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Abstract

Modern digital colour cameras are faced with a number of challenges in
producing high-quality images, including noisy sensor measurements and
chromatic aberration due to dispersion in the optics. In addition, most
digital colour cameras use a single sensor combined with a set of colour
filters to capture red, green and blue wavelengths of light at different
spatial locations in a mosaic-like pattern. Hence, some form of inter-
polation, often called demosaicking, is required to produce a full colour
image. These image restoration tasks are formulated as ill-posed inverse
problems and solved through a regularisation inspired by the total vari-
ation (TV) denoising algorithm of Rudin, Osher and Fatemi. This leads
to convex variational problems and edge-preserving image restorations.
To solve these problems, an efficient primal-dual algorithm from convex
analysis is adopted. In addition to some standard image restoration prob-
lems, we apply these methods to chromatic aberration and demosaicking.
A TV-based demosaicking model is developed based on a decomposition
of the image into luminance and chrominance components which are then
regularised separately. The proposed method demonstrates improved re-
sults for demosaicking a set of standard test images.
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CHAPTER 1
Introduction

The use of computers for restoring degraded images was pioneered in the field of
astronomical imaging in the 1960s and 70s. The Nobel Prize-winning invention
of the charge-coupled device (CCD) in 1969 by Willard Boyle and George E.
Smith was soon adopted by astronomers, thereby producing vast amounts of
images. This data was obtained in an environment that is far from ideal due
to, for example, atmospheric disturbances and ever-present noise. To extract
meaningful information from these observations, the original, undegraded data
had to be recovered. Thus, the CCD technology became a driving force in the
development of digital image restoration techniques.

Recording an image relies on the imperfect measurements of some sensor
device, such as a CCD or complementary metal-oxide-semiconductor (CMOS)
image sensor. In addition to the noise inherent in the sensing process, there is
blur and distortion due to movement, aberrations due to atmospheric effects,
and loss of information during the transfer of data. Every imaging application
has to deal with various such effects that diminish the quality of the images
which it produces. Therefore, image restoration is regarded as a fundamental
operation in image processing and computer vision where it is responsible for
providing good-quality data, either for viewing or further processing.

1.1 Image restoration problems

In this thesis, we consider some image degradations that arise in most digital
cameras. These degradations include, of course, noise, but also blurring effects
due to the camera lens. Moreover, we address two additional problems that are
specific to digital colour cameras. The first is known as chromatic aberration
and occurs because of dispersion in the optics of an imaging device. That is,
the refractive index of the camera lens material varies with the wavelength of
light. This results in a relative shift of the different colours and the appearance
of incorrect, coloured fringes surrounding objects (see Figure 1.1).

The second problem arises when employing a colour filter array (CFA) and
a single image sensor to obtain three-channel colour images in a cost-effective
way. This arrangement assigns every pixel of the image to a single colour

1
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Figure 1.1: False colour fringes. The figure shows an example of how chromatic
aberration can lead to green–purple fringing in a colour image. Since different wave-
lengths of light travel along different paths in the optical system of an imaging device,
the colour channels are shifted relative to one another. This results in false colours
being recorded at the boundaries between bright and darker regions.

channel in a mosaic-like pattern. Therefore, a process known as demosaicking
(or CFA interpolation) is required to estimate the missing colour values at
every pixel. This process is illustrated in Figure 1.2. Demosaicking is a very
special kind of interpolation problem where particular care must be taken to
avoid artefacts in the final image. Although it is an intentional result of the
camera design, we will see that it is convenient to regard the effects of the CFA
as a kind of degradation of the original image. These image degradations are
discussed in further detail in Chapter 2.

For our purposes, image restoration can be considered in terms of the three
following problems:

• Noise removal (or denoising)

• Blur removal (or deblur)

• Inpainting

The problem of sensor noise obviously belongs to the first category, whereas blur
and chromatic aberration fall under the second. Indeed, we explain in Chap-
ter 2 that chromatic aberration can be considered as a kind of “blur” where the
colour channels of the image are blurred by varying amounts.

The third problem, inpainting, refers to restoring an image when some parts
of it are missing. This may be due to, for example, bits of the image being lost
during the transfer of data, or scratches in an old photographic film. Roughly
speaking, an image is defined on some domain Ω, and the image data happens
to be missing within some subdomain Γ ⊂ Ω, sometimes called the hole or
the inpainting domain, see Figure 1.3. The inpainting problem is to fill in the
missing image values corresponding to the inpainting domain Γ in such a way
that the restored image is meaningful and visually pleasing. We argue that
demosaicking can also be regarded as an inpainting problem where the values
of some colour channels are missing at every pixel.

The above three problems belong to the general class of inverse problems.
An inverse problem is defined (rather vaguely) as the inverse operation to
some forward problem. In the case of image restoration, the forward problem



Chapter 1. Introduction 3

Figure 1.2: Demosaicking. In a single-sensor digital colour camera a colour filter
array (CFA) assigns to every pixel only one colour channel. The colour channels
in the resulting mosaicked image are effectively subsampled versions of the colour
channels in the original image. Therefore, it is necessary to perform an interpolation
step, known as demosaicking, to estimate the missing pixel values in each colour
channel.

Ω

Γ

(a) Inpainting domain

(b) An inpainting problem

Figure 1.3: Inpainting. Figure (a) shows an abstract representation of the domain
Ω on which the image is defined and the inpainting domain Γ ⊂ Ω where there is
missing information. The process of inpainting refers to filling in the missing parts
of the image, i.e., those that lie within the inpainting domain Γ. Figure (b) is an
example of an image for which some information is missing. More precisely, about
60% of the lines in the image are missing. The inpainting domain then corresponds
to the missing lines, and an inpainting is required to fill in the missing data.
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is to describe the degraded image in terms of the original. Naturally, the
inverse is then to recover the original, knowing only the degraded image. The
theory surrounding inverse problems is extensive and has applications to, e.g.,
parameter estimation, geophysics, inverse scattering theory, and, of course,
image restoration, see, e.g., [46], [74].

There are a large number of methods for solving inverse problems, including
many that apply specifically to image restoration. We mention a few here:

• Filtering (see, e.g., [35])

• Stochastic modelling (e.g., [47])

• Wavelet-based methods and multi-resolution analysis (e.g., [27])

• PDE-based methods (e.g., [3])

• Variational methods and regularisation (e.g., [5])

These approaches are also related in various ways, see [19]. Here we choose
to focus on variational methods, and particularly those based on regularisa-
tion. This is mainly because variational methods provide a general and flexible
framework for dealing with the variety of image restoration problems that we
are interested in. We proceed to describe these methods in a general context.
Then we present the particular models that are to be the central objects of
study in this thesis.

1.2 Variational methods for image restoration

Our approach is to study denoising, deblurring and inpainting within a single
variational framework. Moreover, we aim to adapt this approach to deal with
chromatic aberration and demosaicking. Variational methods are well known
in the image processing literature and have been applied to diverse problems
such as segmentation, motion estimation, optical flow and multiple view recon-
struction, to name a few, see, e.g., [17]. These methods are based on minimising
some cost functional over a set of feasible solutions. A classical example from
image restoration is the Wiener filter (e.g., [35]) which is designed to give the
denoised or deblurred solution with the least mean square error compared to
the original image. Another example is the Mumford–Shah functional for image
segmentation [56].

Roughly speaking, the cost functional encodes information about which im-
ages are deemed to be a superior restoration compared to others. Although the
choice of cost functional can be quite flexible, we limit our discussion to a spe-
cific family of cost functionals that lead to so-called total variation-based meth-
ods. These methods began with the image denoising algorithm in [65], which
has become known as the Rudin–Osher–Fatemi (ROF) model, named after the
authors. The ROF model is based on minimising the total variation (TV),
which is another name for the L1-norm of the gradient. This approach has
been quite successful for some image denoising and deblurring problems (see,
e.g., [6]), mainly because the edges of the original image are restored sharply.
The main characteristic of the model is that it penalises small-scale variations
that are associated with noise while still retaining the edges of the image. This
is in contrast to a number of other variational methods that tend to blur the
edges of the image.
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Other variational methods, e.g., for inpainting [72], have also incorporated
TV for regularisation, and they have indeed proved to be successful for image
restoration problems, at least for the following two reasons. Firstly, they are
edge-preserving in the sense that the edges of the original image can often be
recovered sharply, even in the presence of noise and blur. Secondly, the asso-
ciated variational problems are convex, which implies that a globally optimal
solution can be computed with reasonable efficiency.

The remainder of this section is devoted to introducing the concept of reg-
ularisation, and to present the ROF model and some related total variation-
based methods. First, we acquaint ourselves with some notation. In the context
of variational image processing, it is useful to consider an image as a function
of continuous spatial variables, rather than a discrete set of pixel values. The
number of colour channels remains, however, fixed. In the following we will use
bold notation f to denote a function that takes values in Rn for n ≥ 2, and
the components of f are f(x) =

(
f1(x), . . . , fn(x)

)
.

Let Ω be an open and bounded subset of Rm. We will refer to Ω as the image
domain. An image is then represented by a function f : Ω → Rn. Usually,
we take m = 2 and let Ω be some rectangular domain, for example, the unit
square Ω = (0, 1)2. For a digital colour image, there are typically n = 3 colour
channels, each representing the intensity of red, green or blue wavelengths of
light. We note, however, that nothing in particular is gained from restricting
ourselves to a specific choice of m and n, and in some cases values other than
those we have mentioned become interesting.

Let X and Y be two vector spaces whose elements are functions from Ω to
Rn. Suppose that an image u ∈ X is subjected to the following transformation,
which we call the forward image model

f = Au+ η. (1.1)

Here η ∈ Y denotes the noise represented by some stochastic process, and
A : X → Y is a linear operator, for example, the blur or colour fringing
induced by chromatic aberration, or the sub-sampling by the CFA. Finally,
f ∈ Y denotes the image that is observed, and which represents a degraded
version of the original.

Generally, recovering the original image u is ill-posed in the sense that there
is no unique solution. This is due to the following facts. First, the operator
A might not be invertible (e.g., if it is a compact integral operator, which is
usually the case for deblurring problems, as we will see in Chapter 2.) Second,
we do not know much about the noise η, other than perhaps a few statistics
such as its mean and variance. Consequently, we cannot obtain u directly by
solving (1.1).

To obtain a well-posed problem, it is necessary to introduce additional
constraints that favour certain solutions over others. One way to accomplish
this is to consider the regularised problem

min
u∈X

ϕ(u) + ψ(Au− f), (1.2)

where ϕ : X → R and ψ : Y → R are positive convex functionals. (The
importance of convexity will be discussed further in Chapter 3.)

The term on the right in (1.2) is called the data fidelity term. This is because
it forces the solution u to remain close to the observed data. The choice of
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the functional ψ usually depends on the type of noise that is affecting the
observations in (1.1). The remaining term is called the regularisation term and
ϕ is called the regularisation functional. This part represents the additional
constraints on the solution, as mentioned above. Traditionally, ϕ is chosen so
that smooth or regular solutions are preferred, hence the term regularisation.
In a certain sense the regularisation term can be likened to specifying a prior
model for the solution because the functional ϕ usually restricts the solution
to lie in some particular subspace of X.

Let us consider a concrete example. Suppose that we are dealing with scalar
images so that in (1.1) the functions u and f and the noise η take values in R.
Let |·| denote the Euclidean norm in Rn. Recall that Lp(Ω) for 1 ≤ p < ∞ is
the space of p-integrable functions on Ω with respect to the Lebesgue measure
that are identified upon agreeing almost everywhere, i.e., except on sets of
measure zero. This is a complete vector space with respect to the norm

‖g‖Lp(Ω) :=
(∫

Ω

|g(x)|p dx
)1/p

.

Also, the space L∞(Ω) consists of essentially bounded functions, i.e., bounded
except on a set of measure zero. It is a complete normed vector space with the
essential sup-norm

‖g‖L∞(Ω) := ess sup g := inf {a ∈ R | µ({x | g(x) > a}) = 0} ,

where µ is the Lebesgue measure. Moreover, in the special case p = 2, we have
that L2(Ω) is a Hilbert space equipped with the inner product

(f, g)L2(Ω) :=
∫

Ω

f(x)g(x) dx.

Usually, we will drop the subscript and only write (·, ·) for the inner product
when no confusion can arise.

Now, take X = Y = L2(Ω) in the regularised problem (1.2). Usually, we
choose the data fidelity term to give a least-squares approximation. That is,
we choose ψ to be the mapping

ψ(u) =
λ

2
‖Au− f‖2L2(Ω) ,

where λ > 0 is a parameter. Suppose also that the regularisation functional is
ϕ(u) = ‖Tu‖2L2(Ω), where T is some linear operator on L2(Ω), e.g., the identity
operator or a differential operator. Then we obtain the classical method known
as Tikhonov regularisation [75],

min
u∈L2(Ω)

‖Tu‖2L2(Ω) +
λ

2
‖Au− f‖2L2(Ω) . (1.3)

Here the parameter λ balances the regularity of the solution against the fit to
the data. That is, for smaller values of λ the solution is more regular, whereas
larger values of λ force the solution to be closer to the observed data f . By
setting T = I, where I is the identity operator, one obtains the minimum
norm solution. Another choice is to use the Laplacian ∆u or the gradient ∇u,
thereby penalising variations in the solution u.
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In the discrete case, the method of Tikhonov regularisation reduces to solv-
ing a linear system of equations, and it is therefore relatively fast to compute
the solution. Unfortunately, this regularisation is inappropriate for some image
restoration problems because it imposes too much regularity. By overly smooth-
ing the solution, the edges of the image are lost and appear to be blurred.

To remedy this problem, Rudin, Osher and Fatemi [65] proposed instead
to use the regularisation functional ϕ(u) = ‖∇u‖L1(Ω), that is, the L

1-norm of
the gradient. This functional is also called the total variation. The proposed
regularisation leads to the Rudin–Osher–Fatemi (ROF) model

min
u∈L2(Ω)

‖∇u‖L1(Ω) +
λ

2
‖Au− f‖2L2(Ω) . (1.4)

Roughly speaking, the L1-norm does not so much penalise variations that are
associated with edges in the image. It can be shown, under some fairly weak
assumptions on the operator A, that the solution to the ROF model lies in
the space BV (Ω) of functions of bounded variation. This is a function space
in which certain types of discontinuities are allowed, and it is therefore well
suited for edge-preserving image restoration. We will consider bounded varia-
tion functions more closely in Chapter 3.

Another way to motivate the ROF model is the following. In the discrete
counterpart of the ROF model, images are represented by vectors in some
finite-dimensional vector space, rather than functions. Moreover, the total
variation is replaced by the vector `1-norm of the gradient (or, more precisely,
a finite difference approximation thereof). It turns out that the solution to this
discretised ROF model has a nearly sparse gradient [28]. That is, the gradient
of the restored image is a vector consisting mainly of zeros. This in turn means
that the image will tend to be made up of piecewise constant regions, and the
boundaries between these regions are marked by sharp edges.

One could attempt to find the sparsest possible solution by minimising the
vector `0-“norm”1, i.e., the number of non-zero elements of a vector. However,
this is a combinatorial optimisation problem and it is known to be NP-hard.
By instead using the `1-norm, we can find a nearly sparse solution, but the
minimisation problem becomes convex. Consequently, the solution may be
computed feasibly by using the methods of convex analysis. This principle has
also been applied to other problems in sparse recovery such as basis pursuit,
see, e.g., [22].

Since we are primarily concerned with restoration problems for colour im-
ages, we also consider the extension of the ROF model (1.4) to vector-valued
functions. Although it is possible to define this generalisation in more than
one way, see, e.g., [9, 33], we follow the work of Bresson and Chan in [11], and
consider a so-called vectorial ROF (VROF) model. This method will be applied
to restore images suffering from chromatic aberration.

In addition, Shen and Chan [72] used the ROF model as the basis for their
local non-texture inpainting method. Let Ω denote the image domain and let
f be an image defined on Ω. Suppose that there is an inpainting region Γ ⊂ Ω
wherein the data f

∣∣
Γ
, i.e., the restriction of f to Γ, has been lost. The TV

1The quotation marks are used because this is not actually a norm in the usual sense.
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inpainting model is then the minimisation problem

min
u∈L2(Ω)

‖∇u‖L1(Ω) +
λ

2
‖u− f‖2L2(Ω\Γ) . (1.5)

This is precisely the ROF model, except that the data fidelity term has been
modified to reflect that we have no data in the inpainting domain Γ.

Finally, we present a new TV-based model for demosaicking. This is based
on an idea of Alleysson et al. in [2], namely that the demosaicking of a colour
image can be greatly improved by decomposing the image into a luminance
component and a chrominance component. The luminance represents the spa-
tial information in the image, whereas the chrominance represents colour in-
formation. The latter tends to vary much less than the luminance, and this
heuristic is incorporated into our TV demosaicking model. This leads to im-
proved demosaicking results compared to other regularisations. We will return
to discuss these TV-based methods in further detail in Chapter 4.

In the meanwhile, we provide the following short summary. We are con-
cerned with image restoration problems that are relevant to single-sensor digital
colour cameras. In particular, this includes chromatic aberration and demo-
saicking. The focus is on a variational approach, more specifically the total
variation-based method of the ROF model and some variants of it. The ROF
model is already known to perform well for image denoising and deblurring,
and so it makes for a good starting point. Our goal is to demonstrate that a
TV-based approach can also be used to remove chromatic aberration, and to
solve the demosaicking problem.

1.3 The contributions of this thesis

Part of this thesis is dedicated to giving an introduction to total variation-
based image restoration methods. In order to achieve this, we have included
a review of several such existing methods in Chapter 4, including the ROF
model, the vectorial ROF model for colour image restoration, and the TV
inpainting model. This part does not represent any new work in itself, and
the applications to image denoising and deblurring in Chapter 6 are fairly well
known in the variational image processing literature.

On the other hand, we make an attempt at tying the above mentioned
image restoration problems to some quite concrete applications in digital colour
imaging. So, in Chapter 2, we expend some effort to explain where these colour
image restoration problems come from.

The main contribution is the TV-based demosaicking model that is pre-
sented in Section 4.4. This is related to the algorithm of Alleysson et al. [2]
which demonstrates that the demosaicking is greatly improved by treating the
image as a sum of luminance and chrominance components. We adapt this
approach to the framework of TV-based regularisation by applying the regu-
larisation to the luminance and chrominance components of the image.

To numerically compute the solution to the TV demosaicking model, we
apply a recent numerical algorithm that was introduced by Chambolle and Pock
in [17] for minimising the sum of two convex functionals. This applies directly
to the regularisation problem (1.2). The algorithm is based on the primal-dual
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formulation of the given variational problem. For the TV demosaicking model,
the corresponding primal-dual algorithm is given in Section 5.3.

The demosaicking problem has previously been approached from a regular-
isation point of view. For example, Menon and Calvagno [54] and Condat [24]
both propose a quadratic Tikhonov regularisation. The regularisation in [24] is
also performed in a luminance-chrominance basis. The use of TV-based regu-
larisation for demosaicking was also considered by Saito and Komatsu [68–70].
However, their method employs only a simple channel-by-channel TV regulari-
sation. Moreover, the numerical method considered is a simple gradient descent
that relies on a smooth approximation to the total variation and is known to
be very inefficient.

1.4 The organisation of this thesis

The rest of this thesis is organised as follows. In the next chapter we explain
the fundamentals of a digital CCD/CMOS colour imaging device and how the
images produced by such a device become degraded. Chapter 3 provides the
mathematical background necessary for understanding the variational meth-
ods studied in later chapters. This includes a brief introduction to convex
analysis and also some results regarding the total variation and functions of
bounded variation. In Chapter 4 we present a number of TV-based regular-
isation methods. This includes the ROF model for denoising and deblurring
grayscale images, which is then generalised to the vectorial ROF model for
colour images. In addition, we present a TV-based model for the demosaicking
problem. We provide a proof of the existence of a solution to this problem using
a standard argument from the calculus of variations. Numerical methods for
the TV-based regularisation methods are then discussed in Chapter 5, and a
primal-dual algorithm for the TV demosaicking model is derived. In Chapter 6
we apply these methods to a number of image degradation problems for both
grayscale and colour images, including noise removal, deblur, demosaicking and
removal of chromatic aberration effects. Finally, we end with some concluding
remarks in Chapter 7 and offer some ideas that can be pursued in future work.





