
Sharing statistics for SPARQL Federation
optimization, with emphasis on benchmark

quality

Kjetil Kjernsmo1

Department of Informatics, Postboks 1080 Blindern, 0316 Oslo, Norway
kjekje@ifi.uio.no

Abstract. Federation of semantic data on SPARQL endpoints will al-
low data to remain distributed so that it can be controlled by local cura-
tors and swiftly updated. There are considerable performance problems,
which the present work proposes to address, mainly by computation and
exposure of statistical digests to assist selectivity estimation.

For an objective evaluation as well as comparison of engines, benchmarks
that exhaustively covers the parameter space is required. We propose an
investigation into this problem using statistical experimental planning.

1 Motivation

Query federation with SPARQL, which is a standardized query language for
the Semantic Web, has attracted much attention from industry and academia
alike, and four implementations of basic query federation were submitted to the
SPARQL 1.1 Working Group as input for the forthcoming work1. This feature
was supported by many group members, and the Last Call working draft of the
proposed standard was published on 17 November 2011.

While the basic feature set of the proposed standard can enable users to
create federated queries, it is not of great use as it requires extensive prior
knowledge of both the data to be queried and performance characteristics of
the involved query engines. Without this knowledge, the overall performance is
insufficient for most practical applications.

To aid optimization, SPARQL endpoints should expose details about both
data and performance characteristics of the engine itself. The proposed work has
two focal points: Statistical digests of data for optimizations and benchmarking
SPARQL engines.

The focus on SPARQL benchmarking is not only motivated from the per-
spective of optimization, as I have found the current state of the art in SPARQL
benchmarking lacking in its use of statistics. The emphasis in the present paper is
on statistics in benchmarking with the purpose of providing a firmer foundation
on which assertions about engine performance can be backed with evidence.

1 http://www.w3.org/2009/sparql/wiki/Feature:BasicFederatedQuery



The prior art in database theory is extensive, but I intend to focus on aspects
that sets SPARQL apart from e.g. SQL, like the quad model, that it is a Web
technology, or that data are commonly very heterogenous.

I have not yet started to explore the scientific literature around SPARQL
Federation in any depth as I am still in an early phase of my work. I am currently
focusing my efforts on benchmarking. The long-term goal of my work is SPARQL
Federation, but that is a minor concern in this paper. Overall, the expected
contributions are:

– Benchmarks that are able to cover all realistic performance-influencing pa-
rameters for SPARQL engines and make it possible to weigh different pa-
rameters, as well as quantify unexplained differences.

– To assist optimization, enable endpoint service descriptions to expose:
• performance characteristics,
• statistical digests of data that are optimized with respect to size and

query performance.
– SPARQL engine developers can use the benchmark to reliably quantify un-

expected adverse effects from a given modification.
– New SPARQL engine users can identify key differences between different

engines, and therefore be able to more wisely choose engine to use.

2 State of the Art and Open Problems

2.1 In SPARQL Federation

I take the state of the art in technology to be represented by the current basic
SPARQL 1.1 Federated Query Working Draft2. In addition, many have imple-
mented federation that doesn’t require explicit references to service endpoints,
e.g. [8]. A recent scientific treatment of the current specification is in [1]. In that
paper, the authors also show an optimization strategy based on execution order
of so-called well-designed patterns.

A recent review of the state of the art is in [4]. In addition, [8] proposes
bound joins and proves they can dramatically reduce the number of requests to
federation members that are needed, as well as the implementation of FedX.

It has been my intention to focus on the two problems listed in section 3.3.1
in [4], i.e. strike a balance between accuracy and index size, and updating statis-
tics as data changes. Notably, histogram approaches generally suffer from the
problem that they grow too large or become an insufficiently accurate digest,
especially in the face of very heterogeneous data. [5] introduced QTrees, which
may alleviate the problem of histogram size, but which may not solve it.

Therefore, the core problem is: How do we compute and expose a digest that
is of optimal size for the query performance problem?

