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Abstract

Many families of distributions have been proposed to describe insurance losses.
The process of finding the one which results in the best fit is time consuming.
This thesis tries to tackle the issue of avoiding such analyses, so that the computer
can handle it on its own. The approach is to introduce a flexible default loss
model which results in a good fit for most historical data. The extended Pareto
distribution, which comprises both heavy-tailed Pareto distributions and light-
tailed Gamma distributions, is a natural choice. The true underlying distribution
might not be part of the extended Pareto family, which leads to the necessity of
defining a framework for maximum likelihood estimation under misspecification.
In the beginning of this thesis such a framework is defined based on asymptotic
theory. Then, the possibility of using the extended Pareto family as default loss
model is examined. The potential reduction in error when the parametric family
is further widened is also discussed.

3



4



Acknowledgements

This thesis completes my Master’s degree in Modelling and Data Analysis, with the pro-
gramme option Finance, Insurance and Risk, at the University of Oslo. The work which
resulted in this thesis is done in the period from August 2011 to May 2013, and corresponds
to 60 credits. Writing this thesis has been both interesting and challenging.

First and foremost I wish to thank my supervisor Erik Bølviken. Throughout this period
Erik and I have had many interesting conversations. He has always been there to help me
when I needed it, and pushed me to figure things out myself when he knew I could. For this
I am sincerely grateful. Erik also provided me with the Fortran program “genlegendre1.f”
which is mentioned in Appendix C.

I would also like to give a special thanks to fellow student, Finn Harald Opsjøn, for help-
ing me with the simulations. To be able to run the simulations with the desired low level of
simulation error, several measures had to be done in order to decrease the simulation time.
Finn helped me a lot with this; I could not have done it without him.

I would also like to thank Mercer AS who has given me relevant work experience during
the last two years. I appreciate that they have always been flexible, such that combining work
and studies have been unproblematic. I would especially like to thank Tor-Eivind Høyland,
Stein Erik Petersbakken and Ingrid Maudal.

During my years at the University of Oslo I have met some amazing people. I would like
to take this opportunity to thank all my fellow students at the department of mathematics
and my friends from back home. You have always believed in me and been great friends and
supporters throughout my time as a student. I would also like to thank everyone who has
taken the time to help me point out typos.

Lastly, I would like to give a sincere thanks to my parents, my two wonderful sisters and
the rest of my family. My family means a lot to me, and they have always been there to
support and encourage me. I would also like to give a special thanks to my dear boyfriend
Christoffer, who has helped and supported me every step of the way.

Rebecca Wiborg
May 2013, Oslo

5



6



Contents

Abstract 3

Acknowledgements 5

1 Introduction 9

2 Maximum likelihood theory 11
2.1 The Kullback-Leibler distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 The one-parameter situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 The multi-parameter situation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Extension to risk functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 The extended Pareto distribution 21

4 Numerical methods 25
4.1 Finding θ0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Evaluating the error in θ̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Calculating the reserve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Expected total error; a numerical illustration . . . . . . . . . . . . . . . . . . . 29
4.5 Quantities used to analyse a default distribution . . . . . . . . . . . . . . . . . 30
4.6 Reinsurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Different underlying models 33
5.1 Finding the parameter sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 The log-normal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 The gamma distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4 The Pareto distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5 The log-gamma distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 A fourth parameter 49
6.1 The simple power transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Calculating the reserve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7 Concluding remarks 55

A Additional tables and figures 57

B Mathematical arguments 65

C R-scripts 71

7



CONTENTS

8



Chapter 1

Introduction

When trying to describe a set of data we have to choose a family of distributions with a
density function, say fθ(x), where θ is a vector of parameters of length p. Usually we spend
time trying to find a parametric family which results in the best fit of the data. In this thesis
the possibility of using the extended Pareto distribution as a default model for claim sizes in
non-life insurance is studied. That is, fθ(x) is always chosen to be the extended Pareto den-
sity without spending time studying the historical data. The extended Pareto distribution is
introduced in Chapter 3, and its vector of parameters is θ = (α, β, θ). When the true density
function, say g, is outside the parametric family, there is still asymptotic estimation theory
available, this is described below.

Within the parameter space there is a vector of parameters θ0 which minimizes the Kullback-
Leibler distance. The Kullback-Leibler distance is a measure of the difference between two
probability distributions which is defined in Chapter 2. In Chapter 2, it is also argued that
the way θ0 is defined implies that it is the vector of parameters which makes fθ(x) as close to
g(x) as possible. Peter J. Huber proved that the maximum likelihood estimator θ̂ is consistent
even when we do not assume that the true distribution of the data which defines the maximum
likelihood estimators is part of the parametric family, see Huber [6]. Hence, θ̂ → θ0 as the
number of observations n increases, also when Xi � fθ(x). There is a heuristic argument of
this in Chapter 2, whereas a proof with precise mathematics and conditions is given in [6].

Let Ψ be some functional on fθ or g describing some feature of the risk variable, e.g. the
quantile or the percentile functional. Because companies are usually more interested in the
error of Ψ(θ̂) = Ψ(fθ̂) than fθ̂ itself, error in Ψ(θ̂) is the main focus of this thesis. Total error
is the difference between the actual and the estimated value of the functional. It is defined as

Ψ(θ̂)−Ψ(g) = Ψ(θ̂)−Ψ(θ0) + Ψ(θ0)−Ψ(g), (1.0.1)

where Ψ(θ̂) − Ψ(θ0) is random error due to estimation. The second part, Ψ(θ0) − Ψ(g) is
the bias, i.e. systematic error that occurs because the underlying distribution of the observa-
tions is outside the theoretical distribution family. In Chapter 2, the asymptotic properties
of
√
n(θ̂ − θ0) are derived for a general default distribution fθ and a general underlying dis-

tribution g. At the end of the chapter, these properties are used to derive asymptotic theory
evolving total error, Ψ(θ̂)−Ψ(g).

In Chapter 4 numerical methods necessary in order to access the appropriateness of the
extended Pareto distribution as default loss model are given and illustrated. When the true
distribution g is known, θ0 is found by minimizing the Kullback-Leibler distance and θ̂ is esti-
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CHAPTER 1. INTRODUCTION

mated. The vector of estimates θ̂ can be found by means of maximum likelihood with respect
to data X1, ..., Xn, drawn randomly from the true distribution g. It can also be found by means
of the delta method which is introduced in Chapter 2. Both methods are illustrated in Chap-
ter 4. The functionals Ψ(g),Ψ(θ0) and Ψ(θ̂) are calculated by using Monte Carlo simulations.
Depending on Ψ there might also exist other procedures. However, in this thesis Monte Carlo
simulation is the approach used to calculate the functional Ψ on some density function g or fθ.

Thus, if the true underlying distribution g is known, there are procedures available that
make it possible to study systematic and estimation error separately. In Chapter 5, the dif-
ferent error terms are studied for four underlying distributions g. By studying the error terms
for various underlying assumptions, it is possible to deduce how well the extended Pareto
distribution works as default loss model. In Chapter 6, a fourth parameter λ is included.
This results in a more flexible default distribution and reduces systematic error.

When applying Monte Carlo simulations there is a third type of error, namely Monte Carlo
error. By increasing the number of Monte Carlo simulations m to a sufficient size, the sim-
ulation error is negligible. This third type of error is therefore not taken into account when
the different types of error is studied.

10



Chapter 2

Maximum likelihood theory

As mentioned in Chapter 1, asymptotic estimation theory is still available when the true
density function g is outside the parametric family. In this chapter, theory regarding the
maximum likelihood estimator θ̂ under misspecification is derived. In Chapter 1 it is stated
that θ0 is the vector of parameters which minimizes the Kullback-Leibler distance. In Sec-
tion 2.1, this measure of distance is more precisely defined, and methods for determining θ0
are given. In Section 2.2 and Section 2.3, heuristic arguments are used to show that

√
n(θ̂−θ0)

is normally distributed. This is first shown in the one-parameter situation and then in the
multi-parameter situation. The mean is always zero, but the standard deviation depends on
whether the correct distribution g is a part of the parametric family or not. In Section 2.4
these results are utilized to find the mean, the standard deviation and the distribution of total
error Ψ(θ̂)−Ψ(g). Section 2.4 also includes a discussion of the expected value of the square
of total error.

2.1 The Kullback-Leibler distance

The Kullback-Leibler distance is a non-symmetric measure of difference between two probabil-
ity distributions. In the setting of this thesis it is of interest to measure the difference between
the theoretical distribution fθ and the true underlying distribution g. Thus, by minimizing
the Kullback-Leibler distance, it is possible to find the set of parameters θ0 which makes the
distance between g(x) and fθ0(x) as small as possible. In order to split total error into a
random and systematic part, the best achievable density function fθ0(x) is required. If the
underlying distribution is a part of the parametric family, fθ0 is arbitrary close to the true
distribution g. Then there is no systematic error, and fθ0 can be regarded as the true density
function.

For two continuous density distributions fθ and g the Kullback-Leibler distance is defined
as an integral or as an expectation,

DKL(fθ|g) =

∫ ∞
−∞

g(x) log

(
g(x)

fθ(x)

)
dx = E[log g(X)− log fθ(X)]. (2.1.1)

The expectation is taken with respect to g, see Kullback and Leibler ([11], page 79-86). The
integral

∫
g(x) log(g(x))dx is a constant and does not depend on θ, and the crucial quantity

is −E[log fθ(X)]. This is utilized below.

DKL(fθ|g) is finite if g is absolutely continuous with respect to fθ. That is, g(x) = 0 for
any x ∈ R such that fθ(x) = 0, see Kullback and Leibler ([11], page 79-86). In this thesis the
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CHAPTER 2. MAXIMUM LIKELIHOOD THEORY

choices of fθ and g are density distributions that are defined for x ∈ (0,∞). Neither fθ(x), nor
g(x), are ever exactly equal to zero and they approach zero for the same values of x, namely
x→ 0 and x→∞. Hence g is absolutely continuous with respect to fθ, and DKL(fθ|g) <∞.
Note that DKL(fθ|g) equals zero if and only if g(x) = fθ(x), i.e. when the true distribution is
within the parametric distribution family.

The Kullback-Leibler distance can be approximated by a sum.

DKL(fθ|g) ≈ 1

m

m∑
i=1

log

(
g(Xi)

fθ(Xi)

)
(2.1.2)

where X1, ...Xm are m Monte Carlo simulations drawn independently from the true distribu-
tion g. For each i, g(Xi) is a constant, and consequently θ0 can be found by simply minimizing

− 1

m

m∑
i=1

log fθ(Xi). (2.1.3)

Note that minimizing (2.1.2) is the same as maximizing the log-likelihood function of fθ given
data X1, ...Xm ∼ g(x). As stated in Chapter 1, θ̂ → θ0 was the number of data m increases.
Hence by choosing m sufficiently large, it is possible to find a vector of parameters θ̂ arbi-
trarily close to θ0. Consequently, when m is close to infinity the Kullback-Leibler distance
measures the difference between the best choice within the parametric family fθ0 and the true
distribution g. The approach where θ0 is found by minimizing (2.1.3) is henceforth called the
Monte Carlo approach.

Another approach for approximating the Kullback-Leibler distance is to utilize Gauss-Legendre
quadrature. The idea is that we choose limits a and b such that the integral is approximately
0 outside (a, b). Then, for some integer N , a set of N abscissas X = (X1, ..., XN ), where
X1 > a and XN < b, and N weights w = (w1, ..., wN ) are found numerically. For a sufficiently
large N the integral in (2.1.1) can be approximated by a weighted sum of the integrand,

DKL(fθ|g) ≈
∫ b

a
g(x) log

(
g(x)

fθ(x)

)
dx ≈

N∑
i=1

wi

[
g(Xi) log

(
g(Xi)

fθ(Xi)

)]
. (2.1.4)

Gauss-Legendre quadrature gives high accuracy and converges fast as N increases if the inte-
grand is smooth, see Press et al. [15]. An integrand is considered smooth if it has derivatives
of sufficiently high order, see [15]. Computationally the Gauss-Legendre quadrature is more
difficult than the Monte Carlo approach. This is because the weights and abscissas have to be
found numerically. Even so, the rapid convergence makes it faster and more preferable than
the Monte Carlo approach.

2.2 The one-parameter situation

2.2.1 Asymptotic normality

The log-likelihood of the function fθ(x) = f(x|θ) is defined as l(θ) =
∑n

i=1 log[f(Xi|θ)]. The
derivative of the log-likelihood function is usually called the score function. We find the
maximum likelihood estimator θ̂ by setting the score function equal to zero and solve for θ,
i.e. θ̂ is defined through

n∑
i=1

∂ log[f(Xi|θ̂)]
∂θ

= 0.

12



2.2. THE ONE-PARAMETER SITUATION

When the score function is divided by
√
n and Taylor expansion around θ0 applied, then,

0 =
1√
n

n∑
i=1

∂ log[f(Xi|θ̂)]
∂θ

≈ Y + Z
√
n(θ̂ − θ0) (2.2.1)

where

Y = n−
1
2

n∑
i=1

Yi = n−
1
2 l′(θ0), Yi =

∂ log[f(Xi|θ0)]
∂θ

,

and

Z = n−1
n∑
i=1

Zi = n−1l′′(θ0), and Zi =
∂2 log[f(Xi|θ0)]

∂θ2
.

From the central limit theorem, see Devore and Berk ([5], page 293), we know that Y is
approximately normal for large n. By applying the law of large numbers see ([5], page 297), it
can be verified that Z → E[Z], where the expectation is taken with respect to g if Xi ∼ g(x),
and with respect to fθ if Xi ∼ fθ(x). Hence, since

√
n(θ̂ − θ0) ≈ −Y

Z , we can conclude that√
n(θ̂ − θ0) is normally distributed. The parameters come from the mean and variance of

Y1, ...Yn and the mean of Z1, ..., Zn.

2.2.2 Expected value

If the true distribution of X1, ..., Xn is within the theoretical distribution family, there exist a
set of parameters θ0 which makes the underlying density function of X1, ..., Xn arbitrary close
to fθ0 . Thus, fθ0 can be considered to be the true density function. We find the expected
value by noting that

∫∞
−∞ fθ0(x) = 1, consequently

∫∞
−∞

∂
∂θfθ0(x)dx = 0. Thus,

E[Yi] =

∫ ∞
−∞

∂ log fθ0(x)

∂θ
fθ0(x)dx =

∫ ∞
−∞

∂fθ0(x)/∂θ

fθ0(x)
fθ0(x)dx

=

∫ ∞
−∞

∂

∂θ
fθ0(x) = 0.

Hence, the expected value of
√
n(θ̂ − θ0) equals 0 when the true distribution is a part of the

parametric family.

However, the distribution of X1, ..., Xn might well be outside the theoretical distribution
family, i.e. Xi ∼ g(x). Recall that θ0 is the set of parameters which minimizes the Kullback-
Leibler distance, defined in (2.1.1). Since the derivative of a minimum or maximum is zero,
θ0 is the vector of parameters such that,

∂

∂θ
DKL(fθ0 |g) =

∂

∂θ

∫ ∞
−∞

g(x) log

(
g(x)

fθ0(x)

)
dx = −

∫ ∞
−∞

∂

∂θ
g(x) log fθ0(x) = 0.

The second equality comes from the fact that
∫∞
−∞ g(x) log g(x) is a constant. Consequently,

Eg[Yi] =

∫ ∞
−∞

∂ log fθ0(x)

∂θ
g(x)dx = − ∂

∂θ
DKL(fθ0 |g) = 0.

Hence, the mean of X1, ..., Xn is still zero, and E[
√
n(θ̂ − θ0)] = 0. That is, the maximum

likelihood estimator is consistent also when the true underlying distribution is outside the
chosen theoretical family.
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CHAPTER 2. MAXIMUM LIKELIHOOD THEORY

2.2.3 Standard deviation

If the assumed model is correct,

var[Yi] = E[Y 2
i ]

=

∫ ∞
−∞

(
∂

∂θ
log fθ0(x)

)2

fθ0(x)dx

= Efθ

[(
∂

∂θ
log f(Xi|θ0)

)2
]

:= Ifθ(θ0),

and

E[Zi] =

∫ ∞
−∞

(
∂2

∂θ2
log fθ0(x)

)
fθ0(x)dx

= −
∫ ∞
−∞

(
∂

∂θ
log fθ0(x)

)2

fθ0(x)dx = −Ifθ(θ0).

In Appendix B the second equality is justified, i.e. it is shown that E[Zi] = −E[Y 2
i ] = −var[Yi].

Ifθ(θ0) is usually called the Fisher information or the expected information. After insert-
ing for var[Yi] and E[Zi], it follows that the variance of the asymptotic normal distribution
is

σ2fθ0
=

var[Yi]

(E[Zi])2
=

1

Ifθ(θ0)
.

Thus when Xi ∼ fθ0(x), then

√
n(θ̂ − θ0) ∼ N (0, σ2fθ0

).

The expression for the standard deviation is different when the true model is outside the
parametric family. The relationship E[Zi] = −var[Yi] does no longer hold. All we can say is
that

var[Yi] =

∫ ∞
−∞

(
∂

∂θ
log fθ0(x)

)2

g(x)dx := Ig(θ0)

and

E[Zi] =

∫ ∞
−∞

∂2

∂θ2
log fθ0(x)g(x)dx := λ(θ0),

from which it follows that when g(x) 6= fθ0(x),

√
n(θ̂ − θ0) ∼ N (0, σ2g),

where

σ2g =
Ig(θ0)

{λ(θ0)}2
.

14



2.3. THE MULTI-PARAMETER SITUATION

2.3 The multi-parameter situation

If θ = (θ1, ...θp)
T is a vector of p unknown parameters, the log-likelihood function is l(θ) =∑n

i=1 log[f(Xi|θ1, ..., θp)]. The mathematics are advanced, and details are therefore not stud-
ied here. Precise mathematics and conditions are given in Huber [6]. The large sample theory
also applies to the multi-parameter situation. Therefore, by a generalization of the arguments
in the one-parameter situation, it is possible to prove that, for a general p,

√
n(θ̂ − θ0) is

asymptotically normally distributed with expectation zero, both when the assumed model is
correct and when it is false.

The expressions for the standard deviation depends, as for the one parameter situation, on
whether the assumed model is correct. Since the expected value equals zero we conclude that
var[Yi] = E[Y 2

i ]. The relationship E[Y 2
i ] = −E[Zi] still holds when there is more than one

parameter and the underlying distribution is a part of the parametric family. This is justified
in Appendix B by a slight generalization of the argument from the one-parameter situation.
The quantities are now matrices with the entry (j, l) given by

E[Y 2
i ] =

∫ ∞
−∞

(
∂

∂θj
log fθ0(x)

)(
∂

∂θl
log fθ0(x)

)
fθ0(x)dx = Ifθjl(θ0),

and

E[Zi] =

∫ ∞
−∞

(
∂2

∂θj∂θl
log fθ0(x)

)
fθ0(x)dx = −Ifθjl(θ0).

Hence, when the true distribution of the data is within the theoretical distribution fam-
ily, the Fisher information matrix is Ifθ(θ0). The entry (j, l) of Ifθ(θ0) is given by the entry
(j, l) in E[Y 2

i ].

Thus, when the true distribution is a part of the parametric family, i.e. when Xi ∼ fθ0(x),
√
n(θ̂ − θ0) ∼ N (0, I−1fθ (θ0)),

where
√
n(θ̂ − θ0) and 0 are column vectors of length p and I−1fθ (θ0) is a p× p matrix.

In the situation where the true distribution is outside the parametric family, the expression
for the covariance matrix is different. We need

Igjl(θ0) =

∫ ∞
−∞

(
∂

∂θj
log fθ0(x)

)(
∂

∂θl
log fθ0(x)

)
g(x)dx (2.3.1)

and

Λjl(θ0) =

∫ ∞
−∞

(
∂2

∂θj∂θl
log fθ0(x)

)
g(x)dx. (2.3.2)

From a result given and proved in Huber [6] and an extension of the argument from the one-
parameter situation, it can be shown that the covariance matrix of the vector

√
n(θ̂ − θ0) is

Λ−1IgΛ
−1, where Λ = (Λjl(θ0)) and Ig = (Igjl(θ0)) for j = 1, ..., p and l = 1, ..., p, see Huber

[6].

Hence, when the true distribution is outside the parametric family,
√
n(θ̂ − θ0) ∼ N (0,Λ−1IgΛ

−1),
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CHAPTER 2. MAXIMUM LIKELIHOOD THEORY

where
√
n(θ̂ − θ0) and 0 are column vectors of length p and Λ−1IgΛ

−1 is a p× p matrix.

It is easy to check that Λ−1IgΛ
−1 is reduced to σ2g when p = 1. Equation (2.3.2) is then

Λ11(θ0) =

∫ ∞
−∞

∂2 log fθ0(x)

∂θ21
g(x)dx = λ(θ0)

and (2.3.1) is

Ig11(θ0) =

∫ ∞
−∞

(
∂ log fθ0(x)

∂θ1

)(
∂ log fθ0(x)

∂θ1

)
g(x)dx = Ig(θ0)

where λ(θ0) and Ig(θ0) are the expressions from the one-parameter situation. Hence, Λ−1IgΛ
−1 =

λ(θ0)
−1Ig(θ0)λ(θ0)

−1 = Ig(θ0)/{λ(θ0)}2 = σ2g , and the expression for the standard deviation
from the multi-parameter situation is reduced to the one-parameter situation expression. The
same happens with the expression for the standard deviation when the assumed model is
correct.

Note that by replacing g(x) with fθ(x) in the expressions for Λ(θ0) and Ig(θ0), the expressions

are reduced to those of −Ifθ(θ0) and Ifθ(θ0) respectively. Hence, the variance of
√
n(θ̂ − θ0)

becomes I−1fθ (θ0). Consequently, if g is the true distribution and it can be both within and
outside the parametric family, the situation Xi ∼ fθ(x) can be regarded as a special case
of the general situation where Xi ∼ g(x). Thus, henceforth the situations Xi ∼ g(x) and
Xi ∼ fθ(x) are not treated separately.

The results from this section and Section 2.2 are later used to evaluate the error in θ̂, and
thus find estimates of the differences between Ψ(θ̂), Ψ(θ0), and Ψ(g). The method when the
asymptotic properties of θ̂ are used to evaluate error is called the delta method. By drawing
random, independent normal data the delta method produces estimates of error in θ̂. As
mentioned in Chapter 1, maximum likelihood can also be utilized to evaluate the error in θ̂.
When maximum likelihood is applied, consistent estimates θ̂ of θ0 are found by maximizing
the log-likelihood function of fθ, with respect to the data X1, ..., Xn, where the data is drawn
from the underlying distribution g. More on this subject in Chapter 4.

2.4 Extension to risk functionals

As mentioned in Chapter 1, what is usually studied is not θ̂ or fθ̂(x) itself, but some func-

tional Ψ(θ̂) = Ψ(fθ̂) describing some feature of the risk variable. Asymptotic properties of

total error Ψ(θ̂) − Ψ(g) are derived in Section 2.4.1 using the results from Section 2.3. In
Section 2.4.2 the square of expected total error is decomposed into three terms, which are
then examined separately.

In this section the general situation, where the true distribution g can be both within and
outside the parametric family is considered. Instead of first deriving the results for the one-
parameter situation and then extend it to the multi-parameter situation, as was done to find
the asymptotic properties of

√
n(θ̂−θ0), the results are given for the multi-parameter situation

directly.
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2.4. EXTENSION TO RISK FUNCTIONALS

2.4.1 Asymptotic properties

As considered in Chapter 1 total error can be divided into a random part and a constant part,
i.e. estimation error and systematic error,

Ψ(θ̂)−Ψ(g) = {Ψ(θ̂)−Ψ(θ0)}+ {Ψ(θ0)−Ψ(g)}.

