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ABSTRACT 
This master thesis is part of the EUTROPIA project funded by Research Council of Norway 

(RCN) (190028/S30), which aims to obtain a better understanding of the catchment processes 

governing variation in levels and fluxes phosphorus. This master thesis was conducted in Morsa 

(Vansjø Hobøl) catchment located in south eastern part of Norway. The catchment area is pilot 

study area for the implementation of the EU Water Framework Directive (WFD) in Norway. 

This is therefore a study site where a large number of research studies have been conducted 

aimed at understanding the governing factors controlling the water quality, including the cause 

for enhanced influx of phosphorous (P) leading to eutrophication.  

Since 85% of the catchment is comprised by forest this thesis has focused on the role of forest 

soils in providing the background P load to the lake. The aim of this study has thus been to assess 

the governing factors for the spatial natural variation in soil P pools, and to assess how temporal 

changes in the environment (deposition loading and climate) may cause changes in the leaching 

of P from these pools. This has been conducted through sampling of forest soils and analysis of 

their P pools and physiochemical characteristics. In order to capture the span in soil chemistry 

the soil samples were collected from different topographies (i.e. ridge, slope and the valley 

bottom) at sub-catchments located below and above marine limit.  

A total of 83 soil samples were collected from generic soil horizons (organic soils the O horizon, 

mineral soils A- C horizons and soils from bogs H and C horizons) from 8 sub-catchments in the 

watershed, and analyzed for soil pH, organic matter content (LOI), effective cation exchange 

capacity (CECe) and base saturation (BS), along with the main total- and inorganic pool of 

phosphorus. A more detailed fractionation of the inorganic phosphorus pools as well as texture 

as particle size distribution (PSD) was determined on a set of selected mineral soils. 

84.3% of the soils are acidic soils with an average soil pH value below 5. This is a pH in which 

labile inorganic aluminium (Ali) is soluble in significant concentrations. Over the past 20 – 30 

years the deposition of acid rain has been reduced causing a 81% decrease in sulphate 

concentration in surface waters in south-eastern Norway. Consequently, the concentrations of 



 

xii 

labile Ali have decreased from around 150 to 50 µg/L and concentrations of dissolved natural 

organic matter (DNOM) has more than doubled in these surface waters.  

Half of the forest soil samples show base saturation (BS) below 30%. The %BS shows large 

spatial variation, though average values are found to be high in the forest floor O horizon (57%) 

and peat H horizon (54%), decrease down into the mineral soil profile to a minimum in the E 

horizon (20%), and then increase slightly to the B horizon (24%) and C horizon (51%). The %BS 

is generally found to increases down along topographic gradients, with the highest values in the 

clay rich soil layers (91%) under the peat bogs in the valley bottom.  %BS is thus positively 

correlated to the fraction of fine particles clay and silt.   

The CECe was found to be mainly governed by the amount of soil organic matter with increasing 

CECe with increasing organic matter content. Average CECe value in the organic and mineral 

soil horizons were 189 meq/kg and 60 meq/kg, respectively. In the mineral soils the CECe also 

shows a positive correlation with the amount of clay in the soils.  

The levels of total- and organic phosphorus were high in the organic forest floor O-horizons. The 

pools of organic-phosphorus decrease while the pools of inorganic-phosphorus increases down 

the soil profile. Organic-P seems thus to be governed by the amount of organic matter while the 

pool of inorganic-P is governed by the soils content of fine particles. 

A significant amount of the inorganic phosphorus fractionation in the organic horizon is 

comprised by easily soluble phosphorus (Sol P) (14mg/kg). This is likely due to the rapid 

circulation of phosphate (PO4) in the forest. Aluminium (Al-P) and Iron (Fe-P) bound 

phosphorus constitute the main P fraction in especially the O and B horizons. The large Al-P and 

Fe-P in the O horizon is due to that Al3+ and Fe3+ forms binding bridges between the negatively 

charged functional groups on the organic material (R-COO-, R-O- etc) and the negatively 

charged HPO4
2- (e.g.: R-COO- - Al3+ - HPO4

2-). In addition to forming binding bridges, the Al 

and Fe may co-sorb phosphate when the ions are sorbed to the soil particles in the B horizon. 

The absolute and relative amount of calcium bound P (Ca-P) increases down through the soil 

profile. This reflects the increase in soil pH down through the soil profile.
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1 INTRODUCTION 

1.1 Cultural eutrophication and global problem 

Excessive influx of nutrients, such as nitrates and phosphates, facilitate algal growth leading to 

plankton blooms which produce obnoxious tastes and odours in water, oxygen loss in the 

hypolimnion and disrupt aquatic ecology (Evangelou, 1998). In unpolluted lakes, the 

bioavailable levels of both nitrates and phosphates exist in small quantities and this condition 

limits plant growth. However, anthropogenic sources can dramatically enhance the concentration 

of plant nutrients in water bodies. Usually, the main limiting nutrient in freshwater lakes is 

phosphate. The man-made eutrophication is described as cultural eutrophication. However the 

condition of eutrophication happens also naturally by the aging of lakes, though this may take 

thousands of years. Figure 1 below shows the main sources of nutrients to surface waters. 

 

 
Figure 1: Allochtoneous sources of nutrients leading to cultural eutrophication1 

                                                 
1 Available at http://library.thinkquest.org/04oct/01590/pollution/culturaleutroph.jpg 



 

2 

 

Phosphate in the form of dissolved and suspended materials accelerate eutrophication when 

discharged into a water system. Human-induced diffuse source inputs of phosphate, such as 

excessive use of inorganic fertilizers and manure in agriculture, and point sources of untreated 

wastewater effluents containing detergents and sewage, may significantly increase nutrient 

loading into lakes. This enhances eutrophication beyond natural levels and causes deleterious 

changes to the natural ecosystem. 
 
Cultural eutrophication of surface water resources is an increasing global problem causing 

significant environmental and societal damages. Eutrophication is becoming one of the main 

problems in the world, especially during the last 50 to 60 years. Many lakes and water reservoirs 

in most of the world are experiencing eutrophic conditions affecting aquatic ecosystem. 

Eutrophication problem brings both social and economic impacts due to the loss of ecosystem 

services. For example, where the lake serves as a raw water source of drinking water, the 

excessive algal bloom causes bad taste and awful odour demanding more expensive filtration and 

cleansing system. In addition there is a loss of recreational value as people generally prefer to be 

in a more clear and attractive water than in a turbid (cloudy) waters. Where there is blooming of 

blue-green algae swimming in the lake causes itching and may cause toxic effect. Moreover, 

excessive algal growth causes significant deterioration of the biota, e.g. by depletion of dissolved 

oxygen concentration in the hypoliminion, which render the water uninhabitable for most fauna 

which needs high levels of dissolved oxygen to survive. Consequently, it harms the fishing 

industry by decreasing the population of fish in the lake (Carpenter, 2008). Lakes and water 

reservoirs restored from eutrophic status to environmentally sound condition may take an 

extended period of time and demands considerable effort. Some of restoration strategies listed by 

(Leng, 2009) are: 

• Hypolimnetic aeration (where water from the bottom of a lake is brought to the surface to 

be oxygenated then returned to the bottom) 

• Bio-manipulation (the manipulation of food webs to enhance grazing on algae) 

It is therefore better to have abatement actions decreasing the loading of nutrients to the surface 

waters. The main abatement actions commonly implemented are listed in the following chapter. 
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1.2 Western Vansjø and the Morsa catchment: Abatement actions   

Morsa catchment (Figure 2) with an area of approximately 700 km2 is located in south-eastern 

Norway, and includes large water bodies like Lake Vansjø. Lake Vansjø has two main basins; 

Storefjorden (eastern basin), which is the largest one with an area of 24 km2, and Vanemfjorden 

(western basin), which is the smaller and shallower basin with an area of 12 km2. Collectively, 

including Grepperødfjorden (located in between the two basins), this is known as lake Vansjø 

see Figure 2. The lake flows from Storefjorden to Vanemfjorden, which drains out into the Oslo 

Fjord through the Moss River (Mosseelva).  

 

Figure 2: Morsa catchment draining to the Vansjø lakes including Lake Storefjorden map taken from 
(Barton et al., 2008) 

Lake Vansjø in Figure 2, which is the main lake in the Morsa catchment, is at risk of not meeting 

the EU WFD for good ecological status due to eutrophication (Barton et al., 2008; Skarbøvik and 
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Bechmann, 2010). The lake covers a surface area of approximately 36 km2. Most of the area in 

the Morsa catchment is covered by forest (about 80%), 15% of the area is used for agriculture 

land, and the remaining about 5% of the total catchment area comprises water bodies, bogs and 

open areas (Blankenberg et al., 2008). Agriculture originates as the main anthropogenic source of 

phosphorous (P) input into Norwegian surface waters with a contribution of about 45% of 

phosphorus loading to the water system2. Vanemfjorden is a highly eutrophic lake with frequent 

cyanobacteria blooms. The main sources of nutrient loading are agriculture (57%), septic tanks 

from individual households (11%), municipal wastewater (6%) and natural background run-off 

(26%) (Barton, 2007).  Lake Vansjø is a relatively shallow lake for Norwegian conditions, and 

its morphometric features are given in Table 1below. 

Table 1: Morphometric data for Lake Vansjø taken with kind permission from (Skarbøvik and Bechmann, 
2010)   

Morphometric Lake Vansjø  
Vanemfjorden 
(Western basin) 

Storefjorden 
(Eastern basin) 

Mean depth (m) 7 3.8 8.7 

Maximum depth (m) 41 19 41 

Surface area (km2) at 25.5m a.s.l 35.8 12 23.8 

Volume (106 m3) at 25.5m a.s.l 252.2 46.1 206.1 

Water residence time (years)   0.21 0.85 
 

Lake Vansjø has got a lot of attention from the Norwegian government and environmental 

authorities due to its eutrophication problem.  

 

To overcome the problem different mitigation actions have been undertaken. These mitigation 

actions are designed to reduce erosion risk and surface runoff so as to lessen the release of 

phosphorus from the agricultural areas. This is because erosion and runoff are the most 

contributory factors that play a major role in the loss of the total phosphorus from the terrestrial 

environment to the water system. The total erosion risk depends on natural factors such as slope, 

                                                 
2 See http://folk.uio.no/rvogt/Eutropia/Eutropia.doc 
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soil type, precipitation and factors influenced by human activities such as crops and soil 

management (Skarbøvik and Bechmann, 2010). Some of the mitigation options as described by 

Bechmann and Øgaard (2010) are: 

• Reduced phosphorus application: Reduction of phosphorus application in fertilizers 

can reduce leaching and transporting of dissolved and particulate phosphorus from soils, 

and this will be also more effective by reducing of transporting soil particles using soil 

management. This method reduces the availability of phosphorus in runoff. 

• Cover crops: Usually, phosphorus binds to soil particles and losses of phosphorus 

associate with soil particles are often linked to soil erosion; therefore, planting cover 

crops that can reduce soil disturbance are important to protect soil from erosion risk 

during the autumn and winter period.   

• Vegetated buffers: Vegetated areas of the land between the agricultural fields and the 

water bodies contribute to reduce concentrations of suspended sediments and phosphorus 

in surface runoff from reaching water bodies by allowing more runoff to infiltrate and 

react with soils, see fig 3.  

• Construction wetlands: Establishing mitigation options such as sedimentation ponds 

and construction of wetlands that removes phosphorus from water helps to reduce 

phosphorus load in the water system, and this can be more effective by including a 

phosphorus adsorbing filter (Bechmann and Øgaard, 2010). 

 

Figure 3: Buffer zones in the Morsa catchment. Pictures are with kind permission from  (Skarbøvik and 
Bechmann, 2010). 
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1.3 Geology of Morsa catchment 

The highest point of the catchment area is about 346 m above sea level (a.s.l) whereas the lowest 

is at the sea level. A topographic map is given in Figure 4 below. 

 

 

Figure 4: Topography of Morsa catchment (with height above sea level; i.e. H.o.h. in the Figure).  Map taken 
with kind permission from (Skarbøvik and Bechmann, 2010). 
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The 10% northernmost part of the catchment is dominated by forest and the bedrock is mainly 

pre-cambrian with predominantly gneiss. In this area, situated above the marine limit of about 

214 m a.s.l, the thin moraine soil layers gives relatively poor soil quality for agriculture 

(Skarbøvik and Bechmann, 2010). The soils in the lower reaches of the rest of the catchment are 

rich in silt and clay minerals. This is because the area was submerged under the sea during the 

Pleistocene (epoch of the quaternary) period. Since the last ice age, when the great glacier melted 

the land has risen from the sea. As the shoreline passed through the landscape it washed the 

ridges barren leaving rock outcrop, the slopes were beaches leaving sandy deposits and the 

valley bottom and gently sloping areas accumulated fine marine clay deposits which became the 

most fertile soil. Due to this geological history of the catchment the soils in the northern forested 

areas are predominantly coarse moraine, whereas in the southern areas soils are dominated by 

marine deposits which are rich in clay.  Therefore, in the agricultural areas the soils have up to 

80% clay and the rest is covered with silt and sand (Skarbøvik and Bechmann, 2010). In the very 

southern part of the catchment, a huge end moraine is effectively damming the lake. This is the 

reason why the catchment drains to the west rather than to the south. 

1.4 The EUTROPIA Project 

This master’s thesis is part of the interdisciplinary research project named EUTROPIA 

(Watershed Eutrophication management through system oriented process modeling of Pressures, 

Impacts and Abatement actions) financed by the Research Council of Norway (Project No. 

190028/S30). The project was established early in 2009. A main aim of the EUTROPIA project 

was to study the major processes and their governing pressures controlling fluxes of major 

phosphorus fractions to Lake Vansjø. Understanding these processes is a prerequisite to 

understand how changes in environmental pressures will affect the phosphorus fluxes from the 

terrestrial to the aquatic environment. The Water Framework Directive (WFD) that was adopted 

by the Norwegian government, has as goal that all surface waters should have a good chemical 

and ecological condition and to have minimum deviation from their natural condition by 2015. 

This obliges scientists and environmental managers to assess the initial and current state of the 

environment, and to predict future changes. Fresh water lake status, according to the WFD, is 

composed of two elements: ‘chemical status’ and ‘ecological status (Pollard and Huxham, 1998). 



 

8 

 

 

The EUTROPIA project is an interdisciplinary research collaboration. The project has partners 

from the Norwegian Institute for Water Research (NIVA), Norwegian Institute for Nature 

Research (NINA), Norwegian Institute for Urban and Regional Research (NIBR), Norwegian 

Institute for Agricultural and Environmental Research (Bioforsk), Norwegian University of Life 

Science (UMB) and the Departments of Bioscience and Chemistry at the University of Oslo. The 

project is divided into five work packages. The work of this master’s thesis has mainly focused 

on the work package two (the project plan3) in identifying hydro-biogeochemical processes that 

control the mobilization and transport of phosphorus fractions from terrestrial to aquatic 

environment. The focus of this thesis is on forest soils. Soils have been collected from forest 

areas of the catchment and analysed for physiochemical characteristics and phosphorus pools. 