CHAPTER 2
Image degradation in a

single-sensor digital colour
camera

To develop mathematically sound methods for image restoration, it is impor-
tant to understand how an image becomes degraded. Therefore, we begin by
giving a short explanation of the main components in a single-sensor CCD or
CMOS colour imaging device. Once we understand the basic operation of such
a system, we can, in the next section, identify the various sources of image
degradation and model their behaviour.

2.1 The digital CCD/CMOS imaging pipeline

The purpose of a digital imaging system is to obtain a digital representation
of the spatial distribution of radiance (Watt/solid angle/unit area) in a scene.
This is achieved by measuring the amount of light incident on an image sensor
and quantising the values to be represented by a given number of bits. Figure 2.1
gives a schematic representation of the imaging process including the main
stages that we will now describe. The following presentation is based on the
articles by Healey and Kondepudy [40] and Ramanath et al. [61]. Janesick [45]
provides a thorough survey of the CCD technology, whereas CMOS image
sensors are covered in Nakamura [58]. Concepts relating to colour imaging and
colour perception can be found in more detail in the books by Reinhard [62] and
Sharma [71]. Finally, an excellent survey on demosaicking is given by Gunturk
et al. in [38] or by Menon and Calvagno in [55].

A brief tour of the digital camera

The scene irradiance (Watt/unit area) is the light which is emitted or reflected
by objects in a scene, travels in the direction of the imaging device and is
accumulated on the 2-D image plane where the image sensor lies. Similarly, the

11
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Scene 
irradiance

Digital 
image

Lens & optics Colour filter
array

CCD/CMOS
image sensor

Analog-to-digital
conversionDemosaicking

Post-processing
(White balance,

colour- & gamma
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Figure 2.1: The digital imaging pipeline. The diagram is a simplified repre-
sentation of the main components and processing stages in a single-sensor digital
CCD/CMOS imaging device. The scene irradiance denotes the light which is focused
onto the image plane by the lens and optics. The colour filter array (CFA) ensures
that each photo-detector in the image sensor records wavelengths corresponding to a
single colour, e.g. red, green or blue, to which that pixel is assigned. The sensor itself
measures the number of incident photons on a 2-D array of photo-detectors, produc-
ing a signal that is quantised by the analog-to-digital converter. A process known as
demosaicking is then necessary to estimate missing colours at every pixel due to the
CFA. Further post-processing, (e.g. white balance, colour- and gamma correction), is
also necessary to produce a final digital image that is suitable for viewing.

term scene spectral irradiance (Watt/unit area/wavelength) is used to denote
the light incident on the image plane whenever we need to distinguish it by
wavelength. Once the light reaches the imaging device, it is first led through
the optical system. This includes a lens and focus control for focusing light
onto the image sensor, an optical low-pass filter to eliminate high frequency
spatial variations that can cause aliasing artefacts, and a spectrally selective
filter that reflects or absorbs unwanted wavelengths, such as infrared radiation.
The aperture is the adjustable hole through which the incoming light passes.
In a still camera, a mechanical shutter is used to control the amount of time
the sensor is exposed to incident light.

The image sensor uses a 2-D array of photo-detectors, known as photo-
sites or potential wells, to measure the scene irradiance. At each photo-site
in a CCD, photons strike the silicon wafer and produce an electron-hole pair.
The charge generated by this process is proportional to the number of incident
photons. The photo-detectors in a CMOS sensor consist of a photo-diode and
a readout circuit. The photo-diodes are known as active-pixel sensors (APS)
because the generated charge is amplified within the photo-detector. This is
not the case in a CCD where the pixels are said to be passive. The signal
produced at each photo-site is obtained by integrating over time the charge
generated by incident photons.

Consider the transformation of the scene spectral irradiance into the discrete
set of pixel values and colour channels that we will call the image spectral
irradiance. Let Ω ⊂ R2 denote the image plane and suppose it is partitioned
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uniformly into M -by-N sub-domains Ω =
⋃M,N
i,j Ωi,j , where each sub-domain

corresponds to the spatial extent of a single photo-detector or pixel. Let R(x, λ)
denote the scene spectral irradiance (Watts/unit area/wavelength) incident on
the image plane. Assume that these values are recorded for P colour channels
L = (L1, . . . , LP ), and each channel consists of M -by-N pixels, Lk ∈ RMN for
k = 1, . . . , P . Then the image spectral irradiance of the (i, j)-th pixel of the
k-th colour channel is given by

Lki,j = T

∫∫
Ωi,j×R

R(x, λ)Ski,j(x, λ) dx dλ. (2.1)

Here T is the integration time (in seconds) and Ski,j(x, λ) is the spatio-spectral
response (electrons/Joule) of the photo-site, i.e., the ratio of electrons col-
lected per incident light energy. Usually, this can be written as the product
Ski,j(x, λ) = Si,j(x)qk(λ) of a spatial response Si,j(x) and a spectral component
qk(λ), sometimes called the quantum efficiency or spectral sensitivity associ-
ated with the k-th colour channel.

After an exposure, the charge packets at each photo-site are read out and
quantised by an analog-to-digital converter (ADC). The CCD gets its name
from a process known as charge coupling that is used to repeatedly shift elec-
trons to adjacent photo-sites to be read out sequentially. The digital signal
produced by the ADC is a set of image intensity or brightness values that
represent the scene irradiance. There is a non-linear relationship between the
image brightness and the image irradiance which is described by the camera
response function (see [36], [37]). This is an important quantity for calibrating
imaging devices, particularly in applications where the irradiance values are
required to be in proper radiometric units.

In addition, the image brightness values are adjusted, so that when they
are rendered on a display, the reproduced colours better correspond with our
perception and how they were perceived when they were captured. This is a
post-processing stage that consists of several steps, including colour correction,
white balance, and gamma correction. For further details, see, e.g., [71].

Digital colour imaging

Initially, the photo-detectors in the image sensor have no way of distinguishing
between photons of different wavelengths. However, to obtain multi-channel
data, and colour images in particular, it is necessary to separately measure the
scene irradiance for a given number of wavelengths. For colour images it is
conventional to record three colour channels corresponding to red, green and
blue light. This is done to exploit or emulate the trichromacy of the human
visual system (see, e.g., [62]) where there are three types of colour-sensing cells,
known as short (S), medium (M) and long (L) cones, which primarily respond
to wavelengths of 420nm, 530nm and 560nm, respectively. All visible colours
are experienced through different combinations of stimuli of the three types of
cone cells.

One way of obtaining multi-channel images is to take multiple exposures
of the same scene, each with different spectral filters that allow only certain
wavelengths to pass. Unfortunately, this requires the scene to be static and
unchanged between exposures. This is rarely the case. A second alternative is
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(a) Bayer pattern (b) Lukac pattern (c) Hirakawa–Wolfe pattern

Figure 2.2: Colour filter array designs. A colour filter array consists of a spectral
filter for each photo-detector in the image sensor, thus assigning a single colour to
each pixel. Figure 2.2(a) shows the most commonly used configuration, known as
the Bayer CFA. Figure 2.2(b) shows a pattern proposed by Lukac and Plataniotis
in [51] together with a framework for CFA design. The configuration in Figure 2.2(c)
uses panchromatic elements, i.e., combinations of red, green and blue filters, and
was obtained by Hirakawa and Wolfe in [43] as an optimal pattern based on a set of
optimisation criteria. (Bayer pattern image courtesy of Colin M.L. Burnett under
the GNU Free Documentation License (GFDL)).

to use a single exposure, but multiple image sensors, one for each channel. For
digital colour cameras, this is known as “3CCD” or “three-chip” technology [59],
and it is realised by using a trichroic prism that splits the light into separate
red, green and blue beams, directing each to a separate sensor. However, image
sensors are very expensive components and this approach still requires a careful
calibration and registration to match the images captured by each sensor.

A third, more cost-effective solution can be achieved using only a single
sensor and a colour filter array (CFA), a mosaic-like pattern of spectral filters,
one for each photo-detector. See Figure 2.2. In this way, multiple colour
channels can be acquired by a single sensor during a single exposure. Although
the drawback is a reduced resolution for each colour channel, since each pixel
can only belong to one channel, this design is so much cheaper compared to
the three-sensor alternative that it is widely used in digital cameras.

The most commonly used mosaic pattern for a CFA is the Bayer pattern [8],
shown in Figure 2.2(a). It consists of odd rows alternating between green and
red pixels and even rows alternating between blue and green pixels. It is
usually argued [38] that the green component most closely corresponds to the
human perception of luminance, and it is therefore assigned twice the number of
pixels. This seems reasonable because the human visual system has less acuity
to chrominance variations (see, e.g., [2]), which are usually identified with the
red and blue components. Figure 2.2 also shows two of the many other CFA
configurations which have been proposed. See [43] and [51] for others.

As mentioned in Chapter 1, employing a CFA in a single-sensor camera
introduces an additional processing stage in the pipeline. Since each photo-
detector has sensed only one colour, a process known as demosaicking (or CFA
interpolation) is required to synthesise the sub-sampled data into a full-colour
image. For example, consider the Bayer pattern (Figure 2.2(a)). The following
steps are necessary to reconstruct a full-colour image. The green colour values
must be estimated at the red and blue pixels, the red colour values must be
estimated at the green and blue pixels, and, finally, the blue colour values
must be estimated at the green and red pixels. The resulting image is then
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represented by red, green and blue image brightness values at every pixel.
The literature on the demosaicking problem is comprehensive, and a great

number of methods, spanning the whole repertoire of image processing, have
been proposed to solve this problem. We will not provide a review here, but
instead we refer to the surveys by Gunturk et al. [38] and Menon and Cal-
vagno [55]. In Chapter 4, we will return to discuss demosaicking in the context
of total variation-based regularisation methods.

2.2 Modelling image degradation

In this section, we consider images captured by a single-sensor digital colour
camera and discuss some of the ways in which they become degraded during
this process. This includes sensor noise, blur and chromatic aberration due
to the optical lens system, and a loss of information as a result of employing
a colour filter array. These degradations give rise to the image restoration
problems which we will study later, and they can all be represented as part of
the forward image model.

Recall that the forward image model describes an observed image f in terms
of the undegraded original u through the relation

f = Au+ η, (2.2)

where A is a linear operator and η represents noise. In the following, we
describe in further detail the nature of the degradation operator and the noise.

Sensor noise

The presence of noise in the image sensor results in random perturbations of
the measured image irradiance values. To describe this randomness, we first
make a few definitions (see, e.g., [60]). In this section, we let Ω denote a sample
space consisting of all possible outcomes of a given random experiment. Let I
be a non-empty index set (e.g., I = [0, 1]), then a collection {Xi}i∈I of random
variables is called a stochastic process. If the underlying index set I is not
an interval, but instead a subset of Rm, m ≥ 2, then the above collection of
random variables is called a random field.

Now, let U ⊂ Rm denote the image domain and let f be a vector-valued
image with values in Rn. The noise, denoted by η, is a random field. Roughly
speaking, this can be regarded as assigning a random variable ηx to each point
x ∈ U in the image domain. We classify this stochastic process as follows.
First, it may be signal-independent, or additive, in which case its distribution
does not depend on the image. Otherwise, we say that it is signal-dependent.
Although this dependence can be of a quite general sort, we usually take this
to mean that the variance of the noise is proportional to the image f . Second,
if a stochastic process η follows a Gaussian distribution, it is said to be white
(in the strong sense) if each random variable ηx for x ∈ U is independently
and identically distributed with zero mean and equal variance.

The study of noise in image sensors has been covered by a number of works,
e.g., the books by Janesick [45] and Nakamura [58]. The following presentation
is chiefly based on the article by Liu et al. [48].
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(a) Original image (b) AWGN (c) Poisson noise

(d) Gaussian distribution (e) Poisson distribution

Figure 2.3: Noise models. Figures 2.3(b) and 2.3(c) show two different types of
noise that apply to digital CCD/CMOS cameras. These are additive white Gaussian
noise (AWGN) and signal-dependent Poisson-distributed noise, respectively. They
appear quite similar, except that the variance of the Poisson noise is proportional
to the image intensity. Below are a few realisations of the Gaussian and Poisson
distributions that govern these noise models.

For our purposes, the most important sources of noise are dark current
noise and shot noise. In addition, each photo-detector suffers from fixed-pattern
noise, and, during the analog-to-digital conversion, the image is subjected to
quantisation noise. The fixed-pattern noise is caused by individual differences
between photo-sites that are introduced during the manufacturing process. For
example, the photo-sites may differ in size or quantum efficiency, i.e., the ratio
of photons that are converted into electrons. Since these effects are mostly
deterministic, they can be measured and more or less eliminated. The quanti-
sation noise is associated with the process of analog-to-digital conversion. This
defines the minimum noise level that the imaging device can achieve, but it is
usually so small that it can be disregarded entirely.

Dark current is the generation of electrons from thermal energy in the sil-
icon wafer of the sensor. These electrons are not related to any incoming
photons, and are therefore called “dark” electrons. The number of “dark” elec-
trons collected at each photo-site is proportional to the integration time and
follows a Gaussian distribution. This effect is also highly dependent on tem-
perature. Even though it can be reduced by cooling the device, it accounts
for a significant portion of the noise in practical situations. The dark current
noise experienced by a photo-detector is regarded as independent of that of
other photo-detectors. Hence, the appropriate noise model is an additive white
Gaussian noise (AWGN), and it is illustrated in Figure 2.3(b).

Shot noise is the term for random fluctuations in the number of incoming
photons due to the particle nature of light. It follows a Poisson distribution
with a variance proportional to the image irradiance. Therefore, brighter areas
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of the image will contain larger perturbations from the true pixel values. This
is shown in Figure 2.3(c). Unlike dark current noise, shot noise is a funda-
mental limitation that cannot be eliminated by physical means. Although it
is mainly in low-light conditions that shot noise dominates (in terms of signal-
to-noise-ratio) over other noise sources, it also becomes a serious concern when
the size of the photo-sites shrinks to accomodate more elements and a higher
resolution [41].

In conclusion, the noise in a real CCD or CMOS image sensor can be mod-
elled by two components. The first is an additive white Gaussian noise, and
the second is a signal-dependent Poisson-distributed noise. These are usually
considered separately, but in some cases, e.g., [50], they are modelled simul-
taneously as a mixed Poisson–Gaussian process. Under some circumstances,
especially when the number of events is large (i.e., a large number of incoming
photons), the Poisson noise is considered to be sufficiently close to a Gaussian-
distributed noise, and the AWGN assumption is a good approximation. Yet
another possibility is to transform the image in a manner so that the trans-
formed noise becomes Gaussian-distributed, e.g., by using the Anscombe trans-
form [52]. This approach is quite common for denoising images with Poisson-
distributed noise. With this reasoning, we will henceforth consider mainly the
Gaussian-distributed noise component.

We note also that there is a practical aspect of employing real CCD and
CMOS noise models in that certain parameters, such as the mean and variance
of the noise, must be somehow estimated. We leave this as a purely practical
consideration and refer the reader to Liu et al. [48].

Blur and chromatic aberration

The optical system of an imaging device is designed to project a 3-D scene onto
a 2-D image domain. In practice, this projection also introduces distortions
and aberrations in the acquired image, and objects appear to be warped by
the shape of the lens.

It is well known in optics (see, e.g., [10]) that any finite aperture causes
diffraction. That is, the fact that the light passes through a small hole causes
the photons to interact and create interference patterns. If one should attempt
to capture an image of an ideal point-light source (a unit impulse), one would
instead observe that the light is spread out over a larger area of the image
plane. If the photo-detectors and aperture are small enough, this will appear
as a blur covering several pixels. In addition, the use of optical low-pass filters
and imperfections in the lens gives rise to further blurring effects. Finally,
if it is large enough, the relative motion of the camera and the object being
imaged will also induce a similar effect, known as motion blur. These effects
are illustrated in Figure 2.4.

The blurring of an image can be modelled in terms of an integral operator
acting on the scene irradiance values. Recall that Ω denotes the image domain.
For simplicity, consider a scalar image u : Ω→ R representing the scene irradi-
ance. Let f : Ω→ R denote the same irradiance values after they have passed
through the optical system and have been subjected to blur. Then u and f
are related by the operator equation f = Au, where A is the continuous linear



18 2.2. Modelling image degradation

(a) Original cameraman image (b) Gaussian blur (c) Motion blur

Figure 2.4: Blur in images. The original image is shown in 2.4(a). The image
in 2.4(b) has been subject to a Gaussian blur which can sometimes be used as a
simplified model for the blur caused by a camera lens. In 2.4(c), the blur is caused by
simulating the camera shaking during the exposure.

integral operator defined by

f(x) = (Au)(x) :=
∫

Ω

K(x, y)u(y) dy. (2.3)

The kernel K(x, y) is known as the point-spread function (PSF), and it can
be interpreted as follows. Suppose we position a point-light source such that,
ideally, it were only to excite the point y ∈ Ω. The function K(x, y) measures
the actual excitation under the given optical system at every point x ∈ Ω.

Notice that in the discrete case whenever u, f ∈ RN , then (2.3) reduces to
a matrix-vector multiplication f = Au, where A is an N -by-N matrix.

In the special case when the blur is spatially invariant, i.e., it is the same
over the entire image, then the PSF can be written as a function of a single
variable K(x, y) = K(x − y). Equation (2.3) then reduces to a convolution
f = K ∗ u. This case is particularly interesting because it is very efficient to
compute. Numerical algorithms often exploit the fact that in the discrete case
the operator A can be represented by a Toeplitz matrix which is diagonalised
by the Fourier transform.

For colour images the matter becomes slightly more complicated. Another
well known fact in optics (again, see [10]) is that the index of refraction of
the lens material varies with the wavelength of light. This mean that photons
of different wavelengths corresponding to different colours will travel along
different paths in the imaging device even though they originate from the same
point. This phenomenon is known as dispersion, and it is the source of two
kinds of chromatic aberrations in colour imaging devices. The first is known
as lateral chromatic aberration and manifests as a geometric shift between
the different colour channels, see Figure 2.5(a). The second is a longitudinal
(or axial) aberration and is the result of the different wavelengths focusing at
different points along the optical axis, see Figure 2.5(b). A typical artefact in
colour images that appears as a consequence of chromatic aberration is colour
fringing, and an example is shown in Figure 1.1 in Chapter 1.

Chromatic aberration can be modelled by a linear integral operator in the
same way as the blur we considered above. Consider the multi-channel images
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(a) Lateral aberration (b) Longitudinal aberration

Figure 2.5: Chromatic aberration. The index of refraction in the lens material
varies with wavelength, thereby causing light of different colours to (i) appear shifted
relative to one another, as shown in 2.5(a), and (ii) focus at different distances along
the optical axis, as shown in 2.5(b).

u and f taking values in Rn. Once more, u represents the scene irradiance,
whereas f represents the irradiance after it has passed through the optics.
Then they are related by the equation f = Au, and the integral operator A is
defined by

f(x) = (Au)(x) :=
∫

Ω

K(x, y)u(y) dy. (2.4)

The difference from (2.3) is that now the kernel K(x, y) is an n-by-n matrix
for each x, y ∈ Ω. Furthermore, we interpret the integral of a vector-valued
function g(x) =

(
g1(x), . . . , gn(x)

)
to mean the vector of component-wise in-

tegrals, ∫
Ω

g(x) dx :=


∫

Ω
g1(x) dx

...∫
Ω
gn(x) dx

 .