By applying Taylor expansion in p dimensions on Ψ(θ̂) around the vector θ0, Ψ(θ̂) can be
rewritten as,

Ψ(θ̂) ≈ Ψ(θ0) +
∂Ψ(θ̂)

∂θ1
|θ̂=θ0(θ̂1 − θ01) + ...+

∂Ψ(θ̂)

∂θp
|θ̂=θ0(θ̂p − θ0p).

Hence, estimation error can be approximated,

Ψ(θ̂)−Ψ(θ0) ≈ ∇Ψ(θ0)(θ̂ − θ0),

where

∇Ψ(θ0) =

{
∂Ψ(θ0)

∂θ1
, ...,

∂Ψ(θ0)

∂θp

}
(2.4.1)

is the gradient of Ψ(θ̂) evaluated at θ̂ = θ0. Each term in the vector ∇Ψ(θ0) is a constant.
(θ̂ − θ0) is also a vector of length p,

(θ̂ − θ0) = {(θ̂1 − θ01), ..., (θ̂p − θ0p)}T.

Thus total error can be written as

Ψ(θ̂)−Ψ(g) ≈ ∇Ψ(θ0)(θ̂ − θ0) + {Ψ(θ0)−Ψ(g)}
=: a
√
n(θ̂ − θ0) + b,

where a = n−1/2∇Ψ(θ0) and b = Ψ(θ0)−Ψ(g) is systematic error.

Suppose y = cx+ d, where x ∼ N (µ,Σ) is a p-dimensional multivariate normally distributed
random vector, c and d are constants vector of length p. Then,

y ∼ N (cµ+ d, cTΣc),

see Patel and Read ([13], page 290). Thus, since it was shown in Section 2.3 that

√
n(θ̂ − θ0) ∼ N (0,Λ−1IgΛ

−1),

it follows that

a
√
n(θ̂ − θ0) ∼ N (0, aTΛ−1IgΛ

−1a),

and, since b is a constant

Ψ(θ̂)−Ψ(g) ∼ N (b, aTΛ−1IgΛ
−1a).

This can be rewritten as
Ψ(θ̂)−Ψ(g) ∼ N

(
b,
τ

n

)
, (2.4.2)

where

b = Ψ(θ0)−Ψ(g) and τ = {(∇Ψ(θ0))
TΛ−1IgΛ

−1∇Ψ(θ0)}
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CHAPTER 2. MAXIMUM LIKELIHOOD THEORY

and where ∇Ψ(θ0) was defined in (2.4.1).

Clearly,

var[Ψ(θ̂)−Ψ(g)] =
τ

n
→ 0 as n→∞.

Thus, total error is normally distributed with expected value equal to systematic error. The
expected value is different from zero if the true distribution g is outside the parametric family.
The standard deviation of total error converges to zero when n→∞. That is, when n→∞,
total error equals systematic error with probability 1.

Note that since random error equals total error when b = 0,

Ψ(θ̂)−Ψ(θ0) ∼ N
(

0,
τ

n

)
. (2.4.3)

Some might argue that systematic error depends on n in the sense that it is possible to
choose a better parametric distribution family, i.e a fθ closer to g, when the number of ob-
servations n increases. In this thesis however, a default distribution family is chosen a priori.
Therefore the last objection is ignored.

Finding ∇Ψ(θ0)

It is often difficult to find the gradient ∇Ψ(θ0) explicitly, but numerical approximations are
available. If ∇Ψ(θ0) is as defined in (2.4.1), the jth term can be approximated by

∇Ψ(θ0)j ≈
Ψ(θ0 + hej)−Ψ(θ0 − hej)

2h
,

where ej = (0, .., 0, 1, 0, .., 0) with 1 at entry j. The constant h is some small number. In the
setting of this thesis the estimate of ∇Ψ(θ0) is very unstable due to how random extended
Pareto variables are drawn. Therefore, a great amount of Monte Carlo simulations are needed.
Consequently, a procedure where estimates of the total error are found by drawing random
independent normal data based on (2.4.2) is not carried out or further discussed.

2.4.2 Expected total error

Expected total error is of great interest as a measure of how far the estimated reserve is from
the true value. In later sections, E[{Ψ(θ̂)−Ψ(g)}2]1/2 is used to indicate the appropriateness
of the extended Pareto distribution as parametric distribution family. The expectation of the
square of total error can be written as

E[{Ψ(θ̂)−Ψ(g)}2] = A1 + A2 + A3, (2.4.4)

where

A1 = E[{Ψ(θ̂)−Ψ(θ0)}2]
A2 = {Ψ(θ0)−Ψ(g)}2 and

A3 = 2{E[Ψ(θ̂)]−Ψ(θ0)}{Ψ(θ0)−Ψ(g)}.

18



2.4. EXTENSION TO RISK FUNCTIONALS

It would yield a neat interpretation if the cross term A3 could be ignored. Whether that is
appropriate will now be examined. This section contains some theoretical results, the techni-
cal details are however beyond the scope of this thesis and therefore omitted.

The first term, A1 = E[{Ψ(θ̂) − Ψ(θ0)}2], is the expectation of the square of estimation
error. In Section 2.4.1 it was argued that Ψ(θ̂)−Ψ(θ0) ∼ N

(
0, τn

)
, where τ is a constant also

defined in Section 2.4.1. Thus, since for a random variable X, E[X2] = var[X] + E[X]2, it
follows that

E[{Ψ(θ̂)−Ψ(θ0)}2] =
τ

n
.

Hence, term A1 is of order n−1.

The second and third term in (2.4.4) can be interpreted as skewness terms. If the true dis-
tribution is within the parametric family, {Ψ(θ0)−Ψ(g)} equals zero and the two last terms
in (2.4.4) are zero. Hence, when the true distribution is a part of the parametric family total
error equals random error. However, when the true distribution g is outside the parametric
family, the two last terms in (2.4.4) can not be neglected.

The second term, A2 = {Ψ(θ0) − Ψ(g)}2, is a constant. It is different from zero when g
is outside the parametric family, but might be of less importance compared to the two other
terms when n is small.

The third term, A3 = 2{E[Ψ(θ̂)]−Ψ(θ0)}{Ψ(θ0)−Ψ(g)}, is of order n−1, but this conclusion
needs some additional arguments. These arguments build on the decomposition (2.2.1) from
Section 2.2, and an extension to the multi-parameter situation includes advanced mathemat-
ics beyond the scope of this thesis. Thus, only the one-parameter situation is considered here.

In Section 2.4.1, it is stated that

Ψ(θ̂)−Ψ(θ0) ≈ Ψ′(θ0)(θ̂ − θ0).

Thus A1 and A3 in (2.4.4) can be rewritten as

A1 ≈ Ψ′(θ0)
2

√
n

E[
√
n(θ̂ − θ0)2] (2.4.5)

and

A3 ≈ 2{Ψ(θ0)−Ψ(g)}Ψ′(θ0)√
n

E[
√
n(θ̂ − θ0)]. (2.4.6)

In Section 2.2, Taylor expansion is applied to 1√
n

∑n
i=1

∂ log[f(Xi|θ̂)]
∂θ around θ0. By adding one

more term to the decomposition (2.2.1) we get,

0 ≈ Y + Z
√
n(θ̂ − θ0) + U

√
n(θ̂ − θ0)2,

where Y and Z are defined as in Section 2.2 and

U =
1

2n

n∑
i=1

∂3 log[f(Xi|θ0)]
∂θ3

.

In Section 2.2 it was shown that E[Y ] = 0, hence

0 ≈ E[Z
√
n(θ̂ − θ0)] + E[U

√
n(θ̂ − θ0)2].
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CHAPTER 2. MAXIMUM LIKELIHOOD THEORY

By the law of large numbers Z and U are constants in the limit, see Devore and Berk ([5],
page 297). Therefore, by Slutsky’s theorem, see Cramer ([4], page 255),

0 ≈ E[Z]E[
√
n(θ̂ − θ0)] + E[U ]E[

√
n(θ̂ − θ0)2].

By replacing with the expressions for A1 and A3 from (2.4.5) and (2.4.6), the expressions
become

0 ≈ E[Z]
√
n

2Ψ′(θ0){Ψ(θ0)−Ψ(g)}
A3 +

E[U ]
√
n

Ψ′(θ0)2
A1.

Thus,

A3 ≈ C×A1,

where

C = −2E[U ]{Ψ(θ0)−Ψ(g)}
E[Z]Ψ′(θ0)

is a constant. Since A1 is of order n−1 and A3 is a constant times something of order n−1 ,
A3 is also of order n−1.

Since A1 and A3 in (2.4.4) are of order n−1, they are dominated by A2 when n is large.
In particular A3 might be considered as a small remainder that can be neglected when n is
large, such that

E[{Ψ(θ̂)−Ψ(g)}2] ≈ E[{Ψ(θ̂)−Ψ(θ0)}2] + {Ψ(θ0)−Ψ(g)}2. (2.4.7)

The question is then how large n needs to be. From numerical studies shown in Section 4.4,
it turns out that for n ≤ 100000 the last term in (2.4.4) can not be neglected. Consequently,
the approximation (2.4.7) is not applied in this thesis.
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Chapter 3

The extended Pareto distribution

Due to its flexibility, the extended Pareto distribution is a natural choice when searching for a
default loss model. In Chapter 4 and Chapter 5 its suitability as default loss model is studied.
The extended Pareto distribution is a generalization of the ordinary Pareto distribution with
density and cumulative distribution functions

f(x) =
α/β

(1 + x/β)1+α
and F (x) = 1− 1

(1 + x/β)α
z > 0,

where α > 0 is the shape and β > 0 is the scale parameter, see Kleiber and Kotz ([10], page
59). The distribution is heavy-tailed and is much used in property insurance. There exist
explicit expressions for the mean, standard deviation, skewness and the kurtosis. However,
due to the heavy tails the expressions are only finite for α > 1, α > 2, α > 3 and α > 4
respectively. The expressions for the mean and the standard deviation are given in Section 5.4.

Consider now

f(x) =
Γ(α+ θ)

Γ(α)Γ(θ)

1

β

(x/β)θ−1

(1 + x
β )α+θ

, x > 0, (3.0.1)

where α, β, θ > 0 and θ is added as an additional shape parameter, see Beirlant et al. [8].
When θ = 1, the extended Pareto density takes the form of an ordinary Pareto density. When
the scale parameter β is linked to the mean ξ through β = ξα

θ , ξ and θ are fixed and α
becomes infinite, an extended Pareto distributed random variable has the shape of a gamma
distribution. By inserting β = ξα

θ , it can be shown that

f(x) =
Γ(α+ θ)

Γ(α)Γ(θ)

(xθ/ξα)θ−1

(1 + xθ
ξα)α+θ

→ (θ/ξ)θ

Γ(θ)
xθ−1e−θx/ξ as α→∞. (3.0.2)

The density function to the right is the density function of a gamma distributed random
variable with shape parameter θ and expectation ξ. When θ = 1 the expression to the right
in (3.0.2) is reduced to f(x) = ξe−x/ξ, which is the density function of an exponentially dis-
tributed random variable with expectation ξ. Thus, both the gamma distribution, the Pareto
distribution and the exponential distribution are parts of the extended Pareto distribution
family.

The density function of an extended Pareto random variable is decreasing over the real line
when θ ≤ 1 and has a single maximum for θ > 1. This is illustrated in Figure 3.1, where
the extended Pareto density function is plotted twice. The solid line is the density function
for θ = 0.8 and the dotted line is the density function for θ = 1.5. The other parameters are
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CHAPTER 3. THE EXTENDED PARETO DISTRIBUTION

Figure 3.1: The extended Pareto density function for (α, β, θ) = (2.5, 1, 0.8) (solid line) and
(α, β, θ) = (2.5, 1, 1.5) (dotted line).

fixed, α = 2.5 and β = 1.

The mean and standard deviation in the extended Pareto distribution are

E(X) =
θβ

α− 1
= ξ and sd(X) = ξ

√
α+ θ − 1

θ(α− 2)
.

The skewness coefficient and kurtosis are

skew(X) = 2

(
α+ 2θ − 1

α− 3

)√
α− 2

θ(α+ θ − 1)

and

kurt(X) =
3(α− 2)(α2θ + 2α2 + αθ2 + 4αθ − 4α+ 5θ2 − 5θ + 2)

(α− 4)(α− 3)θ(α+ θ − 1)
.

As for the ordinary Pareto distribution these expressions are only finite when α > 1, α > 2,
α > 3 and α > 4 respectively. The expressions are verified in the Appendix B.

When θ = 1, i.e. when we are dealing with the ordinary Pareto distribution, random variables
can be drawn by using inversion. Let U∗ be a randomly drawn uniformly distributed variable
on the interval [0, 1]. The inverse Pareto cumulative distribution function is

Z = β(U−
1
α − 1). (3.0.3)

Hence, Pareto distributed random variables Z can be found by replacing U∗ with U in (3.0.3),
see Iyengar [7]. However, when θ 6= 1 the cumulative distribution is complicated and simula-
tion with inversion becomes difficult. Instead an extended Pareto distributed random variable
can be simulated by first simulating two independent standard gamma distributed random
variables, Gθ and Gα, with shape parameters θ and α. The standard gamma distribution has
mean equal to one and is defined in Chapter 5. Thereafter, it can be utilized that if

Z = β
θGθ
αGα

,
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Z is an extended Pareto distributed random variable with parameters (α, β, θ), see Goovaerts
et al. [12].

In Chapter 4, estimates of the parameters (α̂, β̂, θ̂) are found by optimizing the log-likelihood
function given by

l(α, β, θ) = n[log{Γ(α+ θ)} − log{Γ(α)} − log{Γ(θ)} − θ log{β}]+
(θ − 1)

∑n
i=1 log{yi} − (α+ θ)

∑n
i=1 log{1 + yi/β},

where y = (y1, ..., yn) is the data drawn from the true distribution g. Henceforth, the extended
Pareto distribution family is used as parametric family.
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Chapter 4

Numerical methods

Consider as in Chapter 1, the decomposition

Ψ(θ̂)−Ψ(g) = Ψ(θ̂)−Ψ(θ0) + Ψ(θ0)−Ψ(g),

where Ψ(θ̂)−Ψ(θ0) is random error due to estimation and Ψ(θ0)−Ψ(g) is systematic error. In
order to analyse these error terms separately, it is necessary to derive procedures for estimating
and determining parameters and functionals. In this chapter the numerical methods are
described and illustrated. The log-normal distribution with parameters (µ = 1, σ = 0) is
used as underlying distribution when the procedures are illustrated. It is not a part of the
extended Pareto distribution family, and there are both estimation and systematic error. The
log-normal distribution is one of four underlying distributions that are examined in Chapter 5.
The sizes of claims are often denoted by Z, and this notation is henceforth used. The R-scripts
used to conduct the simulations are given in Appendix C.

4.1 Finding θ0

4.1.1 The Monte Carlo approach

The Kullback-Leibler distance is defined in Section 2.1, and is a measure of the difference
between two probability distributions. In Section 2.1 it is argued that θ0, the vector of
parameters which minimizes the Kullback-Leibler distance, is the vector which minimizes
(2.1.3),

− 1

m

m∑
i=1

log fθ(Zi).

By increasing the number of Monte Carlo simulations m, it is possible to find a vector of
parameters θ arbitrarily close to θ0. When fθ(z) is the extended Pareto density, the Monte
Carlo approach returns the values (α0, β0, θ0). A drawback with Monte Carlo simulations is
that the simulation time might be high, because the number of simulations m needed often
is large. As an illustration, (α0, β0, θ0) are found using m = 105 Monte Carlo simulations.
The true distribution g ∼ log-normal(0,1) and fθ ∼ extended Pareto. The output is given in
Table 4.1.

4.1.2 Gauss-Legendre quadrature

In Section 2.1, Gauss-Legendre quadrature is introduced as a second method for approximat-
ing the Kullback-Leibler distance. By means of Gauss-Legendre quadrature the parameters
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Table 4.1: Parameter values found by means of the Monte Carlo approach.

α0 β0 θ0
2.43 1.00 2.45

Table 4.2: Parametr values found by means of Gauss-Legendre quadrature.

α0 β0 θ0
2.44 1.00 2.44

(α0, β0, θ0) stabilized fast, because N , the number of abscissas and weights, is small. In order
for Gauss-Legendre quadrature to function, the limits a and b have to be chosen such that the
probability mass in equation (2.1.4) is approximately 0 outside (a, b). That is, the integrand
is approximately zero outside (a, b). For distributions where (b− a) is large, the convergence
is relatively slow, e.g. when g ∼log-normal(0, 1) where a = 0 and b ≈ 100. The problem arose
for g ∼log-normal(µ, σ) and g ∼log-gamma(ξ, α) in this thesis. This complication is solved
by applying a transformation.

If H(z) = log{g(z)/fθ(z)}, g(z) ∼ log-normal(µ, σ) and Z = eµ+σy, (2.1.4) can be rewrit-
ten as ∫

H(z)g(z)dz =

∫
H(eµ+σy)φ(y)dy, (4.1.1)

where φ(y) is the Gaussian density with parameters (µ, σ). When g(z) ∼ log-gamma(ξ, α),
Z = eY − 1 where Y = ξY0 and Y0 is standard gamma, the same H(z) as above is used and
(2.1.4) can be rewritten as ∫

H(z)g(z)dz =

∫
H(eY − 1)fg(y)dy, (4.1.2)

where fg(y) is the density of the gamma distribution with expectation ξ and shape parameter
α. The standard gamma distribution is defined in Section 5.3.

The limits (a, b) where the latter integrands in (4.1.1) and (4.1.2), are approximately zero
above and beneath, depend on the parameters (µ, σ) from the log-normal distribution and
(ξ, α) from the log-gamma distribution. However, when g ∼log-normal and when g ∼log-
gamma, (b− a) is smaller when the transformation is used. For the parameter sets (µ, α) and
(ξ, α) used in this thesis, the parameters (α0, β0, θ0) stabilize for N < 30, when the transfor-
mation is applied.

If g ∼log-normal(0, 1), the latter integrand in (4.1.1) is approximately zero above a = −6
and beneath b = 6, and the parameters (α0, β0, θ0) stabilized with N ≈ 25. The parameter
values found by means of Gauss-Legendre quadrature with transformation (4.1.1) are given
in Table 4.2. The parameters (α0, β0, θ0) are approximately the same as what was found by
means of the Monte Carlo approach. Hence, both approaches work, but the procedure with
Gauss-Legendre quadrature converges faster.
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Henceforth Gauss-Legendre quadrature with the transformation is used to find the vector
of parameters θ0, for all versions of the log-normal and log-gamma. Clearly, if there is a
density distribution with a small value of (b − a) Gauss-Legendre quadrature without the
transformation can be applied. However, in this thesis the log-normal and the log-gamma
are the only two underlying distributions considered where the true distribution g outside the
parametric family; more on this subject in Chapter 5.

4.2 Evaluating the error in θ̂

4.2.1 The delta method

The delta method introduced in Section 2.2, utilizes that
√
n(θ̂−θ0) is approximately normal.

Then, random, independent normal data are drawn and used to evaluate the error in θ̂. In
Section 2.3, it is argued that the expected value is zero and that the covariance matrix is
Λ−1IgΛ

−1. The terms in Λ and Ig are given in (2.3.2) and (2.3.1) respectively. When fθ ∼
extended Pareto, Λ and Ig are 3× 3 matrices. A numeric illustration is given in Section 4.3.

4.2.2 Maximum likelihood

When estimating the parameters, maximum likelihood is the most common approach. In
Chapter 1, it is stated that the maximum likelihood estimator θ̂ converges, also when the as-
sumed distribution is different from the underlying distribution, see Huber [6]. Consequently,
θ̂ can be estimated by simulating n claim sizes from the true distribution. These data are
used to maximize the extended Pareto log-likelihood function. When g ∼ log-normal(0,1)
this approach leads to a lot less variability when calculating Ψ(θ̂) compared to when the delta
method is applied. A numeric illustration is given in Section 4.3.

4.3 Calculating the reserve

Insurance companies are usually more interested in analysing properties and error of some
functional Ψ of g and fθ, than g and fθ themselves. An example of such a functional is the
reserve. In this thesis the reserve is defined as the amount of money necessary such that the
liabilities are covered with probability (1 − ε)%, for some solvency criterion ε. That is, the
reserve is qε, the upper ε-percentile of the portfolio liability.

It is well established that the Poisson distribution with some parameters is a good approx-
imation to the probability distribution of the numbers of claims N . The parameters may
themselves be random, or they are constants. It is not the objective of this thesis to study
the distribution and the assumptions associated with the number of claims. Therefore, the
Poisson distribution’s parameters JµT are always assumed constant. J is the number of in-
dividuals in the portfolio, µ is the claim intensity and T is the observation period.

When simulating the reserve, several steps are needed. Algorithm 4.1 and Algorithm 4.2,
which are given below, are two procedures that can be used to find estimates of the reserve.
Algorithm 4.1 is the direct or intuitive procedure. However, long simulation time is a prob-
lem, and loops have to be avoided. Algorithm 4.2 is designed with the objective of avoiding
loops, and is therefore the algorithm used in the simulation programs. The R-scripts for the
programs are given in Appendix C. The density function h of the claim size Z varies for
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different simulations, e.g. when calculating Ψ(fθ0), h = fθ0 . If there is re-insurance, line 4 in
Algorithm 4.1 and line 6 in Algorithm 4.2 are changed; more on this subject in Section 4.6.

Algorithm 4.1: computing the reserve (intuitive procedure)

0 Given vector of parameters θ distribution function h(z) and parameters JµT .
1 Repeat m times.
2 N ∼ Poisson(λ = JµT )
3 Simulate Z = (Z1, ..., ZN ) ∼ h(z)

4 X =
∑N

i=1 Zi
5 Return X1, ..., Xm

6 Sort X1, ..., Xm such that X(1) ≥ ... ≥ X(m)

7 qε = X(mε) The reserve is the upper ε-percentile

Algorithm 4.2: computing the reserve (simulation version)

0 Given vector of parameters θ distribution function h(z) and parameters JµT .
1 Simulate N = (N1, ..., Nm) ∼ Poisson(λ = JµT )
2 maxN=max(N)

The largest value of the 1×m matrix N .
3 A= T[matrix(rep(c(1:maxN),m),maxN,m)]

A matrix with m rows, each row containing the numbers 1:maxN.
4 B=matrix(rep(N,maxN),m,maxN)

A matrix with one row per simulation. Row i containing the number N [i]
repeated maxN times.

5 I=t(B-A≥0)
A maxN×m identity matrix. Each simulation have one column.
For simulation i the first N [i] entries are 1, the rest are 0.

6 z=matrix(h(maxN*m, z), maxN,m)
maxN×m matrix, each element containing a random simulation from the h(z)
distribution.

7 Z=z*I
Matrix with one simulation per column. For a simulation i the first N [i]
elements contain simulations of h(z), the rest are 0.

8 X=apply(Z,2,sum)

1×m vector with values of Xj =
∑Nj

i=1 Zi +
∑maxN

Nj
0, j = 1, ...,m

9 return X1, ..., Xm

10 sort X1, ..., Xm such that X(1) ≥ ... ≥ X(m)

11 qε = X(mε)

The reserve is the upper ε-percentile.

The functionals Ψ(θ0) and Ψ(g) are constants, while Ψ(θ̂) varies with the number of data
n. As an example Ψ(θ0) and Ψ(g) are calculated. As before, g ∼ log-normal(0,1). The
parameters in the Poisson distribution JµT is set to 300. The output is

Ψ(g) = 613.3 and Ψ(θ0) = 678.7.
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Table 4.3: The expected value and the standrd deviation of the estimated reserve, calculated
by means of the delta method and maximum likelihood.

