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1. INTRODUCTION

Solving the ∂̄-equation, called the Cauchy-Riemann equations, is
among the more interesting problems in complex analysis, and many
questions about this subject still remain. In this paper, we shall fo-
cus on the somewhat generalised tangential Cauchy-Riemann equa-
tions, ∂̄b, that appear on laminations. We will show how the equa-
tions can be solved on some example spaces by using the methodolo-
gies B. Deroin demonstrated in [1], and by simplifying the tangential
Cauchy-Riemann equations to the standard Cauchy-Riemann equa-
tions over each leaf of the lamination. In particular, the result we will
prove is the following:

Theorem 1.1. Let X be a compact hyperbolic Riemann surface lamination
with CR line bundle L→ X , and assume that L is equipped with a positive
metric σ. Then there exists an integer k0 ∈ N such that for all integers
k ≥ k0 and for any smooth (0, 1)-form v with coefficients in L⊗k, there
exists a smooth section u of L⊗s with ∂̄bu = v.

This result is not unknown; indeed, similar results were shown in
[2]. However, we shall employ a different method, which hopefully
may be generalised to show similar or stronger results. Furthermore,
as we develop the method for our proof, we are able to solve ∂̄b on
some example laminations where the leaves may be parabolic rather
than hyperbolic; that is, they are covered by C rather than D.

In Section 2 we shall proceed to give a formal definition of lam-
inations. In Section 3, we shall introduce the notions of curvature
and bounded geometry. In Section 4, we shall show some geometric
comparison results, and how they can be used to show that certain
sums converge. In Section 5, some results of Deroin will be demon-
strated in order to showcase some of the origin of our methods. In
Section 6, we will show that if a (0, 1)-form is transversally continu-
ous, then so are its minimal solutions. In Section 7, we will use our
results to demonstrate how to solve ∂̄b on some simpler laminations.
Finally, we will prove the main result in Section 8.

As a final note: After commencing with this thesis, it was discov-
ered that in the newly published [3], Ohsawa solves the ∂̄b-solution
on laminations in a very general setting. However, this thesis uses
very different methods than what was used in Ohsawa’s paper.
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2. LAMINATIONS

We shall focus our work on a particular kind of topological spaces,
called laminations, which locally can be viewed as a stack of disks.
More precisely, we have the following definition:

Definition 2.1. Let X be a topological space, and let {Uα}α∈A be
an open cover of X , associated with a family of homeomorphisms
φα : Uα → D × Tα, where Tα is a metrizable topological space.
The maps φβα := φβ ◦ φ−1

α are locally on the form φβα(zα, tα) =
(zβα(zα, tα), tβα(tα)), where zβα is a holomorphic function of zα for
each fixed tα.

We call the Uα flow boxes, and we call the sets Lα,tα := φ−1
α (D ×

{tα}) plaques. Any nonempty subset L ⊂ X is called a leaf of the
lamination if, whenever x ∈ L ∩ Uα for some α, then L contains
the plaque in Uα containing x and L is minimal with respect to this
condition. The set X is then a disjoint union of leaves and for every
x, the leafLx through x consists of all points inX which can be joined
to x by a curve which is locally contained in a plaque. A basis for a
topology on a leaf L is given by proclaiming that each plaque in L
is an open set, and that each set U ∩ L is open, where U is an open
subset of X . Then each leaf is a Hausdorff topological space, and
each leaf has a natural structure of a Riemann surface inherited from
the maps φα.

Let L → X be a complex line bundle. We will call L a holomor-
phic line bundle if it is defined by transition functions fαβ on Uα ∩ Uβ ,
where fαβ is holomorphic along every plaque. A section u of L will
be said to be smooth if it is continuous and smooth along every leaf.
A weight σ on L will be a family of continuous functions σα on Uα,
smooth along every plaque, such that σα = σβ+2 log |fαβ| on Uα∩Uβ ,
and such that all partial derivatives of each σα are continuous and
smooth along every plaque. We say that σ is positive if each σα is
strictly subharmonic along every leaf.

On Riemann surface laminations, the concept of tangent bundles
and cotangent bundles only makes sense along the leaves. However,
this still gives us a natural definition of (0, 1)-forms with coefficients
in L, as well as the ∂̄-operator acting on sections along leaves; we
denote this operator by ∂̄b. We say that a (0, 1)-form is smooth if it
is continuous and smooth along every plaque when viewed in local
coordinates.

Inspired by [1] and [2], we will attempt to solve the ∂̄b-equations
by pulling back the problem to line bundles over the universal covers
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of each leaf, solve the ∂̄-equations there with some additional detail,
and then push the solutions back to the lamination.
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3. HERMITIAN HOLOMORPHIC LINE BUNDLES

The solutions presented in this paper will depend on some ideas
developed by B. Deroin; we shall outline these ideas as Deroin pre-
sented them in [1], and then proceed to adapt these ideas to our goal
of solving ∂̄b-equations.

In [1], Deroin considers certain manifolds M , constructs a partic-
ular metric g, and then develops a method of extending families
of so-called 1-jets of holomorphic sections into one single bounded
holomorphic section, by assuring that these 1-jets are sufficiently
"spread out" and then showing that the sum of their averages over
non-intersecting balls converges. In doing so, he is able to construct
a holomorphic locally bilipshitz immersion π : (M, g) → CPN into
projective space.

Our objective is not the same as Deroin’s; however, many of the
methods we use are the same or at least quite similar to the ones
used by Deroin. In this section we shall introduce the basic concepts
tied to hermitian holomorphic line bundles, that is, holomorphic line
bundles equipped with a hermitian metric.

For all our future purposes, we shall need to define the concept of
the curvature of a holomorphic line bundle over a complex manifold.

3.1. Hermitian metrics.

Definition 3.1. LetM be a complex manifold with smooth Hermitian
metric ω = e−ψ

√
−1
2
dz ∧ dz̄, and let L → M be a holomorphic line

bundle, equipped with a Hermitian metric e−σ. The curvature of e−σ
is the (1, 1)-form defined by

Ωσ := ddcσ =
√
−1∂∂̄σ

If Ωσ is strictly positive on the restriction to any complex line, it is
simply said to be strictly positive.

A Hermitian metric is called kählerian if its fundamental form ω is
closed, that is, dω = 0. We define the kählerian metric assoiciated with
ddcσ, called g, by the formula

g(u, v) := 2ddcσ(u,
√
−1v)

We shall repeatedly refer to dg; this will be the distance derived from
g. The following definition can be found in [5]:

Definition 3.2. Letting e1, ..., en ∈ TpM be an orthonormal basis, we
can define a Riemannian volume form dvol relative to g by

dvol(v1, ..., vn) = det(g(vi, ej))
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We will usually denote this volume form by dvg.

We shall mostly be working on the space of L2 functions relative
to whichever line bundle we are currently working on. This space is
defined as follows:

Definition 3.3. LetM be a complex manifold with smooth Hermitian
metric ω = e−ψ

√
−1
2
dz ∧ dz̄, and let L → M be a holomorphic line

bundle, equipped with a Hermitian metric e−σ. The L2(L, σ)-norm
on L is defined by

‖u‖L2(L,σ) :=

√∫
M

|u|2e−σdvg

Whenever σ is obvious from the context, we shall usually just write
‖ · ‖2.

