using N-body simula-
tions. In Figure 10 we see a snapshot of the φ-distribution
both before and after z = zSSB = 2.0. There we see the same
sort of behavior as is familiar from symmetry breaking in con-
densed matter physics: symmetry breaking takes place at dif-
ferent places at different times according to the local matter
density. This type of dynamics is not taken care of in the stan-
dard perturbation theory approach, which leads to the apparent
instability.

Note that by using the analytical minimum when integrating
the perturbations we do not have control over the accuracy of
our results. A full analysis of this phenomenon could be handled
with N-body simulations, but in our simulations we have not
explicitly taken into account the time variation of the scalar
field (we work in the quasi-static limit), and our simulation box
is also too small to reach far enough into the linear regime. We
leave this study for future work.

3.5. Varying Constants

One important constraint on coupled scalar field theories
comes from the time variation of the gravitational constant G in
the Jordan frame, or equivalently in the masses of the standard
model particles in the Einstein frame. Wilkinson Microwave
Anisotropy Probe (WMAP) constrains any such variation to be
less than about 5% since recombination (Nagata et al. 2004).
Light-element abundances provide similar constraints between
the time of nucleosynthesis and today (Accetta et al. 1990).

Due to the conformal coupling to matter, A(φ), a constant
mass scale in the Jordan frame becomes time and space varying
in the Einstein frame. The mass variation between today and
recombination is given by

Δm

m
= A(φrec) − A(φtoday)

A(φrec)
� 1

2

(
φtoday

M

)2

, (43)

where we have put φrec � 0 since zrec � zSSB in all interesting
cases. If we further assume φtoday = φ0, we get the conservative
constraint

Δm

m
� 1

2

(
φ0

M

)2

= β2

(
M

Mpl

)2

< 10−6β2. (44)

The WMAP constraint |Δm/m| � 0.05 is satisfied for all
β � 100.

Analysis of absorption spectra of quasars has led some to
claim that the fine structure constant α might have evolved
by approximately one part in 105 over the redshift range
0.2 < z < 3.7. If this turns out to be true, then general
covariance would imply that α can vary both in space and in
time, that is, it must be a function of a field.

Since we have so far assumed that the symmetron couples
conformally to matter fields, and since the Maxwell action is
conformally invariant, at tree level the symmetron does not lead
to a time-varying α. By considering a coupling of the symmetron
to photons of the form

Sγ = −1

4

∫
d4x

√−gAγ (φ)FμνF
μν (45)

where

Aγ (φ) = 1 +
ζγ

2

(
φ

M

)2

(46)

then variations in φ will lead to variations in α. Here ζγ is the
symmetron-photon coupling relative to the symmetron-matter
coupling. The variation in the fine-structure constant between
Earth (E) and another place (S) in the universe is given by∣∣∣∣Δα

α

∣∣∣∣ = Aγ (φE) − Aγ (φS)

Aγ (φE)
� ζγ

2

(
φS

M

)2

. (47)

If S is a very low density environment where φS ≈ φ0, then∣∣∣∣Δα

α

∣∣∣∣ � ζγ 10−6β2 (48)

which for O(1) � β, ζγ is close to the reported detection.
However, the local density in most Lyα-emitting systems is

usually much larger than the cosmological background density
today (see, e.g., Brax et al. 2004 and references therein), which
implies φS � φ0 and the above estimate becomes even smaller.

To be able to account for the reported claims, we need zSSB
to be well before the observed redshift of these systems and/or
these systems to be located in voids to produce the desired 10−5

effect. This makes it possible that the symmetron is responsible
for the claimed variations, but will probably require a fine-tuning
ζγ � 1. A more detailed analysis, as done in Li et al. (2011b),
is required to see if this is the case. This is beyond the scope of
this paper.

3.6. N-body Equations

To implement the general relativistic Equations (5), (12), (13),
and (16) in N-body simulations, it suffices to work in the
nonrelativistic limits, since the simulations only probe the weak
gravity regime and small volumes compared with the cosmos.
We write the perturbed metric in the (flat) conformal Newtonian
gauge as

ds2 = −a2(1 + 2Ξ)dτ 2 + a2(1 − 2Ψ)dxμdxμ, (49)

where τ is the conformal time and xμ is the comoving coordi-
nate. In Appendix A we list the expressions for the Christoffel
symbols, the Ricci tensor, and the Ricci scalar for the metric
Equation (49), which are used in deriving the equations below.

The scalar field equation of motion in terms of the perturbed
quantities becomes

− (1 − 2Ξ)φ′′ + ∇2
xφ − φ′(2H (1 − 2Ξ) − Ξ′ − 3Ψ′)

= a2
(
φ

( ρm

M2
− μ2

)
+ λφ3

)
. (50)

Taking the quasi-static limit of this equation, in which we can
neglect terms such as Ξ′, Ψ′, and Hφ′ since the time derivative of
a quantity is much smaller than its spatial gradient, and removing
the background part, we obtain

∇2
xφ ≈ a2

M2
(ρmφ − ρmφ)

+ a2(μ2(φ − φ) + λ(φ3 − φ
3
)), (51)

where we have also used the approximation A(φ) ≈ 1 to
simplify the equation further.

7



The Astrophysical Journal, 748:61 (18pp), 2012 March 20 Davis et al.

The (0, 0)-component of the Ricci tensor and the trace of
the total energy-momentum tensor in the perturbed quantities
become

a2R0
0 ≈ − ∇2

x Ξ + 3

(
a′′

a
− H 2

)
(1 − 2Ξ)

− 3Ψ′′ − 3H (Ξ′ + Ψ′) (52)

T ≈ −A(φ)ρm − 4V (φ) +
1

a2
(1 − 2Ψ)φ′2. (53)

The (0, 0)-component of the Einstein equation with the back-
ground part removed gives the nonrelativistic Poisson equation

∇2
x Φ ≈ 4πG

(
ρm − ρm

)
a3, (54)

where we have neglected the contribution from the potential
(V (φ) − V (φ)), put A(φ) ≈ 1, and taken Φ = aΞ for
convenience.

The equation of motion for the N-body particles follows from
the geodesic equation and reads

ẍ + 2H ẋ = − 1

a3
∇xΦ − 1

a2

φ

M2
∇xφ − φφ̇

M2
ẋ. (55)

By rewriting this equation in terms of the conjugate momentum
to x, p = a2x, we have

dx
dt

= p
a2

(56)

dp
dt

= −1

a
∇xΦ − φ

M2
(∇xφ + φ̇p). (57)

Equations (51), (54), and (56) are all we need to put into the
N-body simulation code in order to study structure formation in
the nonlinear regime. The discretization of these equations, as
implemented in the N-body code, is shown in Appendix B.

4. N-BODY SIMULATIONS

Below we describe the algorithm and model specifications of
the N-body simulations we have performed. We also give results
from tests of the code to show that the scalar field solver works
accurately.

4.1. Outline

For our simulations we have used a modified version of
the publicly available N-body code MLAPM (Knebe et al.
2001). The modifications we have made follow the detailed
prescription of Li & Barrow (2011a), and here we only give a
brief description. The MLAPM code has two sets of meshes:
the first includes a series of increasingly refined regular meshes
covering the whole cubic simulation box, with, respectively, 4,
8, 16,..., Nd cells on each side, where Nd is the size of the domain
grid, which is the most refined of these regular meshes. This set
of meshes is needed to solve the Poisson equation using the
multigrid method or fast Fourier transform (for the latter only
the domain grid is necessary). When the particle density in a cell
exceeds a pre-defined threshold, the cell is further refined into
eight equally sized cubic cells; the refinement is done on a cell-
by-cell basis, and the resulting refinement could have arbitrary

Table 1
The Symmetron Parameters Used in Our Simulations

Model A B C D E F G H ΛCDM

zSSB 0.5 0.5 1.0 1.0 2.0 2.0 1.0 1.0 0.0
β 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.0
L 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 0.0

shape, which matches the true equal density contours of the
matter distribution. This second set of meshes is used to solve
the Poisson equation using the linear Gauss–Seidel relaxation
scheme.

The symmetron field is the most important ingredient in the
model studied here, and we have to solve for it to obtain detailed
information about the fifth force. In our N-body code, we have
added a new scalar field solver. It uses a nonlinear Gauss–Seidel
scheme for the relaxation iteration and the same criterion for
convergence as the default Poisson solver in MLAPM. However,
it uses V-cycle instead of the self-adaptive scheme in arranging
the Gauss–Seidel iterations.

The modified Poisson equation is then solved using nonlinear
Gauss–Seidel relaxation on both the domain grid and the
refinements. With the gravitational potential Φ and the scalar
field φ at hand, we can evaluate the total force on the particles
and update their momenta (velocities), which are used to
advance the particles in space.

4.2. Simulation Details

The physical parameters we use in the simulations are
as follows: the present dark-energy energy density ΩΛ =
0.733, total matter density Ωm = Ωb + Ωc = 0.267, baryon
density Ωb = 0.045, CDM density Ωc = 0.222, H0 =
71.9 km s−1 Mpc−1, ns = 0.963, and σ8 = 0.801. We
use a simulation box with size 64 Mpc h−1, in which h =
H0/(100 km s−1 Mpc−1). We simulate nine different models;
see Table 1 for the symmetron parameter values.

These parameters are chosen so that they predict local fifth
forces that are of the same order of magnitude as allowed by
current experiments and observations and are such that we can
see the effect of the different parameters. In this way the results
from our N-body simulations will show the maximum allowed
deviation from ΛCDM. Note that the energy density in the
symmetron is always much less than that of dark energy and
therefore does not alter the background cosmology, which in all
runs will be that of ΛCDM.

In all those simulations, the particle number is 2563, so that
the mass resolution is 1.114×109 Mpc h−1. The domain grid is
a 128×128×128 cubic and the finest refined grids have 16,384
cells on each side, corresponding to a force resolution of about
12 kpc h−1. The force resolution determines the smallest scale
on which the numerical results are reliable. Our simulations are
purely N-body, and baryons are treated as CDM, which means
that no baryonic physics has been included in the numerical
code.

The simulation box used, B = 64 Mpc h−1, is small compared
to linear scales, and we are therefore possibly neglecting effects
of mode coupling between linear and nonlinear scales. This
will have to be checked by simulations with a larger box size.
However, since the fifth force has a short range (� Mpc), it does
not reach far into the linear regime (see Figure 11), and therefore
we expect the accuracy on large scales to be the same as for the
ΛCDM simulations.
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Figure 5. Scalar field relative to the analytical solution before (random initial
values above) and after (below) the Newton–Gauss–Seidel relaxation.

4.3. Initial Conditions

Initial conditions for the simulation were generated using
GRAFIC2 (Bertschinger 2001; Prunet et al. 2008) by using the
parameters described above. The same initial conditions were
used for all the simulations in order to see clearly the effect of
the symmetron compared with ΛCDM.

This choice needs some justification. First of all, we start the
simulation at z = 49, a time in which the symmetron has no
effect on the growth of the perturbations. This means that the
only change the symmetron will have on the initial conditions
is on the value of σ8 today, which is used to normalize the
perturbations. Since the symmetron field has a rather short range
compared to the linear regime, we do not expect a large effect
on σ8 for the range L � O(1) we are considering.

To check this assumption, we integrated the perturbations and
calculated the value of σ8 (by normalizing to the CMB) for our
simulation models and found that the model with L = 1 that
is furthest away from ΛCDM, namely, F in which zSSB = 2.0,
L = 1, and β = 1, only has σ8 � 1.01σ LCDM

8 , justifying the use
of ΛCDM initial conditions.

If one is to consider models in which L is much larger than 1,
then this becomes an issue that should be dealt with properly.

4.4. Code Tests

Before we run simulations, we have to make sure that
the scalar field solver, which is the main modification to the
MLAPM code, works accurately by performing code tests
for situations where the outcome is known from analytical
solutions.

The scalar field solver uses the nonlinear Newton–Gauss–
Seidel relaxation scheme to compute χ ≡ φ/φ0, and an
indicator that it works is to show that, given the initial guess
of the solution that is very different from the true solution, the
relaxation could produce the latter within a reasonable number
of iterations. We consider a simulation box with homogeneous
density (obtained by putting particles on a regular grid inside
the simulation box); then the true solution is given by χ = χ :
the background solution. We therefore make an initial guess for
χ that is randomly scattered around χ and let the scalar field
solver solve for χ . The results for |χ − χ | before and after
the relaxation scheme are shown in Figure 5. The difference
between the initial guess and the true solution varies between
0.001 and 0.1, while after the relaxation the difference is of order
10−8. By using double-precision numbers in all the calculations,
we obtained exactly the analytical solution (to double precision

Figure 6. Scalar field value as a function of distance from the center for a
spherical overdensity embedded in a background of homogenous density ρb

together with the analytical solution for ρc = 4000, 6000, and 8000 times ρb .
The points shown here are calculated by binning the scalar field value using a
bin width Δ(r/R) = 0.01 and taking the average. We used the same amount
of particles, 1283, in each run so that the background density ρb differs for the
three cases shown above.

≈ 10−15), while using only floating point numbers the accuracy
dropped to 10−6, which is exactly the accuracy in floats. This
shows that the scalar field solver works accurately.

The most important effect of the symmetron is the screening
mechanism, in which the local value of the field should be
pushed down toward χ = 0 in high-density environments. We
therefore consider a spherical overdensity, located at the center
of the box, with a given radius R, homogeneous density ρc inside
R, and embedded in a background of homogenous density ρb.
The analytical solution reads

χ (r) = χ (0)
sinh [mcr]

mcr
, r < R (58)

χ (r) = χb +
(χ (R) − χb)R

r
e−mb(r−R), r > R (59)

where

m2
c �

( ρc

M2

)
, m2

b �
( ρb

M2
+ μ2

(
3χ2

b − 1
))

χb �
√

1 − ρb

ρSSB
, χ (R) = χb

(
1 + mbR

mcR

tanh(mcR) + mbR

)

χ (0) = χ (R)
mcR

sinh(mcR)
. (60)

For the trial solution on the grid we use the background value χb

and perform the test for a range of densities ρc. The results after
relaxation for the most massive cases are shown in Figure 6.
There are some small discrepancies from the analytical solution
in the region R < r < 2R for the most extreme cases
ρc > 103ρb. This is not a surprise as the density suddenly
drops over 3 orders of magnitude at r = R, meaning that we
need a lot of particles in this region in order to get accurate
results. In the region r < R and r > 2R the scalar field solver
produces the analytical solution to high accuracy.

5. NUMERICAL RESULTS

In this section we present the results from the simulations,
including the snapshots, the matter power spectrum, and the
halo mass function.

9
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Figure 7. Fifth force to gravity in a slice of the simulation box at z = 0 (left) and the comparison between four different redshifts (right) for a run with zSSB = 0.5,
β = 1, and L = 1. Black shows z = 0, red z = 0.25, blue z = 0.65, and green z = 1. The solid lines show (Fφ/Fgravity) = 2β2χ2

b (z), which is the prediction for the
(short-range) forces at the perturbation level (see Equation (39)). Note that the force will be dispersed around this prediction because we already have significant over-
and underdensities in which χ �= χb . At z = 1 the background field is close to χb = 0 and the force is small everywhere in space. As we move closer to z = 0, the
symmetry breaks, and the background value moves toward χb = 1. This means that the force in low-density regions (small gravitational force) will increase whereas
in high-density regions (strong gravitational force) the screening kicks in and the force becomes suppressed just as seen above. The numerical size of the forces is
given in terms of code units, which are H 2

0 /B times the physical force unit.

(A color version of this figure is available in the online journal.)

5.1. Snapshots

In the symmetron model χ ≡ φ/φ0, and thereby the fifth
force, is suppressed in high-density regions. In this subsection
we demonstrate these qualitative features using some snapshots.

Figure 7 shows the ratio of the fifth force to gravity today and
for redshifts both before and after zSSB.

At early times, the density is high everywhere and we expect
the fifth force on all particles to be strongly suppressed. At later
times we expect a screening in regions of high matter density.
These predictions are confirmed in Figure 7. We see that fifth
force on the particles that feel a strong gravitational force (i.e.,
particles in a high-density environment) is highly suppressed
whereas the fifth force on particles that feel a weak gravitational
force (i.e., particles in a low-density environment) follows the
unscreened theoretical prediction Fφ � 2β2χ2

b (z)Fgravity (see
Equation (39)).

Figures 8–10 show the density and scalar field distribution in
a slice of the simulation box at different redshifts for the three
cases zSSB = 0.5, 1.0, and 2.0 with β = L = 1.0 fixed.

For redshifts z > zSSB, χ is very close to the minimum
χ = 0 almost everywhere in space except in voids where the
symmetry has already been (weakly) broken. When we go down
to redshifts z < zSSB, the symmetry is broken in most parts of
the box, except in the high-density regions where we still have
χ ∼ 0. Comparing the scalar field distribution today for runs
with different zSSB, we see that the earlier the symmetry breaking
takes place, the part of the box that is unscreened (χ ∼ 1)
today becomes larger. This is because the critical density
for the symmetry breaking is larger for larger zSSB and therefore
the halos have to be more massive in order to be effectively
screened.

5.2. Matter Power Spectrum

The nonlinear matter power spectrum is an important observ-
able and could be used to distinguish between different models

of structure formation. As we have seen above, the symmetron
can have a strong effect on the growth rate of the linear pertur-
bations for parameters that are allowed by local experiments.
We expect these signatures to show up in the nonlinear matter
power spectrum.

Figure 12 displays the fractional difference in the mat-
ter power spectrum from that of ΛCDM, defined as (P (k) −
PΛCDM(k))/P (k), and in Figure 11 we show the actual power
spectra for the symmetron and ΛCDM together with the corre-
sponding predictions from linear perturbation theory.

Generally, the power spectrum is expected to be reliable up
to the scale

kmax = NeffkN/2, (61)

where kN/2 = πN
1/3
p /(4B) is half the particle Nyquist scale, Np

is the total number of particles, B is the box size, and Neff is a
factor determined by the adaptive nature of the code. For non-
adaptive simulations Neff = 1 and it was shown in Stabenau
& Jain (2006) that the power spectra cannot be trusted for
wavenumbers much larger than kN/2.

The MLAPM code, on the other hand, is adaptive, meaning
that Neff > 1, and allows us to go beyond the half Nyquist
scale. The exact value of Neff depends on the number of
refinements triggered in the whole simulation process, and for
our simulations we estimate Neff = 8–10. To be conservative,
we follow Zhao et al. (2011), which uses the same simulation
details as us but for the case of f (R) gravity, and take Neff = 7.
This translates into an estimate kmax � 22 h Mpc−1 for the
validity of our results.

This estimate can be invalidated by the contribution from shot
noise due to limited resolution at small scales. In Figure 13 we
show the expected shot-noise contribution in one of our simu-
lations together with the statistical error in the power spectrum
estimation computed by POWMES. We define kSN to be the
wavenumber such that the expected shot-noise contribution is

10
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Figure 8. Density distribution (left) and scalar-field distribution (right) for a run with zSSB = 0.5, β = 1, and L = 1. From top to bottom z = 1, z = 0.66, and z = 0.

(A color version of this figure is available in the online journal.)

below 5% for all k < kSN up to z = zSSB, which is the redshift
for which the symmetron power spectrum starts deviating from
ΛCDM, and overplot the scale k = min(kmax, kSN) in Figures 12
and 14. For all of our simulations we find kSN � kmax except
when zSSB = 2.0, where kSN � 12 h Mpc−1.

The power spectrum agrees with the predictions of linear
perturbation theory on large scales (k � 0.1 Mpc h−1), but
on smaller scales the results found here are weaker than
the prediction of linear perturbation theory seen in Figure 4.
This is because when linearizing the field equation we are
basically using the background matter density everywhere and
therefore preventing the symmetron mechanism from taking
effect in suppressing the fifth force when matter perturbations
become large. In contrast, the N-body simulation avoids this
approximation by taking full account of the suppression of the
fifth force.

The fractional difference relative to ΛCDM is growing with
zSSB and β as the fifth force has more time to operate and is

stronger. Comparing runs with the same β, we see an important
effect if the symmetry breaking is earlier. When zSSB = 2.0,
the fractional power is increasing until we reach a scale where
the screening mechanism becomes stronger and then starts to
decrease again toward ΛCDM, only to start growing again
at even smaller scales. This is because the critical density
for having screening is much higher for larger zSSB so that
most halos (which are on small scales and of low mass) are
unscreened.

In Figure 14 we show the redshift evolution of the power
spectrum. The power spectrum is found to be practically iden-
tical to that of ΛCDM for redshifts z > zSSB, but as soon
as the symmetry breaks at the background level, the sym-
metron fifth force can kick in and enhance the clustering of
matter.

It is clear from Figure 12 that there exist a large range of
parameters in which the symmetron model can be distinguished
from ΛCDM easily.
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Figure 9. Density distribution (left) and scalar-field distribution (right) for a run with zSSB = 1, β = 1, and L = 1. From top to bottom z = 1, z = 0.66, and z = 0.

(A color version of this figure is available in the online journal.)

5.3. Halo Profiles for χ

In Figure 15 we show the profile of χ inside the most massive
halos found in the simulation. Since the fifth force is proportional
to χ , this figure also provides information about the fifth force
in halos.

The field profile of χ is seen to increase from the inner to the
outer regions of the halos and shows that the fifth force is most
suppressed in the central region as expected.

The fifth force is stronger for smaller halos, because those
generally reside in low-density regions where the fifth force is
less suppressed. We see that the closer the symmetry breaking
redshift is to zero, the smaller χ becomes inside the halo and the
more suppressed the fifth force is. Again this is because early
symmetry breaking means a higher critical density and the halo
needs to be more massive to be effectively screened. This effect
is also seen in Figures 8–10 (note the difference in distribution
of χ at z = 0 between the different runs) and also on the matter
power spectrum in Figure 12.

This has some important consequences for the local con-
straints. We mentioned in Section 2 that the local constraints
were derived by assuming that our galactic neighborhood was
not screened today, and lead to the constraint

L(1 + zSSB)3/2 � 2.3. (62)

From our numerical results we see that when zSSB = 2.0,
only the most massive halos are screened. This means that the
assumption that went into the constraint above is very likely to
be true. On the other hand, for SSB that happens very close to
today, halos of much smaller mass are in fact screened and it
might be possible to have a range L that exceeds Equation (62)
and still be in agreement with experiments.

We note that we have not seen any significant effect on the halo
density profiles. For a given mass range, the halo profiles seem to
have approximately the same distribution. There should be some
important differences for low-mass halos, but the resolution in
our simulation is too low to study this.

12
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Figure 10. Density distribution (left) and scalar-field distribution (right) for a run with zSSB = 2, β = 1, and L = 1. From top to bottom z = 2.33, z = 1, z = 0.66,
and z = 0.

(A color version of this figure is available in the online journal.)

However, the halo number counts were significantly different
as we shall see in the next section.

5.4. Halo Mass Function

The halo mass function n is another key structure formation
observable. It is defined to be the number density of dark matter

halos within a given mass range. Because of the symmetron
fifth force, we expect more halos to be formed relative to the
standard ΛCDM scenario.

We first look at the total number of halos (the integrated mass
function) with more than 100 particles, which clearly shows the
effect of the fifth force (see Table 2).

13
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Figure 11. Full nonlinear power spectrum for a run with zSSB = L = β = 1.0
(dashed black) and ΛCDM (solid black). For comparison we also show the
corresponding predictions from linear perturbation theory in red. We clearly
see the effectiveness of the screening mechanism. The linear predictions do not
take the symmetron mechanism into account and are hugely overestimating the
power on small scales relative to ΛCDM.

(A color version of this figure is available in the online journal.)

In Figure 16 we have shown the mass function of the
symmetron compared to ΛCDM at z = 0. We see a significantly
higher mass function, especially for low-mass halos, which are
generally found in low-density regions where the fifth force

Table 2
The Total Halo Count for Our Nine Simulations at z = 0.0

Simulation A B C D E F G H ΛCDM

Total halo count 1634 1694 1678 1871 1758 2051 1671 1788 1607

Note. The corresponding symmetron parameters for the runs A–H can be found
in Table 1.

is unscreened. The earlier symmetry breaking occurs and the
stronger the coupling strength β, the more halos are formed in
agreement to what we would naively expect.

The mass function converges to that of ΛCDM at very large
halo masses for most parameters we have looked at. This is
because the most massive halos have taken a very long time
to form, and therefore when the symmetron kicks in at some
low redshift, the halo is already massive enough to be screened.
However, for the largest zSSB = 2.0 we do have small increases
in both the halo number density and the mass of the most
massive halos. There have been reports of some tension between
observations and ΛCDM predictions with regard to very massive
halos. Unfortunately, for the symmetron model to be able to
elevate this tension significantly we would need values of the
parameters that are in conflict with local experiments.

On the other hand, the symmetron seems to produce a large
excess of low-mass halos for some values of the parameters.
These are many times the satellite structures of main galactic or

Figure 12. Fractional difference in the nonlinear power spectrum relative to ΛCDM for {zSSB = 1.0, L = 1.0} (top left), {zSSB = 1.0, L = 2.0} (top right),
{zSSB = 0.5, L = 1.0} (bottom left), and {zSSB = 2.0, L = 1.0} (bottom right). For each case we show the results for the two values β = 0.5 and β = 1.0. The
vertical dotted line shows the scale min(kmax, kSN) (see Equation (61)), for which we expect our results to be reliable.

(A color version of this figure is available in the online journal.)
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Figure 13. Expected 1/Nparticles shot-noise contribution to the power spectrum,
Pshot−noise/P (solid), together with the statistical error ΔP/P in the power
spectrum estimation (dashed) for the two redshifts z = 0.0 (black) and z = 2.0
(orange) for a simulation with {zSSB = 2.0, L = 1.0, β = 1.0}. See Colombi
et al. (2009) for details about how the statistical error is computed. The vertical
dotted line shows the scale kSN � 12 h Mpc−1 for which the expected shot-noise
contribution is 5% at z = zSSB = 2.0.

(A color version of this figure is available in the online journal.)

cluster-sized halos. This increases the long-standing satellite
problem of ΛCDM, i.e., the lower abundance of satellite
structures seen in observations compared to N-body simulations.
We do not draw any conclusions about this at the present as the
resolution for the low-mass halos is relatively low plus baryonic
physics has not yet been included in our simulations. This point
might prove to be a useful constraint on the symmetron model
and more general models with a fifth force in the future.

There is a large range of viable parameters for the symmetron
where the mass function deviates significantly from ΛCDM.

6. SUMMARY AND CONCLUSIONS

The symmetron mechanism is a modification of gravity in
which a scalar field is non-minimally coupled to matter, but the
screening mechanisms result in potential fifth forces evading
local gravity tests. Despite this, the symmetron does affect
structure formation. We have investigated this with N-body
simulations, finding observable signatures in the matter power
spectrum and the halo mass function. Whilst the symmetron

suffers from the same fine-tuning problems as chameleon
models, it has the advantage of looking like a more natural
effective theory.

The energy density of the symmetron is too low to contribute
to the dark energy, and we must therefore add a cosmologi-
cal constant to get accelerated expansion of the universe. The
background evolution of the symmetron model is simply indis-
tinguishable from that of the ΛCDM model.

This degeneracy is broken by the linear perturbations. In
particular, we have shown that the linear growth index γ (z, k)
can have a significant scale and redshift dependence together
with a value today that can be distinguished from the ΛCDM
prediction for a large part of the parameter space.

The structure formation in the nonlinear regime was inves-
tigated by using N-body simulations. N-body simulations have
the advantage over linear theory in its ability of fully captur-
ing the nonlinear environmental dependence of the symmetron
field. Our results confirm the expectation that in high-density
environments the fifth force becomes screened. Consequently,
the key observables such as the nonlinear matter power spec-
trum are closer to the ΛCDM predictions than expected from a
linear analysis.

We found that the symmetron can still produce large observ-
able signatures in both the nonlinear matter power spectrum and
the halo mass function, which could in principle be detected
by current and near-future cosmological observations such as
Euclid.

Note that in the simulations performed in this work, we have
treated baryons as dark matter. However, since the symmetron
field has a uniform coupling to all matter fields, we expect that
all the results will qualitatively remain even after baryons are
included. This has to be explicitly checked from simulations.
Baryons are known to have a significant effect on small-scale
structures, and a natural extension of our work is to study the
effects of baryons when a fifth force is present. This is much
more computationally expensive and is left for future work.

In conclusion, the symmetron model has been found to have a
wide range of observable cosmological effects on both linear and
nonlinear scales. This adds to the list of observational signatures
like making galaxies brighter (Davis et al. 2011), environment
dependence of dark matter halos (Winther et al. 2011), and
the possibility of being detected in near-future local gravity
experiments (Hinterbichler & Khoury 2010), to mention some.