Ψ(g) = 613.3 Ψ(θ0) = 678.7
The delta method Maximum likelihood
mean sd mean sd

n = 50 - - 967.4 1078.2
n = 100 - - 747.5 282.6
n = 1000 1603.6 6443.2 676.7 49.7
n = 10000 690.0 108.8 680.1 16.4
n = 100000 681.0 33.5 678.4 7.9

Clearly, Ψ(g) < Ψ(θ0), and we can conclude that when g ∼log-normal(0,1), the extended
Pareto distribution tends to overestimate the reserve. Systematic error is |613.7 − 681.3| =
65.4, and can not be neglected.

In Section 4.2, two possible methods for evaluating error in the vector of parameters θ̂ =
(α̂, β̂, θ̂) are described, i.e. the delta method and maximum likelihood. Here Ψ(θ̂) is calcu-
lated with both methods. In order to reflect that there are different amounts of available
data in different non-life insurance branches, n is varied between 50 and 100000. The other
assumptions are kept constant with g ∼log-normal(0,1) and JµT = 300. For each n, the
simulations are repeated M times, and the mean and the standard deviation of Ψ(θ̂) are
calculated. The output is given in Table 4.3.

When g ∼ log-normal(0,1), the terms in the covariance matrix Λ−1IgΛ
−1 are large, espe-

cially when n ≤ 100. This again results in large variability in the parameter estimate (α̂, β̂, θ̂)
found by means of the delta method. Some simulations returns negative values of α̂. Then
Ψ(θ̂) can not be estimated. Thus, there is no value for Ψ(θ̂) when n ≤ 100 and the delta
method is applied. As expected Ψ(θ̂) converge to Ψ(θ0) when n → ∞ with both methods.
However, from Table 4.3 it is apparent that the convergence is much faster when maximum
likelihood is applied. The standard deviations are also a lot smaller. Consequently, maximum
likelihood is used to estimate Ψ(θ̂) in Chapter 5.

4.4 Expected total error; a numerical illustration

In Section 2.4.2 the expected value of the square of total error E[{Ψ(θ̂)−Ψ(g)}2], is decomposed
into three terms,

A1 = E[{Ψ(θ̂)−Ψ(θ0)}2]
A2 = {Ψ(θ0)−Ψ(g)}2 and

A3 = 2{E[Ψ(θ̂)]−Ψ(θ0)}{Ψ(θ0)−Ψ(g)}.

The three terms are analysed separately. The first and the third term are of order n−1, while
the second is of order 0. One question asked is whether it is possible to look at A3 as a small
remainder term that can be neglected. If so, E[{Ψ(θ̂)−Ψ(g)}2] can be approximately by,

E[{Ψ(θ̂)−Ψ(g)}2] ≈ E[{Ψ(θ̂)−Ψ(θ0)}2] + {Ψ(θ0)−Ψ(g)}2.
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Table 4.4: The terms A1, A2 and A3 from (2.4.4) calculated for different values of n.

A1 A2 A3
n = 50 1714190 4277 43255
n = 100 114994 4277 12351
n = 1000 2692 4277 -625
n = 10000 300 4277 -93
n = 100000 60 4277 2

To study the terms and get an idea of how they vary with n, simulations are performed.
Given values of Ψ(θ0) and Ψ(g), the same program that is used to estimate Ψ(θ̂), is used to
simulated the three terms, A1, A2 and A3. The assumptions and parameters are the same as
in Section 4.3. The results from the simulation are given in Table 4.4.

A1 is the dominating term when n is small, but the value decreases fast when n becomes
larger. The absolute value of A3 decreases with n as well. For n = 105, A1 and A3 are still
not negligible. As mentioned in Section 2.4.2, this result indicates that A3 can not be neglected
when n < 105. In non-life insurance both large and small datasets occur. Datasets with more
than 105 observations are rare and situations with n > 105 are therefore not studied. Hence,
the third term A3 in (2.4.4) is not neglected in this thesis.

4.5 Quantities used to analyse a default distribution

It is of interest to study how systematic and estimation error depend on different assumptions,
and how large they are compared to each other for different values of n. To analyse this,
expected total, expected estimation and systematic error defined as

ETot = [E({Ψ(θ̂)−Ψ(g)}2)]1/2,
ERan = [E({Ψ(θ̂)−Ψ(θ0)}2)]1/2 and

ESys = [{Ψ(θ0)−Ψ(g)}2]1/2 = |Ψ(θ0)−Ψ(g)| (4.5.1)

respectively, are compared. Different specifications of the underlying density function g,
different choices for amount of data n and inclusion of reinsurance are considered in Chapter 5.
When ETot and ERan are defined as above, simulations which leads to large divergence from
Ψ(g) or Ψ(θ0) boosts the result. Then, the difference between stable and unstable estimates
of the functional are seen more clearly. The value of the error terms alone might not give a
good understanding of the actual importance of systematic, estimation or total error. When
Ψ(g) is large, a larger value of ESys might for instance be acceptable. Therefore, in order to
get a more nuanced impression of the importance of the error terms, the ratios

RTot =
ETot
Ψ(g)

, RRan =
ERan

Ψ(g)
and RSys =

ESys
Ψ(g)

(4.5.2)

are also computed and analysed. Another useful quantity when analysing the appropriateness
of the extended Pareto distribution as default loss model, is the expected estimated value of
the functional, defined as

Eθ̂ = E[Ψ(θ̂)]. (4.5.3)
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4.5. QUANTITIES USED TO ANALYSE A DEFAULT DISTRIBUTION

The error terms ETot, ERan and ESys, the ratios RTot, RRan and RSys and the expected value of
the estimated reserve Eθ̂ are in Chapter 5 used to analyse the suitability of the extended Pareto
distribution as default loss model in non-life insurance. Algorithm 4.3 gives the procedure
used to find these quantities.

Algorithm 4.3: computing error terms, ratios and the expected
estimated reserve.

0 Given JµT , n, Ψ(g) and Ψ(θ0)
1 Repeat M times
2 Simulate Z = (Z1, ..., Zn) ∼ g(z)

3 Compute θ̂ given Z θ̂ is found by maximizing the log-likelihood
function of fθ(z) with respect Z.

4 Compute Ψ(θ̂) = X(mε) See algorithm 4.1 or 4.2, h = fθ̂
5 Return:

ETot =
√

1
M

∑M
i=1[Ψ(g)−Ψi(θ̂)]2, ERan =

√
1
M

∑M
i=1[Ψi(θ̂)−Ψ(θ0)]2,

ESys = |Ψ(g)−Ψ(θ0)|, RTot = ETot/Ψ(g), RRan = ERan/Ψ(g),

RSys = ESys/Ψ(g) and Eθ̂ = 1
M

∑M
i=1 Ψi(θ̂)

In Table 4.5, the error terms ETot, ERan and ESys, the ratios RTot, RRan and RSys and the
expected value of the estimated reserve Eθ̂ are computed. The assumptions are the same as
those applied earlier in this chapter, i.e. g ∼log-normal(0,1) and JµT = 300.

From Section 4.3, it is already clear that the reserve is overestimated. From Table 4.5, we
see that the amount of overestimation increases when n decreases. Estimation error is large
and dominates systematic error when n is small. However, when n increases estimation error
converges to zero. Total error is also decreasing with n. However, due to systematic error, it
converges to 65 and not to 0. In Chapter 5, several analysis similar to this one are preformed.
The possibility of using the extended Pareto distributio as parametric family is studied more
precisely.

Note that when n = 10000, ETot < ESys, which is a Monte Carlo error. The number of
Monte Carlo simulations m are increased in Chapter 5. Therefore such errors are less likely
to appear there.

Table 4.5: The error terms, the ratios and the expected value of the estimated reserve,
calculated for different values of n when g ∼log-normal(0,1).

Ψ(g) = 613 Ψ(θ0) = 679
ETot ERan ESys RTot RRan RSys Eθ̂

n = 50 4165 4155 65 6.79 6.77 0.11 967
n = 100 274 251 65 0.45 0.41 0.11 748
n = 1000 83 55 65 0.14 0.09 0.11 677
n = 10000 67 18 65 0.10 0.03 0.11 680
n = 100000 66 7 65 0.11 0.01 0.11 678
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4.6 Reinsurance

Reinsurance is insurance that is purchased by an insurance company, the cedent, from one
or more other insurance companies, the reinsurers, as a means for risk management. The
reinsurer is paid some proportion of the premium and takes on some of the risk from the
cedent. There are different reinsurance agreements. The reinsurer might pay some portion c
of the total claims incurred. Then, if the total amount is Z the cedent only pays Zce = (1−c)Z.
In this thesis, a reinsurance agreement with an upper bound b is considered. Then, the cedent
pays everything up to some bound b. If the claim exceeds b, the cedent pays b. That is, a
reinsurance agreement defined as

Zce =

{
Z if Z < b,

b if Z ≥ b.
(4.6.1)

When the reinsurance agreement is added to the model in this thesis, the parameter estimator
θ̂ is not effected. The reinsurance agreement is included when the claim sizes Z are drawn.
Therefore θ̂ is estimated as before using maximum likelihood and the original, uncensored data.
The vector θ0 is also found with the same procedure as before. The reinsurance agreement
with an upper bound b, is included in algorithms 1a and 1b by simply changing lines 3 and 6
respectively. That is, line 3 in Algorithm 4.1 is changed to

Z = (Z1, ..., Zn) ∼ min(h(z), b),

and line 6 in Algorithm 4.1 becomes

z = matrix(min(h(maxN ∗m, z), b),maxN,m).

In the next section, it is studied how systematic, estimation and total error are influenced
when an upper bound b is included and varied.

It is possible to let the parameter estimator θ̂ and the vector θ0 be influenced by the rein-
surance agreement. Then, a new density function f ceθ (zce) and its associating log-likelihood

function have to be calculated. The parameter estimator θ̂ is found by optimizing this new
log-likelihood function. The vector θ0 is found by minimizing the Kullback-Leibler distance
DKL(f ceθ |g). In order to find the new density function, the cumulative density function Fθ(z)
is needed. When fθ ∼extended Pareto, there is no explicit expression for Fθ(z). It can be
estimated by means of numerical integration. This has however not been attempted in this
thesis.
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Chapter 5

Different underlying models

In this chapter, four different models are used as the underlying density model g. In Section 5.2
g ∼ log-normal, in Section 5.3 g ∼ gamma, in Section 5.4 g ∼ Pareto distributed and in
Section 5.5 g ∼ log-gamma. In all four sections, three different sets of parameters defining the
density distribution are applied, e.g. (µ, σ) in the log-normal distribution. These parameter
values are chosen with the objective of making the results comparable. A discussion of how the
parameter sets are found is given in Section 5.1. In order to make the simulations run faster,
the parameters in the Poisson distribution JµT is reduced from 300 to 50 in this chapter.

5.1 Finding the parameter sets

The mean value and the standard devaiation are natural choices of quantities to match, when
trying to obtain a basis for comparison between the distributions. For the Pareto distribution
the standard deviation is always larger than the mean. For the first parameter set, parameter
set 1, sd[Z] > E[Z]. Thus, it is unproblematic to achieve correspondence between all four
distributions in this situation. For parameter set 2, sd[Z] > E[Z], but sd[Z] ≈ E[Z], which
leads to very large values of the parameters that define the Pareto distribution. For parame-
ter set 3, sd[Z] < E[Z]. Consequently, only the mean value of the Pareto distribution match
the others when parameter set 2 and when parameter set 3 are considered. For log-normal,
gamma and log-gamma distribution both the mean and the standard deviations correspond
for all three parameter sets.

For the log-normal, gamma and Pareto distribution there exists explicit expressions for the
means and for the standard deviations. For the log-gamma distribution finding explicit ex-
pressions for these quantities is advanced and is not attempted in this thesis. Thus, in order
for the means and the standard deviations to be equal, some combination of the parameters
(ξ, α) in the log-gamma distribution are chosen. Then, the mean and standard deviation for
the log-gamma distribution are calculated numerically. This is done by drawing m indepen-
dent log-gamma distributed random variables Z1, ..., Zm given (ξ, α). Then, the sample mean
and the sample standard deviation given by

Z̄ =
1

m

m∑
i=1

Zi and S =

[
1

m− 1

m∑
i=1

(Zi − Z̄)2

] 1
2

,

are calculated, see Devore and Berk ([5], page 25 and 311). In the next sections explicit
expressions for the means and the standard deviations for the log-normal, gamma and Pareto
distribution are given in terms of the parameters, e.g. in terms of (µ, σ) for the log-normal
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Table 5.1: Parametervalues used in the simulations for the four underlying distributions.

Log-normal gamma Log-gamma Pareto
(µ, σ) (ξ, α) (ξ, α) (α, β)

Set 1 (0.22, 1.13) (2.37, 0.38) (1.00,3.00) (3.21, 5.26)
E[Z] 2.37 2.37 2.37 2.37
sd[Z] 3.84 3.84 3.84 3.84
cv 1.61 1.61 1.61 1.61
Set 2 (1.12, 0.85) (4.41, 0.94) (1.50,7.00) (4.00, 13.23)
E[Z] 4.41 4.41 4.41 4.41
sd[Z] 4.55 4.55 4.55 6.23
cv 1.03 1.03 1.03 1.41
Set 3 (0.41, 0.78) (2.05, 1.19) (1.00,5.00) (5.00, 8.21)
E[Z] 2.05 2.05 2.05 2.05
sd[Z] 1.88 1.88 1.88 2.65
cv 0.91 0.91 0.91 1.30

distribution. Parameter values in the other distributions are calculated by connecting the
explicit expressions for the expected values and standard deviations to the values Z̄ and S
and solve for the parameters.

In Table 5.1 the three parameter sets that are studied for each of the four distributions
are given. The expected values and standard deviations given these parameter sets are also
listed. To make it easier to compare the results from the different sets, the coefficient of
variation defined as

cv =
sd[Z]

E[Z]

is computed, see Brown ([2], page 155). The coefficient of variation is a normalized measure
of dispersion.

5.2 The log-normal distribution

The density function of a log-normal random variable with parameters (µ, σ) is

f(z;µ, σ) =
1

zσ
√

2π
e−

(log z−µ)2

2σ2 , z > 0.

The expectation and standard deviation are

E[Z] = eµ+
σ2

2 and Sd[Z] = E[Z]
√
eσ2 − 1,

see Kleiber and Kotz ([10], page 107-112). The log-normal distribution is outside the ex-
tended Pareto family. That is, no matter how the parameters (α, β, θ) are changed, fθ(x)
is not equivalent to the log-normal density. Thus, there is both systematic and estimation
error present when the extended Pareto distribution is used as default loss model and the true
distribution of the data is the log-normal distribution.

In Table 5.2 the error terms, the ratios and the expected value of the estimated reserve defined
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5.2. THE LOG-NORMAL DISTRIBUTION

Table 5.2: The error terms, the ratios and the expected value of the estimated reserve,
calculated for different values of n when g ∼log-normal(µ, σ).

n ETot ERan ESys RTot RRan RSys Eθ̂
Set 1 50 977 956 79 4.65 4.55 0.38 511
Ψ(g) = 210 100 365 338 79 1.74 1.61 0.38 368
Ψ(θ0) = 289 1000 99 50 79 0.47 0.24 0.38 296

10000 81 15 79 0.38 0.07 0.38 289
100000 79 5 79 0.38 0.02 0.38 289

Set 2 50 196 190 20 0.58 0.56 0.06 402
Ψ(g) = 337 100 102 96 20 0.30 0.28 0.06 378
Ψ(θ0) = 357 1000 29 20 20 0.09 0.06 0.06 358

10000 20 6 20 0.06 0.02 0.06 357
100000 19 2 20 0.06 0.01 0.06 357

Set 3 50 56 55 4 0.37 0.36 0.03 169
Ψ(g) = 153 100 30 29 4 0.20 0.19 0.03 163
Ψ(θ0) = 157 1000 9 7 4 0.06 0.04 0.03 158

10000 5 2 4 0.03 0.01 0.03 158
100000 5 1 4 0.03 0.01 0.03 157

in (4.5.1), (4.5.2) and (4.5.3) respectively, are given for the three different parameter sets from
Table 5.1. The error terms and ratios address the importance and the relative importance
of the different types of error. The expected value of the estimated reserve Eθ̂, illustrates
in which manner Eθ̂ converges to Ψ(θ0). In Figure 5.1, the underlying density function g(z)
and the best achievable density function fθ0(z) are plotted for the three parameter sets from
Table 5.1. In the upper row, z ∈ (0, 10] and in the lower row z ∈ [100, 200]. Thus a small
part of the tails are visible. In Figure 5.2, fθ0(z) is plotted together with five realisations
of the estimated density function fθ̂(z) when parameter set 1 is considered. In the upper
row, z ∈ (0, 10] and in the lower row z ∈ [100, 200]. To the left n = 50 data from the true
distribution are used to find the vector of parameters estimates θ̂. By drawing five sets of
historical data, five realisations of the vector θ̂ and five density functions fθ̂(z) are estimated.

In the middle θ̂ is estimated five times when n = 1000 and to the right when n = 100000.
The figure illustrates the variation in the density function fθ̂(z) when n is small compared to
when it is large. The figure will vary between simulation and does therefore merely illustrate
trends. Corresponding figures for parameter sets 2 and 3 are given in Appendix A.

From Table 5.2, it is apparent that for all three parameter sets, Ψ(g) < Ψ(θ0). Thus, the
extended Pareto distribution tends to overestimate the reserve. From Table 5.2 it is also clear
that systematic error is largest when the log-normal density is characterised by parameter set
1. That is, when the variation in the data compared to the mean is largest. From Figure 5.1,
we see that for z ∈ (0, 10] the differences between the density functions are small. By studying
the lower row of the figure, it is evident that the best achievable density function fθ0(z) has
heavier tails than the log-normal density g(z). The divergence is largest when parameter set 1
is considered and is barely noticeable when parameter set 3 is considered. Thus, it seems likely
that the heavy tails of the fitted extended Pareto density is the main cause of overestimation.

As would be expected, random error decreases when cv decreases and when n increases.
When cv is small, the variability in the data compared to the mean is small, and the data is
concentrated in a smaller range. The number of data needed to fit a good model is therefore
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Figure 5.1: The density functions g(z) and fθ0(z) for the three parameter sets from Table 5.1,
g ∼log-normal. Upper row: z ∈ (0, 10]. Lower row: z ∈ [100, 200]

Figure 5.2: Density functions fθ0(z) and fθ̂(z) for parameter set 1 from Table 5.1, g ∼log-
normal. Upper row: z ∈ (0, 10]. Lower row: z ∈ [100, 200].
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smaller when cv is small. Thus, the importance of random error is smaller and converges faster
to zero in parameter sets 3 and 2 compared to parameter set 1. In (2.4.3) in Section 2.4, it
is stated that random error {Ψ(θ̂)−Ψ(θ0)} is normally distributed with mean 0 and a stan-
dard deviation of order n−1/2. Consequently, estimation error converges to zero as n increases.

From Table 5.2 we see that Eθ̂ ≥ Ψ(θ0) and that Eθ̂ → Ψ(θ0) as n increases. This tendency
is also visible by studying Figure 5.2. The figure suggests that fθ̂(z) varies more between
simulations when n = 50. The density functions are more stable when n = 1000, and when
n = 100000 the estimated density function is almost identical to the best approximation fθ0(z)
for all five simulations. The deviations from fθ0(z) seems to be especially large in the tail.
From the lower row of the figure wee see that for these five simulations, the tail of fθ̂(z) is
sometimes less heavy, but generally heavier than the tail of fθ0(z). Thus, as seen in Table 5.2,
for limited choices of n the estimated reserve is on average larger than Ψ(θ0). As n increases
fθ̂(z) converges to fθ0(z) for both large and small values of z. The corresponding figures for
parameter sets 2 and 3 are given in Appendix A, illustrates the same tendencies. Hence, small
values of n, leads to even large amounts of overestimation of the reserve on average. Total
error decreases when n increases and when cv decreases. However, due to the bias, ETot → ESys
as n→∞, and not to zero.

Inclusion of an upper bound b

The extended Pareto distribution tends to overestimate the reserve. As seen in Figure 5.1 and
Figure 5.2, the main source of overestimation is the heavy tails of the fitted extended Pareto
distribution. A reinsurance agreement like the one defined in equation (4.6.1) in Section 4.6,
reduces the importance of this incorrection. Then, every claim Z larger than the upper bound
b is censored and set equal to b. The divergence from the true reserve Ψ(g) is most severe
when parameter set 1 is applied. Therefore, including the reinsurance agreement, has greatest
impact on the outcome when parameter set 1 is considered. In Table 5.3, the output is given
when parameter set 1 is considered and for the upper bound b = 100, 50, 25 and 10 and for
b = ∞, i.e. when there is no reinsurance. Note that E[Z] = 2.37 and sd[Z] = 3.84. Thus,
only extreme values of Z are censored.

In Table 5.3 the new values of the error terms, the ratios and the expected value of the
estimated reserves are given. As would be expected both systematic and estimation error
are decreasing with b. When b = 100 the actual reserve Ψ(g) is approximately the same as
it is without reinsurance, while Ψ(θ0) is considerably reduced. Hence, virtually no claims
are above 100 when the claims are log-normally distributed, while with the extended Pareto
distribution some claims are above 100, and are censored when b = 100. Consequently, Ψ(θ0)
is reduced, Ψ(g) is unchanged, and the difference between them is smaller. As b decreases
the heavy tails of the extended Pareto distribution are less important. When b = 10, there
is hardly any systematic error left. From Figure 5.1 we see that the density functions g(z)
and fθ0(z) are almost identical for z ∈ (0, 10]. Consequently the difference between Ψ(θ0) and
Ψ(g) is insignificant when b = 10.

From Table 5.3 it is apparent that random error is decreasing with b. As discussed in
Section 4.6, the estimator θ̂ is not effected by the inclusion of the reinsurance agreement.
Consequently, the decline in random error is not due to the vector θ̂ converging to θ0. From
Figure 5.2, it seams likely that the estimated density function has heavier tails than fθ0(z)
on average. Hence, extreme values of Z are more frequently drawn when fθ̂(z) is the density
function. An inclusion of an upper limit b reduces estimation error, because the importance
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Table 5.3: The error terms, the ratios and the expected value of the estimated reserve,
calculated for different values of n when g ∼log-normal(1.12, 0.85) and a reinsurance limit b
is added.

n ETot ERan ESys RTot RRan RSys Eθ̂
b =∞ 50 977 956 79 4.65 4.55 0.38 511
Ψ(g) = 210 100 365 338 79 1.74 1.61 0.38 368
Ψ(θ0) = 289 1000 99 50 79 0.47 0.24 0.38 296

10000 81 15 79 0.38 0.07 0.38 289
100000 79 5 79 0.38 0.02 0.38 289

b = 100 50 88 80 34 0.42 0.40 0.17 246
Ψ(g) = 209 100 67 57 34 0.32 0.29 0.17 244
Ψ(θ0) = 243 1000 39 18 34 0.19 0.09 0.17 243

10000 35 6 34 0.17 0.03 0.17 243
100000 34 2 34 0.17 0.01 0.17 243

b = 50 50 58 56 16 0.29 0.28 0.08 216
Ψ(g) = 201 100 43 40 16 0.21 0.20 0.08 217
Ψ(θ0) = 217 1000 20 13 16 0.10 0.06 0.08 217

10000 16 4 16 0.08 0.02 0.08 217
100000 16 1 16 0.08 0.01 0.08 217

b = 25 50 38 38 5 0.20 0.20 0.03 192
Ψ(g) = 189 100 28 27 5 0.15 0.14 0.03 193
Ψ(θ0) = 194 1000 10 9 5 0.05 0.05 0.03 194

10000 5 3 5 0.03 0.01 0.03 194
100000 5 1 5 0.02 0.01 0.03 194

b = 10 50 23 23 2 0.14 0.14 0.01 160
Ψ(g) = 163 100 16 16 2 0.10 0.10 0.01 161
Ψ(θ0) = 161 1000 5 5 2 0.03 0.03 0.01 161

10000 2 2 2 0.02 0.01 0.01 161
100000 2 1 2 0.01 0.00 0.01 161

of the extreme values is reduced.