 

1.5 Objective of the master thesis  

 

The main goal of this study is to assess the spatial distribution of physiochemical characteristics 

and P-pools in soils in the Morsa watershed that are not influenced by agricultural activity. The 

hypothesis is that the size of P pools may be related to topography and other soil characteristics. 

It is also an aim to investigate if there is a significant difference in these pools above and below 

the marine limit.  A goal is furthermore to get a measure of the natural characteristics of the soils 

that today are used as farmland in order to assess the amount of background leaching of P. 

Dalen is an area in which many studies have been conducted; an aim of this research is therefore 

also to investigate how representative the soil in the Dalen catchment is relative to the rest of the 

forested areas in the Morsa catchment. 

 

 

 

                                                 
3 http://folk.uio.no/rvogt/Eutropia/Eutropia.doc 
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2 THEORY 

2.1 Eutrophication 

Lakes and water reservoirs are massive sedimentation sinks which not only serve to remove 

suspended matter from tributary waters but also act as a huge reaction vessels for biological 

phenomena involving production of both plants and animals (Sawyer, 1966). These lakes and 

reservoirs also provide ecosystem services to the society and biota by providing clean water to 

household for drinking and washing, for irrigation in agricultural, for industrial sector and 

recreation such as bathing, as well as a safe and sound habitat. These water bodies run the risk to 

become deteriorated and have low quality due to poor management and the way how the society 

uses them. For example, the discharge of sewage from industrial and urban wastewater, and run-

off from agricultural fertilizers and pest-control chemicals into the water bodies (Codd, 2000).  

Eutrophication is the rapid biological response to excess input of nutrients into freshwaters,  

lakes and reservoirs and happens rarely under natural conditions, but is more commonly 

recognized as a consequence of human activities (Codd, 2000; Smith et al., 1999). 

Eutrophication is also defined as the natural slow ageing process of lakes and is distinguished 

geologically as gradual process (Rast and Thornton, 1996). As ageing progresses, the depth to 

the sediment of the lake gradually decreases so that there no longer exists a hypolimnion.  The 

phosphate released by bacterial decomposition of the materials in the sediment is mixed 

throughout the water column allowing the lake water to become richer in nutrient materials on 

which phytoplankton grow. This shift typically is accompanied by changes in species and biotic 

community composition. Eutrophication results in increase of cyanobacteria, algal blooms and 

plant biomass and also brings decrease in biodiversity in the aquatic environment (Codd, 2000).  

 

Anthropogenic sources of nutrients have become detrimental to water quality and aquatic 

ecosystem health. Thus, much research has been done to identify the sources and mechanisms of 

nutrient supply to lakes. Anthropogenic nutrient inputs are classified as point sources or non-

point sources. Point sources generally consists of sewage leakage from scattered dwellings and 

leakage from manure or animal food storage facilities mainly in association with the farmyard. 

Controlling of point-sources in agricultural land is relatively simple, though it may be costly. On 
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the other hand, non-point sources are more difficult to control or monitor because they are 

diffuse. A comprehensive list of possible point and non-point sources are included in Table 2.1 

taken from Smith et al. (1999). 

Table 2: Point source and nonpoint source 

Point sources 

• waste water effluent (municipal and industrial) 

• storm sewer outfalls from cities 

• runoff and leachate from waste disposal sites   

• runoff and leachate from animal feeds 

• runoff from mines, oil fields, and unsewered industrial sites 

• runoff from construction sites 

               Nonpoint sources 

• runoff from agriculture  

• runoff from forest 

• runoff from pastures and rangelands 

• atmospheric deposition over a water surface 

• activities on land that generate contaminates such as logging, wetland conversion, 

construction and development of land or waterways 
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The effects of eutrophication on the environment may have harmful consequences on the health 

of exposed animal and human population through various mechanisms. Some of the health risks 

are when freshwater extracted from eutrophic areas is used for drinking water. Table 2 and 3are 

from (Smith et al., 1999) shows some of the symptoms and impacts of eutrophication.  

 

Figure 5: Lake Vansjø has many user interests - the lake is amongst others used for recreation; picture taken 
with kind permission from (Skarbøvik and Bechmann, 2010) 

 

Table 3: Effects of eutrophication on lakes and reservoirs 
 

• Increased biomass of freshwater phytoplankton and periphyton 

• Shifts in phytoplankton species composition to taxa that may be toxic or inedible 

(e.g. bloom-forming cyanobacteria) 

• Changes in vascular plant production, biomass, and species composition 

• Reduced water clarity 

• Decreases in the perceived aesthetic value of the water body 

• Taste, odour, and water supply filtration problems 

• Possible health risks in water supplies 

• Elevated pH and dissolved oxygen depletion in the water column 

• Increased fish production and harvest 

• Shifts in fish species composition towards less desirable species 
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2.1.1 Eutrophication status 
There are many inorganic minerals that serve as nutrients for plant growth. Minerals containing 

nitrogen, phosphorus, carbon, potassium, sulphur, calcium, magnesium and many other trace 

nutrients have an important role in the growth of plants. Of the many mineral resources required 

for the growth of plants, inorganic nitrogen and phosphorus are the two fundamental nutrients 

that have been found to limit the growth of terrestrial plants and also the main focus regarding 

eutrophication (Smith et al., 1999). The two nutrients are most commonly the limiting factor for 

further growth due to the relatively low availability compared to the high biological demand. It is 

speculated that the phosphorus is becoming more and more the limiting factor in surface waters 

due to the on-going deposition of reactive nitrogen.  

Phosphorus (P) is a naturally occurring element that exists in minerals, soils, living organisms 

and in water and  is a crucial nutrient supply for plant growth and development (Iyamuremye and 

Dick, 1996). Phosphorus exists in an undersupply condition in most soils, mainly in soils with 

acidic properties and highly weathered soils such as Ultisols and Oxisols (Iyamuremye and Dick, 

1996). Generally, due to adsorption by Fe or Al oxides or by its precipitation with soluble A1 

and Fe in acid soils, P is available to plants in very small amounts, whereas in alkaline soils 

phosphate readily reacts with Ca to form insoluble precipitates.  

 

Human activities have strong effects on the fluxes of P to surface waters. Large amounts of 

minerals that are enriched with P are mined and processed to create P containing fertilizers, and 

these fertilizers are widely used in the world even in agricultural areas where the soils already 

have more than enough P reserves. In addition to the agricultural sources of N and P, humans use 

flowing water as convenient wastewater disposal systems. The loading of N and P to the world’s 

rivers, lakes and oceans is thus very strongly influenced by human population densities, the 

population densities of livestock, and land-use (Smith et al., 1999). According to the degree of 

enrichment with nutrients and organic matter, lakes are often classified by their trophic state with 

the main classes of oligotrophic, mesotrophic, eutrophic, and dystrophic (Salameh and 

Harahsheh, 2011), in other terms the trophic states are classified as good, moderate, poor and bad 

where the key parameters are found in an increased level (Direktoratsgruppa, 2009). 
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2.1.1.1 Oligotrophic 

Oligotrophic lakes are poorly nourished with plant nutrients and support little plant growth. As a 

result, biological productivity is generally low. The waters are clear, and the deepest layers get 

enough light and oxygen throughout the year.        

2.1.1.2 Mesotrophic 

Mesotrophic lakes are waters having intermediate nutrient supply. They are moderately well 

supplied with plant nutrients and support moderate plant growth. 

2.1.1.3 Eutrophic 

Eutrophic lakes are waters that have relatively large supplies of nutrients and support heavy plant 

growths. As a result biological productivity is generally high. The waters are turbid because of 

dense growths of phytoplankton or they contain an abundance of rooted aquatic plants; deepest 

waters exhibit reduced concentrations of dissolved oxygen during periods of restricted 

circulation. 

2.1.1.4 Dystrophic 

Dystrophic lakes are lakes having brownish acidic waters, with a high concentration of humic 

matter, and a small plant population. Figure 6 below shows the degree of trophy of water bodies 

and total phosphorus concentration. Many researchers have discussed the details and 

classification of the trophic status using different physic chemical indicators of the water column. 

Further readings can be referred to the documents written by (Ferreira et al., 2011; Shannon and 

Brezonik, 1972; Vollenweider et al., 1998), and many other papers. 
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Table 4: Eutrophication criteria for lakes and reservoirs and the boundary values for fixed trophic 
classification systems (Organization for Economic Co-operation and Development (OECD)4  

Trophic category Total phosphorus 
(µg/L) 

Chlorophyll a (µg/L) Secchi depth (m) 
Mean Maximum Mean Minimum 

Ultra-oligotrophic <4.0 <1.0 <2.5 >12.0 >6.0 
Oligotrophic <10.0 <2.5 <8.0 >6.0 >3.0 
Mesotrophic 10 – 35 2.5 – 8.0 8 – 25 6 – 3 3 – 15 
Eutrophic  35 – 100 8 – 25 25 – 75 3 – 1.5 1.5 – 0.7 
Hypertrophic >100 >25 >75 <1.5 <0.7 
 

 

 

Figure 6: Probable boundaries of the degrees of trophy of waterbodies with differing annual mean values of 

total phosphorus concentrations picture taken from Organization for Economic Co-operation and 

Development(OECD) 

 

 

                                                 
4 Can be found on the web: http://www.chebucto.ns.ca/ccn/info/Science/SWCS/TPMODELS/OECD/trophic.html 

 

http://www.chebucto.ns.ca/ccn/info/Science/SWCS/TPMODELS/OECD/trophic.html
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2.2 Cause for eutrophication: Governing factors, role of climate, effect 

of reduced acid rain, background flux of P-DNOM 

Organic matter (OM) in water body is found as dissolved (DOM) or particulate (POM) forms, 

and the proof of their presence is the characteristic of yellow-brown colour of water (vanLoon 

and Duffy, 2005). The organic matter formed in land and transported into the hydrosphere due to 

rainfall that runs off or percolates through the soil carrying soluble and particulate OM to water 

bodies makes up an important fraction of the total OM. OM is also produced within the water 

bodies (autochthonous). As plant material (for example, leaves) degrade soluble organic 

compounds are leached from the tissue and these organic compounds are the precursors of 

natural organic matter (NOM) (Leenheer, 2002). The flux of DNOM has now increased in areas 

which were previously suffering from a heavy acid rain problem like the south eastern part of 

Norway, and as a result increasing concentration of DNOM in water bodies are found in these 

regions. Acid rain leaches out inorganic aluminum species from forest soils, and when the soil 

water drains into the surface waters, the inorganic aluminum species accumulated in surface 

waters suppresses the solubility of DOM, especially the hydrophobic fraction. The effect of 

aqueous inorganic aluminum as a flocculent and coagulant may be clearly envisaged at water 

treatment works. Flocculation of DNOM by using aluminum sulphate (Al2 (SO4)3) is a 

commonly used procedure at water treatment work with high levels of DNOM in their raw water. 

Based on this there is a hypothesis that “the ongoing strong decrease in aluminum 

concentrations, along with fall in ionic strength, due to the reduction in acid deposition, is a 

strong underlying driver for the increase in the amount of aquatic DOM and colour in surface 

waters across much of Europe and North America5”. 

 

 

 

                                                 
5 available at http://folk.uio.no/rvogt/CV/Publications/Critical%20Review%20-%20Vogt.pdf 

http://folk.uio.no/rvogt/CV/Publications/Critical%20Review%20-%20Vogt.pdf
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2.2.1 The main drivers for mobility of dissolved natural organic matter 
There may be a lot of factors that can be the main drivers of DNOM. The following three are 

discussed below. More information can be found in6. 

2.2.1.1 Change of climate  

The increase in temperature accompanied by increasing of precipitation due to global warming is 

also a factor that has contributed to the increase of DOM in surface waters. Organic matter of the 

soil decomposes more rapidly as the temperature increases because of the increased rate of 

microbial decomposition in soils especially in peatlands. It is, therefore, postulated that the 

observed increasing in concentration of DOC and colour in surface water is partly due to the 

increase in temperature (Freeman et al., 2001). 

2.2.1.2 Change in land use 

Spatial variation of land use causes DOM to have different amounts and properties in the 

watersheds. For example, extensive afforestation and increased proportion of conifers on acid 

soils lead to increased DOM leaching to surface waters. 

2.2.1.3 Anthropogenic atmospheric deposition 

During the 70ties and 80ties when acid rain reigns, surface waters had a decreased colour and 

low concentrations of DOM. Since the mid of 1985, acid rain deposition was decreased by > 

50% because of the reduction of deposition sulphur compounds to the atmosphere in Europe and 

North America. Especially in Norway, the reduction was large. It amounts to about 80%. This 

decrease in acid rain leads to a up to 90% reduction in the concentration of sulphate anions in the 

surface water accompanied by decreasing concentrations of the acid cations, especially inorganic 

aluminum (Al3+), and to some extent also the base cations such as Ca2+, and Mg2+.  This results 

in reduction of ionic strength. A reduced ionic strength also gives more soil erosion and thereby 

an increased transport of particulate-P. The figures below show the effect of sulphur reduction 

(acid rain reduction) increases in DNOM (expressed as TOC) through lower aluminum 

concentration.  

 

                                                 
6 available at http://folk.uio.no/rvogt/CV/Publications/Critical%20Review%20-%20Vogt.pdf 

http://folk.uio.no/rvogt/CV/Publications/Critical%20Review%20-%20Vogt.pdf
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Figure 7: (right to left) reduction of sulphate deposition, decrease in aluminium concentration and increase in 
TOC at 78 lakes throughout Norway (Skjelkvåle et al., 1999) 

 

2.3 Organic and inorganic forms of Phosphorus in soil-water  

Soil phosphorus exists in inorganic and organic forms. Inorganic P is usually associated with 

aluminum (Al), iron (Fe) and calcium (Ca) compounds of varying solubility and availability to 

plants in soil. Phosphorus has to be added to most agricultural soils so that adequate levels are 

available for most favourable crop growth and yield. However, a great part of the phosphate in 

soils is sorbed to soil particles or incorporated into soil organic matter that cannot be easily 

available to plants; this depends on soil pH (pH influences Al chemistry, at pH 6 and 8 Al3+ 

hydrolysis and precipitates out as amorphous oxy-hydroxides, see section 2.9) and type of soil 

constituents (Al, Fe, and Ca content). The solubility of phosphates or the conversion of 

unavailable to available forms of soil phosphorus is usually controlled by either sorption-

desorption or precipitation-dissolution reactions depending on the environment in the soil or 

sediments (Holtan et al., 1988). Organic Phosphorus compounds range from readily available 

decomposed plant residues within the soil to stable compounds that have become part of soil 

organic matter. Wetland soils are inherently characterized by high organic matter content so that 

organic phosphorus commonly dominates the total phosphorus in wetlands. Peat-dominated 

wetlands have therefore a higher proportion of organic phosphorus compared to soils with high 

content of mineral matter (Schlesinger, 1997). Although a large proportion of total phosphorus 
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exists in organic forms, only a small portion of this pool may be bioavailable. Biological 

processes in the soil, such as microbial activity, tend to control the mineralization and 

immobilization of organic Phosphorus. 