The matrix K(x, y) = (Ki,j(x, y))ni,j=1 describes dependencies between the
different colour channels. More precisely, the (i, j)-th component represents a
cross-channel influence between the i-th and j-th colour channels. However,
when dealing with chromatic aberration, we normally consider K(x, y) to be a
diagonal matrix of n independent PSFs. Hence, there is no “leakage” between
colour channels.

In practice, we are required to estimate the PSF of a given imaging device,
should we want to compensate for the effects of blur and chromatic aberra-
tion. In certain cases, a parametric model can be used. For example, it is
quite comon to assume that the PSF is a Gaussian function. In contrast, Del-
bracio et al. [26] recently suggested a procedure for estimating the PSF of a
real-world camera with sub-pixel accuracy and without being constrained to a
parametric representation. Moreover, their procedure is formulated as a well-
posed minimisation problem. It is sometimes possible to perform an image
restoration without prior knowledge of the PSF. The idea is then to simul-
taneously estimate the PSF and the restored image as they are both subject
to uncertainty. This is referred to as a blind image restoration problem, see,
e.g., [79] for further details.
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Colour filter array

Next, we turn to modelling the effects of the colour filter array. Let u : Ω →
Rn denote the image irradiance. Then, at each point x ∈ Ω, consider the
multiplication of the image irradiance u(x) with a very simple n-by-n colour
filter matrix C(x) that discards the values of certain colour channels. The
resulting mosaicked image irradiance values are f = Au, where A is given by

f(x) = (Au)(x) := C(x)u(x). (2.5)

As an example, take the Bayer pattern shown in Figure 2.2(a). The follow-
ing description is easily adapted to other configurations. Let Ω =

⋃M,N
i,j Ωi,j

denote the image domain and its partitioning into M -by-N subdomains, each
corresponding to the area of a pixel. For an ideal Bayer CFA, the colour filter
matrix is diagonal, C(x) = diag (CR(x), CG(x), CB(x)), where

CR(x) =
{

1, x ∈ Ωi,j , i is odd and j is even,
0, otherwise.

CG(x) =
{

1, x ∈ Ωi,j , i and j are both odd or both even,
0, otherwise.

CB(x) =
{

1, x ∈ Ωi,j , i is even and j is odd,
0, otherwise.

(2.6)

Compare this with the Bayer pattern in Figure 2.2(a).
In practice, the spectral filters of the CFA can exhibit flaws that sometimes

transmit photons of unwanted wavelengths. Moreover, photons and electrons
can “leak” into neighbouring photo-detectors, an effect known as cross-talk [41].
This cannot be accounted for by the simple point-wise multiplication of irra-
diance values with a colour filter matrix. Instead, we write the mosaicking
operator A as an integral operator, exactly as in (2.4), the kernel of which
is denoted by C(x, y). As in the case with chromatic aberration, the kernel
C(x, y) must be somehow estimated or constructed based on knowledge of the
CFA, the responses of the individual spectral filters, and the cross-talk effects.

2.3 Summary

In this chapter we have described the basic operation of a single-sensor CCD or
CMOS digital colour camera, and we have considered how the images produced
by such a device become degraded during the process. The measurements
performed by the image sensor are perturbed mainly by dark current noise
and shot noise. The former is additive white Gaussian-distributed, whereas
the latter is Poisson-distributed with a variance proportional to the measured
irradiance values. Next, there are optical effects that cause the final image to
suffer from blur and chromatic aberration, both of which are modelled by a
linear integral operator whose kernel is the point-spread function of the optical
system. Finally, the effects of the CFA can also be described in terms of a
linear operator, which in the ideal case, i.e., when there is no cross-talk, takes
the very simple form of a pointwise multiplication by a colour filter matrix.

We proceed to discuss how these effects might be undone, or at least com-
pensated for by a post-processing of the digital image, and we begin, in the
next chapter, with some of the necessary mathematical background.



CHAPTER 3
Mathematical preliminaries

In this chapter we give a brief review of some mathematical concepts that are
central to understanding the variational image restoration methods in Chap-
ter 4. First, we briefly survey some relevant definitions and theorems from
convex analysis. This is the framework in which convex optimisation prob-
lems, such as the ROF model, are best understood. The central result here
is one which provides sufficient conditions for the existence of a minimiser of
a convex function. Second, we introduce the notion of total variation and
bounded variation functions. This is tied directly to the regularisation of our
inverse imaging problems. The total variation is precisely the regularisation
functional that is used in the ROF model, and bounded variation functions
serve to characterise the solutions to the regularised inverse problems. This
material will be used to prove the existence of a unique solution to the ROF
model and some related TV-based models in Chapter 4.

3.1 Basic convex analysis

Convexity is a very desirable property in variational problems. If a given
problem is known to be convex, then, generally, a globally optimal solution,
if it exists, can be computed, and it can be done within a reasonable amount
of time. Fortunately, the variational problems that we will consider, namely
the ROF model and related problems, are convex. More generally, the field
of convex analysis has applications to linear and nonlinear programming, as
well as stochastic programming, optimal control theory and partial differential
equations [64].

The following material is chiefly based on Rockafellar [63], [64]. It is as-
sumed that the reader has some familiarity with real and functional analysis
and also some basic definitions from topology. See, for instance, Rudin [66], [67]
for the former and Munkres [57] for the latter.

First, we introduce some notation. Throughout this chapter, let X denote
a vector space over R. Usually, this can be thought of as representing Rn, but
it will also be necessary to consider more general infinite-dimensional vector
spaces whose elements are functions. The usual Euclidean inner product of

21
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x, y ∈ Rn is denoted by x · y, and the corresponding norm x 7→
√
x · x is

denoted by |x|. Whenever a vector space X is provided with an inner product,
we denote this by the bilinear form (·, ·) : X×X → R. If X is a normed space,
its norm is written ‖·‖X , or sometimes just ‖·‖, if there can be no confusion.

Moreover, X is said to be a topological vector space whenever it is endowed
with a topology such that the operations of vector addition and scalar-vector
multiplication,

(x, y) 7→ x+ y, (λ, x) 7→ λx,

are continuous. A locally convex space is a vector space with a topology that
is generated by a fundamental system of convex neighbourhoods relative to
the origin, (see [67]). All the usual topological vector spaces encountered in
analysis are locally convex. In particular normed spaces are locally convex.

It is sometimes convenient to allow a function to take on the values ±∞.
Therefore, we define the set of extended real values by R̄ = R ∪ {+∞,−∞}.
Furthermore, we augment the usual arithmetic operations with the following
definitions:

α+∞ =∞+ α = +∞ for −∞ < α ≤ ∞,
α−∞ = −∞+ α = −∞ for −∞ ≤ α <∞,
α · (±∞) = (±∞) · α = ±∞ for 0 < α ≤ ∞,
α · (±∞) = (±∞) · α = ∓∞ for −∞ ≤ α < 0,
0 · (±∞) = (±∞) · 0 = 0.

Notice that the expressions∞−∞ and −∞+∞ remain undefined and should
therefore be avoided.

Convex sets

A convex set is one which contains every line segment connecting a pair of
points in the set.

Definition 3.1 (Convex set). A set C ⊂ X is said to be convex if

αx+ (1− α)y ∈ C (3.1)

for every x, y ∈ C and 0 ≤ α ≤ 1.

A typical example of convex sets are those associated with an affine hyper-
plane H, which, in Rn, is given by the set H = {x ∈ Rn | a · x = α} for some
α ∈ R and a non-zero normal vector a ∈ Rn. More generally, in a vector space
X, H is determined by a linear equation H = {x ∈ X | `(x) = α}, where α ∈ R
and ` : X → R is a non-zero linear functional on X. An affine hyperplane
separates the space X into two convex sets, known as the open half-spaces,
given by

{x ∈ X | `(x) < α} and {x ∈ X | `(x) > α} .

Similarly, the same affine hyperplane divides X into the closed half-spaces

{x ∈ X | `(x) ≤ α} and {x ∈ X | `(x) ≥ α} ,

which are also convex.
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Theorem 3.2. The intersection of an arbitrary collection of convex sets is
convex.

Proof. Let {Ci}i∈I be a collection of convex sets, 0 ≤ α ≤ 1 and x, y ∈ ∩i∈I Ci.
For every i ∈ I we have x, y ∈ Ci, and, from convexity, the point αx+ (1−α)y
lies in Ci. Therefore it also lies in the intersection ∩i∈I Ci.

The convex hull of an arbitrary set A ⊂ X, denoted by coA, is the smallest
convex set that contains A. Of course, since convex sets are closed under
intersection, coA is the intersection of all convex convex sets that contain A.

Convex functions

The central objects of study in convex analysis are convex functions.

Definition 3.3 (Convex function). Let C ⊂ X be a non-empty convex set. A
function f : C → R is said to be convex on C if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), (3.2)

for every x, y ∈ C and 0 < α < 1. Moreover, f is said to be strictly convex if
the above holds with a strict inequality whenever x 6= y.

A (strictly) concave function is one whose negative is (strictly) convex.
Ultimately, the goal is to solve a minimisation problem on the following

form: Given a convex set C ⊂ X and a convex objective function f : C → R̄,
find x ∈ C such that

f(x) = inf
y∈C

f(y), (3.3)

or, in other words, f(x) ≤ f(y), for all y ∈ C. Every x that satisfies this
criterion is termed a solution to the minimisation problem, and we write,

f(x) = min
y∈C

f(y) and x = arg min
y∈C

f(y).

It is often more convenient to consider an objective function defined on the
whole vector space X, rather than restricted to a subset C. This is done by
extending f : C → R with the value +∞ outside of the set C

f̄(x) =

{
f(x), if x ∈ C,
+∞, otherwise.

Notice that minimising f over C is equivalent to minimising f̄ over the whole
space X. Furthermore, f̄ is convex on X if and only if (i) C is a convex set, and
(ii) f is convex on C. From now on, without loss of generality, it is sufficient
to consider the case where C = X.

The effective domain of f : X → R̄ is the set

dom f = {x | f(x) < +∞} . (3.4)

Also, f is said to be proper if it is nowhere equal to −∞ and not identically
equal to +∞.
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There are, in fact, equivalent ways of defining the notion of a convex func-
tion. We mention here the relation between a convex function and its epigraph,
that is, the set of points lying “on or above the graph” of f

epi f = {(x, r) | x ∈ X and r ≥ f(x)} . (3.5)

This is described in the following proposition.

Proposition 3.4 (§4 in [63]). A function f : X → R̄ is convex if and only if
its epigraph epi f is a convex subset of X × R.

Proof. For x, y ∈ X, the points (x, f(x)) and (y, f(y)) lie in epi f . If 0 < α < 1,
then (αx+(1−α)y, αf(x)+(1−α)f(y)) is in epi f if and only if f is convex.

For differentiable and twice differentiable functions, convexity can be related
to the first and second derivatives. For simplicity, consider an exteded real-
valued function f defined on Rn. Recall that the gradient of f is the vector of
partial derivatives ∇f(x) = (fx1(x), . . . , fxn(x)), whereas the Hessian of f is
the matrix of second partial derivatives ∇2f(x) = (fxixj (x))ni,j=1.

Proposition 3.5 (§4 in [63]). Let f be a real-valued function on Rn.

(i) If f is differentiable, then f is convex if and only if for every x, y ∈ Rn,

f(y) ≥ f(x) +∇f(x) · (y − x). (3.6)

(ii) If f is twice differentiable, then f is convex if and only if the Hessian
∇2f(x) is positive semi-definite for every x ∈ Rn. That is, for every
x, y ∈ Rn,

y ·
(
∇2f(x) y

)
≥ 0. (3.7)

Proof. Suppose that f is differentiable and satisfies the first-order condition (3.6).
If we let z = αx+ (1− α)y, we have the following two inequalities

f(x) ≥ f(z) +∇f(z) · (x− z)
f(y) ≥ f(z) +∇f(z) · (y − z).

A combination of the two inequalities gives

αf(x) + (1− α)f(y) ≥ f(z) +∇f(z) · (α(x− z) + (1− α)(y − z)) = f(z).

Suppose f is convex and differentiable and 0 ≤ t ≤ 1, then

f(x+ t(y − x)) ≤ f(x) + t(f(y)− f(x)).

Dividing both sides by t and rearranging, we get

f(y) ≥ f(x) +
f(x+ t(y − x))− f(x)

t
.

Letting t → 0, the term on the right becomes a derivative with respect to
t at t = 0 of the function g(t) = f(x + t(y − x)) − f(x). The derivative is
g′(t) = ∇f(x + t(y − x)) · (y − x), and setting t = 0 gives the first-order
condition (3.6).

The second-order condition (3.7) now follows from Taylor’s theorem.
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This can be generalised further to hold in an infinite-dimensional vector
space endowed with an inner product. Then the gradient and Hessian corre-
spond to the first and second-order Fréchet derivatives, respectively.

The following proposition provides another useful way of identifying convex
functions. Recall that a function f : X → R̄ is said to be subadditive if for
every x, y ∈ X we have f(x+ y) ≤ f(x) + f(y). Also, f is said to be positively
one-homogeneous if f(αx) = αf(x) for α > 0 and x ∈ X.

Proposition 3.6. Let f : X → R̄ be subadditive and positively one-homogeneous,
then f is convex.

Proof. Let x, y ∈ X and 0 < α < 1, then

f(αx+ (1− α)y) ≤ f(αx) + f((1− α)y) = αf(x) + (1− α)f(y).

More convex functions can be constructed through certain operations on
functions which are already known to be convex. We mention a few examples
here, and note that more are considered, e.g., in [63].

Proposition 3.7 (§5 in [63]).

(i) If f1 and f2 are proper convex functions, then f1 + f2 is convex.

(ii) If f is convex and λ ≥ 0, then the function (λf)(x) = λ(f(x)) is convex.

(iii) Let f : X → R̄ be proper and convex, and suppose that ϕ is a convex
function on R which is non-decreasing. Then h(x) = ϕ(f(x)) is convex
on Rn.

(iv) Let {fi}i∈I be a non-empty family of convex functions. Then the pointwise
supremum

g(x) := sup
i∈I

fi(x)

is also convex.

Proof. These results all follow directly from the definition of convexity (3.2).
We will show (iii), and note that the other are derived similarly. Let x, y ∈ X,
and 0 < α < 1, then

h (αx+ (1− α)y) = ϕ (f (αx+ (1− α)y))
≤ ϕ (αf(x) + (1− α)f(y))
≤ αh(x) + (1− α)h(y).

The following are some important examples of convex functions.

Example 3.8 (Some convex functions).

(a) The Euclidean norm |·| : Rn → R, defined by x 7→
√
x · x, is convex.

This follows from Proposition 3.6, since |·| satisfies the triangle inequality
(subadditivity) and is positively one-homogeneous

|x+ y| ≤ |x|+ |y| , |λx| = λ |x| for x, y ∈ Rn, λ ≥ 0.

In fact, Proposition 3.6 shows that every norm and semi-norm is convex.
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(b) The function f(x) = xp defined on R is convex for x ≥ 0 and 1 ≤ p <∞,
or x > 0 and −∞ < p ≤ 0. It is concave whenever x ≥ 0 and 0 ≤ p ≤ 1.
This follows from Proposition 3.5 and considering the sign of the second
derivative f ′′(x) = p(p− 1)xp−2.

(c) The indicator function of a convex set C is defined by

δC(x) :=

{
0 if x ∈ C,
+∞ otherwise.

(3.8)

The epigraph of δC(·) is the set C × [0,+∞), which is convex. Hence,
Proposition 3.4 implies that δC(·) is convex.

The following example will be useful later in Chapter 4. More specifically,
it relates to the strict convexity of the data fidelity functional in our variational
image restoration problems.

Example 3.9 (Some strictly convex functions). Let X be a normed vector
space with norm ‖·‖.

(a) The square of the norm x 7→ ‖x‖2 is strictly convex. To see this, let
x, y ∈ X such that x 6= y and 0 < α < 1. Then

‖αx+ (1− α)y‖2 ≤ α2 ‖x‖2 + (1− α)2 ‖y‖2

< α ‖x‖2 + (1− α) ‖y‖2 .

(b) Let z ∈ X, then the mapping x 7→ ‖x− z‖2 is also strictly convex,

‖αx+ (1− α)y − z‖2 = ‖α(x− z) + (1− α)(y − z)‖2

< α ‖x− z‖2 + (1− α) ‖y − z‖2 .

(c) Lastly, let A : X → X be a linear map. Provided that A is injective, i.e.,
Ax 6= Ay for x 6= y, the function x 7→ ‖Ax‖2 is strictly convex,

‖A (αx+ (1− α)y)‖2 = ‖αAx+ (1− α)Ay‖2 < α ‖Ax‖2 + (1− α) ‖Ay‖2 .

Existence of minimisers

We now outline the general strategy for showing the existence of a minimiser
of a convex function. This relies on a standard argument from the calculus of
variations. In Chapter 4 this is applied to the ROF model and other TV-based
image restoration problems. More generally, necessary and sufficient conditions
for the existence of minimisers is also related to the subdifferential calculus for
convex functions, see [64].

One of the most important properties of convex functions, seen from the
point of view of optimisation, is the fact that a local minimiser is also a global
minimiser.

Theorem 3.10. Let f : X → R̄ be convex. Suppose that x ∈ X is a local
minimiser of f , i.e., for some ε > 0, we have f(x) ≤ f(y) for every y ∈ X
such that ‖y − x‖ ≤ ε. Then f(x) ≤ f(y) for every y ∈ X.
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Proof. Let y ∈ X and consider the convex combination z = tx + (1 − t)y for
0 < t < 1. Then, for sufficiently large t, we have ‖z − x‖ ≤ ε, and, consequently

f(x) ≤ f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

By rearranging, this shows that f(x) ≤ f(y).

We begin with some definitions that are required to state the sufficient
conditions for the existence of a minimiser of a convex function. The first is a
topological property of functions that can be considered entirely separate from
convexity. Let X denote a locally convex space.

Definition 3.11 (Lower semi-continuity). A function f : X → R̄ is said to be
lower semi-continuous on X if for every x ∈ X,

f(x) ≤ lim inf
k→∞

f(xk)

for every sequence {xk}∞k=1 such that xk → x as k →∞.

The following proposition relates the lower semi-continuity of a function to
its epigraph.

Proposition 3.12 (§7 in [63]). A function f : X → R̄ is lower semi-continuous
if and only if its epigraph is closed.

Proof. Suppose f is lower semi-continuous and let {(xk, tk)}∞k=1 ⊂ epi f be a
sequence converging to (x, t) as k → ∞. From the lower semi-continuity and
the definition of the epigraph, we have

f(x) ≤ lim inf
k→∞

f(xk) ≤ lim inf
k→∞

tk = t.

Since (x, t) ∈ epi f , the epigraph of f is closed.
Suppose epi f is closed and consider the sequence {(xk, f(xk))}∞k=1 ⊂ epi f .

Since epi f is closed, the sequence has a limit (x, t) in epi f . Then,

f(x) ≤ t = lim inf
k→∞

f(xk).

For every function f : X → R̄, there exists a greatest lower semi-continuous
function h ≤ f . The function h is called the lower semi-continuous hull of f ,
denoted lsc f . Furthermore, lsc f coincides with the function whose epigraph
is the closure in X × R of the epigraph of f .

The following, closely related definition is useful in order to avoid some
uninteresting and degenerate cases.

Definition 3.13 (Closure). Let f : X → R̄. The closure cl f of f is the lower
semi-continuous hull of f , unless f attains the value −∞ at some point, in
which case the closure is identically equal to −∞. Furthermore, f is said to be
closed if cl f = f .

Thus, a proper convex function is closed if and only if it is lower semi-
continuous. Further, every closed convex function f is the pointwise supremum
of the collection of all affine functions h such that h ≤ f (see Theorem 12.1
in [63]). Geometrically, this comes from the fact that epi f is the intersection
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of the closed half-spaces in X ×R that contain it. These closed half-spaces are
just the epigraphs of the affine functions h ≤ f , and their intersection is the
epigraph of the pointwise supremum of such functions h.