2 http://www.w3.org/TR/2011/WD-sparql11-federated-query-20111117/



2.2 In Benchmarking

Numerous benchmarks have been developed for SPARQL, but [2] showed that
currently most benchmarks poorly represent the typical data and queries that are
used on the Semantic Web. Most recently, [6] addressed some of these problems
by using real data and real queries from DBpedia. [7] has developed a benchmark
for the federated case.

Current common practice in benchmarking SPARQL-enabled systems is to
use or synthesize a certain dataset, then formulate a number of queries seen as
representative of SPARQL use in some way. These queries are then executed, and
some characteristic of performance is measured, for example the time it takes
for the engine to return the full result. Since there is a certain randomness in
query times, this process is repeated a number of times and an average response
time is found. Different engines can be compared based on these averages.

In many cases, this is sufficient. Sometimes, one engine can execute a query
in an order of magnitude faster than another. If this happens systematically for
many different queries, there is hardly reasonable doubt as to which is faster.
In most cases, the query response times differs little, however. Small differences
may seem unimportant but may become important if they are systematic. Even
if one engine is dramatically better than another in one case, small deficiencies
may add up to make the other a better choice for most applications anyway.

In this case, we must consider the possibility that the random noise can
influence the conclusions. Whatever metric is used, it should be treated as a
stochastic variable. This opens new methodological possibilities, first and fore-
most using well-established statistical hypothesis testing or ranking rather than
just comparing averages.

Furthermore, the current approach presents merely anecdotal evidence that
one engine is better than another with respect to performance. It may be that
while the benchmarking queries do seem to favor one engine, other queries that
have not been tried may reveal that there are strong adverse effects that may
not have been anticipated. A more systematic approach is needed to provide a
comprehensive and objective basis for comparing SPARQL engines.

In physical science and engineering, conventional wisdom has been that you
should only vary one variable at a time to study the effects of that one variable.
In medical science, this has been abandoned several decades ago, thanks to
advances in statistics. In for example a case where the researcher administrates
different treatments to terminally ill patients, some of which may be painful or
shorten their lives, experimental economy is extremely important.

Using techniques from statistical experimental design, I propose that it is
possible to design an experiment (i.e. a benchmark) which makes it possible to
cover all realistic cases and with which we can justify why the remaining corner
cases are unlikely to influence the result. For further elaboration, see Section 3.2.

So far, the benchmarking problem has been seen as a software testing prob-
lem, but as stated in the introduction this is not the only objective, we may now
see if benchmark data can be exposed to help federation query optimizers along
with a statistical digest.



The problems addressed by existing benchmarks such as the ones cited above
are almost orthogonal to the problems considered by my proposed project. While
I have seen some cases that compare performance based on box plots3, it seems
not to be common practice. Furthermore, I have not to date seen any work
towards using methods like factorial designs to evaluate the performance of soft-
ware, but there may be a limit in terms of complexity for where it is feasible,
and I will restrict myself to SPARQL for this thesis.

3 Proposed Approach and Methodology

3.1 In SPARQL Federation

There are many possible approaches for this part of the thesis. As I expect
substantial advances to be made before I start tackling this problem, I have not
chosen any methodology, but an interesting direction for work seems to be to
find more space-efficient ways to expose statistics in the service description and
standardize them.

To this end, I have briefly looked into two approaches: [3] used Bayesian
Networks and Probabilistic Relational Models to efficiently represent the joint
distribution of database tables, a formalism that could be extended to RDF
databases.

Another approach that I have not seen used in the literature is to use
parametrized statistics. This would amount to an attempt to fit data to a known
distribution function and expose which distribution and its parameters in the
service description.

Finally, I have seen little work on the problem of rapidly changing data, so
the adaption of existing techniques to such situations may also be interesting.

The evaluation methodology for the SPARQL federation work of the thesis
will largely be covered by running the elaborate benchmark designs of the thesis.