Figure 14. Fractional difference in the nonlinear power spectrum relative to ΛCDM for {zSSB = 0.5, L = 1.0, β = 1.0} (left) and {zSSB = 1.0, L = 1.0, β = 1.0}
(right) as a function of redshifts. The vertical dotted line shows the scale min(kmax, kSN) (see Equation (61)), for which we expect our results to be reliable.

(A color version of this figure is available in the online journal.)
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Figure 15. Left: the halo profile of χ in the most massive halo of the simulation for three different symmetry breaking redshifts. Right: the halo profile of χ for four
halos of mass (from top to bottom) M = {5 × 1012, 1013, 5 × 1013, 1014}Msun/h in the same simulation where zSSB = 2.0. In both cases we have fixed β = L = 1.

Figure 16. Halo mass function for {zSSB = 1.0, L = 1.0} (top left), {zSSB = 1.0, L = 2.0} (top right), {zSSB = 0.5, L = 1.0} (bottom left), and {zSSB = 2.0, L = 1.0}
(bottom right). The solid black line shows the prediction of ΛCDM (β = 0), and the dotted and dashes lines are for the two values β = 0.5 and β = 1.0, respectively.
We also show the fractional difference from ΛCDM. Note that we have smoothed the mass function over neighboring bins to remove noise arising from the binning
to show the trends more clearly.
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The symmetron is therefore a good candidate for the detection
of new physics beyond the standard model.
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APPENDIX A

USEFUL EXPRESSIONS

Up to first order in the perturbed metric variables Ξ, Ψ the
non-zero components of the symmetric Levi-Civita connection
are

Γ0
00 = a′

a
+ Ξ′ (A1)

Γ0
0k = Ξ, k (A2)

Γi
00 = Ξ, i (A3)

Γi
0k =

(
a′

a
− Ψ′

)
δi
k (A4)

Γ0
jk = δjk

(
a′

a
(1 − 2Ξ − 2Ψ) − Ψ′

)
(A5)

Γi
jk = −Ψ, kδ

i
j − Ψ, j δ

i
k + Ψi

,δjk. (A6)

From these expressions we find that the components of the Ricci
tensor and Ricci scalar are found to be

R00 = Ξ,ii −3

(
a′′

a
−

(
a′

a

)2
)

+ 3Ψ′′

+ 3
a′

a
(Ψ′ + Ξ′) (A7)

R0j = 2Ψ′
, j + 2

a′

a
Ξ, j (A8)

Rij = − Ψ′′δij − a′

a
(Ξ′ + 5Ψ′)δij − Ψk

, kδij

+

(
a′′

a
+

(
a′

a

)2
)

(1 − 2Ψ − 2Ξ)δij

− (Ξ − Ψ), ij (A9)

R = 6
a′′

a3
(1 − 2Ξ) +

1

a2

(
4Ψk

, k − Ξk
, k

)
− 6

a2

(
Ψ′′ +

a′

a
(Ξ′ + 3Ψ′)

)
. (A10)

APPENDIX B

DISCRETIZATION OF EQUATIONS

To implement the nonrelativistic equations into our numerical
code, we have to rewrite them using code units, which are given
by

xc = x
B

, pc = p
H0B

, tc = tH0, χ = φ

φ0

�c = �

(H0B)2
, ρc = ρm

ρm
,∇ = B∇x, (B1)

where subscript c stands for code units, B is the box size,
H0 = 100 km s−1 Mpc−1, and an overline denotes background
quantities. In what follows we shall write ∇ = ∇c for simplicity.

B.1. Scalar Field Equation of Motion

The equation of motion for χ in code units becomes

ac2

(BH0)2
∇2χ � a3

(
χ − χ + χ3 − χ3

) (
μ

H0

)2

+ 3Ωm

(
Mpl

M

)2

(ρcχ − χ), (B2)

where χ is the background solutions and we have used φ2
0 =

μ2/λ to simplify. Note that χ varies in the region 0 � χ2 � 1.
Discretized this equation becomes Lh(χi,j,k) = 0, where

Lh(χi,j,k) = 1

h2

ac2

(BH0)2
(χi+1,j,k − 2χi,j,k + χi−1,j,k)

+
1

h2

ac2

(BH0)2
(χi,j+1,k − 2χi,j,k + χi,j−1,k)

+
1

h2

ac2

(BH0)2
(χi,j,k+1 − 2χi,j,k + χi,j,k−1)

− a3

(
μ

H0

)2

(χ − χi,j,k) ×

× (
1 − χ2

i,j,k − χχi,j,k − χ2
)

− 3Ωm

(
Mpl

M

)2

(ρcχi,j,k − χ ). (B3)

The Newton–Gauss–Seidel iteration says that we can obtain a
new and more accurate solution of χnew

i,j,k using our knowledge
about the old solution χold

i,j,k as

χnew
i,j,k = χold

i,j,k − Lh
(
χold

i,j,k

)
∂Lh

(
χold

i,j,k

)
/∂χold

i,j,k

(B4)

where

∂Lh(χi,j,k)

∂χi,j,k

= − 6

h2

ac2

(BH0)2
+ a3

(
μ

H0

)2 (
1 − 3χ2

i,j,k

)

− 3Ωm

(
Mpl

M

)2

ρc. (B5)

B.2. Poisson Equation

Since we can neglect the scalar field contribution to the
Poisson equation, it remains unmodified from that of ΛCDM
and reads (in code units)

∇2Φc = 3

2
Ωm(ρc, i, j, k − 1). (B6)
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B.3. Particle Equation of Motion

Using the code units, Equation (56) can be rewritten as

dxc

dtc
= pc

a2
(B7)

dpc

dtc
= −1

a
∇Φc − χ

(
βM

Mpl

)2 (
c2∇χ

(BH0)2
+

dχ

dtc
pc

)
. (B8)

The factor (M/Mpl)2 can be also rewritten in terms of L, β, and
zSSB by using Equation (22).
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ABSTRACT

We investigate the environment dependence of dark matter halos in the symmetron modified gravity scenario. The
symmetron is one of three known mechanisms for screening a fifth force and thereby recovering general relativity in
dense environments. The effectiveness of the screening depends on both the mass of the object and the environment
it lies in. Using high-resolution N-body simulations we find a significant difference, which depends on the halo’s
mass and environment, between the lensing and dynamical masses of dark matter halos similar to the f (R) modified
gravity. The symmetron can however yield stronger signatures due to a freedom in the strength of coupling to matter.
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1. INTRODUCTION

Many theories of high-energy physics, such as string theory
and supergravity, predict light gravitationally coupled scalar
fields (see, e.g., Binetruy 2006; Linde 2008, and references
therein). These scalars may play the role of dark energy
(quintessence). If these scalar fields have non-minimal coupling
to matter fields, then they could mediate extra forces and are po-
tentially detectable in local experiments and from observations
on cosmological scales.

Several laboratory and solar system experiments over the
last decades have tried to detect a sign of such fundamental
coupled scalar fields (Adelberger 2002; Hoskins et al. 1985;
Decca et al. 2007; Bertotti et al. 2003), but the results so far show
no signature of them. Naively, the results of these experiments
have ruled out any such scalar fields, which also can have an
effect on the large-scale structure of the universe, unless there
is some mechanism which suppresses the scalar fifth force on
small scales where the experiments are performed. One should
keep in mind that general relativity (GR) is only well tested
on length scales ranging from millimeters to the size of the
solar system. Comparing this to the size of the horizon, this
leaves a wide range of scales where there could be deviations
from GR.

To this day we know three such types of theoretical mecha-
nisms (see Khoury 2010 for a review) that can explain why light
scalars, if they exist, may not be visible in experiments per-
formed near the Earth. One such class, the chameleon mecha-
nism (Khoury & Weltman 2004; Brax et al. 2004, 2010b; Clifton
et al. 2005; Mota & Barrow 2004a, 2004b; Mota & Shaw 2007),
operates when the scalars are coupled to matter in such a way
that their effective mass depends on the local matter density. In
regions where the local mass density is low, the scalars would be
light and deviations from GR would be observed. But near the
Earth, where experiments are performed, the local mass den-
sity is high and the scalar field would acquire a heavy mass
making the interactions short range and therefore unobserv-
able. This mechanism is the reason why f (R) modified gravity
can lead to viable cosmologies and still evade local gravity
constraints.

The second mechanism, the Vainshtein mechanism
(Vainshtein 1972; Deffayet et al. 2002; Arkani-Hamed et al.
2003), operates when the scalar has derivative self-couplings
which become important near matter sources such as the Earth.
The strong coupling near sources essentially cranks up the ki-
netic terms, which translates into a weakened matter coupling.
Thus, the scalar screens itself and becomes invisible to experi-
ments. This mechanism is central to the phenomenological via-
bility of braneworld modifications of gravity and galileon scalar
theories (Dvali et al. 2000; de Rham et al. 2008; Nicolis et al.
2008; Hinterbichler et al. 2010; Mota et al. 2010; Gabadadze
2009; de Rham 2010; Brax et al. 2011a).

The last mechanism, the one explored in this paper, is
the symmetron mechanism (Hinterbichler & Khoury 2010;
Hinterbichler et al. 2011; Olive & Pospelov 2008; Brax et al.
2011c; Gannouji et al. 2010). In this mechanism, the vacuum
expectation value (VEV) of the scalar depends on the local
matter density, becoming large in regions of low mass density,
and small in regions of high mass density. The scalar couples
with gravitational strength in regions of low density, but is
decoupled and screened in regions of high density. This is
achieved through the interplay of a symmetry-breaking potential
and a universal quadratic coupling to matter. A similar screening
mechanism applies for the environmentally dependent dilaton
model (Brax et al. 2010a).

In vacuum, the scalar acquires a nonzero VEV which sponta-
neously breaks the Z2 symmetry φ → −φ. In regions of suffi-
ciently high matter density, the field is confined near φ = 0, and
the symmetry is restored. The fifth force arising from the matter
coupling is proportional to φ, making the effects of the scalar
small in high-density regions. Because of this effect, dark matter
halos in high-density regions will produce different scalar fifth
forces compared to those in low-density regions.

This effect has been studied for the case of f (R) gravity
(chameleon mechanism) in Zhao et al. (2011b), Schmidt (2010),
and the Dvali–Gabadadze–Porratti (DGP) model (Vainshtein
mechanism) in Schmidt (2010). It was found that in the
DGP model the screening of halos is almost independent of
environment while in f (R) gravity there can be a significant
environmental dependence. Another signature that has been
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found recently in f (R) and symmetron models is that the
luminosity of galaxies (Davis et al. 2011b) might also depend
on the environment.

Recent work on the symmetron has focused on background
cosmology, linear (Brax et al. 2011c) and nonlinear structure
formation (Davis et al. 2011a), and also made halo scale
predictions (Clampitt et al. 2012). In this paper, we use the
high-resolution N-body simulations of Davis et al. (2011a) to
study the environment dependence of dark matter halos in the
symmetron modified gravity scenario (see, for instance, Zhao
et al. 2011a; Li & Zhao 2009, 2010; Li et al. 2011; Ferraro
et al. 2011; Oyaizu et al. 2008; Schmidt 2009; Hellwing &
Juszkiewicz 2009; Brax et al. 2011b for N-body simulations
within other scenarios of modified gravity).

This paper is organized as follows. In Section 2, we recall the
main properties of the symmetron model which are relevant for
our analysis. Then, in Section 3, we introduce the dynamical
and lensing masses of a halo and explain how these are obtained
from the N-body simulations. In Section 4, we explain how we
define the environment of a halo in our analysis. The main results
are shown and discussed in Section 5, and we also compare our
simulation results to semianalytical predictions in Section 6.
Finally, we summarize and give our conclusions in Section 7.

2. SYMMETRON REVIEW

The symmetron modified gravity is a scalar field theory
specified by the following action:

S =
∫

dx4√−g

[
R

2
M2

pl − 1

2
(∂φ)2 − V (φ)

]
+ Sm(g̃μν, ψi),

(1)

where g is the determinant of the metric gμν , R is the Ricci
scalar, ψi are the different matter fields, and Mpl ≡ 1/

√
8πG,

where G is the bare gravitational constant. The matter fields
couple universally to the Jordan frame metric g̃μν , which is a
conformal rescaling of the Einstein frame metric gμν given by

g̃μν = A2(φ)gμν. (2)

The equation of motion for the symmetron field φ following
from the action Equation (1) reads

�φ = V,φ + A,φρm ≡ Veff,φ, (3)

where the potential is chosen to be of the symmetry-breaking
form

V (φ) = −1

2
μ2φ2 +

1

4
λφ4 (4)

and the coupling is quadratic in φ to be compatible with the
φ → −φ symmetry

A(φ) = 1 +
1

2

(
φ

M

)2

. (5)

The effective potential can then be written as

Veff(φ) = 1

2

( ρm

M2
− μ2

)
φ2 +

1

4
λφ4, (6)

from which the range of the scalar field (i.e., the range of the
resulting fifth force) can be found as

λφ ≡ 1√
Veff,φφ

. (7)

The range of the field in vacuum, denoted λ0, is given by
λ0 = 1/

√
2μ.

In high-density regions where ρm > μ2M2, the effective
potential has a minimum at φ = 0. The fifth force, given by

Fφ = ∇A(φ) = φ

M2
∇φ, (8)

is proportional to φ and will be suppressed. In vacuum, or
in large underdensities, where ρm � μ2M2, the φ → −φ
symmetry is broken and the field settles at one of the two
minima φ = φ0 ≡ ±μ/

√
λ. The fifth force between two small

test masses in such a region will achieve its maximum value
compared to gravity,

Fφ

FN

= 2M2
pl

(
d ln A

dφ

)2

φ=φ0

= 2β2. (9)

For very large bodies in the sense that

α−1 ≡ 2
ρSSB

ρbody

(
λ0

Rbody

)2

� 1, (10)

the situation is quite different (Hinterbichler & Khoury 2010).
Here, the symmetry is restored in the interior of the body and
the fifth force on a test mass outside becomes suppressed by a
factor α−1:

Fφ

FN

= 2β2 1

α
. (11)

If the body lies in a high-density environment, where φ =
φenv < φ0, the fifth force will be further suppressed by a factor
(φenv/φ0)2. Thus, there are two ways a body can be screened: it
can be large enough so as to make α−1 � 1 or it can be located in
a high-density region where φenv � φ0. The latter in particular
leads to an environment dependence of the fifth force in a dark
matter halo which we will investigate in the next section.

Instead of working with μ, M, and λ we chose to define
three more physically intuitive parameters L, β, and zSSB
which are the (vacuum) range of the field in Mpc h−1, the
coupling strength to matter, and the cosmological redshift
where symmetry breaking takes place on the background level,
respectively. The conversion to the original model parameters is
given by

L = λ0

Mpc h−1
= 3000H0√

2μ
, (12)

β = φ0Mpl

M2
= μMpl√

λM2
, (13)

(1 + zSSB)3 = μ2M2

ρm0
. (14)

3. THE DYNAMICAL AND LENSING MASSES

In any universally coupled scalar-field theory, like the sym-
metron, we have the choice of describing the dynamics of the
model in two mathematically equivalent frames defined by
choosing either gμν or g̃μν in Equation (2) as the space–time
metric. In the Einstein frame, the one described by Equation (1),
gravity is described by standard GR, but the geodesic equation

2
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is modified compared to GR:

ẍμ + Γμ
αβ ẋαẋβ = −d log A(φ)

dφ
(φ,μ + 2φ,β ẋβ ẋμ). (15)

In the Jordan frame gravity is described by a scalar–tensor-
like modified gravity theory, but the matter particles follow the
geodesics of the space–time metric g̃μν :

ẍμ + Γ̃μ
αβ ẋαẋβ = 0, (16)

where Γ̃ is the Levi-Civita connection of g̃μν . The prediction of
the theory is usually easier to derive in the Einstein frame and
the corresponding quantities can be found in the Jordan frame
by performing the transformation Equation (2).

Working in the Einstein frame and the conformal Newtonian
gauge, the line element can be written as

ds2 = a2(η)[−dη2(1 + 2ΦN ) + (1 − 2ΦN )dx2], (17)

where ΦN is the usual Newtonian potential. Transforming to the
Jordan frame using Equation (2) we find

ds2 = a2(η)[−dη2(1 + 2Φ) + (1 − 2Ψ)dx2], (18)

where

Φ � ΦN + δA(φ), (19)

Ψ � ΦN − δA(φ), (20)

with

δA(φ) ≡ A(φ) − 1 = 1

2

(
φ

M

)2

. (21)

Note that we have neglected a term6 2ΦNδA(φ) � ΦN in
the equations above. In the solar system deviations from GR
are often phrased in terms of the so-called parameterized post-
Newtonian (PPN) parameter γ . In the case of the symmetron,
we have

γ = Ψ
Φ

= ΦN − δA(φ)

ΦN + δAφ)
= 1 − 2δA(φ)

ΦN + δA(φ)
. (22)

The solar system constraints for the symmetron were derived
in Hinterbichler & Khoury (2010) and give a constraint on
the range of the field and the symmetry-breaking redshift:
L(1 + zSSB)3 � 2.3 (Davis et al. 2011a).

Typically observations of, e.g., clusters probe forces (gradi-
ents of the potentials) instead of the potentials themselves and
different observables are related to different combinations of the
potentials. The fifth-force potential is given by the difference in
the above two potentials:

Φ− = Φ − Ψ
2

= δA(φ). (23)

Lensing, on the other hand, is affected by the lensing potential

Φ+ = Φ + Ψ
2

= ΦN, (24)

6 For the symmetron, it was shown in Davis et al. (2011a) that
δA(φ) � δA(φ0) ∼ β2 × 10−6 which for the values of β �O(1) we are
interested in is much less than one.

which satisfies the Poisson equation

∇2Φ+ = 4πGa2δρm. (25)

This is the same equation as in GR since the action of the
electromagnetic field is conformally invariant and thus photons
do not feel the scalar fifth force. In general, there will also be a
contribution from the clustering of the scalar field 4πGa2δV (φ),
but in our case this term is negligible as the difference in the
clustered and unclustered energy density of the scalar field is
always much less than the energy density of matter in a halo.7

We define the lensing mass as

ML = 1

4πGa2

∫
∇2Φ+dV, (26)

which is the actual mass of the halo. It is determined from the
N-body simulations by counting the number of particles within
a given radius. For spherical symmetry we can use Stokes’
theorem,

∫ ∇2Φ+dV = ∫ ∇Φ+ · dS = 4πr2(dΦ+/dr), which
gives

ML(r) ∝ r2 dΦ+

dr
. (27)

The dynamical mass MD(r) of a halo is defined as the mass
contained within a radius r as inferred from the gravitational
potential Φ, i.e.,

MD(r) = 1

4πGa2

∫
∇2ΦdV, (28)

where the integration is over the volume of the body out to radius
r. For spherical symmetry, we can again use Stokes’ theorem on
the right-hand side to find

MD(r) ∝
∫

r2 dΦ(r)

dr
= r2

(
dΦN

dr
+

φ

M2

dφ

dr

)
. (29)

The terms in the brackets are recognized as the sum of the
gravitational force and the fifth force. In our N-body simulations,
we measure MD of a halo by first using a halo finder to locate the
particles which make up the halo and binning them according
to radius. Then, we calculate the average total force in each
radial bin by summing over all the particles in the bin. Note
that the force obtained in this way can have a contribution
from the particles outside the halo. For spherical symmetry, this
contribution largely cancels out and we are left with the total
force produced by the halo itself. Observationally, MD can be
determined from measurements of, e.g., the velocity dispersion
of galaxies in halos (Schmidt 2010).

In GR, the lensing mass is the same as the dynamical mass,
but they can be significantly different in modified gravity. We
follow Zhao et al. (2011b) and define the relative difference

ΔM (r) = MD

ML

− 1 = dΦ−/dr

dΦ+/dr
. (30)

This allows us to quantity the difference between the two masses
in the simulations. In GR, we have ΔM ≡ 0 while in the
symmetron model ΔM will vary depending on the mass of the

7 The potential energy of the scalar field satisfies |δV (φ)| �
|V (φ0) − V (0)| = μ4/4λ ∼ ρSSBβ2

(
M/Mpl

)2 � ρm0β
2(1 + zSSB)3 × 10−6.

For β, zSSB �O(1) this term is negligible compared to the energy density of
matter in a halo.
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Figure 1. Three-dimensional distribution of the halos in the simulation box for a simulation with zSSB = 0.5 and β = L = 1.0. Left: the blue (D < 10) and purple
(D > 10) spheres are 500 randomly selected halos in the mass range 11.5 < log10(ML/Msun h−1) < 12.5. Because of the definition of the environment equation (32)
the largest halos in the simulation will almost always be in a low-density environment and we therefore separate out the 50 most massive halos and show these
separately in black with a fixed size for the spheres. Middle and right: the value of ΔM for the clustered halos (log10 D < 1) and the isolated halos (log10 D > 1),
respectively.

(A color version of this figure is available in the online journal.)

halo and the environment it lies in. The theoretical maximum is
achieved for small objects in a low-density environment where
the screening is negligible and reads (see Equation (9))

ΔMax
M (r) = 2β2. (31)

In the next section, we will apply these to the N-body simulation
results.

4. DEFINING THE ENVIRONMENT

The environment a halo lies in can have large effects on
the fifth force that operates by the halo since the fifth force is
directly proportional to the spatial gradient of the square of the
local field value (see Equation (29)). This value is small in high-
density regions and this will provide the halo with an additional
screening to the self-screening due to its size or mass.

As a result, when looking for an environmental dependence it
is crucial to choose a definition of the environment that does
not correlate heavily with the halo mass. The quantity one
chooses should also allow for an easy determination both in
our simulations and in observations. Such a quantity was found
in Haas et al. (2011) and used in the same analysis as we have
done, but for the case of f (R) gravity (Zhao et al. 2011b). This
quantity,

DN,f ≡ dN,MNB/ML�f

rNB
, (32)

is defined as the distance to the Nth nearest neighbor whose mass
exceeds f times the halo under consideration divided by the virial
radius of the neighboring halo. A large value of D indicates that
the halo lives in a low-density environment in the sense that it
has no larger halos close by. It was shown in Haas et al. (2011;
see also Fakhouri & Ma 2009, 2010) that the quantity D ≡ D1,1
represents the local density well and is almost uncorrelated with
the halo mass. We have explicitly checked that this is also the
case for our simulations.

We follow Zhao et al. (2011b) and define a high-density
environment as log10 D < 1 and a low-density environment

as log10 D > 1. Halos in low- and high-density environments
will be called isolated halos and clustered halos, respectively. In
order to study the variation of ΔM with halo mass we will say that
a halo with ML/(Msun h−1) > 5 × 1012 is a large halo, while a
halo with 5×1011 < ML/(Msun h−1) < 2×1012 is a small halo.
The lower limit comes from the fact that smaller halos in our
simulations are not well resolved (less than ∼500 particles per
halo) and will therefore not be used in this analysis. This choice,
arbitrary as it might seem, is made so that we have approximately
equal numbers of halos in each of the two categories.

In Figure 1, we show the three-dimensional halo lensing mass
distribution together with the corresponding value of ΔM in
the simulation box for one of the simulations. Each sphere
represents a halo; in the left panel the size of the spheres is
proportional to the halo lensing mass ML and in the other
two panels it is proportional to ΔM ; the color indicates the
environment of the halos as illustrated by the legend. This plot
shows the environmental dependence clearly: in high-density
environments the value of ΔM is generally smaller than in low-
density environments, and the definition of the environment used
here is capable of capturing this behavior fairly well.

5. RESULTS

We use the N-body simulations of Davis et al. (2011a) which
have been performed using a modified version (Li & Barrow
2011) of the publicly available N-body code MLAPM (Knebe
et al. 2001). The simulation suite consists of six simulations with
different model parameters {β,L, zSSB} shown in Table 1, and
we have calculated ΔM for the halos found in these simulations.
The initial conditions for the symmetron models are the same
for each simulation and allow for a direct comparison of the
effects of the different parameters in the theory. The halos in
the simulation have been found with the halo finder MHF (Gill
et al. 2004) using the definition Mvir = M(r340) ≡ M340 for the
halo mass, where r340 is the radius of the halo where the local
density is ρ = 340ρ.
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Table 1
The Symmetron Parameters for Each of the N-body Simulations A–F Together

with Some Relevant Cosmological and N-body Parameters
(Same for All Simulations)

Parameter Value
Ωm 0.267

Simulation A B C D E F ΩΛ 0.733

zSSB 0.5 0.5 1.0 1.0 2.0 2.0 h 0.719

β 0.5 1.0 0.5 1.0 0.5 1.0 σ8 0.801

L 1.0 1.0 1.0 1.0 1.0 1.0 ns 0.963

Nparticles 2563

B0 64 Mpc h−1

Note. For a complete list of parameters see Davis et al. (2011a).

The condition for screening of an isolated halo (i.e., not
taking the environment into account) can be found theoretically.
For a spherical top-hat overdensity with radius r340 and density
ρ = 340ρm0, we have

ΔM (r340)

ΔMax
M

�
{
α−1 α � 1,

1 α � 1,
(33)

where α is given in Equation (10). The condition for screening,
α � 1, can be written as

M340

1012 Msun h−1
� 0.6(1 + zSSB)3L2

(
r340

Mpc h−1

)
, (34)

where M340 = (4π/3)ρr3
340 is the halo mass. This condition

is not accurate for real halos as the top-hat approximation is
very crude (Clampitt et al. 2012), but it nevertheless is able to
capture the essence of the screening mechanism. In Table 2, we
show the ratio of halos more massive than 5 × 1011 Msun h−1

which are expected to be screened in the different simulations
based on this simple approximation. The effectiveness of the
symmetron screening mechanism increases with increasing halo
mass M340 and decreasing symmetry-breaking redshift zSSB.
This is because a larger value of zSSB means the symmetry is
broken at higher matter densities and consequently a larger halo
mass is required to restore the symmetry.

In Figure 2, we show ΔM (r340) for our simulations as a
function of the environment for both large (blue circles) and
small (purple circles) halos. First, we note that the predictions
from simulations with different β are very similar and the
only real effect of changing β is to change the normalization
factor ΔMax

M = 2β2. This can be understood from noting that
changing β only affects the geodesic equation (15) and not
the Klein–Gordon equation8 (3). However, for simulations with
larger β we will on average have more massive halos because
the fifth force, and therefore the matter clustering, is stronger.
This effect, which for our simulations is very small, can also be
seen in Table 2. Second, we note that the predictions of ΔM (r340)
for high-mass and low-mass halos in low-density environments
are easy to separate at 1σ for all our simulations. The small
dispersion about the solid curves (which represent the average

8 The Klein–Gordon equation (3) can be written as
�ψ = (1/2λ2

0)[(ρ/ρm0(1 + zSSB)3) − 1 + ψ2]ψ where ψ = φ/φ0. Using this
variable the fifth force can be written F = β2(M/Mpl)2ψ∇ψ . Thus, the
solution ψ is independent of β and its only the geodesic equation, through the
fifth force, which has a β dependence.

Table 2
The Percentage of Halos More Massive than 5 × 1011 Msun h−1 Which are

Expected to be Screened (to Some Degree) in the Different Simulations Based
on the Approximation Equation (34)

Simulation A B C D E F

Screened 99.82% 99.83% 64.38% 65.27% 13.91% 14.12%

Notes. There is a very small difference between the simulations where β = 0.5
(A, C, E) compared to β = 1.0 (B, D, F) even though the screening is
only sensitive to L and zSSB. This small difference comes from the fact that
simulations with stronger β will in general have more massive halos.

values in the two mass bands) seen in Figure 2 is due to the
difference in the halo masses within each mass band.

To see this more closely, we have used the size of the circles
(which represent halos) to denote their masses: bigger circles
are more massive halos. We can see the clear trend that ΔM

decreases with increasing circle size (or halo mass), and this
confirms that in a given environment the screening of a halo,
or equivalently ΔM , depends very sensitively on the mass of
that halo. Third, for very high density environments D → 0
we recover GR independent of the halo mass for all of our
simulations, which is because the local value of φ in a very high
density environment (which is often a part of or very close to a
very massive halo) is small and so the fifth force is suppressed.

In Figure 3, we show ΔM (r340) for our simulations as a
function of the halo mass in both high-density (purple circles)
and low-density (blue circles) environments. This figure shows
that GR is recovered for larger halos, independent of the
environment, as expected from Equation (34). For low-mass
halos we see a significant dispersion of ΔM from 0 to the
maximum value obtained in low-density environments for the
same mass ranges. This is because low-mass halos cannot
efficiently screen themselves and must rely on the environment
to get the screening. The environment, defined by D, ranges
from D = 0 up to D = 10 for these halos, and the lower the
value of D the better screened the halo will be. To observe this
point more clearly, in the figure we have also used the size
of the circles to denote the value of D: the bigger circles are
halos in environments with larger D (or lower density) and vice
versa. As expected, we see a clear trend that the small halos
which are efficiently screened generally reside in high-density
environments, while those which are less screened lie in low-
density environments.