The next definition describes another sufficient condition that is necessary
for the existence of a minimiser. Let X,Y denote normed vector spaces.

Definition 3.14 (Coercivity). Suppose that f : X → R̄ and dom f ⊂ Y . We
say that f is coercive on Y if there exist constants C1 > 0 and C2 ≥ 0 such
that

f(x) ≥ C1 ‖x‖Y − C2, ∀x ∈ dom f. (3.9)

Finally, the following theorem states the sufficient conditions for the exis-
tence and the uniqueness of a minimiser.

Theorem 3.15 (Existence of minimiser). Suppose that f : X → R̄ is a proper
convex function and dom f ⊂ Y . Then f has a minimiser provided that the
following conditions hold

(i) f is lower semi-continuous,

(ii) f is coercive on Y ,

(iii) Bounded sets in Y are relatively sequentially compact in X.

The solution is unique if f is strictly convex.

Proof.

1. Define m := infx∈X f(x). Take a minimising sequence {xk}∞k=1 ⊂ Y such
that f(xk)→ m as k →∞.

2. Observe that {f(xk)} is a convergent sequence in R, hence it is bounded.
Together with the coercivity condition, this implies that {xk} is bounded
uniformly in Y .

3. From the relative sequential compactness of bounded sets in Y , there
exists x ∈ Y and a subsequence

{
xkj

}
⊂ {xk} such that xkj

→ x in X.

4. From the lower semi-continuity of f , we have that

f(x) ≤ lim inf
j→∞

f(xkj ) = m.

Moreover, since m ≤ f(x) by definition then f(x) = m. Thus, x is a
minimiser of f .

5. To show uniqueness, let x, y be two minimisers of f such that x 6= y.
From the strict convexity of f we have

f

(
x+ y

2

)
<

1
2
f(x) +

1
2
f(y) = m.

This contradicts the assumption that x and y are two different minimisers
of f .
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Usually, the above theorem is used in the context of a reflexive Banach space
X supplied with the weak topology. Then, from the Banach-Alaoglu theorem,
the closed unit ball in X is weakly sequentially compact. However, the par-
ticular function space that arises in connection with the total variation-based
methods in Chapter 4, is not reflexive. Although, as we will see in Section 3.2,
it does have a compactness property that allows the above theorem to be
utilised.

3.2 Functions of bounded variation

Now we turn to the second half of the mathematical background material that
is presented in this chapter. In this section, we introduce the total variation.
This is the regularisation functional that is used in the ROF model and other
image restoration problems in Chapter 4. Moreover, it is associated with a
certain Banach space of functions of bounded variation. This function space
has previously been studied in connection with minimal surfaces [32], and the
generalised solutions of other partial differential equations such as hyperbolic
conservation laws [44]. It is necessary for us to study this particular function
space in order to characterise the solutions to the ROF model.

Most of the results in this section may seem fairly technical, but the aim is
to establish the sufficient conditions required in Theorem 3.15 for minimisation
problems involving the total variation functional. For a more complete refer-
ence, see Evans and Gariepy [31], upon which most of this material is based.
Some of the standard facts from Sobolev space theory that are used in the
proofs can be found, e.g., in Evans [30].

Let Ω denote an open subset of Rn. Recall that the Euclidean norm in Rn
is denoted by |·|.

Definition 3.16 (Total variation for differentiable functions). Let f be a real-
valued continuously differentiable function on Ω. The total variation (TV) of
f is defined by

TV (f) :=
∫

Ω

|∇f(x)| dx. (3.10)

For a differentiable function f ∈ C1(Ω) the total variation is exactly the
norm of the gradient ∇f in L1(Ω; Rn). The above definition holds also for
functions in the Sobolev space W 1,1(Ω) if ∇f is interpreted in terms of the
weak partial derivatives of f . Even more generally, e.g., if f is only locally
integrable, then the gradient must be interpreted in the sense of distributions
(and it can be shown that the gradient of a function with finite TV is a vector-
valued Radon measure, see [31]).

It is possible to derive an equivalent definition of the total variation that
holds also for integrable functions without mentioning distributions.

Definition 3.17 (Total variation). For f ∈ L1(Ω) the total variation (TV) of
f is defined by

TV (f) := sup
ϕ∈V

−
∫

Ω

f divϕ, (3.11)

where V is the set

V :=
{
ϕ ∈ C1

c (Ω; Rn), |ϕ(x)| ≤ 1 for every x ∈ Ω
}
. (3.12)
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The following proposition shows that this is in fact a reasonable generali-
sation of the total variation.

Proposition 3.18. Let Ω ⊂ Rn be open and bounded and f ∈ C1(Ω), then∫
Ω

|∇f | = sup
ϕ∈V

−
∫

Ω

f divϕ.

Proof. First, observe that from integration by parts and the Cauchy-Schwarz
inequality we have

sup
ϕ∈V
−
∫

Ω

f(x) divϕ(x) dx = sup
ϕ∈V

∫
Ω

∇f(x) ·ϕ(x) dx

≤ sup
ϕ∈V

∫
Ω

|∇f(x)| |ϕ(x)| dx

=
∫

Ω

|∇f(x)| dx.

Second, we have that∫
Ω

|∇f | =
∫

Ω

∇f · ν, ν(x) :=

{
∇f(x)
|∇f(x)| , if ∇f(x) 6= 0,

0, otherwise.
.

The function ν(x) is the unit normal to the level lines of f whenever the
gradient of f is non-zero. Observe that ‖ν(x)‖L∞ ≤ 1. Moreover, because Ω is
bounded it follows from Hölder’s inequality that ν ∈ Lp(Ω; Rn) for 1 ≤ p ≤ ∞.
Finally, recall that the set C1

c (Ω; Rn) is dense in Lp(Ω; Rn), so that∫
Ω

|∇f | =
∫

Ω

∇f · ν ≤ sup
ϕ∈V

∫
Ω

∇f ·ϕ = sup
ϕ∈V
−
∫

Ω

f divϕ.

Later, we will be working with minimisation problems involving the total
variation. In that context, it is appropriate to regard TV (·) as an extended real-
valued functional on Lp(Ω) for some 1 ≤ p ≤ ∞. This makes sense whenever
Ω is bounded, because it follows from Hölder’s inequality that Lp(Ω) ⊂ L1(Ω)
for p > 1. With this in mind, we summarise some important properties of this
functional in the next result.

Theorem 3.19. Let Ω ⊂ Rn be open and bounded. Then TV (·) is a proper,
closed convex function on Lp(Ω) for 1 ≤ p ≤ ∞.

Proof. First, TV (·) is non-negative, so it is nowhere equal to −∞, and not
identically equal to +∞ (take, e.g., f = 0). Hence, it is proper.

Second, TV (·) is subadditive,

TV (f + g) = sup
ϕ
−
∫

Ω

(f + g) divϕ dx

≤ sup
ϕ
−
∫

Ω

f divϕ dx+ sup
ϕ
−
∫

Ω

g divϕ dx

= TV (f) + TV (g) .
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In addition, it is positively one-homogeneous, i.e., for α > 0,

TV (αf) = sup
ϕ
−
∫

Ω

αf divϕ dx = α sup
ϕ
−
∫

Ω

f divϕ dx = αTV (f) .

Then it follows from Proposition 3.6 that TV (·) is convex.
To see that TV (·) is lower semi-continuous, let {fk}∞k=1 be a sequence such

that fk → f in Lp(Ω). From Fatou’s lemma we have

TV (f) = sup
ϕ∈V
−
∫

Ω

f divϕ dx ≤ lim inf
k→∞

sup
ϕ∈V

−
∫

Ω

fk divϕ dx.

The effective domain of the TV functional is a subspace of L1(Ω). This
defines a Banach space whenever it is equipped with an appropriate norm.

Definition 3.20 (Bounded variation). We say that f ∈ L1(Ω) has bounded
variation provided that its total variation is finite. The space of functions of
bounded variation is

BV (Ω) :=
{
f ∈ L1(Ω) | TV (f) < +∞

}
.

This is a Banach space equipped with the norm

‖f‖BV (Ω) := ‖f‖L1(Ω) + TV (f) . (3.13)

It is easy to see that BV (Ω) is a vector subspace of L1(Ω) and that (3.13)
is in fact a norm. Completeness follows from the fact that L1(Ω) is complete
and the lower semi-continuity of TV (·). Notice also that for f ∈W 1,1(Ω), the
above norm is exactly the norm on W 1,1(Ω).

The remainder of this section is devoted to studying properties of the space
BV (Ω). In particular, we show a certain compactness property that is required
in Theorem 3.15. We also include a Poincaré inequality that is later used to
show a coercivity condition on functionals involving TV (·).

Approximation and compactness

Since bounded variation functions can be hard to study directly, most of their
properties are instead developed through approximations by smooth functions.
These approximations are possible due to the following result.

Theorem 3.21 (Approximation by smooth functions [31]). Let f ∈ BV (Ω).
There exist functions {fk}∞k=1 ⊂ BV (Ω) ∩ C∞(Ω) such that as k →∞

(i) fk → f in L1(Ω), and

(ii) TV (fk)→ TV (f).

Proof. See Section 5.2 in [31].

We now consider the relation between functions of bounded variation and
certain other Lp-spaces. These results are extensions of standard facts from
Sobolev space theory.

Recall that the Gagliardo–Nirenberg–Sobolev inequality (see [30]) states
that for 1 ≤ p < n the Sobolev space W 1,p(Rn) is continuously embedded in



32 3.2. Functions of bounded variation

Lp
∗
(Rn), where p∗ = np/(n − p) is the Sobolev conjugate of p. In the case

p = 1, this can be extended to show that BV (Rn) is continuously embedded in
Ln/(n−1)(Rn), see Section 5.6 in [31]. The case n = 1 is special in that every
function in W 1,1(I) for some interval I = (a, b) is absolutely continuous, and
therefore also in L∞(I).

We will show a similar result, but for bounded domains Ω ⊂ Rn. This
requires some additional conditions on the boundary ∂Ω. Roughly speaking,
we say that ∂Ω is C1 if it is locally the graph of a continuously differentiable
function, see [30].

Theorem 3.22 (Embedding [31]). Let Ω ⊂ Rn be open and bounded with
C1 boundary ∂Ω. The space BV (Ω) is continuously embedded in Lq(Ω) for
1 ≤ q ≤ n/(n− 1).

Proof. From Theorem 3.21, let {fk}∞k=1 ⊂ BV (Ω)∩C∞(Ω) be a sequence such
that fk → f in L1(Ω) and TV (fk) → TV (f). Observe that fk ∈ W 1,1(Ω).
As a consequence of the Gagliardo–Nirenberg–Sobolev inequality, there exists
C > 0 such that

‖fk‖L n
n−1 (Ω)

≤ C ‖fk‖W 1,1(Ω) = C ‖fk‖BV (Ω) .

Taking limits as k →∞ and using Fatou’s lemma on the left-hand side gives(∫
Ω

|f |
n

n−1

)n−1
n

≤ lim inf
k→∞

‖fk‖L n
n−1 (Ω)

≤ lim
k→∞

C ‖fk‖BV (Ω) = C ‖f‖BV (Ω) .

Whenever Ω is bounded, it follows from Hölder’s inequality that Ln/(n−1)(Ω)
is continuously embedded in Lq(Ω) for 1 ≤ q ≤ n/(n− 1). This completes the
proof.

The next result shows that, except for the case p = n/(n − 1), the above
embedding is, in fact, compact. This is based on the Rellich–Kondrachov
compactness theorem which states that the Sobolev spaceW 1,p(Ω) is compactly
embedded in Lq(Ω) for 1 ≤ q < p∗.

Theorem 3.23 (Compactness [31]). Let Ω ⊂ Rn be open and bounded with
C1 boundary ∂Ω. Then the embedding BV (Ω) ⊂ Lq(Ω) for 1 ≤ q < n/(n− 1)
is compact.

Proof. Let {fk}∞k=1 be a sequence uniformly bounded in BV (Ω). That is,

sup
k
‖fk‖BV (Ω) <∞.

Using Theorem 3.21, construct an approximating sequence {gk}∞k=1 ⊂ C∞(Ω)
such that

‖fk − gk‖L1(Ω) ≤ 1/k,

sup
k

TV (gk) <∞.
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Observe that the sequence {gk}∞k=1 is bounded in W 1,1(Ω),

‖gk‖W 1,1(Ω) = ‖gk‖BV (Ω) ≤ ‖fk‖BV (Ω) + ‖fk − gk‖BV (Ω)

≤ ‖fk‖BV (Ω) + ‖fk − gk‖L1(Ω) + TV (fk) + TV (gk)

<∞.

By the Rellich–Kondrachov compactness theorem, there exists f ∈ L1(Ω) and
a subsequence

{
gkj

}∞
j=1

such that gkj
→ f in L1(Ω) as j → ∞. Moreover,

from the lower semi-continuity of TV (·) it follows that f ∈ BV (Ω).
Now, considering an appropriate subsequence of {fk}∞k=1, we find that∥∥fkj

− f
∥∥
L1(Ω)

≤
∥∥fkj

− gkj

∥∥
L1(Ω)

+
∥∥gkj

− f
∥∥
L1(Ω)

→ 0

as j →∞. This shows that the embedding BV (Ω) ⊂ L1(Ω) is compact.
Finally, let 1 ≤ q < n/(n−1). From the embedding BV (Ω) ⊂ Ln/(n−1)(Ω),

we have∥∥fkj
− f

∥∥
L

n
n−1 (Ω)

≤
∥∥fkj

− f
∥∥
BV (Ω)

≤
∥∥fkj

∥∥
BV (Ω)

+ ‖f‖BV (Ω) <∞.

Recall the interpolation inequality∥∥fkj
− f

∥∥
Lq(Ω)

≤
∥∥fkj

− f
∥∥θ
L1(Ω)

∥∥fkj
− f

∥∥1−θ
L

n
n−1 (Ω)

,

where 0 < θ < 1 and 1/q = θ + (1 − θ)(n − 1)/n. Combining these two facts
proves the theorem.

The third result we include in this section is a Poincaré–Wirtinger inequality
for BV (Ω). Let f̄ denote the average value of f , i.e., f̄ := 1

|Ω|
∫

Ω
f(x) dx. The

proof follows precisely the same argument as in Theorem 3.22.

Theorem 3.24 (Poincaré–Wirtinger inequality [31]). Let Ω be a bounded, open
and connected subset of Rn with a C1 boundary ∂Ω. Suppose that f ∈ BV (Ω).
Then there is a constant C > 0 such that∥∥f − f̄∥∥

L
n

n−1 (Ω)
≤ C TV (f) .

Proof. Let f ∈ BV (Ω) and take a sequence {fk}∞k=1 ⊂ BV (Ω) ∩ C∞(Ω) such
that fk → f in L1(Ω) and TV (fk)→ TV (f) as k →∞. Clearly, fk ∈W 1,1(Ω)
and the Poincaré–Wirtinger inequality [30] states that∥∥fk − f̄k∥∥L n

n−1 (Ω)
≤ C ‖∇fk‖L1(Ω;Rn) = C TV (fk) ,

for some C > 0. Then, from Fatou’s lemma we have∥∥f − f̄∥∥
L

n
n−1 (Ω)

≤ lim inf
k→∞

∥∥fk − f̄k∥∥L n
n−1 (Ω)

≤ lim
k→∞

C TV (fk)

= C TV (f).

The compactness that was established in Theorem 3.23 does not hold for
the embedding BV (Ω) ⊂ Ln/(n−1)(Ω). However, using the Poincaré–Wirtinger
inequality, we can show that this embedding is compact in the weak topology.
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Theorem 3.25 (Weak compactness [1]). Let Ω be a bounded, open and con-
nected subset of Rn for n ≥ 2 with a C1 boundary ∂Ω. Then the embedding
BV (Ω) ⊂ Ln/(n−1)(Ω) is weakly compact.

Proof. Let {fk}∞k=1 be a bounded sequence in BV (Ω). From the Poincaré–
Wirtinger inequality, the sequence {fk} is also bounded in Ln/(n−1)(Ω), as
follows

‖fk‖L n
n−1 (Ω)

≤
∥∥fk − f̄k∥∥L n

n−1 (Ω)
+
∥∥χΩf̄k

∥∥
L

n
n−1 (Ω)

≤ |fk| |Ω|(n−1)/n + C TV (fk)

≤ ‖fk‖L1(Ω) |Ω|
(n−1)/n−1 + C ‖fk‖BV (Ω)

≤
(
|Ω|−1/n + C

)
‖fk‖BV (Ω) .

Since the space Ln/(n−1)(Ω) is reflexive whenever n ≥ 2, it follows from
the Banach–Alaoglu theorem that there is a subsequence

{
fkj

}∞
j=1

converg-
ing weakly to f ∈ Ln/(n−1)(Ω).

3.3 Summary

In this chapter we have introduced two of the main tools that will be used to
study the variational image restoration methods in Chapter 4. The first of these
is convex analysis, which, roughly speaking, is concerned with optimisation
problems where the objective function is convex. This is used in the next
chapter to answer questions regarding the existence and uniqueness of solutions
to the variational models for image restoration. The second important concept
that has been introduced is the total variation, a proper, closed and convex
functional that is central to the above mentioned variational methods.



CHAPTER 4
Total variation-based

methods

The restoration of degraded images is, generally, an ill-posed inverse problem.
The approach taken here is to instead consider the regularised problem, thereby
imposing additional constraints which, hopefully, turn the problem into a well-
posed one. In this chapter, we present the ROF model [65], a regularisation
based on the total variation (TV) from Section 3.2. This particular regulari-
sation favours piecewise constant solutions, and, therefore, it is often able to
recover the edges of the original image.

First, we present the ROF model for restoring a blurred and noisy grayscale
image. We provide a proof of the existence and uniqueness of the solution using
the material from Chapter 3, and we give some simple examples that illustrate
the properties of this model. Next, we consider the generalisation of this model
to the restoration of colour images. As a particular special case of this, we
regard a variational model by Shen and Chan [72] for image inpainting. Finally,
we present an original TV-based model for the demosaicking problem. This is
based on decomposing the image into luminance and chrominance components
and applying a TV regularisation to each of them.

4.1 The Rudin–Osher–Fatemi model

For convenience, we recall the forward image model (1.1) from Chapter 1. We
presently assume that we are working with scalar images defined on an open
and bounded set Ω ⊂ Rn with a C1 boundary ∂Ω.

Consider an image u ∈ Lp(Ω), for 1 ≤ p ≤ ∞, that is subject to the
following transformation

f = Au+ η. (4.1)

The observed image f ∈ L2(Ω) is the result of the original image u undergoing
a linear transformation A : Lp(Ω) → L2(Ω) and being corrupted by noise η.
The exact nature of the noise and the linear transformation A were discussed
for various cases in the context of digital colour cameras in Chapter 2. Here we

35
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assume that the noise is additive white Gaussian-distributed with zero mean
and known variance. For the pure image denoising problem, the operator A is
just the identity operator. Otherwise, it is usually an integral operator, e.g., a
convolution by some point-spread function.

The Rudin–Osher–Fatemi (ROF) model is to solve the minimisation prob-
lem

min
u∈Lp(Ω)

{
F (u) := TV (u) +

λ

2
‖Au− f‖2L2(Ω)

}
. (4.2)

The functional F : Lp(Ω)→ R̄ is called the ROF functional. The regularisation
term is exactly the total variation TV (·) defined in Section 3.2, and the effective
domain of F is BV (Ω). The data fidelity functional is a least-squares term
where the parameter λ > 0 balances the regularity of the solution against the
fit to the data. Usually, this parameter can be related to the variance of the
noise (see [16]).

Existence and uniqueness

In this section, we consider the existence and uniqueness of the solution to the
ROF model. These results were shown by Acar and Vogel in [1] and Chambolle
and Lions in [16]. Our approach closely follows [1], and uses the material
from Chapter 3.