We shall frequently demand that the Ricci curvature ofL is bounded
from below by some real number c. By this, we shall actually mean
that the Gaussian curvature of (M, g) is bounded from below by c;
that is,

ddcψ

dvg
≥ c

3.2. Bounded Geometry. We shall now proceed to define the no-
tions of bounded geometry and radius for a manifold. These are con-
ditions on the metric and line bundle over M , and grant important
information; information we will use frequently.

Definition 3.4. We define the radius r(| · |) of a hermitian metric | · |
of L as the supremum of the set of real numbers r ≥ 0 such that, for
every point x ∈M there exists a biholomorphism

z : Bg(x, r)→ Ux

to an open set Ux ⊂ C sending x to 0 and such that z is 2-bilipschitz
when we equip Ux with the standard euclidian metric on Cn. In par-
ticular, this means that g is complete.

If r(| · |) > 0 and the Ricci curvature of g is uniformly bounded
from below on M, we say that | · | is of bounded geometry.

As an additional remark, Deroin requires that the radius is greater
than or equal to r only if there for all x exists some holomorphic
section s : Bg(x, r)→ L satisfying, for all y ∈ Bg(x, r),

e−2dg(x,y)2 ≤ |s(y)| ≤ e−dg(x,y)2/2
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This section shall only be used, and mentioned, in the next lemma,
as well as Section 5; for all other purposes, we shall refrain from
discussing it.

Example 3.5. Consider D with the standard Poincaré metric e−2 log(1−|z|)2 ,
with line bundle taken to some power k; in this case, g = kdzdz̄

(1−|z|2)2
.

The Ricci curvature of g is uniformly bounded from below on M, as
ddcψ = −4

(1−|z|2)2
dz ∧ dz̄. We assert that the radius r is greater than

√
k:

for we can define the map

z0 : Bg(0,
√
k)→ U0 ⊂ C

by

z0(x) :=
√
kx

This map is biholomoprhic and 2-bilipschitz; a simple permutation
allows us to make a similar map for any point p ∈ D.

Lemma 3.6. Let M be any compact Riemann surface with smooth Her-
mitian metric ω = e−ψ

√
−1
2
dz ∧ dz̄, and let L → M be a holomorphic

line bundle, equipped with a Hermitian metric e−σ. Then M has bounded
geometry.

Proof. The Ricci curvature is bounded from below, because we can
consider the expression ddcψ

dvg
as a continuous function, and by the

compactness of X , this function is bounded.
The radius is strictly positive; for, by the definition of a Riemann

surface, there exists around any point x ∈ X a neighbourhood Vx ⊂
X such that we have a coordinate system ζx : Vx → Ux ⊂ C, with
0 ∈ Ux. For some subset U ′x ⊂ Ux, ζ−1

x |U ′
x

is 2-bilipshictz and bi-
holomorphic. Now we can take a subset V ′x of ζ−1

x (U ′x) such that
there exists some rx such that, for all y ∈ V ′x, there exists a ball
Bg(y, r) ⊂ ζ−1

x (U ′x). Since M is compact, cover M by {V ′x}x∈M and
take a finite subcover {V ′xj}1≤j≤m; now the radius of M is bounded
below by min({rxj}1≤j≤m) > 0. �

For many applications, we will require specific lower bounds on
the Ricci curvature and radii. The next lemma tells us that, as long
as some bounds exist, we can obtain the required bounds by substi-
tuting our line bundle for some power of itself.

Lemma 3.7. If L → M is a hermitian holomorphic line bundle of strictly
positive curvature and bounded geometry, with Ricci curvature bounded
from below by −c, then the radii of the powers | · |⊗k satisfy, for all k ≥ 0,

r(| · |⊗k) ≥
√
kr(| · |)
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Additionally, the Ricci curvature of the metrics gk induced by | · |⊗k tend
uniformly towards 0 as k tends to infinity.

Proof. For each integer k ≥ 1, consider k-th powers; the metrics σk
of L⊗k, and kählerian metrics gk = kg on M . At all points x ∈ M ,
the coordinates zk =

√
kz effect a 2-bilipschitz biholomorphism of

Bgk(x, r
√
k) in the open

√
kUx ⊂ C, and we also have sections sk :

Vx → L⊗k satisfying

e−2dgk (x,y)2 ≤ |sk(y)| ≤ e−dgk (x,y)2/2

for each y ∈ Bgk(x, r
√
k). Then the radius r(| · |⊗k) must be larger

than
√
kr(| · |). Additionally, the Ricci curvature of the metric gk

tends uniformly towards 0 as k tends to infinity, as
ddcψ

dvgk
=
ddcψ

kdvg

�

3.3. Curvature and ∂̄-solutions. We want to use the above defini-
tions to solve the ∂̄b-equations with some extra degree of detail based
on manifolds satisfying conditions tied to the above definitions. The
following, which can be found in [4], is due to Hörmander:

Theorem 3.8. Let M be a Riemann surface with smooth Hermitian metric
ω = e−ψ

√
−1
2
dz∧dz̄, and let L→M be a holomorphic line bundle equipped

with a metric e−σ whose curvature satisfies

ddc(σ + ψ) ≥ c · dvg
for some strictly positive constant c. If v is a smooth, L2(σ) (0, 1)-form
taking values in L, then there exists a smooth, L2(σ) section u of L such
that

|v|L2(σ) ≤
1

c
|u|L2(σ)

In the next section, we will show that, if the Ricci curvature and
radius are bounded in a certain way, then sufficiently nice sums on
the form

∑
e−dg(x,·) converge. As such, we would like the ability

to solve the Cauchy-Riemann equations in L2(edg(x,·)| · |)-norm; this,
combined with some later results, shall allow us to find L2(σ) solu-
tions.

However, the problem with this approach is twofold: In order to
use Theorem 3.8, we would need to be able to estimate ddc(dg(x, ·))
- and this is not necessarily well defined, because dg(x, ·) is not nec-
essarily a smooth function; and even if we could estimate it, there is
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no guarantee that the positivity condition in Theorem 3.8 is satisfied
for the line bundle we are currently working on.

We can, however, find a smooth function φx which closely approx-
imates dg(x, ·) and use | · |′x := eφx| · | instead; this, combined with
taking an if necessary even larger power of the line bundle, will al-
low us to find actual L2(edg(x,·)| · |)-minimal solutions. First, a defini-
tion, and then a lemma taken almost word-for-word from Deroin’s
article.

Definition 3.9. Consider a manifold (M, g). For any real number
δ > 0, we say that a subset Ξ of M is δ-separated if, for any pair of
points ξ1, ξ2 ∈ Ξ, ξ1 6= ξ2,

dg(ξ1, ξ2) ≥ δ

Lemma 3.10. Let 0 < ε < δ be two real numbers. There exists a finite
number of δ-separated subsets T1, · · · , Tk such that the union of these sets
is ε-dense in M .

Proof. If a subset is ε-separated and maximal with respect to inclu-
sion, then it is clearly also ε-dense in M . So let us take any such sub-
set T . We then let T1 ⊂ T be some δ-separated subset of T which is
also maximal with respect to inclusion. We then inductively choose
Tj ⊂ T\

⋃j−1
i=1 Ti as δ-separated subsets, maximal with respect to in-

clusion.
We claim that there must exist some l ∈ N such that

⋃l
i=1 Ti = T .