Massive halos, on the other hand, can screen themselves
efficiently and the environment only plays a small role in their
total screening.

In Figure 4, we show ΔM (r) as a function of the distance
r from the halo center, for small and large halos in high- and
low-density environments respectively. Again we see a large
difference between large halos in dense environments and small
halos in low-density environments. The r dependence of ΔM (r)
is seen to be rather weak in high-density environments since the
value of the scalar field inside the halo is mainly determined by
the environment, while in low-density environments the value
of the scalar field mainly depends on the mass of the halo, which
leads to a stronger r dependence. Note also that in all the figures
above the deviation from GR is stronger for higher symmetry-
breaking redshift zSSB, as expected from Equation (34), and for
larger values of the coupling β, which implies a stronger fifth
force and therefore a stronger effect.

It should be emphasized that the environment dependences
that are seen in the figures above will depend on the way the
halos are binned, i.e., our definitions in Section 4.
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Figure 2. ΔM (r340)/ΔMax
M as a function of the environment for large halos ((ML/Msun h−1) > 5 × 1012, blue) and small halos ((ML/Msun h−1) < 2 × 1012, purple)

where ΔMax
M = 2β2 and where the size of the circles increases with the mass of the halos. The error bars are 1σ . We see a clear difference between the values of ΔM

for what we have defined as high-mass and low-mass halos.

(A color version of this figure is available in the online journal.)
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Figure 3. ΔM (r340)/ΔMax
M as a function of the halo lensing mass ML for high-density environments (D < 10, purple) and low-density environments (D > 10, blue)

where ΔMax
M = 2β2 and where the size of the circles increases with D (i.e., a smaller circle indicates a denser environment). The error bars are 1σ . For the high-mass

halos we recover GR independent of the environment as the effectiveness of the screening increases with mass.

(A color version of this figure is available in the online journal.)
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Figure 4. ΔM (r)/ΔMax
M as a function of the rescaled halo radius r/r340, where ΔMax

M = 2β2, for high- (D < 10) and low- (D > 10) density environments and small
(red) and large (blue) halos. The error bars are 1σ . For comparison, we show the profile for all halos in the simulation (dashed green) in each plot and this curve has
been displaced −5% in the r-direction to more clearly see the error bars.

(A color version of this figure is available in the online journal.)
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Figure 5. gvir as a function of halo mass for the isolated halos (D > 10)
in a simulation with {β = 1.0, L = 1.0, zSSB = 0.5} compared with the
semianalytical results of Clampitt et al. (2012, Figure 3 (red)). The dashed
black line shows the GR prediction gvir = 1. The semianalytical results are for
isolated halos and agree very well with the maximum gvir in our simulations.
Note that the symmetron parameters used in Clampitt et al. (2012), {β = 1.0,
L = 1.2, zSSB = 0.54}, are slightly different compared to our simulation, and
also the definition M = M300 was used for the virial mass as opposed to our
M = M340.

(A color version of this figure is available in the online journal.)

The results shown above are for halos at redshift z = 0.
Another signature in the symmetron scenario is the redshift
dependence of ΔM . For halos at large redshifts, z > zSSB, we
have ΔM ≈ 0, independent of the environment and mass as
the symmetry has not been broken at the background level
and φ ∼ 0 almost everywhere in space, as demonstrated in
Figures 7–10 in Davis et al. (2011a). If this signature is found
in observations, then by dividing the observational samples
into bins according to redshift one can probe the value of the
symmetry-breaking redshift zSSB. The maximal strength of the
deviation will again probe β, which can help to distinguish
the symmetron from f (R) gravity. If, for example, one finds
ΔMax

M > (1/3) then f (R) cannot account for the deviation.

6. COMPARISON WITH ANALYTICAL RESULTS

During the completion of this work a paper (Clampitt et al.
2012) came out with semianalytical halo scale predictions for
the symmetron. In their analysis they assumed an NFW profile
and calculated the symmetron fifth force for isolated halos. The
quantity of interest is gvir (see Clampitt et al. 2012; Schmidt
2010 for details) which in our notation is given by

gvir = 1 +

∫
r3ρ(r)FNΔM (r)dr∫

r3ρ(r)FNdr
, (35)

where FN is the gravitational force and gvir is the average force
to the average gravitational force over the halo. Since galaxies
are spread around inside the halo, a measurement of the velocity
dispersion of galaxies would therefore measure such an average.
One of the cases shown in Clampitt et al. (2012) can be compared
to our simulation results, and as a consistency check we perform
this comparison.

In Figure 5, we show gvir together with the predictions from
Clampitt et al. (2012). The results from their analysis seem to
be in good agreement with our numerical results. It would be
interesting to see if their analysis can be extended by taking the
environment into account to obtain the simulation results we

have presented here. This would allow for an easier comparison
with future observations as N-body simulations are in general
very time-consuming.

7. SUMMARY AND CONCLUSIONS

We have studied the environment dependence of the masses
of dark matter halos in the symmetron modified gravity scenario.
The potential governing the dynamics of the matter fields
(Φ− + Φ+) can differ significantly from the lensing potential
Φ+ in this model, which leads to a clear difference between the
mass of the halo as obtained from dynamical measurements and
that obtained from gravitational lensing. Such an effect found in
the symmetron model can be significantly stronger than in f (R)
gravity. This signature, which is unique to modified gravity, can
in practice be measured by combining dynamical (e.g., velocity
dispersion) and lensing mass measurements of clusters of
galaxies or even single galaxies. We find that the environmental
dependence is strongest for small halos as very large halos are
sufficiently massive to be able to screen themselves. This implies
that using dwarf galaxies (Jain & Vanderplas 2011) might prove
the best way to probe this effect.

This feature of environmental dependence discovered also
allows us, in principle, to distinguish between different modified
gravity scenarios such as f (R), more general chameleons, DGP,
and the symmetron. In both DGP and f (R), the maximum
fractions of the fifth force to the Newtonian force in halos
are around 30% while in chameleon/symmetron scenarios
this fraction can be either smaller or larger, depending on
the value of the coupling strength β. DGP differs from f (R)
and the symmetron in that there is basically no environmental
dependence. There is also the possibility of measuring the
redshift evolution of this effect by measuring clusters at high
and low redshifts. As the symmetron force is negligible for
z > zSSB we will recover the GR predictions for all clusters,
independent of mass and environment, at high redshifts.

Since different modified gravity theories can be highly
degenerate with regard to both background cosmology and the
growth rate of linear perturbations, it is crucial to identify new
probes which can be used to separate them from each other. If
one of these models is realized in nature then only a combination
of many different probes will be able to pin down the correct
theory. However, the first step would be to detect a deviation
from GR, and a detection of the effect considered in this paper
will be a smoking gun for modified gravity. It will therefore be
very interesting to look for this effect using data from upcoming
large-scale structure surveys.

The simulations used in this paper have been performed
on TITAN, the computing facility at the University of Oslo
in Norway. D.F.M. and H.A.W. thank the Research Council
of Norway for FRINAT Grant 197251/V30. D.F.M. is also
partially supported by project PTDC/FIS/111725/2009 and
CERN/FP/116398/2010. B.L. is supported by Queens’ Col-
lege, the Department of Applied Mathematics and Theoretical
Physics of University of Cambridge, and the Royal Astro-
nomical Society. H.A.W. thanks S. K. Næss for many useful
discussions.
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We consider modified gravity models driven by a scalar field whose effects are screened in high density

regions due to the presence of nonlinearities in its interaction potential and/or its coupling to matter. Our

approach covers chameleon, fðRÞ gravity, dilaton and symmetron models and allows a unified description

of all these theories. We find that the dynamics of modified gravity are entirely captured by the time

variation of the scalar field mass and its coupling to matter evaluated at the cosmological minimum of its

effective potential, where the scalar field has sat since an epoch prior to big bang nucleosynthesis. This

new parametrization of modified gravity allows one to reconstruct the potential and coupling to matter and

therefore to analyze the full dynamics of the models, from the scale dependent growth of structures at the

linear level to nonlinear effects requiring N-body simulations. This procedure is illustrated with explicit

examples of reconstruction for chameleon, dilaton, fðRÞ and symmetron models.

DOI: 10.1103/PhysRevD.86.044015 PACS numbers: 04.50.Kd, 98.80.�k

I. INTRODUCTION

The discovery of the acceleration of the expansion of the
Universe [1] has led to a reappraisal of some of the tenets
of modern cosmology. In particular, the possibility of
modifying the laws of gravity on short or large scales is
taken more and more seriously [2].

In view of Weinberg’s theorem stating that any Lorentz
invariant field theory involving spin-2 fields must reduce to
general relativity (GR) at low energy [3], any attempt to
modify GR must involve extra degree(s) of freedom. The
majority of known models involve scalar fields and can be
separated into two broad classes, the ones involving non-
linearities in the kinetic terms and others with nonlinear
interaction potentials. All these models have a coupling
of the scalar field to matter and there could be an environ-
mental dependence which would manifest itself in the
screening behavior of the scalar field in high density
regions [4,5]. Examples of such models abound: the dila-
tonic models [6,7] generalizing the Damour-Polyakov
mechanism [8] where the coupling to gravity turns off
in dense environments, the chameleon models [9–13]
where a thin shell shielding the scalar field in dense bodies
is present, and the symmetron models [14–20] where the
scalar field has a symmetry breaking potential where the
field is decoupled at high density.

Some models are essentially spin-offs of the previous
ones like the fðRÞ theories [21–31] (for recent reviews of
the fðRÞ gravity see [32,33]) which are only valid when
they behave like chameleon theories with a thin shell

mechanism in dense environments [31]. In all these
examples, the large-scale properties on cosmological dis-
tances are intimately linked to the small-scale physics as
probed in the solar system or laboratory tests of gravity.
Stringent constraints on the possible modifications of grav-
ity follow from the cosmology of these models too. In
particular, they may lead to potentially lethal variations
of particle masses or Newton’s constant during big bang
nucleosynthesis (BBN). This must be avoided at all costs
as this may destroy the formation of elements, one of the
big successes of the big bang model. Such a catastrophe
can be avoided provided the scalar fields sit at the
minimum of the density dependent effective potential prior
to BBN. If this is the case, then the minimum of these
models is stable enough to prevent large excursions of the
scalar field and therefore of scalar masses/Newton’s con-
stant when the electron decouples during BBN. One of the
most important consequences of this fact, which is com-
mon to chameleons, dilatons and symmetrons is that the
cosmological background with the scalar field at the den-
sity dependent minimum of the effective potential behaves
essentially like the�-cold dark matter (�CDM) model and
is therefore almost indistinguishable from a cosmology
comprising matter, radiation and a pure cosmological con-
stant. This is a major drawback and would immediately
render irrelevant the modified gravity/dark energy models
with screening properties.
Fortunately, this is far from being the case as first

anticipated in [10,34] where the equation governing the
density contrast of CDM was first studied. Indeed, inside
the Compton wavelength of the scalar field, the density
contrast grows anomalously compared to its usual growth
in the matter dominated era. If this discrepancy were large
enough on astrophysical scales, this may be detectable by
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future galaxy surveys. It turns out that the perturbation
equation at the linear level depends on the time evolution
of the scalar field mass and the coupling strength to matter.
With these two functions, all the time and space properties
of the linear perturbations can be calculated.

In fact, these two time-dependent functions capture a lot
more about the modified gravity models with screening
properties: they allow one to reconstruct fully and uniquely
the whole nonlinear dynamics of the models [5,35]. Hence
given these two functions, not only can one compute linear
perturbations, but one can study the gravitational pro-
perties of the models in the solar system and laboratory
experiments. One can also analyze the cosmological be-
havior of the models withN-body simulations. This way of
defining the models, a reversed engineering procedure
from the mass and coupling functions to the nonlinear
dynamics, is a lot more versatile than the usual direct route
where a model is defined by its Lagrangian comprising the
kinetic terms and an interacting potential. Indeed, all the
usual models such as chameleons, fðRÞ, dilaton and sym-
metrons can be explicitly rediscovered by specifying
the particular ways the mass and coupling functions behave
in time. Moreover, one can design new families of models.
At the linear level of cosmological perturbations, this
approach is equivalent to a space and time dependent
parametrization [36–45] in terms of the two Newtonian
potentials obtained in the Jordan frame: the modified
Poisson equation and the constitutive relation linking the
two Newtonian potentials are directly and uniquely deter-
mined by the mass and coupling functions in the Einstein
frame. For instance, we shall see below that one recovers
the phenomenological description of fðRÞ models which
uses a space and time dependent parametrization [40] as a
simple application of our formalism.

The paper is arranged as follows: in a first part we
describe the modified gravity models with scalar fields
and their cosmological background and gravitational prop-
erties. We only study models where gravity is modified due
to nonlinearities in the potential and/or the coupling func-
tion of the scalar field to matter. Our analysis excludes the
cases where the kinetic terms are not canonical and leading
to the Vainshtein screening mechanism. We then describe
the tomography of models with canonical kinetic terms, i.e.
how to reconstruct their full dynamics using the time
evolution of the mass and coupling functions. In Sec. IV,
we focus on fðRÞ models. In Sec. V we analyze the growth
of structure. In Sec. VI, we consider the constraints on
these models resulting from the variation of the fundamen-
tal constants. We conclude in Sec. VII.

Throughout this paper the metric convention is chosen
as ð�;þ;þ;þÞ; Greek indices ð�; �; � � �Þ run over
0, 1, 2, 3 while Latin indices ði; j; k; � � �Þ run over 1, 2, 3.
We shall adopt the unit c ¼ 1 and mPl denotes the Planck
mass. Unless otherwise stated a subscript 0 will always
mean the present-day value of a quantity.

II. MODIFIED GRAVITY

In this paper we propose a parametrization of a broad
class of theories with a scalar degree of freedom, such as
the chameleon, dilaton and symmetron theories, and fðRÞ
gravity. The success of these theories relies on mechanisms
that suppress the fifth force in local, high-matter-density
environments. We will find that the complete nonlinear
Lagrangian comprising the kinetic terms and the interac-
tion potential together with the coupling of the scalar field
to matter can be reconstructed from the knowledge of the
scalar field mass mðaÞ and the coupling strength �ðaÞ as
functions of time when the field sits at the minimum of the
density dependent effective potential.
This mechanism relies on the fact that the scalar field

must track that minimum since before BBN in order to
preserve the constancy of particle masses at this epoch. In
this section, we recall the setting of scalar field models and
analyze their background evolution.

A. Modifying gravity with a scalar field

The action governing the dynamics of a scalar field � in
a scalar-tensor theory is of the general form

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
m2

Pl

2
R� 1

2
ðr�Þ2 � Vð�Þ

�

þ
Z

d4x
ffiffiffiffiffiffiffi�~g

p
Lmðc ðiÞ

m ; ~g��Þ; (1)

where g is the determinant of the metric g��, R is the Ricci

scalar and c ðiÞ
m are various matter fields labeled by i. A key

ingredient of the model is the conformal coupling of �
with matter particles. More precisely, the excitations of

each matter field c ðiÞ
m couple to a metric ~g�� which is

related to the Einstein-frame metric g�� by the conformal

rescaling

~g�� ¼ A2ð�Þg��: (2)

The metric ~g�� is the Jordan frame metric. Wewill analyze

these models in the Einstein frame and come back to the
Jordan frame picture later.
The fact that the scalar field couples to matter implies

that the scalar field equation becomes density dependent.
More precisely, the scalar field equation of motion (EOM)
is modified due to the coupling of the scalar field � to
matter:

h� ¼ ��T þ dV

d�
; (3)

where T is the trace of the energy momentum tensor T��,
h � r�r� and the coupling of � to matter is defined by

�ð�Þ � mPl

d lnA

d�
: (4)

This is equivalent to the usual scalar field EOM with the
effective potential
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Veffð�Þ ¼ Vð�Þ � ½Að�Þ � 1�T: (5)

The role of this effective potential Veffð�Þ is crucial in all
the modified gravity models we will consider. In essence,
the effective potential is required to possess a unique
matter dependent minimum in the presence of pressureless
matter where T ¼ ��m. The resulting potential

Veffð�Þ ¼ Vð�Þ þ ½Að�Þ � 1��m (6)

has a minimum �minð�mÞ. The mass of the scalar field at
the minimum

m2 ¼ d2Veff

d�2

���������min

(7)

must be positive. In many cases (such as the generalized
chameleon and dilaton models discussed below) Vð�Þ is a
decreasing function and �ð�Þ is an increasing function as
�, though this is not the case for the generalized symme-
tron model.1 This guarantees that the effective potential
always has a minimum. In a cosmological setting we will
also impose that m2 � H2 with H being the Hubble
expansion rate. It can be shown easily that, depending on
the shapes of Vð�Þ and �ð�Þ, the chameleon, fðRÞ, dilaton
and symmetron models are all described in a such a way.

When matter is described by a pressureless fluid with

T�� ¼ �mu
�u� (8)

and u� � dx�=d� where � is the proper time, the matter
density �m is conserved

_�m þ ��m ¼ 0 (9)

where � � r�u
� and the trajectories are determined by

the modified geodesics

_u � þ �
_�

mPl

u� ¼ ��
@��

mPl

: (10)

In the weak-field limit with

d s2 ¼ �ð1þ 2�NÞdt2 þ ð1� 2�NÞdxidxi; (11)

and in the nonrelativistic case, this reduces to the modified
geodesic equation for matter particles

d2xi

dt2
¼ �@ið�N þ lnAð�ÞÞ: (12)

This can be interpreted as the motion of a particle in the
effective gravitational potential defined as

� ¼ �N þ lnAð�Þ; (13)

and is clearly a manifestation of the dynamics of modified
gravity.

When a particle of mass M in a homogeneous back-
ground matter density is the source of gravity, the scalar
field satisfies

ðr2 þm2Þ� ¼ �
M

mPl

	ð3ÞðrÞ; (14)

in which 	ð3ÞðrÞ is the three-dimensional Dirac 	 function
and m the scalar field mass in the background, implying
that

� ¼ �ð1þ 2�2e�mrÞGNM

r
; (15)

where GN ¼ ð8
Þ�1m�2
Pl is the Newton constant. When

��Oð1Þ and m�1 � r, this implies a substantial devia-
tion from Newton’s law. For bodies much bigger than a
point particle following the modified geodesics, nonlinear
effects imply that the effective coupling felt by the body is
much smaller than� or the mass becomes much larger than
the inverse of the typical size of the body (m�1 � r). This
is what happens in the chameleon model and fðRÞ gravity
(the latter) and the dilaton and symmetron models (the
former), and guarantees that solar system and laboratory
tests of gravity are evaded.

B. Screening of modified gravity

In this section, we shall unify the description for the
screening2 mechanisms [4,5] involved in the chameleon,
fðRÞ gravity, dilaton and symmetron models. As we shall
see, the screening of large and dense bodies can be ex-
pressed with a single criterion generalizing the thin-shell
condition for the chameleon models. The constraints we
find are typically stated in terms of the scalar field massm0

in the cosmological background today and the current
Hubble scale H0, making � � H0=m0 a key quantity.
Physically, � represents the range of the scalar fifth force
to the Hubble radius and a particular value that will be
recurrent is m0=H0 � 103 or �� 10�3. This value means
that the scalar field leaves its mark up to scales of the order
of megaparsec, which again signals the transition where
the modifications of gravity can be seen on linear pertur-
bations or not.

1. Chameleons

The chameleon models (at least in their original form
[9]—see [10–13,34] for other proposals) are characterized
by a runaway potential and a nearly constant coupling �.
Chameleons are screened deep inside a massive body,
where the field settles at the minimum �c of Veffð�Þ and
stays constant up until a radius Rs close to the radius of the
body, R. In this case, the field profile is given by

1For the generalized symmetron models, the potential is not
monotonic but has the shape of a Mexican hat. However, in the
part of the potential which will be of interest here, it is mono-
tonically decreasing.

2To be clear, the ‘‘screening’’ of a body refers to the fact that
the deviation from Newtonian gravity, i.e., the fifth force exerted
by this body on a nearby test mass, is suppressed to evade local
constraints—in analogy to the screening of the electric force
from a charged particle.
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� ¼ �c; R 	 Rs (16)

The field varies sharply inside a thin shell according to

1

r2
d

dr

�
r2

d�

dr

�
¼ �

�m

mPl

; Rs 	 r 	 R (17)

and decays outside

� ¼ �1 � �

4
mPl

�
1� R3

s

R3

�
M

r

e�m1ðr�RÞ

r
(18)

where�1 is the minimum of the effective potential outside
the body and m1, M are respectively the masses of the
scalar field and the body. At short distance compared to the
large range m�11 , the effective gravitational potential is

� ¼ �
�1
mPl

þGNM

r

�
1þ 2�2

�
1� R3

s

R3

	�
: (19)

Gravity is strongly modified by a factor (1þ 2�2) if there
is no shell inside the body (i.e., Rs ¼ 0) and one retrieves
GR when Rs is close to R where

�R

R
¼ j�1 ��cj

6�mPl�N

; (20)

with �R � R� Rs and �N � GNM=R is the Newtonian
potential at the surface of the body. The mass is screened
when

j�1 ��cj � 2�mPl�N; (21)

which is also the criterion to have a thin shell.
More precisely, this implies several very stringent ex-

perimental constraints on the chameleon models. The first
one comes from the Lunar Ranging experiment [46] which
measures the acceleration difference between Earth and the
Moon in the gravitational field of the Sun

� ¼ 2ðaearth � amoonÞ
aearth þ amoon

& 10�13: (22)

For the chameleon model we have [9]

� 
 �2

�
�R�
R�

	
2
; (23)

implying that

�
�R�
R�

& 10�7: (24)

The Cassini experiment [47] imposes that the modification
of the unscreened Cassini satellite in the vicinity of the Sun
should be such that

�2 �R�
R�

& 10�5: (25)

Another type of constraint comes from cavity experiments
where two small test bodies interact in a vacuum cavity
[48]. This implies that

�
�Rcav

Rcav

& 10�3: (26)

Finally, a loose bound must be imposed to guarantee that
galaxies are not far off from being Newtonian [49]

�
�Rgal

Rgal

& 1; (27)

otherwise the modifications of gravity would have
been seen by now in observations of galaxy clusters.
These constraints strongly restrict the parameter space of
the chameleon models.

2. Symmetrons

Symmetrons [16–20] are models with a Mexican hat
potential, a local maximum at the origin and two global
minima at 
�? like for example

Vð�Þ ¼ V0 þ�2�2
?

�
� 1

2

�
�

�?

	
2 þ 1

4

�
�

�?

	
4
�
: (28)

In general the term ð�=�?Þ4 can be replaced by any even
function which is bounded below, without changing the
qualitative properties of the model.
Meanwhile, the coupling behaves like

Að�Þ ¼ 1þ A2

2
�2; (29)

close to � ¼ 0.
Let us consider a spherically dense body that is em-

bedded in a homogeneous background. Inside this body the
matter density �m is constant and the scalar field profile is

� ¼ C
sinhmcr

r
; r < R; (30)

where the scalar field mass is given by m2 ¼ A2�m ��2

and��2 is the negative curvature of the potential Vð�Þ at
the origin. The field outside the body, on scales shorter than
the large range m�11 associated to the scalar field value �1
which minimizes Veffð�Þ outside, is

� ¼ �1 þD

r
; r > R; (31)

where

C ¼ �1
mc coshmcR

;

D ¼ sinhmcR�mcR coshmcR

mc coshmcR
�1:

(32)

If the body is dense enough, we have m2
c 
 A2�m and

mcR � 1, implying thatD 
 �R�1. Identifying the cou-
pling to matter �1 ¼ mPlA2�1, we find that the modified
Newtonian potential outside the body is
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� ¼ �GNM

r

�
1þ A2�

21
�N

�
þO

�
R2

r2

	

¼ �GNM

r

�
1þ �21

A2m
2
Pl�N

�
þO

�
R2

r2

	
: (33)

for r sufficiently large compared to R. For R � r � m�11
the fifth force is screened provided

2A2m
2
Pl�N � 1; (34)

which is equivalent to

j�1 ��cj � 2mPl�1�N; (35)

where �c ¼ 0. Note that this is the same screening crite-
rion as in the chameleon case.

The screening in the symmetron model depends on A2,
�N and the environment through the environmental field
value �1. Two test masses which are not screened when
put in vacuum will be screened by a factor ð�1=�?Þ2 if
they are in a region of high matter density (which implies
�1 � �?).

The transition of the minimum of Veffð�Þ from� ¼ 0 to
� ¼ �? in the cosmological background happens in the
recent past of the Universe provided

�2 � A2�m0; (36)

where �m0 is the present matter density. For a polynomial
potential Vð�Þ, the mass-squaredm2

? at the minimum�? is
of order �2, implying that the mass of symmetrons in the
present cosmological background satisfies

m2
0 � A2m

2
PlH

2
0 ; (37)

One may see effects of modified gravity on astro-
physical scales when m0=H0 & 103 which implies that
A2m

2
Pl & 106.

Using the screening criterion we find that the Sun and
the Milky Way with �� � 10�6 are marginally screened
whereas Earth with �� � 10�9 and the Moon with
�moon � 10�11 are not screened. However, for the Solar
System tests such as the Lunar Ranging experiment3 and
the Cassini satellite, what is more relevant is the value of
the symmetron field �gal in the Milky Way, which deter-

mines the strength �ð�galÞ of the modification of gravity.

This imposes

A2�
2
gal

��
& 10�5: (38)

For a generic symmetron potential we have4 �2
gal � �1

�gal
�2

?

where �? is the minimum of Veffð�Þ in the cosmological
background with matter density �1. Using

�1
�gal

� 10�6, this

leads to

10�6�2
?

1

2A2m
2
Pl��

� 10�6

��
H2

0

m2
0

& 10�5 (39)

which is easily satisfied for m0=H0 � 103. Finally, in cav-
ity experiments, the field � inside the cavity is almost
identical to the field in the bore, i.e., �� 0, implying no
deviation from usual gravity in such experiments.

3. Dilaton

Dilatonic theories [6,7] are very similar to symmetrons
inasmuch as they share the same type of coupling function,

Að�Þ ¼ 1þ A2

2
ð���?Þ2; (40)

but they differ as the dilaton potential Vð�Þ is a monotoni-
cally decreasing function of �. All the dynamics can be
analyzed in the vicinity of �? as the minimum of the
effective potential is close to �? for large enough A2.
The density dependent minimum of Veffð�Þ is given by

�minð�mÞ ��? ¼ �V0ð�?Þ
A2�m

; (41)

with the mass given by

m2 ¼ m2
? þ A2�m; (42)

where m? ¼ mð�?Þ and the potential is chosen to be a
quintessence potential such that m2

? �H2
0 .

Let us consider a spherically dense body. Inside the body
we have

� ¼ �c þ C
sinhmcr

r
; r < R; (43)

and outside

� ¼ �1 þD

r
; (44)

for distances shorter than the range m�11 . When mcR � 1,
we find that

D 
 �Rð�1 ��cÞ; (45)

and the effective Newtonian potential is

� ¼ �GNM

r

�
1þ A2ð�1 ��cÞð�1 ��?Þ

�N

�
þO

�
R2

r2

	
;

(46)

for R � r � m�11 . Outside the body we have

�1 ��? ¼ �1
A2mPl

(47)

with �1 ¼ �ð�1Þ and therefore

V 0ð�?Þ ¼ ��1
�1
mPl

; (48)

from which we deduce that

3The Nordtvedt effect leads to a weak bound [16].
4See Eq. (19) in [16] for a more accurate expression.
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�1 ��c ¼ �1
A2mPl

�
1� �1

�c

	
; (49)

and finally

� ¼ �GNM

r

�
1þ �21

A2m
2
Pl�N

�
1� �1

�c

	�
þO

�
R2

r2

	
:

(50)

for R � r � m�11 . The screening criterion is (almost) the
same as in the symmetron case

2A2m
2
Pl�N �

�
1� �1

�c

	
; (51)

or equivalently

j�1 ��cj � 2�ð�1ÞmPl�N; (52)

which is the same as in the chameleon and dilaton cases.
The mass of the dilaton today in the cosmological

background is

m2
0 
 A2�m0 ¼ 3A2m

2
Pl�m0H

2
0 ; (53)

in which �m0 is the present value of the fractional energy
density of matter�m, implying that A2m

2
Pl � 106 for mod-

els with m0=H0 � 103.
As in the symmetron case, this implies that both the Sun

and the Milky Way are marginally screened when sur-
rounded by the cosmological vacuum. But given that
what matters for the magnitude of modified gravity is the
dilaton value �1 ¼ �gal in the Milky Way, the Cassini

bound can be written as

A2ð�gal ��cÞð�gal ��?Þ
�N

& 10�5; (54)

which leads to

1

A2m
2
Pl��

�1
�gal

& 10�5: (55)

Using �1
�gal

� 10�6, we see that the Cassini bound is satisfied

for dilatons.