For completeness, tables similar to Table 5.3 for parameter set 2 and parameter set 3 and
for b = (15, 30, 60, 120) and b = (7, 15, 25, 50) respectively, are given in Appendix A. The
tendencies are the same. That is, including an upper limit b reduces both systematic and
random error and the amount of overestimation is considerably reduces as b decreases.

Note that for b = 50 and b = 25, Eθ̂ is closer to Ψ(g) when n is small compared to when
n is large or infinite. The estimates are however very unstable when n = 50 and ERan is still
larger when n is small. Thus, the average estimated reserve might be closer to the actual value
when n is small, but there is large variation and error in the estimate. The reason for Eθ̂ being
closer to Ψ(g) than Ψ(θ0) when b = 50 or 25 and n is small, is visible in Figure 5.2, and the
corresponding figures for parameter sets 2 and 3 given in appendix A. The variation in fθ̂(z)

is large when n is small, and thus the variation in Ψ(θ̂) is large. When n = 50, some density
functions fθ̂(z) to the left and many to the right of fθ0(z) are simulated. Consequently, many
large and some small claim sizes Z are drawn. This results in many large and some small
estimates of Ψ(θ̂). When b decreases, more and more of the large draws of Z are censored,
and hence the average decreases. Because nothing happens to the abnormally small values
of Z, a small enough b produces estimates of Eθ̂ below Ψ(θ0) when n is small. Thus, since
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Ψ(g) < Ψ(θ0) when b = 50 and when b = 25, Eθ̂ is closer to Ψ(g) for small values of n.

Hence, when g ∼log-normal, the extended Pareto distribution tends to overestimate the re-
serve. This is mainly due to its overestimation of the tail of the density distribution. Total
error decreases, but does not disappear as n→∞. The problem is smaller when cv is small,
i.e. when the variation in the data compared to the mean is small. The problem is also
smaller when an upper limit b is added. Systematic error can be ignored when the upper
bound b ≈ 25. Estimation error is also strongly reduced when an upper limit is added.

5.3 The gamma distribution

The density function of a gamma distributed stochastic variable is often defined as

f(z) =
λα

Γ(α)
zα−1e−λz, z ≥ 0, (5.3.1)

where λ > 0 is the rate parameter and α > 0 is the shape parameter, see Rice ([14], page 53).
The mean and standard deviation are given by

E[Z] =
α

λ
and Sd[Z] =

√
α

λ
,

see Rice ([14], page 157). A gamma distributed random variable Z can also be defined in
terms of a standard gamma distributed random variable Z0, i.e. a gamma distribution with
mean equal to one. In Appendix B it is shown that the density function of a standard gamma
distributed random variable Z0 is

f0(z0) =
αα

Γ(α)
zα−10 e−αz0 , z0 > 0, (5.3.2)

where α is the same shape parameter as in (5.3.1). Then if Z = ξZ0, Z is gamma distributed
with shape parameter α and expectation and standard deviation given by

E[Z] = ξ and Sd[Z] =
ξ√
α
.

This is also verified in Appendix B. In Chapter 3 it is stated that an extended Pareto dis-
tributed random variable Z, is gamma distributed in the limit. Thus, the gamma distribution
is a part of the extended Pareto distribution family, Ψ(θ0) = Ψ(g), and there is no systematic
error if the underlying model is gamma distributed. No systematic error is the same as stat-
ing that when n is close to infinity, there is no error and there is a perfect fit. However, n is
generally limited. How well the extended Pareto distribution fits a set of gamma distributed
data for limited choices of n, reveals something about the nature of the extended Pareto dis-
tribution. Therefore, it is still of interest to study how estimation error changes for different
choices of n and cv.

It is of interest to plot fθ̂(z) together with fθ0(z) = g(z) as done in Figure 5.2 when the
underlying distribution is gamma distributed as well. However, as stated above α → ∞,
when the extended Pareto distribution converges to the Gamma distribution. Consequently,
α̂ tend to be very large. A problem occurs because the extended Pareto density, defined
in (3.0.1), contains the quantity Γ(α). For large values of α̂, Γ(α̂) is to large for a normal
computer to handle. A plot with fθ̂(z) and g(z) is therefore not given in this section.
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Table 5.4: The error terms, the ratios and the expected value of the estimated reserve,
calculated for different values of n when g ∼gamma(ξ, α).

n ERan RRan Eθ̂
Set 1 50 860 4.23 250
Ψ(g) = 203 100 58 0.29 213

1000 11 0.05 205
10000 3 0.02 204
100000 1 0.01 204

Set 2 50 248 0.74 349
Ψ(g) = 335 100 38 0.11 338

1000 11 0.03 336
10000 4 0.01 335
100000 2 0.01 335

Set 3 50 31 0.21 156
Ψ(g) = 152 100 15 0.10 154

1000 5 0.03 152
10000 1 0.01 152
100000 1 0.00 152

In Table 5.4, ERan,RRan and Eθ̂ are given for the three parameters sets from Table 5.1. The
numbers given in the table, are calculated on an remote computer with a large memory which
handles large numbers, such as Γ(α̂). From Table 5.4 we see that the estimated reserve is
larger than or equal to the true reserve, i.e. Ψ(g) ≤ Eθ̂, for all three parameter sets and for
all values of n. Thus, the extended Pareto distribution has a tendency of overestimating the
reserve for limited choices of n.

As expected, random error decreases when cv decreases and when n increases. The amount
of overestimation is larger when the variation in the observations is large compared to the
mean. Since there is no systematic error, both random and total error converges to zero when
n increases. Note that for all three parameter sets, ERan and RRan decreases a lot from n = 50
to n = 100. As stated above, the gamma distribution appears in the limit. It seams as if
more than n = 50 historical data are needed before it converges.

Inclusion of an upper bound b

As for g ∼log-normal, the impact of including a reinsurance agreement with an upper bound
b is considered. In Table 5.5, new values of ERan,RRan and Eθ̂ are given when parameter set
1 is considered and for b =∞, i.e. no reinsurance, and b = 100, 50, 25 and 10. From the table
it is evident that the inclusion of a reinsurance agreement has a positive effect on estimation
error. For completeness, tables similar to Table 5.5 when parameter set 2 and parameter set
3 are considered are given in Appendix A. For parameter set 2, b = (15, 30, 60, 120) and for
parameter set 3, b = (7, 15, 25, 50) are considered.

As in Section 5.2, b = 100 and b = ∞ lead to the same value of the true reserve Ψ(g).
Even b = 50, has no influence on the value of Ψ(g) in this section. Thus, when Z ∼gamma
claim sizes substantially greater than 50 are virtually never experienced. When Z has the
density of the fitted extended Pareto distribution however, this is far more likely to happen.
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Table 5.5: The error terms, the ratios and the expected value of the estimated reserve,
calculated for different values of n when g ∼gamma(2.37, 0.38) and a reinsurance limit b is
added.

n ERan RRan Eθ̂
b =∞ 50 860 4.23 250
Ψ(g) = 203 100 58 0.29 213

1000 11 0.05 205
10000 3 0.02 204
100000 1 0.01 204

b = 100 50 54 0.27 212
Ψ(g) = 203 100 37 0.18 209

1000 11 0.05 205
10000 3 0.02 204
100000 1 0.01 203

b = 50 50 47 0.23 208
Ψ(g) = 203 100 34 0.16 206

1000 11 0.05 204
10000 3 0.02 204
100000 2 0.01 203

b = 25 50 41 0.20 198
Ψ(g) = 199 100 29 0.15 199

1000 10 0.05 200
10000 3 0.02 199
100000 1 0.01 199

b = 10 50 27 0.16 164
Ψ(g) = 169 100 19 0.11 166

1000 6 0.04 168
10000 2 0.01 169
100000 1 0.00 169

Hence, the fitted extended Pareto distribution tends to estimate too heavy tails. An inclusion
of an upper limit b removes this source of error, and does therefore estimate a reserve Ψ(θ̂)
closer to the actual reserve Ψ(g).

Thus, when g ∼gamma with some parameters (ξ, α), the extended Pareto distribution tends
to overestimate the reserve when n is limited. The problem decreases with cv and goes to 0 as
n→∞. Including an upper bound b reduces error, because extreme values of Z are censored.
Consequently, a smaller amount of historical data is needed to arrive at the desired low level
of estimation error.

5.4 The Pareto distribution

The density function of a Pareto distributed random variable is

f(z) =
α/β

(1 + z/β)1+α
z > 0,

as defined in Chapter 3, see Kleiber and Kotz ([10], page 59). As stated in Chapter 3, the
density function is the same as the density function of an extended Pareto distributed random
variable with θ = 1 inserted. Hence, the Pareto distribution is part of the extended Pareto
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Table 5.6: The error terms, the ratios and the expected value of the estimated reserve,
calculated for different values of n when g ∼Pareto(α, β).

n ERan RRan Eθ̂
Set 1 50 1062 5.01 315
Ψ(g) = 212 100 117 0.55 237

1000 20 0.09 214
10000 6 0.03 212
100000 2 0.01 212

Set 2 50 1209 3.27 469
Ψ(g) = 370 100 128 0.35 395

1000 26 0.07 372
10000 8 0.02 370
100000 3 0.01 370

Set 3 50 144 0.87 191
Ψ(g) = 166 100 43 0.26 174

1000 9 0.06 167
10000 3 0.02 167
100000 1 0.01 166

family, and the situation is similar to the situation when the underlying model g is gamma
distributed. That is, there is no systematic error, and random error is the interesting part.
The expectation and standard deviation of a Pareto distributed random variable are

E[Z] =
β

α− 1
= ξ and Sd[Z] = ξ

√
α

α− 2
.

In Appendix B, the expressions for the expected value and standard deviation for the ex-
tended Pareto distribution are verified. To justify the corresponding quantities for the Pareto
distribution, the same argument can be used, but then θ = 1 has to be inserted.

In Table 5.6, ERan,RRan and Eθ̂ are given for the three parameter sets from Table 5.1. In
Figure 5.3, fθ0(z) = g(z) is plotted against five realisations of fθ̂(z) when parameter set 1 is
considered, as in Figure 5.2. The corresponding figures for parameter set 2 and parameter set
3 are given in Appendix A.

From Table 5.6, we see that the average estimated reserve Eθ̂ is larger than the true value
Ψ(g), for all parameter sets when n is small. Hence, for limited choices of n the estimated
reserve is on average overestimated. The amount of overestimation is decreasing with cv and
estimation error converges to 0 as n → ∞. This is also visible from Figure 5.3 and the
corresponding figures for parameter set 2 and parameter set 3 given in Appendix A. The
difference between fθ0(z) and fθ̂(z) is large and varies a lot between simulations when n = 50.
The figure suggests that the main reason for the overestimation, is that the fitted extended
Pareto distribution tends to overestimate the tails when n is small. That is, the probability
for large and extreme values of Z, are too high with the fitted extended Pareto density. When
n = 100000, θ̂ converges to θ0, and there is almost no difference between fθ0(z) and fθ̂(z).

Inclusion of an upper bound b

In Table 5.7, an upper bound b is added when parameter set 1 is considered. Corresponding
tables when parameter set 2 and parameter set 3 are considered are given in Appendix A.
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Figure 5.3: Density functions fθ0(z) and fθ̂(z) for parameter set 1 from Table 5.1, g ∼Pareto.
Upper row: z ∈ (0, 10]. Lower row: z ∈ [100, 200].

Table 5.7: The error terms, the ratios and the expected value of the estimated reserve,
calculated for different values of n when g ∼Pareto(3.21, 5.26) and a reinsurance limit b is
added.

n ERan RRan Eθ̂
b =∞ 50 1062 5.01 315
Ψ(g) = 212 100 117 0.55 237

1000 20 0.09 214
10000 6 0.03 212
100000 2 0.01 212

b = 100 50 68 0.32 216
Ψ(g) = 210 100 48 0.23 211

1000 16 0.08 210
10000 5 0.02 210
100000 2 0.01 210

b = 50 50 50 0.25 201
Ψ(g) = 202 100 36 0.18 201

1000 12 0.06 201
10000 4 0.02 202
100000 1 0.01 202

b = 25 50 38 0.20 188
Ψ(g) = 191 100 27 0.14 189

1000 9 0.05 190
10000 3 0.01 191
100000 1 0.01 191

b = 10 50 24 0.15 164
Ψ(g) = 166 100 17 0.10 165

1000 5 0.03 166
10000 2 0.01 166
100000 1 0.00 166
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Table 5.8: The error terms, the ratios and the expected value of the estimated reserve,
calculated for different values of n when g ∼log-gamma(ξ, α).

n ETot ERan ESys RTot RRan RSys Eθ̂
Set 1 50 296 295 7 1.38 1.38 0.03 290
Ψ(g) = 214 100 127 125 7 0.60 0.58 0.03 251
Ψ(θ0) = 221 1000 25 24 7 0.12 0.11 0.03 223

10000 10 7 7 0.04 0.03 0.03 221
100000 7 2 7 0.03 0.01 0.03 221

Set 2 50 122 120 7 0.36 0.35 0.02 372
Ψ(g) = 342 100 77 75 7 0.22 0.22 0.02 363
Ψ(θ0) = 349 1000 21 19 7 0.06 0.06 0.02 351

10000 9 6 7 0.03 0.02 0.02 349
100000 7 2 7 0.02 0.01 0.02 348

Set 3 50 40 40 1 0.26 0.26 0.01 163
Ψ(g) = 154 100 25 25 1 0.16 0.16 0.01 159
Ψ(θ0) = 155 1000 6 6 1 0.04 0.04 0.01 155

10000 2 2 1 0.01 0.01 0.01 155
100000 1 1 1 0.01 0.00 0.01 155

The upper bounds are b = (15, 30, 60, 120) for parameter set 2 and b = (7, 15, 25, 50) for
parameter set 3. As expected, random error decreases when b is added. From Table 5.7
it is apparent that when b = 100, the true reserve Ψ(g) is almost unchanged , while Eθ̂ is
considerably reduced. This suggests, as seen in Figure 5.3, that the estimated density fθ̂(z)
has too heavy tails. Consequently, the incorrection is largely reduced when an upper bound
b is included. From the upper row in Figure 5.3, we see that for z ∈ (0, 10] and n = 50 there
is still divergence of fθ̂(z) from fθ0(z). Hence, including an upper bound b and decreasing it
to b = 10 has a strong positive effect on estimation error. However, small values of n are still
not unproblematic.

Thus, the extended Pareto distribution tends to overestimate the reserve when g ∼Pareto
and n is small. The error decreases as cv increases and goes to zero as n → ∞. Estimation
error is strongly reduced when an upper bound b is added because extreme values of Z drawn
from the fitted distribution are censored.

5.5 The log-gamma distribution

If Z is log-gamma distributed, then Y = log(1 + Z) is gamma distributed, and Z = eY − 1.
The density function of a log-gamma distributed random variable is

f(z) =
1

ξ(1 + z)

αα

Γ(α)
{log(1 + z)/ξ}α−1e−α log(1+z)/ξ, z > 0. (5.5.1)

The density is derived in Appendix B. As mentioned, the derivation of the expected value
and standard deviation are not conducted. The log-gamma distribution is not a part of the
extended Pareto distribution family, hence there is both systematic and estimation error.

In Table 5.8 the quantities defined in (4.5.1), (4.5.2) and (4.5.3) are given for the three
parameter sets given in Table 5.1. In Figure 5.4, the density functions g(z) and fθ0(z) are
plotted for the three parameter sets from Table 5.1. In Figure 5.5, fθ0(z) is plotted together
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Figure 5.4: The density functions g(z) and fθ0(z) for the three parameter sets from Table 5.1,
g ∼log-gamma. Upper row: z ∈ (0, 10]. Lower row: z ∈ [100, 200]

with five realisations of fθ̂(z) for parameter set 1 and for n = 50, 1000 and 100000. Corre-
sponding figures for parameter set 2 and parameter set 3 are given in Appendix A. In all
figures z ∈ (0, 10] in the upper row and z ∈ [100, 200] in the lower row. Hence, some of the
tails are visible in the lower rows.

From Table 5.8 we see that Ψ(g) < Ψ(θ0) for all values of (ξ, α). Hence, the extended Pareto
distribution tends to overestimate the reserve when g ∼log-gamma as well. From Figure 5.4,
it is apparent that the density functions g(z) and fθ0(z) are almost identical for z ≤ 10, and
that the extended Pareto distribution estimates too heavy tails. The deviation is however
much smaller compared to when g ∼log-normal, as seen in Figure 5.1. Thus, the log-gamma
distribution is not part of the extended Pareto distribution family, but the divergence is much
smaller compared to the situation where the underlying distribution is the log-normal dis-
tribution. This can also be seen by comparing Table 5.2 and Table 5.8. Systematic error is
substantially reduced compared to the situation when g ∼log-normal. From Table 5.8, we see
that systematic error is negligible for all three parameter sets. However, random error can
not be ignored when n is small, but it decreases when cv decreases and converges to zero as
n→∞. Consequently total error converges to systematic error, and since there is barely any
systematic error, total error is negligible in the limit.

In Figure 5.5, the convergence of fθ̂(z) to fθ0(z), in the situation where parameter set 1
is considered, is plotted. As expected the variation in fθ̂(z) between simulations is large when
n = 50 and barely visible when n = 100000. The figure suggests that small values of n
increases the amount of overestimation, because small values of n leads to estimated density
functions with tails that on average are heavier than the tails of the best achievable density
function fθ0(z). Since the tails of fθ0(z) are too heavy compared to g(z), small values of n
increases the amount of overestimation further. The corresponding figures for parameter set
2 and parameter set 3 given in Appendix A shows the same tendencies.
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Figure 5.5: Density functions fθ0(z) and fθ̂(z) for parameter set 1 from Table 5.1, g ∼log-
gamma. Upper row: z ∈ (0, 10]. Lower row: z ∈ [100, 200].

Table 5.9: The error terms, the ratios and the expected value of the estimated reserve,
calculated for different values of n when g ∼log-gamma(1, 3) and a reinsurance limit b is
added.

n ETot ERan ESys RTot RRan RSys Eθ̂
b =∞ 50 296 295 7 1.38 1.38 0.03 290
Ψ(g) = 214 100 127 125 7 0.60 0.58 0.03 251
Ψ(θ0) = 221 1000 25 24 7 0.12 0.11 0.03 223

10000 10 7 7 0.04 0.03 0.03 221
100000 7 2 7 0.03 0.01 0.03 221

b = 100 50 66 66 4 0.32 0.31 0.02 218
Ψ(g) = 210 100 47 47 4 0.22 0.22 0.02 214
Ψ(θ0) = 214 1000 16 15 4 0.08 0.07 0.02 213

10000 6 5 4 0.03 0.02 0.02 214
100000 4 2 4 0.02 0.01 0.02 214

b = 50 50 48 48 1 0.24 0.24 0.01 201
Ψ(g) = 198 100 35 35 1 0.18 0.18 0.01 199
Ψ(θ0) = 199 1000 11 11 1 0.06 0.06 0.01 199

10000 4 4 1 0.02 0.02 0.01 199
100000 2 1 1 0.01 0.01 0.01 199

b = 25 50 35 35 1 0.19 0.19 0.00 184
Ψ(g) = 185 100 26 26 1 0.14 0.14 0.00 185
Ψ(θ0) = 186 1000 8 8 1 0.04 0.04 0.00 186

10000 3 3 1 0.01 0.01 0.00 186
100000 1 1 1 0.01 0.01 0.00 186

b = 10 50 22 22 0 0.13 0.13 0.00 162
Ψ(g) = 163 100 16 16 0 0.10 0.10 0.00 163
Ψ(θ0) = 163 1000 5 5 0 0.03 0.03 0.00 163

10000 2 2 0 0.01 0.01 0.00 163
100000 1 1 0 0.00 0.00 0.00 163
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Inclusion of an upper bound b

Figure 5.4 and Figure 5.5 suggest that the main source of error are the tails. Thus, as in
previous sections including an upper bound b i desirable. Table 5.9 gives the output when
parameter set 1 is considered and an upper bound b is added as before. Corresponding ta-
bles when parameter set 2 and parameter set 3 are considered are giden in Appendix A. As
expected, systematic error decreases even further when b decreases. As seen in the previous
sections, estimation error decrease when the upper bound is introduced as well. When b de-
creases, the amount of data necessary before total error can be neglected is reduced.

Thus, when g ∼log-gamma, systematic error is present, but unimportant. The reserve is
still overestimated on average. The amount of overestimation decreases with n. Total error is
decreasing with cv, since a decline in cv has a positive effect on both systematic and estimation
error. Including an upper limit b reduces systematic error further and has a large positive
effect on estimation error.

5.6 Summary

The possibility of using the extended Pareto distribution as default loss model has now been
examined. The main general trend is that it is a conservative procedure, since for each of
the four underlying distributions, the extended Pareto distribution tends to overestimate the
reserve. The amount of overestimation is increasing with cv. Thus, larger variability results
in larger errors. Due to the decline in estimation error, the difference between the average
estimated reserve and the true reserve is reduced when the amount of data n increases. Too
heavy tails seams to be the main reason for the overestimation. Consequently, the incorrection
is largely reduced when a reinsurance agreement, with an upper bound b is added. When
g ∼gamma, Pareto or log-gamma there is no or an insignificant amount of systematic error,
whereas when g ∼ log-normal, the bias can not be ignored. However, for a small enough b
systematic error is unimportant in every situation considered in this chapter. When parameter
set 1 is applied, b ≈ 25 is sufficient. This is not unrealistic value b because the expected value
of a claim is more than 10 times smaller, i.e. E[Z] = 2.37. Estimation error is negligible for a
sufficiently large n and it decreases with cv. It is also substantially decreased when an upper
bound b is added. In Chapter 6, including a fourth parameter λ is discussed. This might
improve the situation because it reduces systematic error.
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Chapter 6

A fourth parameter

When the extended Pareto family is the default loss model and the true distribution is for
example log-normal, systematic error is not inconsiderable. Thus, it would make sense to try
to “widen” the parametric family by including additional parameters, alternatively choose
a different parametric family. Including one or more parameters results in a more flexible
parametric family and reduces systematic error. A different parametric family might be a
better approximation to a wider range of historical data. The log-normal or log-gamma
distribution may for instance become parts of the parametric family. Estimation error might
increase when more parameters are added. For a different parametric family, it is unknown
what happens to systematic and estimation error. In this chapter, adding a fourth parameter
by transforming the data is examined.

6.1 The simple power transformation

In [1], Box and Cox discuss how a transformation of the observed data can improve the
approximation to the assumptions regarding the data which are made a priori. In the setting
of this thesis, the objective is to transform the observed data such that the density function
of the transformed data is a part of the extended Pareto family. The original observations are
denoted by (y1, ..., yn) and the transformed observations by (z1, ..., zn). The transformation
applied in this thesis is

z =
(1 + y)λ − 1

λ
, y > 0, (6.1.1)

which is a slight modification of the simple power transformation, see Box and Cox [1]. Thus,
z ∈ (0,∞) and z → log(1 + y) as λ → 0. The transformed observations are strictly larger
than zero, i.e. z > 0 since y > 0. When λ = 1, the transformed data equals the original data.

As seen in Section 5.2, the log-normal distribution is not a part of the extended Pareto
distribution family. It is desirable to be able to include the log-normal distribution in the
parametric family after the transformation. When the transformation is applied and λ = 0,
log-normally distributed data y1, ..., yn are transformed into z1, ...zn which are normally dis-
tributed. In Chapter 3 it is stated that the gamma distribution is a part of the parametric
family in the limit. When the shape parameter α in a standard gamma distribution defined
in (5.3.2) grows, the distribution converges to a Gaussian distribution, see Kim and Sung [9].
The standard deviation equals 1/

√
α and is small, since α is large. The standard deviation

can be made larger by multiplying Z0 by ξ. That is, look at the distribution of Z = ξZ0 when
α is large. The standard deviation is then sd[Z] = ξ/

√
α, which can be made infinitely large
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by increasing ξ. However, note that since the mean also increases by the same amount, the
coefficient of variation cv is fixed and equals cv = 1/

√
α. Thus, when the transformation is

applied, the log-normal distribution is a part of the parametric family for λ = 0, but not for
any parameter set (µ, σ). That is, the coefficient of variation cv has to be small. A transfor-
mation which includes the log-normal distribution for any choice of (µ, σ) is something which
is of interest to develop further.