For suppose there exists a t ∈ T such that t /∈ Tm for m = 1, · · · , l. As
each Tm is maximal, there exists a tm ∈ Tm ∩ Bg(t, δ) for each m. As
Tm1 ∩ Tm2 = ∅ for each m1 6= m2, tm1 6= tm2 . Thus, there are at least
l+1 points of T inBg(t, δ), and the l+1 balls of radius ε/2 centered in
these points are all disjoint. With these conditions, l + 1 is bounded,
dependent only on the Ricci curvature of g. �

This shall allow us to define the φx mentioned above:

Lemma 3.11. Consider (M, g). There exists positive real numbers c0, r0 so
the if Ricci curvature is bounded from below by −c0 and so that the radius
is greater than r0, then for every x ∈ M there exists a smooth function φx
such that

|φx(·)− dg(x, ·)|∞ ≤ 1

and such that

ddcφx ≥ −A · dvg
for some positive constant A not dependent on x.



ON SOLVING THE ∂̄-EQUATION ON LAMINATIONS OF RIEMANN SURFACES 11

Proof. By Lemma 3.10, there exists an integer n and a family of 3r0-
separated sets {Ξj}1≤j≤n ∈M such that their union is r0-dense.

Fix any x0 ∈ M and any j, 1 ≤ j ≤ n. For each ξ ∈ Ξj , define
φξ := dg(x0, ξ).

Now for every Bg(ξ, r0) we want to define αξ as a smooth cut-off
with |d(dαξ)| ≤ A for some positive constant A, and with d(dαξ) = 0
outside Bg(2ξ, r0). In Euclidean space, this is the case for functions
of the type α̃ξ := e1/(r20−|x−ξ|2). As such, we can define a function
η : Cn → [0, 1] which is 0 outside Beucl(0, 1/2), which is smooth and
with |d(dη)| ≤ A. Then we define α′ξ := η(zξ(y)/2) on Bg(ξ, r0) and 0
everywhere else.

Since by the definition of {Bg(ξ, r0)}1≤j≤n,ξ∈Ξj each point of M can
be in no more than n of these sets, we can modify the α′ξ to αξ so that∑

1≤j≤n
∑

ξ∈Ξj
αξ(y) = 1 for all y ∈M .

Thus φ(y) :=
∑

1≤j≤n
∑

ξ∈Ξj
αξ(y)φξ(y) is our required function.

�

We shall now combine Theorem 3.8 together with the φx we cre-
ated, and then use the fact that eφx| · | and edg(x,·)| · | are uniformly
comparable to find actual L2(edg(x,·)| · |) solutions.

Lemma 3.12. Assume that M is a manifold with smooth hermitian metric
ω = e−ψ

√
−1
2
dz ∧ dz̄, and assume L → M is a line bundle with positive

metric e−σ. Then there exists positive real numbers c0, r0 such that if the
Ricci curvature is bounded from below by −c0 and if that the geometry is
bounded with radius greater than r0, then there exists a positive constant
C and an integer k0 such that, for any x ∈M , the following is true:

Consider the norm | · |x := edg(x,·)| · |. For any k ≥ k0 there exists a
positive constant C such that for any smooth, L2(| · |x) (0, 1)-form v taking
coefficients in L⊗k, there exists a smooth, L2(| · |x) section u of L⊗k such
that ∂̄u = v and such that

|u|x ≤ C|v|x
Proof. Assume that c0 and r0 satisfy the conditions in the previous
lemma. Consider the norm | · |′x := eφx| · |, as introduced earlier. Note
that it is uniformly equivalent to | · |x, with estimate

e−r0| · |′x ≤ | · |x ≤ er0| · |′x
It is also smooth, with curvature

ddc(φ+ ψ) = ddcφ+ ddcψ ≥ −(A+ c0) · dvg
This is all independent of the line bundle. Thus if we take a k large
enough so that, when regarding (L⊗k, σk), we have ddcσk ≥ (A+ c0 +
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c) · dvgk for some c > 0, then

ddc(σk + ψ + φx) ≥ c · dvgk
and we can use Theorem 3.8 to find a positive constant C, indepen-
dent of v, and a smooth, L2(| · |′x) section u′ satisfying ∂̄u′ = v and

|u′|′x ≤ C|v|′x
≤ er0C|v|x

But u′ is also L2(| · |x), since

|u′|x ≤ e2r0C|v|x
Thus there exist smooth, L2(| · |x) sections u of L⊗k solving ∂̄u = v,
and the L2(| · |x)-minimal of these (found by subtracting the projec-
tion onto the holomorphic sections) satisfies the required inequality,
since some solution does. �
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4. VOLUME COMPARISON

As stated in the previous section, we would want to show that,
given sufficient conditions on the Ricci curvature and radius of a
line bundle, some sums of type

∑
z e
−dg(x,z) converge.

We will achieve this through geometrical observations; by com-
paring the volume of balls in M with balls in simpler spaces, we
shall be able to convert the problem of convergent sums into a much
simpler problem of convergent integrals over euclidean space.

4.1. Constant-Curvature Space Form Comparison. For our proof,
the following result, whose proof can be found for example in [5],
will be crucial:

Lemma 4.1. Let (M, g) be a complete n-dimensional Riemannian manifold
whose Ricci curvature is bounded from below by (n − 1) · k for some real
number k. Then for any p ∈M ,

r → volB(p, r)

v(n, k, r)

is a non-increasing function which tends to 1 as r → 0; here v(n, k, r)
denotes the volume of a ball of radius r in the constant-curvature space
form Snk - for k < 0, this has Ricci curvature 1√

−k .

Here a constant-curvature space form M is a complete Riemannian
manifold of constant Ricci curvature. This gives us the following
corollary:

Lemma 4.2. For any real number α > 0, there exists a real number k0 < 0
and a constant C > 0 depending only on α such that if the Ricci curvature
of (M,σ) is bounded from below by (n− 1) · k0, then

volBg(p, r) ≤ Ceαr/2

for all points p ∈M .

Proof. From [6] it is known that if k < 0, then, by setting R = 1/
√
−k,

we have

v(n, k, r) = πR3 sinh (2r/R)− 2πR2r

and so, by the definition of sinh, it follows that

v(n, k, r) ≤ πR3e2r/R

It follows that if we have k0 = −α2/16, then

v(n, k0, r) ≤ 4πα−1eαr/2
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and so our proof goes through by demanding C ≥ 4πα−1, as, by the
previous lemma,

volBg(p, r) ≤ v(n, k0, r)

�

Example 4.3. With the terminology above, consider M = D with
where g = kdzdz̄

(1−|z|2)2
for some constant k > 0. This means that the

length of any curve γ : [0, 1]→ D is given by∫ 1

0

|γ′(t)|

√
k

|(1− |γ(t)|2)2|
dt

and the distance between two points is given by the infimum of these
integrals for curves beginning in one of the points and ending in the
other. In particular, for any z = |z|eiθ ∈ D, this comes from the curve
γ(t) = t|z|eiθ - refer for example to [7] - and so

dg(0, z) =

∫ 1

0

|z|
√
k

1− t2|z|2
dt

=

√
k

2
log

1 + |z|
1− |z|

Note that if dg(0, z) = r, then by a simple calculation we have that
|z| = e2r/k−1

e2r/k+1
; we shorthand this as r′. Now the area of a ball of radius

r centered at 0 is given by

volBg(0, r) =

∫
Bg(0,r)

dvg

=

∫
Bg(0,r)

k

(1− |z|2)2
dzdz̄

= k

∫ r′

0

∫ 2π

0

ρ

(1− ρ2)2
dθdρ

= k

∫ r′

0

2πρ

(1− ρ2)2
dρ

= kπ(
1

1− r′
− 1) = kπ(e2r/k − 1)

and this is obviously smaller than kπe2r/k on D.