 

Mineralization is a process of breakdown or conversion of organic phosphorus to inorganic 

phosphorus. It occurs in soils as a result of microbial decomposition. Immobilization is a process 

in which any inorganic phosphorus released into water is assimilated into microbial biomass and 

forms stable organic phosphorus (Molla et al., 1984; Zou et al., 1992). In most soils the 

phosphorus content of surface horizons is larger than in subsoil.  

In acid soils, Al and Fe govern phosphorus sorption, while Ca compounds sorb phosphorus in 

alkaline soils; as a result phosphorus availability is greatest at soil pH between 6 and 7 (from 

figure 8 below). The dissociation reactions of the orthophosphoric acid in aqueous system as a 

function of pH is presented in Table 5 and illustrated in Figure 8. 
 

Table 5: Acid dissociation constants for phosphoric acid (Reddy and DeLaune, 2008; vanLoon and Duffy, 
2005). 

Forms of the acid              Dissociation constants 

H3PO4  =  H2PO4
- + H+ 

 

 pKa1 = 2.15 

 H2PO4
- = HPO4

2- + H+ 

 

 pKa2 = 7.2 

 HPO4
-  =  PO4

3- +   H+      pKa3 = 12.38   

 

Where pKa1, pKa2 and pKa3 are acid dissociation constant, the Figure 8 below shows the PO4
3- 

distribution.  
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Figure 8: Distribution of Phosphate species in aqueous solution expressed as a function of pH (Loon and Duffy, 
2005). 

Under most natural conditions, dominant phosphate species are H2PO4
- and HPO4

2- (Figure 8). 

At around pH 7.2 there are approximately equal amounts of H2PO4
- and HPO4

2-. H2PO4
- is the 

dominant form of free orthophosphate species in the pH range of most natural acid forest soils (4 

- 6.5). The relative de-protonation and protonation of aqueous   phosphate species determine their 

reactivity as inorganic ligands or ions pairs, particularly with iron and aluminum under acidic 

conditions and with calcium and magnesium under alkaline conditions.  

 

2.4 Processes governing phosphorus release from natural soils  

Phosphorus exists in soil both in inorganic and organic forms. The organic forms of phosphorus 

in soil are present in the range 30 to 65% (Harrison, 1987). The plant available form of 

phosphorus in the soil solution is a very small fraction of the total phosphorus content in the soil 

and ranges typically in concentration between 0.01 to 0.3 mg L-1 (Frossard et al., 2000). This low 

concentration affects the growth of plants. In order to fulfil the required flux of bioavailable 

phosphorus for plant growth, therefore, it must be made available through a combination of 

chemical and biological processes which release phosphorus from the soil pools. The most 
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important chemical (abiotic) soil processes involved in soil P transformation are precipitation-

dissolution and sorption-desorption, whereas the most important biological (biotic) process is 

mineralization-immobilization.  

 

Dissolved and particulate phosphorus are the two main phosphorus fractions in which it 

transported from the terrestrial environment to the water bodies. However, the distribution 

between dissolved and particulate phosphorus forms depends on the main transport pathways, 

soil properties, management practices, and hydrological features of a particular site (Djodjic, 

2001). Erosion is the transport of soil particles from land and the deposition of these materials 

elsewhere. Erosion depends on variables such as precipitation, overland flow, farming practice, 

soil texture and topography. Erosion preferentially leads to the transport to aquatic systems of 

finer-sized soil particles and organic matter, which both have a large capacity to sorb 

phosphorus. The most important transport pathways of phosphorus losses from agricultural soils 

are surface run-off (overland flow), interflow (lateral flow below the soil surface), matrix flow 

and preferential flow. Figure below shows the transport pathways for the particles.  

                                                                        

 
Figure 9: Transport and site management factors influencing the potential for P loss from agricultural land 
to surface waters (Sharpley et al., 2001) 
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2.5 Natural Soil (Forest Soil) and agricultural soils: Spatial pattern in 

distribution of forest and agriculture. 

The type of soil in Morsa catchment, where 85% its land area covered by forest is dominated by 

Podzol type of soil. Podzol are generally located in the temperate forested regions; in which 

clays, humic acids, iron, and other soluble constituents have been eluviated from the A and E 

horizons. The eluviated E horizons are characterized by its distinctive light colour found 

immediately below the black A horizon rich in organic matter. The light colour is formed due to 

loss of iron/aluminum by leaching. Below the E horizon there is a brightly red/brown coloured 

zone of iron/aluminum deposition (illuvial Bs horizon) and/or a darker zone of organic 

deposition (Bh). It is the constituents of the eluviated E soil horizons that have accumulated to 

form a spodic illuvial Bs horizon.  

  

2.6 Soil profiles 

Soil formation usually occurs by transport of weathering products down through the profile in 

humid regions. Soil profiles are divided into horizons with notations (H, O, A, E, B, C and R) 

depending on their relative placement and physical and chemical characteristics. The top H and 

O horizons are organic soils and sub-surface are mineral soils horizons (A – C). 
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2.6.1 Organic soil horizons 
Organic soil horizons are situated on the top of the soil profiles. 

• H-layer: Denote a histosol soil horizon. A histosol may be a bog or peat. The histosol is 

water saturated and also defined as having greater than 40cm organic soil material. 

• O-horizons: It is generally the uppermost layer of the mineral soil profile and consists of 

greater than 35% organic matter. It is dry and found less than 40cm. 

2.6.2 Mineral soil horizons:  
Mineral soil horizons are soil horizons which contain less than 35% of organic matter.  

The properties and notations of mineral soil horizons are discussed below. 

• A-horizons: This horizon is on the top of the mineral soil. This horizon is darker coloured 

than lower horizons and is separated from the O horizon by that it contain less than 35% 

of organic material. The organic material exists as fine particles or as coating on mineral 

grains. 

• E-horizons: This horizon is characterized by its light colour or bleached appearance. This 

is a zone which has been strongly leached. It is an eluvial layer that has been washed out 

of clay, iron, and aluminium by humus. Eluviation is the transportation of dissolved or 

suspended soil material within the soil by the movement of water. 

• B-horizon:  This horizon is commonly called subsoil. It is zone of illuviation and 

accumulation of dissolved or suspended soil materials from A and E horizons as a result 

of eluviation.  

• C-horizon: This horizon is the deepest horizon in the profile. It is considered an unaltered 

or weathered parent material.  

• R-horizon: This horizon denotes the bed rock.  
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Figure 10: Soil profile showing soil horizon (Manahan, 2004);  photo from Vogt (Kjemi 5700, uio). 

 

2.7 Soil properties 

The terrestrial environment is comprised of bedrock and soil and the living matter associated 

with these. Rocks and soil together are referred to as the lithosphere. Soil is a dynamic natural 

body composed of mineral and organic solids, gases, liquids and living organisms. The terrestrial 

environment covers 29% of the earth surface; 80% of the land surface is covered by soil 

(vanLoon and Duffy, 2005). Among the many reasons that scientists concerned about studying 

soil is that; 
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1.  Soils provide a supporting medium for many forms of life and are the basis of agriculture 

and forestry. 

2. Soils play a major role as key environmental agent;   

• Soil is the locus of input from the atmosphere and output to the hydrosphere.  

• Soil alters water chemistry as it passes through the watershed. 

• Soil plays a central role in global nutrient (C, P, N, and S) cycling.  

• Soil influences transport and fate of pollutants.  

Moreover, soils involve chemical processes such as organic matter decomposition, nitrification, 

denitrification, phosphorus fixation, and sulphide oxidation. 

 

2.7.1 Physical properties of soils 

Soil physical properties profoundly influence how soils function in an ecosystem and how they 

can best be managed. The occurrence and growth of many plant species are closely related to soil 

physical properties, as is the movement over and through soils of water and its dissolved 

nutrients and chemical pollutants. Soil scientists use the colour, texture and other physical 

properties of soil horizons in classifying soil profiles. Soil texture is determined by the particle 

size distribution and is an important explanatory variable of the soil as it reflects both the soil 

permeability for water and the soils ability to adsorb chemical constituents. The texture of the 

soil is therefore a parameter that is included in this study. 

2.7.2 Chemical properties of soils 

Organic matter and clay content play a major role in determining the chemical properties of a 

given soil sample. Soil pH and cation exchange capacity are key soil chemical properties 

governing the spatial variation in P pools and are thus included in this study. 

2.7.2.1 Soil pH 

Soil pH affects the mobility of many pollutants in soil by influencing the rate of their 

biochemical breakdown, their solubility, and their adsorption to colloids (Brady and Weil, 2008). 

Carbonic acid is a weak acid which produces hydrogen ion to the soil when carbon dioxide gas 

from soil generated by the root respiration and decay of labile organic matter dissolves in water 
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(Appelo and Postma, 2005). Soils rich in carbonate minerals have a high pH which means that 

they are somewhat alkaline. On the other hand, soils rich in organic matter usually are acidic 

with a low pH. The acidity is to a large part generated by weak acid functional groups on the soil 

organic humic material. This material is derived from the microbial decomposition of organic 

matter. Soil with only poorly weatherable parent material are more acid than soils containing 

carbonate minerals as they are not able to neutralize the humic matter acidity. Vegetation 

(particularly conifers which produces organic acids) and climate along with acid rain are 

important factors that affect soil pH. Acid soils have a dominance of adsorbed aluminium and 

iron on its cation exchanger (see section 2.7.2.2.). Changes in redox status affects the soil pH, 

hence, flooded soils exhibits higher pH values than their upland counterparts (vanLoon and 

Duffy, 2005), see section 2.9.  Through governing and reflecting the solubility and thereby the 

concentrations of Al, Fe and Ca the soil pH is a key explanatory variable for the availability of 

nutrients in the soil. Furthermore, the soil pH affects the activity of microorganisms which are 

responsible for breaking down organic matter and most chemical transformations of the soil.  

2.7.2.2 Effective cation exchange capacity (CECe)  

The effective cation exchange capacity is a key soil property. It is defined as the sum of total 

cations (Ca2+, Mg2+, K+, Na+, H+, Al3+, Fe3+, Mn2+) that a soil can absorb and exchange (Eq. 3.5). 

CECe is highly dependent up on the nature and content of clay minerals (the type of soil texture) 

and the content and degree of decomposition of organic matter (vanLoon and Duffy, 2005). In 

general, Sandy soils with low content of organic matter have very low CECe values, while soils 

with high clay content and or organic matter have a significant CECe values. Dissociation of 

organic acids results in a negative net charge on the soil organic matter, and again this negative 

charge is balanced by the amount of ion exchangeable cations in the soil. Because the 

dissociation of organic acids depends on the pH, the CECe associated with the organic matter is 

known as pH dependent CECe, therefore, the value of the pH dependent CECe will increase with 

pH. Usually, CECe is expressed as number of moles of positive charge per unit mass 

(meq/100g). Base saturation percentage is the proportion or percentage of cation exchange site 

occupied by non-acid cations, defined in Eq. 3.6. 
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2.8 Effect of decreased acid rain: Increased DNOM, reduced Ali  

Primary sources of sulphur in the environment consist of mineral weathering, atmospheric 

loading of acid rain (precipitation and dry deposition) and acid mine seepage, runoff from 

agriculture and urban land uses, and ground water interactions (Lehr et al., 2008). Lower pH and 

enhanced concentrations of sulphate allows enhanced mobilization of Al from the acid sensitive 

areas which complexed the organic matter causing the DNOM to precipitate. Therefore, acid rain 

decreased solubility of humus compounds by protonation of the weak acids and by complexing 

the organic matter compounds with Al comes from leaching. 

 R-COO- + H+ ↔ R-COOH, protonation (2.1) 

 3R-OO- + Al3+ ↔ Al(R-OO)3, complexation (2.2) 

 

With the decrease in acid rain deposition since the 1980s, the dissolved organic matter (DOM) 

has again increased in stream water and fresh water lakes. Due to this increase in the DNOM-

quantity, the water has become browner. Hence, a reduction in acid rain causes the DNOM 

compounds to become more soluble in water and be transported into stream waters and 

eventually drain into lakes. Figure 7 shows the relation of reduction in acid rain with reduction in 

Al leaching increasing the TOC. More information about the effect of acid rain and DNOM  can 

be found in Vogt et al. (2003). 

 

2.9 The role of Fe and Al in soils and sediments in retaining and release 

of phosphorus 

The biogeochemistry of phosphorus in flooded soils and sediments differ from oxidized upland 

and other terrestrial soils, since phosphorus adsorption and mobilization are strongly affected by 

hydrology governing the redox potential. The soil capacity to adsorb phosphorous is dependent 

on the soils content of Fe/Al oxides and hydroxides, clay and dissolved organic matter (Kuo and 

Mikkelsen, 1979; Reddy and DeLaune, 2008). Al and Fe ions form positively charged oxy-

hydroxides that sorb PO4 anions. Furthermore, the Al3+ and Fe3+ constitute a binding bridge 
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between the net negative charged surfaces of clay or organic matter coating on minerals and the 

PO4 anion.  

Ferric iron (Fe3+) and sulphate (SO4
2-) are reduced under anaerobic condition to ferrous iron 

(Fe2+) and sulphide (S2-), eq. 2.3 and 2.5. This plays a major role in the movement of phosphorus 

in the environment. According to Mortimer (1941) and Roden and Edmonds (1997) the reduction 

of ferric ion (Fe3+) to more soluble ferrous ion (Fe2+), and the reduction of sulphate to sulphide 

with subsequent capturing of the Fe+2 as FeS, leads to the release of previously bound 

phosphorus eq. 2.7. Therefore, in flooded environments P fluxes can occur from sediments/soils 

to surface waters. The P released by the reduction of Fe3+ can again be precipitated by re-

oxidation of the reduced Fe2+ upon entering an oxidizing environment through sorption to the 

newly formed iron oxides. This serves to decrease the amount of phosphorus released (Patrick 

and Khalid, 1974). Change of climate is believed to bring more precipitation (heavy rainfall, 

increasing surface runoff, and flooding), and higher winter temperature. This will serve to 

increase the extent and frequency of reducing conditions in the soils and results in more flushing 

of P from soil horizons to the surface water system. 