First, we note some properties of the ROF functional.

Lemma 4.1. The ROF functional F , defined in (4.2), is

(i) proper, closed and convex, and

(ii) strictly convex if A is injective.

Proof. Clearly, F is proper because it is non-negative and not identically equal
to +∞ (take, e.g., u = 0). Moreover, TV and the square of the L2-norm
are both lower semi-continuous (a consequence of Theorem 3.19 and Fatou’s
lemma, respectively), and so F is lower semi-continuous. Similarly, TV and
the data fidelity term are both convex. In fact, the latter is strictly convex
provided that A is injective, see Example 3.9.

In view of Theorem 3.15, a coercivity condition is required on the ROF
functional F . Such a condition is provided by the following lemma. The proof
is due to Acar and Vogel [1].

Lemma 4.2 (Coercivity [1]). Let 1 ≤ p ≤ n/(n−1). Then the ROF functional
F : Lp(Ω) → R̄ is coercive on BV (Ω) provided that the operator A does not
annihilate constant functions, that is, AχΩ 6= 0.

Proof.

1. Every u ∈ BV (Ω) can be decomposed uniquely as a sum

u = v + w, where w =
(

1
|Ω|

∫
Ω

u dx

)
χΩ and

∫
Ω

v dx = 0.
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First, notice that TV (u) = TV (v). From this decomposition, we have

‖u‖BV (Ω) = ‖u‖L1(Ω) + TV (u)

= ‖v + w‖L1(Ω) + TV (v + w)

≤ ‖v‖L1(Ω) + ‖w‖L1(Ω) + TV (v).

From Hölder’s inequality and the Poincaré inequality (Theorem 3.24),
there is a constant C1 > 0 such that,

‖v‖Lp(Ω) ≤ |Ω|
1
p−

n−1
n ‖v‖

L
n

n−1 (Ω)
≤ C1 TV (v).

Hence, we have

‖u‖BV (Ω) ≤ ‖w‖L1(Ω) +
(
C1 |Ω|1−1/p + 1

)
TV (v). (?)

2. Consider the data fidelity term of the ROF functional. From the decom-
position u = v + w, we find that

‖Au− f‖2L2(Ω) = ‖Av − f +Aw‖2L2(Ω)

≥
(
‖Av − f‖L2(Ω) − ‖Aw‖L2(Ω)

)2

= ‖Av − f‖2L2(Ω) + ‖Aw‖L2(Ω)

(
‖Aw‖L2(Ω) − 2 ‖Av − f‖L2(Ω)

)
≥ ‖Aw‖L2(Ω)

(
‖Aw‖L2(Ω) − 2 ‖Av − f‖L2(Ω)

)
. (??)

Recall that the operator A is continuous, and thus the operator norm

‖A‖ = sup
‖u‖Lp(Ω)≤1

‖Au‖L2(Ω)

is bounded. Therefore,

‖Av − f‖L2(Ω) ≤ ‖Av‖L2(Ω) + ‖f‖L2(Ω)

≤ ‖A‖ ‖v‖Lp(Ω) + ‖f‖L2(Ω)

≤ ‖A‖ C1 TV (v) + ‖f‖L2(Ω) .

Also, since w is a constant function and Aw 6= 0, there exists a constant
C2 > 0 such that

‖Aw‖L2(Ω) = C2 ‖w‖L1(Ω) .

Combining these facts and inserting into (??), we see that

‖Au− f‖2L2(Ω) ≥ ‖Aw‖L2(Ω)

(
‖Aw‖L2(Ω) − 2 ‖Av − f‖L2(Ω)

)
≥ C2 ‖w‖L1(Ω)

(
C2 ‖w‖L1(Ω) − 2 ‖A‖ C1 TV (v)− 2 ‖f‖L2(Ω)

)
.

3. Thus, we have the following bound on the ROF functional

F (u) = TV (u) +
λ

2
‖Au− f‖2L2(Ω)

≥ TV (v) +
λ

2
C2 ‖w‖L1(Ω)

(
C2 ‖w‖L1(Ω) − 2 ‖A‖ C1 TV (v)− 2 ‖f‖L2(Ω)

)
.
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Suppose that
(
C2 ‖w‖L1(Ω) − 2 ‖A‖ C1 TV (v)− 2 ‖f‖L2(Ω)

)
≥ 1, then

F (u) ≥ λ

2
C2 ‖w‖L1(Ω) .

Finally, from (?), it follows that

‖u‖BV (Ω) ≤ ‖w‖L1(Ω) + (C1 |Ω|1−1/p + 1)TV (v)

≤
(

2
λC2

+ C1 |Ω|1−1/p + 1
)
F (u).

Otherwise, we have that

‖w‖L1(Ω) <
1 + 2 ‖A‖ C1 TV (v) + 2 ‖f‖L2(Ω)

C2
,

and thereby that

‖u‖BV (Ω) −
1 + 2 ‖f‖L2(Ω)

C2
≤
(

2 ‖A‖ C1

C2
+ C1 |Ω|1−1/p + 1

)
F (u).

Hence, ‖u‖BV (Ω) → ∞ implies that F (u) → ∞, which shows that F is
coercive.

Finally, we invoke Theorem 3.15 to prove the existence and uniqueness of
the solution to the ROF model.

Theorem 4.3 (Existence-uniqueness). Let Ω ⊂ Rn be an open and bounded
domain with a C1 boundary ∂Ω. Suppose that 1 ≤ p ≤ n/(n− 1). Then there
exists a solution to the ROF model (4.2), provided that the operator A does not
annihilate constant functions. Moreover, the solution is unique if A is injective.

Proof. First, from Lemma 4.1, the ROF functional F is a proper, closed convex
function on Lp(Ω), strictly convex if A is injective. Second, domF = BV (Ω),
and F is coercive on BV (Ω) by Lemma 4.2. From Theorem 3.23, bounded sets
in BV (Ω) are relatively compact in Lp(Ω) whenever 1 ≤ p < n/(n− 1).

For the case p = n/(n−1), Theorem 3.25 states that bounded sets in BV (Ω)
are compact in Ln/(n−1)(Ω) with respect to the weak topology on Ln/(n−1)(Ω).
From Mazur’s lemma [30], a closed convex subset of a Banach spaceX is weakly
closed, i.e., closed with respect to the weak topology onX. Since epi F is closed
and convex, it is also weakly closed. In other words, F is lower semi-continuous
with respect to the weak topology on Ln/(n−1)(Ω).

The result now follows from Theorem 3.15.

Properties of the solution

The ROF model is particularly effective for restoring “blocky” or piecewise
constant images. Although explicit solutions are, in general, not available,
Strong and Chan [73] have given the exact solution in a few simple cases,
i.e., for radially symmetric, piecewise constant functions. Their result shows
that the ROF model tends to preserve the locations of edges and that it can
have quite local effects, despite the fact that (4.2) is a global problem.
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(a) Original and noisy signal
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(b) TV restoration for different λ

Figure 4.1: TV regularisation. The figure displays the restoration of a noisy signal
with the ROF model (4.2), and the effect of various choices for the regularisation
parameter λ. Figure (a) shows a piecewise constant signal and some measurements
corrupted by Gaussian noise. Figure (b) shows the reconstruction of the noisy signal
with λ = 1 (solid line), λ = 5 (dashed line) and λ = 10 (dotted line). Smaller values
of λ smooth out oscillations and merge small-scale features.

Essentially, the regularisation works by reducing the contrast between in-
dividual features in an image. The change in intensity of a piecewise constant
region is inversely proportional to the regularisation parameter λ and the scale
of the feature. Noise, which may be regarded as very small-scale features, is
therefore effectively removed while larger features are preserved.

Example 4.4 (The regularisation parameter λ). Consider the function on the
unit interval defined by

u = χ[1/6,1/4] +
3
2
χ[1/3,5/8],

where χI is the indicator function of the set I ⊂ R, i.e., χI(x) = 1 if x ∈ I and
χI(x) = 0 otherwise.

We sample the function at N = 257 uniformly spaced points and add some
Gaussian noise. Denote the original signal by u ∈ RN and the noisy signal
by f ∈ RN . These are shown in Figure 4.1(a). The amount of noise added
corresponds to a signal-to-noise ratio (SNR) of 10. The SNR is given by

SNR :=

√∑N
j=1(uj − ū)2√∑N
j=1(fj − uj)2

, ū =
1
N

N∑
j=1

uj .

Figure 4.1(b) shows the result of varying the regularisation parameter λ in
the ROF model (4.2). The rate at which small-scale features are merged into
larger-scale features is inversely proportional to λ.

The next example is a comparison of the ROF model with the classical
Tikhonov regularisation.

Example 4.5 (TV vs. H1-regularisation). Consider the same noisy 1-D signal
as in Example 4.4, shown in Figure 4.1(a).
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Figure 4.2: Tikhonov regularisation. The figure shows the restoration of the noisy
1-D signal shown in Figure 4.1(a) using the H1 semi-norm ‖∇u‖2L2(Ω) as the regu-
larisation functional. The restoration is shown for λ = 1 (dash-dotted line), λ = 0.1
(dashed line) and λ = 0.01 (solid line).

First, we replace TV (·) in (4.2) with a different choice of regularisation
functional. A natural choice in the context of Tikhonov regularisation is the
H1 semi-norm ‖∇u‖2L2(Ω), in which case the minimisation is performed over
the Sobolev space H1(Ω). The restoration of the noisy signal using the H1

semi-norm is shown in Figure 4.2.
There is a striking difference between the performance of the H1 semi-norm

and the TV functional, at least for the above piecewise constant signal. Gen-
erally, the H1 semi-norm cannot restore edges as well as TV can, because it
simply penalises too much the gradient associated with an edge. Another ex-
planation is the following. For the H1 semi-norm, the solution is characterised
by the Euler–Lagrange equation

(λI − 2∆)u = λf.

Notice that the solution depends on the Laplacian ∆u which is known to have
strong isotropic smoothing properties. For more details, see [5].

See [76] for further comparisons of the ROF model and other regularisation
functionals.

Numerous examples of the ROF model applied to 2-D images will be given
in Chapter 6. We conclude this section with a final example, illustrating a
limitation of the ROF model whenever it is used to recover smooth functions.

Example 4.6 (Staircase effect). Consider the signal shown in Figure 4.3(a).
The original signal contains some smooth regions that are not particularly well
restored by the ROF model, as can be seen in Figure 4.3(b). The restoration
here was computed with λ = 5 after adding Gaussian white noise with a stan-
dard deviation of σ = 0.05. The result shows the formation of a number of
plateaus rather than the original smooth regions. This is known as the “stair-
case” effect, and it shows that TV regularisation favours piecewise constant
solutions.

A number of improvements to the ROF model have been suggested to avoid
the staircase effect, including minimisation of the second-order total variation,
i.e., the total variation of the gradient. See [16,18] for more.
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(a) Original (b) TV restoration

Figure 4.3: The staircase effect. A small amount of noise was added to the
piecewise smooth signal on the left before attempting to recover it with the ROF model.
The result on the right shows the formation of many small piecewise constant steps
rather than the smooth or affine transitions of the original signal. This illustrates a
shortcoming of the ROF model which is known as the “staircase effect”.

4.2 The vectorial ROF model

In this section, we present the generalisation of the ROF model to vector-
valued functions. This is necessary in order to consider restoration problems for
colour and other multi-channel images. Note that the total variation does not
extend uniquely to vector-valued functions. In fact, several alternatives have
been suggested in the literature, for example, by Blomgren and Chan [9] and
Goldluecke et al. [33]. However, we will restrict ourselves to the definition which
is given by Bresson and Chan in [11] which is, perhaps, the most commonly
used.

First, let the image domain Ω ⊂ Rm be an open and bounded set with a
C1 boundary ∂Ω. We now consider an image to have n ≥ 2 colour channels.
That is, an image f = (f1, . . . , fn) is a function defined on Ω taking values in
Rn. Once more, let 1 ≤ p ≤ ∞, and consider the forward image model for the
observed image f ∈ L2(Ω; Rn) given by

f = Au+ η. (4.3)

The original image is u ∈ Lp(Ω; Rn), and A : Lp(Ω; Rn) → L2(Ω; Rn) is a
linear operator. The noise η ∈ L2(Ω; Rn) is assumed to be additive white
Gaussian-distributed with zero mean and known variance.

Suppose that the operator A does not introduce any dependencies between
the channels. That is, if

Au =
(
A1u

1, . . . , Anu
n
)
,

where A1, . . . , An are linear operators from Lp(Ω) to L2(Ω). Then it is pos-
sible to solve the above ill-posed inverse problem by computing the solution
to the ROF model (4.2) separately for each colour channel. Unfortunately,
this approach does not take into account any potential correlations between
the colour channels. This provides poor results for many colour image restora-
tion problems, because images very often exhibit rather strong cross-channel
correlations.
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An alternative is to apply some sort of regularisation in which the coupling
between the colour channels is taken into account. First, we present some more
notation. Recall that the gradient matrix of f is given by

∇f :=


(∇f1)T

(∇f2)T
...

(∇fn)T

 =


f1
x1

f1
x2

. . . f1
xm

f2
x1

f2
x2

. . . f2
xm

...
...

. . .
...

fnx1
fnx2

. . . fnxm

 .

Similarly, for ϕ = (ϕ1, . . . ,ϕn) : Ω → Rn×m, where each component is given
by ϕi = (ϕi,1, . . . , ϕi,m) : Ω → Rm for i = 1, . . . , n, the divergence of ϕ is
defined by

divϕ :=
(
divϕ1,divϕ2, . . . ,divϕn

)
.

For a matrix A ∈ RM,N the Frobenius norm ‖·‖F is given by

‖A‖F :=

√√√√√
M,N∑
i,j=1

a2
i,j

.
The following definition extends TV to vector-valued functions.

Definition 4.7 (Vectorial TV). For f ∈ L1(Ω; Rn) the vectorial TV (VTV)
of f is defined by

TV (f) := sup
ϕ∈Vn

−
∫

Ω

f · divϕ, (4.4)

where Vn is the set

Vn :=
{
ϕ ∈ C1

c (Ω; Rn×m) | ‖ϕ(x)‖F ≤ 1 for every x ∈ Ω
}
.

Notice that for n = 1 the vectorial TV reduces to the scalar definition (3.11).
Also, for differentiable functions f ∈ C1(Ω; Rn), the vectorial TV reduces to

TV (f) =
∫

Ω

‖∇f‖F .

Next, we summarise some properties of the vectorial TV. The proof is ex-
actly the same as in Theorem 3.19.

Theorem 4.8. Let Ω ⊂ Rm be open and bounded. Then TV (·) is a proper,
closed convex function on Lp(Ω; Rn) for 1 ≤ p ≤ ∞.

The effective domain of the vectorial TV defines a space BV (Ω; Rn) of
vector-valued functions of bounded variation.

Definition 4.9 (Bounded variation for vector-valued functions). We say that
f ∈ L1(Ω; Rn) has bounded variation provided that its vectorial total variation
is finite. The space of vector-valued functions of bounded variation is

BV (Ω; Rn) :=
{
f ∈ L1(Ω; Rn) | TV (f) < +∞

}
.

This is a Banach space equipped with the norm

‖f‖BV (Ω;Rn) := ‖f‖L1(Ω;Rn) + TV (f). (4.5)
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Since there is usually no distinction between scalar and vector-valued func-
tions in Sobolev space theory (see [30]), the results for BV (Ω) in Section 3.2
extend effortlessly to the vector-valued case. For further details, see [11].

Now, the vectorial Rudin–Osher–Fatemi (VROF) model is to solve the fol-
lowing minimisation problem

min
u∈Lp(Ω;Rn)

{
F (u) := TV (u) +

λ

2
‖Au− f‖2L2(Ω;Rn)

}
, (4.6)

where the functional TV : Lp(Ω; Rn)→ R̄ is the vectorial TV.
The existence and uniqueness of the solution can be shown under the same

assumptions as for the ROF model. A proof in the case that A = I and
f ∈ L∞(Ω; Rn) was given by Bresson and Chan in [11].

Theorem 4.10 (Existence-uniqueness). Let Ω ⊂ Rm be an open and bounded
domain with a C1 boundary ∂Ω. Suppose that 1 ≤ p ≤ m/(m − 1). Then
there exists a solution to the VROF model (4.6), provided that the operator A
does not annihilate constant functions. Moreover, the solution is unique if A
is injective.

Proof. The coercivity in Lemma 4.2 is extends trivially to the VROF functional
and the space BV (Ω; Rn). Then the proof is the same as for Theorem 4.3.

4.3 TV inpainting

In this section, we present a TV-based model for image inpainting that was
proposed by Shen and Chan in [72].

One might as well work with colour images, so we assume the same notation
as in the previous section. In particular, the image domain Ω ⊂ Rm is an open
and bounded set with a C1 boundary ∂Ω, and the number of colour channels
is n ≥ 2. In addition, let Γ ⊂ Ω be the inpainting domain where the image
data is missing. In this case, fix 1 ≤ p ≤ ∞, and the forward image model that
relates the degraded image f : L2(Ω; Rn) to the original image u : Lp(Ω; Rn)
is given by

f(x) = η(x) +

{
u(x) if x ∈ Ω \ Γ,
0 otherwise.

(4.7)

Recall that η ∈ L2(Ω; Rn) is an additive white Gaussian noise. The above
can be seen as a particular case of the forward image model (4.3), where the
operator A is defined by

(Au)(x) :=

{
u(x) if x ∈ Ω \ Γ,
0 otherwise.

The TV inpainting model for recovering the original image is then

min
u∈Lp(Ω;Rn)

{
F (u) := TV (u) +

λ

2
‖u− f‖2L2(Ω\Γ;Rn)

}
. (4.8)

Once more, the functional TV : Lp(Ω; Rn)→ R̄ is the vectorial TV. Notice that
the L2-norm of the data fidelity term is only evaluated outside the inpainting
domain Γ.
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Ω \ Γ Ω \ ΓΓ

(a) Harmonic inpainting

Ω \ Γ Ω \ ΓΓ

(b) TV inpainting

Figure 4.4: The solution to the TV-based inpainting model is not necessarily
unique. The figure illustrates a simple 1-D example of inpainting the missing region
Γ ⊂ Ω. On the left is the solution according to the harmonic inpainting model, i.e., a
smooth interpolation between the boundary values. The figure on the right shows two
possible solutions for the TV-based model which both have the same total variation.

If we assume that f(x) = 0 for x ∈ Γ, this merely becomes a special case of
the VROF model (4.6). Hence, the existence of a solution to the TV inpainting
model (4.8) follows from Theorem 4.10. On the other hand, it is quite easy
to see that the operator A is no longer injective, and thus the data fidelity
functional is not strictly convex. Therefore, unlike the VROF model, we can
no longer guarantee that the solution is unique. This is most easily illustrated
in the 1-D case, see Figure 4.4.

If there is no noise present in the image, we may wish to force the solution
to agree exactly with the data outside the inpainting region. This can be seen
as letting λ→∞ in (4.8). The inpainting problem can then be written

min
u∈Lp(Ω;Rn)

TV (u) such that u|Ω\Γ = f
∣∣
Ω\Γ

. (4.9)

For comparison, we will also use the harmonic inpainting model

min
u∈L2(Ω;Rn)

‖∇u‖2L2(Ω;Rn) +
λ

2
‖u− f‖2L2(Ω\Γ;Rn) . (4.10)

This is based on a quadratic regularisation term such as that in Tikhonov
regularisation. The harmonic inpainting model usually fills in missing pixels so
as to give a smooth solution, see [72].

The following example demonstrates the difference between the harmonic
and TV inpainting models.