4.2. Sum Convergence. It turns out that this comparison result is all
we need to show that sums of the type

∑
e−dg(ξ,p) converge over any

δ-separated subset for all p ∈M :
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Lemma 4.4. Let L→ M be a holomorphic line bundle with metric σ, and
let g be the associated kählerian metric. Then there exists constant c0 > 0,
r0 > 0 such that if the Ricci curvature of g is uniformly bounded from
below by−c0 and the radius r is greater than r0, then for every real number
δ > 0, every δ-separated subset Ξ of M and every p ∈M , the sum∑

ξ∈Ξ

e−dg(ξ,p)

converges.

Proof. As Ξ is δ-separated, we have that∑
ξ∈Ξ

e−dg(ξ,p) ≤
∑
ξ∈Ξ

E(δ)

∫
Bg(ξ,δ/2)

e−dg(x,p) dvg(x)

≤ E(δ)

∫
M

e−dg(x,p) dvg(x)

where E(δ) := eδ/(infy∈M vol(Bg(y, δ/2))) - the denominator is never
0 by Definition 3.4, since if δ/2 ≤ r0 we have a 2-bilipschitz map from
Bg(y, δ/2) into an open set in Cn, and if δ/2 > r0 then we clearly have
volBg(y, δ/2) ≥ volBg(y, δ/2) > 0.

Let us assume that c0 is small enough and r0 large enough to sat-
isfy the conditions of Lemma 4.2 with α = 1. Now define A1 :=
Bg(p, 1), and, by induction, An := Bg(p, n)\An−1 for all n ≥ 2. As
volAn ≤ volBg(p, n), we can use Lemma 4.2 to transfer the problem
to R+: ∫

M

e−dg(x,p)dvg(x) ≤
∑
n∈N

e−n+1volAn

≤ e
∑
n∈N

e−n/2

≤ C

∫ ∞
0

e−y/2 deucly

≤ C <∞

where C is a constant that depends only on δ. Note in particular that
by the same logic as above, we can, for any real number ε > 0, find
a real number R0 > 0 such that

∑
ξ(0)∈M\Bg(p,R0) e

−dg(ξ,p) ≤ ε for all
p ∈M . �

Example 4.5. Let us again consider D with g = kdzdz̄
(1−|z|2)2

, and assume

k ≥ 4. In Example 4.3, we showed that dg(0, z) = k
2

log
(

1+|z|
1−|z|

)
. Thus,
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for any δ-separated subset of D and any x ∈ D, there exists positive
constants C, C ′, C ′′ depending only on δ such that∑

ξ∈Ξ

e−dg(x,ξ) ≤ E(δ)

∫
D
e−dg(x,ξ) k

(1− |z|2)2
dzdz̄

≤ C
∑
n∈N

e−n+1

∫
Bg(0,n)

k

(1− |z|2)2
dzdz̄

≤ C ′
∑
n∈N

e−n · kπ
2
e2n/k

= kC ′
∑
n∈N

e−n/2

≤ kC ′′
∫ ∞

0

e−x/2dx <∞

Corollary 4.6. Let X be a compact Riemann surface of genus greater than
or equal to 1, and let L → X be a positive holomorphic line bundle with
metric σ; suppose that there exist positive constants c and r such that the
Ricci curvature is bounded from below by −c and the geometry is bounded
with radius greater than r. Let f : M → X be the universal covering of
X , where M is either C or D, and let Γ be the Deck group of f . Then there
exists some positive constant δ such that for all x ∈ M , the set {ϕ(x)}ϕ∈Γ

is δ-separated with respect to the dg derived from σ.

Proof. This follows from the fact that every ϕ ∈ Γ is an automor-
phism on M , together with choosing an open set U ⊂ M such that
U ∩ ϕ(U) 6= ∅ only if ϕ = id. �
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5. EXTENSION OF JETS

In this section, we shall give the proof of one of the theorems from
[1]; although the result itself shall not prove important to us, we shall
adopt some part of the methodology.

Theorem 5.1. Let (M, g) be a complete Hermitian manifold, and L →
M a holomorphic line bundle admitting a Hermitian metric of bounded
geometry such that the curvature Ω satisfies all inequalities on the form

1

C
g(u) ≤ Ω(u,

√
−1u) ≤ Cg(u)

for some constant C ≥ 1 independent of u. Then there exists an integer N
and a bilipschitz, locally holomorphic immersion π : (M, g)→ CPN .

5.1. Jets. Deroin’s method relies on using the conditions on the cur-
vature to create local holomorphic sections with certain estimates.
Using this to create holomorphic sections extending so-called 1-jets,
he arrives at his result. Our main interest shall be the method of ex-
tension, rather than the result, but for completion we shall demon-
strate as much as possible.

Definition 5.2. In Euclidean space, the concept of a k-jet of a smooth
function f in the point x is well-defined as the space of functions
whose values, as well as derivatives up to and including the k-th or-
der, agree at x. It can be shown that, by use of coordinate system,
this notion can be extended to jets of holomorphic sections on com-
plex manifolds; this notion is well-defined and independent on the
choice of coordinate system.

One of the most important tools in Deroin’s proof is the Gårding
inequality, which can be found in [8]:

Lemma 5.3. If | · | is a strictly positive metric of bounded geometry with
radius r(| · |) = r, then we have the uniform Gårding inequalities: For
each holomorphic section τ : Bg(y, r)→ E, we have

|J1τ(y)| ≤ C(r)

√∫
Bg(y,r)

|τ(z)|2dvg(z)

where J1τ(y) is the 1-jet of τ at y, and where C(r) depends only on r
and decreases as r increases. In the same manner, we conclude that any
holomorphic section h : M → L of L2

g(| · |x,α) satisfies the estimate

|h(y)| ≤ C|h|x,α,2e−αd(x,y)

for every y ∈M , where C is a constant depending only on r.
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5.2. Extension. Deroin uses the notation | · |x,α := eαdg(x,·)| · |, which
we shall adopt. The main result for extending jets is the following:

Lemma 5.4. There exist real numbers α > 0, r0 > 0 and C > 0 such
that if E → M is a holomorphic line bundle equipped with a metric | · | of
strictly positive curvature and of bounded geometry with radius satisfying
r(| · |) ≥ r0, and for which the Ricci curvature of g is uniformly bounded
from below by−1

4
, then each 1-jet j of a holomorphic section of M in E in a

point x extends to a holomorphic section h : M → E of L2
g(| · |x,α) of norm

less than C|j|.

In order to prove this, we shall need some intermediate results.
From Lemma 3.12, we have the following corollary, telling us that
sections that are "almost holomorphic" in a certain sense can be ap-
proximated by actual holomorphic sections.

Corollary 5.5. Suppose s is a smooth, L2
g(| · |′) section of M in L, and

suppose as well that |∂̄s|′2 ≤ δ for some constant δ. By Lemma 3.12, there
exists a constant C, independent of s, and a smooth, L2

g(| · |′) section u of
M in L satisfying the estimates ∂̄(s − u) = 0 and |u|′2 ≤ C|∂̄s|′2 for some
universal constant C ′. The section h = s− u is holomorphic, and we have
that |s− h|′2 ≤ Cδ.