A drawback with the transformation is that another parameter λ has to be estimated. In
[3], Carroll and Ruppert argues that the variance of the parameter estimators can be much
larger when the transformation parameters λ is unknown and has to be estimated, compared
to when it is known. In the setting of this thesis λ is not known and it has to be estimated
together with the other parameters, even if this increases estimation error. The question is
then how much the variances in the parameter estimates (α̂, β̂, θ̂, λ̂) increase, and how much
slower the convergence is. Hence, the decision whether to use the transformation or not, is a
trade between less systematic or less estimation error. It is of interest to analyse how much
estimation error increase compared to the reduction in systematic error.

6.2 Calculating the reserve

The transformed observations might have a density function closer to the parametric fam-
ily, then the density function of the original data. Correspondingly, the density function of
the original observations might be closer to the parametric family when the transformation
parameter λ is added. That is, instead of transforming the observations, the parametric fam-
ily is widened because a fourth parameter is added. In Appendix B, it is shown that the
new density function, i.e. the density function of Y = (Zλ + 1)1/λ − 1, where Z ∼extended
Pareto(α, β, θ), is

fY (y) =
Γ(α+ θ)

Γ(α)Γ(θ)

(λβ)α+1

β

(1 + y)λ−1{(1 + y)λ − 1}θ−1

{λβ + (1 + y)λ − 1}α+θ
, y > 0 (6.2.1)

where α, β, θ > 0, λ ∈ R and y = (y1, ..., yn) are the original observations. It is also shown
that the new log-likelihood function is

l(α, β, θ, λ) =n[log Γ(α+ θ)− log Γ(α)− log Γ(θ) + (α+ 1) log(λβ)− log β]

+ (λ− 1)

n∑
i=1

log(1 + yi) + (θ − 1)

n∑
i=1

log{(1 + yi)
λ − 1}

− (α+ θ)

n∑
i=1

log{λβ + (1 + yi)
λ − 1}. (6.2.2)

Thus, the parametric family is widen, since a fourth parameter is added . Consequently, more
distributions are within the parametric family. Note that when λ = 1, the density function
(6.2.1) equals the extended Pareto density function defined in (3.0.1) in Chapter 3. The new
density and log-likelihood functions are well-defined. Hence, it should be unproblematic to
do the same kind of simulations as in Chapter 4 and in Chapter 5. By simply replacing
the density and log-likelihood functions from Chapter 3 with the new defined above in the
simulation programs, it should be possible to find an exact value of Ψ(θ0) and an estimated
value of Ψ(θ̂). The problem is, as stated above, slow convergence of the parameter estimators
θ0 and θ̂.
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Table 6.1: The value of θ0 from three different simulations for each parameter set when the
Monte Carlo approach is applied.

Parameter set Simulation α0 β0 θ0 λ0
1 67.95 34.50 1.99 0.11

1 2 9.77 5.20 1.98 0.29
3 32.47 16.62 1.98 0.14
1 26.88 13.42 3.85 0.33

2 2 21.41 10.95 3.82 0.35
3 28.66 14.10 3.88 0.32
1 216.57 58.13 3.95 0.12

2 2 247.72 67.40 3.90 0.12
3 6.01 2.06 3.87 0.70

Table 6.2: The lower, mean and upper value of Ψ(θ0) from 5 simulations when the Monte
Carlo approach is used to calculate θ0.

Parameter set Lower Mean Upper
1 233.13 234.05 234.56
2 339.28 342.39 351.93
3 154.66 155.34 156.60

6.2.1 Finding Ψ(θ0)

In Chapter 5, Gauss-Legendre quadrature is utilized to find θ0 and Ψ(θ0). However, when
θ = (α, β, θ, λ) it turns out that the program used to find θ0 in Chapter 4 and Chapter 5 can
not be applied due to slow convergence of the parameter estimator θ0. One solution could be
to transform the integrand. The transformation discussed in Section 4.1.2 does not improve
the speed of the convergence sufficiently. Thus, the integrand has to be transformed in a
different manner. Alternatively, the program itself has to be changed. Due to time limitation,
neither of these alternatives have been attempted.

In Section 4.1.1, it is stated that also Monte Carlo simulations can be used to find the vector
of parameters θ0 which minimize the Kullback-Leibler distance. By increasing the number
of Monte Carlo simulations, it is possible to find a set of parameters arbitrarily close to θ0.
The question is then how large m needs to be. In Table 6.1, θ0 is given for three different
simulations. In Table 6.2, the lower, upper and mean values of Ψ(θ0), from five simulations
are given. The underlying distribution g is log-normally distributed, and the three parameter
sets from Table 5.1 are considered in both tables. The number of Monte Carlo simulations
are m = 108. Clearly, the vector of parameters θ0 = (α0, β0, θ0, λ0) is very unstable. The
corresponding reserve Ψ(θ0) is still not perfectly stable, but it is surprisingly stable compare
to θ0. Hence, the vector of parameters converges slow when a fourth parameters is added,
even so there is in only a small variance in the resulting reserve Ψ(θ0). Due to large simulation
time, raising m further has not been attempted.
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Table 6.3: The error terms, the ratios and the expected value of the estimated reserve,
calculated for different values of n when g ∼log-normal(µ, σ), and transformation (6.1.1) is
applied.

n ETot ERan ESys RTot RRan RSys Eθ̂
Set 1 50 - - 14 - - 0.11 -
Ψ(g) = 210 100 - - 14 - - 0.11 -
Ψ(θ0) = 234 1000 57 45 14 0.27 0.21 0.11 248

10000 33 15 14 0.16 0.07 0.11 241
100000 31 10 14 0.15 0.05 0.11 240
1000000 31 10 14 0.15 0.05 0.11 240

Set 2 50 91704 91704 5 271 271 0.01 1660
Ψ(g) = 337 100 95 94 5 0.28 0.28 0.01 366
Ψ(θ0) = 342 1000 18 17 5 0.05 0.05 0.01 345

10000 8 7 5 0.02 0.02 0.01 342
100000 6 5 5 0.02 0.01 0.01 342
1000000 5 4 5 0.02 0.01 0.01 342

Set 2 50 - - 3 - - 0.02 -
Ψ(g) = 152 100 40 40 3 0.26 0.26 0.02 163
Ψ(θ0) = 155 1000 7 6 3 0.05 0.04 0.02 156

10000 3 2 3 0.02 0.01 0.02 155
100000 3 1 3 0.02 0.01 0.02 155
1000000 3 1 3 0.02 0.01 0.02 155

6.2.2 Estimating Ψ(θ̂) and the different error terms

It is of interest to analyse the change in total, systematic and estimation error when trans-
formation (6.1.1) is applied. As seen above, a perfectly stable value of Ψ(θ0) has not been
found, and the mean value of Ψ(θ0) from Table 6.2 is used as an estimate of Ψ(θ0). In Ta-
ble 6.3, the error terms, the ratios and the expected value of the estimated reserve defined in
(4.5.1), (4.5.2) and (4.5.3) respectively, are given for the three different parameter sets from
Table 5.1, when g ∼log-normal. To be able to examine the convergence of estimation error
more carefully, the situation n = 106 is added.

As expected systematic error is substantially reduced. For parameter set 1, Ψ(θ0) is reduced
from 289 to 234, which results in RSys decreasing from 0.38 to 0.11. Thus, even though in-
cluding the transformation parameter λ doesn’t eliminate all systematic error, it has a strong
positive effect on systematic error. It is surprising that when n ≥ 100, estimation error is
almost unchanged. There might be a slight tendency that estimation error converges slower
to zero when the transformation parameter λ is added, but even so the great decrease in
systematic error decreases total error considerably when n ≥ 100.

Not a number values are produced when n = 100 and when n = 50 and parameter set 1
is considered and when n = 50 and parameter set 3 is considered. This is most likely due to
a numerical error. Correcting this is time consuming, and has therefore not been attempted.
For parameter set 2 estimation error is substantially increased when n = 50. Thus, including
a fourth parameter might not be preferable when n is very limited.

Hence, when n ≥ 100 including the transformation has a positive effect on total error, when
g ∼log-normal(µ, σ). In order to know with certainty whether the inclusion of λ has a posi-
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tive effect on total error in general, more analyses have to be carried out. We need to know
what happens to total error for other underlying distributions. For g ∼gamma, Pareto or
log-gamma, there are no or an insignificant amount of systematic error. Including λ might in-
crease estimation error more than it did when g ∼log-normal, which will result in an increased
total error. Hence, the results above suggests that including a fourth parameter λ might have
a positive effect on total error. Investigating the effect of adding one or more parameters, is
something which is of interest to develop further.
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Chapter 7

Concluding remarks

A framework based on asymptotic theory for maximum likelihood estimation under misspec-
ifications has been defined, and procedures for testing a specific family of distributions as
default loss models are developed. The thesis has reviewed the extended Pareto family as
basis for such an automatic procedure, with the main conclusion that it a conservative pro-
cedure which tends to overestimate the reserve.

Total error of some functional Ψ is throughout the thesis divided into a constant part and a
random part, i.e. systematic error and estimation error,

Ψ(θ̂)−Ψ(g) = Ψ(θ̂)−Ψ(θ0) + Ψ(θ0)−Ψ(g).

Systematic error is independent of n while estimation error decreases when n increases. For
every situation considered, systematic error is negligible when a reinsurance agreement with
a sufficiently small upper bound b is added. Estimation error is always present when the
amount of data is limited. It might however be larger when a flexible distribution, like the
extended Pareto distribution, is applied an several parameters have to be estimated. In real
life situation it is generally unknown how large the bias is, it might be unimportant, but it
might also be larger than anything seen in this thesis. Hence, the extended Pareto family
seems to work well as default loss model in many situations. The large amount of overestima-
tion in some situations might be due to the estimator θ̂ being estimated based on a likelihood
criterion. Other criteria, which might give less weight to extreme values of Z, is something
which is of interest to examine further.

Before the extended Pareto can be introduced as default loss model, more testes should be
completed and situations which leads to large errors should be characterized. In chapter 6,
other ways of attacking the problem are suggested, and the possibility of adding one more
parameter is briefly examined. The estimates themselves become unstable, but the reserve
evaluated from them is not, at least not to the same degree. That brings hope that one can
construct even more flexible models than what considered in this thesis, arriving at a truly
automatic model for modelling losses.

55



CHAPTER 7. CONCLUDING REMARKS

56



Appendix A

Additional tables and figures

Additional figures, Chapter 5

In Figure 5.2, Figure 5.3 and Figure 5.5, the density function fθ0(z) is plotted together with five
realisations of density function fθ̂(z) when parameter set 1 is considered and g ∼log-normal,
g ∼Pareto and g ∼log-gamma respectively. The corresponding plots for parameter set 2 and
parameter set 3 are given here. In each figure, n = 50 observations from the true distribution
are used to estimate θ̂ in the left column. In the middle n = 1000 observations are used and to
the right, n = 100000 observations are used. In Figure A.1 and in Figure A.2, g ∼log-normal
and parameter set 2 and parameter set 3 are considered respectively. In Figure A.3 and in
Figure A.4 g ∼Pareto and parameter set 2 and parameter set 3 are considered respectively.
In Figure A.5 and in Figure A.6 g ∼log-gamma and parameter set 2 and parameter set 3 are
considered respectively.

Figure A.1: Density functions fθ0(z) and fθ̂(z) for parameter set 2 from Table 5.1, g ∼log-
normal. Upper row: z ∈ (0, 10]. Lower row: z ∈ [100, 200].
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Figure A.2: Density functions fθ0(z) and fθ̂(z) for parameter set 3 from Table 5.1, g ∼log-
normal. Upper row: z ∈ (0, 10]. Lower row: z ∈ [100, 200].

Figure A.3: Density functions fθ0(z) and fθ̂(z) for parameter set 2 from Table 5.1,
g ∼Pareto. Upper row: z ∈ (0, 10]. Lower row: z ∈ [100, 200].

Figure A.4: Density functions fθ0(z) and fθ̂(z) for parameter set 3 from Table 5.1,
g ∼Pareto. Upper row: z ∈ (0, 10]. Lower row: z ∈ [100, 200].
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Figure A.5: Density functions fθ0(z) and fθ̂(z) for parameter set 2 from Table 5.1, g ∼log-
gamma. Upper row: z ∈ (0, 10]. Lower row: z ∈ [100, 200].

Figure A.6: Density functions fθ0(z) and fθ̂(z) for parameter set 3 from Table 5.1, g ∼log-
gamma. Upper row: z ∈ (0, 10]. Lower row: z ∈ [100, 200].
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Additional tables, Chapter 5

In Chapter 5, an upper limit b is added for the four different choices of underlying models,
but only parameter set 1 from Table 5.1 is considered. For completeness, the output when
parameter set 2 and 3 are considered is given here. The upper limits considered are b =
120, 60, 30 and 15 for parameter set 2 and b = 50, 25, 15 and 7 for parameter set 3. In
Table A.1 and Table A.2 g ∼log-normal, in Table A.3 and Table A.4 g ∼gamma, in Table A.5
and Table A.6 g ∼Pareto and in Table A.7 and Table A.8 g ∼log-gamma. As stated in
Chapter 5, the tendencies are the same as when parameter set 1 is considered. That is,
including an upper limit b improves the situation since both systematic and estimated error
decreases.

Table A.1: The error terms, the ratios and the expected value of the estimated reserve,
calculated for different values of n when g ∼log-normal(1.12, 0.85) and a reinsurance limit b
is added.

n ETot ERan ESys RTot RRan RSys Eθ̂
b =∞ 50 196 190 20 0.58 0.56 0.06 402
Ψ(g) = 337 100 102 96 20 0.30 0.28 0.06 378
Ψ(θ0) = 357 1000 29 20 20 0.09 0.06 0.06 358

10000 20 6 20 0.06 0.02 0.06 357
100000 19 2 20 0.06 0.01 0.06 357

b = 120 50 77 74 16 0.23 0.22 0.05 359
Ψ(g) = 337 100 56 53 16 0.17 0.016 0.05 356
Ψ(θ0) = 353 1000 23 17 16 0.07 0.05 0.05 353

10000 16 5 16 0.05 0.02 0.05 353
100000 15 2 16 0.05 0.01 0.05 353

b = 60 50 60 59 8 0.18 0.18 0.03 344
Ψ(g) = 335 100 44 43 8 0.13 0.13 0.03 344
Ψ(θ0) = 343 1000 16 13 8 0.05 0.04 0.03 343

10000 9 4 8 0.03 0.01 0.03 343
100000 9 2 8 0.03 0.00 0.03 343

b = 30 50 45 45 1 0.14 0.14 0.01 328
Ψ(g) = 328 100 33 33 1 0.10 0.01 0.01 328
Ψ(θ0) = 329 1000 11 11 1 0.03 0.03 0.01 329

10000 4 3 1 0.01 0.01 0.01 329
100000 2 1 1 0.01 0.00 0.01 329

b = 15 50 33 33 1 0.11 0.11 0.01 302
Ψ(g) = 305 100 24 24 1 0.08 0.08 0.01 302
Ψ(θ0) = 304 1000 8 8 1 0.03 0.03 0.01 303

10000 3 2 1 0.01 0.01 0.01 304
100000 2 1 1 0.01 0.00 0.01 304
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Table A.2: The error terms, the ratios and the expected value of the estimated reserve,
calculated for different values of n when g ∼log-normal(0.41, 0.78) and a reinsurance limit b
is added.

n ETot ERan ESys RTot RRan RSys Eθ̂
b =∞ 50 56 55 4 0.37 0.36 0.03 169
Ψ(g) = 153 100 30 29 4 0.20 0.19 0.03 163
Ψ(θ0) = 157 1000 9 7 4 0.06 0.04 0.03 158

10000 5 2 4 0.03 0.01 0.03 158
100000 5 1 4 0.03 0.01 0.03 157

b = 50 50 29 28 4 0.19 0.19 0.03 160
Ψ(g) = 153 100 21 20 4 0.13 0.13 0.03 159
Ψ(θ0) = 157 1000 7 6 4 0.05 0.04 0.03 159

10000 5 2 4 0.03 0.02 0.03 157
100000 4 1 4 0.03 0.00 0.03 157

b = 25 50 24 23 3 0.15 0.15 0.02 155
Ψ(g) = 152 100 17 17 3 0.11 0.11 0.02 155
Ψ(θ0) = 155 1000 6 5 3 0.04 0.04 0.02 155

10000 3 2 3 0.02 0.01 0.02 155
100000 3 1 3 0.02 0.00 0.02 155

b = 15 50 20 20 1 0.13 0.13 0.01 151
Ψ(g) = 151 100 14 14 1 0.10 0.10 0.01 152
Ψ(θ0) = 152 1000 5 5 1 0.03 0.03 0.01 152

10000 2 1 1 0.01 0.01 0.01 152
100000 1 1 1 0.01 0.00 0.01 152

b = 7 50 15 15 1 0.11 0.11 0.00 141
Ψ(g) = 143 100 11 11 1 0.07 0.07 0.00 142
Ψ(θ0) = 142 1000 3 3 1 0.02 0.02 0.00 142

10000 1 1 1 0.01 0.01 0.00 142
100000 1 0 1 0.01 0.00 0.00 142

Table A.3: The error terms, the ratios and the expected value of the estimated reserve,
calculated for different values of n when g ∼gamma(4.41, 0.94) and a reinsurance limit b is
added.

n ERan RRan Eθ̂ n ERan RRan Eθ̂
b =∞ 50 248 0.74 349 b = 30 50 47 0.14 334
Ψ(g) = 335 100 38 0.11 338 Ψ(g) = 333 100 33 0.10 334

1000 11 0.03 336 1000 11 0.03 334
10000 4 0.01 335 10000 4 0.01 333
100000 2 0.01 335 100000 1 0.00 333

b = 120 50 53 0.16 340 b = 15 50 38 0.12 311
Ψ(g) = 335 100 36 0.11 338 Ψ(g) = 315 100 26 0.08 312

1000 11 0.03 335 1000 9 0.03 314
10000 4 0.01 335 10000 3 0.01 315
100000 1 0.00 335 100000 1 0.00 315

b = 60 50 51 0.15 338
Ψ(g) = 335 100 36 0.11 337

1000 11 0.03 335
10000 4 0.01 335
100000 1 0.00 335
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Table A.4: The error terms, the ratios and the expected value of the estimated reserve,
calculated for different values of n when g ∼gamma(2.05, 1.19) and a reinsurance limit b is
added.

n ERan RRan Eθ̂
b =∞ 50 31 0.21 156
Ψ(g) = 152 100 15 0.10 154

1000 5 0.03 152
10000 1 0.01 152
100000 1 0.00 152

b = 50 50 21 0.14 152
Ψ(g) = 150 100 14 0.10 151

1000 4 0.030 150
10000 1 0.01 150
100000 1 0.00 150

b = 25 50 20 0.13 152
Ψ(g) = 150 100 14 0.10 151

1000 4 0.03 150
10000 1 0.01 150
100000 1 0.00 150

b = 15 50 19 0.13 151
Ψ(g) = 150 100 14 0.09 150

1000 4 0.03 150
10000 1 0.01 150
100000 1 0.00 150

b = 7 50 14 0.11 143
Ψ(g) = 142 100 11 0.08 142

1000 3 0.02 142
10000 1 0.01 142
100000 0 0.00 142

Table A.5: The error terms, the ratios and the expected value of the estimated reserve,
calculated for different values of n when g ∼Pareto(4.00, 13.23) and a reinsurance limit b is
added.

n ERan RRan Eθ̂ n ERan RRan Eθ̂
b =∞ 50 1209 3.27 469 b = 30 50 57 0.17 332
Ψ(g) = 370 100 128 0.35 395 Ψ(g) = 337 100 40 0.11 333

1000 26 0.07 372 1000 13 0.04 337
10000 8 0.02 370 10000 4 0.01 337
100000 3 0.01 370 100000 1 0.00 337

b = 120 50 91 0.25 371 b = 15 50 39 0.13 295
Ψ(g) = 366 100 65 0.18 368 Ψ(g) = 298 100 28 0.10 297

1000 21 0.06 366 1000 9 0.03 298
10000 7 0.02 366 10000 3 0.01 298
100000 2 0.01 366 100000 1 0.00 298

b = 60 50 71 0.20 354
Ψ(g) = 357 100 52 0.14 356

1000 17 0.05 356
10000 5 0.02 356 6
100000 2 0.01 357
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Table A.6: The error terms, the ratios and the expected value of the estimated reserve,
calculated for different values of n when g ∼Pareto(5.00, 8.21) and a reinsurance limit b is
added.

n ERan RRan Eθ̂ n ERan RRan Eθ̂
b =∞ 50 144 0.87 191 b = 15 50 26 0.16 157
Ψ(g) = 166 100 43 0.26 174 Ψ(g) = 158 100 19 0.12 157

1000 9 0.06 167 1000 6 0.04 158
10000 3 0.02 167 10000 2 0.01 158
100000 1 0.01 166 100000 1 0.00 158

b = 50 50 37 0.23 168 b = 7 50 18 0.13 141
Ψ(g) = 166 100 27 0.16 167 Ψ(g) = 141 100 13 0.09 139

1000 9 0.05 166 1000 4 0.03 141
10000 3 0.02 166 10000 1 0.01 141
100000 1 0.01 166 100000 0 0.00 141

b = 25 50 31 0.19 162
Ψ(g) = 163 100 22 0.17 162

1000 7 0.04 163
10000 2 0.01 163
100000 1 0.00 163

Table A.7: The error terms, the ratios and the expected value of the estimated reserve,
calculated for different values of n when g ∼log-gamma(1.50, 7.00) and a reinsurance limit b
is added.

n ETot ERan ESys RTot RRan RSys Eθ̂
b =∞ 50 122 120 7 0.36 0.35 0.02 372
Ψ(g) = 342 100 77 75 7 0.22 0.22 0.02 363
Ψ(θ0) = 349 1000 21 19 7 0.06 0.06 0.02 351

10000 9 6 7 0.03 0.02 0.02 349
100000 7 2 7 0.02 0.01 0.02 348

b = 120 50 68 67 4 0.20 0.20 0.01 349
Ψ(g) = 341 100 50 50 4 0.15 0.15 0.01 349
Ψ(θ0) = 345 1000 17 16 4 0.05 0.05 0.01 346

10000 7 5 4 0.02 0.02 0.01 346
100000 5 2 4 0.02 0.01 0.01 345

b = 60 50 55 55 2 0.16 0.16 0.01 336
Ψ(g) = 335 100 41 41 2 0.12 0.12 0.01 338
Ψ(θ0) = 337 1000 13 13 2 0.04 0.04 0.01 337

10000 5 4 2 0.01 0.01 0.01 337
100000 3 1 2 0.01 0.00 0.01 337

b = 30 50 45 45 1 0.14 0.14 0.00 323
Ψ(g) = 324 100 32 32 1 0.10 0.10 0.00 324
Ψ(θ0) = 325 1000 10 10 1 0.03 0.03 0.00 325

10000 3 3 1 0.01 0.01 0.00 325
100000 1 1 1 0.00 0.00 0.00 325

b = 15 50 33 33 0 0.11 0.11 0.00 301
Ψ(g) = 303 100 23 23 0 0.08 0.08 0.00 302
Ψ(θ0) = 303 1000 7 7 0 0.02 0.02 0.00 303

10000 2 2 0 0.01 0.01 0.00 303
100000 1 1 0 0.00 0.00 0.00 303
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Table A.8: The error terms, the ratios and the expected value of the estimated reserve,
calculated for different values of n when g ∼log-gamma(1.00, 5.00) and a reinsurance limit b
is added.

n ETot ERan ESys RTot RRan RSys Eθ̂
b =∞ 50 40 40 1 0.26 0.26 0.01 163
Ψ(g) = 154 100 25 25 1 0.16 0.16 0.01 159
Ψ(θ0) = 155 1000 6 6 1 0.04 0.04 0.01 155

10000 2 2 1 0.01 0.01 0.01 155
100000 1 1 1 0.01 0.00 0.01 155

b = 50 50 27 27 1 0.17 0.17 0.00 157
Ψ(g) = 154 100 19 18 1 0.12 0.12 0.00 157
Ψ(θ0) = 155 1000 6 6 1 0.04 0.04 0.00 155

10000 2 2 1 0.01 0.01 0.00 155
100000 1 1 1 0.01 0.00 0.00 155

b = 25 50 23 23 0 0.15 0.15 0.00 154
Ψ(g) = 153 100 16 16 0 0.11 0.11 0.00 153
Ψ(θ0) = 153 1000 5 5 0 9.03 0.03 0.00 153

10000 2 2 0 0.01 0.01 0.00 153
100000 1 1 0 0.00 0.00 0.00 153

b = 15 50 20 20 0 0.13 0.13 0.00 150
Ψ(g) = 151 100 14 14 0 0.10 0.10 0.00 151
Ψ(θ0) = 151 1000 5 5 0 0.03 0.03 0.00 151

10000 2 2 0 0.01 0.01 0.00 151
100000 1 1 0 0.00 0.00 0.00 151

b = 7 50 15 15 0 0.10 0.10 0.00 141
Ψ(g) = 142 100 10 10 0 0.07 0.07 0.00 142
Ψ(θ0) = 142 1000 3 3 0 0.02 0.02 0.00 142

10000 1 1 0 0.01 0.01 0.00 142
100000 0 0 0 0.00 0.00 0.00 142
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Appendix B

Mathematical arguments

Chapter 2

Section 2.2.3

Proof that E[Zi] = −E[Y 2
i ], when the assumed model is correct and θ is a scalar, i.e. the

one-parameter situation.