Fe(OH)3 + 3H+ + e- ↔ Fe2+ + 3H2O (2.3) 

FePO4 + 2H+ + e- ↔ Fe2+ + H2PO4
- (2.4) 

CH4 + SO4
2- + 2H+ ↔ H2S + 2H2O + CO2 (2.5) 

CH4 + SO4
2- + H+ + Fe(OH)3 + e- ↔ FeS + 4H2O + CO3

2- (2.6) 

CH4 + SO4
2- + H+ + FePO4+ e- ↔ FeS + H2O + HCO3

- + H2PO4
- (2.7) 

 

Aluminium sulphate (alum) is used as phosphate precipitant in some strongly eutrophic lakes and 

sewage treatment plants (Cooke et al., 1993) due to the strong binding between Al and PO4. 

When alum (Al2(SO4)3) is dissolved in circumneutral water the aluminium ions rapidly 

hydrolyse, leading to the formation of aluminium hydroxides (Al(OH)3). The amorphous form of 

Al(OH)3 dominates at a circumneutral pH. The colloidal and amorphous flocs of Al(OH)3, have 

high coagulation and P adsorption properties. This reduces the P transport to the surface water 
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system. The amorphous aluminium hydroxide with adsorbed phosphate will slowly age into 

strongly insoluble hydrous Al-PO4 mineral (Cooke et al., 1993; Moore and Reddy, 1994).  

 [AlOH2
+]OH + H2PO4

- ↔ [AlOH2
+]H2PO4- + OH-         (2.8) 

Al3+ + H2PO4
- + 2 H2O ↔ 2 H+ + Al (OH)2H2PO4 (s)                          (2.9) 

Acidity of forest soils is basically governed by the parent material ability to neutralize the natural 

acid production (weak carbonic and natural organic acids) through weathering. The acidification 

can be augmented due to acid deposition. This is especially the case in acid sensitive catchments 

where poor weathering leads to limited replenishment of base cations that are leached out of the 

soils causing a decrease in base saturation. The direct effect of soil acidification is to lower the 

pH of the soils. The combined effect of reduced base saturation, lowered pH and increased 

concentration of sulphate as a mobile counter anion, allow for a significant amount of labile 

aluminium in solution. 

Decline in acid rain deposition over Norway has reduced the leaching of Al from the forest soil 

into surface water (Skjelkvåle et al., 1999).  Less labile aluminium is thus washed out of acid 

head water catchments and down into the agricultural lowlands. There is therefore less labile 

aluminium where the acid water mix with circumneutral pH and P rich seepage water from the 

agricultural fields causing less precipitation of phosphate. This has resulted in more free 

movement of phosphate in the water system. More information can be found in Orderud and 

Vogt (2013). 
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3 MATERIALS AND METHODS  
 

In this section the materials, methods and sampling employed in conducting the study are 

described. A brief description of the study site, with emphasis on the forest soils and plot of 

the eight sampling sites, are given in section (3.1).   

Soil sample collection was conducted in the mid of August 2011. The unconsolidated 

deposits in 90% of the catchment area were deposited under the marine limit at the end of 

the last glacial epoch for about 10 000 years ago (Skarbøvik and Bechmann, 2010). Marine 

sediments are known to contain elevated levels of phosphorus as this is the final sink of 

phosphorus in the global phosphorus cycle. It is therefore hypothesized that there is a 

considerable natural background flux of P to the surface waters. The Vansjø Lake was as 

such most likely a naturally eutrophic system, which, due to an additional anthropogenic 

phosphorus loading, now experiences large eutrophication problems. Soils and water 

samples from the forested sub-catchment Dalen have previously been analyzed for 

physiochemical properties (Gebreslasse, 2012; Mohr, 2010). These studies showed that the 

soils and sediments in this forested catchment are acid sensitive. During the acid rain period 

in the 70ties and 80ties inorganic labile aluminium (Ali) was eluted out from such acid forest 

soils into their acid first order streams. In the watercourse this water was mixed downstream 

with well buffered water causing the Ali to precipitate out as Al-oxy-hydroxides. Ortho-

phosphate in the water was co-precipitated. Alum (Al2(SO4)3) is used by sewage treatment 

plants to precipitate out phosphate, it is also spread out over eutrophic lakes as an abatement 

action. It is therefore likely that reduced in co-precipitation of phosphorus due to the 

decrease in leaching of labile aluminium, caused by the up to 90% decrease in sulphate 

concentration since the end of 1970s, and has partly counteracted the effect of the abatement 

actions over the same periods. 

3.1 Site description 

The study area is known as Morsa watershed with focus on the sub-catchment of western 

Vansjø. Morsa catchment is an important catchment for many reasons. It is one of the 

catchments in Norway which is most affected by agricultural runoff and therefore also 

eutrophication and harmful algal blooms. It has been a pilot catchment in the implementation 

of the EU Water Framework Directive (WFD), and has a number of different user interests 
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(Skarbøvik and Bechmann, 2010). Morsa watershed covers an area of 700 km2, of which 

80% is comprised by forest, 15% by agriculture and 5% by others land-use. The morphology 

and soils in the area is characterized by quaternary geological characteristic of marine 

unconsolidated deposits rich in clay (Skarbøvik and Bechmann, 2010). The lake is a source 

of drinking water for more than 60,000 people and it receives pollution from human 

activities in the watershed. 

Soils from Dalen has previously been analysed in our laboratory for physico-chemical 

properties (Mohr, 2010). The soils were collected from ridge, slope and valley bottom, and 

the results shows that; the largest soil P pools was found in the organic matter dominated soil 

floor which is the O horizon where organically bound P. The P pools in the O horizon shows 

decrease down the topography slope possibly due to the sub-lateral flow of water that washes 

out the soil horizon during periods of high runoff.  E horizon which is located at the ridge 

shows low pool of P, this is because of the soil horizon is depleted of iron and Aluminum 

sesquioxides and clay content which have the ability to bind P. A significant amount of P 

bound to Ca and Fe was also found in the B and C soil horizons. The soils in Dalen also 

found to be acidic with pH well below 6 in all horizons and plots. The pH increases typically 

down through the soil profile as well as down along the topographic gradient.  Sampling 

sites shown in figures 12, 13 and 14 
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Figure 11: The Morsa watershed (dark green) with the sub-catchment of Western Vansjø (red) from 
(AQUARIUS, 2010) 
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Figure 12: Sediment deposit types in the Morsa watershed including the eight sampling sites for soil (red 
dots) 7. 

                                                 
7 The map used is a quaternary map, 1:50000 produced by Geology for Society (NGU) 
(http://www.ngu.no/no/hm/Kart-og-data/nedlasting/), map is modified by Alexander Engebretsen. 
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Figure 13: Soil sampling maps for sites of Dalen, Augerød, Gashus, Støa and Huggenes, the numbers and black dots in each site represents plot 
numbers where the soils are sampled8.  

                                                 
8 . see next page 
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Figure 14: Soil sampling maps for the sites of Guthus and Østmarka; the numbers and black dots in each site represents plot numbers where the soils 
are sampled9.  

                                                 
9 More information about the plot numbers are given in table 3.1 and see figure 12 for the legends description. The map used is a quaternary map, 1:50000 
produced by Geology for Society (NGU) (http://www.ngu.no/no/hm/Kart-og-data/nedlasting/), modified by Alexander Engebretsen. 

http://www.ngu.no/no/hm/Kart-og-data/nedlasting/
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3.2 Soil sampling  

Soil samples were collected from eight conifer forested sub catchments in the Morsa 

watershed (see Figures 12, 13 and 14). The plots in the sub-catchments have different type of 

unconsolidated deposits (Table 6). The coordinates and elevations of each plot numbers in 

(figures 13 and 14) was inserted in to GPS map 62s (GARMIN) instrument, to find the exact 

sampling site, and 83 Soils samples were collected from these sub-catchments (Huggenes, 

Dalen, Augerød, Støa, Østmarka, Guthus, Boslangen and Gashus). All the samples are 

collected from forest using an auger (soil sampler) and placed in a Ziploc plastic bag for 

transport. All sub-catchments are located below the marine limit except the Østmarka site. See 

appendix G also for maps of the quaternary deposits of the study area. 

Table 6: Type of unconsolidated deposits, morphology and soil horizons at the sampling sites. The 
information is extracted from each sub-catchment from the map in Figure12 and appendix G. The maps 
are provided by the Norwegians Forest and Landscape Institute (2011) and revised by Alexander 
Engebretsen, UiO. 

Sub-
catchment 

Plot number   
(see Figure 13 and 
14) 

Deposit type Morphology Soil 
horizons 

Huggenes 

5 Naked mountain Ridge O 

3 Sea fjord and beach 
alluvium continuous Ridge O,AE,B 

7 Naked mountain Slope O,A 

4 Sea fjord and beach 
alluvium discontinuous 

Slope O,E,B 

2 Sea fjord and beach 
alluvium discontinuous 

Slope O,E,Bs,B,C 

6 Organic soils (bogs) Valley 
bottom 

H,C 

1 Sea fjord and beach 
alluvium continuous 

Valley 
bottom 

H1 

Guthus 

12 Naked mountain Ridge O 
9 Naked mountain Ridge O,A,E,Bs 
11 Sea fjord and beach 

alluvium discontinuous 
Valley 
bottom 

A,B,C 

10 Sea fjord and beach 
alluvium discontinuous 

Valley 
bottom 

H1,H2,C 

8 Organic soils (bogs) Valley 
bottom 

H1,H2,C 

Boslagen 
16 Naked mountain Ridge O 
15 Naked mountain Slope O,E 
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14 Organic soils (bogs) Valley 
bottom 

H,A,C 

13 Sea fjord and beach 
alluvium discontinuous 

Valley 
bottom 

O,A,B 

Dalen 

19 Humic cover over 
mountain 

Ridge O 

18 Humic cover over 
mountain 

Slope O 

Augerød 

23 Humic cover over 
mountain 

Slope O,B 

22 Naked mountain Slope O,A,B 

25 Humic cover over 
mountain 

Valley 
bottom 

O 

24 Sea fjord and beach 
alluvium discontinuous 

Valley 
bottom 

A,B,C 

21 Sea fjord and beach 
alluvium discontinuous 

Valley 
bottom 

O,A,B,C 

Støa 

33 Margin moraine Ridge O,E,Bs,B 
32 Margin moraine Slope O,AE,B 
31 Margin moraine Valley 

bottom 
O,A,B,B2 

Gashus 

38 Naked mountain Ridge O 

36 Naked mountain Ridge O 

35 Sea fjord and beach 
alluvium discontinuous Slope O,Bh,B,C 

34 Organic soils (bogs) Valley 
bottom 

H,A 

Østmarka 

30 Naked mountain Ridge O,E,B 

29 Naked mountain Slope  O,B,C 

27 Naked mountain Valley 
bottom 

O,B,C 

 

3.2.1 Soil from different horizons 

Soils from the sites were sampled from different generic horizons, approximately from 1cm 

below the top surface to 120 cm depth. The soil horizons O, H, A, AE, E, B, Bs and C were 

found in the Morsa watershed. In some sampling sites, especially on the bare rock mountains, 

only O horizons were sampled as other horizons were lacking. The H horizons, denoting 

Histosols, were inherently found on waterlogged areas. Below the organic peat layer, typically 

at around 80cm depth, a clay soil layer (C-horizon) was commonly found. Figure 15 below 

shows the sampling strategy to capture soils from different topography. 
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Soil samples were collected from the ridges, slopes and valley bottom in order to capture the 

topographic gradient found within each site. All sites were located below the marine limit, 

except Østmarka, which was situated above the marine limit. The main span in soil structure 

was thereby sampled due to the redistribution of the unconsolidated deposits as the shoreline 

passed through the watershed. Emphasis was given in the sampling strategy to capture fertile 

soils in the valley floors that have not been exposed to agricultural practices.  

 

Figure 15: Soil profile from the different topographic presentation from (Mohr, 2010). 

 

 

Figure 16: Picture from sampling site from ridge topography and the ridges show also bare mountain, 
Photo was taken during sample collection. 
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Figure 17: Picture from soil sampling site from slope topography. In this figure it shows the lighter soil 
colour.  Photo was taken during sample collection. 
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Figure 18: Picture from soil sampling site from the valley bottom topography, near a stream. The water 
shows a brown colour. Photo was taken near the stream during sample collection. 

 

3.3 Soil sample pre-treatment 

After the soils were brought to the chemistry laboratory at the Department of Chemistry, 

University of Oslo, the necessary sample pre-treatments such as drying, sieving, 

homogenizing and storing has been conducted according to ISO-11464 (2006) method.  

Figure 19 shows pictures from the sample drying process.  
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Figure 19: Drying of soil samples from various soil types and horizons (upper panel). During the drying 
the samples were covered as shown in the lower panel. 

 

3.3.1 Grinding and sieving of soil samples 

The collected soil samples were placed on cardboard plates covered with a cardboard (as 

shown in figures 19 and dried at a room temperature for about three weeks. The dried samples 

were then crushed gently using a mortar and a pestle, and sieved through a 2mm mesh. 

During the grinding process care was taken not to crush the individual soil minerals ensuring 

that only large soil aggregates were broken. Grinding and sieving are essential part of 
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homogenizing the sample and is consistent with the internationally accepted standard for soil 

chemical analysis (ISO-11464, 2006). The soil fractions that passed through the 2mm sieve 

was collected and stored for physicochemical analysis. 

  

3.3.2 Storage and homogenization of the soil samples 

Sieved soil samples were stored in cardboard boxes (of approx.  0.5L volume) and placed in a 

dry shelf at room temperature. Homogenization of soil samples is very important to get a 

good analytical result. Thus, before withdrawal of samples from the boxes, the samples were 

mixed using a spoon. 

 

3.3.3 Cleaning procedures 

Plastic and glassware used for the analysis of the samples were cleaned in a Miele Mielabor G 

7783 Mutitronic washing machine (Miele, Germany), which performs HNO3 acid wash and 

Type II water rinse in accordance with Miele Mielabor G 7783 Mutitronic washing machine 

standard wash procedure. The sample bottles were also cleaned with diluted 5-10% HCl 

overnight. All glass equipment used in the experimental work had been top filled or soaked in 

10 % (w/w) HNO3 and then rinsed with Type II and Type I water to minimize contamination 

prior to analysis unless otherwise stated. See appendix D for characteristics of type I and type 

II water. 