4. The screening criterion

We have seen that all the models of the chameleon,
dilaton and symmetron types lead to a screening mecha-
nism provided that

j�1 ��cj � 2�ð�1ÞmPl�N; (56)

where �c is the value inside the body assumed to be at the
minimum of the effective potential, �1 is the minimum
value outside the body and�N is Newton’s potential at the
surface of the body. This is a universal criterion which is
independent of the details of the model. In fact, it depends
only on the values of the scalar field which minimizes the
effective potential Veffð�Þ inside and outside the body. If
this criterion is satisfied, then the value inside the body
does not deviate much from the minimum value there.

Phenomenologically, we have just recalled that stringent
local constraints on modified gravity can be expressed in
terms of the screening condition. In the following we shall
assume that the Milky Way satisfies the screening criterion.
When this is the case, local tests of gravity in the Solar
System and in the laboratory can be easily analyzed as�gal

can be determined analytically. In the chameleon, dilaton
and symmetron cases, this allows one to determine bounds
on the ratio m0=H0 which essentially dictates if modified
gravity has effects on astrophysical scales. The screening
condition for the Milky Way may be relaxed slightly for
some model parameters because it is itself in a cluster
with higher density than the background. In this case, full
numerical simulations are required to determine �gal and

see if local tests of gravity are satisfied. This may enlarge
the allowed parameter space of the models slightly and
lead to interesting effects. Numerical simulations are left
for future work.
One of the advantages of the screening condition is that

it only depends on the minimum values of the scalar field in
different matter densities. In the following section, we will
find an explicit formula for �c ��1 which depends only
on the time variation of the massmðaÞ and coupling�ðaÞ in
a cosmological background. This may seem surprising as
the behavior of the scalar field may appear to be loosely
connected to the scalar field dynamics in a static environ-
ment. In fact, the relation between both regimes of modi-
fied gravity, cosmological and static, follows from the fact
that the scalar field sits at the minimum of its effective
potential Veffð�Þ since before BBN. As it evolves from
BBN through the dark ages and then the present epoch, the
cosmological values of the scalar field experience all the
possible minima of Veffð�Þ. Hence realizing a tomography
of the cosmological behavior of the scalar field, i.e., just
knowing its mass and coupling to matter as a function of
time since before BBN, will allow us to analyze the gravi-
tational properties of the models.

5. The reason for a universal screening condition

As we have seen in the examples above, we get the same
screening condition for all known models. Below we argue
why this is the case for a whole range of models satisfying
only some simple assumptions.
We start with the most general model for the behavior of

the scalar field in matter

r2� ¼ Veff;� ¼ V;� þ �ð�Þ�m

mPl

(57)

and we will analyze the standard setup (a spherical body of
density �c and radius R embedded in a background of
density �1) under the following assumptions:
(1) The effective potential has a matter dependent

minimum �ð�Þ.
(2) For any (physical) solution to the field equation, the

mass of the field at r ¼ 0, mS ¼ mð�S; �cÞ, is a
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positive monotonically increasing function of the den-
sity �c and satisfies5 lim�c!1mð�Sð�cÞ; �cÞ ¼ 1.

(3) Outside the body, where �1 � �c, and within
the Compton wavelength of the field m�11 the solu-
tion to the field equation is well approximated by
� ¼ �1 þ D

r . This means that a first order Taylor

expansion around �1 holds outside the body.

Now we can look at the solutions to the field equation
under the previous assumptions. The field starts out
at some field value � ¼ �S inside the body, and close to
r ¼ 0 the solution can therefore be written

� ¼ �S þ B

�
sinhðmSrÞ

mSr
� 1

	
(58)

for some constant B. We can for our purposes, without loss
of generality, assume that B> 0. Because of our assump-
tion on mS, for a large enough �c the field must start off
very close to the minimum � ¼ �c inside the body where
the driving force Veff;� vanishes. Otherwise the solution

(� emSr=r) grows too fast inside the body and overshoots
the exterior solution. For a sufficiently large �c the field
stays close to �c almost all the way to6 r ¼ R. It follows
from a second order Taylor expansion around �S that this
is guaranteed to be the case as long as

Veff;���ð�S; �cÞð�1 ��SÞ
Veff;��ð�S; �cÞmSR

� 1: (59)

When all these conditions are satisfied, there exists a
critical solution in the limit �c ! 1 which reads

� ¼ �c r < R; (60)

� ¼ �1 þ ð�c ��1ÞR
r

r > R; (61)

which, apart from the numerical values of �1 and �c, is
completely model independent. This critical solution and
its implications, for the case of power-law chameleon
theories, was discussed in [9]. Another regime which can
be described by exact solutions without having to solve
model dependent equations is realized when �1 �
�1mPl�N . In this regime the theory is effectively linear
and the solution reads

� ¼ �1 þ �1�cR
2

6mPl

�
r2

R2
� 3

	
r < R; (62)

� ¼ �1 � �1�cR
3

3mPlr
r > R; (63)

where �1 ¼ �ð�1Þ. This is the same type of solution as
found in Newtonian gravity, and the fifth force to gravity
ratio on a test mass outside the body is

F�

FG

¼ 2�21; (64)

while for the critical solution we find

F�

FG

¼ 2�21
� j�1 ��cj
2�1mPl�N

	
: (65)

Comparing the two cases we see that the critical solution
corresponds to a screened fifth force given that

j�1 ��cj � 2�1mPl�N; (66)

which is exactly the screening condition we have found for
chameleons, symmetrons and dilatons by solving the field
equation explicitly. It is easy to show that the assumptions
we started with do hold for these models. The critical
solution, which formally only holds in the limit �c ! 1,
will be a good approximation for the case of finite �c as
long as the screening condition holds by a good margin.
As current local gravity experiments give very tight con-
straints, if one wants to have cosmological signatures i.e.
�1 ¼ Oð1Þ, then this will be true in most cases.
For the case where j�1 ��cj � 2mPl�1�N we would

have to solve the model dependent equation to get accurate
solutions. These solutions will interpolate between the two
regimes found above, see e.g. [50] for a thorough deriva-
tion of chameleon equations in all possible regimes.

C. Cosmological scalar field dynamics

Here we consider the cosmological evolution of the
scalar field � in modified gravity models with a minimum
of Veffð�Þ at which the scalar field mass m satisfies
m2 � H2. The cosmology of the scalar field is tightly
constrained by BBN physics due to the coupling of the
scalar field to matter particles. The fact that the scalar field
evolves along the minimum of Veffð�Þ implies that the
masses of fundamental particles

mc ¼ Að�Þmbare; (67)

in which mbare is the bare mass appearing in the matter
Lagrangian, evolve too. In practice, tight constraints on the
time variation of masses since the time of BBN

�mc

mc
¼ �

��

mPl

; (68)

where �� is the total variation of the field since BBN,
impose that �mc =mc must be less than �10%. At a

5As �c ! 1 we have �S ! �c; the minimum for the matter
density is �c. The reason we explicitly write the limit here instead
of taking �S ¼ �c directly is to account for models where
lim�!�c

Veff;�� ¼ 0, but where lim�c!1Veff;��ð�Sð�cÞ;�cÞ¼1
as can be the case for generalized symmetron models as we shall
see later on. Loosely speaking we can state this condition as
follows: the mass at the minimum inside the body is increasing
with �c.

6For chameleons the solution only grows in a thin-shell close
to the surface, but for large enough densities the field hardly
moves at all.
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redshift of order ze 
 109, electrons decouple and give a
‘‘kick’’ [10] to the scalar field which would lead to a large
violation of the BBN bound. To avoid this, the field must be
close to the minimum of Veffð�Þ before ze and simply
follow the time evolution of the minimum given by

dV

d�

���������min

¼ ��
�m

mPl

: (69)

Moreover, the total excursion of the scalar field following
the minimum must be small enough. In practice, we will
always assume that j�=mPlj � 1 along the minimum
trajectory, implying that the BBN bound for the time
dependent minimum is always satisfied. The models are
then valid provided the electron kick does not perturb the
minimum too much. We analyze this now.

The background evolution of the scalar field is governed
by the homogeneous scalar field equation

€�þ 3H _�þ dVeff

d�
¼ 0: (70)

We assume that the contribution of the scalar field to the
Hubble rate in the Friedmann equation is negligible until
the acceleration of the Universe sets in

H2 ¼ �rad þ �m þ ��

3m2
Pl

; (71)

where

�� ¼ 1

2
_�2 þ ½Að�Þ � 1��m þ Vð�Þ: (72)

The models that we consider here have a dynamical mini-
mum located at �minðtÞ such that

dVeff

d�

���������min

¼ 0: (73)

Defining 	� � ���min, we have for linear perturbations
around the minimum

€	�þ 3H _	�þm2	� ¼ F; (74)

where

F ¼ � 1

a3
d

dt

�
a3

d�min

dt

�
: (75)

Using the minimum equation, we find that

_� min ¼ 3H

m2
�A

�m

mPl

; (76)

and the forcing term is then

F ¼ � 3�m0a
�3

mPl

d

dt

�
A�H

m2

�
: (77)

We must also take into account the kicks that the field
receives every time a relativistic species decouples. These
kicks correspond to the abrupt variation of the trace of the

energy momentum tensor of a decoupling species at the
transition between the relativistic and nonrelativistic re-
gimes. The abrupt change of T

�
� for the decoupling species

happens on a time scale much smaller than one Hubble
time and can be modeled out using an ‘‘instantaneous
kick’’ approximation [10] where the contribution to the
scalar field equation is a 	 function. For kicks at the
decoupling times tj, the source term becomes

F ¼ � 3�0

mPla
3

d

dt

�
A�H

m2

�
� A�

X
j


jHjmPl	ðt� tjÞ;

(78)

where 
j 
 gi=g?ðmjÞ & 1 depends on the number of

relativistic species g?ðmjÞ at time tj and the number of

degrees of freedom of the decoupling species gj.

Let us now go through the different cosmological eras.
During inflation, the Hubble rate is nearly constant and the
field is nearly constant.7 Indeed, the trace of the energy
momentum tensor is

T 
 �12H2m2
Pl; (79)

in which �m ¼ �pm ¼ 3H2m2
Pl is nearly constant in the

slow roll approximation. As a result, the source term in the
perturbed scalar field equation vanishes, and averaging
over the oscillations with the fast period 1=m � 1=H
we have

h	�2i / a�3; (80)

implying that the field reaches the minimum of the effec-
tive potential very rapidly during inflation.
Assuming that reheating is instantaneous and that the

field is not displaced during reheating, the field starts in the
radiation era at the minimum of the effective potential
during inflation. As the minimum has moved to larger
values, the field rolls down towards the new minimum,
overshooting and then stopping at a value

�overshoot 
 �inflation þ
ffiffiffiffiffiffiffiffiffiffi
6�i

�

q
mPl; (81)

depending on the initial density fraction �i
� in the scalar

field [10]. After this the field is in an undershoot situation
where the field is essentially moved according to the kicks

€�þ 3H _� ¼ �A�
X
j


jHjmPl	ðt� tjÞ: (82)

Each kick brings the field to smaller values, with a
variation

��j ¼ ��jAj
jmPl; (83)

7Note the parametrization mðaÞ ¼ m0a
�r to be introduced

below only applies when the scalar field is sourced by the
pressureless matter, and does not apply to the inflationary era,
in which � remains nearly constant simply because the density
of the inflaton does so.
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in the radiation era [10]. Although the details depend on the
kicks and the initial energy density of the field, we can
assume that after all the kicks before BBN, the field is close
to the minimum of Veffð�Þ. We will assume that this is the
case by zini 
 1010 where the matter density is equivalent
to the one in dense bodies on Earth today. If this were not
the case then the field would move by

��e ¼ ��eAe
emPl; (84)

when the electron decouples during BBN, and the masses
of particles would vary too much during BBN. Note that
for the rest of this subsection a subscript e will be used to
denote the value of a quantity at the electron decoupling.

Hence viable models must be such that the scalar field
remains in the neighborhood of the minimum since well
before BBN. In this case, the deviation of the field from the
minimum can be easily obtained from

€	�þ 3H _	�þm2	�

¼ � 3�m0a
�3

mPl

d

dt

�
A�H

m2

�
� Ae�e
eHemPl	ðt� teÞ;

(85)

where we only take into account the electron kick. Defining

	� ¼ a�3=2c , we find that

€c þ
�
m2 þ 9w

4
H2

�
c ¼ � 3�m0a

�3=2

mPl

d

dt

�
A�H

m2

�
� Ae�e
eHea

3=2
e mPl	ðt� teÞ:

(86)

As m2 � H2, the solution is obtained using the
WKBapproximation and reads

	�

mPl

¼ � 9�m0H
2
0

a3m2

d

dt

�
A�H

m2

�

��ðt� teÞAe�e
e

Heffiffiffiffiffiffiffiffiffiffi
mem

p a3=2e

a3=2
sin

Z t

te

mðt0Þdt0;

(87)

in which the second term is only present when t > te, �
being the Heaviside function. We will always assume that
� and m vary over cosmological times; hence we have

d

dt

�
A�H

m2

�
¼ gðtÞA�H

2

m2
; (88)

in which gðtÞ is a slowly varying function of time whose
value is of order unity. Averaging over the rapid oscilla-
tions, we have

h	�2i
m2

Pl

¼81�2
m0g

2A2�2

a6
H4

0

m4
0

m4
0

m4

H4

m4
þA2

e�
2
e


2
e

2

a3e
a3

H2
e

m2
e

me

m
:

(89)

The first term is of order�2
0H

8
0=m

8
0 � 1 now, implying that

it has a negligible influence on the particle masses. This

guarantees that the minimum is indeed a solution of the
equations of motion. The second term corresponds to the
response of the scalar field to a kick. It is initially very
small as suppressed by H2

e=m
2
e � 1, implying a tiny

variation of the fermion masses during BBN. Its influence
increases with time as 1=ma3 and we must impose
that this never compensates for the fact that H2

e=m
2
e is

extremely small.
Consider an interesting example with mðaÞ ¼ m0a

�r

which will reappear later. In such a case the second term
in the above equation can be rewritten as

A2
e�

2
e


2
e

2

a3e
a3

H2
e

m2
e

me

m
�H2

0

m2
0

�r0

�m0

ar�1
e ar�3; (90)

where we have assumed A2
e�

2
e


2
e �Oð1Þ and �r0 � �m0

is the fractional energy density for radiation (photons and
massless neutrinos) at present. From this formula we can
easily see that
(1) when r < 3 the minimum of Veff given by the mini-

mum equation is an attractor, because the magnitude
of the oscillation decreases in time;

(2) assuming thatH0 � 10�3m0 (see below) and�m0 �
103�r0, then today we have h	�2i=m2

Pl � 10�9ar�1
e

which is of order one if r ¼ 0. Clearly, for
r & 2 the amplitude of oscillation can be too big

(
ffiffiffiffiffiffiffiffiffiffiffiffiffih	�2ip � �min) at early times;

(3) if r � 3 which is the case for fðRÞ gravity models in

which fðRÞ � Rþ R0 � R1ðR?=RÞn,
ffiffiffiffiffiffiffiffiffiffiffiffiffih	�2ip

=mPl

increases with time but never becomes significantly

large. For example, if r ¼ 3 then
ffiffiffiffiffiffiffiffiffiffiffiffiffih	�2ip

=mPl �
10�15 today, which means that, although the mini-
mum of Veffð�Þ is not strictly speaking an attractor,
it is extremely stable to kicks and governs the back-
ground dynamics of the model.

D. The equation of state

We have described how the cosmological constraint
from BBN imposes that the scalar field must be at the
minimum of the effective potential since BBN. As such
the minimum of the effective potential acts as a slowly
varying cosmological constant. We have also seen that
when m2 � H2, a large class of models are such that the
minimum is stable. In this case, the dynamics are com-
pletely determined by the minimum equation

dV

d�

���������min

¼ ��A
�m

mPl

: (91)

In fact, the knowledge of the time evolution of the mass m
and the coupling � is enough to determine the time evo-
lution of the field. Indeed, the mass at the minimum of Veff ,

m2 � d2Veffð�Þ
d�2

���������min

; (92)
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and the minimum relation leads to

V00 � d2V

d�2
¼ m2ðaÞ � �2Að�Þ �m

m2
Pl

� d�

d�
Að�Þ �m

mPl

;

(93)

where the couplings to matter � can be field dependent.
Using the minimum equation, we deduce that the field
evolves according to

d�

dt
¼ 3H

m2
�A

�m

mPl

: (94)

This is the time evolution of the scalar field at the back-
ground level since the instant when the field starts being
at the minimum of the effective potential. In particular,
we have

1

2

�
d�

dt

	
2 ¼ 27

2
�m�

2A2

�
H

m

	
4
�m (95)

which is tiny compared to �m.
Because of the interaction between the scalar field and

matter, the energy momentum tensor of the scalar field is
not conserved. Only the total energy momentum

_� tot ¼ �3Hð�tot þ ptotÞ (96)

is conserved, where the total energy density is

�tot � �m þ �� (97)

with

�� ¼
_�2

2
þ Veffð�Þ; (98)

ptot � p� ¼
_�2

2
� Vð�Þ; (99)

and where we have neglected the radiation component in
the matter era. It is crucial to notice that the energy density
of the scalar field involves the effective potential Veff while
the pressure only involves V. This is a crucial feature of
scalar-tensor theories.

We can define the effective equation of state of the dark
energy fluid as

w� ¼ p�

��

: (100)

Using the Friedmann equation we find the Raychaudhuri
equation involving the effective equation of state w� as

€a

a
¼ � 1

6m2
Pl

½�m þ ð1þ 3w�Þ���

� � 1

6m2
Pl

ð1þ 3wtotÞ�tot (101)

where we have defined the total equation of state

wtot ¼ ptot

�tot

: (102)

The Universe is accelerating provided €a � 0 which
leads to

wtot 	 � 1

3
(103)

as expected, which is equivalent to

w� 	 � 1

3

�
1þ �m

��

	
: (104)

The situation of the modified gravity models can be easily
analyzed as

w� þ 1 ¼
_�2 þ ðA� 1Þ�m

_�2

2 þ Vð�Þ þ ðA� 1Þ�m

; (105)

which can be approximated as

w� þ 1 

_�2

Vð�Þ þ ðA� 1Þ�m

��

: (106)

The first term corresponds to the usual quintessence con-
tribution and the second term can be approximated as
��
mPl

�m

��
�� �

mPl

V;�

V;��

�m

��
¼ 3�2�m

H2

m2
�m

��
. This implies that

w� þ 1 
 ðA� 1Þ�m

��


 3�m�
2

�
H

m

	
2 �m

��

: (107)

In the recent past of the Universe where �m and �� have

been of the same order of magnitude, this implies that the
background scalar field acts as a cosmological constant due
to the large H2=m2 suppression. In the past, the back-
ground cosmology deviates from a �CDM model only if
�� becomes so small that it compensates for m2=H2. We

will not consider this situation in the following.

III. MODIFIED GRAVITY TOMOGRAPHY

A. Reconstruction of the dynamics

We have seen that when m2 � H2 a large class of
models are such that the minimum of the effective potential
is stable or quasistable, and in these cases the dynamics are
completely determined by the minimum equation

dV

d�

���������min

¼ ��A
�m

mPl

: (108)

In fact, the knowledge of the time evolution of the mass m
and the coupling � is enough to determine the bare poten-
tial Vð�Þ and the coupling function Að�Þ completely. To
see this, integrating Eq. (94) once, we find

�ðaÞ ¼ 3

mPl

Z a

aini

�ðaÞ
am2ðaÞ�mðaÞdaþ�c; (109)

where �c is the initial value of the scalar field at
aini < aBBN and we have taken Að�Þ 
 1, as the temporal
variation of fermion masses must be very weak. If the
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coupling � is expressed in terms of the field � and not the
scale factor a, this is also equivalent toZ �

�c

d�

�ð�Þ ¼
3

mPl

Z a

aini

1

am2ðaÞ�mðaÞda: (110)

Similarly the minimum equation implies that the potential
can be reconstructed as a function of time

V ¼ V0 � 3

m2
Pl

Z a

aini

�2ðaÞ
am2ðaÞ�

2
mðaÞda; (111)

where V0 is the initial value of the potential at a ¼ aini.
This defines the bare scalar field potential Vð�Þ parametri-
cally when �ðaÞ and mðaÞ are given. Hence we have found
that the full nonlinear dynamics of the theory can be
recovered from the knowledge of the time evolutions of
the mass and the coupling to matter since before BBN.

B. Tomography

The previous reconstruction mapping gives a one-to-one
correspondence between the scale factor a and the value of
the field�ðaÞ in the cosmic background. As the scale factor
is in a one-to-one correspondence with the matter energy
density �mðaÞ, we have obtained a mapping �m ! �ð�mÞ
defined using the time evolution of mðaÞ and �ðaÞ only.
Given these evolutions, one can reconstruct the dynamics of
the scalar field for densities ranging from cosmological to
Solar System values using Eqs. (109) and (111). By the
same token, the interaction potential can be reconstructed
for all values of � (and �m) of interest, from the Solar
System and Earth to the cosmological background now: a
tomography of modified gravity.

In particular, we can now state the screening condition
of modified gravity models asZ aout

ain

�ðaÞ
am2ðaÞ�mðaÞda � �outm

2
Pl�N; (112)

with constant matter densities �in;out ¼ �mða ¼ ain;outÞ in-
side and outside the body respectively, and where we have
defined �out � �ða ¼ aoutÞ. It is remarkable that the gravi-
tational properties of the screened models are captured by
the cosmological mass and coupling functions only.

C. Dilatons

Let us consider a first example: the dilaton models in
which the coupling function �ð�Þ vanishes for a certain
value �? of the scalar field �. On the other hand, we
assume that the potential is positive definite and is of
runaway type. It is enough to study the dynamics in the
vicinity of the field �?, where

�ð�Þ 
 A2mPlð���?Þ; (113)

from which we deduce that

ln

�����������?

�c ��?

��������¼ 9A2m
2
Pl�m0H

2
0

Z a

aini

da

a4m2ðaÞ ; (114)

and therefore

j�ð�Þj ¼ j�ð�cÞj exp
�
9A2m

2
Pl�m0H

2
0

Z a

aini

da

a4m2ðaÞ
�
:

(115)

In particular, we find the relation between the coupling at
the initial time and other cosmological times.
The initial coupling (taken at aini < aBBN) is the same as

in dense matter on Earth, as long as the field minimizes its
effective potential in a dense environment, and it is related
to the cosmological value of � today, �ð�0Þ, by

j�ð�0Þj ¼ j�ð�cÞj exp
�
9A2m

2
Pl�m0H

2
0

Z 1

aini

da

a4m2ðaÞ
�
:

(116)

It is possible to have a very small coupling in dense matter
j�ð�cÞj � 1 for any value of the coupling on cosmologi-
cal scales j�ð�0Þj provided that A2 > 0 and that the time
variation of mðaÞ is slow and does not compensate for the
1=a4 divergence in the integrand. In this situation, the
coupling function � converges exponentially fast towards
zero: this is the Damour-Polyakov mechanism [8]. The
fact that A2 > 0 guarantees that the minimum of the cou-
pling function is stable and becomes the minimum of the
effective potential which attracts the scalar field in the long
time regime. If A2 < 0, the effect of the coupling is desta-
bilizing and implies that � diverges exponentially fast
away from �?.
Alternatively, a smooth variation of the coupling func-

tion to matter in the cosmological background and there-
fore interesting consequences for the large-scale structure
can be achieved when the evolution of the mass of the
scalar field compensates for the 1=a4 factor in the radiation
era and evolves in the matter era. This is obtained for
models with

m2ðaÞ ¼ 3A2H
2ðaÞm2

Pl: (117)

Indeed,HðaÞ � a�2 in the radiation era, which implies that
the time variation of � between BBN and matter-radiation
equality is

�ð�Þ ¼ �ð�cÞ exp
�
3
�m0

�r0

ða� ainiÞ
�
; (118)

and in the matter dominated era

�ð�Þ ¼ �ð�eqÞ
�
a

aeq

	
3 ¼ �ð�eqÞ

�mðaeqÞ
�mðaÞ ; (119)

where a subscript eq denotes the value of a quantity at
the matter-radiation equality. This is the behavior of the
dilaton models we have already analyzed gravitationally
in § II B 2.
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D. Symmetron

In the symmetron models the coupling to matter van-
ishes identically in dense regions or at redshifts z > z?,
while a larger coupling is obtained after a transition at a
redshift z? and in the low-matter-density regions. This can
be obtained by choosing

�ðaÞ ¼ �?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
a?
a

	
3

s
; (120)

for z < z? and � ¼ 0, z > z?. Similarly we choose

mðaÞ ¼ m?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
a?
a

	
3

s
: (121)

Using the reconstruction mapping, it is straightforward to
find that

�ðaÞ ¼ �?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
a?
a

	
3

s
; (122)

for z < z? and � ¼ 0 before. The potential for z < z?
as a function of a can then be reconstructed, using the
technique introduced above, as

VðaÞ ¼ V0 þ �2
?�

2
?

2m2
?m

2
Pl

��
a?
a

	
6 � 1

�
; (123)

where

�? ¼ �m0

a3?
; (124)

is the matter density at the transition between �ðaÞ ¼ 0
and �ðaÞ> 0. The potential as a function of � is then

Vð�Þ ¼ V0 þ �

4
�4 ��2

2
�2; (125)

where

�? ¼ 2�?�?

m2
?mPl

; (126)

and

m? ¼ ffiffiffi
2

p
�; � ¼ �2

�2
?

; (127)

together with

�ð�Þ ¼ �?

�?

�: (128)

This completes the reconstruction of the particular sym-
metron model presented in [16] from mðaÞ and �ðaÞ.

E. Generalized symmetrons

With the parametrization developed in this paper it is
easy to create new models (in a more intuitive way than
starting with the Lagrangian) by changing the mass and

coupling functions. Here we give a simple example by
generalizing the symmetron models.
We start by generalizing the coupling function Eq. (120)

�ðaÞ ¼ �?

�
1�

�
a?
a

	
3
�
1=q

; (129)

for z < z? and � ¼ 0 for z > z?. Similarly we choose

mðaÞ ¼ m?

�
1�

�
a?
a

	
3
�
1=p

; (130)

where the field evolves as

�ðaÞ ¼ �?

�
1�

�
a?
a

	
3
�
1=ðm�nÞ

; (131)

where we have defined

m ¼ 2ðp� qþ pqÞ
p� 2qþ pq

; n ¼ 2p� 2qþ pq

p� 2qþ pq
; (132)

and where

�? ¼ ðm� nÞ�?�?

m2
?mPl

: (133)

Eventually we find

Vð�Þ ¼ V0 þ ðm� nÞ�2
?�

2
?

m2
?m

2
Pl

�
1

m

�
�

��

	
m � 1

n

�
�

��

	
n
�
(134)

and

�ð�Þ ¼ �?

�
�

�?

	
n�1

: (135)

The indices m and n should be taken to be even integers to
keep the potential symmetric around � ¼ 0. The standard
symmetron corresponds to the choice m=2 ¼ n ¼ 2.
We can now show explicitly that this generalized sym-

metron model has the screening property as we did for
the original symmetron model in § II B 2. Let us consider
a spherically dense body of density �c and radius R
embedded in a homogeneous background. The field profile
inside the body is

� ¼ �S

sinhmSr

mSr
; r < R (136)

where

m2
S ’

�
d�ð�Þ
d�

	
S

�c

mPl

¼ m2
?

n� 1

m� n

�c

�?

�
�S

�?

	
n�2

(137)

is the scalar field mass at r ¼ 0,�S the corresponding field
value and �? is as in the symmetron model the critical
matter density when the transition of the minimum of
Veffð�Þ from � ¼ 0 to � ¼ 
�? takes place in the cos-
mological background.
The field outside the body, on scales shorter than the

large range m�1
? , is
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� ¼ �� þD

r
; r > R (138)

Matching at r ¼ R gives us the solution

�S coshðmSRÞ ¼ �? (139)

D ¼ �?R

�
tanhðmSRÞ

mSR
� 1

	
(140)

The first condition, which determines �S, can be written

�S

�?

cosh

� ffiffiffiffi
�

p �
�S

�?

	
n=2�1

�
¼ 1 (141)

where � ¼ n�1
m�n

�c

�?
ðm?RÞ2. We can change it into a simple

equation for mSR

ðmSRÞ2coshn�2ðmSRÞ ¼ � (142)

From these equations we see that when � � 1 we get
�S 
 0, mSR � 1 and therefore D 
 ��?R. Note that
if n > 2 the mass vanishes at � ¼ 0; however, this is not a
problem for the screening mechanism. Even though a large
� pushes the field down towards � ¼ 0, mS is still an
increasing function of � according to Eq. (142).