3.2 In Benchmarking

Already in 1926, Ronald Fischer noted that complex experiments can be much
more efficient than simple ones4, starting the experimental design field. One of
the simpler designs is “fractional factorial design”, in which several “factors” are
studied. In terms of SPARQL execution, the SPARQL engine is clearly a fac-
tor, but also, for example, the nestedness of OPTIONALs can be a factor, or the
number of triples in a basic graph pattern, etc. These numbers are varied to dif-
ferent “levels”. The key to understanding why this can be efficient is that these
variations need not occur in the same experiment. Therefore, for the SPARQL
language, many combinations of factors can be studied by carefully designing
queries to cover different factors, and a formalism called “resolution” has been

3 See http://shootout.alioth.debian.org/ for example
4 Cited in http://en.wikipedia.org/wiki/Factorial experiment



developed to classify how well this has been achieved, partly answering the ques-
tion of evaluation methodology for this part of the thesis. We should also validate
by comparing this benchmark with conclusions from existing benchmarks.

A systematic approach based on statistical experimental design means devel-
oping methods to add factors (not only language features will be factors), and
then use this methodology to add and then vary all the factors in an optimal
fashion. Developing a software suite to perform most of the experiments is a key
requirement as the number of experiments that results will be very large.

Factorial design inspires the present work and is covered in elementary text-
books in statistics but is inadequate for this purpose, so I intend to go further
into the statistical literature to see if there is a methodology that is better suited
to the problem. I also intend to use existing results on complexity bounds for
SPARQL query answering to find suitable factors to see if my admittedly bold
proposition that it is possible to design a benchmark to cover all realistic cases
can be shown to hold.

With this analysis, I speculate based on superficial experience with facto-
rial designs and analysis of variance that certain estimated coefficients can be
exposed in the service description to give federated query engines assistance in
optimizing for performance characteristics of certain SPARQL implementations.

This approach will yield the contributions listed above if completely success-
ful, but will also advance the state of the art if only partially successful.

References

1. C. Buil-Aranda, M. Arenas, and O. Corcho. Semantics and optimization of the
SPARQL 1.1 federation extension. In The Semanic Web: Research and Applications,
LNCS 6644:1-15, 2011.

2. S. Duan, A. Kementsietsidis, K. Srinivas, and O. Udrea. Apples and oranges: a
comparison of RDF benchmarks and real RDF datasets. In Proc. of the 2011 Int.
Conf. on Management of data, SIGMOD ’11, pages 145–156, 2011. ACM.

3. L. Getoor, B. Taskar, and D. Koller. Selectivity estimation using probabilistic mod-
els. In Proc. of the 2001 ACM SIGMOD Int. Conf. on Management of data, SIG-
MOD ’01, pages 461–472, 2001. ACM.

4. O. Görlitz and S. Staab. Federated data management and query optimization for
linked open data. In New Directions in Web Data Management 1, volume 331 of
Studies in Computational Intelligence, pages 109–137. Springer, 2011.

5. A. Harth, K. Hose, M. Karnstedt, A. Polleres, K.-U. Sattler, and J. Umbrich. Data
summaries for on-demand queries over linked data. In Proc. of the 19th Int. Conf.
on World wide web, WWW ’10, pages 411–420, 2010. ACM.

6. M. Morsey, J. Lehmann, S. Auer, and A.-C. N. Ngomo. DBpedia SPARQL Bench-
mark - Performance Assessment with Real Queries on Real Data. In 10th Interna-
tional Semantic Web Conference (ISWC2011), 2011.

7. M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte, and T. Tran. FedBench:
a benchmark suite for federated semantic data query processing. In Proc. of the
10th Int. Conf. on The semantic web - Volume Part I, LNCS 7031:585–600, 2011.

8. A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. FedX: Optimization
techniques for federated query processing on linked data. In The Semantic Web -
ISWC 2011, LNCS 7031:601-616.