The following lemma is due to [9]:

Lemma 5.6. Let L → M be a holomorphic line bundle and let | · | be a
metric of strictly positive curvature and of radius r := r(| · |) > 0. Then the
following is true: Let x be a point inM , and let j be a 1-jet of a holomorphic
section of L centered in x. Then there exists a smooth, compactly supported
section s̄ : M → L which passes through j and which is holomorphic on
Bg(x, r/3), such that there exists some universal constant C with

|s̄|x,α,2 ≤ C|j| and |∂̄s̄|x,α,2 ≤
C|j|
r

Proof. Let s : Bg(x, r) → L be the section defined in Definition 3.4,
and let P be a polynomial that is linear in the coordinates z of Defi-
nition 3.4 centered in x such that j = J1(Ps)(x). We define the section
s̄ := φs, where φ : Bg(x, r)→ R is a smooth function which is identi-
cally 1 on Bg(x, r/3) and identically 0 outside of Bg(x, 2r/3). We also
demand that φ takes values between 0 and 1 and that there exists
some universal constant C such that

|dφ|g ≤ C/r

We can for example construct this function by considering a function
ψ : Beucl(0,

1
2
) → R with the same properties we demanded from φ;
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we could then define φ := ψ(z(y)/2r). We now have that

|∂̄s̄|x,α,2 = |∂̄(φ)Ps|x,α,2 ≤
C

r
|Ps|x,α,2

By the linearity of P , we have that

|P (y)| ≤ C|j|(1 + d(x, y))

As such we have

|Ps|x,α,2 ≤ C

√∫
Bg(x,r)

(1 + d(x, y))2eαd(x,y)−d(x,y)2 dvg(y)

This integral converges, as the integral∫
Cn

(1 + 2|z|)2e2α|z|−|z|2/2 dveucl(z)

in Cn also converges, and this is greater (bar multiplication by some
constant) than our last term by the fact that there exists a holomor-
phic, 2-bilipschitz coordinate chart onBg(x, r), as stated in Definition
3.4. �

We are now ready to prove Lemma 5.4:

Proof of Lemma 5.4. Let | · | be a metric of L of strictly positive curva-
ture and of bounded geometry, for which the Ricci curvature of the
associated kählerian metric g is bounded from below by −1

4
, and for

which the radius r(| · |) is greater than 1. Let x be a point of M , and
let j be a 1-jet in x of some holomorphic section of M in L. Consider
the section s̄ from Lemma 5.6 relative to j, and permute it by way of
Corollary 5.5 to some holomorphic section h : M → L in L2

g(| · |x,α);
h satisfies

|h− s̄|x,α,2 ≤
C|j|
r

The section h − s̄ is holomorphic on the ball Bg(x, r/3); the Gårding
inequality gives us

|J1h− j| ≤
C|j|
r

(1)

for some universal constant C. We choose r so that C/r = 1
2
, where

C is the constant from 1. By Lemma 5.6 we have that

|s̄|x,α,2 ≤ C|j|
and so we have

|h|x,α,2 ≤
C|j|
r
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Let H(·) be a rule which assigns to any jet the appropriate holo-
morphic section as constructed above (that is, H(j) = h), define
h1 := H(j) = h, and define, by induction, hq+1 := H(j − J1(

∑i=q
i=1 hi))

for q ≥ 2. For all q ≥ 1 we now have that

|J1(

i=q∑
i=1

hi)− j| ≤ (
1

2
)q|j|, |hq+1|x,α,2 ≤ C(

1

2
)q|j|

As such, the series
∑i=q

i=1 hi converges to a holomorphic section h′ :
M → L in L2

g(| · |x,α) which passes through j such that

|h′|x,α,2 ≤ C|j|
where C is a universal constant. �

5.3. Fuchsian series. LetL→M be a holomorphic line bundle equipped
with a metric | · | of strictly positive curvature and of bounded ge-
ometry. Let g be the kählerian metric associated with the curvature
form of | · |. Let us assume that the Ricci curvature of g is uniformly
bounded from below by−1

4
, and that the radius r(| · |) of | · | is greater

than some real number r0.
With these assumptions, every 1-jet j of a holomorphic section in

L2(| · |x,α) extends to some holomorphic section in L2(| · |x,α) of norm
less than C|j|, where C > 0 is a universal constant (see the preceding
lemma). Let us by m(j) : M → E denote the extension of lowest
norm.

Definition 5.7. Recall that we say that a subset T ⊂ M is δ-separated
for some real number δ > 0 if for each pair of distinct points of T , the
distance between them is at least δ.

So let T ⊂ M be a δ-separated subset, and let j = {jt}t∈T be a
family of 1-jets of holomorphic sections of M in E defined on T . The
series

σ(j) :=
∑
t∈T

m(jt)

is the fuchsian series associated with j.

We shall show that these series indeed do converge, and, what is
more, that they define an extension of the entire family {jt}t∈T .

Lemma 5.8. There exists a constant c0 > 0 such that if the Ricci curvature
of g is uniformly bounded from below by −c0, then the fuchsian series σ(j)
converges uniformly on every compact subset of M, towards a holomorphic
section of E, satisfying

|σ(j)|∞,M ≤ C(δ)|j|∞,T
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for every δ-separated subset of T and every bounded family j of 1-jets de-
fined on T . In addition, we have

|J1σ(j)− j|∞,T ≤ D(δ)|j|∞,T
where D tends to 0 as δ tends to infinity. In particular, there exists a δ0

such that, as long as δ ≥ δ0, every bounded family {jt}t∈T of 1-jets of
holomorphic sections on T extend to a bounded holomorphic section σ :
M → E satisfying

|σ|∞ ≤ C|j|∞,T
where C is a universal constant.
Proof. By the Gårding inequalities and by the result we derived by
way of Hörmander, we have

|σ(j)(·)| ≤
∑
t∈T

|m(jt)(·)|

≤
∑
t∈T

C1|m(jt)|x,α,2e−αd(x,·)

≤
∑
t∈T

C1C2|jt|x,α,2e−αd(x,·)

But we also that have that, for every y ∈M ,∑
t∈T

e−αd(t,y) ≤ E(δ)
∑
t∈T

∫
Bg(t,δ/2)

e−αd(z,y) dvg(z)

≤ E(δ)

∫
M

e−αd(z,y) dvg(z)

where E(δ) = eαδ/ν(δ/2) and ν(δ) = infx∈M vol(Bg(x, δ)). By Lemma
4.2 for every r ≥ 1, there exists a universal constant C such that

vol(Bg(x, r)) ≤ Ceαr/2

and that this means that there exists a universal constant such that
the integrals ∫

M

e−αd(z,y) dvg(z)

are all bounded by this constant. This proves the first inequality.
Now assume that δ ≥ 2. Again, by the Gårding inequality, we

have that, for all y ∈ T ,

|J1σ(y)− jy| ≤
∑

t∈T,t6=y

|J1m(jt)(y)|

≤ C|j|∞
∑

t∈T,t6=y

e−αd(t,y)
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so we have

|J1σ(y)− jy| ≤ C|j|∞
eα

ν(1)

∫
M−Bg(y,δ−1)

e−αd(z,y) dvg(z)

As we have that the functions

fδ : y ∈M 7→
∫
M−Bg(y,δ−1)

e−αd(z,y) dvg(z)

converge uniformly to 0 as δ tends to infinity, the second inequality
has been shown.