The fifth force on a test mass outside the body is found to
be screened as long as

j�c ��1j � 2mPl���N (143)

where �c ¼ �S 
 0 and �1 ¼ �?. This condition is
equivalent to � � 1 and shows that the screening property
is present in this model.

Comparing the case n ¼ 2 with n > 2 we find that even
though �S=�? is larger in the latter case, the coupling
�ð�SÞ is smaller as long as we have screening. This means
that the force between two test masses in a dense environ-
ment is more screened for larger n. Local constraints
for the generalized symmetrons are therefore satisfied for
(at least) the same range as the standard symmetron:
m0=H0 * 103.

IV. RECONSTRUCTING fðRÞ MODELS

A. Gravity tests and chameleons

Consider now the important case of a nonvanishing
coupling function �ðaÞ. Defining �ðaÞ ¼ �0gðaÞ and
m ¼ m0fðaÞ, we find that

���c

mPl

¼ 9�0�m0

H2
0

m2
0

Z a

aini

da
gðaÞ

a4f2ðaÞ ; (144)

which allows one to test the screening properties of these
models.

Let us first consider the Solar System tests. Evaluating
Eq. (144) in the Galactic background, we find that8

�gal ��c

mPl

¼ 9�0�m0

H2
0

m2
0

Z agal

aini

da
gðaÞ

a4f2ðaÞ ; (145)

where agal 
 10�2 is the scale factor when the matter

density in the cosmological background equals the
Galactic density �gal 
 106�c. Defining

�R

R
¼ �gal ��c

6mPl�c��
; (146)

where R is the radius of a spherical body, the modification
of gravity in the Solar System has a strength

2�gal�c

3�R�
R�

: (147)

In this expression �gal is the value of the coupling function

�ð�Þ in the Galactic background, �� is the value of the
Solar Newtonian potential (�� � 10�6) and �c is the cou-
pling inside a dense body. The magnitude should be less
than 10�5 to comply with the Cassini bound in the Solar
System [47]. This condition is independent of �c and reads

�0�gal

Z agal

aini

da
gðaÞ

a4f2ðaÞ & 10�5 m2
0

9�m0H
2
0

��: (148)

The integral

I �
Z agal

aini

da
gðaÞ

a4f2ðaÞ ; (149)

is potentially divergent for small values of aini � 10�10.
Hence we must impose that fðaÞ2=gðaÞ compensates the
1=a4 divergence in the integrand. As mentioned above, we
have assumed that galaxies are screened to minimize the
disruption of their dynamics, although the necessity of
this condition should be ascertained using N-body simula-
tions [30]. Enforcing the screening condition imposes

j�gal ��0j & 6�0mPl�gal; (150)

in which the Galactic Newtonian potential is �gal � 10�6

and

�0 ��gal

mPl

¼ 9�0�m0

H2
0

m2
0

Z 1

agal

da
gðaÞ

a4f2ðaÞ : (151)

A slightly stronger bound is obtained from the Lunar
Ranging experiment [46] with the 10�5 on the right-hand
side of Eq. (148) replaced by 10�7.
Strong constraints can also be obtained from laboratory

experiments. Using the fact that the initial matter density at
zini � 1010 is roughly the same as that in a typical test mass
in the laboratory, gravity is not modified provided test
bodies are screened, i.e.,

j�lab ��cj & 2�cmPl�lab; (152)

where�lab � 10�27 for typical test bodies in cavity experi-
ments of size L, and �lab ¼ �ðalabÞ is determined by
mðalabÞ � 1=L (see the Appendix for more details).

8Again, here for simplicity we have assumed that the scalar
field minimizes Veffð�Þ in the Galactic background. While this is
true for a certain parameter space, in general it should be tested
against numerical simulations.
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B. fðRÞ Gravity reconstruction

Viable fðRÞ models are nothing but chameleons [31]

with a constant value of the coupling function �ð�Þ ¼
1=

ffiffiffi
6

p
. We have already described the background dynam-

ics of these models. Here we shall derive the mapping
between the evolution of the scalar field mass mðaÞ and
the function fðRÞ for curvature values ranging from the
ones in dense bodies to cosmological ones. These models
are equivalent to chameleon models where the potential is
given by9

Vð�Þ ¼ m2
Pl

RfR � f

2f2R
(153)

in which fR ¼ df=dR. The mapping between R and � is
given by

fR ¼ exp

�
�2�

�

mPl

	
: (154)

Given the mass function mðaÞ, we have

�ðaÞ ¼ 9��m0H
2
0mPl

Z a

aini

da

a4m2ðaÞ þ�c; (155)

and

V ¼ V0 � 3
Z a

aini

�2

am2ðaÞ
�2
mðaÞ
m2

Pl

da: (156)

We can reconstruct RðaÞ using the fact that

Rð�Þ ¼ �eð2�ð�=mPlÞÞ 1

�mPl

d

d�
½eð�4�ð�=mPlÞÞVð�Þ�;

(157)

and fðRÞ using

fðRÞ ¼ Rð�Þeð�2�ð�=mPlÞÞ � 2

m2
Pl

eð�4�ð�=mPlÞÞVð�Þ; (158)

which is equivalent to

fðRÞ ¼ 2

m2
Pl

eð�4�ð�=mPlÞÞVð�Þ � 1

�mPl

eð�4�ð�=mPlÞÞ dV
d�

;

(159)

once we have obtained Vð�Þ from the above implicit
parametrization.

When ��=mPl � 1 as required from the BBN con-
straints, the above equations can be simplified and read

fðRÞ ¼ R� 2
Vð�Þ
m2

Pl

(160)

where

Rð�Þ ¼ � 1

�mPl

dV

d�
þ 4

m2
Pl

Vð�Þ: (161)

This is the parametric reconstruction mapping of fðRÞ
models.

C. Large curvature fðRÞ models

We can apply these results to the case with m ¼ m0a
�r

leading to models where

���c

mPl

¼ 9�m0�H
2
0

ð2r� 3Þm2
0

a2r�3
ini

��
a

aini

	
2r�3 � 1

�
; (162)

which reduces to

���c

mPl

¼ 9�m0�H
2
0

ð2r� 3Þm2
0

a2r�3 (163)

at late times. Similarly we have

VðaÞ ¼ V0 � 3�2�2
m0

2ðr� 3Þm2
Plm

2
0

ða2r�6 � a2r�6
ini Þ: (164)

Now for late enough times we have

V ¼ V0 � C

�
���c

mPl

�ð2ðr�3Þ=ð2r�3ÞÞ
(165)

for a constant C. Notice that for 3=2< r < 3, these models
are chameleons with an inverse power-law potential
Vð�Þ ���n with

n ¼ 2
3� r

3� 2r
: (166)

We can equivalently find that

Rð�Þ 
 2C

�m2
Pl

r� 3

2r� 3

�
���c

mPl

��ð3=ð2r�3ÞÞ þ 4
V0

m2
Pl

:

(167)

Finally we find that

fðRÞ ¼ R� 2

m2
Pl

�
V0 þ C

�R� 4 V0

m2
Pl

R?

	�n
�
; (168)

where R? ¼ 2ðr� 3ÞC=½ð2r� 3Þ�m2
Pl� and

n ¼ 2

3
ðr� 3Þ: (169)

Large curvature models are defined for r > 3 here. This
completes, in this particular example, the reconstruction of
the fðRÞ models from the knowledge of the function mðaÞ.
The gravitational constraints for these models have been

fully analyzed in [5]. We have summarized these con-
straints in Fig. 1 where we see that the strongest constraints
on the range of the scalar interaction arise for r & 3, i.e.,
for inverse power-law chameleon models. For r * 3,
i.e., for large curvature fðRÞ models, the screening of the

9In the discussion of fðRÞ gravity we shall use R to denote the
Ricci scalar.
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Milky Way is a loose constraint which needs to be further
analyzed with N-body simulations.

D. Comparison with the B parametrization

The fðRÞ theories are generally parametrized using [28]

B ¼ fRR
fR

H
dR

dH
; (170)

and fR � 1 now. As �=mPl � 1 we have that

fR � 1 ¼ �2�
�

mPl

; (171)

allowing one to reconstruct the field history entirely:

fR � fR0 ¼ 18�2�m0H
2
0

Z 1

a

1

a4m2ðaÞ da; (172)

which depends on the mass evolution uniquely. This can be
rewritten using the B function. In fact, using

dH

H
¼ � 3

2
ð1þ wÞHdt; (173)

in an era dominated by a fluid of equation of state w, we
find that

B ¼ � fRR
fR

2

3ð1þ wÞ
_R

H
: (174)

With fR ¼ eð�2�ð�=mPlÞÞ we have

fRR
dR

dt
¼ �2�

fR
mPl

d�

dt
(175)

and therefore

B ¼ 4�

3ð1þ wÞmPl

d�

Hdt
; (176)

and using the minimum equation we get

B ¼ 6�2

1þ w
�m

H2

m2
: (177)

Because � ¼ 1=
ffiffiffi
6

p
, in the matter dominated era this gives

B ¼ �m

H2

m2
; (178)

which is completely determined by mðaÞ. Hence we find
that

fR � fR0 ¼ 3
Z 1

a

BðaÞ
a

da: (179)

The knowledge of BðaÞ and fR0 determines the background
evolution in the fðRÞ gravity models in a completely
equivalent way to the mðaÞ parametrization.

V. GROWTH OF LARGE-SCALE STRUCTURE

We have shown that the nonlinear structure of the
screened models can be reconstructed from the knowledge
of the mass and coupling functions. These functions are
time dependent only. In particular, we have seen that this
allows one to fully analyze the gravitational tests and the
cosmological background evolution. Moreover we have
shown that the cosmological dynamics typically is indis-
tinguishable from a�CDMmodel at the background level.
Here we will find that this is not the case at the perturbative
level and that the mass and coupling function allow a full
description of the linear and nonlinear regimes.

A. Linear structure growth

The linear perturbation equations for a scalar field
coupled to matter particles are listed in [51] in the cova-
riant and gauge invariant formalism. Denoting by �m the
density contrast of the pressureless matter, vm its velocity
and 	� the perturbation10 in the scalar field, their evolu-
tion equations are as follows:

�00
mþa0

a
�0

m�1

2

�m

m2
Pl

a2�mþk�ðaÞm�1
Pl ðk	���0vmÞ¼ 0;

(180)

FIG. 1 (color online). The constraints onm0=H0 as a function of
r for�0 ¼ 1=

ffiffiffi
6

p
and s ¼ 0. Validmodelsmust be above the (listed

from top to bottom at r ¼ 2) mauve (cavity), green (m>H), red
(solar system), brown (galaxy), light red ( _�), and cyan (mL * 1)
lines. The blue line (bottom line at r ¼ 2) gives the detectability of
effects on the CMB by the Planck satellite. The strongest con-
straints are the cavity and galactic bounds for small and large r
respectively. Models with r * 3 satisfy the constraints and can
lead to a modified gravity regime on large scales.

10Note that this is different from above, where we used 	� to
denote the oscillation of the background � around �minðtÞ.
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v0
m þ a0

a
vm þ �ðaÞm�1

Pl ð�0vm � k	�Þ ¼ 0; (181)

	�00 þ 2
a0

a
	�0 þ ½k2 þ a2m2ðaÞ�	�

þ �ðaÞ �m

mPl

a2�m þ k�0Z ¼ 0; (182)

where a prime denotes the derivative with respect to the
conformal time, kZ ¼ �0 in the Newtonian gauge is a
variable of the curvature perturbation which is irrelevant
for our discussion since it is multiplied by �0=mPl �
H ¼ a0=a, and we have neglected contribution from
radiation as we are focusing on late times.

Neglecting the terms proportional to �0 in the above
equations we get the following equation [10]

�00
m þ a0

a
�m � 1

2

�m

m2
Pl

a2�m

�
1þ 2�2ðaÞ

1þ a2m2ðaÞ
k2

�
¼ 0; (183)

where we have used the fact that, given that in Eq. (182) the
term k2 þ a2m2 � H 2, 	� follows the solution

	� 
 � �ðaÞ
k2 þ a2m2ðaÞ

�m

mPl

a2�m; (184)

and rapidly oscillates around it (see more details below).
On very large scales, k � amðaÞ, we can see that

Eq. (183) reduces to

�00
m þ a0

a
�m � 1

2

�m

m2
Pl

a2�m ¼ 0; (185)

which governs the growth of matter density perturbation in
the �CDM model. The effect of modified gravity is in-
corporated in the second term in the brackets of Eq. (183)
and becomes significant when amðaÞ=k & 1, namely for a
light scalar field mass mðaÞ or on small length scales. For
all models shown here the cosmic microwave background
(CMB) radiation spectrum is the same as the �CDM
prediction, because the scales relevant for the CMB are
very large and therefore not affected by the modified
gravity.

In order to illustrate these considerations, we have com-
puted the linear matter power spectra PðkÞ for a number of
generalized chameleon (Fig. 2) and symmetron (Fig. 3)
models.

For the generalized chameleon models, we have used

m ¼ m0a
�r; � ¼ �0a

�s (186)

The impact of gravity tests for� ¼ 1=
ffiffiffi
6

p
, s ¼ 0 have been

given in Fig. 1. There we can see that values of r * 3 are
favored by the local gravity tests. We have varied the four
parameters in the parametrization of �ðaÞ and mðaÞ: �0, r,
s and m0. Because m0 is not dimensionless, we have
defined a new variable � � H0=m0 instead. We find the
following results, all as expected:

(1) increasing the coupling �0 strengthens the modifi-
cation of gravity, which causes more matter cluster-
ing, resulting in a higher matter power spectrum;

(2) r characterizes how fast the scalar field mass
decreases in time: the higher r the faster it decays.
Given thatm0 is fixed, a higher value of rmeans that
the Compton wavelength (essentially the range of
the modification to gravity) decreases faster in the
past, and therefore the modification of gravity starts
to take effect later—this would mean less matter
clustering;

(3) s specifies how fast the coupling function changes in
time: s ¼ 0 implies �ðaÞ remains constant, while
s > 0 (s < 0) means �ðaÞ decreases (increases) in
time. If �0 is fixed, the larger s is, the larger �ðaÞ
becomes at high redshifts—this would mean a
stronger modification to gravity and stronger matter
clustering;

(4) � specifies how heavy the scalar field is, or equiv-
alently the range of the modification of gravity:
smaller � means shorter Compton length of the
scalar field, and therefore weaker matter clustering.

The potential of the generalized symmetron models has
been given in Eqs. (132) and (134), but one should be
careful that the parameters p, q (or equivalent n,m) cannot
take arbitrary values. For example, �n might not be
well defined if �< 0. Here let us consider the special
case with p ¼ 2 (n ¼ 2, m ¼ 2þ q), in which the poten-
tial becomes

Vð�Þ ¼ V0 þ q�2
?�

2
?

m2
?m

2
Pl

�
1

2þ q

�
�

��

�
2þq � 1

2

�
�

��

�
2
�
(187)

and this avoids the situation in which the scalar field
becomes massless at � ¼ 0. Furthermore, choosing
q ¼ 2; 4; 6; � � � not only ensures that �2þq is well defined
for any value of �, but also makes the potential symmetric
about � ¼ 0, as in the original symmetron model. Finally,
with p ¼ 2 another property of the original symmetron
model, that �ð�Þ / �, is preserved as well.
Again, the results in Fig. 3 are as expected:
(1) increasing a? implies that the modification of grav-

ity starts to take effect at a later time, and this will
weaken the matter clustering;

(2) increasing �? increases the coupling strength over-
all, and leads to stronger matter clustering;

(3) increasing q increases �ðaÞ for a > a? and causes
stronger structure growth;

(4) decreasing �, as in the chameleon case, decreases
the range of the modification of gravity, and there-
fore leads to less matter clustering.

Before we finish this subsection, let us come back to the
evolution of the scalar field perturbation 	�. As explained
above, an analytic approximation to this can be obtained in
Eq. (184). However, as for the background evolution,
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where � oscillates quickly around �minðtÞ, we may expect
that the true value of 	� oscillates around the analytic
solution as well. This is confirmed in Fig. 4.

In the model shown in Fig. 4 we have chosen r ¼ 3:0.
Obviously, the larger r is, the larger the scalar field mass
mðaÞ becomes at early times. A rapid decrease of mðaÞ
would mean that the effective potential for 	� changes its
steepness very quickly. Suppose the oscillation of 	� has
some initial kinetic energy, then as the effective potential
becomes less steep the amplitude of the oscillations in-
creases since the kinetic energy does not disappear quickly.
Consequently, if we increase r further we get even stronger
oscillations and if, in contrast, we decrease r then the
oscillations become weaker. We have checked explicitly
that for r ¼ 1:0 there is essentially no oscillation.

At late times H0=m0 ¼ �� 10�3, which implies that
the period of the oscillation is roughly 10�3 the Hubble

time, and is much longer than the typical time scales for
human observations. As a result, one cannot average 	�
over several periods to get h	�i. Indeed, as the amplitude
of oscillation in Fig. 4 is bigger than the analytic solution
of 	� in Eq. (184), the value of 	� one observes at a given
time is rather random and could be far from the one given
in Eq. (184). This is the case for the fðRÞ gravity model in
[30], where r ¼ 4:5.
Whilst this seems to be a problem, this is not really the

case. Indeed in the Solar System the matter density is so
high that the oscillation is faster than it is in the cosmo-
logical background, and we actually observe the averaged
value h	�i. On linear scales, as 	� oscillates, overshoot-
ing and undershooting the value given in Eq. (184), we
have checked by replacing the numerical solution of 	�
by the analytical formula given in Eq. (184) that we
obtain identical power spectra PðkÞ in the two approaches.

FIG. 2. The relative difference of the matter power spectrum PðkÞ in the chameleon model from that in the �CDM model with
exactly the same background expansion history, initial conditions and physical parameters. Upper left panel: The dependence of the
result on the modified gravity parameter �0. Upper right panel: The dependence of the result on the parameter r. Lower left panel: The
dependence of the result on the parameter s. Lower right panel: The dependence of the result on the parameter � � H0=m0.
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Hence the mean value solution Eq. (184) gives a very
good description of the statistical properties of linear
perturbations.

B. The Jordan frame picture

In this section we compare our results with a simple
and effective way of parametrizing linear perturbations
which has been used in the literature in the past few years
[38–45] (other interesting and more general approaches
for the linear regime include the parametrized post-
Friedmann framework of [36,37] and the fully covariant
parametrization of [52–54]). Such a way of parametrizing
any modification of gravity utilizes two arbitrary func-
tions �ðk; aÞ and �ðk; aÞ through the (modified) Poisson
equation

� k2� ¼ 4
�ðk; aÞGNa
2	�m; (188)

and the slip relation

� ¼ �ðk; aÞ�: (189)

HereGN is the bare Newton constant, and� and� are the
two gravitational potentials in the Newtonian gauge:

d ~s2 ¼ �a2ð1þ 2�Þd�2 þ a2ð1� 2�Þdx2; (190)

in which ð�; xÞ are the conformal time and comoving
coordinates.
So far we have focused on the Einstein frame. In

the Jordan frame as described by the line element above,
the perturbative dynamics can be described using two
Newtonian potentials where we have the relation

FIG. 3. The relative difference of the matter power spectrum PðkÞ in generalized symmetron models from that in the �CDM model
with exactly the same background expansion history, initial conditions and physical parameters. Upper left panel: The dependence of
the result on the parameter a? (the scale factor value at which the symmetry breaking of the effective potential happens). Upper right
panel: The dependence of the result on the modified gravity parameter �?. Lower left panel: The dependence of the result on the
parameter q. Lower right panel: The dependence of the result on the parameter � � H0=m?. As an example we have chosen p ¼ 2.

BRAX et al. PHYSICAL REVIEW D 86, 044015 (2012)

044015-18



d ~s2 ¼ A2ð�Þds2; (191)

and ds2 is the line element in the Einstein frame expressed
in the Newtonian gauge. Expanding in perturbation around
a background value with A½�ðtÞ� 
 1, we can relate these
two potentials to the Einstein frame Newton potential

� ¼ �N þ �
	�

mPl

; � ¼ �N � �
	�

mPl

: (192)

Hence we see that in the Jordan frame the two Newtonian
potentials are not equal, a fact which can be interpreted as
resulting from the existence of a nonanisotropic stress
contribution coming from the scalar field. It is useful to
define

�ðk; aÞ ¼ 2�2

1þ m2a2

k2

: (193)

Using the definitions in Eq. (192), the analytical approxi-
mation for 	� in Eq. (184) and the Poisson equation

� k2�N ¼ 1

2

�m

m2
Pl

a2�m; (194)

it can be derived easily that

�ðk; aÞ � �

�
¼ 1� �ðk; aÞ

1þ �ðk; aÞ ; �ðk; aÞ ¼ 1þ �ðk; aÞ:
(195)

These results are valid for all the models which can be
described by a field tracking the minimum of the effective
potential since before BBN. More precisely we find that

�ðk; aÞ ¼ ð1þ 2�2Þk2 þm2a2

k2 þm2a2
;

�ðk; aÞ ¼ ð1� 2�2Þk2 þm2a2

ð1þ 2�2Þk2 þm2a2
:

(196)

These are closely related to the popular parametrization of
modified gravity used in the literature. Here they are valid
for any model of modified gravity at the linear level of
cosmological perturbations as long as the background
cosmology is described by a scalar field slowly evolving
in time and following the time dependent minimum of the
effective potential where m2 � H2.
As a numerical illustration, in Fig. 5 we have compared

the function �ða; kÞ calculated using three different
methods: (1) the full numerical solution as shown by the
black solid curve, (2) the value obtained by using the
definitions in Eq. (192), the analytical approximation for
	� in Eq. (184) and �N solved from the Poisson equation
numerically (the red dashed curve) and (3) Eq. (196) as
shown by the blue dotted curve. We can see that the latter
two agree with each other very well, showing that the
parametrization given in Eq. (196) works very well in
practice and describes the statistical properties of linear
perturbations.
The full numerical solution, however, again shows the

oscillating behavior, but the oscillation always centers
around the averaged value defined by the previous formu-
las. As discussed earlier, over many oscillations there will
be a cancellation and the net effect on a statistical observ-
able today is the same for all three curves.

FIG. 4 (color online). An illustration of the time evolution of
the scalar field perturbation 	�. The black solid curve is the
numerical solution while the green dashed curve is the analytical
approximation given in Eq. (184). The results here are for
k ¼ 1 hMpc�1 but the qualitative feature remains for other
values of k. The modified gravity parameters are shown beside
the curves.

FIG. 5 (color online). The time evolution of �ðk; aÞ for a
chosen value of k ¼ 0:1 hMpc�1 as an illustration. The black
solid is the full numerical solution, the red dashed curve is
obtained using the numerical value of �N using the analytical
solution of 	� given in Eq. (184), while the blue solid curve is
Eq. (196). The modified gravity parameters are shown beside the
curves.
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C. fðRÞ gravity in the Jordan frame

Let us concentrate now on the case of fðRÞ gravity. The
perturbations are then determined by

�ðk; aÞ ¼
4
3 k

2 þm2a2

k2 þm2a2
; �ðk; aÞ ¼

2
3 k

2 þm2a2

4
3 k

2 þm2a2
:

(197)

For large curvature models with m ¼ m0a
�r, this

becomes

�ðk; aÞ ¼
4
3

k2

m2
0

a3nþ4 þ 1

k2

m2
0

a3nþ4 þ 1
; �ðk; aÞ ¼

2
3

k2

m2
0

a3nþ4 þ 1

4
3

k2

m2
0

a3nþ4 þ 1
:

(198)

When n ¼ 2
3 ðr� 3Þ � 1, we retrieve the phenomenologi-

cal parametrization [40]

�ðk; aÞ 

4
3

k2

m2
0

a4 þ 1

k2

m2
0

a4 þ 1
; �ðk; aÞ ¼

2
3

k2

m2
0

a4 þ 1

4
3

k2

m2
0

a4 þ 1
:

(199)

Our parametrization in Eq. (196) covers all the possible
fðRÞ models.

D. Nonlinear effects

Matter clustering on galactic and cluster scales is an
important probe of modified gravity. The nonlinearity in
both the structure formation process and the dynamics of
the scalar field for scales k * 0:1 hMpc�1 require full
numerical simulations [55,56].

The �ðaÞ, mðaÞ parametrization can completely specify
the nonlinear dynamics of � with two temporal functions.
Indeed, as we have seen above, one can reconstruct the
potential Vð�Þ and the coupling function together with the
background evolution �ðaÞ. Then one can study the non-
linear evolution of the scalar field perturbation which, in
the quasistatic limit, is governed by

r2� ¼
�
�ð�Þ �m

mPl

� �ð ��Þ ��m

mPl

�
þ dVð�Þ

d�
� dVð ��Þ

d�
;

(200)

where the overbar means the background value.
One can easily obtain dVð�Þ=d� analytically or numeri-

cally, and this can be used to solve the quasistatic dynamics
numerically. An advantage is that temporal functionsmðaÞ,
�ðaÞ completely specify the dynamics of �, in particular
its spatial configuration, and there is no need for a k-space
parametrization.

On linear scales, this is equivalent to the Jordan-frame
description with the two spatially dependent functions
�ðk; aÞ and �ðk; aÞ being defined by �ðk; aÞ which depends
on the two functions mðaÞ and �ðaÞ, as given in Eq. (196).
But in practice, working with two temporal functions is

much more direct. Furthermore, the parametrization
described in Eq. (196) fails to faithfully describe the non-
linear effects or the environmental dependence. In essence,
by going from mðaÞ and �ðaÞ to �ðk; aÞ and �ðk; aÞ, one
not only introduces spatial dependence but also loses the
ability to describe nonlinear structure formation: in this
sense, we may describe the approach using �ðk; aÞ and
�ðk; aÞ as the linear parametrization of structure formation
while mðaÞ and �ðaÞ provide a fully nonlinear parametri-
zation of modified gravity.11

Past experience has shown that in modified gravity [e.g.,
chameleon and fðRÞ] models, nonlinear effects become
important as soon as the linear perturbation result deviates
from the corresponding �CDM prediction. This empha-
sizes the importance of using full numerical simulations
in the study of these models. However, the full numerical
simulations are generally very time and resource-
consuming, and are therefore left for future work.

VI. VARIATION OF CONSTANTS

We have seen that the background evolution of the scalar
field is specified by the time dependent mass and coupling
functions. As the scalar field evolves, the particle masses
and the gauge coupling constants change in time too. The
time variation of masses and gauge couplings is tightly
constrained by laboratory experiments [57]. In this section,
we analyze the time drift of the fine structure constant and
the electron to proton mass ratio.

A. The fine structure constant

The scalar field also has an effect on gauge couplings
and particle masses. The fermion masses are given by

mFð�Þ ¼ Að�Þmbare; (201)

where mbare is the bare mass in the Lagrangian.
Meanwhile, quantum effects such as the presence of
heavy fermions lead to the potential coupling of � to
photons [58]

Sgauge ¼ � 1

4g2bare

Z
d4x

ffiffiffiffiffiffiffi�g
p

BFð�ÞF��F
��; (202)

where gbare is the bare coupling constant and

BFð�Þ ¼ 1þ ��

�

mPl

þ . . . : (203)

The scalar coupling to the electromagnetic field would lead
to a dependence of the fine structure constant on � as

11Our parametrization also provides a clear characterization of
the class of physical models (namely a scalar field coupled to
matter) considered here, which is important in parametrizing
modified gravity [54], and not automatically incorporated in the
ð�;�Þ parametrization.
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1

�
¼ 1

�bare

BFð�Þ; (204)

implying that

_�

�

 ���

_�

mPl

(205)

where we have assumed that ���=mPl � 1. Using the

evolution equation we find that

_�

H�

 �9����m

H2

m2
: (206)

Hence the negative variation of the fine structure constant
in one Hubble time is related to the small ratio H=m � 1
and the couplings of � to matter and photons. The best
experimental bound on the variation of � now comes from
aluminum and mercury single-ion clocks [59]: _�

� j0 ¼ð�1:6
 2:3Þ � 10�17 yr�1. Taking H�1
0 � 1:5 � 1010 yr,

we get the conservative bound j _�
H� j0 & 2 � 10�7. As a

result, the experimental bounds on the time variation of

� lead to constraints on �0��0 as �0��0 & 0:8 � 10�7 m2
0

H2
0

.

For models with �0 ¼ Oð1Þ, �m0 � 0:25 and m0=H0 

103 where effects on large-scale structure are present,
��0 & 0:1, which is a much tighter bound than present

experimental ones ��0 & 1011 [60].

The time evolution in the past is also particularly inter-
esting. For symmetron models, we find that the time varia-
tion of � is

_�

H�

 �9�?���m0

�
H0

m?