 

3.4 Physicochemical Soil analysis 

The soil samples were analyzed for soil physiochemical properties such as soil moisture, soil 

pH, organic matter content, effective Cation Exchange Capacity (CECe) including Base 

Saturation (BS%) and  Aluminum Saturation (AlS%), particle size distribution (% of clay, silt 

and sand) and phosphorus pools (total-P, inorganic-P and organic-P) and inorganic P-

fractionations (easily soluble-P, P bound to Al, P bound to  Fe, P bound to Ca and occluded-

P). The preparations of samples and standard solutions for the physicochemical analysis of the 

samples were conducted at the laboratories at the Departments of Chemistry and Geosciences, 

UiO.  
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3.4.1 Soil pH  
Soil pH was measured according to a method described in ISO-10390 (1994) both in water 

and 1M CaCl2 (1:5, soil to 1M CaCl2) extract.  Sample solutions were shaken repetitively, and 

left for two hours for sedimentation. The purpose of extracting with a salt solution is to 

provide pH values that are more comparable as the salt masks the variability in the salt 

content of soils and serves to maintain the soil in a flocculated condition as well as to decrease 

the junction-potential effect on the electrode (Beery and Wilding, 1971; Coleman et al., 

1950). The measurement of pH was done using an Orion pH-meter with a ROSS pH 

electrode. Two replicates per sample were measured. All the analysis results are given in 

appendix A and appendix C, table C1.  

 

3.4.2 Dry matter content 

Dry matter of the air dried soil samples was conducted according to a method described in  

ISO-11465 (1993). About 10g of soil was weighed accurately (M1) using an analytical 

balance (Sartorius LC3201D, accuracy ± 0.1 mg), and put into a pre-weighed container (M0). 

The container with the soil sample was placed in a drying oven at a constant temperature of 

105oC 5oC  overnight, and then placed in a desiccator for cooling. The cooled and dried 

soils were weighed again (M2) on the analytical balance. The mass difference is used to 

calculate the dry matter and water content of the soil according to Eq. 3.1 and 3.2. Results are 

given in appendix A. 

𝑊𝐻2𝑂  = �𝑀1−𝑀2
𝑀1−𝑀0

 � × 100%     (3.1) 

𝑊𝑑𝑚  = �𝑀2−𝑀0
𝑀1−𝑀0

 � × 100%     (3.2) 

 

Where,  WH2O is water content  

Wdm is dry matter 

M0 is mass of the empty container 

M1 is mass of the air dried soil + container 

M2  is mass of the oven dried soil at 105oC±5oC + container 
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3.4.3 Organic matter content 

Organic matter of the soils was determined by loss on ignition (LOI) according to the 

modified ISO standard by Krogstad (1992).  For this purpose, 5-10g of soil was weighed on 

an analytical balance into a quartz container and placed at 550oC in furnace for 4 hours for 

high temperature combustion of the organic matter to CO2. After burning the containers with 

the ash content were placed in desiccator for cooling and then the mass was determined. The 

LOI was determined according to Eq. 3.3. Results are given in appendix A and appendix C, 

table C1. 

𝐿𝑂𝐼 = �1 − 𝑀2−𝑀0
𝑀1−𝑀0

 � × 100% −𝑊𝐻2𝑂   (3.3) 

Where  

  LOI is Loss on Ignition  

  WH20 is water content from Eqn 3.1 
  M0  is mass of empty container 
  M1 is mass of air dried soil + container 
  M2 is mass of ignited soil + container 
 

3.4.4 Particle size distribution (PSD) for mineral soils 

Particle-size distribution analysis is a measurement of the size distribution of soil particles in 

a soil sample. The major features of soil particle size analysis is the dispersion of soil 

aggregates into distinct units by removal of organic matter, salts, carbonates and oxides, by 

using chemicals, mechanical shaker (electrical mixer), and ultrasonic vibrator machine 

according to ISO-11277 (1998). Sieving, sedimentation and laser diffraction was applied as 

methods for the separation of the particles according to their size.  

Determination of particle size distribution was performed at Dept. of Geosciences, University 

of Oslo, using a Beckman-Coulter LS 13 320 Laser diffraction particle size analyser. The 

principle of the Laser Diffraction Method (LDM) is that particles of a given size diffracts light 

at a given angle when a parallel beam of light passes through the suspension kept in the 

sample cell. The angle of diffraction increases with decreasing particle size and vice versa (Di 

Stefano et al., 2010). Only mineral soils from (A, E, B, C) horizons were selected for the 

determination of the particle size distribution and soils were included from both the above and 

below marine limits. 
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The selected soils were pre-treated according to a method described in ISO-11277 (1998) to 

destroy oxides and  organic content of the soil using hydrogen peroxide (H2O2) 30% (v/v). 

The selected soil samples for PSD analysis was placed in a glass container, and 30ml of water 

followed by 30ml of 30% (v/v) hydrogen peroxide was added to moisten and remove organic 

matter, salts, oxides and carbonate content of the soil. Any vigorous reaction was avoided by 

adding drops of 2-Octanol solution, and contents of the vessel was continously stirred. Finally 

the container was covered and left over night for sedimentation. After the removal of the 

organic matter content, salts, oxides and carbonates; the samples were dried using vacuum 

freeze dryer. A small amount of each samples free of organic matter were taken for size 

distribution measurement. Results are given in appendix A.   

 

3.4.5 Determination of Effective Cation Exchange Capacity, soil pH and Base 

and Aluminium saturation 

Effective cation exchange capacity (CECe) of a soil is simply a measure of the amount of 

exchangeable sites on soil surfaces that can hold positively charged ions by electrostatic 

forces (Schwertfeger and Hendershot, 2009). Cations which are bound by electrostatic force 

are exchangeable with other cations when the soil is in contact with a solution and are thus 

readily available for plant uptake.  

Determination of effective cation exchange capacity (CECe) is based on the method described 

by Hendershot et al. (2007). The method is comparable to ISO 11260 and ISO/TC190/SC3 

standards, using spectrophotometric determination of Al. The main deviation is that 

exchangeable H+ is determined by measuring pH directly in the supernatant solution and that 

iron and manganese is determined in addition to the Al. The soil extraction was conducted 

with soils that have been air-dried and passed through a 2.00mm aperture sieve. About 1.50g 

of soil sample for organic soils and 4.50g of soil for mineral soils were accurately weighed 

into polycarbonate centrifuge tubes. About 30.0mL of 0.1M BaCl2 extracting solution was 

added to each of the soil samples. The samples were shaken for 2hrs in a Nalgene and 

Edmund KS-15 shaking machine at a slow speed of 50strokes/minute. After shaking, the 

mineral soil samples were centrifuged for 10 minutes at 3000 rpm in a Jouan B4i (Thermo 

fisher scientific Inc.) centrifuge. The solution was decanted and then filtrated under vacuum 
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pressure through a Whatman No. 42 filter paper 10for quantitative analysis. Organic soil 

samples were not centrifuged. They were only filtered with a Whatman No. 42 filter paper in 

the same way as the mineral soils. For CECe and base and aluminium saturation calculations 

see chapter 3.4.5.3. 

 

3.4.5.1 Exchangeable H+ using pH- measurement  

The filtrate was transferred to a scintillation bottle which was stored cool and dark before 

analysis. The pH of extracted soil sample was measured using pH-meter. The measurement 

was conducted in order to determine exchangeable hydrogen ions [H+]. The concentration of 

H+ ([H+]) was calculated based on the measured activity of the H+ by dividing with the 

activity coefficient for H+.  

 

3.4.5.2 Cation analysis using inductively coupled plasma optical emission spectroscopy 

The concentration of basic- and acidic cations calcium (Ca2+), magnesium (Mg2+), potassium 

(K+), sodium (Na+), aluminium (Al3+), iron (Fe3+) and manganese (Mn2+) in the extracts were 

determined according to the method described in ISO-22036 (2008),  using VISTA AX CCD 

Simultaneous Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES). The 

instrument is equipped with an Echelle polychromator, a Charge Coupled Device (CCD) for 

detection, and the emission was measured axially. Prior to analysis, all sample and standard 

solutions were acidified to 1% (m/v) nitric acid. Concentrations of each cation obtained from 

the instrument in mg/L were converted to CEC in meq/kg of the cations in soil as explained in 

section 3.4.5.3 and results are given in appendix A and appendix C, table C3. 

 

3.4.5.3 Calculations of CECe, base- (%BS) and aluminum saturation (%AlS) 

All concentrations in the supernatants were translated into meq/kg of dry soil (see Eq. 3.4). 

The exchangeable amount of the different cations per kg soil was calculated from the 

concentration in the extracts ([X]), the amount of soil (1.5 or 4.5g) and volume (30mL) of 

extractant solution according to eq. 3.4.  

                                                 
10 . Provides fine retention and slow flow rate. Suitable for general filtration of many types of 
samples 



 

46 

 

   (3.4) 

Where,  [X] is concentration of cations (cmole) 

  g soil is weight of dry soil sample in (g)  

  Wdm is dry matter correction factor 

The sum of all cations in meq/kg of the soil gives the CECe 

  (3.5) 

The percentage of sum base cations (Ca2+, Mg2+, K+, Na+) relative to the CECe gives the 

Base Saturation (BS%) (eq. 3.6) 

     (3.6) 

The percentage of aluminum relative to the CECe gives the Aluminium saturation (AlS) (eq. 

3.7). 

     (3.7) 

Results for CECe and BS are found in appendix A and appendix C, table C4. 
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3.5 Analysis of phosphorus pools in soil extracts 

The soil samples were analyzed for total and inorganic phosphorus according to the method 

by Møberg and Petersen (1980). The sequential fractionation of inorganic phosphorus was 

analyzed for easily soluble-P, P bound to Al,  P bound to Fe, P bound to Ca and occluded-P 

based on the method developed by Chang and Jackson (1957). The method is discussed in 

section 3.5.1and 3.5.2 below. 

 

3.5.1 Total-phosphorus 

Measurement of the total phosphorus is based on the method described by Møberg and 

Petersen (1980). About 1.0g of soil was ignited according to section 3.4.3, and of each the 

ignited sample was transferred to acid washed 250mL volumetric flask and added 5mL of 6M 

H2SO4. After the contents of the flask were mixed well, the mixture was heated in a water 

bath at 700C for 10 minutes. Further 5.0 mL of 6M H2SO4 was added and left for cooling for 

one hour. The sample was diluted to a total volume of 250mL using Type I water. After 

dilution, the sample was left for two days for sedimentation so that a clear solution is formed. 

Total-P of the sample solution was measured at Dept. of Geosciences UiO, on a SEAL 

Orthophosphate Auto Analyzer 3 using the application of Molybdenum blue method 

described by Murphy and Riley (1962).  See the method in appendix F, figure F4.     

                                                                                                                                  

3.5.2 Inorganic- and Organic phosphorus  

Inorganic phosphorus was extracted following the same procedure as total phosphorus, except 

the soil was 1g of air dried. Organic-P (Org.-P) was calculated by difference between Total-P 

and Inorganic-P as shown below. Results for inorganic phosphorus and organic phosphorus 

are found in appendix A and appendix C, table C5 and C6 respectively. 

 

3.5.3 Sequential extraction of inorganic phosphorus in soils 

Sequential extraction schemes were developed to search out additional information on the 

levels of soil phosphorus fractions in soils. A single sample of soil is extracted sequentially by 

adding stronger extracting solvents to separate the phosphorus into fractions based on the 
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chemical solubility (Turner et al., 2005). The method of the sequential extraction of  

Inorganic-P was performed according to the method explained by Chang and Jackson (1957). 

According to the sequential extraction method, five inorganic P-pools are defined; easily 

soluble phosphorus, P bound to Al, P bound to Fe, P bound to Ca and occluded phosphorus.  

Fractionation of these five inorganic phosphorus pools was conducted as outlined below and 

shown in Figure 20. Results are given in appendix F, table F3. 

 

3.5.3.1 Procedures of the sequential extraction and preparation method 

About 1g sample of soil was placed in an 85mL centrifuge tube and extracted with 50mL of 

1M NH4Cl for 30 min on a mechanical shaker (Edmund Bühler KS-15). The suspension was 

centrifuged and the supernatant solution was saved for the determination of the soluble and 

loosely bound phosphorus. A 50mL of neutral 0.5M NH4F was added to an 85mL centrifuge 

tube again and the suspension extracted on a mechanical shaker for 1 hour. The suspension 

was centrifuged and the supernatant solution was decanted for determination of aluminium 

bound phosphate. The soil sample left after the extraction of aluminium phosphate was 

washed twice with 25mL of saturated NaCl solution. It was then extracted with 50mL of 0.1M 

NaOH on the shaker for 17 hours. The soil suspension was centrifuged for 15 minutes at 2400 

rpm and centrifuged again to obtain a clear solution that was decanted into another centrifuge 

tube for determination of iron phosphate. The soil sample after extracting iron phosphate was 

washed with two successive aliquots of 25mL of saturated NaCl solution. It was then 

extracted with 50mL of 0.25M H2SO4 for 1 hour on a mechanical shaker (Edmund Bühler 

KS-15). The suspension was centrifuged and the clear supernatant solution is decanted for 

determination of calcium phosphate. The soil sample left after the extraction of calcium 

phosphate was again washed twice with 25mL of saturated NaCl solution and it was then 

extracted with 50mL of 0.1MKCl that contains ascorbic acid and Na2-EDTA for 1 hour on 

the mechanical shaker. The suspension was then centrifuged for 15minutes and the clear 

supernatant was analyzed for occluded phosphate (see Figure 20).  

 
The SEAL Autoanalyzer 3 at the Department of Geosciences, UiO, was used to determine the 

Tot-P and Inorganic-P fractions from the soil extracts acquired from the Chang and Jackson 

(1957) and Møberg and Petersen (1980) methods. The instrument was set with the parameters 

given in appendix F. 
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Figure 20: Sequential extraction method of soil analysis for inorganic phosphorus fractionation  
(Pierzynski, 2000). 

Soil: Add 50ml 1M NH4Cl. 
Shake for 30min. centrifuge 
for 15min at 2400rpm & 
decant. 

Supernatant: 25ml aliquot is placed 
in a 50ml volumetric flask, Solution 
is diluted to the mark, and total P is 
determined (Soluble-P fraction). 

Soil: Add 50ml 0.5M NH4F. 
Shake for 1hr. centrifuge for 
15min at 2400rpm & decant. 

 

Soil: Add 50ml 0.5M NaOH. 
Shake for 17hr. centrifuge for 
15min at 2400rpm & decant. 

 

Supernatant: 10ml aliquot is placed in 
a 50ml volumetric flask. 15ml 0.8M 
Boric acid & 0.5mL 4M H2SO4 is 
added. Solution is diluted & analyzed 
for Al-P. 

Soil: Add 50ml 0.25M H2SO4 
and Shake for 1hr. centrifuge 
for 15min at 2400rpm & 
decant. 

 

Supernatant: 2ml aliquot is placed in 
50ml volumetric flask. 0.5ml 4M 
H2SO4 is added; solution is diluted 
& analyzed for Fe-P. 