Example 4.11 (Harmonic vs. TV inpainting). Consider inpainting a step edge
that has been partially occluded as shown in Figure 4.5(a). Now, compare the
restoration of this edge with the harmonic and TV inpainting models as shown
in Figure 4.5(b) and Figure 4.5(c). The harmonic inpainting produces fills the
gap with a smooth transition. On the other hand, the TV inpainting is able to
recover the edge sharply.
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(a) An occluded step edge (b) Harmonic inpainting (c) TV inpainting

Figure 4.5: Harmonic vs. TV inpainting. Figure (a) represents a horizontal
edge between the black and white regions which has become occluded. The occlusion is
represented by the noisy region in the centre of the image. Figures (b) and (c) show
the result of inpainting the missing pixels with the harmonic inpainting model (4.10)
and TV inpainting model (4.8), respectively. Notice that the former produces a smooth
fill-in of the occluded domain, whereas the latter recovers the horizontal edge.

4.4 A TV-based model for demosaicking

Finally, we present a variational method for the demosaicking problem, i.e., the
restoration of a full colour image that has been subsampled by a colour filter
array (CFA). Recall that a CFA is a set of colour-selective filters that assigns
each pixel in the image to a single colour channel. For a description of how
this problem arises in a single-sensor digital colour camera, see Chapter 2.

Although this problem may be approached by inpainting each colour chan-
nel separately, or as a special case of the vectorial ROF model (4.6), we will
see from the numerical experiments in Chapter 6 that the results then become
quite disappointing. Instead, inspired by the work of Alleysson et al. [2], our
method is based on decomposing the image into a luminance and a chrominance
component and applying a TV regularisation to each of these components sep-
arately. From a regularisation point of view, this is a change of basis which
better describes what we expect the restored image to look like.

The situation is the following. Once more, Ω ⊂ Rm is an open and bounded
set with a C1 boundary ∂Ω. The original RGB colour image u : Ω → R3

consists of a red, green and blue colour channel u = (uR, uG, uB). Each of
these is subsampled according to some CFA. The mosaicked image f and the
original image u are related through the forward image model (4.3), where the
operator A is given by

(Au)(x) := C(x)u(x). (4.11)

Here C(x) := diag(CR(x), CG(x), CB(x)) is a 3-by-3 diagonal matrix. For each
x ∈ Ω, this describes the proportion of each colour that is transmitted by the
CFA.

For the sake of simplicity, we will only consider the standard Bayer CFA
(see Figure 2.2(a)). Then the matrix C(x) was given by (2.6) in Section 2.2.
Many demosaicking algorithms are tailored to this particular configuration.
However, note that variational methods, such as the one presented here, work
for arbitrary CFA patterns. In fact, it has been argued that this is the only
way to compare the performance of various proposed CFA designs [24].
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(a) Original (b) Luminance (c) Chrominance

Figure 4.6: Luminance-chrominance decomposition. The image in (a) is decom-
posed into a luminance component carrying the spatial information in the image,
shown in (b), and a chromatic component representing the colour information, shown
in (c). In this example, the luminance is the mean of the three colour channels, i.e.,
pR = pG = pB = 1/3.

Perhaps the simplest approach to demosaicking is to treat each colour chan-
nel separately and perform a bilinear interpolation to recover the missing pixel
values. Unfortunately, this method has a tendency to blur edges and introduce
false colours due to aliasing. This might be improved by applying the TV in-
painting model (4.8) to each colour channel instead of a bilinear interpolation.
However, any correlation between the different colour channels is still not taken
into account. Yet another alternative is to use the vectorial ROF model (4.6)
which introduces at least some dependency between the colour channels.

Another important approach, proposed by Alleysson et al. [2], comes from
regarding the subsampled CFA image as the sum of an achromatic luminance
component and a chromatic component. The former contains the spatial infor-
mation of the image, whereas the latter represents the chromatic information.
A key principle is that the human visual system is more sensitive to variations
in luminance compared to chrominance. Moreover, for demosaicking with the
Bayer CFA, it is shown in [2] that the luminance can be estimated with full
spatial resolution, and only the chromatic component is subject to subsampling
by the CFA. In other words, every pixel of the degraded image f carries some
luminance information, and only the chrominance requires that we perform
some sort of interpolation.

The decomposition of an image u into a luminance component Φ : Ω→ R
and three opponent chrominatic components Ψ = (Ψ1,Ψ2,Ψ3) : Ω→ R3 may
be written

u = Φ + Ψ. (4.12)

The luminance component is defined by taking a convex combination of the
colour channels

Φ :=
∑

i∈{R,G,B}

piu
i, (4.13)

where pi > 0 is the weight associated with the i-th colour channel such that∑
i pi = 1. The chrominance is obtained by subtracting the luminance from

the original image
Ψi := (1− pi)ui −

∑
j 6=i

pju
j . (4.14)

An example of such a decomposition is shown in Figure 4.6.
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It was observed by Alleysson et al. [2], that a decomposition similar to (4.12)
holds for the mosaicked image f ,

f = Φ +AΨ, (4.15)

where A is the CFA subsampling operator (4.11). The method in [2] estimates
the luminance and subsampled chrominance components from (4.15) by linear
filtering. Next, the missing chrominance information is interpolated, and the
restored image is obtained as a sum of the luminance and interpolated chromi-
nance components. This algorithm greatly outperforms most demosaicking
methods that work in the usual RGB basis.

We now consider this idea in the setting of TV-based regularisation. This
is achieved by decomposing the image into a luminance and a chrominance
component, as in (4.12), and then applying a TV regularisation to each of
them. Hence, we propose the following TV demosaicking model, which is to
solve the minimisation problem

min
u∈Lp(Ω;Rn)

{
F (u) := TV (Φ) + µ V TV (Ψ) +

λ

2
‖Au− f‖2L2(Ω;Rn)

}
. (4.16)

Here the functional TV : Lp(Ω) → R̄ is the usual scalar total variation, and
V TV : Lp(Ω; Rn)→ R̄ denotes the vectorial TV, see Definition 4.7.

There are two parameters λ > 0 and µ > 0 in the TV demosaicking
model (4.16). As before, λ is a weight associated with the data fidelity term,
and thus determines how close the solution should remain to the observed data.
There are, however, two regularisation terms, and the weighting between them
is determined by the parameter µ. Intuitively, larger values of µ ought to re-
sult in a more regular chrominance component, and, conversely, smaller values
of µ should produce a more regular luminance component. The relationship
between these parameters is explored further through numerical experiments
in Chapter 6.

We end with a result that states the existence of a solution for the above
TV demosaicking model.

Theorem 4.12 (Existence of solution). Let Ω ⊂ Rm be an open and bounded
domain with a C1 boundary ∂Ω. Suppose that 1 ≤ p ≤ m/(m− 1). Then there
exists a solution to the TV demosaicking model (4.16), where A is an operator
on the form given by (4.11).

Proof. The result follows from the exact same argument as for the ROF model
in Theorem 4.3 and the VROF model in Theorem 4.10, provided that we can
show that the functional F in (4.16) is coercive on BV (Ω; Rn).

First, observe that for u = (u1, . . . , un), we have

V TV (u) ≤
n∑
i=1

TV (ui).
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This follows from the definition of the vectorial TV (4.4), that is,

sup
ϕ∈Vn

−
∫

Ω

u · divϕ = sup
(ϕ1,...,ϕn)∈Vn

−
∫

Ω

n∑
i=1

ui divϕi

≤
n∑
i=1

sup
ϕi∈V1

−
∫

Ω

ui divϕi

=
n∑
i=1

TV (ui).

Now, since u can be decomposed as u = Φ + Ψ, we have

V TV (u) = V TV (Φ + Ψ)
≤ n TV (Φ) + V TV (Ψ)
≤ C1 (TV (Φ) + µ V TV (Ψ)) ,

where C1 := nmax{1, 1/µ}.
Finally, recall that the functional in the VROF model (4.6) is coercive on

BV (Ω; Rn), i.e., there exists C2 > 0 such that

‖u‖BV (Ω;Rn) ≤ C2

(
V TV (u) +

λ

2
‖Au− f‖2L2(Ω;Rn)

)
≤ C1C2

(
TV (Ψ) + µ V TV (Φ) +

λ

2
‖Au− f‖2L2(Ω;Rn)

)
= C F (u),

where C := C1C2. This shows that F is coercive on BV (Ω; Rn).

4.5 Summary

In this chapter we first introduced the ROF model for the denoising and de-
blurring of grayscale images. This problem possesses a unique solution under
some assumptions on the operator A that models the blur in the forward image
model (4.1). The proof of this relies on a standard method from the calculus of
variations and much of the material from Chapter 3. Next, we have illustrated
how the ROF model favours piecewise constant solutions, in contrast to the
usual Tikhonov regularisation where the solution is much smoother and cannot
represent edges sharply.

The vectorial ROF model is the generalisation of this to colour images.
Rather than performing an image restoration by applying the ROF model sep-
arately to each colour channel, the VROF model is able to take into account
some coupling between the colour channels. The TV inpainting model in Sec-
tion 4.3, may be derived as a particular case of the VROF model. This provides
an edge-preserving method for inpainting missing pixels in an image.

Finally, based on the approach of Alleysson et al. [2], we considered the
decomposition of a colour image into a luminance and a chrominance compo-
nent. Then, we proposed a TV-based model for demosaicking by applying a
TV regularisation to the luminance and chrominance components separately.



CHAPTER 5
Numerical methods for

TV-based regularisation

In this chapter, we consider numerical methods for computing the solution to
the variational problems that were presented in Chapter 4. Some of these meth-
ods rely on certain tools from convex analysis, whereby a convex optimisation
problem can be associated with another convex optimisation problem, known
as the dual problem. From this duality follows the equivalence of mimising the
primal objective function and maximising a certain dual objective function.
The numerical algorithms we consider are divided into primal methods, dual
methods and primal-dual methods, depending on whether they seek the opti-
mal solution via the primal or dual objective function, or both. There are also
many other numerical methods for the ROF model which we do not consider
here, for example, those based on split Bregman iteration [34], graph cuts [25],
or the augmented Lagrangian method [77].

For the sake of clarity in the following presentation, we will focus first
and foremost on the ROF model in Section 5.1 and Section 5.2. However,
the primal-dual methods in Section 5.3 are naturally considered in a general
context that accomodates all of our TV-based regularisation problems.

Implementing these methods requires that we work in a discrete setting.
In this, we consider only 2-D images defined on a rectangular grid. Thus, an
image ofM -by-N pixels becomes a vector u ∈ RMN , and ui,j denotes the value
of the (i, j)-th pixel. Let X denote RMN and also let Y = X ×X. Then the
discretisation of the gradient operator ∇ : X → Y using forward differences
and Neumann boundary conditions is

(∇u)i,j =
(
(∇u)1

i,j , (∇u)2
i,j

)
49
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where

(∇u)1
i,j =

{
ui+1,j − ui,j if i < M,

0 if i = M,

(∇u)2
i,j =

{
ui,j+1 − ui,j if j < N,

0 if j = N.

The divergence operator is defined as div = −∇∗, where ∇∗ : Y → X is the
adjoint of the gradient, i.e., (∇u, v) = (u,∇∗v) for every u ∈ X, v ∈ Y . It can
easily be verified that for p = (p1, p2) ∈ Y , we have

(div p)i,j =


p1
i,j − p1

i−1,j if 1 < i < M,

p1
i,j if i = 1,
−p1

i−1,j if i = M,

+


p2
i,j − p2

i,j−1 if 1 < j < N,

p2
i,j if j = 1,
−p2

i,j−1 if j = N.

Using the above notation, the discretisation of the ROF model is then

min
u∈X
‖∇u‖1 +

λ

2
‖Au− f‖22 . (5.1)

Here ‖u‖22 = 〈u, u〉X is the squared `2-norm, and ‖u‖1 :=
∑
i,j |ui,j | is the

`1-norm.
It is possible to show, by introducing a step size h into the finite difference

operators and using the notion of Γ-convergence, that the solution to the dis-
cretisation (5.1) converges to the true solution of the ROF model (4.2) as the
step size h becomes small, see [14] and the references therein.

For colour images, we take X = RMNP where P is the number of colour
channels. The gradient of a colour image u = (u1, . . . , uP ) ∈ X is defined
componentwise

∇u :=

∇u
1

...
∇uP

 ,

and a similar definition holds for the divergence of p ∈ Y = X ×X.
The discretisation of the VROF model (4.6) is

min
u∈X

∑
i,j

√∑
k

∣∣∇uki,j∣∣2 +
λ

2
‖Au− f‖22 . (5.2)

For the TV inpainting (4.8), the data fidelity term is altered as follows

min
u∈X

∑
i,j

√∑
k

∣∣∇uki,j∣∣2 +
λ

2

∑
(i,j,k)∈Ω\Γ

(uki,j − fki,j)2. (5.3)

Here we define Ω := {(i, j, k) | 1 ≤ i ≤M, 1 ≤ j ≤ N, 1 ≤ k ≤ P}, and the in-
painting domain Γ ⊂ Ω is the set of indices for which the image data is missing.
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Finally, consider the TV demosaicking model from Section 4.4. In the
discrete case, the operator A in (4.11) is a diagonal matrix. The luminance
and chrominance components of the image u ∈ X are denoted by Φ ∈ RMN

and Ψ ∈ X, respectively. Then u may be decomposed into the sum

u = Φ + Ψ, Φ :=
P∑
k=1

αku
k,

where αk > 0 and
∑
k αk = 1.

As with the TV inpainting model above, one can define the set Γ ⊂ Ω
of indices where the (i, j)-th pixel of the k-th colour channel vanishes due to
the colour filter array. Then the discrete counterpart of the TV demosaicking
model becomes

min
u∈X

‖∇Φ‖1 +
∑
i,j

√∑
k

∣∣∇Ψk
i,j

∣∣2 +
λ

2

∑
(i,j,k)∈Ω\Γ

(uki,j − fki,j)2. (5.4)

5.1 Primal methods

Numerical methods that are based on directly minimising the ROF model (5.1)
are referred to as primal methods. However, this approach is problematic be-
cause the total variation TV (f) is not differentiable whenever |∇f | = 0. It was
suggested by Acar and Vogel [1] and Vogel and Oman [76] to consider instead
a slightly perturbed functional

TVβ(f) =
∫

Ω

√
|∇f |2 + β2 dx (5.5)

for β ≥ 0. Note that this functional is differentiable for positive values of β, and
for β = 0 it reduces to the usual TV for differentiable functions (a generalisation
to integrable functions can also be made, see [1]). Furthermore, the functional
TVβ is also convex and lower semi-continuous. In [1] it is shown that using
this as a regularisation functional yields a well-posed problem under the same
assumptions as for the ROF model. In addition, the solution converges to the
solution of the ROF model as β → 0. This is illustrated in Figure 5.1. Although
it results in a worse approximation, the benefit of choosing β large in (5.5) is
that numerical methods tend to become more robust. See, e.g., [76] and [20].
Each of the primal methods discussed here will depend on this smoothing to
give stable results.

Euler–Lagrange equations

The original denoising algorithm presented by Rudin, Osher and Fatemi in [65]
is based on solving the Euler–Lagrange equation for the ROF model. This can
be derived by computing the gradient of the ROF functional. The gradient is
given by

F ′(u) = −div

 ∇u√
|∇u|2 + β2

+ λA∗(Au− f). (5.6)
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Figure 5.1: Smooth approximation to the TV functional. The figure illustrates
the effect of various choices of the parameter β for the functional TVβ in (5.5). The
solid line corresponds to β = 1, the dashed line corresponds to β = 0.1 and the dash-
dotted line corresponds to β = 0.01. As β decreases, the solution approaches the true
minimum of the ROF model.

A minimiser of the ROF model is then a weak solution to the Euler–Lagrange
equation 

F ′(u) = 0 in Ω,
∂u

∂ν
= 0 on ∂Ω.

(5.7)

This is a non-linear elliptic PDE, and it can be difficult to solve directly. Rudin,
Osher and Fatemi [65] proposed an artificial time marching scheme by letting
u be a function also of a time variable t > 0 and driving the parabolic PDE

∂u

∂t
= F ′x(u) in Ω,

∂u

∂ν
= 0 on ∂Ω.

to a steady state as t → ∞. The point is that the parabolic problem can be
solved iteratively with an explicit finite difference scheme. It was also noted
in [65], that upon choosing λ appropriately, this becomes the gradient projec-
tion method for non-linear programming.

In [76], Vogel and Oman discuss a gradient descent algorithm which is ex-
actly the above method whenever λ is held fixed. Given some initial guess u(0),
a descent direction d(k) is computed, and the following iteration is performed

u(k+1) = u(k) + α∗d(k). (5.8)

The step size α∗ can either be fixed, or an optimal value

α∗ = arg minα>0 F (u(k) + αd(k)), (5.9)

may be computed with a line search or trust region algorithm.
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For the method of steepest descent, the descent direction is the negative
gradient d(k) = −F ′(u(k)). Due to restrictions on the step size at each iteration,
this method shows very poor convergence. This can be somewhat improved
through a preconditioning such as that proposed by Marquina and Osher in [53].

Higher-order methods

Higher-order methods, such as Newton’s method, can be formulated by choos-
ing alternative descent directions. However, these methods involve higher-order
derivatives of the minimising functional. The Hessian of F is the mapping
u 7→ H(u), where H(u) is the functional given by

(H(u))(v) = −div

 1√
|∇u|2 + β2

(
1− ∇u(∇u)T

|∇u|2 + β2

)
∇v

+ λA∗Av. (5.10)

Now, we obtain Newton’s method by choosing the descent direction

d(k) = −
[
H(u(k))

]−1

F ′(u(k)),

assuming that the Hessian is invertible at u(k) ∈ X.
Vogel and Oman [76] also propose a quasi-Newton method which they call

“lagged diffusivity fixed-point iteration.” Although this method avoids explic-
itly evaluating the Hessian, it still relies on solving a linear system for each
iteration.

Another higher-order method with improved convergence rate and domain
of convergence was proposed by Chan, Golub and Mulet [20]. Since most
of the problems with convergence are mainly due to the singularity of the
gradient (5.6), their idea was to introduce the dual variable

p =
∇u√

|∇u|2 + β2

.

Despite being non-linear and non-differentiable for β = 0, this expression is
usually smooth. This is because p can in fact be interpreted as the normal to
the level lines of the image.

The introduction of the dual variable p lets us rewrite the Euler–Lagrange
equations (5.7) as a system of non-linear equations− div p+ λA∗(Au− f) = 0,

p

√
|∇u|2 + β2 −∇u = 0.

(5.11)

As before, the second derivatives can be computed and a Newton’s method can
be derived for this system, see [20] for the details.

Generally, the convergence of these higher-order methods requires very few
iterations, especially compared to the gradient descent. However, each iteration
requires solving a very large system of linear equations which consumes both
time and memory. In particular, for u ∈ RN the expression ∇u(∇u)T in
the Hessian (5.10) gives rise to a dense matrix with N2 elements. Even for
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moderately sized images, say 512×512 pixels, the storage requirements become
prohibitively large.

Moreover, the smoothness of the functional TVβ heavily impacts the con-
vergence of these iterative methods. Whereas we usually expect quadratic
convergence from Newton’s method, this only occurs for relatively large values
of β and after a large number of iterations. When β is small, the step size
α∗ determined in the line search (5.9) also becomes small, restricting the size
of each iteration. The lagged diffusivity method appears to be less severely
affected by the parameter β and also appears to converge even without a glob-
alisation strategy such as the line search step, see [76]. The Chan–Golub–Mulet
primal-dual method also behaves somewhat better for small β, see [20].

In [21] Chan, Chan and Zhou consider a continuation procedure for New-
ton’s method. The parameter β is initially chosen to be large and the corre-
sponding solution is used as an initial guess for the next iteration where β is
gradually reduced. The resulting algorithm converges for arbitrary β and re-
sults on the domain of convergence were proved using the Newton–Kantorovich
theorem.