	
2 1

a3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ða?a Þ3

q : (207)

Here, the time variation of � increases as one reaches the
transition a?. This is a large variation which may happen in
the recent past of the Universe and may have observable
consequences in the emission lines of distant objects.

It should however be noted that even though _�=� can be
very large, the relative difference of � between Earth and
some other sparser place in the Universe is constrained to
be less than����������

�

��������<
�?��

mPl

¼ 3�?���m0

�
H0

m?

	
2 �?

�m0

(208)

If we instead consider a quadratic coupling to photons,

BFð�Þ ¼ 1þ A�
2

2 �2, we find�����������
��������<A�

2

�2
?

2
¼ 3�?���m0

�
H0

m?

	
2 �?

�m0

(209)

where �� ¼ �A�
2=A2 ¼ �?mPlA

�
2 .

Interestingly, for both cases and for our fiducial parame-
ter values m? � 103H0, �? � �m0 and �� �� ¼ Oð1Þ
this term is of the same order as the claimed variation of
� reported in [61].

B. The variation of masses

Fundamental fermions such as the electrons have a
universal mass dependence mF ¼ Að�Þmbare, implying
that

_mF

HmF
¼ 9�2�m

H2

m2
: (210)

Nucleons such as the proton have a mass given by the
phenomenological formula

mp ¼ CQCD�QCD þ bumu þ bdmd þ Cp�; (211)

where �QCD � 217 MeV is the QCD scale, bu þ bd � 6,
bu�bd�0:5, CQCD � 5:2, mbare

u �5MeV, mbare
d �10MeV

and Cp�bare � 0:62 MeV. Assuming conservatively that

�QCD is scalar independent, we get

_mp

Hmp

 9�m�

H2

m2

�
bum

bare
u þ bdm

bare
d

mp

�� Cp�bare

mp

��

	
:

(212)

It is particularly important to study the variation of

� ¼ me

mp

(213)

from which we find that its time variation is positive for
modified gravity models:

_�

�

 9�m�

H2

m2

�
�þ Cp�bare

mp

��

	
: (214)

The current experimental constraint is _�
� j0 ¼ ð�3:8


5:6Þ10�14 yr�1 which yields the upper bound on �0: �
2
0 &

10�5 m2
0

H2
0

. For �0 ¼ Oð1Þ, this entails that m0=H0 * 102:5.

Again for symmetron models, the electron to proton mass
ratio would vary rapidly in time around the transition time
a?. It would be interesting to study if such a variation could
have relevant effects on the physics of distant objects.

VII. CONCLUSION

We have developed a novel parametrization of modified
gravity models first presented in [5]. Starting with the time-
evolution of the mass and the matter coupling of a scalar
field in the cosmological background, we have been able to
reverse engineer the complete dynamics of these models in
a simple way.
We have applied these results to well-known modified

gravity models: chameleons, fðRÞ gravity, dilatons and
symmetrons. In each case, we have explicitly given the
mapping and the full reconstruction. We have also shown
how one can apply local constraints using this formalism
and then use it to make predictions for linear cosmological
perturbations.
New classes of models can be engineered in a

more intuitive way than starting from a Lagrangian. The
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Lagrangian itself can be completely reconstructed. One
only needs to specify two functions whose physical mean-
ing is easily grasped: namely the mass (the inverse range of
the fifth force) and the coupling to matter.

The real strength of this approach compared to existing
parametrizations in the literature is that we can reconstruct
the whole theory at the linear and nonlinear levels and
be sure that it corresponds to a concrete physical model
defined via a Lagrangian. This effectively supersedes ex-
isting parametrizations of modified gravity with a screen-
ing mechanism by being able to make predictions for
nonlinear clustering of matter via N-body simulations.
This will be the subject of future work.
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APPENDIX: THE CAVITY CONSTRAINT

In this Appendix, we will explicitly develop the calcu-
lation leading to the cavity constraint for chameleon and
fðRÞ models.

Consider a cavity of radius L with a residual density
�cav � �c where �c is the density of the bore surround-
ing the cavity. The field inside the cavity is �cav and
deviates slightly from this value across the cavity.
Expanding the effective potential around �cav and putting
	� ¼ ���cav, we have

1

r2
d

dr

�
r2

d

dr
	�

	
�m2

cav	� ¼ Veff;�ð�cavÞ (A1)

where mcav is the scalar field mass inside the cavity and
Veff;� � dVeffð�Þ=d� is nonzero unless �cav minimizes

the effective potential. Inside the cavity the solution is

	� ¼ A
sinhðmcavrÞ

r
� Veff;�ð�cavÞ

m2
cav

; (A2)

outside the cavity we have

� ¼ �c þ B
e�mcr

r
; (A3)

where A, B are constants of integral, �c is the minimum of
the effective potential outside the cavity andmc the mass at
that minimum. Matching at r ¼ L, we find that

B ¼ emcL

1þmcL
½sinhðmcavLÞ �mcavL�A; (A4)

and

A

�
mc

1þmcL
sinhðmcavLÞ þ mcav

1þmcL

�

¼ �c ��cav þ
Veff;�ð�cavÞ

m2
cav

: (A5)

Evaluating the solution at the origin and putting
	�ðr ¼ 0Þ ¼ 0 we have

A ¼ Veff;�ð�cavÞ
m3

cav

: (A6)

This leads to

1þ sinhðmcavLÞ
mcavL

¼ � �cavm
2
cav

Veff;�ð�cavÞ ; (A7)

where we have used mcL � 1.
For potentials V � 1=�n and as long as �cav is much

less than the effective minimum in the cavity we have

sinhðmcavLÞ
mcavL

¼ n; (A8)

which implies that

mcavL ¼ Oð1Þ; (A9)

where mcav is dominated by the potential term.
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Recently, a supersymmetric model of dark energy coupled to cold dark matter, the supersymmetron, has

been proposed. In the absence of cold dark matter, the supersymmetron field converges to a super-

symmetric minimum with a vanishing cosmological constant. When cold dark matter is present, the

supersymmetron evolves to a matter-dependent minimum where its energy density does not vanish and

could lead to the present acceleration of the Universe. The supersymmetron generates a short-ranged fifth

force which evades gravitational tests. It could lead to observable signatures on structure formation due to

a very strong coupling to dark matter. We investigate the cosmological evolution of the field, focusing on

the linear perturbations and the spherical collapse and find that observable modifications in structure

formation can indeed exist. Unfortunately, we find that when the growth rate of perturbations is in

agreement with observations, an additional cosmological constant is required to account for dark energy.

In this case, effects on large-scale structures are still present at the nonlinear level which are investigated

using the spherical collapse approach.

DOI: 10.1103/PhysRevD.85.083512 PACS numbers: 95.36.+x, 04.50.Kd, 98.80.Cq

I. INTRODUCTION

Dark energy, the component responsible for the late time
acceleration of our Universe, is currently well described by a
cosmological constant in the lambda cold dark matter
(�CDM) concordance model. �CDM has been very suc-
cessful in explaining a large range of observations probing a
vast range in length scales, but from a theoretical point of
view the model suffers from the fine-tuning problem and the
coincidence problem [1]. This has led to more general mod-
els for dark energy. Scalar fieldmodels havebeenparticularly
popular over the last decade, and are predicted to exist in
many theories of high energy physics, like string theory and
supergravity (see e.g. [2,3] and references therein).

However, many of the dark energy models that have
been constructed so far suffer from problems akin to the
ones they are trying to solve or introduce new issues
themselves. At best, they can be treated as low energy field
theories valid well below the electron mass, corresponding
to the very late phase of the Universe. Hence, these models
need to be embedded in a better defined theory whose
ultraviolet behavior is under control. So far, no such com-
plete scenario has been constructed. Dark energy models
also seem to require the existence of a very light scalar field
whose coupling to matter leads to a long-ranged fifth force
whose presence is at odds with current gravitational tests.
Screening mechanisms [4–10] have been invoked in order
to alleviate this problem. Axionlike particles with deriva-
tive couplings to matter are also possible candidates [11].

On the other hand, it could well be that the dark sector of
the Universe, composed of the still undiscovered cold dark
matter and dark energy (DE), could be described by a
globally supersymmetric theory [12–14]. In such a case,
the vanishingly small amount of dark energy which is
necessary to generate the acceleration of the Universe
could result from a small cosmological breaking of super-
symmetry due to the nonzero CDM energy density. Such a
scenario would naturally lead to a close relationship be-
tween the dark energy and the CDM energy densities. Of
course, one should also ensure that corrections to the
globally supersymmetric scalar potential coming from
the soft supersymmetry breaking in the minimal super-
symmetric standard model sector do not spoil the CDM-
DE correspondence and the properties of the scalar
potential in the late time Universe.
Recently [15], such a supersymmetric model of dark

energy coupled to cold dark matter, the supersymmetron,
was proposed by two of us. In the absence of cold dark
matter, the supersymmetron converges to a supersymmet-
ric minimum with a vanishing cosmological constant.
When cold dark matter is present, the supersymmetron
evolves to a matter-dependent minimum where its energy
density does not vanish and can contribute to the dark
energy budget of the Universe.
The supersymmetron generates a short-ranged fifth force

between the CDM and the DE which evades gravitational
tests, but could lead to observable signatures on structure
formation as found in similar modified gravity theories
[16–23].
In this paper, we analyze the cosmological evolution

of the supersymmetron at the background level and the
evolution of dark matter perturbations in the linear and

*philippe.brax@cea.fr
†a.c.davis@damtp.cam.ac.uk
‡h.a.winther@astro.uio.no

PHYSICAL REVIEW D 85, 083512 (2012)

1550-7998=2012=85(8)=083512(12) 083512-1 � 2012 American Physical Society



nonlinear regime. The nonlinear regime is studied by using
spherical collapse. Because of the highly nonlinear behav-
ior of the field during the spherical collapse, we are able to
extract constraints on the model parameters, which are then
used to constrain the background cosmology. The spherical
collapse model has been previously used in models with a
simple Yukawa-type modification of gravity, in the so-
called fðRÞ=chameleon models [24–27], in brane-world
cosmologies [28], and in models which allow for dark
energy fluctuations [29–40]. We find that a cosmological
constant (CC) must be included in the model and that linear
perturbations do not deviate from their �CDM counter-
parts. On the other hand, nonlinear effects are significant
on astrophysical scales.

The outline of this paper is as follows. In Sec. II, we
present the supersymmetric formulation of the model, in
Sec. III we derive static solutions to the field equation, and
then in Sec. IV we study the cosmological evolution of the
supersymmetron including the cosmological background
evolution, linear perturbations, and the spherical collapse.
In Sec. V, we revisit the original mass scales of the model
before summarizing and concluding in Sec. VI.

II. THE SUPERSYMMETRON

A. Supersymmetric formulation

In globally supersymmetric models of the scalar sector,
models are specified by their Kahler potential and the
superpotential. With these two functions, we can construct
the scalar potential and the kinetic term for the fields. For
the supersymmetron, we have

Kð�; ��;�
; ��
Þ ¼ j�þj2 þ j��j2 þ�2
1

2

���������

�1

��������2�

; (1)

Wð�;�
Þ ¼ m

�
1þ g�

m

	
�þ��; (2)

þ �3
0�ffiffiffi
2

p
�

�
�

�0

	
� þ �3

2ffiffiffi
2

p
�
�

�2

	
�
; (3)

where � is the dark energy superfield, �
 is the CDM
particles, and �i are some (for now) unspecified mass
scales.

The kinetic term follows from

L kin ¼ K� ��ð@�Þ2 ¼ 
ð�Þ2
2

ð@�Þ2; (4)


ð�Þ ¼ �

�
�

�1

	
��1

; (5)

and the scalar potential is given by the F-term

VF ¼ K� ��j@�Wj2 ¼
���������2 þM2þn=2

�n=2

��������2

; (6)

where n ¼ 2ð�� �Þ and the mass scales M and � are
given by

�4 ¼
�
�1

�2

	
2��2

�4
2; (7)

Mnþ4 ¼
�
�1

�0

	
2��2

�nþ4
0 : (8)

Taking � ¼ j�jei�, the scalar potential is seen to be mini-

mized for eðin�=2Þ ¼ �1. The angular field � is stabilized at
this minimum with a mass which is always much greater
than the gravitino mass [15] implying that

VF ¼
�
�2 �M2þn=2

�n=2

	
2
: (9)

In the rest of this paper, we will write � instead of j�j for
simplicity. The potential is minimized, with vanishing
potential energy, for � ¼ �min where

�min ¼
�
M

�

	ð4=nÞ
M: (10)

Because of the coupling between � and �
 in the super-
potential, the fermionic CDM particles acquire a scalar
field dependent mass

mfð�Þ ¼ m

�
1þ g�

m

	
: (11)

When the fermionic CDM develops a nonvanishing num-
ber density nCDM ¼ hcþc�i in the early Universe, we get
a new contribution to the scalar potential

Veff ¼ VF þ g�

m
�CDM; �CDM ¼ mnCDM (12)

which lifts the supersymmetric minimum and produces a
nonzero dark energy component which can lead to the
acceleration of our Universe.

B. Effective four-dimensional model

The effective theory for the sypersymmetron can be
viewed as a scalar-tensor theory where CDM particles
follow geodesics of the rescaled metric ~g�� ¼ g��Að�Þ
where

Að�Þ ¼ 1þ g�

m
: (13)

The effective four-dimensional action describing the dy-
namics of the supersymmetron is given by

Seff ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

2
M2

pl �

ð�Þ2
2

ð@�Þ2 � VFð�Þ
�

þ SCDMðA2ð�Þg��; c Þ; (14)

where g is the determinant of the metric g��,M
2
pl � 1

8
G is

the reduced Planck mass, and SCDM is the dark matter
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action. If a coupling to baryons is included, the large mass
of the supersymmetron field will ensure that this field
would be practically invisible in local experiments.

C. Reparametrization of the model parameters

In this subsection, we rewrite the original mass scales of
the model in terms of some more intuitive physical quan-
tities which will simplify our analysis.

The coupling of the supersymmetron to dark matter
Að�Þ can be written

Að�Þ ¼ 1þ x

�
�

�min

	
; (15)

where

x � g�min

m
(16)

is a dimensionless parameter which parametrizes the cou-
pling strength of the supersymmetron to matter.

We further introduce the density

�1 � n�4

x
(17)

and

�1 � �0
CDMð1þ z1Þ3 (18)

which is the CDM density (and the corresponding redshift)
when the field � reaches the vicinity of the supersymmet-
ric minimum �min.

When studying the cosmological dynamics of the
model, it is convenient to introduce the canonically nor-
malized field ’ via

d’ ¼ 
ð�Þd� ! ’ð�Þ ¼ �1

�
�

�1

	
�
: (19)

In terms of ’, the potential and coupling becomes

VFð’Þ ¼ �4

�
1�

�
’min

’

	ðn=2�Þ	2
; (20)

Að’Þ ¼ 1þ x

�
’

’min

	ð1=�Þ
; (21)

where ’min ¼ ’ð�minÞ. The mass of the supersymmetron
after having converged to the supersymmetric minimum is
given by

m21 ¼ �1xn
2�2’2

min

: (22)

A constraint on m1 can be obtained by requiring that the
effects of supergravity corrections to the potential of the
supersymmetron are irrelevant. Let us assume that super-
symmetry is broken at the supergravity level in a sponta-
neous way. There are two main sources of corrections to
the scalar potential coming from

eK=m
2
Plm2

3=2m
2
Pl � Km2

3=2 (23)

and

K� ��jD�Wj2 � jK�j2m2
3=2


2ð�Þ : (24)

These corrections lead to a contribution to the scalar
potential

	V �m2
3=2’

2: (25)

This contribution to the scalar potential increases with �
and does not modify the cosmological dynamics provided
it is much smaller than the matter term in the effective
potential 	Vð�minÞ � x�1 which leads to

’2
min �

x�1
m2

3=2

: (26)

Using (22), we find that the mass in the late time Universe
is constrained by

m1 � m3=2; (27)

where m3=2 is the gravitino mass and is typically much

larger than 1 eV [41]. We will therefore require

m1 � Oð1Þ eV (28)

which is our first constraint. Of course, supersymmetry
breaking in the observable sector of the standard model,
i.e. amongst the standard model particles, leads to a cos-
mological constant which is independent of the supersym-
metron sector. In the following, we will see that a small
cosmological constant is required in the supersymmetron
scenario whose origin may come from, in part, the super-
symmetry breaking scale in the observable sector. The
three physical parameters f�1; x; m1g together with the
two indices fn;�g completely characterize the effective
model. In the end, we will go back and compare our results
with the original mass scales.

D. Supersymmetron dynamics

The field equation for ’ follows from a variation of
Eq. (14) with respect to ’ and reads

h’ ¼ Veff;’; (29)

where the effective potential is given by

Veffð’Þ ¼ VFð’Þ þ ðAð’Þ � 1Þ�CDM: (30)

The minimum ’� of the effective potential is determined

by

�
’min

’�

	ðnþ1Þ=� �
�
’min

’�

	ðnþ2Þ=2� ¼ �CDM

�1
(31)
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and has the approximate solution

’�

’min

’
8><
>:
1 �CDM & �1�

�1
�CDM

	
�=ðnþ1Þ

�CDM � �1:
(32)

A nonzero dark matter condensate is seen to lower the
minimum from the supersymmetric minimum. The en-
ergy density associated with the supersymmetron is

Veffð’�Þ ’
8><
>:

x�CDMð1þnÞ
n

�
�1

�CDM

	
1=ðnþ1Þ

�CDM � �1

x�CDM �CDM & �1
(33)

which for small n and �CDM � �1 behaves like a cos-
mological constant, but evolves as CDM after the field
has converged to the supersymmetric minimum. This
means that if the supersymmetron accounted for all
dark energy, then acceleration would be a transient
phenomenon.

The mass of the field, m2
’ � Veff;’’, is given by

m2
’ ¼ m21

�
2ðnþ �Þ

n

�
’min

’�

	ðn=�Þþ2

� ðnþ 2�Þ
n

�
’min

’�

	ðn=2�Þþ2

þ 2ð1� �Þ
n

�CDM

�1

�
’min

’�

	
2�ð1=�Þ�

: (34)

When the field follows the minimum of the effective
potential, this expression simplifies to

m2
�

m21
’
8><
>:
1 �CDM & �1
2ðnþ1Þ

n

�
�CDM

�1

	ðnþ2�Þ=ðnþ1Þ
�CDM � �1:

(35)

We see that the mass is always greater than the value at the
supersymmetric minimum and from the constraint Eq. (28)
the mass is therefore always greater than a few eV’s.

The conformal coupling Eq. (15) leads to a fifth force
(see e.g. [42,43]) between dark matter particles, which in
the nonrelativistic limit (and per unit mass) is given by

~F ’ ¼ d logAð’Þ
d’

~r’: (36)

This fifth force will have an impact on structure formation
which is investigated in the following sections.

III. STATIC CONFIGURATIONS

In this section, we derive the static spherical symmetric
solutions for the supersymmetron, which we then use later
on when studying the spherical collapse.

In a static spherical symmetric metric with weak gravi-
tational fields, the field equation Eq. (29) reads

d2’

dr2
þ 2

r

d’

dr
¼ VF;’ þ A;’�: (37)

We consider a spherical body of dark matter (a halo) with
radius R and a top-hat density profile

� ¼
�
�c r < R

�b r > R
(38)

and impose the standard boundary conditions

d’ðr ! 0Þ
dr

¼ d’ðr ! 1Þ
dr

¼ 0; (39)

’ðr ! 1Þ ¼ ’b ¼ ’�ð�bÞ: (40)

The mass at the minimum inside (outside) the body is
denoted by mc (mb).
Outside the halo, we can linearize the field equation

around the background value ’b with the solution

’ðrÞ ¼ ’b � BR

r
e�mbðr�RÞ r > R (41)

and where the constant B is determined by matching to the
interior solution. The interior solutions are calculated be-
low for several different cases.

A. Point-particle solutions

We first look at the point-particle solution, which can be
found by first deriving the solution for fixed R and then
taking the limit R ! 0 with M ¼ 4


3 R3�c fixed.

In this limit, we expect the solution inside the body to be
a very small perturbation of the background solution and
we can assume mbR � 1. A second-order Taylor expan-
sion in r gives us the solution

’ ¼ ’ð0Þ þ A;’b
�cr

2

6
r < R: (42)

Matching to the exterior solution at r ¼ R gives

’ð0Þ ¼ ’b �
A;’b

�cR
2

2
; (43)

BR ¼ A;’b
M

4

: (44)

Taking the limit R ! 0 and using Eq. (36), we find that the
gravity plus fifth-force potential is given by

VðrÞ ¼ GM

r
ð1þ 2ðA;’b

MplÞ2e�m’rÞ (45)

which is the same as the prediction from linear perturbation
theory1 as we will see later on. Contrary to chameleons
where this type of solution holds at linear scales, here the

1By taking the Fourier transform of Eq. (69), we recover
Eq. (45), see e.g. [44].
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large mass of the supersymmetron means that this solution
only applies for microscopic bodies.

B. Small overdensity

Now, we turn to the case where the size of the over-
density has to be taken into account. Note that we cannot
make the approximation mbR � 1 as the mass of the
supersymmetron is generally very large

1

mb

<
1

m1
� 1

eV
� 10�6 m: (46)

Since we are interested in astrophysical-sized overden-
sities, R ¼ OðMpcÞ, we will always have mbR � 1.

We take ’ ¼ ’0 þ 	’ and Taylor expand the field
equation inside the body around ’0 � ’ðr ¼ 0Þ:
d2	’

dr2
þ 2

r

d	’

dr
¼ Veff

;’0
þm2

0	’; m2
0 � Veff

;’’0
(47)

which gives the solution

’ ¼ ’0 þ
Veff
;’0

m2
0

�
sinhðm0rÞ

m0r
� 1

	
r < R: (48)

Matching at r ¼ R and using m0R, mbR � 1 to simplify
the analysis, we find

’0 ’ ’b �
Veff
;’0

m2
0

�
sinhðm0RÞ

m0R
þ coshðm0RÞ

mbR

	
; (49)

B ’ ’b � ’0

1þ mb

mc

’ ’b � ’0

2
: (50)

We assume that ’0 is just a small perturbation in the
background: ’0 ¼ ’b � 	’, and expand the above ex-
pression to first order in 	’. This leads to

	’ ’ ð�c � �bÞA;’b

m2
b

(51)

and

B ¼ ð�c � �bÞA;’b

2m2
b

: (52)

This gives a total force, F ¼ Geff�M
R2 on a shell close to the

edge of the overdensity where�
Geff

G

	
¼ 1þ 6ðA;’b

MplÞ2
ðmbRÞ (53)

which is suppressed compared to the point-particle solu-
tion. This solution is only valid when

	’ ’ ð�c � �bÞA;’b

m2
b

� ’b: (54)

Putting �c ¼ ð1þ�Þ�b and using
�bA;’b

’b
�m2

b, we see that

this condition reduces to

� � 1 (55)

i.e. a very small overdensity.

C. Large overdensity

For large overdensities, we expect screening
and we therefore look for chameleonlike solutions
[9,10,42,45–48]. That is, we assume that the field is very
close to the minimum, ’c ¼ ’�ð�cÞ, of the effective po-

tential inside the body and the only variations of the field
are in a thin shell close to the surface. Linearizing the field
equation about ’c leads to the solution

’ðrÞ ¼ ’c þ C
sinhðmcrÞ

mcr
r < R: (56)

Because of the form of the field equation for general
� � 1, we cannot solve the equation in the thin shell, but
we will assume that this solution is valid all the way to
r ¼ R. This will be the case if the shell is very thin as found
in chameleon theories [43,47,48], and as we will see below
this is the case for the supersymmetron when the density
contrast of our overdensity is large. In fact, we find that the
supersymmetron is very similar in behavior to strongly
coupled chameleons as studied in [47].
Matching the two solutions at r ¼ R, we obtain

B ’ ð’b � ’cÞ (57)

i.e. the solution found is the critical solution where the field
almost does not change inside the body. We can rewrite this
equation in the standard chameleon form by introducing
the equivalent thin-shell factor

�R

R
� ð’b � ’cÞ

6�’c
�cM

2
pl

; �’c
¼ A;’c

Mpl; (58)

where�c ¼ G�M
R ¼ ð�c��bÞR2

6M2
pl

is the Newtonian potential of

the overdensity. The total force on a spherical shell close to

the surface is now F ¼ Geff�M
R2 where

�
Geff

G

	
¼ 1þ 2�2

’c

�
3�R

R

	
� ð1þmbRÞ: (59)

This solution is valid as long as the quadratic term in the
Taylor expansion of Veff;’ around ’c is suppressed com-

pared to the linear term at r ¼ R. This condition turns into

mb

mc

�
’b

’c

	
� 1 ! � � 1: (60)

We have not found an explicit solution for �� 1, but if we
take � ! 0 in Eq. (59) we recover Eq. (53). Thus, the two
approximations agree for �� 1 and we will therefore use
equation Eq. (59) as an approximation for the fifth force for
all �.
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For a body of fixed size R, the effective gravitational
constant is seen to decrease with increasing �c demonstrat-
ing the chameleonlike behavior and thus we recover the
Newtonian regime for virialized halos, see Fig. 4.

IV. COSMOLOGICAL SUPERSYMMETRON

In this section, we discuss the cosmological evolution of
the supersymmetron at the background level, the linear
perturbations, and the spherical collapse.

A. Background cosmology

The background evolution of the supersymmetron in a
flat Friedmann-Lemaitre-Robertson-Walker metric

ds2 ¼ �dt2 þ aðtÞ2ðdx2 þ dy2 þ dz2Þ (61)

is determined by the Friedman equation which in the late
Universe reads

3M2
plH

2 ¼ �b þ �CDM þ �DE; (62)

where �b is the baryon density, �CDM the dark matter
density, and �DE is the dark energy density. In the follow-
ing, we will ignore the baryons and treat all matter as
CDM. The CDM energy density is conserved implying that

_� CDM þ 3H�CDM ¼ 0: (63)

The DE density is given by the sum of the energy density in
the supersymmetron and a CC

�DE ¼ �CC þ �’; (64)

where �’ ¼ _’2

2 þ VF þ ðAð’Þ � 1Þ�CDM. We will later see

that a nonzero CC is required to have a viable cosmology.
This CC may come from supersymmetry breaking [15].

The field equation Eq. (29) in the Friedmann-Lemaitre-
Robertson-Walker metric Eq. (61) becomes

€’þ 3H _’þ Veff;’ ¼ 0: (65)

The mass of the field is constrained by Eq. (28) which
means that m’ � H in the late Universe. The minimum

’� is therefore an attractor which the field follows. Along

this attractor, the kinetic term is negligible as _’2

2Veff
��

H
m’

	
2 � 1. In Fig. 1, we show the cosmological evolution

of ’� and m’ with redshift.

When the supersymmetron follows the attractor, we
have

�’ ’
8><
>: x�CDM

ðnþ1Þ
n

�
�1

�CDM

	
1=ðnþ1Þ

�CDM � �1

x�CDM �CDM & �1:
(66)

The equation of state along the attractor is given by

!’ ¼ p’

�’

’ � VF

Veff

’
�� 1

nþ1 �CDM � �1
0 �CDM � �1:

(67)

To have acceleration of the Universe without a CC, we
need to impose z1 > 0 and n < 2. When the field con-
verges to the supersymmetric minimum, p’ ’ �VF ! 0
and the acceleration stops. To have agreement with obser-
vations, we need a nonzero CC, as was pointed out in [15].
With the inclusion of a CC, the dark energy equation of
state is modified

!DE ¼ p’ � �CC

�’ þ �CC

’
�!’ �’ � �CC

�1 �’ � �CC:
(68)

In Fig. 2, we show the dark energy equation of state as

function of redshift and f � �’

�’þ�CC
: the fraction of dark

energy in the supersymmetron to the total dark energy
density today.
To find out how large a contribution the supersymmetron

we can have in the energy budget of our Universe, we will
first look at the linear perturbations to get a constraint on
the model parameters and then apply these constraints to
the background cosmology.

FIG. 1. The cosmological evolution of ’� (above) and m’

(below) as function of redshift. The dashed line shows the
analytical approximation Eq. (32) (above) and Eq. (35) (below).
The supersymmetron parameters are z1 ¼ 1:0, � ¼ 1, and
n ¼ 0:5. x and m1 do not have any influence on the evolution
of the minimum and do therefore not need to be specified here.
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B. Linear perturbations

The coupling of the supersymmetron Eq. (15) to dark
matter leads to a fifth force which will influence the growth
of the linear perturbations and structure formation in gen-
eral. The similarity of the model with chameleons yields
that in high-density regions the fifth force will be screened
as shown in Sec. III.