Soil: Add 50ml, 0.1MKCl 
containing 12.5g/l ascorbic acid 
& 0.372g/l Na2-EDTA. Shake 
for 1hr, centrifuge for 15min & 
decant. 

 

Supernatant: 5ml aliquot is placed 
in a 50ml volumetric flask, diluted 
and analyzed for Ca-P 

Supernatant: 20ml aliquot is placed in 
a 50mL volumetric flask. 0.5ml 4M 
H2SO4 is added and solution is 
analyzed for Occluded-P 

Soil: Wash twice with 25ml 
sat. NaCl solution 

Soil: Wash twice with 25ml 
saturated NaCl solution 

Soil: Wash twice with 25ml 
saturated NaCl solution 
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Results obtained from the determination of phosphorus pools, i.e. Inorganic and organic 

phosphorus and the inorganic-P fractionation (easily bound phosphorus to soils, Al-bound 

phosphorus, Fe-bound phosphorus, Ca-bound phosphorus and occluded phosphorus) are 

found in appendices A, C and F.  

 

3.6 Statistical analysis 

The Minitab 16 statistical programme was used to perform a hierarchical cluster analysis and 

principal component analysis. In addition individual Pearson correlations were performed in 

order to find the strength of association between variables. 

 

3.6.1 Hierarchical cluster analysis 

Cluster analysis is a method of modelling groupings, or clusters of similar parameters or 

objects. The clusters are presented with a dendogram, a two-dimensional chart where the y-

axis shows the similarity (where 100 % is very similar and 0 % no likeness between the 

clusters and the horizontal lines denotes the clusters (BRIDGES JR, 1966). 

 

3.6.2 Principal component analysis 

A Principal Component Analysis (PCA) is a way of identifying patterns in large data matrix 

in which observations are described by several inter-correlated quantitative dependent 

variables (Abdi and Williams, 2010). Its goal is to extract the important information from the 

data, to represent it as a set of new orthogonal variables called principal components, and to 

display the pattern of similarity of the observations and of the variables as points in maps. 
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4 Result and Discussion 
83 soil samples collected from soil profiles on ridges, slopes and valley bottoms in the forests 

of the Morsa catchment were analyzed for physicochemical properties such as soil pH, 

organic matter (LOI), effective cation exchange capacity and base saturation and pools of 

phosphorus, as well as particle size distribution on the mineral soils. This section describes 

the result and discusses empirical and conceptual relationships between the analyzed 

parameters.  

4.1 Soil pH and Organic matter content 

 

4.1.1 Soil pH 

Results of soil pH measured in water and in CaCl2 suspension are given in Appendix A. The 

pH measured in CaCl2 is approximately one unit lower than the pH measured in water, and 

this is because of ion exchange process. The calcium chloride provides Ca2+ ion in the 

solution to replace some of the H+ ions on the soil particles, forcing the hydrogen ions on to 

the solution. The Ca2+ is a strong competing cation binding negatively charged groups.  

Figures 21 and 22 show the trend in soil pH with topography and down through the soil 

profiles, respectively. The soil pHCaCl2 varies from pH=2.73 in the O horizon located on the 

top surface of the mineral soil profile on the ridge to pH=5.45 in the deep C horizon in the 

bottom of the bogs on the valley floor. There is, as commonly found, an increase of soil pH 

down the soil horizons. The increase pH down the soil profile is in the literature commonly 

explained by the neutralization through acid consuming weathering down through the B and C 

horizons. Observing to Figures 22 and 23, it indicates that the pH of the soils is to a large 

extent governed by the organic matter content. The O and H horizons are acidic with high 

organic matter content while the deep soil horizons (A, B and C) have highest pH value with 

low organic matter content. The measured pH11 in H2O and CaCl2 is also observed positively 

correlated with Loss on Ignition (LOI, chapt. 4.1.2) with correlation coefficient r=0.663 and 

0.658 respectively, (see appendix B). Organic matter of a soil contains many acid functional 

groups, which is the main source of H+ at pH below 5.5. These weak acid functional groups 

cause soil acidity upon their dissociation. Accumulation of organic matter in the soil and 

                                                 
11 pH is expressed as H+ (H2O) and H+(CaCl2), it is explained as the [H+] appendix B. 
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dissociation of weak organic acids are thus one of the most important contributors of 

hydrogen ions in acid soils. Furthermore, the upper surface part of the soil is exposed to 

different pressures that can enhance the acidity. For example, the input of strong mineral acid 

from long-range transported acid rain, the nitrification of ammonium and the decomposition 

of plant litter falling on the soil surface are among the contributing factors that cause lower 

pH values in the upper part of the soil horizons.  

Within the mineral B and C horizons, where the levels of organic matter are low, most of the 

variation in soil H+ was found to be explained by the % Base saturation of the soil sample (r = 

-0.606 and -0.877 for 10-pH(H2O) vs. %BS). This is due to that the amount of exchangeable 

acidity decreases with increasing %BS.  

The soil pH within each genetic soil horizon was found to increase down the topographic 

gradient although the increase was not clear. Average lowest pHH2O (3.95, n=23) was found in 

the forest soil on the floor O horizon, while the highest average pHH2O value (5.6) was found 

in the 4 samples collected from the clay rich soil C horizon found beneath the bogs in the 

valley bottoms.  

 

Figure 21: pH shows an increase down through the soil profile as well as down the slope along a 
topographic gradient - although the increase down the topographic gradient is not so clear  
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Figure 22: Low pH in the top horizons and increasing pH down into the soil profile  

 

4.1.2 Organic matter content  

Loss on Ignition (LOI), reflecting the organic matter content of the soil, decreases as 

inherently expected from the organic O and H horizons down into the mineral B and C soil 

horizon. On the ridge and slope the eluvial E horizon has lower LOI than the illuval B horizon 

due to accumulation of organic matter leached through the E horizon. Figures 23 and 24 show 

the trends of organic matter within soil profiles and topographic transect. No clear trend in 

organic content was found between the generic soil horizons along the topographic gradient.  
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Figure 23: Organic content of soils decreases down through the soil profile  

 

Figure 24: Organic content of the soil in different topography and genetic soil horizons  
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4.1.3 Representativeness of the Dalen site  

 

The Dalen site, a small forested catchment draining into the western Vansjø basin, is used by 

Mohr (2010) as a case study of processes governing the dissolution and transport of 

phosphorous (P) fractions from natural forested soils into the surface waters. These studies 

have made it clear that a significant amount of aluminium is leached out of these rather acid 

forest soils. It is therefore postulated that during the acid rain period in the 70ties and 80ties a 

considerable amount of labile aluminium was leached out of the headwater catchment. The 

runoff mixes downstream with alkaline seepage from agriculture containing high levels of 

phosphate. A study by Shekobe (2012) mixing water from Dalen with drainage water from 

agriculture (Støa) showed that between 50% to 80% of the dissolved phosphate was converted 

to particulate phosphate along with 60 – 100% of the labile aluminium. A aim of this current 

study is therefore to determine how representative the acidity of the Dalen site is to the greater 

forested areas in the Morsa watershed in order to warrant an extrapolation of these findings. 

In Chapter 4.4.4 the representativeness of Dalen in respect to P pools is discussed.  

Data presented in Figures 25 and 26 are compiled data from the study in the Dalen site by 

Mohr (2010) and Figure 21 from this study. These Figures are used for comparison of the soil 

acidity and organic content of the soils from Dalen to the rest of the forested sites in the 

watershed. The soil pH of Dalen is found to lie within the range found in the Morsa 

watershed, though slightly less acid than the rest of the forest in the watershed. The organic 

content of the soils of Dalen is much the same as found in the forests of the whole Morsa 

watershed, except that the forest floor on the ridge is in the upper range, and the Histosol in 

the valley bottom lies in the lower part of the range of LOI values found in Morsa.  Based 

only on pH and LOI, as key soil physiochemical characteristics, the soils studied in the Dalen 

watershed appear to be generally representative for the soils in the Morsa watershed.  
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Figure 25: pH of the soils from Dalen versus the rest of the forested sites in the watershed  

 

 

Figure 26: Organic content of soils from Dalen versus the rest of the forested sites  
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4.2 Soil texture Particle Size Distribution (PSD) 

Figures 27 show the percentage distribution of particle size (sand, silt and clay fractions) of 

the selected mineral soils. According to Loon and Duffy (2005) sand ranges from 0.02-2mm, 

silt ranges from 0.002-0.02mm, and clay ranges less than 0.002mm. Samples from both above 

and below marine limits was analysed for PSD, and the samples from above marine limit 

show sand domination. The soil texture is mainly a sandy loam. The soil texture in the region 

below marine limit, comprising 90% of the watershed is strongly influenced by the erosion of 

the seashore upon passing through the landscape. The ridges are washed clean of 

unconsolidated deposits leaving basically rock outcrops with patches of sand. On the slopes 

the wave actions left sandy beaches while in the flat valley bottom finer materials 

accumulated leaving deep deposits of marine clays. Lowest content of the fine particles are 

thus found in the A and E horizons on the ridge, with an increase in fine material (clay and 

silt) down the topographic gradient. In the soil on the ridges there is an increase in finer 

particles down through the profile. This is mainly due to the soil profile forming (pedological) 

processes transporting particles down through the soil profile. On the slope the top horizons 

are richer in finer material relative to the deeper soil horizons. This may be due to the higher 

content of organic matter enhancing the ability to hold finer material.  

  

Figure 27. % PSD with in Soil profile and topography (Ridge, Slope and V.bottom, respectively.) 
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4.3 Effective Cation exchange capacity (CECe) and Base saturation 

(BS)  

4.3.1 Content on the CECe and effect of organic matter and clay 

CECe is found in elevated amount in the organic soil horizons with increasing CECe with 

increasing organic matter content (Figure 28). The average CECe value in the organic soil 

horizons was 189meq/kg. The mineral soil horizons show CECe value about 60meq/kg. These 

CECe values are comparable to what was found in pristine forest soils in mid-Norway 

(Carpenter, 2008) and western Norway, in an acid rain influenced site in southern Norway 

(Vogt et al., 2003), and in strongly acid rain impacted catchments in Poland (Cooke et al., 

1993; Dunne et al., 2005; Patrick and Khalid, 1974). Relatively high CECe values in the 

mineral soil horizons are found in the soils rich in silt and clay materials (Figure 28). Samples 

in the red circle in Figure 28 are among the samples rich in fine particles from valley bottoms 

and shows high CECe values.  

 

Figure 28: Variation of mineral soil horizons and organic soil horizons with CEC and LOI. Blue diamonds 
denote mineral soil horizons and green squares denote organic soil horizons  
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Clay rich soils and soils with high organic content are commonly found to have high CECe. 

This is due to pH independent charge and large surface area of the clay and the low density 

and large number of weak organic acid functional groups of the organic matter. A sandy soil 

with low organic matter content will thus typically have a very low CEC. This is corroborated 

in the data from Morsa in which CECe is found to be negative correlated with the sand 

fraction (r = -0.439). CECe is positively correlated with organic matter content (LOI) (r= 

0.872). Assigning a value of 0 % clay content in organic soils (due to lack of PSD data on 

organic soils) the CECe in the soils from Morsa are found to be empirically linked to both the 

soil organic - and clay content, giving the following multiple linear regression: 

CECe = 8.6 + 2.89 % LOI + 2.28% Clay, with an r = 0,868 

CECe is thus found to decrease down through the soil profile (Figure 29) mainly due to 

decrease in organic content (Figure 23). However, CECe increases again in the deep mineral 

soils down the slope and valley bottom due to increase in clay content (Figures 27 and 29 

respectively). In Figure 29 the eluvial E horizon in the soil plot shows lowest CECe value. 

This is because of the eluviation causing low content of organic matter and clay in this 

horizon. 

 

Figure 29: CEC of soils with genetic soil horizons  
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No clear trend in CECe was found down through the topographic gradient, except a possibly 

greater variation in the CECe in the valley bottom soils (Figure 30). This greater variation is 

most likely due to the somewhat larger variation in soil organic content in the horizons in the 

valley floor as seen in Figure 24. 

 

Figure 30: CECe of soils with topography  

 

4.3.2 Variation of Base saturation (BS) with clay and silt 

Figures 31 and 32 show that the trends in %BS down into soil profiles and along a 

topographic gradient, respectively. The %BS shows large spatial variation, though average 

values are found to be high in the forest floor O horizon (57%) and peat H horizon (54%), 

decrease down into the mineral soil profile to a minimum in the E horizon (20%), and then 

increase slightly to the B horizon (24%) and C horizon (51%). Comparing the same generic 

soil horizons the %BS is generally found to increases down along the topographic gradient, 

with the highest values in the clay rich soil layers (91%) under the peat bogs in the valley 

bottom.  %BS is thus positively correlated to the fraction of fine particles clay and silt with 

correlation coefficient of (r=0.616 and 0.561 respectively). The decrease in %BS down to the 
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complexing and leaching base cations from the top soil horizons down into the B horizon. The 

illuviation in the B horizons gives rise to the slight increase in %BS into the B horizon. High 

%BS in the deeper clay rich C horizons is due to that these soil layers are marine 

unconsolidated deposits inherently rich in base cations. Furthermore, there has been very little 

leaching of base cations from these soils due to very poor water permeability through compact 

clay layers.  

%BS in valley bottoms and bogs shows a higher value than on the ridge and slopes. This 

higher average %BS in the valley floor is conceptually explained by water flow-paths through 

the watershed. The flow of water down through the soil profile in the recharge zone (ridge and 

slope) causes a net downwards leaching of base cations, leading to a flux of base cations 

passing through, and partially being sorbed, to the soils in the discharge zone. 