If E[Zi] = −E[Y 2
i ], this is equivalent to∫ ∞

−∞

(
∂2

∂θ2
log fθ0(x)

)
fθ0(x)dx = −

∫ ∞
−∞

(
∂

∂θ
log fθ0(x)

)2

fθ0(x)dx,

or

E

[
∂2

∂θ2
log f(Xi|θ0)

]
= −E

[(
∂

∂θ
log f(Xi|θ0)

)2
]
.

From the argument regarding the expected value in Section 2.2.2, we know that since
∫∞
−∞ fθ0(x)dx =

1,

0 =
∂

∂θ

∫ ∞
−∞

fθ0(x)dx

=

∫ ∞
−∞

∂fθ0(x)/∂θ

fθ0(x)
fθ0(x)dx

=

∫ ∞
−∞

[
∂

∂θ
log fθ0(x)

]
fθ0(x)dx.

By differentiating once more we get

0 =
∂

∂θ

∫ ∞
−∞

[
∂

∂θ
log fθ0(x)

]
fθ0(x)dx

=

∫ ∞
−∞

[
∂2

∂θ2
log fθ0(x)

]
fθ0(x)dx+

∫ ∞
−∞

[
∂

∂θ
log fθ0(x)

]
∂

∂θ
fθ0(x)dx

= E

[
∂2

∂θ2
log f(Xi|θ0)

]
+

∫ ∞
−∞

[
∂

∂θ
log fθ0(x)

]2
fθ0(x)dx

= E

[
∂2

∂θ2
log f(Xi|θ0)

]
+ E

[(
∂

∂θ
log f(Xi|θ0)

)2
]

= E[Zi] + var[Yi].
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Hence, E[Zi] = −var[Yi] = E[Y 2
i ], when the underlying distribution is part of the parametric

family.

Section 2.3

Proof that E[Zi] = −E[Y 2
i ], when the assumed model is correct and θ = (θ1, .., θp) is a vector

of length p, i.e. the multi-parameter situation.

In the multi-parameter situation the quantities E[Y 2
i ] and E[Zi] are

E[Y 2
i ] =

∫ ∞
−∞

(
∂

∂θj
log fθ0(x)

)(
∂

∂θl
log fθ0(x)

)
fθ0(x)dx

and

E[Zi] =

∫ ∞
−∞

(
∂2

∂θj∂θl
log fθ0(x)

)
fθ0(x)dx.

The arguments in the multi-parameter situation are the same as those in the one-parameter
situation above,

0 =
∂

∂θj

∫ ∞
−∞

fθ0(x)dx =

∫ ∞
−∞

[
∂

∂θj
log fθ0(x)

]
fθ0(x)dx.

By differentiating once more we get,

0 =
∂

∂θl

∫ ∞
−∞

[
∂

∂θj
log fθ0(x)

]
fθ0(x)dx

=

∫ ∞
−∞

[
∂2

∂θj∂θl
log fθ0(x)

]
fθ0(x)dx+

∫ ∞
−∞

[
∂

∂θj
log f(x|θ)

]
∂

∂θl
fθ(x)dx

= E[Zi] + E[Y 2
i ].

Hence, E[Zi] = −var[Yi] = −E[Y 2
i ] in the multi-parameter situation as well.

Chapter 3

Finding the mean, the standard deviation, the skewness and the kurtosis of the
extended Pareto distribution.

Let fθ(x) be the extended Pareto density, then,

E(Xi) =

∫ ∞
0

xifθ(x)dx

=
Γ(α+ θ)

Γ(α)Γ(θ)

∫ ∞
0

1

β

(x/β)θ−1

(1 + x
β )α+θ

xidx

=
Γ(α+ θ)

Γ(α)Γ(θ)
βi
∫ ∞
0

1

β

(z/β)θ+i−1

(1 + x/β)α+θ
dx.
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Define α̃ = α+ i and θ̃ = θ − 1. Then,

E(Xi) =
Γ(α+ θ)

Γ(α)Γ(θ)
βi
∫ ∞
0

Γ(α̃)Γ(θ̃)

Γ(α̃+ θ̃)

(
1

β

Γ(α̃+ θ̃)

Γ(α̃)Γ(θ̃)

(x/β)θ̃−1

(1 + x/β)α̃+θ̃

)
dx

=
Γ(α+ θ)

Γ(α)Γ(θ)
βi

Γ(α̃)Γ(θ̃)

Γ(α̃+ θ̃)

=
Γ(α+ i)Γ(θ − i)

Γ(α)Γ(θ)
βi

since (α̃+ θ̃) = α+ θ. From this it follows that

E(X) = β
Γ(α− 1)Γ(θ + 1)

Γ(α)Γ(θ)
= β

θ

α− 1
,

E(X2) = β2
Γ(α− 2)Γ(θ + 2)

Γ(α)Γ(θ)
= β2

θ(θ + 1)

(α− 1)(α− 2)
,

E(X3) = β3
Γ(α− 3)Γ(θ + 3)

Γ(α)Γ(θ)
= β3

θ(θ + 1)(θ + 2)

(α− 1)(α− 2)(α− 3)
and

E(X4) = β4
Γ(α− 4)Γ(θ + 4)

Γ(α)Γ(θ)
= β4

θ(θ + 1)(θ + 2)(θ + 3)

(α− 1)(α− 2)(α− 3)(α− 4)
.

Thus, the expectation is

E(X) = β
θ

α− 1
= ξ.

The variance is defined as, var(X) = E(X2)− E(X)2, thus

var(X) =
β2θ(θ + 1)

(α− 1)(α− 2)
−
(

βθ

α− 1

)2

=
β2θ2(θ + 1)(α− 1)

θ(α− 1)2(α− 2)
−
(

βθ

α− 1

)2

= ξ2
(

(θ + 1)(α− 1)

θ(α− 2)
− 1

)
= ξ2

(
α+ θ − 1

θ(α− 2)

)
.

Hence, the standard deviation in the extended Pareto distribution is

sd(X) = ξ

√
α+ θ − 1

θ(α− 2)
= σ.

The skewness is defined as,

skew(X) =
E(X − ξ)3

σ3
, where ξ = E(X) and σ = sd(X).

The numerator can be rewritten as

E(X − ξ)3 = E(X3)− 3ξE(X2) + 3ξ2E(X)− ξ3

= E(X3)− 3ξ(E(X2) + ξE(X))− ξ3

= E(X3)− 3ξσ2 − ξ3.
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Thus, it follows that

skew(X) =
E(X3)− 3ξσ2 − ξ3

σ3
.

By plugging in the expressions for E(X3), ξ and σ which are found above, and then do some
algebra to simplify, it can be shown that,

skew(X) = 2

(
α+ 2θ − 1

α− 3

)√
α− 2

θ(α+ θ − 1)
.

The kurtosis is defined as,

kurt(X) =
E(X − ξ)4

σ4
where ξ = E(X) and σ = sd(X).

The numerator can be rewritten as,

E(X − ξ)4 = E(X4)− 4E(X3)ξ + 6E(X2)ξ2 − 4E(Z)ξ3 + ξ4

= E(X4)− 4E(X3)ξ + 6E(X2)ξ2 − 3E(X)4

Hence, it follows that

kurt(X) =
{E(X4)− 4E(X3)ξ + 6E(X2)ξ2 − 3E(X)4}

σ4
.

By plugging in the expressions for ξ, σ and E(Xi) for i = 1, 2, 3, 4, and carry out some
calculations, it can be shown that

kurt(X) =
3(α− 2)(α2θ + 2α2 + αθ2 + 4αθ − 4α+ 5θ2 − 5θ + 2)

(α− 4)(α− 3)θ(α+ θ − 1)
.

Chapter 5

Section 5.3

Finding the density function for the standard gamma distribution.

In Section 5.3, the density function of a gamma distributed random variable Z is defined
as

f(z) =
λα

Γ(α)
zα−1e−λz, z ≥ 0. (B.0.1)

The expected value and standard deviation are

E[Z] =
α

λ
and Sd[Z] =

√
α

λ
.

For a standard gamma distributed random variable Z0, E[Z0] = 1, thus α = λ. Hence, (B.0.1)
can be rewritten as,

f0(z0) =
αα

Γ(α)
zα−10 e−αz0 , z0 > 0,
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which is the same as (5.3.2).

Finding the mean and standard deviation of Z = ξZ0

The standard deviation of Z0 is

sd[Z0] =

√
α

α
=

1√
α
.

Hence, the mean and the standard deviation of Z = ξZ0 are

E[Z] = ξ and sd[Z] =
ξ√
α
.

Section 5.5

Finding the log-gamma density function.

The log-gamma distribution is defined such that if X is log-gamma distributed, then Y =
log(1 +X) is gamma distributed, i.e. X = eY − 1. A gamma distributed random variable Y
can be written as Y = ξY0, where ξ = E[Y ] and Y0 is a standard gamma as described above
and in Section 5.3. The cumulative distribution function Fl-g of a log-gamma distributed
random variable is then

Fl-g(x) = P (X ≤ x)

= P (eξY0 − 1 ≤ x)

= P

(
Y0 ≤

log(x+ 1)

ξ

)
= Fg

(
log(x+ 1)

ξ

)
,

where Fg is the cumulative distribution function for the standard gamma distribution.

The density distribution is found by differentiating the cumulative distribution once,

fl-g =
d

dx
Fl-g(x)

=
d

dx
Fg

(
log(x+ 1)

ξ

)
=

1

ξ(1 + x)
fg

(
log(x+ 1)

ξ

)
=

1

ξ(1 + z)

αα

Γ(α)
{log(1 + z)/ξ}α−1e−α log(1+z)/ξ,

which is the same as (5.5.1).
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Chapter 6

Section 6.2

Finding the new density function of the observations Y when transformation (6.1.1)
is applied.

The transformations applied in Section 6 is

Z =
(1 + Y )λ − 1

λ
⇒ Y = (Zλ+ 1)1/λ − 1,

where Y is the original observations. We assume that the transformed data Z1, ..., Zn are
extended Pareto distributed.

The cumulative distribution function of the observations is

FY (y) = FZ

(
(1 + y)λ − 1

λ

)
.

By differentiating once we get the density function,

fY (y) =
d

dy
FY (y) =

d

dy
FZ

(
(1 + y)λ − 1

λ

)
= (1 + y)λ−1fZ

(
(1 + y)λ − 1

λ

)
,

where fZ is the extended Pareto density function. Hence, the density function of Y is

fY (y) = (1 + y)λ−1
Γ(α+ θ)

Γ(α)Γ(θ)

1

β

(
(1+y)λ−1

λβ

)θ−1
(

1 + (1+y)λ−1
λβ

)α+θ , α, β, θ > 0, λ ∈ R,

which can be rewritten as

fY (y) =
Γ(α+ θ)

Γ(α)Γ(θ)

(λβ)α+1

β

(1 + y)λ−1{(1 + y)λ − 1}θ−1

{λβ + (1 + y)λ − 1}α+θ
, α, β, θ > 0, λ ∈ R.

It follows that the log-likelihood function needed to find the estimates (α̂, β̂, θ̂, λ̂) is

l(α, β, θ, λ) =n[log Γ(α+ θ)− log Γ(α)− log Γ(θ) + (α+ 1) log(λβ)− log β]

+ (λ− 1)
n∑
i=1

log(1 + yi) + (θ − 1)
n∑
i=1

log{(1 + yi)
λ − 1}

− (α+ θ)
n∑
i=1

log{λβ + (1 + yi)
λ − 1}.
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Appendix C

R-scripts

R-code used to find total, estimation and systematic error

The R-code below is used to find the error terms, ratios, expected value of estimated reserve
defines in (4.5.1), (4.5.2) and (4.5.3) respectively. These quantities are used to analyse the
possibility of using the extended Pareto distribution as default loss model. The output from
the programs are used to find the values given in the tables in Chapter 4 and Chapter 5.

The R-code below is used to determine the parameters in Table 5.1 at the beginning of
Chapter 5. The parameters (ξ, α) from the log-gamma distribution is input in the first pro-
gram, where the parameter sets from set 1 is calculated. In the second program, also α in the
Pareto distribution is an input parameter. This program calculates the parameter sets 2 and
3.

par se t1=function (m, xi , alpha ) {
#Simulate m log−Gamma v a r i a b l e s
x= exp( x i∗rgamma(m, alpha )/alpha )−1
#Determine the mean and standard d e v i a t i on .
mean l g=mean( x )
sd l g=sd ( x )

#log−normal
sigma=sqrt ( log ( ( sd l g/mean l g )∗∗2+1) )
mu=log (mean l g )−sigma∗∗2/2

#Gamma
x i g=mean l g
alpha g=(x i l g/sd l g )∗∗2

#Pareto
a=(sd l g/mean l g )∗∗2
alpha p=2∗a/ ( a−1)
beta p=mean l g∗ ( alpha p−1)

l i s t (mu ln=mu, sigma ln=sigma , x i g=x i g , alpha g=alpha g , mean l g=mean( x ) , sd
l g=sd ( x ) , beta p=beta p , alpha p=alpha p)

}

parset2and3=function (m, xi , alpha , alpha p) {
#Simulate m log−Gamma v a r i a b l e s
x= exp( x i∗rgamma(m, alpha )/alpha )−1
#Determine the mean and standard d e v i a t i on .
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mean l g=mean( x )
sd l g=sd ( x )

#log−normal
sigma=sqrt ( log ( ( sd l g/mean l g )∗∗2+1) )
mu=log (mean l g )−sigma∗∗2/2

#Gamma
x i g=mean l g
alpha g=(x i l g/sd l g )∗∗2

#Pareto
beta p=mean l g∗ ( alpha p−1)
sd p=mean l g∗sqrt ( alpha p/ ( alpha p−2) )

l i s t (mu ln=mu, sigma ln=sigma , x i g=x i g , alpha g=alpha g , mean l g=mean( x ) , sd
l g=sd ( x ) , beta p=beta p , sd p=sd p)

}

The program below gives the negative of the log-likelihood function for the extended Pareto
distribution. It is minimized within other programs, in order to find the maximum likelihood
estimates θ̂ = (α̂, β̂, θ̂).

pa r e t o l i k=function ( s , z )
{
t=exp( s )
l 1=−lgamma( t [1 ]+ t [ 2 ] )+lgamma( t [ 1 ] )+lgamma( t [ 2 ] )+t [ 2 ] ∗log ( t [ 3 ] )
l 2=−(t [2 ]−1)∗mean( log ( z ) )+(t [1 ]+ t [ 2 ] ) ∗mean( log(1+z/t [ 3 ] ) )
l 1+ l 2
}

Simulating Ψ(g),Ψ(θ0) and Ψ(θ̂) when there is systematic error

The programs below are those used to estimated Ψ(g),Ψ(θ0) and Ψ(θ̂) when g ∼log-normal
or g ∼log-gamma. That is, when the underlying distribution is outside the parametric family.
The programs are given for the situation where g ∼log-normal. What has to be changed when
g ∼log-gamma is illustrated within the programs. The input parameters are those used in
Chapter 4.

The program below is used to find θ0 with the Monte Carlo approach, as discussed in Sec-
tion 4.1.1.

minKL lognormal=function (m=100000 ,mu=0, sigma=1)
{
#Generate m log−normal data
z=rlnorm (m, meanlog=mu, sd log=sigma )
#When g−log−gamma, t h i s i s changed to z=exp ( x i∗rgamma(m, a lpha )/a lpha )−1.

#Minimize the nega t i v e log− l i k e l i h o o d func t i on and re turn the parameters who
minimize i t .

o=optim(c ( 1 , 0 . 7 , log (mean( z ) ) ) , pa r e t o l i k , z=z )
alpha0=exp( o$par [ 1 ] )
theta0=exp( o$par [ 2 ] )
beta0=exp( o$par [ 3 ] )
#Value o f the Kul lback−Le i b l e r d i s t ance .
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f= (gamma( alpha0+theta0 )/ (gamma( alpha0 )∗gamma( theta0 )∗beta0 ) )∗ ( ( z/beta0 )∗∗ (
theta0 −1) )/((1+ z/beta0 )∗∗ ( alpha0+theta0 ) )

I = (−1/m)∗sum( log ( f ) )
l i s t ( Imin=min( I ) , alpha0=alpha0 , theta0=theta0 , beta0=beta0 )
}

The program below is used to find θ0 by means of Gauss-Legendre quadrature, as discussed
in Section 4.1.2. The vectors x and w are found with a program called “genlegendre1.f” and
are then written into the file “genlegendre.res”. The program was provided by my supervisor.
It is written in Fortran, and is not given here.

GL lognormal=function (mu=0, sigma=1)
{
#Load the parameters from the f i l e#gen l egendre . re s ” .
A=matrix ( scan ( ” gen legendre . r e s ” ) , byrow=T, ncol=2)
x=A[ , 1 ]
w=a [ , 2 ]
f=function ( s , x ) {
#The nega t i v e o f Equation ( 2 . 1 . 4 ) from Chapter 2 .
t=exp( s )
sum(−w∗dnorm(x , mu, sigma )∗log ( (gamma( t [1 ]+ t [ 2 ] ) / (gamma( t [ 1 ] ) ∗gamma( t [ 2 ] ) ∗t [ 3 ] )

)∗ ( (exp( x )/t [ 3 ] ) ∗∗ ( t [2 ]−1) )/((1+ exp( x )/t [ 3 ] ) ∗∗ ( t [1 ]+ t [ 2 ] ) ) ) )
#when g−log−gamma the f i r s t par t i s changed to sum(−w∗dgamma(x , s c a l e=x i/alpha ,

shape=alpha )∗¨
}

#Minimize f and re turn the parameters who minimize i t .
o=optim(c ( 1 , 2 , 3 ) , f , x=x)
alpha0=exp( o$par [ 1 ] )
theta0=exp( o$par [ 2 ] )
beta0=exp( o$par [ 3 ] )
l i s t ( alpha0=alpha0 , theta0=theta0 , beta0=beta0 )
}

The program below is used to find Ψ(θ0), Ψ(g) and systematic error as discussed in Section 4.3.

r e s e rv e0=function (m=100000 , eps =0.01 , JmuT=300 , mu=0, sigma=1){
#Load the parameters found with the program GL lognormal (mu, sigma )
alpha0= GL lognormal (mu, sigma )$alpha0
theta0= GL lognormal (mu, sigma )$ theta0
beta0= GL lognormal (mu, sigma )$beta0
#Changed to GL logggamma when g−log−gamma

#Procedure as in Algori them 4 . 2 .
N = rpois (m, JmuT)
#Matrices used to avoid l oops .
maxN=max(N)
A=t (matrix ( rep (c ( 1 :maxN) ,m) ,maxN,m) )
B=matrix ( rep (N,maxN) ,m,maxN)
I=t (B−A>=0)

zlnorm=matrix (rlnorm (maxN∗m, mu, sigma ) , maxN,m)
#Changed to zlgamma=matrix ( exp ( x i∗rgamma(maxN∗m, alpha )/a lpha )−1, maxN,m) when

g−log−gamma.
Zlnorm=zlnorm∗I
Xlnorm=apply ( Zlnorm , 2 ,sum)
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zexpa0= matrix ( beta0∗rgamma(maxN∗m, theta0 )/rgamma(maxN∗m, alpha0 ) , maxN,m)
Zexpa0=zexpa0∗I
Xexpa0=apply ( Zexpa0 , 2 ,sum)

r e s e r v e lnorm = sort (Xlnorm) [(1− eps )∗m]
r e s e r v e expa0 = sort (Xexpa0 ) [(1− eps )∗m]
e r r o r sys = abs ( r e s e r v e expa0−r e s e r v e lnorm )
l i s t ( r e s e r v e lnorm =re s e r v e lnorm , r e s e r v e expa0=r e s e r v e expa0 , e r r o r sys=er r o r

sys )
}

The program below is used to estimate Ψ(θ̂) by means of maximum likelihood as discussed in
Section 4.2.2 and Section 4.3. It is also used to calculate the error terms, the ratios and the
expected value of the estimated reserve defined in (4.5.1), (4.5.2) and (4.5.3) respectively. It
also returns the three terms A1, A2 and A3 from decomposition (2.4.4) of total error given in
Section 4.4.

r e s e r v e t o t 1=function (m=10000 , eps =0.01 , JmuT=300 ,mu=0, sigma=1, n=100000 , M=100)
{

#Procedure as in Algori them 4.2 repea ted M times .
N = matrix ( rpois (m∗M, JmuT) ,m,M)
maxN=max(N)
Xexpa hat=matrix (0 ,m,M)
for ( j in 1 :M) {
z=rlnorm (n ,mu, sigma )
#Changed to z=exp ( x i∗rgamma(m, a lpha )/a lpha )−1 when g−log−gamma.
o=optim(c ( 1 , 0 . 7 , log (mean( z ) ) ) , pa r e t o l i k , z=z )
alpha hat=exp( o$par [ 1 ] )
theta hat=exp( o$par [ 2 ] )
beta hat=exp( o$par [ 3 ] )
Ni=N[ , j ]
Zexpa hat= matrix (beta hat∗rgamma(maxN∗m, theta hat )/rgamma(maxN∗m, alpha hat ) ,

maxN,m)
#Changed to zlgamma=matrix ( exp ( x i∗rgamma(maxN∗m, alpha )/a lpha )−1, maxN,m) when

g−log−gamma.
A=t (matrix ( rep (c ( 1 :maxN) ,m) ,maxN,m) )
B=matrix ( rep (Ni ,maxN) ,m,maxN)
Zexpa hat=Zexpa hat∗t ( (B−A>=0))
Xexpa hat [ , j ]=apply ( Zexpa hat , 2 ,sum)
}
#Write t h e s e numbers manual ly because i t saves s imu la t i on time . Loading them

from the o ther program take s long . They cou ld have been loaded in by wr i t i n :
r e s e r v e lnorm=rese rve0 (m=100000 , eps ,JmuT,mu, sigma )$ r e s e r v e lnorm , and

re s e r v e expa0=rese rve0 (m=100000 , eps ,JmuT,mu, sigma )$ r e s e r v e expa0
r e s e r v e lnorm = 613 .3
r e s e r v e expa0 = 678 .7
r e s e r v e expa hat = apply (Xexpa hat , 2 , sort ) [(1− eps )∗m, ]

mean r e s e r v e expa hat=mean( r e s e r v e expa hat )
sd r e s e r v e expa hat=sd ( r e s e r v e expa hat )