The growth of the dark matter perturbations 	 ¼ 	�CDM

�CDM

for subhorizon scales are determined by (see e.g.
[45,49–51])

€	þ 2H _	 ¼ 3

2
H2�CDMðaÞ	

�
GeffðkÞ

G

	
lin
; (69)

where the effective gravitational constant is given by

�
GeffðkÞ

G

	
lin

¼ 1þ 2ððlogAÞ;’MplÞ2
1þ a2m2

’

k2


 1þ 2ðA;’MplÞ2
m2

’

k2

a2
;

(70)

where the last equality comes from the fact that the
supersymmetron is very heavy compared to astrophys-
ical scales and where we have assumed Að’Þ � 1 � 1
[see Eq. (73)].

In order to have signatures on the linear perturbations,
we need the coupling strength to satisfy 2ðA;’MplÞ2 � 1,

i.e. the supersymmetron must be very strongly coupled. It
has been argued [52,53] that an adiabatic instability exists
in the regime, a point we will return to when discussing the
nonlinear evolution in the next section.

At early times, �CDM � �1, we find�
GeffðkÞ

G

	
lin


 1þ
�

6

ðnþ 1Þ�0
CDM

	

� x104
�

k=a

0:1h Mpc�1

	
2 �

�
1þ z1
1þ z

	
3=ðnþ1Þ

(71)

and as the field converges to the supersymmetric minimum
we obtain�
GeffðkÞ

G

	
lin


 1þ
�

12

n�0
CDM

	
� x104

ð1þ z1Þ3
�

k=a

0:1h Mpc�1

	
2
:

(72)

In both cases, we see that a comoving scale of k=a ¼
Oð0:1h Mpc�1Þ (a linear scale in general relativity) will
experience a very large correction if x � 1 is not satisfied.
With x � 1, we also have

Að’Þ � 1 ¼ x

�
’

’min

	ð1=�Þ
< x � 1 (73)

justifying our claim.
To get a constraint on the model parameters, we define

kmod via �
Geffðkmod; z ¼ 0Þ �G

G

	
lin

� 1 (74)

and impose kmod > 0:1h Mpc�1 in order for the growth of
perturbations to be in agreement with �CDM at large
scales. With this definition, we can get a constraint on
the energy density in the supersymmetron to the total
dark energy today. By using Eqs. (74) and (66), we find

�’

�’ þ�CC

¼

8>>><
>>>:

ðnþ1Þ2�2
CDM

10�4

6ð1��CDMÞ

�
0:1h=Mpc

kmod

	
2

�0
CDM � �1

n�2
CDM

10�4ð1þz1Þ3
12ð1��CDMÞ

�
0:1h=Mpc

kmod

	
2

�0
CDM & �1:

(75)

If �0
CDM � �1, the energy density in the supersymmetron

today is negligible compared to the CC. In the other regime
�0
CDM & �1, we find

�’

�’ þ�CC
< 10�4ð1þ z1Þ3 (76)

and we must require z1 > 10 if the supersymmetron is to
account for a significant part of the dark energy budget.
However, the dominating contribution to dark energy must
be the CC as otherwise the equation of state Eq. (68) reads
!DE 
 0 today and hence no acceleration. Thus, is both
cases we find that a pure CC is required to account for dark
energy.
Returning to the linear perturbations, we see that the

linear effective gravitational constant is increasing as we

FIG. 2. The equation of state for the supersymmetron as func-

tion of redshift for four different values of f ¼ �’

�’þ�CC
: the

fraction of dark energy in the supersymmetron to the total dark
energy density today. The horizontal dotted line shows the
analytical approximation !’ ¼ � 1

nþ1 . The supersymmetron

parameters are z1 ¼ 1:0, � ¼ 1, n ¼ 0:5 and x is fixed to
give the desired f in each case.
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go to smaller scales (large k). For k > kmod, the super-
symmetron fifth force is dominating over gravity at the
linear level and to have a viable theory we need a large
kmod. At nonlinear scales, we expect a chameleonlike effect
to kick in and screen the fifth force. We will study the
nonlinear effects by looking at the spherical collapse.

C. Spherical collapse

In this section, we look at the collapse of a spherical top-
hat overdensity taking the supersymmetron fifth force into
account. This will allow us to extract constraints on the
model parameters by requiring the model to agree with
�CDM on large scales.

The equation of motion of a spherical shell at the edge of
the top-hat overdensity in a scalar-tensor theory with a fifth
force was derived in [24]. The final form of the equation
can be understood from a simple Newtonian argument. In
the derivation below, we neglect the CC energy density
because the Newtonian picture does not assign any energy
density to pressure and therefore a Newtonian derivation
cannot yield the correct contribution (which involves con-
tributions from pressure) from the CC without some ad hoc
assumptions.

The total energy of a collapsing spherical shell of matter
is given by

E

mshell
¼ 1

2
_r2 �GM<r

r
þ Vð’Þ; (77)

where Vð’Þ is the fifth-force potential. Neglecting shell
crossing so that the total energy is conserved and using
_E ¼ 0, we get Newton’s law for the shell

mshell €r ¼ �ðFgravityðrÞ þ F’ðrÞÞ (78)

which can be written

€rðtÞ
rðtÞ ¼ � 1

6

�CDM

M2
pl

�
1þ F’ðrÞ

FgravityðrÞ
	

¼ � 1

6

�CDM

M2
pl

�
GeffðrÞ
G

	
sph

: (79)

The term on the right-hand side of Eq. (79) agrees with the
matter term found from a full derivation including pressure
and gives the result

€rðtÞ
rðtÞ ¼ 1

3

�DE

M2
pl

� 1

6

�CDM

M2
pl

�
GeffðrÞ
G

	
sph

: (80)

In the following, the DE density is taken to be a pure CC
and the effective gravitational constant is derived in
Sec. III, see Eq. (59). For a small overdensity of size r,
we can write Eq. (53) as

�
GeffðrÞ
G

	
sph


 1þ
�

4

n�0
CDM

	
� x1036

ð1þ z1Þ3
�
Mpc=h

r

	

�
�
m1
eV

	
�

�
�1
�CDM

	ð2�2�Þ=ðnþ1Þ
(81)

when �CDM & �1 and

�
GeffðrÞ
G

	
sph


 1þ
�

4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nðnþ 1Þp

�0
CDM

	
� x1036

ð1þ z1Þ3

�
�
Mpc=h

r

	
�

�
m1
eV

	

�
�

�1
�CDM

	ð4�2�þnÞ=2ðnþ1Þ
(82)

for �CDM � �1. Note that the effective gravitational con-
stant in the spherical collapse is much larger than the
corresponding linear value. For a large-scale overdensity
today, Mpc=h & r, to agree with �CDM we must require

x & 10�36

�
eV

m1

	
� 10�36: (83)

For such a small value of x, by looking at Eqs. (71) and (72)
we see that the linear perturbations will be indistinguish-
able from �CDM. This also means that the adiabatic
instability that might exist in these models is avoided at
the linear level.
By changing coordinates to y ¼ r

aR where R ¼ ri
ai
, we

can write Eq. (80) in the form

y00 þ
�
2� 3

2
�mðNÞ

	
y0

þ�mðNÞ
2

ðy�3 � 1Þy
�
GeffðaRyÞ

G

	
sph

¼ 0; (84)

where a prime denotes a derivative with respect to N ¼
logðaÞ.
The density contrast � ¼ �CDM

��CDM
� 1 of the collapsing

sphere can be obtained from � ¼ y�3 � 1 and the mass

from M 
 4
R3

3 ��0
CDM. Early on, we have y 
 1� �

3 as the

overdensity follows the expansion, and by linearizing this
equation we obtain the equation for the linear evolution of
the density contrast

�00 þ
�
2� 3

2
�mðNÞ

	
�0 � 3

2
�mðNÞ�

�
GeffðrÞ
G

	
lin

¼ 0;

(85)

where�
GeffðrÞ
G

	
lin

¼ 1þ 2ðA;’MplÞ2ð1þmbrÞe�mbr (86)

which is the same equation as for the linear perturbations
Eq. (69) in real space. As mentioned before,
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�
GeffðrÞ �G

G

	
lin

�
�
GeffðrÞ �G

G

	
sph

& Oð1Þ (87)

on linear scales and the linear equation reduces to that of
�CDM. This also shows that nonlinear effects are very
dominant in this model.

The initial conditions for the numerical implementation
are taken to be the same as for �CDM:

yi ¼ 1��i

3
; y0i ¼

�i

3
; �0

i ¼ �i: (88)

In Fig. 3, we show the evolution of the radius of an over-
density at different scales. Smaller overdensities collapse
earlier as the fifth force is more dominant.

In Fig. 4, we plot the evolution of the effective gravita-
tional constant for the same case as Fig. 3. As the density
contrast of the collapsing sphere increases, the chameleon
mechanism kicks in and effectively shields the fifth force.

Too see more clearly the effect of the fifth force on the
formation of halos, we calculate the linearly extrapolated
density contrast for collapse today as function of the virial
mass of the halo compared to the �CDM prediction 	c 

1:67, see Fig. 5. Low-mass halos are seen to require a
smaller linear density contrast than that of �CDM in order
to collapse due to the fifth force.

With the linear collapse threshold 	c, we can predict the
halo mass function. In the standard Press-Schechter ap-
proach, one assumes that all regions with 	 > 	c in the
linear extrapolated density field collapse to form halos. The
fraction of mass within halos with a given mass is deter-
mined by the variance of the linear density field smoothed
over that scale. We adopt the Sheth-Tormen (ST) prescrip-
tion [54] for the halo mass function. The ST description for
the comoving number density of halos per logarithmic
mass interval in the virial mass M is given by

nlogM ¼ dn

d logM
¼ ��

M
fð�Þ d�

d logM
; (89)

where the peak threshold

� ¼ 	cðMÞ
�ðMÞ (90)

and

�fð�Þ ¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2



a�2

s �
1þ 1

ða�2Þp
	
e�ða�2=2Þ: (91)

We adopt the standard parameters a ¼ 0:75 and p ¼ 0:3 in
the following for whichC ¼ 0:322.�ðMÞ is the variance of
the linear density field convolved with a top-hat of radius R
(M ¼ 4


3 ��R3),

FIG. 4. The strength of the fifth force at the surface of the
spherical overdensity during the collapse as a function of the
scale factor a for R ¼ ri

ai
¼ 0:1, 1, 10, 100 Mpc=h (from top to

bottom). The parameters are the same as in Fig. 1.

FIG. 3. rðaÞ as a function of the scale factor a for R ¼ ri
ai
¼

0:1, 1, 10, 100 Mpc=h (from left to right) compared with the
behavior for r in usual �CDM (solid line). The initial density
contrast is the same in all runs and is fixed such as to give
collapse today for �CDM. The supersymmetron parameters are
z1 ¼ 0:0, � ¼ n ¼ 1, x ¼ 10�43, and m1 ¼ 105 eV.

FIG. 5. The �CDM-lineary-extrapolated critical density con-
trast for collapse for the supersymmetron as a function of the
halo mass. The dashed line shows the �CDM prediction
	c 
 1:67. The supersymmetron parameters are z1 ¼ 0:0,
� ¼ n ¼ 1, x ¼ 10�43, and m1 ¼ 105 eV.
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�ðRÞ2 ¼
Z k3

2
2
PLðkÞjWðkRÞj2 dk

k
; (92)

where PLðkÞ is the linear power spectrum, which for
the supersymmetron is that of �CDM, and WðxÞ ¼ 3

x3
�

ðsinðxÞ � x cosðxÞÞ is the Fourier transform of the top-hat
window function. The power-spectrum is normalized to
�8 � �ðR ¼ 8 Mpc=hÞ. We have chosen �8 ¼ 0:8 in our
analysis.

The virial theorem gives us the condition for virializa-
tion of a halo. This condition reads 2T þW ¼ 0,

where T ¼ 3
10M

_R2 is the kinetic energy and W ¼
�R

d3x�mðxÞ ~x � ~r� is the potential energy. In the pres-
ence of a fifth force, the potential � ¼ �N þ Að’�mÞ is
the sum of the gravitational potential and the fifth-force
potential. In the spherical symmetric case, we have

W ¼ WN �
Z R

0
4
r3�m

dAð’Þ
dr

dr; (93)

where WN ¼ � 3
5
GM2

R is the gravitational potential energy.

Performing the integration on the right-hand side using
integration by parts, we find��������

Z R

0
4
r3�m

dAð’Þ
dr

��������	 4
R3�mðAð’ðRÞÞ � 1Þ: (94)

Note that this term is usually much smaller than the gravi-
tational potential energy. This can be understood from the
chameleon thin-shell analogue: the fifth force is only felt in
a thin shell close to the surface of the body and therefore
the potential energy associated with the fifth force for the
whole halo is small.

In Fig. 6, we show the ST mass function of the super-
symmetron relative to that of �CDM. Because the super-
symmetron fifth force is increasing with decreasing scale,
we recover�CDM on large scales, but see an enhancement
in the mass function for low-mass halos.

V. MASS SCALES

Having found a range for our model parameters which
gives predictions that are in agreement with current obser-
vations, we will now analyze how these constraints affect
the original mass scales �i, of the model.
We start by defining x0 ¼ 1040x, m0 ¼ m

g TeV , and

z0 ¼ ð1þ z1Þ3. We can now rewrite Eq. (16) as

�min

H0


 105m0x0 (95)

and Eq. (17) as �
�

Mpl

	
4 
 10�160x0z0: (96)

From Eq. (10), we find�
M

Mpl

	
nþ4 
 10�160�55nx0nþ1m0nz0: (97)

By using Eq. (7), we get�
�1

�0

	
2��2

�
�0

Mpl

	
nþ4 
 10�160�55nx0nþ1m0nz0; (98)

�
�1

�2

	
2��2

�
�2

Mpl

	
4 
 10�160x0z0 (99)

from which we find�
�2

�0

	
2þ2�

�
�0

105H0

1

x0m0

	
n 
 1: (100)

The simplest case to analyze is � ¼ 1 for which the
scale �1 vanishes from the theory. We find

�2 
 1020ðx0z0Þ1=4H0 (101)

i.e. �2 needs to be between the current Hubble scale and
the dark energy scale. This scale can be elevated by in-
creasing the redshift z1 � 1, but we typically need a
redshift in the very early Universe to reach super-TeV
scales. For �0, we find

�0 
 1020
�

z0

ðx0m0Þn
	ð1=4Þ

H0: (102)

In the general case � � 1, we see from Eq. (98) that taking
�< 1 together with �1 � �0, �2 can serve to increase
the other two scales. For example, � ¼ 1

2 and �1 
 Mpl

gives

�2 
 �0 
 1028ðx0z0Þð1=5ÞH0 (103)

which is around the dark energy scale. There seems to be
no unfine-tuned way of bringing these mass scales up to
typical particle physics scales if we want the cosmological
symmetry breaking to be close to the present era. For

FIG. 6. The fractional difference in the supersymmetron mass
function compared to �CDM at z ¼ 0. The symmetron parame-
ters are m1 ¼ 105 eV, z1 ¼ 0:0, x ¼ 10�43, and � ¼ n ¼ 1.
The supersymmetron converges to �CDM for large halo masses.
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example, to have �2 � TeV when � ¼ 1 and x0 
 1 then
Eq. (98) shows that we need z0 
 10100 which translates to
�1 
 ð1013 GeVÞ4.

Finally, and from a field theoretic point of view, the scale
�1 has a different status from �0;2. The former appears in

the Kähler potential as a suppression of scales for higher-
dimensional operators and signals the typical scales above
which the effective field theory description breaks down.
On the contrary, �0;2 appear in the superpotential and are

protected by nonrenormalization theorems. Hence, we ex-
pect that�1 should be sensitive to high-energy physics and
represents the effective cutoff of the theory. On the other
hand,�0;2 may be already present at very high energy even

if these scales are very low. Of course, this does not provide
an explanation for the discrepancy of scales between �1

and �0;2 which is not natural.

VI. DISCUSSION AND CONCLUSION

We have studied the cosmological evolution of the
supersymmetron and its possible effects on structure for-
mation. Requiring that linear perturbations are in agree-
ment with �CDM on large scales, we find that the energy
density in the supersymmetron is negligible compared to
the dark matter density and a pure cosmological constant
must be introduced to play the role of dark energy.

The nonlinear evolution of the model was also inves-
tigated by using the spherical collapse model. Spherically

symmetric solutions to the field equation have been derived
and used to predict the fifth-force effects on a collapsing
halo. The effective gravitational constant at the edge of a
spherical overdensity has been found to be much larger
than the linear prediction due to the highly nonlinear
properties of the model. The model parameter must be
tuned such that the spherical collapse is under control on
large scales. This implies that linear perturbations reduce
to that of �CDM. On nonlinear scales, the model then
predicts a faster collapse than that of�CDM. In particular,
we find that the supersymmetron predicts an excess of
small mass halos compared to �CDM. However, for this
to be the case, one or more of the mass scales in the theory
must be fine-tuned.
On very small scales, i.e. galaxy scales, the matter

density is large enough to effectively screen the fifth force
via the chameleon mechanism. This nonlinear regime
could in principle be probed using N-body simulations.
However, due to the enormous mass of the field this poses a
severe challenge for existing methods.
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The Layzer-Irvine Equation for Scalar-Tensor Theories:
A Test of Modified Gravity N-body Simulations

Hans A. Winther1, ∗
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(Dated: June 11, 2013)

The Layzer-Irvine equation describes energy conservation for a pressure less fluid interacting though quasi-
Newtonian gravity in an expanding Universe. We derive the Layzer-Irvine equation for scalar field theories
where the scalar field interacts with the matter fields and show applications of this equation by applying it to
N-body simulations of modified gravity theories where it can be used as a dynamical test of the accuracy and
the implementation when solving the equations of motion.

I. INTRODUCTION

The apparent accelerated expansion of the Universe [1, 2] is
one of the biggest puzzles in modern cosmology. There exist
several theoretical explanations for it and these generally goes
under the broad term dark energy [3].

Dark energy in the form of a cosmological constant is cur-
rently the best fit to observations, but it has several theoretical
problems like the fine-tuning and the coincidence problem.
Some of these problems can be elevated if the energy den-
sity of the cosmological constant becomes dynamical. This
approach leads to dark energy models where the accelerated
expansion is due to some new dynamical field [4]. The dark
energyfield(s) evolves on cosmological time scales, and there-
fore if dark energy has interactions with ordinary baryonic
matter then a cosmologically long range fifth-force will be the
result [5].

Gravity is very well tested in the solar system and the re-
sults agree perfectly with the predictions of General Relativity
[6]. A gravitational interaction that differ from General Rela-
tivity are at odds with local gravity experiments and in models
where the dark energy is coupled to dark matter (like coupled
quintessence [7]) it is therefore generally assumed that there is
no coupling to baryons. If a coupling to baryons do exist (we
call this scenario modified gravity) then a screening mecha-
nism [8] is needed to evade local experiments and at the same
time give rise to interesting dynamics on cosmological scales.

In the last decade several modified gravity models with a
screening mechanism, most based on a single scalar degree
of freedom, have been put forward. Models following from
works on massive gravity such as DGP [9] and the Galileon
[10, 11] are well known examples. Another class of models
are the chameleon-like models such as the chameleon/f(R)
[12–15], symmetron [16, 17] and environmental dependent
dilaton [18].

For this last class of models it has been shown that the back-
ground cosmology is generally very close to that of ΛCDM.
However, even though the background cosmology is the same,
the growth of linear perturbations is modified and alters struc-
ture formation. One can also show quite generally that the re-
sults of local gravity experiments implies a interaction range

∗Email address: h.a.winther@astro.uio.no

in the cosmological background today in the sub megaparsec
region [19]. This is in the range where perturbations in the
fiducial ΛCDM model goes from being well described by lin-
ear theory to where one needs more elaborated methods like
N-body simulations to make accurate predictions of the the-
ory.

N-body simulations for modified gravity theories requires
one to fully solve for the 3D distribution of the scalar field
just as one normally does for the gravitational potential. The
highly non-linear form of the field-equation makes this com-
putationally challenging. Recently, several different N-body
codes have been created that does this job [20–25], and stud-
ies of structure formation in the non-linear regime have been
performed for many different modified gravity models like
for example the chameleon/f(R) gravity [26–28], the sym-
metron [29, 30], the environmental dependent dilaton [31], the
DGP model [32, 33] and phenomenological fifth-force mod-
els [34]. For a review of N-body simulations for non-standard
scenarios see [35].

One important lesson learned from these studies is that one
needs simulations to make accurate predictions: linear per-
turbation theory gives inaccurate results for almost all scales
where the matter power-spectra differs from ΛCDM [28, 30].

Before performing such simulations the scalar field solver
needs to be properly tested for both static and dynamical cases
where analytical or semi-analytical solutions exist. For the
static case several tests already exist (see e.g. [20]), while for
the time evolution of the cosmological simulations so far the
only real test is to compare the results with that of other codes.

There is however one other test based on energy conserva-
tion, that so far has been ignored for modified gravity simula-
tions, which can be used for this purpose. For collision less N-
body simulation (i.e. dark matter only simulations) a Newto-
nian energy conservation equation, taking into account the ex-
panding background, exist and is known as the Layzer-Irvine
equation [36, 37]. This equation gives a relation between the
kinetic energy and the gravitational potential energy of dark
matter particles and is valid throughout the process of struc-
ture formation. The Layzer-Irvine equation also has other ap-
plications including the determination of the density, mass and
size of galaxy clusters [38–40].

In this paper, we derive the Layzer-Irvine equation for a
quite general class of modified gravity models and the meth-
ods we use can easily be generalized to get the equation for
any scalar field model of interest. We implement the resulting
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equation in an N-body code and show that it can be used as a
new dynamical test for N-body codes of modified gravity.

The setup of this paper is as follows. We begin by
briefly reviewing scalar-tensor theories of modified gravity in
Sec. (II) and the Layzer-Irvine equation for standard gravity
in Sec. (III). The modified Layzer-Irvine equation is derived
in Sec. (IV) and we discuss how to implement this equation
in an N-body code in Sec. (VI). In Sec. (VII) we present the
results from tests on N-body simulations of modified gravity
before we summarize and conclude in Sec. (VIII).

Throughout this paper we use units of c = � = 1 and the
metric signature (−,+,+,+).

II. SCALAR-TENSOR THEORIES OF MODIFIED
GRAVITY

In this section be briefly review scalar-tensor modified grav-
ity theories. We are in this paper mainly interested in scalar-
tensor theories defined by the action

S =

∫
d4x

√−g

[
R

16πG
+ f(X,φ)

]
+ Sm(A2(φ)gμν ;ψm) (1)

where R is the Ricci scalar, G is the bare gravitational con-
stant, g is the determinant of the metric gμν , φ the scalar field,
X = − 1

2g
μνφ,μφ,ν and ψm represents the different matter-

fields which are coupled to the scalar field φ via the conformal
rescaled metric g̃μν = A2(φ)gμν .

The Einstein equations follows from a variation of the ac-
tion with respect to gμν and reads

Rμν − 1

2
Rgμν = 8πG

[
A(φ)Tm

μν + T φ
μν

]
(2)

where Tm
μν is the energy-momentum tensor for the matter

fields and

T φ
μν = fXφ,μφ,ν + gμνf, fX ≡ ∂f

∂X
(3)

is the energy-momentum tensor for the scalar field.
The Klein-Gordon equation for φ follows from a variation

of the action with respect to φ and reads

∇μ(fX∇μφ) = −f,φ −A,φTm (4)

where Tm = gμνTm
μν is the trace of the energy-momentum

tensor of the matter field(s). In the rest of this paper we will
only consider a single dust like matter component for which
Tm = −ρm. The conformal coupling of φ to matter gives rise
to a fifth-force which in the non relativistic limit and per unit
mass is given by

�Fφ = −�∇ logA = −β(φ)

MPl

�∇φ, β(φ) ≡ d logA(φ)

dφ
(5)

The Bianchi identity and the field equations implies the fol-
lowing conservation equations

∇μT
μν
φ = +

∂ logA

∂φ
A(φ)T μν

m ∇μφ (6)

∇μ(A(φ)T
μν
m ) = −∂ logA

∂φ
A(φ)T μν

m ∇μφ (7)

∇μT
μν
m = 0 (8)

The equations presented above are the only one we need to de-
rive the modified Layzer-Irvine equation. For a more thorough
review of scalar tensor modified gravity theories see [41].

III. THE LAYZER-IRVINE EQUATION FOR GENERAL
RELATIVITY

In this section we re-derive the Layzer-Irvine equation for
the case of a collision less fluid interacting with gravity in
an expanding background. This equation was first derived
by Layzer [36] and Irvine [37] in the early 1960s and our
derivation below will be close up to that of [36].

We will here only consider a flat spacetime. However,
the results we derive below also applies for curved space-
times as long as we only apply them to regions smaller
than the radius of curvature [36]. The background met-
ric of a flat homogenous and isotropic Universe is the
Friedmann-Lemâitre-Robertson-Walker metric

ds2 = −dt2 + dr2 = −dt2 + a2(t)(dx2 + dy2 + dz2) (9)

In the following �x will denote the comoving coordinate and
�r = a�x the physical coordinate. For a collection of collision
less particles the energy momentum tensor is given by

T μν
m (�x′) =

∑
i

miδ(�x′ − �xi)u
μ
i u

ν
i√−g

(10)

where uμ
i is the four velocity of particle i. If we treat the col-

lection of particles as a fluid then we can define

T μν
m = ρmuμuν (11)

where uμ is the four-velocity of the fluid. We let ρm(r, t) =

ρm(t) + δρm(r, t) denote the matter density field and �v = a�̇x
the peculiar velocity field. An overbar will always denote a
quantity defined in the background cosmology, e.g. ρm(t) is
the homogenous and isotropic component of the matter field.

The continuity equation for the energy-momentum tensor
reads

∇μT
0μ
m = 0 → ∇μ(ρmuμ) = 0 (12)

By writing out the components and subtracting off the back-
ground equation, ρ̇m + 3Hρm = 0, we get it on a convenient
form

˙(a3δρm) + a3�∇r(ρm�v) = 0 (13)
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In the real Universe the metric is perturbed due to the pres-
ence of matter perturbations and this equation will have addi-
tional contributions like terms containing the time derivative
of the Newtonian potential ΦN . These terms can generally be
neglected as long as the weak-field approximation ΦN � 1
holds (which is the case for most cosmological and astrophys-
ical applications).

The equation describing the motion of the particles (fluid)
is the geodesic (Euler) equation,

dui

dτ
+ Γi

μνu
μuν = 0, ui =

dxi

dτ
(14)

If we take the energy-momentum tensor of matter to be that of
particles then this equation follows directly from the Bianchi
identity. Writing out the geodesic equation and neglecting
small terms, we get an equation of motion very similar to the
Newtonian result generalized to an expanding background

�̈x+ 2H�̇x = −1

a
�∇rΦN (15)

or equivalently

∂(a�v)

∂t
= −�∇r(aΦN ) vi = aẋi (16)

The Newtonian gravitational potential is determined by the
Poisson equation

∇2
rΦN = 4πGδρm (17)

and the solution can also be written explicitly as

ΦN (r, t) = −G

∫
δρm(r′, t)d3r′

|r − r′| (18)

where the integration is over the whole space. The system of
equation

�̈x+ 2H�̇x = −1

a
�∇rΦN (19)

∇2
rΦN = 4πGδρm (20)

forms the basis of N-body simulations for collision less mat-
ter.

To form the Layzer-Irvine equation we need to integrate the
equation of motion Eq. (16) over space. In the following we
will consider a very large, but finite, volume to be able to ne-
glect surface terms arising from integration by parts and to
avoid convergence problems. It is also possible to consider, as
is the case for N-body simulations, a finite volume with peri-
odic boundary conditions. We will in the next section discuss
how to handle the case of going to an infinite volume, which
turns out to be pretty straight forward and does not change the
form of the final equations.

To form the Layzer-Irvine equation we contract Eq. (16)
with �vaρmd3r = �va4ρmd3x and integrate over the distribu-
tion of particles with the result

∂T

∂t
+ 2HT = −

∫
d3r(ρm�v) · (�∇rΦN ) (21)

where

T =

∫
1

2
v2ρmd3r =

Nparticles∑
i=1

1

2
miv

2
i (22)

denotes the total kinetic energy associated with the peculiar
motion. Using integration by parts and applying the continu-
ity equation Eq. (13) we can rewrite the right hand side of
Eq. (21) as

−
∫
(�∇rΦN ) · �vρmd3r =

∫
ΦN

�∇r(�vρm)d3r

= −
∫

ΦN
∂

∂t
(δρmd3r) (23)

which can be rewritten once again using the Poisson equation
as

−
∫

ΦN
∂

∂t
(δρmd3r) = −

(
∂UN

∂t
+HUN

)
(24)

where

UN =

∫
1

2
ΦNδρmd3r

= −G

2

∫ ∫
δρm(r, t)δρm(r′, t)d3rd3r′

|r − r′| (25)

is the gravitational potential energy. Collecting results we are
left with

∂

∂t
(T + UN) +H(2T + UN ) = 0 (26)

which is the Layzer-Irvine equation.
If the total energy E = T + UN is conserved we recover

the well known virial relation 2T + UN = 0.
By making the definitions (the justifications for these defi-

nitions in terms of statistical physics of fluids have been given
by Irvine [37])

εm =
T + UN

V (27)

3pm =
2T + UN

V (28)

where1 V =
∫
d3r we have that Eq. (26) can be written on the

more familiar form

∂

∂t
εm + 3H(εm + pm) = 0 (29)

which a cosmological continuity equation.