For the third part of the lemma, we start by defining σ1 = σ(j),
and then recursively, σq+1 = σ(j − J1(σ1 + · · ·+ σq)) for each integer
q > 1. For every q, the previous results give the inequalities

|j − J1(σ1 + · · ·+ σq)|∞,T ≤ |j|∞(
1

2
)q,

|σq|∞,M ≤ C(δ0)|j|∞(
1

2
)q−1

The series
∑

q σq converges uniformly on M towards a holomorphic
section σ : M → E bounded by C|j|∞ and extending the family of
jets j. The constant C is universal, as we can choose C to be decreas-
ing with δ. �

5.4. Immersion Into Projective Space. We will now prove Theorem
5.1. By the observations of Lemma 3.7, we can, for any r0, c0 > 0,
assume that the geometry of (M, g) with line bundle L is bounded
with radius greater than r0 and Ricci curvature bounded from below
by −c0. We will construct an immersion on the form π = [τ0 : · · · :
τN ] : M → CPN for some N ≥ n, where n is the dimension of M .

Lemma 5.9. There exists a real number ε > 0 such that for any δ > 0 and
any δ-separated subset T ⊂ M , there exists a meromorphic function πT :
M → CP n on the form πT = [τ0 : · · · : τn], where the τl are holomorphic
sections of L which are bounded by some universal constant, and which are
well defined on the ε-neighbourhood Tε of T , and such that there exists some
constant C > 0 with π∗TΩ ≥ CΩ.

Proof. In each point t ∈ T , define the 1-jets j0(t), ..., jn(t) of holomor-
phic sections of TtM in L by

j0(t) = J1(s),j1(t) = J1(z1s),...,jn(t) = J1(zns)

in the coordinates z centred at t from Definition 3.4, where s is the
section from the same definition. These jets are bounded by 1, and by
5.8, they can be extended to holomorphic sections τ0, ..., τn : M → L
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such that the norm is bounded by some constant C depending only
on δ.

The quotient τ0/s is a holomorphic function taking values in C, de-
fined on the ball Bg(t, r0) and bounded by C exp(2r2

0). By Schwarz’s
lemma, |τ0| ≥ 1/2 on the union of balls Bg(t, ε1) centred at a point
t ∈ T of radius ε1 > 0, with ε1 depending only on r0 and δ0.

Additionally, the function

f = (
τ1

τ0

, ...,
τn
τ0

)

is a holomorphic function Bg(t, r) → Cn, bounded by a constant de-
pending only on C, δ and r0 and such that the derivative in 0, when
viewed in the coordinates z, is the identity. Another use of Schwarz’s
lemma gives us that ‖dfx‖ ≥ 1/2 for each point x ∈ Bg(t, ε2), where
ε2 is a real number depending only on r0 and δ0. Thus setting ε =
min(ε1, ε2) gives us the required result. �

Now recall Lemma 3.10; it allowed us to, for any two real numbers
0 < ε < δ to choose a finite family {Tm}1≤m≤l of δ-separated subsets
Tm ⊂M such that their union was ε-dense.

So for each Tm, construct the τm,0, ..., τm,n from the lemma above,
and define

π = [τm,j]1≤m≤l,0≤j≤n : M → CPN

where N = (n + 1)l − 1. Composition with the projections pm :
CPN → CP n we find meromorphic functions pm ◦ π = πTm . As such
we have π∗Ω ≥ CΩ for some strictly positive constant C.

In addition, for each point x ∈ M we have that at least one of the
sections τm,j is of norm greater than 1/2, and they are all bounded by
some universal constant. As such, π is lipschitz. This π thus satisfies
all the conditions of, and proves, Theorem 5.1.

As an example, π : X → CPN exists when X is a Riemann surface,
by the logic above combined with Lemma 3.6.
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6. CONTINUITY OF SOLUTIONS

In this section, we shall use the results from Sections 3 and 4 to
show that when we consider similar-looking (0, 1)-forms on similar-
looking manifolds with similar-looking line bundles, theirL2-minimal
solutions, too, will be quite similar.

Let {Mj}j=1,2 be two Riemann surfaces, and let {pj : Lj →Mj, j =
1, 2} be two holomorphic line bundles, with | · |j smooth hermitian
metrics on Lj of strictly positive curvature and of bounded geome-
try for j = 1, 2. Suppose that for j = 1, 2 there exists positive real
numbers r0, c0 so that the radius r(| · |j) is greater than r0 and that
the Ricci curvature of the kählerian metric gj , induced by | · |j on Mj ,
is bounded from below by −c0.

Now by the results of Sections 3 and 4, we can first take a power
k1 so that, when considering g′ := gk1 , δ-separated sums of the type∑
e−dg′ converge, and then a k0 such that for all k ≥ k0 and consider-

ing L⊗kj and defining | · |x = edg′ (x,·)| · |, we can find smooth, L2(| · |x)-
minimal solutions uj for smooth, L2(| · |x) (0, 1)-forms vj taking coef-
ficients in L⊗kj .

For any R > 0, consider domains Dj and points xj ∈ Dj with
B(xj, R) ⊂ Dj ⊂ Mj . We now suppose there exists a line bundle
isomorphism µR : p−1

1 (D1)→ p−1
2 (D2) and some real number 0 ≤ ε <

1 such that

• µR is (1 + ε)-bilipschitz,
• e−ε| · |2 ≤ µR∗| · |1 ≤ eε| · |2 and e−ε| · |1 ≤ µ∗R| · |2 ≤ eε| · |1
• For every x ∈M , every L2(| · |µ(x)) section ω2 with coefficients

in L2, and every smooth, L2(| · |x) (0, 1)-form τ1 with coeffi-
cients in L1, we have

|τ1 − ∂̄µ∗Rω2|′1 ≤ |τ1 − µ∗R∂̄ω2|′1 + ε

By letting 1 and 2 swap place, we also require

|τ2 − ∂̄µR∗ω1|′2 ≤ |τ2 − µR∗∂̄ω1|′2 + ε

Here

| · |′1 = ‖ edg1 (ξ,·)| · | ‖L2(L1,σ1)

| · |′2 = ‖ edg2 (µ(ξ),·)| · | ‖L2(L2,σ2)

Whenever the base point ξ as well as µ is obvious through context,
we shall use these norms with no change in notation.
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We shall henceforth suppress the R in µR, to avoid cluttering the
notation too greatly; however, µ should still very much be consid-
ered to be defined through R.

The main result of this section will show that, for such norms
centred sufficiently close to 0, closeness between (0, 1)-forms trans-
lates to closeness between their norm-minimal solutions. However,
if they are centred far from the origin, we shall be able to use the
remark at the end of Lemma 4.4, so this shall prove unproblematic.

Before we begin the proof, let us fix some ξ ∈ Ξ ∩ Bg2(0, R), and
define a smooth function ψ : M2 → [0, 1] which is identically 1
on Bg2(µ(ξ), R), 0 outside Bg2(µ(ξ), 2R), and such that |dψ| ≤ C/R,
where C is a constant which depends only on r0.