5.2 Dual methods

So far, the numerical methods that we have considered all rely on solving
some smooth approximation to the ROF model. The dual methods that we
now present are based on a quite different approach which does not require
any such smoothing. This method was introduced for the ROF model by
Chambolle in [14], and extended to the VROF model by Bresson and Chan
in [11]. Unfortunately, it depends on a certain simplification that occurs only
for the pure denoising problem, i.e., whenever A = I in the ROF model (5.1).
However, this obstacle is dealt with by the methods considered in the next
section.

It is well known in convex analysis that minimising a given convex function
is, under certain conditions, equivalent to maximising another convex function.
These are referred to as the primal and dual objective functions, respectively.
We will not attempt to cover the general theory of convex duality, instead we
refer to [64] for more. It will only be necessary to present the dual problem
associated with the ROF model (5.1) in the finite-dimensional case.

Define the Lagrangian function K : X × Y → R̄ by

K(u,p) := − (u,div p) +
λ

2
‖Au− f‖22 + δV(p). (5.12)

Here δV(·) is the indicator function of the closed convex set

V := {p ∈ Y | |pi,j | ≤ 1 for 1 ≤ i ≤M, 1 ≤ j ≤ N} .

Notice that the ROF model (5.1) can now be written as the saddle-point prob-
lem

inf
u∈X

sup
p∈Y

K(u,p). (5.13)

From convex duality, the sup and inf may be exchanged if there exists a saddle-
point of K, i.e., a point (ū, p̄) ∈ X × Y such that

K(ū,p) ≤ K(ū, p̄) ≤ K(u, p̄) ∀ x∈X, y∈Y.
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Moreover, a sufficient condition for the existence of such a saddle-point is that
the mapping u 7→ K(u, ·) is convex and lower semi-continuous and p 7→ K(·,p)
is concave and upper semi-continuous, see Example 13 in [64].

The dual problem is obtained by exchanging the sup and inf as follows

sup
p∈Y

inf
u∈X

K(u,p). (5.14)

Notice that for a fixed p, the Lagrangian K(u,p) is quadratic and differentiable
in u. Thus, it can easily be verified that the infimum with respect to u is
attained whenever

−div p+ λA∗(Au− f) = 0, (5.15)

where A∗ is the adjoint of A, i.e., (Au, v) = (u,A∗v) for every u, v ∈ X.
For the pure denoising problem, i.e., whenever A = I, we can explicitly

solve for u in (5.15) and get

u = f +
1
λ

div p. (5.16)

Inserting this into (5.14), the dual problem becomes the constrained maximi-
sation problem

sup
p∈V

{
− (f, div p) − 1

2λ
‖div p‖2L2(Ω)

}
. (5.17)

The corresponding Euler–Lagrange equations give the optimality condition

−∇
(

1
λ

div p+ f

)
+ αp = 0, (5.18)

where α(x) ≥ 0 is the Lagrange multiplier for the constraint |p| ≤ 1. The key
observation by Chambolle [14] is the following: If |p| < 1, then the Lagrange
multiplier is α = 0, and, otherwise, it is α =

∣∣∇( 1
λ div p+ f)

∣∣. In either case,
the second of the two expressions for α must hold.

Chambolle then proposes to solve (5.18) with the following semi-implicit
gradient descent algorithm. Choose p0 and τ > 0 and compute the following
iteration for n = 1, 2, . . .

pn+1 =
pn + τ∇

(
1
λ div pn + f

)
1 + τ

∣∣∇ ( 1
λ div pn + f

)∣∣ . (5.19)

In [14], the above iteration was shown to converge if τ ≤ 1/8. Thereafter, the
solution to the ROF model may be obtained from the relation (5.16).

In [15], Chambolle proposes instead to use a simple gradient projection
method for the dual problem. This leads to the iteration

pn+1 =
pn + τ∇

(
1
λ div pn + f

)
max

(
1,
∣∣pn + τ∇

(
1
λ div pn + f

)∣∣) . (5.20)

It was noted by Aujol in [7] that this is actually an instance of a general duality-
based method known as the Bermùdez–Moreno algorithm. From this, Aujol
shows that the scheme converges provided that τ < 1/4.
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5.3 Primal-dual methods

The final class of algorithms that we will now consider are designed to exploit
both the primal and dual formulations of the ROF model. In the general case,
these methods are known as proximal forward-backward splitting [23], and they
are studied in the context of variational image processing by Chambolle and
Pock in [17]. Unlike the dual methods in the previous section, the following
primal-dual approach is general enough to deal with a range of variational
image processing problems, including the TV-based models for colour image
restoration that were given in Chapter 4.

Therefore, following Chambolle and Pock in [17], we adopt a slightly more
general point of view. That is, let X and Y be two finite-dimensional real
vector spaces, and consider the problem of minimising

min
u∈X

F (Ku) +G(u). (5.21)

Here G is a convex function on X, F is convex on Y , and K : X → Y is a
linear operator.

Notice that the ROF model (5.1) is a special case of the above problem
where F (·) = ‖·‖1, G(·) = ‖A · −f‖22, and K = ∇. However, this general
formulation also encompasses a number of other interesting problems, including
basis pursuit and other `1-regularised problems, see [17].

Before we can present the primal-dual algorithm for solving the minimisa-
tion problem (5.21), we recall two important definitions from convex duality
theory (see, e.g., [63], [64]). The first lies at the heart of duality theory for
convex functions.

Definition 5.1 (Convex conjugate). Let f : Rn → R̄. The convex conjugate
of f is the function f∗ : Rn → R̄ defined by

f∗(y) := sup
x∈X
{(x, y) − f(x)} . (5.22)

Roughly speaking, the convex conjugate f∗ describes the convex hull of
epi f in terms of its so-called supporting hyperplanes. These are the hyper-
planes containing epi f such that at the point (x, f(x)) lies on the hyperplane
for some x ∈ X.

The conjugacy operation f 7→ f∗, also called the Fenchel transform, defines
a one-to-one correspondence on the set of proper closed convex functions. In
other words, two proper closed convex functions f : Rn → R̄ and g : Rn → R̄
are said to be in duality if

f = g∗ and g = f∗.

Second, the primal-dual algorithms for (5.21) rely heavily on the following
concept from convex analysis.

Definition 5.2 (Proximal mapping). Let f : Rn → R̄ be convex. The proximal
mapping of f is defined by

x = proxτf (x̄) := arg min
x

{
‖x− x̄‖2

2τ
+ f(x)

}
. (5.23)
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This is, in a sense, a generalisation of the notion of projection. In fact, if
δC(x) is the indicator function of a convex set C, then proxτδC

(·) is precisely
the mapping that projects x ∈ X onto C. Using the subdifferential calculus
for convex functions, it is possible to show that this mapping is well defined for
any x ∈ Rn whenever f is closed and convex. Moreover, the following relation,
which is known as Moreau’s identity, provides a way of computing the proximal
mapping of the convex conjugate f∗,

x = proxτf (x) + τprox1/τf∗(x/τ). (5.24)

Now, we return to the convex minimisation problem (5.21). We claim that
it is equivalent to the following saddle-point problem

min
u∈X

max
p∈Y
〈Ku, p〉 +G(u)− F ∗(p), (5.25)

and the corresponding dual problem

max
p∈Y
−(G∗(−K∗p) + F ∗(p)). (5.26)

We do not derive this here, but refer instead to Example 11 in [64].
Chambolle and Pock [17] define the following primal-dual algorithm for

finding a saddle-point of (5.25). Choose τ, σ > 0, θ ∈ [0, 1], an initial guess
(u0, p0) ∈ X × Y , and set ū0 = u0. Then, for n = 0, 1, 2, . . . perform the
following iteration 

pn+1 = proxσF∗(p
n + σKūn)

un+1 = proxτG(un − τK∗ ¯pn+1)

ūn+1 = un+1 + θ(un+1 − un)

(5.27)

Each iteration of this algorithm consists of three steps. Roughly speaking, the
first two correspond to gradient descent steps in the dual and primal variables,
respectively. For θ = 1, the third step is a simple linear extrapolation based
on the previous iterates. A convergence analysis for this case is given in [17].
For the choice θ = 0, the algorithm (5.27) is, in fact, the Arrow–Hurwicz
method [4], a classical algorithm from convex analysis. Chambolle and Pock
also discuss the relation to several other algorithms.

The key idea behind the above algorithm is that the proximal mapping
is usually inexpensive to evaluate. This means that each iteration in itself
requires relatively few computations. Moreover, by updating both the primal
and dual variables, the convergence is faster than the pure primal or pure dual
methods. Chambolle and Pock [17] also discuss various ways in which to choose
the step sizes τ and σ in (5.27) to accelerate the convergence. However, this
assumes that either F or G has some additional regularity, e.g., that one of
the functionals is uniformly convex. We will, however, not pursue this further,
in particular, because the inpainting and demosaicking models in Section 4.3
and Section 4.4 do not have this regularity.

Proximal mappings

What remains is to describe the proximal mappings for the functionals in-
volved in the discrete TV-based regularisation methods in the beginning of
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this chapter. For the ROF and VROF models, the operator K in (5.25) is
K = ∇. We consider first the regularisation terms. For the ROF model, we
have F (·) = ‖·‖1, and the proximal mapping is given by

proxτF (u) = max
(

0, 1− τ

|u|

)
u.

Using the Moreau’s identity (5.24), the proximal mapping of the dual F ∗ is the
projection onto the unit ball in the dual norm

proxσF∗(p) =
p

max(1, |p|)
. (5.28)

For the VROF model, this is replaced by

proxσF∗(p) =
p

max
(

1,
√∑P

k=1 |pk|
2

) . (5.29)

For the data fidelity functional, the proximal mapping is given by

proxτG(u) = (I + τλA∗A)−1(u+ τλA∗f). (5.30)

Although this is not necessarily simple to compute, we are only interested in a
few special cases. First, for the pure denoising problem A = I, this reduces to

proxτG(u) =
u+ τλf

1 + τλ
.

Second, there is the case when the operator A is a convolution with some point-
spread function h, i.e., Au = h∗u. If the convolution is computed with periodic
boundary conditions, it is well known that the convolution operator is diago-
nalised by the Fourier transform. Therefore, the solution to the equation (5.30)
can be written

proxτG(u) = F−1

(
F(u) + τλF(h)∗F(f)

1 + τλF(h)2

)
. (5.31)

By using the FFT to compute the forward and inverse Fourier transforms, this
calculation can be made very fast.

Finally, for the data fidelity functional used in the image inpainting prob-
lem (4.8), the proximal mapping becomes

proxτG(u) =

{
uki,j if (i, j, k) ∈ Γ,(
uki,j + τλfki,j

)
/ (1 + τλ) otherwise.

The primal-dual algorithm for the TV demosaicking model

The TV demosaicking model (5.4) requires some special treatment, so we will
explicitly describe the primal-dual algorithm for this model. Let X = RMNP ,
U = RMN , and define Y = X × X and V = U × U . Here the dualisation
is performed with respect to both the luminance Φ ∈ U and the chrominance
Ψ ∈ X, as explained in the following.
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Let K : X → V × Y denote the mapping of the image u to the gradient of
the luminance and chrominance components, i.e.,

K : u 7→ (∇Φ,∇Ψ).

If we define the mappings L : u 7→ Φ and C : u 7→ Ψ, we may alternatively
write

K =
(
∇ ◦ L
∇ ◦ C

)
, K∗ = −

(
L∗ ◦ div C∗ ◦ div

)
.

Next, for u ∈ X, v ∈ V and w ∈ Y , we define

F (v,w) := ‖v‖1 + µ
∑
i,j

√∑
k

∣∣wk
i,j

∣∣2, (5.32)

G(u) :=
λ

2

∑
(i,j,k)∈Ω\Γ

(uki,j − fki,j)2. (5.33)

With these definitions, the TV demosaicking model (5.4) is now on the form
of the minimisation problem (5.21). Moreover, this is equivalent to the primal-
dual formulation (5.25), where the convex conjugate of F is

F ∗(p, q) = δV(p, q), V := {(p, q) ∈ V × Y | |p| ≤ 1, |q| ≤ 1} .

The proximal mappings of F ∗ and G are then given by

proxσF∗(p, q) =

 p

max(1, |p|)
,

q

max
(

1,
√∑P

k=1 |qk|
2

)
 (5.34)

proxτG(u) =

{
uki,j if (i, j, k) ∈ Γ,(
uki,j + τλfki,j

)
/ (1 + τλ) otherwise.

. (5.35)

Thus, we may now apply the primal-dual algorithm (5.27) for the TV demo-
saicking model.

5.4 Comparison of numerical methods

We end this chapter by comparing some of the numerical methods that we have
described. For this purpose, we consider two different numerical experiments
that use the ROF model for denoising a 2-D grayscale image. The point here
is not so much the actual result of the denoising, but rather to consider the
convergence of the different methods.

To begin with, we illustrate the effect of the smoothing parameter β in (5.5)
on the convergence of the primal gradient descent method. Consider the prob-
lem of denoising the grayscale image in Figure 6.1(a) to which an additive white
Gaussian noise of standard deviation σ = 0.1 was added.

During each iteration, the step size α in (5.8) is chosen by a backtracking
line search method to ensure a sufficient decrease in the primal functional. The
details of such a procedure can be found in [20]. The initial guess is set to be the
observed image u(0) = f , and three different choices for smoothing parameter
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Method ε = 10−4 ε = 10−5 ε = 10−6

Chambolle 61 (2.82s) 995 (30.72s) 9297 (241.09s)
Bermudez–Moreno 19 (0.92s) 262 (8.12s) 1979 (39.89)
Arrow–Hurwicz 21 (1.01s) 36 (1.32s) 56 (1.44)
Chambolle–Pock 21 (1.00s) 36 (1.23s) 56 (1.43)

Table 5.1: Convergence rate for dual and primal-dual methods for the ROF model
for denoising a 256×256 grayscale image.

were tested, β = 1, 0.01, and 0.001. The norm of the gradient functional (5.6)
is shown in Figure 5.2(a). Notice that for smaller values of β, the line search
quickly restricts the step size. Thus, the convergence becomes very slow as β
is decreased.

Generally, the higher-order primal methods converge in much fewer itera-
tions than the gradient descent. This is illustrated in Figure 5.2(b) for Newton’s
method. A similar fast convergence also occurs for the primal-dual Newton’s
method, but it is somewhat less sensitive to the choice of β, see [20]. However,
these schemes soon become too costly for larger images because of the need to
solve a linear system during each iteration.

As we will now illustrate, the dual and primal-dual schemes do not have
these problems. They do not require us to solve a linear system, and the
convergence rate is generally faster than the primal gradient descent.

Our experiment is similar to that in [17], but much simplified. Consider a
grayscale image of 256×256 pixels to which is added white Gaussian noise with
a standard deviation of σ = 0.1. For the sake of comparison, a ground truth
solution is computed with λ = 16 using the Chambolle–Pock algorithm running
100 000 iterations. Next, we compute the solution using the various dual and
primal-dual schemes. The iterations are stopped once the error relative to the
ground truth solution falls below some tolerance. The algorithms were tested
with the following settings:

• Chambolle: τ = 1/8.

• Bermùdez–Moreno: τ = 1/4.

• Arrow–Hurwicz: τ = 0.01, σ = 12.5, θ = 0.

• Chambolle–Pock: τ = 0.01, σ = 12.5, θ = 1.

The results are presented in Table 5.1.
The results clearly indicates that the primal-dual methods converge in much

fewer iterations than the pure dual methods, especially whenever a higher accu-
racy is desired. Observe that the Arrow–Hurwicz and Chambolle–Pock meth-
ods seem to perform almost identically. This indicates that for the current
problem, the additional extrapolation step in (5.27) has little impact on the
convergence of the primal-dual method. However, we have only used fixed step
sizes in our trials. Chambolle and Pock [17] consider different ways of accel-
erating the convergence by selecting the step sizes appropriately during each
iteration. With this sort of acceleration, they observed that the Arrow–Hurwicz
method is generally the fastest.
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(a) Gradient descent
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(b) Newton’s method

Figure 5.2: Convergence of primal methods.
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5.5 Summary

In this chapter we have presented the discretisation of the TV-based regularisa-
tion models from Chapter 4, and some numerical algorithms for solving them.
Primal methods attempt to directly minimise the relevant cost functional us-
ing familiar algorithms from numerical optimisation, such as gradient descent
or Newton’s method. However, due to the `1-norm that appears in the regu-
larisation term, the primal problem is non-differentiable. This means that we
can only solve an approximate problem by smoothing the original functional.
Generally, the convergence of the primal gradient descent is very slow. On
the other hand, dual methods do not require any smoothing because the dual
problem is differentiable. For the image denoising problem, Chambolle’s al-
gorithm [14] is a gradient projection in the dual variable, which gives a much
faster convergence than the primal gradient descent. Finally, we have con-
sidered the primal-dual methods of Chambolle and Pock [17] that exploit the
saddle-point formulation of the given problem. During each iteration, both the
primal and dual variables are updated, yielding even faster convergence than
the pure primal or pure dual approach. Some numerical evidence was also
supplied to support this. In addition, this method is flexible enough to incor-
porate a variety of regularisation and data fidelity terms. Based on this general
framework, the primal-dual method for the TV demosaicking model (5.4) was
described in particular.



CHAPTER 6
Applications to image
restoration problems

In this chapter we present and discuss the results of a number of image restora-
tion experiments performed with the ROF model (4.2), the vectorial ROF
model (4.6), the TV inpainting model (4.8), and also the TV demosaicking
model (4.16). We begin with some standard denoising, deblurring and in-
painting problems which have been demonstrated many times in the literature.
However, include them here as stepping stones on the way to other image
restoration tasks, and also because it illustrates the capacity and flexibility of
TV-based regularisation. Next, we consider the problems of chromatic aberra-
tion and demosaicking for single-sensor digital colour cameras. The former can
be treated as a deblurring problem where the point-spread function is different
for each colour channel, whereas the latter is solved with the TV demosaicking
model from Section 4.4.

In order for the results in this chapter to be reproducible, the Matlab code
that is used in the following numerical experiments has been made available at
http://folk.uio.no/jamesdt/.

The images used in this chapter are standard test images. Most of these are
available from the USC-SIPI database (http://sipi.usc.edu/database/).
In addition, a set of 24 colour images from the Kodak image database are used
in the evaluation of demosaicking algorithms. These images are 512×768 pixels,
and they depict a variety of scenes, as shown in Figure 6.6. Note that in the
following experiments, the image intensities are scaled to lie in the range [0, 1].

Comparing image restoration algorithms is a difficult subject. Sometimes it
is possible to compare a given restoration to the original image, whenever that
is available. However, this evaluation is usually subjective. The best image
restoration is the one which is most visually pleasing. On the other hand,
there exist a number of objective criteria that attempt to quantify how good
a given restoration is compared to the original image. We will review some of
these below. It is important to note that such criteria are only a convenient
substitute for subjective evaluation, and, therefore, they should ideally reflect
the same findings as with a subjective evaluation.

63
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This difficulty is highlighted in the context of demosaicking by Longére
et al. in [49]. Here the authors describe an experimental setup in which partic-
ipants compared and evaluated images demosaicked by various methods. The
result was a ranking of those demosaicking algorithms from best to worst. How-
ever, it was observed, perhaps surprisingly, that this ordering disagreed with
that predicted by the standard S-CIELAB colour image metric [80]. Still, ob-
jective performance criteria can provide useful information and they are very
commonly used in the literature. They must not be used blindly, but should
instead be balanced by some form of visual inspection. Therefore, we have at-
tempted to supplement our results in terms of objective performance measures
with images that demonstrate the effects of a given method.