1 For an infinite volume this is to be understood as a limiting procedure.
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IV. LAYZER-IRVINE EQUATION FOR SCALAR-TENSOR
THEORIES

In this section we derive the Layzer-Irvine equation for the
class of scalar-tensor (modified gravity) theories given by the
action Eq. (1). We will just state the equations describing our
system without derivation, as a complete derivation of the
equations below can be found in e.g. [31].

As we did in the previous section we take the energy-
momentum tensor of the matter to be that of particles. Note
that we use the definition of T μν

m depicted in Eq. (2) so that the
density ρm satisfies the usually continuity equation Eq. (13),
but as we will see below the Newtonian potential is sourced by
the density ρJ = A(φ)ρm. The continuity equation in terms
of this density reads

˙(a3δρJ)

a3
+ �∇r(ρJ�v)− ρJ�v�∇r logA

− ˙logAδρJ − ρJ
∂

∂t
log

A

A
= 0 (30)

where ρJ = A(φ)ρm and δρJ = A(φ)ρm −A(φ)ρm.
The geodesic equation describing the motion of the fluid is

modified due to the presence of the coupling of φ to matter

dui

dτ
+ Γi

μνu
μuν = −d logA

dφ

(
φ,i + uμφ,μu

i
)

(31)

which in the non-relativistic limit becomes

∂

∂t
(a�v) + (a�v)

∂ logA

∂t
= −a�∇r(ΦN + logA) (32)

The Poisson equation is also modified due to the presence of
the scalar field and reads

∇2
rΦN = 4πGδρJ + 4πGδSφ ≡ 4πGδStot (33)

where the source coming from the scalar field is

δSφ = δρφ + 3δpφ (34)

with δρφ = ρφ − ρφ and likewise for δpφ. The energy density
and pressure of the scalar field are defined as ρφ = T 0

φ 0 and
pφ = 1

3T
i
φ i respectively.

Contracting Eq. (32) with a�vρJd
3r = a4�vρJd

3x and
integrating up we find

Ṫ + 2H(T + δT ) = −
∫

�∇r(ΦN + logA)ρJ�vd
3r (35)

where

T =

∫
d3r

1

2
v2ρJ (36)

δT =

∫
d3r

1

2
v2ρJ

(
∂ logA

∂ log a

)
(37)

Using the continuity equation Eq. (30) we can remove the ve-
locity term in Eq. (35) by integration by parts to find∫

�∇r(ΦN + logA)�vρJd
3r = (38)

+

∫
ΦN

(
∂

∂t
(δStotd

3r)

)
(39)

−
∫

ΦN

(
∂

∂t
(δSφd

3r)

)
(40)

+

∫
logA

(
∂

∂t
(δρJd

3r)

)
(41)

−
∫

d3r(ΦN + logA)δStot
∂ logA

∂t
(42)

+

∫
d3r(ΦN + logA)δSφ

∂ logA

∂t
(43)

−
∫

d3r(ΦN + logA)ρJ
∂

∂t
log

A

A
(44)

−
∫

d3r(ΦN + logA)(�∇r logA)ρJ�v (45)

We will now go through the different terms one by one.
The first term Eq. (39) can be integrated by parts with the

result∫
ΦN

(
∂

∂t
(δStotd

3r)

)
= U̇N +HUN (46)

UN =

∫
ΦN

2
δStotd

3r = − 1

8πG

∫
d3r(�∇rΦN )2 (47)

This last form of UN follows from the Poisson equation and
integration by parts and is identical to that of standard gravity
except here the Newtonian potential is also sourced by the
scalar field.

The term Eq. (40) is of order U̇Sφ
where

USφ
=

∫
ΦN

2
δSφd

3r (48)

This term cannot be written on a form that does not include
time-derivatives of the Newtonian potential2. We will there-
fore assume |USφ

| � |UN | so that we can neglect this term
and the term in Eq. (43). For known modified gravity theories
this assumption is usually satisfied (see e.g. [29]).

The term Eq. (42) becomes −H(2δUN + δUlogA) where

δUN =

∫
d3r

ΦN

2
δStot

∂ logA

∂ log a
(49)

δUlogA =

∫
d3rΦNδStot

∂ logA

∂ log a
(50)

2 This is crucial when we later will implement these equations in an N-body
code as time-derivatives of the gravitational potential is in most codes not
known.
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In the following all terms δUx will meanUx with the inclusion
of a factor ∂ logA

∂ log a in the integrand. We have, for example,

UN + δUN =

∫
d3r

ΦN

2
δStot

(
1 +

∂ logA

∂ log a

)
(51)

and similar for all other terms Ux so that all the terms δUx

can be neglected when
∣∣∣∂ logA
∂ log a

∣∣∣ � 1.

The term Eq. (44) can be neglected as its is a factor
|ΦN + logA| � 1 smaller than a term coming from Eq. (42)
as we will show below.

The term Eq. (45) can also be neglected. To see this,
take the worst case scenario of a scalar fifth-force which
is proportional to gravity everywhere with some constant
strength β. In this case this term is of order

2β2(1 + 2β2)
∂

∂t

∫
d3r

Φ2
N

2
δStot (52)

and the integrand is a factor 2β2(1 + 2β2)ΦN � 1 smaller
than the integrand of UN for the interesting case β � O(1).

The only term left to evaluate is Eq. (41). The equation
needed to rewrite this term can be found by either using the
field equation or more directly by using the conservation
equation for the energy-momentum tensor of the scalar field
Eq. (3). For the first approach we start with the field equation

Lφ ≡ 1

a3
∂

∂t

(
a3fX φ̇

)
− �∇r ·

(
fX �∇rφ

)
− f,φ + logA,φρJ = 0 (53)

At the background level this equation simplifies to

Lφ ≡ 1

a3
∂

∂t

(
a3fX φ̇

)
− f,φ + logA,φρJ = 0 (54)

The two equations above (trivially) implies∫
d3r(Lφφ̇− Lφφ̇) = 0 (55)

which can be written out and integrated by parts to get it on
a convenient form. This procedure applies for any scalar field
theory.

The second approach is to start directly from the conserva-
tion equation for the scalar field Eq. (6) and integrate it over
space to get

∂

∂t

∫
d3r

(
T 0
φ 0 − T

0

φ 0

)
+H

∫
d3r(T i

φ i − T
i

φ i)

=

∫
d3r

(
A(φ)Tm

∂ logA

∂t
−A(φ)Tm

∂ logA

∂t

)
(56)

where an overbar as usual denotes a background quantity.
This expression is valid for any scalar-field theory in which
f = f(φ, ∂φ, ∂∂φ, ...) and not just for our particular
f = f(X,φ). However, if we have a theory where the

coupling to the matter sector is not conformal, then the right
hand side of this equation needs to be modified.

When we specialize to theories given by the action Eq. (1) we
find(

U̇∇φ −HU∇φ

)
+
(
U̇φ̇ + 3HUφ̇

)
+ (Uf − 3HUf)

+ (U̇A −HδUA) + U̇logA =

∫
logA

∂

∂t

(
δρJd

3r
)

(57)

where

U∇φ =

∫
d3rfX

1

2
(∇rφ)

2 (58)

Uφ̇ =

∫
d3rfX

1

2

(
φ̇2 − φ̇

2
)

(59)

Uf =

∫
d3r

(
g(X,φ)− g(X,φ)

)
(60)

UA =

∫
d3r

(
logA(φ) − logA(φ)

)
ρJ (61)

δUA =

∫
d3r

(
logA(φ) − logA(φ)

)
ρJ

(
∂ logA

∂ log a

)
(62)

The g function is defined as g(X,φ) ≡ fX(X,φ)X−f(X,φ)
and

UlogA =

∫
d3r logAδStot

= − 1

4πG

∫
d3r

(
�∇rΦN

)
· (�∇r logA) (63)

We can now combine all the results above to get the modified
Layzer-Irvine equation

∂

∂t

(
T + UN + UlogA + UA + U∇φ + Uf + Uφ̇

)
+H

(
2T + UN − U∇φ − 3Uf + 3Uφ̇

)
+H (2δT − 2δUN − δUlogA − δUA) = 0 (64)

The derivation above assumed a finite volume or a box with
periodic boundary conditions. If the volume is infinite we re-
formulate the equation in terms of

Wi =
Ui

V (65)

where V =
∫
d3r = a3

∫
d3x. The final equation are then to

be read as first integrating over a finite volume V and then tak-
ing the limit limV→∞ Wi. This procedure leaves the equation
invariant.

To understand the final equation better we can rewrite it
slightly. We start with the space averaged energy density and
pressure of the scalar field (the space integral of the T 0

0 and
T i
i components)

εφ =
Uφ̇ + U∇φ + Uf

V (66)

3pφ =
3Uφ̇ − U∇φ − 3Uf

V (67)
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where V =
∫
d3r = a3

∫
d3x is the volume of the Universe or

region in question. For the case where the integration is over
an infinite region of space then the equations above are to be
read as first integrating over a finite volume V and then taking
the limit limV→∞. We now associate, as we did for standard
gravity,

εm =
T + UN

V (68)

3pm =
2T + UN

V (69)

with the internal energy and the cosmic pressure for the matter
(due to gravity) and εφm =

Ulog A

V with the potential energy
associated with the matter-scalar interaction.

Inserting all this in the modified Layzer-Irvine equation, ne-
glecting the (typically) small terms δUx, we can write it on the
form

∂

∂t
(εφ + εm + εmφ) + 3H(εφ + εm + εmφ + pφ + pm) 	 0

(70)

which is a continuity equation. The total energy density is seen
to be just the sum of the expected matter, scalar and interaction
energy density and the pressure likewise.

There is one last, but very handy, relation we can derive in
the case where the time-derivatives of the scalar field can be
neglected in the Klein-Gordon equation. Starting from U∇φ

and using integration by parts we find

U∇φ = −1

2

∫
d3rφ∇(fX∇φ)

= −1

2

∫
d3rφ

(
f,φ − f,φ +

β(φ)ρm
MPl

− β(φ)ρm
MPl

)
(71)

Now if β is a constant then this equation reduces to

U∇φ +
1

2
UlogA = −1

2

∫
d3rφ

(
f,φ − f,φ

)
(72)

which can be used separately from the Layzer-Irvine equation
as a consistency relation or together with the Layzer-Irvine
equation itself to remove e.g. the term U∇φ. The advantage of
using Eq. (72) is that it does not depend on time-derivatives
and can also be used for a static configuration.

V. SPECIFICMODELS

In this section we go through specific models and condi-
tions where additional approximations and simplifications can
be made. The simplifications we make are those that apply
when doing N-body simulations and are not always applica-
ble in general. We start by checking that the equation we have
derived gives predictions that agree with our expectations.

A. Enhanced Gravity

Lets, as a consistency check, start with the case where we
have a fifth-force that has an infinite Compton wavelength and
a constant coupling β. This is achieved by taking f(X,φ) =

X and A(φ) = e
βφ

MPl . This case corresponds to standard grav-
ity, but where Newtons constant G is a factor 1 + 2β2 larger.
Under the assumption that we can neglect time-derivatives in
the Klein-Gordon equation for the scalar field we find

logA =
βφ

MPl
= 2β2ΦN (73)

giving

UlogA = 4β2UN , U∇φ = −2β2UN (74)

Since βφ
MPl

= 2β2ΦN � 1 we can safely put A = 1. This
means we can also take UA = 0 and Uφ̇ is negligible as this
is second order in the time-derivative of the gravitational po-
tential. The term Uf ≡ 0 as g − g ≡ 0 and this also holds if
we add a constant potential (a cosmological constant) to the
scalar field. This leaves us with the equation

∂

∂t
(T + Utot) +H (2T + Utot) = 0 (75)

whereUtot = UN (1+2β2). This is exactly the same result we
would get if the gravitational constant is enhanced by a factor
(1 + 2β2), i.e. Geff = G(1 + 2β2).

B. Yukawa interaction

The next simplest case is a linear scalar field coupled to
matter. This case leads to a total gravitational force between
two masses of the Yukawa type

�F = −GM1M2

r2
(
1 + 2β2(1 +mr)e−mr

) �r
r

(76)

where 2β2 is the strength and m−1 is the range of the matter-
scalar interaction.

This scenario is achieved by taking f(X,φ) = X − V (φ)

where V (φ) = 1
2m

2φ2 and A(φ) = e
βφ

MPl .
As for the case above we can neglect UA and Uφ̇, but now

the term Uf is non-zero

Uf =

∫
d3r

1

2
m2

(
φ2 − φ

)2
(77)

and represents the potential energy of the scalar field itself.
From equation Eq. (72) we get the very simple relation

U∇φ +
1

2
UlogA + Uf = 0 (78)

which gives the Layzer-Irvine equation

∂

∂t
(T + Utot) + 2H(2T + Utot − 2Uf) = 0 (79)
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where Utot = UN + 1
2UlogA. We can now check that we get

the correct value for Utot.
If we assume the time-derivatives can be neglected then we

can Fourier transform the Klein-Gordon equation with the re-
sult

F(φ) =
βF(δρm)

MPl

k2

k2 +m2
(80)

Taking the inverse Fourier transform and using the convolu-

tion theorem together with F−1
(

4π
m2+k2

)
= 1

r e
−mr we can

write down an explicit solution for the scalar field

βφ

MPl
= −2β2G

∫
δρ(r1)d

3r1
|�r − �r1| e−m|�r−�r1| (81)

From this it follows that

Utot = UN +
1

2
UlogA

= −G

2

∫ ∫
δρ(r1, t)δρ(r2, t)d

3r1d
3r2

|�r1 − �r2| ×

× (1 + 2β2e−m|�r1−�r2|) (82)

which is the correct potential energy for a Yukawa interaction
combined with gravity. In the limit m → 0 we recover the
case discussed above.

C. Non-clustering scalar field

In theories where the scalar field does not cluster signifi-
cantly the factor ∂ logA

∂ log a can be taken to be equal to the back-

ground value giving δUx = ∂ logA
∂ log a Ux.

For quintessence models f = X − V and the coupling to
matter is zero (β ≡ 0) giving the same equation as for stan-
dard gravity. The modifications from standard gravity are only
implicit in the evolution of H(t). This is also expected as the
quintessence field only affects the background cosmology.

Coupled quintessence [7] is a class of models where dark
matter and dark energy (given by the scalar field φ) have in-
teractions. General models in this class have a time-varying
coupling β(φ) 	 β(φ) ≡ β(a). The interaction range in these
models, when explaining dark energy, are of the order of the
Hubble radius giving logA 	 2β2(a)ΦN and the Layzer-
Irvine equation simplifies greatly to

∂

∂t
(T + Utot) +H (2T + Utot) + 2

β(a)

MPl
φ̇(T − Utot) = 0

(83)

where Utot = (1 + 2β2(a))UN is the total potential energy.

D. Chameleon-like theories

Chameleon-like modified gravity theories refers to models
given by the action Eq. (1) with f = X − V (φ). Examples of

such model are the f(R)/chameleon [12], the symmetron [16]
and the environmental dependent dilaton [18]. In these mod-
els local gravity constraints forces ∂ logA

∂ log a � 1 [19] and all
the terms δUx can be neglected. This also generally implies
that |φ̇| � |�∇φ| implying Uφ̇ � U∇φ, an approximation of-
ten refereed to as the quasi-static approximation [29] and is
the reason why N-body simulation of these theories can ne-
glect the time-derivatives in the Klein-Gordon equation3. This
leaves us with the simplified equation

∂

∂t
(T + UN + UlogA + U∇φ + Uf + UA)

+H (2T + UN − U∇φ − 3Uf) = 0 (84)

VI. IMPLEMENTATION IN N-BODY CODES

In this section we discuss how to numerically implement
the modified Layzer-Irvine equation in an N-body code and
how we can monitor the level of which it is satisfied.

For standard gravity the kinetic energy of the dark matter
particles are calculated from

T =

∫
d3r

1

2
v2ρm =

Npart∑
i=1

1

2
miv

2
i (85)

where mi is the mass of each N-body particle with mi =
ρm0B

3
0

Npart
when all particles have the same mass. B0 denotes the

boxsize and Npart the number of particles in the simulation.
Using the Poisson equation and integration by parts, the

gravitational potential energy can be written

UN =

∫
d3r

1

2
ΦNδρm =

1

4πG

∫
d3r

1

2
ΦN∇2

rΦN (86)

= − 1

8πG

∫
d3r(�∇rΦN )2 (87)

In an N-body code we can approximate this potential (here for
a grid based code) by

UN 	 − 1

8πG

Ncell∑
i=0

dx3
cell i(�FN )2i (88)

where the sum is over all the cells of the grid structure,
(�FN )i = −(�∇rΦN )i is the force field and dx3

cell i is the vol-
ume of grid-cell i.

In modified gravity, the kinetic energy is modified com-
pared to standard gravity as the mass of the particles are now
φ dependent

T =

Npart∑
i=1

1

2
mi(φ)v

2
i (89)

3 Recently, a new code came out where the full Klein-Gordon equation is
solved for the first time in an N-body code [25]. Solving the full equation
does not seem to have an impact on observables like the power-spectrum
and mass-function, but can have large effects in low-density environments.



8

where mi(φ) = A(φ)mi and where
∑

imi = ρm0B
3
0 . As for

standard gravity we have

UN 	 − 1

8πG

Ncell∑
i=0

dx3
cell i(�FN )2i (90)

The fifth-force potential can be rewritten using the Poisson
equation and integration by parts to give

UlogA = − 1

8πG

∫
d3r 2(�∇rΦN ) · (�∇r logA) (91)

which can be evaluated as

UlogA 	 − 1

8πG

Ncell∑
i=0

dx3
cell i2(

�FN )i · (�Fφ)i (92)

where (�FN )i = −
(

β(φ)
MPl

�∇rφ
)
i
is the fifth-force in grid cell

i. The other potentials are trivial to calculate, for example

UA 	
Ncell∑
i=0

dx3
cell i(A(φi)−A(φ)) (93)

There is also a further simplification for theories with constant
coupling β (i.e. logA ≡ βφ

MPl
) where we can write the term

U∇φ as

U∇φ 	 +
(2β2)−1

8πG

Ncell∑
i=0

dx3
cell i(�Fφ)

2
i (94)

When implementing the Layzer-Irvine equation in an N-
body code it is convenient to work with the normalized poten-
tials

Ei ≡ a2Ui

(H0B0)2ρm0B3
0

(95)

In this form the potentials are dimensionless and also the ki-
netic friction term 2HT is removed from the equation. This is
also the definition used in RAMSES [43], for which the N-body
code ISIS [21] we have used to implement these equations,
is based on.

To define the deviation from the modified Layzer-Irvine
equation we first start by writing it as

∑
i

(
αi

∂

∂t
+ γiH

)
Ei = 0 (96)

where αi > 0 and γi are constants or functions of the back-
ground cosmology only. In order to evaluate this equation nu-
merically, it is more convenient to rephrase it as the integral
equation

∑
i

αi (Ei(aj)− Ei(a0)) +

∫ aj

a0

∑
i

(γiEi)
da

a
= 0 (97)

We denote the left hand side of the equation above as σj . To
have something to compare σj against we define

Σj ≡
∑
i

αi (|Ei(aj)| − |Ei(a0)|) + |
∫ aj

a0

∑
i

(γiEi)
da

a
|

(98)

We can now define the error, or deviation, from the Layzer-
Irvine equation at time-step j by

εj ≡ σj

Σj
(99)

The function ε(a) will be referred to as the Layzer-Irvine con-
stant.

It only remains to define how we calculate the integral
in Eq. (97). In an N-body code we only have the potentials
Ei(aj) at each discrete time-step j and must therefore use
some approximation for the integral. We start by writing the
integral in Eq. (97) as

Ij =

∫ aj

a0

∑
i

(γiEi)
da

a
=

j∑
k=1

∫ ak

ak−1

∑
i

(γiEi)
da

a
(100)

so that Ij = Ij−1 + δIj where

δIj =

∫ aj

aj−1

∑
i

(γiEi)
da

a
(101)

This integral is approximated by the mean value of the discrete
integrand and an exact integration of

∫
da/a giving

δIj 	
[
∑

i(γiEi)]a=aj−1
+ [

∑
i(γiEi)]a=aj

2
log

(
aj

aj−1

)
(102)

VII. TESTS ON N-BODY SIMULATIONS

We have run N-body simulations of modified gravity the-
ories to see whether the Layzer-Irvine equation developed
here is satisfied and also to see what level of violation we
would get if a mistake is made in the implementation. For
all the modified gravity models we present tests of here we
have beforehand tested the code against static configurations
where known analytic solutions exist and found a good agree-
ment. We will therefore assume that the implementation of the
(static) Klein-Gordon equation is correct and the tests we per-
form will tell us if the code is able to accurately solve for the
time-integration of these models.

The N-body simulations performed in this paper is done
with the ISIS code [21] which is based on the public avail-
able code RAMSES [43].

A. Enhanced gravity and the Yukawa interaction

We have implemented the Yukawa interaction model de-
scribed in Sec. (VB) in the N-body code ISIS [21]. We ran
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simulations in a box of B0 = 200 Mpc/h with N = 1283

particles and a standard WMAP7 cosmology starting from
z = 20. The model parameters used in this test are m−1 =
{1, 5,∞} Mpc/h together with 2β2 = {0.01, 0.1, 0.5}. The
m−1 = ∞ run is equivalent to standard gravity with an en-
hanced gravitational constant G → G(1 + 2β2) and serves as
a benchmark for the modified gravity models we will look at
below.

In Fig. (1) we show the Layzer-Irvine constant ε for the
enhanced gravity model (m−1 = ∞) with 1 + 2β2 = 1.5,
1 + 2β2 = 1.1, 1 + 2β2 = 1.01 and standard gravity β =
0. All the simulations use the same initial conditions and the
same background cosmology. We find that ε � 0.01 during
the whole evolution for all runs which is also what we get
for the standard gravity simulation. This test tells us that even
when gravity is enhanced the code is still able to accurately
solve the N-body equations.

The dotted line in Fig. (1) shows the Layzer-Irvine constant
calculated using the Layzer-Irvine equation for standard grav-
ity Eq. (26). These results are equivalent to what we would
get if we made a mistake in the numerical implementation
consisting of taking the pre-factor in the geodesic equation
to be a factor 1 + 2β2 larger than the correct value. The huge
deviation we see, even for 1 + 2β2 = 1.1, demonstrates the
usefulness of the Layzer-Irvine equation: a small mistake in
the numerical implementation of the geodesic equation will
show up as a clear violation in the Layzer-Irvine constant.

In Fig. (2) we show the Layzer-Irvine constant for the
Yukawa model with 2β2 = 0.1 and m−1 = {1, 5,∞} Mpc/h
together with an enhanced gravity simulation with the same
strength. The Layzer-Irvine constant is just as well satisfied
for the Yukawa simulations as for the pure gravity simulation.

For the Yukawa interaction we also test the consistency re-
lation Eq. (72). This relation does not involve time evolution
so the results in one time-step is independent of the previous
time-steps and this allow us to use it to test the code for a real-
istic4 static configuration where no analytical solutions can be
found. The results are shown in Fig. (3). The deviation from
this relation (measured against the sum of the absolute values
of the three terms) for the most extreme model are found to be
less than 0.2% during the whole evolution.

In all cases we see that the Layzer-Irvine constant for
the Yukawa interaction is small and the deviation we find is
roughly the same as for the enhanced gravity simulation with
the same β.

We note that the (small) violation of the Layzer-Irvine
equation is closely related to the creation of new refinements
in the code. The relative fraction of new refinements being cre-
ated in the simulations peaks during the period 0.2 � a � 0.5
which agrees with the time when we see the largest devia-
tion. This happens because when new refinement are created
we automatically increase the accuracy in the calculation of
the potentials while leaving the kinetic energy (which comes

4 With realistic we mean a density distribution similar to what we have when
making cosmological equations
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 0  0.2  0.4  0.6  0.8  1

ε

a

Layzer-Irvine constant for enhanced gravity

1+2β2=1.00
1+2β2=1.01
1+2β2=1.10
1+2β2=1.50

FIG. 1. The Layzer-Irvine constant as function of scale factor for the
enhanced gravity model (solid lines) Geff = G(1+2β2). The dotted
lines show the corresponding Layzer-Irvine constant calculated using
the pure GR equation Eq. (26), i.e. when not taking the potential
energies of the scalar field (U∇φ and UlogA) into account.

from the particles) untouched. We also note that the evolution
of the Layzer-Irvine constant for any model, standard gravity
included, depends sensitively on the refinement criterion, the
number of particles and the time-stepping criterion used in the
simulation. A complete study of all these effects are beyond
the scope of this paper.

B. f(R) gravity

An f(R) model can be always be written as a scalar tensor

theory where A(φ) = e
βφ

MPl with β = 1/
√
6 ≈ 0.408 and for

some model specific potential V (φ) [44].
The particular Hu-Sawicky f(R) model [42] has been im-

plemented in ISIS. The implementation has been properly
tested against analytical (static) configurations and against re-
sults from the literature. The code was found to work accu-
rately.

For the simulations performed in [21] we have calculated
the Layzer-Irvine constant5. These simulations all have N =
5123 particles in a box B0 = 256 Mpc/h using a standard
WMAP7 cosmology. See [21] for more details.

In Fig. (4) we show the Layzer-Irvine constant for the
three simulations with f(R) model parameters |fR0| =
{10−4, 10−5, 10−6} compared to a ΛCDM simulation using

5 When calculating the Layzer-Irvine constant we have used Eq. (84) which
is consistent with the approximations used in the simulation.
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FIG. 2. The Layzer-Irvine constant as function of scale factor for Yukawa interaction model (solid lines) with coupling strength 2β2 = 0.1
(left) and 2β2 = 0.5 (right). The dotted lines show the corresponding Layzer-Irvine constant calculated using the pure GR equation Eq. (26).
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FIG. 3. Test of the consistency relation U∇φ + 1
2
UlogA + Uf ≡ 0

for the Yukawa interaction model. The error is defined as (U∇φ +
1
2
UlogA + Uf )/(|U∇φ|+ 1

2
|UlogA|+ |Uf |).

the same initial conditions. For a description of the model and
the meaning of the parameters see e.g. [27, 42].

We find that the Layzer-Irvine constant has a maximum de-
viation of ∼ 2% which is comparable with the evolution of
the Yukawa interaction with β = 0.5 presented above.
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Layzer-Irvine constant for the f(R) model

ΛCDM
|fR0|=10-4

|fR0|=10-5

|fR0|=10-6

FIG. 4. The Layzer-Irvine constant as function of scale factor for the
f(R) simulations of [21].

VIII. CONCLUSIONS

We have derived the Layzer-Irvine equation, describing
quasi-Newtonian energy conservation for a collision less fluid
in an expanding background, for a large class of scalar-tensor
modified gravity theories. The equation derived have been
tested in N-body simulations of modified gravity theories.

Monitoring the Layzer-Irvine equation is one of the few
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tests that directly probes the time-evolution of a simulation.
We demonstrated that a mistake made in the implementa-

tion of a modified gravity theory, consisting of a wrong pre-
factor in the geodesic equation off by no more than a few per-
cent from the correct one, will lead to a huge violation of the
Layzer-Irvine equation. Such a mistake will also give effects
on the matter power-spectrum, but these can be degenerate
with cosmic variance.

As a test, the Layzer-Irvine equation can be used in sev-
eral different ways. When implementing new models in an N-
body code one often make several approximations to simplify
the equations of motion. One way to apply it is to take the
actual equation we put into the code, derive the correspond-
ing Layzer-Irvine equation and run the simulation. The results
from this equation will tell us how good the code solves the
equations we actually try to solve, i.e. how good is the ac-
curacy and the methods used. Secondly, we can take the full
Layzer-Irvine equation and test it. The results from this equa-

tion can tell us something about how good the approximations
we have used are. Lastly, for models with constant coupling
we can use the relation Eq. (72) as a new static test which
can be applied to any density distribution where no analytic
or semi-analytic solution of the Klein-Gordon can be found.

There are scalar-tensor theories that are not covered by our
analysis, like for example the Galileon, however the same
methods we used here can easily be applied to any scalar field
theory of interest.
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