Consider as well for each for our chosen ξ and the constructed ψ
the familyH of smooth, L2(| · |′2) sections h′ such that ∂̄h′ = ψv2; as v2

and ψ are both smooth, v2 is L2(| · |′2), and L2(|ψv2|′2) ≤ L2(|v2|′2), we
have by Hörmander thatH is non-empty.

Proposition 6.1. Assume the above discussion. Then there exists some
integer k0 such that for all integers k ≥ k0, the following is true:

Consider ξ ∈ M1 ∩ B1(0, R), some δ > 0 and µ relative to some R > 0.
Then there exists a function γ(R, ε) which tends to 0 as R tends to infinity
and ε tends to 0, such that the following is true:

Let us assume that we are given a smooth (0, 1)-form v1 taking coeffi-
cients in L⊗k1 with support on some ball Bg1(ξ, δ). Let u1 be the L2(| · |′ξ)-
minimal solution of ∂̄u = v1. Additionally, let us assume that we are given
a smooth (0, 1)-form v2 taking coefficients in L⊗k2 with support on some ball
Bg2(µ(ξ), δ). Let u2 be the L2(| · |′2)-minimal solution of ∂̄u = v2. Then

|µ∗u1 − u2|′2 ≤
C(γ(R, ε)(max{|v1|′1, |v2|′2}) + max(|v1 − µ∗v2|′1, |v2 − µ∗v1|′2))

Proof. We begin by asserting that

|ψv2 − ∂̄(ψµ∗u1)|′2 ≤ ∆1

for every t, where

∆1 := |v2 − ∂̄µ∗u1|′2 + (C/R)|µ∗u1|′2
This follows from

|ψv2 − ∂̄(ψµ∗u1)|′2 ≤ |ψv2 − ψ∂̄µ∗u1|′2 + |(∂̄ψ)µ∗u1|′2
≤ |v2 − ∂̄µ∗u1|′2 + (C/R)|µ∗u1|′2

By Hörmander, there must then exist some h2 ∈ H such that h2 −
ψµ∗u1 is the L2(| · |′2)-minimal solution of ∂̄u = ψv2 − ∂̄(ψµ∗u1); that
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is, there exists a h2 such that

|h2 − ψµ∗u1|′2 ≤ C∆1 (∗)
We want to show that h2 is also sufficiently close to u2. But, as v2

is compactly supported, then clearly we have can assume that R is
large enough that ∂̄h2 = v2. In particular, this means that we have

|h2|′2 ≥ |u2|′2
since u2 is L2(| · |ξ2)-minimal and both h2 and u2 are solutions for v2.
Combining this with (∗) we have

C∆1 ≥ |h2 − ψµ∗u1|′2
≥ |h2|′2−|ψµ∗u1|′2
≥ |u2|′2−|ψµ∗u1|′2

which yields

|ψµ∗u1|′2 ≥ |u2|′2−C∆1

By the bilipschitz-property of µ, we also have that there exists some
function strictly positive ν : R+ → R+ with lim

ε→0
ν(1 + ε) = 1 so that

|ψµ∗u1|′2 ≤ |µ∗u1|′2 ≤ ν(1 + ε)|u1|′1
This yields

|u2|′2 − C∆1 ≤ |ψµ∗u1|′2 ≤ ν(1 + ε)|u1|′1
As the conditions on µ are symmetric, we can repeat the exact same
construction, modified for µ∗u2 − u2, in order to receive

|u1|′1 − C∆2 ≤ ν(1 + ε)|u2|′2
where

∆2 := |v1 − ∂̄µ∗u2|′1 + (1/R)|µ∗u2|′1
We can thus re-use (∗) to receive

|h2|′2 ≤ |ψµ∗u1|′2 + C∆1

≤ ν(1 + ε)|u1|′1 + C∆1

≤ ν2(1 + ε)|u2|′2 + Cν(1 + ε)∆2 + C∆1

h2−u2 is holomorphic; as u2 is L2(| · |′2)-minimal, h2−u2 is orthogonal
to u2. As such we have

|h2 − u2|′2 =
√

(|h2|′2)2 − (|u2|′2)2

≤
(
(ν4(1 + ε)− 1)|u2|′22

+ 2Cν2(1 + ε)(ν(1 + ε)∆2 + ∆1)|u2|′2
+ (ν(1 + ε)∆2 + ∆1)2

)1/2
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which yields our proof, as we have that

|µ∗u1 − u2|′2 ≤ |ψµ∗u1 − u2|′2 + |(1− ψ)µ∗u1|′2
�
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7. SOLUTIONS ON LAMINATIONS

In this section, we shall use the methods developed in the previ-
ous sections to solve the ∂̄b-equation on compact Riemann surface
laminations. We shall begin by showing how these methods apply
on the rather simple case of the lamination simply itself being a com-
pact Riemann surface, and then proceed to give examples for more
complex cases.

7.1. Case of a Single Riemann Surface. Let X be a compact Rie-
mann surface of genus greater than or equal to 1, and let f : M → X
be the universal covering; by [12] M is either C in the case that the
genus of X is 1, or D otherwise. Furthermore, denote by Γ the Deck
group of f .

It is of course well known that one can solve ∂̄ here; however, the
simplicity of the setting shall allow us to demonstrate the method
which we will generalise to use on more complicated cases.

So suppose we have a holomorphic line bundle L → X with her-
mitian metric σ such that there exist real numbers c0, r0 > 0 such that
the Ricci curvature is bounded from below by −c0 and the geometry
is bounded with radius greater than r0. We would like to show that
if we pull back the line bundle to M , we would still have these same
properties.

As before, we use the norm | · |p = edg′ (p,·)| · | for all p ∈M .

Lemma 7.1. Assume that there exists positive constants c0, r0 such that
(L, σ) has Ricci curvature bounded from below by −c0 and has radius
greater than r0. Then with L̃ := f ∗L and σ̃ := f ∗σ, the same statement is
true for L̃.

Proof. We have that the curvature Ω̃ of L → M has the same lower
bound as the curvature Ω of L→ X , since

ddcσ̃ = ddcf ∗σ = f ∗ddcσ ≥ c0 · f ∗dvg = c0 · dvg̃

As for the radius, recall the definition in 3.4 - pushing forward with
f ∗ allows us to fulfill the same condition on M . �

We will use this to solve the ∂̄ equation on X :

Theorem 7.2. Suppose we are given X as above, with a positive holomor-
phic line bundle L → X . Then there exists an integer k0 such that, given
any k ≥ k0 and any smooth (0, 1)-form v with coefficients in L⊗k, there
exists a smooth section u of L⊗k such that ∂̄bu = v.
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Proof. We begin by determining k0. Consider, for any k, the positive,
holomorphic line bundle L̃⊗k → M defined by L̃⊗k := f ∗L⊗k, with
hermitian metric σ̃k := f ∗σk. By Lemma 7.1, this line bundle has the
same lower bound on Ricci curvature and same positive radius as
L⊗k. By Lemma 4.2, there exists a k1 and a constant C > 0 such that
volBg′(0, r) ≤ Cer/2, where g′ := gk1 is the kählerian metric derived
from (L̃⊗k1 , σ̃k1) (the lack of ˜ on g should not prove confusing). As
such, we know from Lemma 4.4 that

∑
ξ∈Ξ e

−dg′ (x,ξ) converges for all
x ∈ M , all δ > 0 and all δ-separated sets Ξ ⊂ M . For all ϕ ∈ Γ, we
can use this together with Lemma 3.12 to find a k0 such that we can
find smooth, L2(edg′ (ϕ(0),·)| · |) solutions for smooth, L2(edg′ (ϕ(0),·)| · |)
(0, 1)-forms with coefficients in L̃⊗k for all k ≥ k0; combining this
with the above and with Corollary 4.6, we have that

∑
ϕ∈Γ e

−dg′ (0,ϕ(0))

converges. This shall prove to be what we need.