Now, let us present some objective performance criteria. Let f ∈ RMN

denote a grayscale image of M -by-N pixels, and let f̃ ∈ RMN be an approxi-
mation to f . The mean-square error (MSE) is given by

MSE :=
1

MN

M,N∑
i,j=1

(fi,j − f̃i,j)2. (6.1)

The peak signal-to-noise (PSNR) ratio is a related logarithmic measure

PSNR := 10 log10

(
1

1
MN

∑M,N
i,j=1(fi,j − f̃i,j)2

)
. (6.2)

This can be extended to P -channel colour images f, f̃ ∈ RMNP . This is known
as the colour peak signal-to-noise ratio (CPSNR) [2]

CPSNR := 10 log10

(
1

1
MNP

∑M,N,P
i,j,k=1(fki,j − f̃ki,j)2

)
. (6.3)

6.1 Denoising and deblurring

The examples in this section are considered to be fairly standard in the vari-
ational image processing literature and they have been demonstrated many
times for the ROF and VROF models.

Our first example is one of denoising a grayscale image for which the ROF
model is known to produce very good results. Consider the image shown in Fig-
ure 6.1(a). An additive white Gaussian noise with a standard deviation of
σ = 0.5 is added, producing the noisy image shown in Figure 6.1(b). Note that
such a large amount of noise, the standard deviation corresponding to half of
the maximum image intensity, represents a quite extreme case. The image re-
stored by the ROF model with λ = 1 is shown in Figure 6.1(c). The results
are quite pleasing since the noise has essentially been removed and the edges
of the objects are still quite prominent.

Next, we consider the same experiment, but performed instead on the se-
lected natural images shown in Figure 6.2. To each image, additive white
Gaussian noise with a standard deviation of σ = 0.1 is added. Then the image
is restored using the ROF model with the regularisation parameter λ = 15
which was determined experimentally. Once more, the ROF model succeeds
in removing noise while recovering the edges of the image. However, since the
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(a) (b) (c)

Figure 6.1: Denoising a synthetic image. To the image on the left there was added
a white Gaussian noise of standard deviation σ = 0.5. The result of denoising using
the ROF model with λ = 2 is shown on the right.

ROF model inherently focuses on restoring the geometric parts of the images,
some of the finer details are lost in the process of removing the noise.

A final example of denoising a colour image is shown in Figure 6.3. Here
the noise is additive white Gaussian-distributed with a standard deviation of
σ = 0.2. Two results are shown. The first is of denoising by applying the
ROF model to each channel individually, and the second comes from solving
the VROF model where the colour channels are treated jointly. The latter is
slighly better in terms of PSNR. Although the visible difference is not very
large, the VROF model is slightly better at restoring some finer details and
texture, e.g., the wall to the left in the image.

Next, we evaluate the ROF model for deblurring a grayscale image. For this,
we follow the numerical experiments in [77] and [78]. This involves compar-
ing the ROF model to built-in functions from the MATLAB Image Processing
Toolbox. These are “deconvreg”, “deconvwnr”, and “deconvlucy”. The algo-
rithms implemented by these functions are well known in the image processing
literature, see, e.g., [35]. To give a short description, deconvreg solves the
Tikhonov regularisation problem (see eq. (1.3) in Section 1.2) with the Lapla-
cian operator for regularisation term, deconvwnr computes the Wiener-filter
restoration that minimises the mean-square error between the estimated image
and the original, and deconlucy implements the Richardson-Lucy allgorithm,
a constrained maximum likelihood problem for Poisson-distributed noise. Fur-
ther details may be found in [78] and the references therein.

Consider the 512 × 512 grayscale image in Figure 6.4(a). The image was
blurred with a PSF that is a Gaussian low-pass filter

K(x, y) = e−(x2+y2)/(2c2), (6.4)

with c = 11, and a square support that is 21 pixels wide. A Gaussian white
noise with a standard deviation of σ = 10−3 was added to the blurred image,
and the result can be seen in Figure 6.4(b). The results of the image deblurring
are shown next in Figure 6.4. The deconvwnr result exhibits quite a large
amount of noise, whereas the deconvlucy and deconvreg show some “ringing”
artefacts. For the ROF model, the regularisation parameter was chosen to be
λ = 5× 104. In terms of both PSNR and visual quality, the ROF model shows
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(a) Original (b) Original

(c) Noisy (PSNR: 19.98dB) (d) Noisy (PSNR: 20.00dB)

(e) Restoration (PSNR: 28.34dB) (f) Restoration (PSNR: 29.57dB)

Figure 6.2: Denoising natural images. The first row displays the original grayscale
images and the middle row shows the noisy images with additive white Gaussian noise
with a standard deviation of σ = 0.1. The final row shows the restored images using
the ROF model with a regularisation parameter of λ = 15. Below is the PSNR that
was achieved by the restoration.
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(a) Original (b) Noisy (13.97 dB)

(c) Channel-by-channel ROF (23.73 dB) (d) VROF model (24.11 dB)

Figure 6.3: Denoising colour images. The first row displays the original and
noisy colour image. The noise is additive white Gaussian with a standard deviation
of σ = 0.2. Below are the respective denoising results that come from applying the
ROF model separately to each colour channel with λ = 6, and from applying the
VROF model with λ = 4.1 to denoise the colour channels jointly. The PSNR is
displayed below each restored image.
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the best performance. As in our previous examples, the restoration produced
by the ROF model is able to represent discontinuities in the image.

6.2 Chromatic aberration

In this section, we consider the restoration of an image suffering from chro-
matic aberration. This may be treated as a colour image deblurring problem.
Consider the colour image shown in Figure 6.5(a). To simulate the effect of
axial chromatic aberration (see Figure 2.5(b)), the three colour channels are
blurred by varying amounts. The PSF applied to each channel is a uniform
disk with a radius of 10 pixels for the red and blue channels, and only 2 pixels
for the green channel. Thereafter, additive white Gaussian noise was added
with standard deviations σ1 = 0.001 and σ2 = 0.01 for two different examples.
The degraded images, shown in Figure 6.5(b) and Figure 6.5(c), clearly display
the effects of colour fringing.

Here we have only treated each colour channel independently and applied
the ROF model to denoise and deblur each of them. The regularisation param-
eters for the two cases were chosen to be λ = 50 000 and λ = 1000. The full
restorations are shown in Figure 6.5(d) and Figure 6.5(e). The effects of the
colour fringing are reversed, and since the amount of noise was not too severe,
even much of the texture is recovered. This is true also for the noisier case,
although a small amount of colour fringing can still be observed.

6.3 Demosaicking

In this section, we consider the demosaicking problem in the context of the
variational methods we have studied. Recall that a single-sensor digital colour
camera employs a colour filter array (CFA) to assign each pixel to one of a
number of possible colour channels. Although variational methods are able
to deal with any CFA configuration, we restrict our attention to the standard
Bayer CFA (see Figure 2.2(a)). Two different regularisation approaches are
compared. The first is to treat each colour channel independently and attempt
to inpaint the missing pixels. This leads to unsatisfactory results that moti-
vates the need for a better regularisation. Hence, the second approach uses
the TV demosaicking model from Section 4.4 which is based on applying the
regularisation in the luminance-chrominance basis.

First, let us consider a simple experiment that consists of inpainting a ver-
tical edge that has been subsampled according to the green colour channel of
the Bayer CFA. Figure 6.7(a) shows the subsampled image where every second
pixel is missing. As we have already demonstrated in Example 4.11, the TV
inpainting model (4.8) and the harmonic inpainting model (4.10) behave quite
differently in this kind of situation. We expect the former to fill in the gaps in a
smooth manner, whereas the TV inpainting favours a piecewise constant solu-
tion. The result of the inpaintings is shown in Figure 6.7(b) and Figure 6.7(c).
The TV inpainting recovers the edge exactly, while the harmonic inpainting
produces a zipper-like effect along the edge with alternating light and dark
pixels.

In the red colour channel of the Bayer CFA, this effect is even more pro-
nounced, see Figure 6.7. Here, we can also see that the TV inpainting does
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(a) Original (b) Blurred and noisy (PSNR: 20.97dB)

(c) deconvwnr (PSNR: 22.73dB) (d) deconvreg (PSNR: 28.53dB)

(e) deconvlucy (PSNR: 22.92dB) (f) ROF model (PSNR: 30.16dB)

Figure 6.4: Image deblurring. The original image (a) is blurred by a Gaussian
PSF (6.4) with c = 11, and white Gaussian noise with a standard deviation σ = 10−3

is added to produce the image in (b). The subsequent images show the restoration
with (c) deconvwnr, (d) deconvreg, (e) deconvlucy, and (f) the ROF model.
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(a) Original

(b) σ = 0.001 (PSNR: 23.13dB) (c) σ = 0.01 (PSNR: 23.04dB)

(d) Restoration (PSNR: 32.74dB) (e) Restoration (PSNR: 27.67dB)

Figure 6.5: Chromatic aberration. To simulate the effects of axial chromatic
aberration, the red, green and blue colour channels of the original image (a) are
blurred by varying amounts. The two images in the middle row display the blurred
image with different amounts of noise added. The bottom row shows the resulting
restoration from applying the ROF model to each colour channel separately.
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Figure 6.6: The Kodak image database. This is a standard database of 24 colour
images, often used to evaluate demosaicking algorithms. The images are referred to
as no. 1–24, numbered from left to right and top to bottom.

not precisely recover the edge in the red channel either. Instead, there is a
transition across the edge which is one pixel wide.

It is clear that if either of these methods is used to naively inpaint the
colour channels separately, the resulting demosaicking suffers some quite severe
artefacts in the form of false colours and zipper effect. This can be improved
by applying the VROF model (4.6) so that the colour channels are restored
jointly. An example of this approach is displayed in Figure 6.8. Unfortunately,
this method is not particularly successful, and the resulting demosaicking shows
false colours especially near thin structures or in textured regions. This is seen
clearly in Figure 6.8(b).

The luminance-chrominance decomposition of Alleysson et al. [2] is an im-
provement over many of the demosaicking algorithms that work in the usual
RGB basis. This is also the motivation behind our TV-based demosaicking
model (4.16) that applies the regularisation in the luminance-chrominance ba-
sis. Using the primal-dual algorithm from Section 5.3, we now consider the
performance of this new regularisation.

Note that the algorithm in [2] is based on designing linear filters for esti-
mating the luminance and chrominance components of the image. In practice,
the optimal filter will actually depend on the underlying image. More precisely,
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(a) Green colour channel (b) Harmonic inpainting (c) TV inpainting

(d) Red colour channel (e) Harmonic inpainting (f) TV inpainting

Figure 6.7: Inpainting a vertical edge in the green and red colour channels of the
Bayer CFA. The harmonic inpainting model (4.10) results in a zipper-like effect near
edges. Although the TV inpainting model (4.8) represents an improvement, it is not
able to entirely recover the edge in the red colour channel. This illustrates the problem
of demosaicking by inpainting each colour channel separately.

it will depend on exactly how smooth the luminance and chrominance compo-
nents are. Therefore, it is necessary to strike a balance and select filters that
perform well on average for a set of images. On the other hand, for the reg-
ularisation approach this can be more explicitly controlled by the parameters
of the regularisation model. That is, the parameter µ in the TV demosaicking
model (4.16) determines how much regularisation is applied to the luminance
relative to the chrominance. For example, if an image happens to have a more
regular chrominance component, µ should be chosen larger. The point is that
these parameters are much easier to adapt to the underlying image compared
to the design of a linear filter, as in the approach of Alleysson et al. in [2].

Now, we compare the method in [2] to our proposed TV demosaicking
model. The entire set of 24 images from the Kodak database were subsampled
according to the Bayer CFA and subsequently demosaicked with the TV demo-
saicking model. For this, the parameter λ that weights the data fidelity term
was set to λ = +∞. This corresponds to exactly enforcing the data fidelity
constraint which is appropriate in the noiseless case. The chrominance regu-
larity parameter was determined experimentally for each image. The resulting
CPSNR values are shown in Table 6.1. In the same table, the results from
demosaicking by bilinear interpolation and the method in [2] are also shown
(these results were obtained from [29]).

For most of the images, the TV demosaicking model represents an improve-
ment in CPSNR over the method of Alleysson et al.. Although the average
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(a) VROF model

(b) Zoom-in

Figure 6.8: Demosaicking with the VROF model. The image in (a) displays
a demosaicking of image no. 5 from the Kodak test set. The demosaicking was
performed by solving VROF model (4.6) with the corresponding operator A that models
the effects of the Bayer CFA. The image in (b) is a zoomed-in region that clearly shows
the appearance of false colours due to the demosaicking. This is particularly apparent
near textures or thin structures such as the spokes of the bikes.
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Image no. Bilinear interpolation Alleysson et al. [2] TV-based demosaicking
01 26.35 36.47 39.30
02 33.11 37.72 38.15
03 34.53 40.03 41.41
04 33.76 38.99 39.06
05 26.72 35.92 35.94
06 27.86 37.45 38.65
07 33.53 39.91 39.89
08 23.61 32.69 35.05
09 32.51 40.07 40.86
10 32.51 40.99 40.30
11 29.22 38.02 37.97
12 33.53 41.02 42.35
13 23.92 34.94 35.90
14 29.28 33.78 35.05
15 32.55 38.25 37.90
16 31.38 40.62 42.42
17 32.15 41.14 40.05
18 28.05 36.68 35.72
19 28.11 37.56 38.87
20 31.65 39.71 40.02
21 28.55 37.88 38.81
22 30.46 36.96 36.83
23 35.20 39.87 40.75
24 26.71 34.96 33.26

Average 30.22 37.99 38.52

Table 6.1: Demosaicking results. The table displays the CPSNR of the demo-
saicked images from the Kodak test set for three methods (i) bilinear interpolation
of each colour channel, (ii) the frequency domain luminance-chrominance estima-
tion method of Alleysson et al. [2], and (iii) the proposed TV demosaicking model
from Section 4.4.

improvement is only about 0.5dB, for some images, e.g., no. 1 and no. 8, the
improvement is more significant. In addition, a zoomed-in region of the demo-
saicking of image no. 3 from the Kodak test set is shown in Figure 6.9. This
shows that the TV demosaicking model does not suffer from the same zipper-
like artefacts that appear with the method [2], especially near the boundaries
of objects where there is a transition in colour.

Still, the main advantage of the regularisation-based approach is that it can
be used to simultaneously perform denoising and demosaicking. This is very
important in practice for a real single-sensor digital colour camera. It has been
argued, e.g., by Hirakawa and Parks [42], that considering denoising and demo-
saicking simultaneously has some benefits. An obvious benefit, at least for the
the regularisation methods used here, is that no additional computational effort
is required to perform this denoising. Though perhaps more important is the
fact that the process of demosaicking changes the characteristics of the noise,
thereby complicating the analysis and any subsequent denoising algorithm.

With this in mind, we provide a final example of demosaicking in the pres-
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(a) Frequency domain method of Alleysson et al. [2]

(b) TV demosaicking model

Figure 6.9: Demosaicking artefacts. The images display a zoomed-in region of
the demosaicking of image no. 3 from the Kodak test set. The top image displays
the result from the frequency domain luminance-chrominance estimation method of
Alleysson et al. [2], and the bottom is the proposed TV demosaicking model. The top
image exhibits a certain zipper-like effect that occurs with the method in [2] especially
near colour edges. The proposed TV demosaicking model does not suffer from the
same artefact.
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ence of noise. For this, we take a single image from the Kodak test set, subsam-
pled according to the Bayer CFA and add Gaussian white noise of standard
deviation σ = 0.02. The demosaicking is computed as above, but we have
now set the data fidelity parameter to λ = 1000. The chrominance regularity
parameter was set to µ = 1.46. The noisy CFA image and the demosaicking
are shown in Figure 6.10. The CPSNR of the resulting restoration is 34.70dB.
We compare this to the same experiment performed by Menon and Calvagno
in [54] with a different regularisation approach based on a quadratic regular-
isation term. For the same image, Menon and Calvagno reported a CPSNR
of 32.95dB. Although this is only demonstrated for a single image, we might
expect the TV regularisation to give a similar improvement in other cases.

6.4 Summary

In this chapter, we have covered a number of applications of TV-based regulari-
sation methods to image restoration. Although using the ROF and VROFmod-
els for denoising and deblurring is fairly standard in the literature, nonetheless,
they illustrate the power and versatility of these methods. These examples all
illustrate the main characteristic of the TV-based regularisation, that is to say,
its ability to restore edges in the degraded images. More importantly, we have
considered two image restoration problems directly related to digital colour
cameras. The first is an example of deblurring a colour image suffering from
axial chromatic aberration. The results shown here are more a proof-of-concept
that illustrate the feasibility of the TV regularisation approach. Second, we
considered the TV demosaicking model from Section 4.4, and demonstrated
improved results compared to the approach of Alleysson et al. [?].
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(a) Noisy CFA image (σ = 0.02)

(b) TV-based demosaicking (CPSNR: 34.70dB)

Figure 6.10: Demosaicking in the presence of noise. The image in (a) shows
image no. 1 in the Kodak test set, subsampled according to the Bayer CFA and with
additive white Gaussian noise of σ = 0.02. Below is the demosaicking of this image
with the proposed TV demosaicking model.





CHAPTER 7
Conclusion

Variational methods, based on minimising some cost or energy functional over
a set of feasible solutions, represent a rather flexible approach to solving image
restoration problems. By regularising the given problem, one can incorporate
prior information about the solution. In a sense, this allows one to describe in
rough terms what the restored image should look like.

The total variation-based methods in this thesis are an example of this ap-
proach. In this case, the regularisation is designed to favour piecewise constant
solutions, and the resulting image restoration methods tend to restore both
large-scale features and edges in the image. This is desirable because edges are
particularly important visual cues. In the discrete case, such a regularisation
is achieved by finding a solution with a nearly sparse gradient. This is in turn
related to minimising the `1-norm of the gradient.

The numerical experiments in the previous chapter demonstrated this for a
number of image restoration problems, including denoising, deblurring, chro-
matic aberration and demosaicking. The treatment of chromatic aberration
was more a proof-of-concept to demonstrate that the TV-based regularisation
approach also is able to deal with this effect.

In the case of demosaicking, the usual regularisation provided by the vec-
torial ROF model gave unsatisfactory results. In particular, the demosaicked
images displayed false colours in textured regions or near thin structures. The
proposed TV demosaicking model, based on the regularisation of the luminance
and chrominance components of the image, resulted in an improved restoration
in this case. Also, a certain zipper-like effect appearing near chromatic edges
with the method of Alleysson et al. [2] was also suppressed with the proposed
method.

In practice, images captured by a digital colour camera are always corrupted
by noise. Therefore, the regularisation-based approach offers an additional
advantage since it is already designed to account for this noise. The numerical
experiments in the previous chapter show that the TV-based regularisation is
successful also for deblurring, chromatic aberration and demosaicking in the
presence of noise.
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Future work

There is certainly more to be said with respect to comparing the proposed TV
demosaicking model with other demosaicking methods. In particular, it would
be interesting to further compare it to similar regularisation-based methods,
especially for demosaicking in the presence of noise.

Also, the treatment of chromatic aberration only considered axial chromatic
aberration. Although the case of lateral chromatic aberration could in theory
be treated in the same framework, this cannot be realistically modelled as a
spatially invariant convolution. Therefore, the operator in the forward image
model (1.1) that is associated with this degradation does not have the same
special structure as a convolution operator. In general, the matrix represen-
tation of such an operator consumes a lot of memory and can be difficult to
manage. Even worse is the fact that one cannot exploit efficient FFT-based
algorithms, such as for computing the proximal mapping (5.31) in the primal-
dual method for deblurring in Chapter 5. However, in special cases, the degra-
dation operator might have some other structure that can be exploited. Or,
one might consider approximating such an operator by subdividing the image
into a number of sub-images and applying convolutions with different kernels
to each sub-image.

Although we have limited our discussion to regularisation based on the total
variation functional, there are, of course, other possibilities. In particular, a
number of transforms, including curvelets [13] and shearlets [39], have been
introduced to provide sparse descriptions of images. It is easy to imagine that a
regularisation based on one of these transforms is likely to give improved results.
This has already been demonstrated for some image restoration problems, such
as denoising and inpainting, via so-called frame-based methods [12]. This could
be extended in particular to demosaicking and compared to the luminance-
chrominance regularisation in this thesis.
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