 

Figure 31: Base saturation (%) of soil in different soil genetic horizons  
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Figure 32: Base saturation (%) of soils in genetic soil horizons along a topographic gradient  

 

4.3.3 Implications regarding aluminium leaching  

According to Møberg and Petersen (1982) the soil ion-exchanger releases significant amounts 

of aluminium when the %BS drop below 20 – 30%. With the presence of a mobile anion, such 

as sulphate from acid rain, this aluminium may remain labile in solution and be leached out of 

the soil and into the stream and surface waters.  About a third of the soil samples had %BS 

less than 20% and half of the samples had values less than 30%. Furthermore, the measured 

%BS levels on the ridge and slopes in the forest soils of Morsa are comparable to sites with 

documented severe leaching of labile aluminium during the acid rain period (Cooke et al., 

1993). On the other hand, the relatively high %BS in the riparian zone in the valley floor 

implies that labile aluminium in soil water will be immobilized upon passing through this soil 

en-route to the stream. Nevertheless, during periods of high runoff, such as during spring 

snowmelt or rainfall episodes during the fall, the peat rich riparian zone becomes water 

saturated forcing runoff to discharge over its surface directly into the stream. It is therefore 

clear that these acid soils on the ridges and slopes leached water with high concentrations of 

labile aluminium during the acid rain period.  This led to that at least 42 fish stocks in Østfold 

were lost due to acid rain in the 1970ies and -80ties (DN, 2006). This spurred a massive 
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liming of 212 lakes in the Østfold County. Acid deposition in this region is since then reduced 

by up to 90% . This has led to a decline in the leaching of toxic aluminium so that liming is no 

longer required in 82 of these lakes (Møberg and Petersen, 1982). The remaining 

watercourses are typically draining forested headwater catchments. Weldehawaria (2013), 

studying the present soil water and stream water chemistry in the Dalen catchment, found on 

average  around 30µM labile aluminium (Ali) in the E horizons, decreasing down to between 

10 and 20µM in the B and C horizons on the slopes.  In the stream draining the Dalen 

catchment the Ali during episodes approaches 10 µM (90% percentile is 7.4 µM). The 

average sea-salt corrected sulphate is only 22µeq/L (90% percentile is 40µeq/L).  This is close 

to the average value reported for lakes in the southern part of East Norway (Østlandet – Sør) . 

In 1986 the average sea-salt corrected sulphate concentration in this region was almost 5 

times higher (98µeq/L). This has led to an overall 70% decline in labile aluminium from 

average values close to 5.6µM down to 1.8µM. The Birkenes catchment in southernmost 

Norway is comparable to the Dalen site in respect to topography, geology, soil and vegetation 

(see in Vogt et al. (2003) and Mohr (2010)). This site has received a heavier load of acid rain, 

decreasing form around 2 in 1980 to 0.5 g S m-1 in 2011 (Brady and Weil, 2004).  In 2011 the 

average labile Al concentration in the stream was 5.5µM.  Episodes studies in this site in 1989 

showed that the Ali concentration could surge from around 5µM during base flow to above 

20µM during the first episode after a prolonged dry period (Vogt et al., 2003). A major sea-

salt episode in 2011 only caused the Ali to increase to 10µM. A conservative assumption is 

therefore that the volume weighted average Ali concentration in the streams draining forested 

headwaters in the Morsa watershed during the acid rain period was around 15 µM. 

 

4.4 Soil phosphorus pools 

Total phosphorus, Inorganic phosphorus (Inorg-P), Organic phosphorus (Org-P) and P-

fractionations were determined on the soil samples according to the methods described in 

section 3.5.  The Organic phosphorus was obtained by difference of the Total-P and 

Inorganic-P as described in Section 3.5.2, using eq. 3.8.    

 



 

64 

 

4.4.1 Spatial variation in Inorganic and Organic phosphorus pools in soil 

profiles  

Very high average Tot-P levels (up to 1370 mg P kg-1) are found in the forest floor (Figure 

33). Except for the E horizon the amount of Tot-P lies around 500 mg P kg-1 in the mineral 

soil. High Inorg P levels are found in the C horizon and bogs. The eluvial E horizon shows the 

lowest concentration due to very poor sorption capacity. The ratio of Inorg P to Org P 

increases down through the soil profile, especially upon entering the B and C horizons (Figure 

34).  

 

 

Figure 33: Inorganic and organic phosphorus with topography and soil profile  
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Figure 34: Ratio of inorganic-P to organic-P with soil profiles and topography  

The average amount of Inorganic and Organic phosphorous (Inorg P and Org P) was around 

250 and 1000mg P kg-1 in the forest floor O horizons (Figure 35 and 36). The high levels of 

Org P is comparable to what was found in the top Ap horizon in a local agricultural field  

(Opland, 2011). These large pools of P in the forest floor horizons are due to a substantial 

internal P cycling. Both Inorg-P and Org-P in the eluvial E horizon is low. This is due to that 

the eluvial horizons have very poor sorption capacity in this bleached horizon due to little 
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fields, found the mineral apatite (Ca3(PO4)2) in this clay material. Due to poor water 
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percolation capacity this fossil P has remained in the material and is thus found as increased 

levels of Inorg P in these deposits. Inorganic phosphorus shows a positive correlation with 

clay and silt particles with coefficient value of (r = 0.498 and 0.503 respectively, Appendix 

B). Organic-P follows the amount of organic matter measured as LOI. Figures 33 and 36 

show a clear decreasing trend in Org-P down through the soil profile. Organic phosphorus 

shows positively correlation to organic matter content (LOI) and CEC with correlation 

coefficient of (r = 0.574 and 0.547 respectively, Appendix B). 

Large span in Inorg-P and especially Org-P were also found within the generic soil horizons 

(Figures 35 and 36).  

 

Figure 35: Variation of inorganic phosphorus with soil profiles  
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Figure 36: Variation of organic phosphorus with soil profiles  
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There is no clear trend in the size of the Inorg P pool along the topographic gradient from the 

ridge, through the slope down into the valley floor (Figure 37). The main difference is found 

in the A horizon, with an increase in the pool down slope. Highest average and median Inorg 

P levels were found in the marine clay deposits under the peats in the valley bottom.  
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Figure 37: Variation of inorganic phosphorus with topography  

 

No clear topographic gradient was found in the average and median values of the Org P pools 

(Figure 38), though there is a decrease down slope in the span of size of the pools in the O 

horizon, despite no such trend in the amount of organic matter in the horizon (Figure 24). This 

is therefore likely due to that the Org P pool in the surface horizon in the riverine region in the 

valley bottom is in equilibrium with the overland and sub-lateral flow of water from the slope. 
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Figure 38: Variation of organic phosphorus with topography  

 

4.4.3 Variation of Inorg-P and Org-P with soil texture (PSD) and OM (LOI) 

Clay and silt particles, due to large surface area, have a large ability to bind phosphate 

compounds. Furthermore, this marine clay material is found to contain significant amount of 

apatite minerals (Gebreslasse, 2012). Inorganic phosphorus is thus positively correlated to 

clay and silt particles (r = 0.498 and 0.503, respectively, Appendix B). A significantly higher 

amount of inorganic phosphorus was thus found in mineral soils than in the organic soils. In 

Section (4.4.2) the relation of the phosphorus pools with respect to the genetic soil horizons 

was explained.  The spatial variation in Org P is empirically found to be mainly governed by 

organic matter content (measured as LOI) and CEC. A positive correlation is found between 

the amount of Org P with LOI and CEC (r = 0.574 and 0.547, respectively. Appendix B). 

Figures 39 and 40 illustrate how the Inorg P and Org P correlate with particle size distribution 

and organic matter respectively. 
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Figure 39: Distribution of inorganic phosphorus with clay and silt particles (how inorganic phosphorus 
governed by particle size distribution. Samples in green are soils with low psd and high Inorg-P, in red are 
high in psd and low inorg-P. Both samples show distribution of inorg-P with texture.  

 

From Figure 39 it can be seen that a significant amount of Inorg P (100 to 700mg P kg-1) was 

found in the clay rich soils, while small amount of Inorg P was found in the soils that have 

low content of the fine particles. A high level of Inorg P is also found in soils with low clay 

content. Samples with high and low ratio of Inorg P / %Clay have high and low content of 

organic matter, although none of the measured parameters offers a clear explanation for this 

variation at low content of clay.  

Figure 40, shows that large pools of Org P (>500mg P kg-1) was found in the soils with a high 

organic matter content (%LOI) and small pools of org P (<500 mg P kg-1) was found in soils 

with less organic matter content. 
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larger than the Inorg P (Figure 33).   
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Figure 40: Organic-P distribution with mineral and organic soil horizons  

Figure 41 shows that the mineral soils with relatively high amount of Inorg P have a low 

acidity (measured as high pH (H2O) value. This is the opposite of what is to be expected due 

to the effect of the pH dependent charge, causing a more net negative charge at higher pH.  It 

therefore more likely reflects illuviated Al, Fe and organic matter in the less acid soil.  

 

Figure 41: Distribution of inorganic-P within inorganic and organic soil horizons with soil acidity  
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4.4.4 Org-P and Inorg-P in Dalen versus the rest sites 

comparison data for the levels of Org P and Inorg P in Dalen taken from (Mohr, 2010) with 

the rest of the Morsa catchments. The result shows that the Dalen site has much higher Org P 

and somewhat higher Inorg P levels in the soil than what is generally found in the forests of 

the Morsa watershed. The Dalen site is therefore somewhat special in terms of Org P content 

in the soils.  

 

Figure a. Inorg-P of forest soils in Dalen Vs forest soils of the Morsa watershed 

 

Figure b. Org-P of forest soils in Dalen Vs forest soils of the Morsa watershed 
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4.4.5 Inorganic phosphorus fractionation in soils.  

Figure 42 show the soil content of inorganic phosphorous in the ridge profile taken from 

Østmarka.  The sum of inorganic P fractions do not add up to the amount of total Inorg P 

determined for these soils, though reflect the relative amount of Inorg P between the horizons 

as discussed in Chapter 4.4.1.  A significant amount (14 mg kg-1) of easily soluble phosphorus 

(Sol P) was found in O horizon. This is likely due to the rapid circulation of PO4 in the forest. 

This is also seen as very high concentrations of free orthophosphate in through fall (between 

125 and 300 µg L-1) in Dalen (Weldehawaria, 2013). Aluminium (Al-P) and Iron (Fe-P) 

bound phosphorus constitute the main Al fraction in especially the O and B horizons, as well 

as the E horizon. The large Al-P and Fe-P in the O horizon is due to that Al3+ and Fe3+ forms 

binding bridges between the negatively charged functional groups on the organic material (R-

COO-, R-O- etc) and the negatively charged HPO4
2- (e.g.: R-COO- - Al3+ - HPO4

2-). The 

illuvial B horizon have accumulation of aluminium and iron that are leached from the A and E 

horizons. In addition to forming binding bridges as discussed above the Al and Fe may co-

sorb phosphate when the ions are sorbed to the soil particles in the B horizon. The large and 

dominating Al-P and Fe-P fraction in this horizon is thus to be expected. The absolute and 

relative amount of calcium bound P (Ca-P) increases down through the soil profile. This 

reflects the decrease in soil pH down through the soil profile as discussed in Chapter 4.1.1.  

The fraction of occluded P (Occl-P) is what is found within the crystal lattice of soil minerals. 

This faction constitutes the largest fraction of P in the eluvial E horizon since all other P 

fractions are eluted. There is also a significant amount found in the organic O horizon, though 

this is likely due to sand grains in the forest floor horizons.  

Figure 43 shows the soil content of inorganic phosphorous in the valley bottom profile from 

Hugness, Guthus and Østmarka, and the sum up of each horizon relatively reflects their total 

inorg-P. The composition of inorganic P fractions in the valley bottom horizons is 

substantially different from what was seen on the ridge as discussed above. The Al-P and Fe-

P fraction dominate in the H histosol horizon. This is for the same reason as argued for the 

organic O horizon on the ridge. In the B and C horizon under the peat the calcium bound P 

(Ca-P) is by far the dominant fraction. This is most likely due to the presence of Apatite in 

these marine clay deposits, as found by Gebreslasse (2012).  
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Figure 42: Inorganic-P fractionations Østmarka from ridge samples  
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Figure 43: Inorganic-P fractionations at Valley bottom from Hugness, Guthus and Østmarka  
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4.4.6 Factors governing the spatial distribution of P pools 

Principal component analysis and Hierarchy cluster analysis was performed on the 
explanatory parameters. 

4.4.6.1 Hierarchy cluster analysis 

Cluster analysis has the purpose of grouping objects that have similar character into respective 

categories. Results of a hierarchy cluster analysis of the data matrix of 8 explanatory and 2 

response parameters for analysed parameters 96 soil samples are shown in Figure 44.  

Parameters are clustered based on their similarities/dissimilarities, and the parameters in the 

same group reflects high similarities (correlations), while different groups show less 

correlation. Soil horizons are given an arbitrary rank number down through the soil profile 

(i.e. O=1, A=2, E=3, etc.). Topography reflects the samples position along the topographic 

gradient (i.e.: ridge (=1), slope (=2) or valley bottom (=3)). 

The Dendrogram shows that Inorg P and Org P belong to two different clusters.  Inorg-P is 

clustered with fine particles as silt and clay while Org-P is clustered with organic content and 

therefore acidity and CEC. 

 

Figure 44: Dendrogram for phosphorus pools with all explanatory variables  
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4.4.6.2 Principal component analysis 

Principal component analysis is a way of identifying patterns in data, and expressing the data 

in such a way as to highlight their similarities and differences. Figure 45 below show that 

Org-P and Inorg P have opposite loading along the 1st Principal component (PC1), explaining 

more than half of the variation in the data set. This component is many governed by the 

differences between soil generic horizons. The Org P is clustered with high content of organic 

matter (%LOI) governing high acidity (H+) and CEC, reflecting generic conditions of the top 

soils. The Inorg P is also governed by the 2nd PC which reflects the position along the 

topographic gradient and thus the soil base saturation (%BS).  In general this PCA indicates 

that the Org P mainly is governed by the content of organic matter in the soil, while the Inorg 

P is influenced by the topography, soil acidity and amount of silt and clay.  

Figure 46 shows the sample scores divided according to soil horizons. This figure illustrates 

clearly the role of organic vs. inorganic soil horizons in governing the PC1. Within the 

inorganic soil horizons the PC2, reflecting basically the soil acidity, is an important 

explanatory factor. 

 

 

Figure 45: Principal component analysis of the P-pools with the explanatory variables  
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Figure 46: Sample scores in the PCA divided into sub groups of soil horizons  
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5 Conclusions  
 

Large pools of organic bound phosphorous were found in the upper forest floor horizon, 

though the size of the pool decrease sharply down into the soil profiles (horizons B and C). 

This is partly due to the enhanced capacity of the O horizon to bind P, and to the large internal 

cycling of P in the forest ecosystem. These large P pools are also reflected by elevated 

concentrations of especially the organic bound P fraction in the O horizon soil water, as 

studied by Mohr (2010) in Dalen, one of the studied sub-catchments. During intensive rain 

fall, which enhances surface runoff and sub-lateral flow through the upper surface part of the 

soil, the soil water rich in phosphate fractions by-pass the absorptive capacity of the deeper 

mineral soil and flushes directly into the stream.  This leads to elevated concentrations of 

organic bound P fractions in the stream during periods of high runoff. The amount of 

precipitation and the frequency of heavy precipitation events in eastern Norway (Østlandet) 

have increased and been above the norm during the past 20 years. Increased runoff intensities 

will lead to more flushing of the high P pools in the forest floor into surface waters. The 

increased amount and intensities of precipitation may therefore have led to an increased 

background flux of P during the same time period as abatement actions towards 

eutrophication have been conducted.  Particle bound P constitute only a small proportion of 

the total P in the runoff from forested areas due to the thick organic soils held firmly in place 

by the roots of perennial plants limiting erosion. The inorganic phosphorus pool was found in 

an elevated amount in the deep soil horizons along with an increasing amount of fine soil 

particles. Large pools of inorganic P were especially found in the deep clay layers in the 

valley bottom. This P pool is likely fossil P from when the soils clay material was deposited 

in calm marine waters. It is therefore not conceived to be mobilized unless the soils are 

ditched or drained using tiles.   