E Tot=sqrt (mean( ( r e s e r v e lnorm−r e s e r v e expa hat )∗∗2) )
E Ran=sqrt (mean( ( r e s e r v e expa0−r e s e r v e expa hat )∗∗2) )
E Sys=abs ( r e s e r v e lnorm−r e s e r v e expa0 )

R Tot=E Tot/ r e s e r v e lnorm
R Ran=E Ran/ r e s e r v e lnorm
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R Sys=E Sys/ r e s e r v e lnorm

E hattheta=mean r e s e r v e expa hat

A1=mean( ( r e s e r v e expa hat−r e s e r v e expa0 )∗∗2)
A2=( r e s e r v e expa0−r e s e r v e lnorm )∗∗2
A3=2∗mean( r e s e r v e expa hat−r e s e r v e expa0 )∗ ( r e s e r v e expa0−r e s e r v e lnorm )

l i s t (mean r e s e r v e expa hat=mean r e s e r v e expa hat , sd r e s e r v e expa hat=sd r e s e r v e
expa hat ,E Tot=E Tot , E Ran=E Ran , E Sys=E Sys ,R Tot=R Tot , R Ran=R Ran , R

Sys=R Sys , E hattheta=E hattheta ,A1=A1 , A2=A2 , A3=A3)
}

The program below is used to estimate Ψ(θ̂) by means of the delta method as discussed in
Section 4.2.1.

r e s e r v e norm=function (M=100 , m=10000 , eps =0.01 , JmuT=300 , n=100000 , mu=0, sigma
=1){

#Load the parameters found with the program GL lognormal (mu, sigma ) .
alpha0= GL lognormal (mu, sigma )$alpha0
theta0= GL lognormal (mu, sigma )$ theta0
beta0= GL lognormal (mu, sigma )$beta0
#Changed to GL loggamma when g−log−gamma.
parameter0=c ( alpha0 , theta0 , beta0 )

#The in t eg rands f o r every term in the Ig matrix .
f alpha2=function ( x ) {
( (digamma( alpha0+theta0 ) − digamma( alpha0 ) − log(1+x/beta0 ) )∗∗2)∗dlnorm( x )
}

f a lphatheta=function ( x ) {
(digamma( alpha0+theta0 ) − digamma( alpha0 ) − log(1+x/beta0 ) )∗ (digamma( alpha0+

theta0 ) − digamma( theta0 ) +log ( x/beta0 ) −log(1+ x/beta0 ) )∗dlnorm( x )
}

f a lphabeta=function ( x ) {
(digamma( alpha0+theta0 ) − digamma( alpha0 ) − log(1+x/beta0 ) )∗(− theta0/beta0 + (

alpha0+theta0 )∗ ( ( x/ ( beta0∗∗2) )/(1+x/beta0 ) ) )∗dlnorm( x )
}

f theta2=function ( x ) {
( (digamma( alpha0+theta0 ) − digamma( theta0 ) +log ( x/beta0 ) −log(1+ x/beta0 ) )∗∗2)∗

dlnorm( x )
}

f thetabeta=function ( x ) {
(digamma( alpha0+theta0 ) − digamma( theta0 ) +log ( x/beta0 ) −(1+ x/beta0 ) )∗(− theta0

/beta0 + ( alpha0+theta0 )∗log ( ( x/ ( beta0∗∗2) )/(1+x/beta0 ) ) )∗dlnorm( x )
}

f beta2=function ( x ) {
((− theta0/beta0 + ( alpha0+theta0 )∗ ( ( x/ ( beta0∗∗2) )/(1+x/beta0 ) ) )∗∗2)∗dlnorm( x )
}

#The in t eg rands f o r every term in the lambda matrix .
f 2 alpha2=function ( x ) {
( psigamma( alpha0+theta0 , 1 )−psigamma( alpha0 , 1 ) )∗dlnorm( x )
}
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f 2 a lphatheta=function ( x ) {
psigamma( alpha0+theta0 , 1 )∗dlnorm( x )
}
f 2 theta2=function ( x ) {
( psigamma( alpha0+theta0 ) −psigamma( theta0 ) )∗dlnorm( x )
}

f 2 a lphabeta=function ( x ) {
( ( x/ ( beta0∗∗2) )/(1+x/beta0 ) )∗dlnorm( x )
}
f 2 thetabeta=function ( x ) {
(−1/beta0 + (x/ ( beta0∗∗2) )/(1+x/beta0 ) )∗dlnorm( x )
}
f 2 beta2=function ( x ) {
( theta0/ ( beta0∗∗2) +(( alpha0+theta0 )∗x/ ( beta0∗∗3) ) ∗ ( ( x/beta0−2)/(1+x/beta0 )∗∗

2) )∗dlnorm( x )
}

#Finding the Ig−matrix .
Ig = matrix ( 0 , 3 , 3 )
Ig [1 ,1 ]= i n t e g r a t e ( f alpha2 ,0 , 100000)$value
Ig [2 ,1 ]= i n t e g r a t e ( f a lphatheta ,0 , 100000)$value
Ig [1 ,2 ]= Ig [ 2 , 1 ]
Ig [1 ,3 ]= i n t e g r a t e ( f alphabeta , 0 , 10000)$value
Ig [3 ,1 ]= Ig [ 1 , 3 ]
Ig [3 ,3 ]= i n t e g r a t e ( f beta2 , 0 , 10000)$value
Ig [2 ,3 ]= i n t e g r a t e ( f thetabeta , 0 , 10000)$value
Ig [3 ,2 ]= Ig [ 2 , 3 ]
Ig [2 ,2 ]= i n t e g r a t e ( f theta2 , 0 , 10000)$value

#Finding the Lambda−matrix g i ven parameter0 .
lambda=matrix ( 0 , 3 , 3 )
lambda [1 ,1 ]= i n t e g r a t e ( f 2 alpha2 ,0 , 10000)$value
lambda [1 ,2 ]= i n t e g r a t e ( f 2 alphatheta , 0 , 10000)$value
lambda [2 ,2 ]= i n t e g r a t e ( f 2 theta2 , 0 , 10000)$value
lambda [2 ,1 ]= lambda [ 1 , 2 ]
lambda [1 ,3 ]= i n t e g r a t e ( f 2 alphabeta , 0 , 10000)$value
lambda [3 ,1 ]= lambda [ 1 , 3 ]
lambda [3 ,3 ]= i n t e g r a t e ( f 2 beta2 , 0 , 10000)$value
lambda [2 ,3 ]= i n t e g r a t e ( f 2 thetabeta , 0 , 10000)$value
lambda [3 ,2 ]= lambda [ 2 , 3 ]

#The covar iance matrix , formula g iven in Sec t ion 2 . 3 .
cov mat= ( solve ( lambda )%∗%Ig%∗%solve ( lambda ) )/sqrt (n)

#Given cov mat and parameter0 , we can use the d e l t a method to es t imate the
r e s e r v e .

N = matrix ( rpois (m∗M, JmuT) ,m,M)
maxN=max(N)
Xexpa hat=matrix (0 ,m,M)
for ( j in 1 :M) {
par hat=rnorm(3 , parameter0 , cov mat)
alpha hat=par hat [ 1 ]
theta hat=par hat [ 2 ]
beta hat=par hat [ 3 ]
Ni=N[ , j ]
A=t (matrix ( rep (c ( 1 :maxN) ,m) ,maxN,m) )
B=matrix ( rep (Ni ,maxN) ,m,maxN)
I=t (B−A>=0)
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Zexpa hat= matrix (beta hat∗rgamma(maxN∗m, theta hat )/rgamma(maxN∗m, alpha hat ) ,
maxN,m)

#Changed to zlgamma=matrix ( exp ( x i∗rgamma(maxN∗m, alpha )/a lpha )−1, maxN,m) when
g−log−gamma.

Zexpa hat=Zexpa hat∗I
Xexpa hat [ , j ]=apply ( Zexpa hat , 2 ,sum)
}
r e s e r v e expa hat = apply (Xexpa hat , 2 , sort ) [(1− eps )∗m, ]

l i s t (mean r e s e r v e expa hat=mean( r e s e r v e expa hat ) , sd r e s e r v e expa hat=sd (
r e s e r v e expa hat ) )

}

Simulating Ψ(g) and Ψ(θ̂) when there is no systematic error

The program below is used to estimated Ψ(g) and Ψ(θ̂) when g ∼gamma or g ∼Pareto. That
is, when the underlying distribution is within the parametric family. The program is given
for the situation where g ∼gamma. What has to be changed when g ∼Pareto is illustrated
within the program.

r e s e r v e t o t 2=function (m=100000 , eps =0.01 , JmuT=50, x i =2.37 , alpha =0.38 , n=100000 ,
M=10000){

#Procedure as in Algori them 4.1 repea ted M times .
N = rpois (m, JmuT)
maxN=max(N)
Xexpa hat=matrix (0 ,m,M)
for ( j in 1 :M) {
z=x i∗rgamma(n , shape=alpha )/alpha
#Changed to z=be ta∗( r un i f (n)∗∗(−1/a lpha )−1) when g−Pareto .
o=optim(c ( 1 , 0 . 7 , log (mean( z ) ) ) , pa r e t o l i k , z=z )
alpha hat=exp( o$par [ 1 ] )
theta hat=exp( o$par [ 2 ] )
beta hat=exp( o$par [ 3 ] )
Ni=N[ , j ]
Zexpa hat= matrix (beta hat∗rgamma(maxN∗m, theta hat )/rgamma(maxN∗m, alpha hat ) ,

maxN,m)
A=t (matrix ( rep (c ( 1 :maxN) ,m) ,maxN,m) )
B=matrix ( rep (N,maxN) ,m,maxN)
I=t (B−A>=0)
Zexpa hat=Zexpa hat∗I
Xexpa hat=apply ( Zexpa hat , 2 ,sum)
}
r e s e r v e expa hat = sort (Xexpa hat ) [(1− eps )∗m]

zgamma=matrix ( x i∗rgamma(maxN∗m, shape=alpha )/alpha , maxN, m)
#Changed to zpare to=matrix ( be ta∗( r un i f (maxN∗m)∗∗(−1/a lpha )−1) , maxN, m) when g−

Pareto .
Zgamma=zgamma∗I
Xgamma=apply (Zgamma, 2 ,sum)
r e s e r v e gamma = sort (Xgamma) [(1− eps )∗m]

E Ran = sqrt (mean( ( r e s e r v e gamma−r e s e r v e expa hat )∗∗2) )

R Ran=E Ran/ r e s e r v e gamma

l i s t (E Ran=E Ran , R Ran=R Ran ,mean r e s e r v e expa hat=mean( r e s e r v e expa hat ) )
}
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Reinsurance

In Section 4.6, reinsurance is introduced. This is included by changing two lines in reserve0()
for finding Ψ(θ0) and Ψ(g). In the program reservetot1() used to estimate Ψ(θ̂) when g ∼log-
normal or g ∼log-gamma, one line has to be changed. While in the program reservetot2()
used to estimate Ψ(θ̂) and Ψ(g) when g ∼gamma or g ∼Pareto, two lines have to be changed.
For a given value of b, in reserve0() we use

zlnorm=matrix (pmin(rlnorm (maxN∗m, mu, sigma ) ,b) , maxN,m)
#Changed to zlgamma=matrix (pmin( exp ( x i∗rgamma(maxN∗m, alpha )/a lpha )−1,b ) , maxN,

m) when g−log−gamma.

zexpa0= matrix (pmin( beta0∗rgamma(maxN∗m, theta0 )/rgamma(maxN∗m, alpha0 ) ,b ) , maxN
,m)

In reservetot1() we use

zexpa hat= matrix (pmin(beta hat∗rgamma(maxN∗m, theta hat )/rgamma(maxN∗m, alpha
hat ) ,b ) , maxN,m)

In reservetot2() we use

Zexpa hat= matrix (pmin(beta hat∗rgamma(maxN∗m, theta hat )/rgamma(maxN∗m, alpha
hat ) ,b ) , maxN,m)

zgamma=matrix (pmin( x i∗rgamma(maxN∗m, shape=alpha )/alpha , b) , maxN, m)
#Changed to zpare to=matrix (pmin( be ta∗( r un i f (maxN∗m)∗∗(−1/a lpha )−1) , b ) , maxN, m)

when g−Pareto .

R-code for the graphical representations

The programs below is used to make Figure 3.1 in Chapter 3.

#The extended Pareto d en s i t y f unc t i on .
density expa=function (x , alpha , beta , theta ) {
t1=gamma( theta+alpha )/ (gamma( theta )∗gamma( alpha )∗beta )
t2= (x/beta )∗∗ ( theta −1)
t3=(1+ x/beta )∗∗ ( alpha + theta )
t1∗t2/t3
}

plot density exPa=function ( alpha =2.5 , beta=1, theta1 =0.8 , theta2 =1.5){
x=0:50000/10000+0.000000001
plot (x , density expa (x , alpha , beta , theta1 ) , type=” l ” , yl im=c ( 0 , 2 ) , xlab=” ” ,

ylab= ” ” )
l ines (x , density expa (x , alpha , beta , theta2 ) , l t y =4)
legend (3 , 1 , c ( ” theta =0.8” , ” theta =1.5” ) , l t y = c ( 1 , 4 ) )
}

The programs below is used to make Figure 5.1 in Section 5.2, and the corresponding figure
for the situation where g ∼log-gamma, Figure 5.4 in Section 5.5.

p l o td en s i t y lognormal=function (mu1=0.22 , sigma1=1.13 , mu2=1.12 , sigma2=0.85 ,
mu3=0.41 , sigma3=0.78){

#The extended Pareto d en s i t y f unc t i on .
dens i tyexpa=function (x , alpha hat , beta hat , theta hat ) {
t1=gamma( theta hat+alpha hat )/ (gamma( theta hat )∗gamma( alpha hat )∗beta hat )
t2= (x/beta hat )∗∗ ( theta hat−1)
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t3=(1+ x/beta hat )∗∗ ( alpha hat + theta hat )
t1∗t2/t3
}
#Replaced by the log−gamma den s i t y when the corresponding f i g u r e in Sec t ion 5.5

i s made .

#Load the parameters from the f i l e#gen l egendre . re s ” .
A=matrix ( scan ( ” gen legendre . r e s ” ) , byrow=T, ncol=2)
x gl=A[ , 1 ]
w=a [ , 2 ]

#The nega t i v e o f equa t ion ( 2 . 1 . 4 ) from chapter 2 f o r the 3 d i f f e r e n t parameter
s e t s .

f 1=function ( s , x gl ) {
t=exp( s )
sum(−w∗dnorm( x gl , mu1 , sigma1 )∗log ( (gamma( t [1 ]+ t [ 2 ] ) / (gamma( t [ 1 ] ) ∗gamma( t [ 2 ] ) ∗

t [ 3 ] ) )
∗ ( (exp( x gl )/t [ 3 ] ) ∗∗ ( t [2 ]−1) )/((1+ exp( x gl )/t [ 3 ] ) ∗∗ ( t [1 ]+ t [ 2 ] ) ) ) )
}
f 2=function ( s , x gl ) {
t=exp( s )
sum(−w∗dnorm( x gl , mu2 , sigma2 )∗log ( (gamma( t [1 ]+ t [ 2 ] ) / (gamma( t [ 1 ] ) ∗gamma( t [ 2 ] ) ∗

t [ 3 ] ) )
∗ ( (exp( x gl )/t [ 3 ] ) ∗∗ ( t [2 ]−1) )/((1+ exp( x gl )/t [ 3 ] ) ∗∗ ( t [1 ]+ t [ 2 ] ) ) ) )
}
f 3=function ( s , x gl ) {
t=exp( s )
sum(−w∗dnorm( x gl , mu3 , sigma3 )∗log ( (gamma( t [1 ]+ t [ 2 ] ) / (gamma( t [ 1 ] ) ∗gamma( t [ 2 ] ) ∗

t [ 3 ] ) )
∗ ( (exp( x gl )/t [ 3 ] ) ∗∗ ( t [2 ]−1) )/((1+ exp( x gl )/t [ 3 ] ) ∗∗ ( t [1 ]+ t [ 2 ] ) ) ) )
}
#When g−log−gamma the f i r s t par t i s changed to sum(−w∗dgamma( x g l , s c a l e=x i/

alpha , shape=alpha )∗¨

x1=seq ( from=0.000001 , to=10, 0 . 01 )
x2=seq ( from=100 , to=200 , 1)

o=optim(c ( 1 , 2 , 3 ) , f1 , x gl=x gl )
alpha01=exp( o$par [ 1 ] )
theta01=exp( o$par [ 2 ] )
beta01=exp( o$par [ 3 ] )
o=optim(c ( 1 , 2 , 3 ) , f2 , x gl=x gl )
alpha02=exp( o$par [ 1 ] )
theta02=exp( o$par [ 2 ] )
beta02=exp( o$par [ 3 ] )
o=optim(c ( 1 , 2 , 3 ) , f3 , x gl=x gl )
alpha03=exp( o$par [ 1 ] )
theta03=exp( o$par [ 2 ] )
beta03=exp( o$par [ 3 ] )

par (mfrow=c ( 2 , 3 ) )
plot ( x1 , dens i tyexpa ( x1 , alpha01 , beta01 , theta01 ) , type=” l ” , xlab=” ” , ylab=” ” ,

l t y =2, main=”Parameter s e t 1” , ylim=c ( 0 , 0 . 6 ) )
l ines ( x1 ,dlnorm( x1 , mu1 , sigma1 ) , l t y =1)
legend ( 5 , 0 . 4 , c ( ”g” , ” theta 0” ) , l t y = c ( 1 , 2 ) )
plot ( x1 , dens i tyexpa ( x1 , alpha02 , beta02 , theta02 ) , type=” l ” , xlab=” ” , ylab=” ” ,

l t y =2, main=”Parameter s e t 2” , ylim=c ( 0 , 0 . 6 ) )
l ines ( x1 ,dlnorm( x1 , mu2 , sigma2 ) )
legend ( 5 , 0 . 4 , c ( ”g” , ” theta 0” ) , l t y = c ( 1 , 2 ) )
plot ( x1 , dens i tyexpa ( x1 , alpha03 , beta03 , theta03 ) , type=” l ” , xlab=” ” , ylab=” ” ,

l t y =2, main=”Parameter s e t 3” , ylim=c ( 0 , 0 . 6 ) )
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l ines ( x1 ,dlnorm( x1 , mu3 , sigma3 ) )
legend ( 5 , 0 . 4 , c ( ”g” , ” theta 0” ) , l t y = c ( 1 , 2 ) )

plot ( x2 , dens i tyexpa ( x2 , alpha01 , beta01 , theta01 ) , type=” l ” , yl im=c (0 ,10∗∗(−5) ) ,
x lab=” ” , ylab=” ” , l t y =2, main=”Parameter s e t 1” )

l ines ( x2 ,dlnorm( x2 , mu1 , sigma1 ) )
legend (150 , 8∗10∗∗(−6) , c ( ”g” , ” theta 0” ) , l t y = c ( 1 , 2 ) )
plot ( x2 , dens i tyexpa ( x2 , alpha02 , beta02 , theta02 ) , type=” l ” , yl im=c (0 ,10∗∗(−5) ) ,

x lab=” ” , ylab=” ” , l t y =2, main=”Parameter s e t 2” )
l ines ( x2 ,dlnorm( x2 , mu2 , sigma2 ) )
legend (150 , 8∗10∗∗(−6) , c ( ”g” , ” theta 0” ) , l t y = c ( 1 , 2 ) )
plot ( x2 , dens i tyexpa ( x2 , alpha03 , beta03 , theta03 ) , type=” l ” , yl im=c (0 ,10∗∗(−5) ) ,

x lab=” ” , ylab=” ” , l t y =2, main=”Parameter s e t 3” )
l ines ( x2 ,dlnorm( x2 , mu3 , sigma3 ) )
legend (150 , 8∗10∗∗(−6) , c ( ”g” , ” theta 0” ) , l t y = c ( 1 , 2 ) )
}

The programs below is used to make Figure 5.2 in Section 5.2, and the corresponding figure
for the situation where g ∼log-gamma, Figure 5.5 in Section 5.5. It is also used to make
Figure A.1, Figure A.2, Figure A.5 and Figure A.6 in Appendix A.

den s i t yp l o t=function (mu=0.22 , sigma=1.13){
#The extended Pareto d en s i t y f unc t i on .
density expa=function (x , alpha hat , beta hat , theta hat ) {
t1=gamma( theta hat+alpha hat )/ (gamma( theta hat )∗gamma( alpha hat )∗beta hat )
t2= (x/beta hat )∗∗ ( theta hat−1)
t3=(1+ x/beta hat )∗∗ ( alpha hat + theta hat )
t1∗t2/t3
}
#Replaced by the log−gamma den s i t y when the corresponding f i g u r e in Sec t ion 5.5

i s made .