The spatial variation in pools of organic- and inorganic phosphorus in the soil appears 

therefore to be mainly governed by the amount of organic matter and fine soil particles, 

respectively. This is supported by a Principal component analysis which shows that the 

organic phosphorus is clustered with organic matter content (%LOI), governing high acidity 

(H+) and CECe, reflecting generic conditions of the top soils. The inorganic phosphorus is 

found to be clustered together with the position along the topographic (increasing attributed 

value downslope), and the amount of silt and clay. Increase in fine material downslope are co-
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varied with inorganic P, both due to that the inorganic P is transported down from the ridge, 

accumulating in the lower grounds, and due to the enhanced capacity of finer material to hold 

inorganic P.  Therefore, in general the PCA indicates that the organic phosphorus is mainly 

governed by the content of organic matter in the soil, while the inorganic phosphorus is 

influenced by the topography and amount of silt and clay. 

This study shows that the forest mineral soils on the ridge and slopes in the region are 

generally acid with base saturation in the range (<30%) known to release inorganic labile 

aluminium in exchange for H+ or base cations. The soil pH is also acid (<5.5) allowing for 

significant amounts of labile aluminium to not precipitate as oxy-hydroxides. In the presence 

of a mobile inorganic counter anion this inorganic labile aluminium may be leached out and 

into the streams during runoff episodes where the seepage water flush over the water saturated 

and clay rich riparian zone in the valley bottom. During the acid rain period it is therefore 

likely that a significant flux of inorganic labile aluminium was leached out of these forest 

soils and drained down through the watercourse into agricultural land. Upon mixing with 

phosphorus rich seepage with higher pH, the labile inorganic aluminium precipitated as 

aluminium oxy-hydroxides and co-precipitated the phosphorus. The decline in acid rain over 

the past decades has resulted in reduced leaching of the inorganic labile aluminium and 

thereby a decrease in the precipitation of oxy aluminium hydroxide downstream. This has 

thereby led to a loss of an efficient removal mechanism of inorganic phosphorous in the 

stream. Instead the phosphorus is enabled to remain in solution and be flushed down into 

waterbodies where it fuels the eutrophication problem.  

Furthermore, there has been a doubling of the concentration of dissolved natural organic 

matter (DNOM) in this region of the country over the last 30 years. The cause for this 

increase is believed to be partly due to increased amount and intensity of precipitation, and 

partly due to the decrease in acid rain. The increase due to increased precipitation is explained 

through changes water flow-paths, with increased leaching directly from organic rich soil 

organic horizons into the stream.  The role of decreased acid rain is through both a decreased 

ionic strength of the water as well as lower concentrations of labile aluminium. Both these 

factors lead to an increased solubility of DNOM. The concentration of the organically bound 

phosphorous fraction is inherently and empirically linked to the amount of DNOM, causing a 

concurrent increase in the flux of organic bound P to the surface waters.    
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This study documents that the forest floor contains a large pool of organic P, which we know 

from previous studies are indicative of elevated concentrations of organically bound P in soil 

solution. Furthermore, the study shows that the soils are prone to have leached inorganic 

labile aluminium during the acid rain period. It is therefore conceived as likely that the 

increased precipitation amount and intensity along with the reduction in acid rain have 

directly and indirectly caused an increase in the mobility of phosphorous and thereby 

disguising the effect of coinciding abatement actions. 
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Appendix A: All results for the analysis 
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NB: data for sample 25 through 37 are taken from (Mohr, 2010). 
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Appendix B. Pearson correlation analysis data 
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Appendix C. Results of all parameters with topography and horizons 

Table C1: results for pH H20 

pH 
H2O  n Horizon Average Max Min Median 

Ridge 
 

12 O 3.95 4.39 3.67 3.95 
2 A 3.98 4.22 3.82 3.98 
4 E 4.16 4.35 4.09 4.11 
5 B 4.57 5.10 4.29 4.62 

      

Slope 
 

7 O 3.95 4.40 3.68 3.99 
3 A 4.12 5.06 3.85 4.12 
2 E 4.14 4.58 3.93 4.14 
9 B 4.57 5.60 4.28 4.61 
3 C 4.95 5.18 4.80 4.95 

Valley 
 

4 O 3.83 3.93 3.66 3.89 
7 A 4.45 5.19 4.01 4.50 
7 B 4.89 5.68 4.47 5.00 
4 C 5.22 6.18 4.86 5.33 

Bogs  
10 H 4.18 5.01 3.92 4.20 
4 C 5.57 6.79 5.01 6.35 

 
Table C2:  results for Organic matter content 

 LOI n Horizon Average Max Min Median 

Ridge 
 

12 O 60.9 82.7 15.5 66.0 
2 A 15.1 18.3 11.9 15.1 
4 E 4.9 7.33 2.92 4.29 
5 B 5.32 8.65 1.04 5.78 

      

Slope 
 

7 O 68.8 83.7 55.9 70.1 
4 A 11.9 15.6 9.64 11.1 
2 E 6.05 9.14 2.97 6.05 
9 B 7.47 13.70 2.18 7.75 
3 C 3.26 5.03 1.77 3.12 

Valley 
 

4 O 63.1 81.69 44.14 63.24 
7 A 8.7 18.21 2.83 8.22 
7 B 8.64 19.35 2.53 7.41 
4 C 3.08 4.99 1.61 2.85 

Bogs 
10 H 61.3 90.9 14.3 73.2 
4 C 3.94 6.04 2.48 3.61 
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Table C3: results for CEC 

 

 

 

 

 

 

 

 

 

 

 

 

Table C4: results for Base Saturation 

 BS n Horizon Average Max Min Median 

Ridge 
 

12 O 52.7 82.2 13.9 50.2 
2 A 14.1 19.7 8.4 14.1 
4 E 22.1 39.9 12.4 17.9 
5 B 20.5 36.1 5.37 23.2 

      

Slope 
 

7 O 61.2 91.1 14.5 70.8 
3 A 28.4 42.9 20.7 21.6 
2 E 14.6 18.4 10.8 14.6 
9 B 22.2 86.9 4.37 16.2 
3 C 25.8 28.3 21.2 27.8 

Valley 
 

4 O 61.3 89.6 32.7 61.2 
7 A 38.6 94.5 7.99 27.6 
7 B 28.4 65.1 11.5 24.7 
4 C 69.2 99.1 27.7 74.9 

Bogs 
10 H 53.8 90.5 10.1 62.5 
4 C 91.3 99 72.4 96.4 

 

CEC  n Horizon Average Max Min Median 

Ridge 
 

12 O 152 232 61.3 153 
2 A 51.1 54.2 47.9 51.1 
4 E 25.7 33.7 15.5 26.7 
5 B 26.2 51.6 9.13 22.7 

      

Slope 
 

7 O 232 298 114 233 
3 A 35.7 40.4 32.2 34.5 
2 E 28.5 30.9 26.1 28.5 
9 B 37 75.7 9.25 24.6 
3 C 9.13 10.3 6.93 10.1 

Valley 
 
 

4 O 212 265 136 223 
7 A 65.0 111 22.4 67.5 
7 B 39.6 70.7 12.4 44.4 
4 C 63.4 119 7.87 63.3 

Bogs 
10 H 208 407 64.9 191 
4 C 86.6 102 57.1 93.9 
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Table C5: results for inorganic phosphorus 

 Inorg-
P n Horizon Average Max Min Median 

Ridge 
 

12 O 279 563 140 260 
2 A 70.9 73.2 68.6 70.9 
4 E 35.9 45.8 16.4 41.7 
5 B 405 741 65.8 411 

      

Slope 
 

7 O 241 393 142 211 
3 A 97.6 289 1.87 49.8 
2 E 22.7 33.1 12.3 22.7 
9 B 241 450 88.6 219 
3 C 341 429 218 359 

Valley 
 

4 O 233 383 162 193 
7 A 283 534 33.2 263 
7 B 332 734 109 237 
4 C 424 703 177 408 

Bogs 
10 H 183 435 53.9 164 
4 C 518 695 156 611 

 

Table C6: results for organic phosphorus 

 Org-P n Horizon Average Max Min Median 

Ridge 
 

12 O 983 3574 214 821 
2 A 474 606 341 474 
4 E 135 268 38.9 127 
5 B 114 367 36.7 58.5 

      

Slope 
 

7 O 1131 2682 283 980 
3 A 302 498 88.1 312 
2 E 79.5 109 49.5 79.4 
9 B 165.4 423 18 135 
3 C 64.5 126 5.73 63.1 

Valley 
 

4 O 590 813 337 605 
7 A 247 534 38.5 220 
7 B 203 482 0.00 181 
4 C 53.6 154 14.5 22.9 

Bogs 
10 H 1174 2867 303 998 
4 C 45.5 88.3 19.9 36.8 
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Appendix D: water quality 

Table D1: water quality information 

 

Type of water Water purification 
system 

Resistivity  
(MΩ cm at 25 0C) 

TOC 
 (µg C/L) 

Product of  

Type I water Milli-Q water 18.2 ≤ 5 Millipore 

Type II water Elix UV deionized 
water 

5-10 < 30 Millipore 

 

Appendix E: ICP-OES analysis 

 

Varian Vista AX CCD simultaneous axial view ICP-OES product of Varian was used. The 

following default operating conditions of the spectrometer were used for the analysis of the 

selected elements. This was operated by Christian Wilhelm Mohr department of chemistry, UIO. 

All samples were acidified with 1% HNO3 

Table E1: ICP-OES instrumental conditions used for analysis 

 

Parameters  

RF power 130kW 

Plasma Argon flow rate 15 L/min 

Auxiliary Argon flow rate 1.5 L/min 

Nebulizer Argon flow 0.75 L/min 

Sample flow rate 1.5 mL/min 

Reading time 10s 

Rinse time 30s 

Sample update delay 60s 

Rump rate 20 
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Table E2: wave length selection and Limit of Detection 

Wavelength selection for the determination of the major cations (calcium, potassium, 

magnesium, sodium, aluminum, iron and manganese) using the ICP-OES. Wavelengths were 

selected based on the concentration of the analytes. 

Element Wavelength LOD (mg/L) 

Na 588.995 0.5 

K 769.897 0.05 

Ca 396.847 0.1 

Mg 280.270 0.04 

Fe 238.204 0.03 

Al 396.152 0.04 

Mn 257.610 0.03 

 

LOD of each element in table E2 is found by three times the standard deviation of concentrations 

of the method blank. LOD = 3*SD blank 

Where, SD is standard deviation of the sample blank, calculated as 

X = ∑Xi ∕n, where X is average blank concentration, and n is number of samples 

SD = √ [(X-Xi) ² ∕ (n-1)] 

Appendix F: SEAL Autoanalyzer for phosphate determination 

 

The SEAL Autoanalyzer 3 at the Department of Geosciences, UiO, was used to determine the 

Tot-P and Inorganic-P fractions from the soil extracts acquired from the Chang and Jackson 

(1957) and Mørberg and Petersen (1982) methods. The instrument was set with the parameters 

given in Table F1 
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Table F1: seal autoanalyzer 3 parameters 

Parameters Description 

Detection range 0.12 – 6000ug/l for phosphate in water solution 

Flow cell 10mm 

Wavelength 660nm 

Reagents Ammonium molybdate solution, sulphuric acid and 

sodium dodecyl sulfate solution, ascorbic acid solution 

Wash solution Same matrix as the extraction solution in table 3.3 

 

 

Table F2: Preparation of reagents used for the extraction method and standard 
phosphorus solution 

Reagents  

Amount  dissolved per liter type I 

water 

1M NH4Cl 53.3g 

0.5M NH4F 18.5g 

0.8M H3BO3 50g 

0.1M NaOH 4.1g 

0.25M H2SO4 15ml 

0.1M KCl, Ascorbic acid and EDTA 7.5g, 12.5g and 0.372g respectively 

saturated NaCl solution 400g 

phosphorus standard solutions 0.78, 

1.56, 3.125, 6.25, 12.5, 25 and 50ppm  0.2195g KH2PO4  
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Table F4: Inorganic phosphorus fractionation results (mg/Kg) 

Topography  Horizon Sol-P Al-P Fe-P Ca-P Occl-P 
Ridge O 14.0 82.4 72.1 2.0 17.1 

E 0.1 5.5 14.5 1.3 4.9 
B 0.0 98.8 86.6 19.0 7.8 
C 0.0 36.1 38.3 38.3 6.1 

Valley bottom H 1.6 79.6 101.4 19.2 3.0 
B 0.0 31.9 24.1 274.0 5.4 
C 0.0 8.7 22.1 386.0 3.0 

 

 

Figure F1: calibration curve for total and inorganic phosphorus analysis 
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Figure F2: Calibration curve for Inorganic-P fractionation 
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Figure F3: Møberg and Petersen Method- Sample digestion method for determination of 
Tot-P, Ing-P. 
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Appendix G: Maps of the quaternary deposits of the study area 

 

Figure G1: Maps for the quaternary deposits of study are for Boslangen and Augurød. 
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Figure G2: Maps for the quaternary deposits of study are for Guthus and Dalen. 
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Figure G3: Maps for the quaternary deposits of study area for Huggenes and Støa. 
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Figure G4: Maps for the quaternary deposits of study are for Gashus and Østmarka. 

In the given maps, the numbers and black dots in each site represents plot numbers where the soils are sampled. More information about the plot numbers are given in 
table 6 and see figure 12 for the legends description. The map used is a quaternary map, 1:50000 produced by Geology for Society (NGU) 
(http://www.ngu.no/no/hm/Kart-og-data/nedlasting/), modified by Alexander Engebretsen 

http://www.ngu.no/no/hm/Kart-og-data/nedlasting/
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Figure G5: Soil sampling maps for Hugeness, Støa, Gashus, Dalen and Augurød. 
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Figure G6: Soil sampling maps for Østmarka and Guthus. 

In the given maps, the numbers and black dots in each site represents plot numbers where the soils are sampled. More information about the plot 
numbers are given on table 6 and see Figure 12 for the legends description. The map used is a quaternary map, 1:50000 produced by Geology for 
Society (NGU) (http://www.ngu.no/no/hm/Kart-og-data/nedlasting/), modified by Alexander Engebretsen

http://www.ngu.no/no/hm/Kart-og-data/nedlasting/
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