#Load the parameters from the f i l e#gen l egendre . re s ” .
A=matrix ( scan ( ” gen legendre . r e s ” ) , byrow=T, ncol=2)
x gl=A[ , 1 ]
w=a [ , 2 ]

f=function ( s , x gl ) {
#The nega t i v e o f equa t ion ( 2 . 1 . 4 ) from Chapter 2 .
t=exp( s )
sum(−w∗dnorm( x gl , mu, sigma )∗log ( (gamma( t [1 ]+ t [ 2 ] ) / (gamma( t [ 1 ] ) ∗gamma( t [ 2 ] ) ∗t

[ 3 ] ) )
∗ ( (exp( x gl )/t [ 3 ] ) ∗∗ ( t [2 ]−1) )/((1+ exp( x gl )/t [ 3 ] ) ∗∗ ( t [1 ]+ t [ 2 ] ) ) ) )
}
#When g−log−gamma the f i r s t par t i s changed to sum(−w∗dgamma( x g l , s c a l e=x i/

alpha , shape=alpha )∗

par (mfrow=c ( 2 , 3 ) )
x1=seq ( from=0.000001 , to=10, 0 . 01 )
x2=seq ( from=100 , to=200 , 1)

o=optim(c ( 1 , 2 , 3 ) , f , x gl=x gl )
alpha0=exp( o$par [ 1 ] )
theta0=exp( o$par [ 2 ] )
beta0=exp( o$par [ 3 ] )
plot ( x1 , density expa ( x1 , alpha0 , beta0 , theta0 ) , l t y =1, type=” l ” , main=”n=50” ,

xlab=” ” , ylab= ” ” , lwd=2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−
n1=50
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z1=rlnorm ( n1 ,mu, sigma )
#Changed to z=exp ( x i∗rgamma(m, a lpha )/a lpha )−1 when g−log−gamma.
o1=optim(c ( 1 , 0 . 7 , log (mean( z1 ) ) ) , pa r e t o l i k , z=z1 )
alpha hat11=exp( o1$par [ 1 ] )
theta hat11=exp( o1$par [ 2 ] )
beta hat11=exp( o1$par [ 3 ] )
l ines ( x1 , density expa ( x1 , alpha hat11 , beta hat11 , theta hat11 ) , l t y =2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−
n1=50
z1=rlnorm ( n1 ,mu, sigma )
o1=optim(c ( 1 , 0 . 7 , log (mean( z1 ) ) ) , pa r e t o l i k , z=z1 )
alpha hat12=exp( o1$par [ 1 ] )
theta hat12=exp( o1$par [ 2 ] )
beta hat12=exp( o1$par [ 3 ] )
l ines ( x1 , density expa ( x1 , alpha hat12 , beta hat12 , theta hat12 ) , l t y =2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−
n1=50
z1=rlnorm ( n1 ,mu, sigma )
o1=optim(c ( 1 , 0 . 7 , log (mean( z1 ) ) ) , pa r e t o l i k , z=z1 )
alpha hat13=exp( o1$par [ 1 ] )
theta hat13=exp( o1$par [ 2 ] )
beta hat13=exp( o1$par [ 3 ] )
l ines ( x1 , density expa ( x1 , alpha hat13 , beta hat13 , theta hat13 ) , l t y =2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−
n1=50
z1=rlnorm ( n1 ,mu, sigma )
o1=optim(c ( 1 , 0 . 7 , log (mean( z1 ) ) ) , pa r e t o l i k , z=z1 )
alpha hat14=exp( o1$par [ 1 ] )
theta hat14=exp( o1$par [ 2 ] )
beta hat14=exp( o1$par [ 3 ] )
l ines ( x1 , density expa ( x1 , alpha hat14 , beta hat14 , theta hat14 ) , l t y =2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−
n1=50
z1=rlnorm ( n1 ,mu, sigma )
o1=optim(c ( 1 , 0 . 7 , log (mean( z1 ) ) ) , pa r e t o l i k , z=z1 )
alpha hat15=exp( o1$par [ 1 ] )
theta hat15=exp( o1$par [ 2 ] )
beta hat15=exp( o1$par [ 3 ] )
l ines ( x1 , density expa ( x1 , alpha hat15 , beta hat15 , theta hat15 ) , l t y =2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−

legend ( 4 , 0 . 4 , c ( ” theta 0” , ” theta hat” ) , l t y = c ( 1 , 2 ) , lwd=c ( 2 , 1 ) )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−
#−−−−−−−−−−−−−−−−−−−−−−−−−−−
plot ( x1 , density expa ( x1 , alpha0 , beta0 , theta0 ) , l t y =1, type=” l ” , main=”n=1000”

, xlab=” ” , ylab= ” ” , lwd=2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−
n2=1000
z2=rlnorm ( n2 ,mu, sigma )
o2=optim(c ( 1 , 0 . 7 , log (mean( z2 ) ) ) , pa r e t o l i k , z=z2 )
alpha hat21=exp( o2$par [ 1 ] )
theta hat21=exp( o2$par [ 2 ] )
beta hat21=exp( o2$par [ 3 ] )
l ines ( x1 , density expa ( x1 , alpha hat21 , beta hat21 , theta hat21 ) , l t y =2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−
n2=1000
z2=rlnorm ( n2 ,mu, sigma )
o2=optim(c ( 1 , 0 . 7 , log (mean( z2 ) ) ) , pa r e t o l i k , z=z2 )
alpha hat22=exp( o2$par [ 1 ] )
theta hat22=exp( o2$par [ 2 ] )
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beta hat22=exp( o2$par [ 3 ] )
l ines ( x1 , density expa ( x1 , alpha hat22 , beta hat22 , theta hat22 ) , l t y =2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−
n2=1000
z2=rlnorm ( n2 ,mu, sigma )
o2=optim(c ( 1 , 0 . 7 , log (mean( z2 ) ) ) , pa r e t o l i k , z=z2 )
alpha hat23=exp( o2$par [ 1 ] )
theta hat23=exp( o2$par [ 2 ] )
beta hat23=exp( o2$par [ 3 ] )
l ines ( x1 , density expa ( x1 , alpha hat23 , beta hat23 , theta hat23 ) , l t y =2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−
n2=1000
z2=rlnorm ( n2 ,mu, sigma )
o2=optim(c ( 1 , 0 . 7 , log (mean( z2 ) ) ) , pa r e t o l i k , z=z2 )
alpha hat24=exp( o2$par [ 1 ] )
theta hat24=exp( o2$par [ 2 ] )
beta hat24=exp( o2$par [ 3 ] )
l ines ( x1 , density expa ( x1 , alpha hat24 , beta hat24 , theta hat24 ) , l t y =2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−
n2=1000
z2=rlnorm ( n2 ,mu, sigma )
o2=optim(c ( 1 , 0 . 7 , log (mean( z2 ) ) ) , pa r e t o l i k , z=z2 )
alpha hat25=exp( o2$par [ 1 ] )
theta hat25=exp( o2$par [ 2 ] )
beta hat25=exp( o2$par [ 3 ] )
l ines ( x1 , density expa ( x1 , alpha hat25 , beta hat25 , theta hat25 ) , l t y =2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−

legend ( 4 , 0 . 4 , c ( ” theta 0” , ” theta hat” ) , l t y = c ( 1 , 2 ) , lwd=c ( 2 , 1 ) )
#−−−−−−−−−−−−−−−−−−−−−−−−−−−
#−−−−−−−−−−−−−−−−−−−−−−−−−−−
plot ( x1 , density expa ( x1 , alpha0 , beta0 , theta0 ) , l t y =1, type=” l ” , main=”n

=100000” , xlab=” ” , ylab= ” ” , lwd=2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−
n3=100000
z3=rlnorm ( n3 ,mu, sigma )
o3=optim(c ( 1 , 0 . 7 , log (mean( z3 ) ) ) , pa r e t o l i k , z=z3 )
alpha hat31=exp( o3$par [ 1 ] )
theta hat31=exp( o3$par [ 2 ] )
beta hat31=exp( o3$par [ 3 ] )
l ines ( x1 , density expa ( x1 , alpha hat31 , beta hat31 , theta hat31 ) , l t y =2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−
n3=100000
z3=rlnorm ( n3 ,mu, sigma )
o3=optim(c ( 1 , 0 . 7 , log (mean( z3 ) ) ) , pa r e t o l i k , z=z3 )
alpha hat32=exp( o3$par [ 1 ] )
theta hat32=exp( o3$par [ 2 ] )
beta hat32=exp( o3$par [ 3 ] )
l ines ( x1 , density expa ( x1 , alpha hat32 , beta hat32 , theta hat32 ) , l t y =2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−
n3=100000
z3=rlnorm ( n3 ,mu, sigma )
o3=optim(c ( 1 , 0 . 7 , log (mean( z3 ) ) ) , pa r e t o l i k , z=z3 )
alpha hat33=exp( o3$par [ 1 ] )
theta hat33=exp( o3$par [ 2 ] )
beta hat33=exp( o3$par [ 3 ] )
l ines ( x1 , density expa ( x1 , alpha hat33 , beta hat33 , theta hat33 ) , l t y =2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−
n3=100000
z3=rlnorm ( n3 ,mu, sigma )
o3=optim(c ( 1 , 0 . 7 , log (mean( z3 ) ) ) , pa r e t o l i k , z=z3 )
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alpha hat34=exp( o3$par [ 1 ] )
theta hat34=exp( o3$par [ 2 ] )
beta hat34=exp( o3$par [ 3 ] )
l ines ( x1 , density expa ( x1 , alpha hat34 , beta hat34 , theta hat34 ) , l t y =2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−
n3=100000
z3=rlnorm ( n3 ,mu, sigma )
o3=optim(c ( 1 , 0 . 7 , log (mean( z3 ) ) ) , pa r e t o l i k , z=z3 )
alpha hat35=exp( o3$par [ 1 ] )
theta hat35=exp( o3$par [ 2 ] )
beta hat35=exp( o3$par [ 3 ] )
l ines ( x1 , density expa ( x1 , alpha hat35 , beta hat35 , theta hat35 ) , l t y =2)
legend ( 4 , 0 . 4 , c ( ” theta 0” , ” theta hat” ) , l t y = c ( 1 , 2 ) , lwd=c ( 2 , 1 ) )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−
plot ( x2 , density expa ( x2 , alpha0 , beta0 , theta0 ) , l t y =1, type=” l ” , yl im=c (0 ,15∗

(10∗∗(−6) ) ) , main=”n=50” , xlab=” ” , ylab= ” ” , lwd=2)
l ines ( x2 , density expa ( x2 , alpha hat11 , beta hat11 , theta hat11 ) , l t y =2)
l ines ( x2 , density expa ( x2 , alpha hat12 , beta hat12 , theta hat12 ) , l t y =2)
l ines ( x2 , density expa ( x2 , alpha hat13 , beta hat13 , theta hat13 ) , l t y =2)
l ines ( x2 , density expa ( x2 , alpha hat14 , beta hat14 , theta hat14 ) , l t y =2)
l ines ( x2 , density expa ( x2 , alpha hat15 , beta hat15 , theta hat15 ) , l t y =2)
legend (140 ,10∗(10∗∗(−6) ) , c ( ” theta 0” , ” theta hat” ) , l t y = c ( 1 , 2 ) , lwd=c ( 2 , 1 ) )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−
plot ( x2 , density expa ( x2 , alpha0 , beta0 , theta0 ) , l t y =1, type=” l ” , yl im=c (0 ,15∗

(10∗∗(−6) ) ) , main=”n=1000” , xlab=” ” , ylab= ” ” , lwd=2)
l ines ( x2 , density expa ( x2 , alpha hat21 , beta hat21 , theta hat21 ) , l t y =2)
l ines ( x2 , density expa ( x2 , alpha hat22 , beta hat22 , theta hat22 ) , l t y =2)
l ines ( x2 , density expa ( x2 , alpha hat23 , beta hat23 , theta hat23 ) , l t y =2)
l ines ( x2 , density expa ( x2 , alpha hat24 , beta hat24 , theta hat24 ) , l t y =2)
l ines ( x2 , density expa ( x2 , alpha hat25 , beta hat25 , theta hat25 ) , l t y =2)
legend (140 ,10∗(10∗∗(−6) ) , c ( ” theta 0” , ” theta hat” ) , l t y = c ( 1 , 2 ) , lwd=c ( 2 , 1 ) )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−
plot ( x2 , density expa ( x2 , alpha0 , beta0 , theta0 ) , l t y =1, type=” l ” , yl im=c (0 ,15∗

(10∗∗(−6) ) ) , main=”n=100000” , xlab=” ” , ylab= ” ” , lwd=2)
l ines ( x2 , density expa ( x2 , alpha hat31 , beta hat31 , theta hat31 ) , l t y =2)
l ines ( x2 , density expa ( x2 , alpha hat32 , beta hat32 , theta hat32 ) , l t y =2)
l ines ( x2 , density expa ( x2 , alpha hat33 , beta hat33 , theta hat33 ) , l t y =2)
l ines ( x2 , density expa ( x2 , alpha hat34 , beta hat34 , theta hat34 ) , l t y =2)
l ines ( x2 , density expa ( x2 , alpha hat35 , beta hat35 , theta hat35 ) , l t y =2)
legend (140 ,10∗(10∗∗(−6) ) , c ( ” theta 0” , ” theta hat” ) , l t y = c ( 1 , 2 ) , lwd=c ( 2 , 1 ) )
}

The program below is used to make Figure 5.3 in Section 5.4. It is also used to make Figure A.3
and Figure A.4 in Appendix A.

den s i t yp l o t pareto=function ( alpha =3.21 , beta=5.26 , n1=50){

dens i typa re to=function (x , alpha , beta ) {
( alpha/beta )/((1+x/beta )∗∗(1+alpha ) )
}

density expa=function (x , alpha hat , beta hat , theta hat ) {
t1=gamma( theta hat+alpha hat )/ (gamma( theta hat )∗gamma( alpha hat )∗beta hat )
t2= (x/beta hat )∗∗ ( theta hat−1)
t3=(1+ x/beta hat )∗∗ ( alpha hat + theta hat )
t1∗t2/t3
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}

par (mfrow=c ( 2 , 3 ) )
x1=seq ( from=0.0001 , to=10, 0 . 01 )
x2=seq ( from=100 , to=200 , 1)

plot ( x1 , dens i typa re to ( x1 , alpha , beta ) , l t y =1, type=” l ” , main=”n=50” , xlab=” ” ,
ylab= ” ” , lwd=2)

#−−−−−−−−−−−−−−−−−−−−−−−−−−−

z1=beta∗ ( runif ( n1 )∗∗(−1/alpha )−1)
o1=optim(c ( 1 , 0 . 7 , log (mean( z1 ) ) ) , pa r e t o l i k , z=z1 )
alpha hat11=exp( o1$par [ 1 ] )
theta hat11=exp( o1$par [ 2 ] )
beta hat11=exp( o1$par [ 3 ] )
l ines ( x1 , density expa ( x1 , alpha hat11 , beta hat11 , theta hat11 ) , l t y =2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−

z1=beta∗ ( runif ( n1 )∗∗(−1/alpha )−1)
o1=optim(c ( 1 , 0 . 7 , log (mean( z1 ) ) ) , pa r e t o l i k , z=z1 )
alpha hat12=exp( o1$par [ 1 ] )
theta hat12=exp( o1$par [ 2 ] )
beta hat12=exp( o1$par [ 3 ] )
l ines ( x1 , density expa ( x1 , alpha hat12 , beta hat12 , theta hat12 ) , l t y =2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−

z1=beta∗ ( runif ( n1 )∗∗(−1/alpha )−1)
o1=optim(c ( 1 , 0 . 7 , log (mean( z1 ) ) ) , pa r e t o l i k , z=z1 )
alpha hat13=exp( o1$par [ 1 ] )
theta hat13=exp( o1$par [ 2 ] )
beta hat13=exp( o1$par [ 3 ] )
l ines ( x1 , density expa ( x1 , alpha hat13 , beta hat13 , theta hat13 ) , l t y =2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−

z1=beta∗ ( runif ( n1 )∗∗(−1/alpha )−1)
o1=optim(c ( 1 , 0 . 7 , log (mean( z1 ) ) ) , pa r e t o l i k , z=z1 )
alpha hat14=exp( o1$par [ 1 ] )
theta hat14=exp( o1$par [ 2 ] )
beta hat14=exp( o1$par [ 3 ] )
l ines ( x1 , density expa ( x1 , alpha hat14 , beta hat14 , theta hat14 ) , l t y =2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−

z1=beta∗ ( runif ( n1 )∗∗(−1/alpha )−1)
o1=optim(c ( 1 , 0 . 7 , log (mean( z1 ) ) ) , pa r e t o l i k , z=z1 )
alpha hat15=exp( o1$par [ 1 ] )
theta hat15=exp( o1$par [ 2 ] )
beta hat15=exp( o1$par [ 3 ] )
l ines ( x1 , density expa ( x1 , alpha hat15 , beta hat15 , theta hat15 ) , l t y =2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−

legend ( 4 , 0 . 4 , c ( ” theta 0” , ” theta hat” ) , l t y = c ( 1 , 2 ) , lwd=c ( 2 , 1 ) )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−
#−−−−−−−−−−−−−−−−−−−−−−−−−−−
plot ( x1 , dens i typa re to ( x1 , alpha , beta ) , l t y =1, type=” l ” , main=”n=1000” , xlab=”

” , ylab= ” ” , lwd=2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−
n2=1000
z2=beta∗ ( runif ( n2 )∗∗(−1/alpha )−1)
o2=optim(c ( 1 , 0 . 7 , log (mean( z2 ) ) ) , pa r e t o l i k , z=z2 )
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alpha hat21=exp( o2$par [ 1 ] )
theta hat21=exp( o2$par [ 2 ] )
beta hat21=exp( o2$par [ 3 ] )
l ines ( x1 , density expa ( x1 , alpha hat21 , beta hat21 , theta hat21 ) , l t y =2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−
n2=1000
z2=beta∗ ( runif ( n2 )∗∗(−1/alpha )−1)
o2=optim(c ( 1 , 0 . 7 , log (mean( z2 ) ) ) , pa r e t o l i k , z=z2 )
alpha hat22=exp( o2$par [ 1 ] )
theta hat22=exp( o2$par [ 2 ] )
beta hat22=exp( o2$par [ 3 ] )
l ines ( x1 , density expa ( x1 , alpha hat22 , beta hat22 , theta hat22 ) , l t y =2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−
n2=1000
z2=beta∗ ( runif ( n2 )∗∗(−1/alpha )−1)
o2=optim(c ( 1 , 0 . 7 , log (mean( z2 ) ) ) , pa r e t o l i k , z=z2 )
alpha hat23=exp( o2$par [ 1 ] )
theta hat23=exp( o2$par [ 2 ] )
beta hat23=exp( o2$par [ 3 ] )
l ines ( x1 , density expa ( x1 , alpha hat23 , beta hat23 , theta hat23 ) , l t y =2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−
n2=1000
z2=beta∗ ( runif ( n2 )∗∗(−1/alpha )−1)
o2=optim(c ( 1 , 0 . 7 , log (mean( z2 ) ) ) , pa r e t o l i k , z=z2 )
alpha hat24=exp( o2$par [ 1 ] )
theta hat24=exp( o2$par [ 2 ] )
beta hat24=exp( o2$par [ 3 ] )
l ines ( x1 , density expa ( x1 , alpha hat24 , beta hat24 , theta hat24 ) , l t y =2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−
n2=1000
z2=beta∗ ( runif ( n2 )∗∗(−1/alpha )−1)
o2=optim(c ( 1 , 0 . 7 , log (mean( z2 ) ) ) , pa r e t o l i k , z=z2 )
alpha hat25=exp( o2$par [ 1 ] )
theta hat25=exp( o2$par [ 2 ] )
beta hat25=exp( o2$par [ 3 ] )
l ines ( x1 , density expa ( x1 , alpha hat25 , beta hat25 , theta hat25 ) , l t y =2)

legend ( 4 , 0 . 4 , c ( ” theta 0” , ” theta hat” ) , l t y = c ( 1 , 4 ) , lwd=c ( 2 , 1 ) )
#−−−−−−−−−−−−−−−−−−−−−−−−−−−
#−−−−−−−−−−−−−−−−−−−−−−−−−−−
plot ( x1 , dens i typa re to ( x1 , alpha , beta ) , l t y =1, type=” l ” , main=”n=100000” , xlab=

” ” , ylab= ” ” , lwd=2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−
n3=100000
z3=beta∗ ( runif ( n3 )∗∗(−1/alpha )−1)
o3=optim(c ( 1 , 0 . 7 , log (mean( z3 ) ) ) , pa r e t o l i k , z=z3 )
alpha hat31=exp( o3$par [ 1 ] )
theta hat31=exp( o3$par [ 2 ] )
beta hat31=exp( o3$par [ 3 ] )
l ines ( x1 , density expa ( x1 , alpha hat31 , beta hat31 , theta hat31 ) , l t y =2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−
n3=100000
z3=beta∗ ( runif ( n3 )∗∗(−1/alpha )−1)
o3=optim(c ( 1 , 0 . 7 , log (mean( z3 ) ) ) , pa r e t o l i k , z=z3 )
alpha hat32=exp( o3$par [ 1 ] )
theta hat32=exp( o3$par [ 2 ] )
beta hat32=exp( o3$par [ 3 ] )
l ines ( x1 , density expa ( x1 , alpha hat32 , beta hat32 , theta hat32 ) , l t y =2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−
n3=100000
z3=beta∗ ( runif ( n3 )∗∗(−1/alpha )−1)
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APPENDIX C. R-SCRIPTS

o3=optim(c ( 1 , 0 . 7 , log (mean( z3 ) ) ) , pa r e t o l i k , z=z3 )
alpha hat33=exp( o3$par [ 1 ] )
theta hat33=exp( o3$par [ 2 ] )
beta hat33=exp( o3$par [ 3 ] )
l ines ( x1 , density expa ( x1 , alpha hat33 , beta hat33 , theta hat33 ) , l t y =2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−
n3=100000
z3=beta∗ ( runif ( n3 )∗∗(−1/alpha )−1)
o3=optim(c ( 1 , 0 . 7 , log (mean( z3 ) ) ) , pa r e t o l i k , z=z3 )
alpha hat34=exp( o3$par [ 1 ] )
theta hat34=exp( o3$par [ 2 ] )
beta hat34=exp( o3$par [ 3 ] )
l ines ( x1 , density expa ( x1 , alpha hat34 , beta hat34 , theta hat34 ) , l t y =2)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−
n3=100000
z3=beta∗ ( runif ( n3 )∗∗(−1/alpha )−1)
o3=optim(c ( 1 , 0 . 7 , log (mean( z3 ) ) ) , pa r e t o l i k , z=z3 )
alpha hat35=exp( o3$par [ 1 ] )
theta hat35=exp( o3$par [ 2 ] )
beta hat35=exp( o3$par [ 3 ] )
l ines ( x1 , density expa ( x1 , alpha hat35 , beta hat35 , theta hat35 ) , l t y =2)
legend ( 4 , 0 . 4 , c ( ” theta 0” , ” theta hat” ) , l t y = c ( 1 , 2 ) , lwd=c ( 2 , 1 ) )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−

plot ( x2 , dens i typa re to ( x2 , alpha , beta ) , l t y =1, type=” l ” , yl im=c (0 , 2∗(10∗∗
(−5) ) ) ,main=”n=50” , xlab=” ” , ylab= ” ” , lwd=2)

l ines ( x2 , density expa ( x2 , alpha hat11 , beta hat11 , theta hat11 ) , l t y =2)
l ines ( x2 , density expa ( x2 , alpha hat12 , beta hat12 , theta hat12 ) , l t y =2)
l ines ( x2 , density expa ( x2 , alpha hat13 , beta hat13 , theta hat13 ) , l t y =2)
l ines ( x2 , density expa ( x2 , alpha hat14 , beta hat14 , theta hat14 ) , l t y =2)
l ines ( x2 , density expa ( x2 , alpha hat15 , beta hat15 , theta hat15 ) , l t y =2)
legend ( 140 , 1 . 5∗(10∗∗(−5) ) , c ( ” theta 0” , ” theta hat” ) , l t y = c ( 1 , 2 ) , lwd=c ( 2 , 1 ) )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−
plot ( x2 , dens i typa re to ( x2 , alpha , beta ) , l t y =1, type=” l ” , yl im=c (0 , 2∗(10∗∗

(−5) ) ) ,main=”n=1000” , xlab=” ” , ylab=” ” , lwd=2)
l ines ( x2 , density expa ( x2 , alpha hat21 , beta hat21 , theta hat21 ) , l t y =2)
l ines ( x2 , density expa ( x2 , alpha hat22 , beta hat22 , theta hat22 ) , l t y =2)
l ines ( x2 , density expa ( x2 , alpha hat23 , beta hat23 , theta hat23 ) , l t y =2)
l ines ( x2 , density expa ( x2 , alpha hat24 , beta hat24 , theta hat24 ) , l t y =2)
l ines ( x2 , density expa ( x2 , alpha hat25 , beta hat25 , theta hat25 ) , l t y =2)
legend ( 140 , 1 . 5∗(10∗∗(−5) ) , c ( ” theta 0” , ” theta hat” ) , l t y = c ( 1 , 2 ) , lwd=c ( 2 , 1 ) )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−
plot ( x2 , dens i typa re to ( x2 , alpha , beta ) , l t y =1, type=” l ” , yl im=c (0 , 2∗(10∗∗

(−5) ) ) ,main=”n=100000” , xlab=” ” , ylab= ” ” , lwd=2)
l ines ( x2 , density expa ( x2 , alpha hat31 , beta hat31 , theta hat31 ) , l t y =2)
l ines ( x2 , density expa ( x2 , alpha hat32 , beta hat32 , theta hat32 ) , l t y =2)
l ines ( x2 , density expa ( x2 , alpha hat33 , beta hat33 , theta hat33 ) , l t y =2)
l ines ( x2 , density expa ( x2 , alpha hat34 , beta hat34 , theta hat34 ) , l t y =2)
l ines ( x2 , density expa ( x2 , alpha hat35 , beta hat35 , theta hat35 ) , l t y =2)
legend ( 140 , 1 . 5∗(10∗∗(−5) ) , c ( ” theta 0” , ” theta hat” ) , l t y = c ( 1 , 2 ) , lwd=c ( 2 , 1 ) )
}
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