Let {Uj}1≤j≤n be a cover of X by simply connected open sets. Let-
ting {αj}1≤j≤n be a partition of unity relative to {Uj}1≤j≤n, we can
limit ourselves to solving ∂̄buj = vj := αj · v for each j. Focusing on
one such j, we drop the subscript.

We shall write ṽ := f ∗v. Let Uid be a pre-image of f ∗U ; for simplic-
ity, we will assume that 0 ∈ Uid. Define Uϕ := ϕ(Uid) for all ϕ ∈ Γ,
and let ṽϕ := ṽ|Uϕ .

Under these conditions, we can let ũϕ be the L2(| · |ϕ(0))-minimal
smooth solution of ṽϕ as described in Lemma 3.12. Define ũ =

∑
ϕ∈Γ ũϕ.

This sum converges with ũ ∈ L2(σ̃k), since, for any r > 0, there exists
constants C, C ′, C ′′ > 0 such that

∑
ϕ

‖ũϕ‖L2(L|Dr ,σ) ≤ C
∑
ϕ

e−dg(0,ϕ(0))|ũϕ|ϕ(0)

≤ C ′(sup
ϕ
|ṽϕ|ϕ(0))

∑
ϕ

e−dg(0,ϕ(0))

≤ C ′′|ṽ|L2(L̃,σ̃) <∞

It remains to show that ũ is actually well defined. By the definition
of f , this equates to showing that ũ = ϕ∗ũ for all ϕ ∈ Γ; it will
be sufficient to show that ũid = ϕ∗ũϕ for all ϕ ∈ Γ. Since by the
definition of ṽ we have ṽid = ϕ∗ṽϕ, and ∂̄ϕ∗ũϕ = ϕ∗∂̄ũϕ = ϕ∗ṽϕ, it
remains to show that ũid and ϕ∗ũϕ are the same solution; that is, that
they are both L2(| · |0)-minimal.
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This is by definition true for ũid. For ϕ∗ũϕ, this equates to saying
that, for any holomorphic section h of L⊗k, we have∫

M

(ϕ∗ũϕ)he−σk+dg′ (0,·)dvgk = 0

But we have that∫
M

(ϕ∗ũϕ)he−σk+dg′ (0,·)dvgk =

∫
ϕ(M)

ϕ∗[(ϕ
∗ũϕ)he−σk+dg′ (0,·)dvgk ]

=

∫
M

ũϕϕ∗he
−σk+dg′ (ϕ(0),·)dvgk = 0

as ϕ is an automorphism, so ϕ(M) = M , σk and dvgk are Γ-invariant
by definition, ϕ∗h is still holomorphic, and ũϕ is L2(| · |ϕ(0))-minimal.

Pushing ũ forward to X by defining u := f∗ũ, we now have a
L2(σk) section u solving ∂̄bu = v. �

7.2. Suspensions. For our first example, we shall work on so-called
suspensions; these can be thought of as being similar to tori, but
twisted in a sense that will be described below.

Definition 7.3. Let X be a Riemann surface, of genus one or greater;
as above, it is covered by either D or C, and we will again denote
it by M . Let Γ be the Deck-group associated with the covering f :
M → X .

Let T be a compact smooth manifold, and assume that we are
given a homomorphism γ : Γ → Diff(T ). Let Γ̃ be the group of
diffeomorphisms of M × T consisting of elements ϕ̃ := (ϕ, γ(ϕ))

for ϕ ∈ Γ. We consider the quotient Y := (M × T )/Γ̃, and denote
the quotient map by π : M × T → Y . We shall call the structure
M × T π−→ (M × T )/Γ̃ a suspension over X .

Y has the structure of a Riemann surface lamination, constructed
as follows: Let U ⊂M be a domain with ϕ(U)∩U 6= ∅, ϕ ∈ Γ⇒ ϕ =
id. Letting Ũ := {[(z, t)]|z ∈ U, t ∈ T}, we define the coordinate chart
ΦŨ : Ũ → U × T by [(z, t)]→ (z, t).

If Ṽ is another chart with Ũ ∩ Ṽ 6= ∅, then we must have points
(z1, t1) ∈ M × T , (z2, t2) ∈ M × T such that [(z1, t1)] = [(z2, t2)];
that is, there must exist some ϕ ∈ Γ such that z2 = ϕ(z1) and t2 =
γ(ϕ)(t1). As such, the transition between ΦŨ(Ũ ∩ Ṽ ) and ΦṼ (Ũ ∩ Ṽ )
are given by (z, t) 7→ (ϕ(z), γ(ϕ)(t)). Furthermore, the map F : Y →
X given by [(z, t)] 7→ f([z]) is a natural projection, and F−1(x) is
diffeomorphic to T for all x.
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Suppose that we are given a line bundle L→ X with metric σ; we
define L∗ := F ∗L with metric σ∗ = F ∗σ.

Theorem 7.4. Let M × T
π−→ Y = (M × T )/Γ̃ be a suspension over a

compact Riemann surface X , and assume we are given a line bundle L →
X with metric σ. Then there exists an integer k0 such that, given any
k ≥ k0 and any smooth (0, 1)-form v on Y with coefficients in L∗⊗k, there
exists a continuous section u : Y → L∗⊗k, smooth on every leaf, satisfying
∂̄bu = v.

Proof. We must again determine how large a k0 we need; but this
process shall prove almost identical to the one used in the previ-
ous example; note in particular that Lemma 7.1 easily generalises to
saying that for the covering of each leaf, we have bounded geome-
try with the same estimates on Ricci curvature and radius as on the
leaves.

Let us work on the M ’s. By Lemma 4.2, there exists a k1 and a
constant C > 0 such that volBg′(0, r) ≤ Cer/2, where g′ := gk1 is the
kählerian metric derived from (L⊗k1 , σk1). As such,

∑
ξ∈Ξ e

−dg′ (x,ξ)

converges for all x ∈ M , all δ > 0 and all δ-separated sets Ξ ⊂ M .
For all ϕ ∈ Γ, we can use this together with Lemma 3.12 to find a k0

such that we can find smooth, L2(edg′ (0,ϕ(0))| · |) solutions for smooth,
L2(edg′ (0,ϕ(0)| · |) (0, 1)-forms with coefficients in L̃⊗k for all k ≥ k0;
combining this with the above and with Lemma 4.6, we have that∑

ϕ∈Γ e
−dg′ (0,ϕ(0)) converges.

Let {Uj}1≤j≤n be a cover of X by simply connected open sets. Let-
ting {αj}1≤j≤n be a partition of unity relative to {Uj}1≤j≤n, we can
limit ourselves to solving ∂̄buj = vj := (αj ◦ F ) · v for each j. Focus-
ing on one such j, we drop the subscript.

Let L̃ denote the line bundle L̃ := π∗L∗ with metric σ̃ := π∗σ.
By pulling back v to M × T by ṽ := π∗v and defining ṽt := ṽ(·, t),
we can simply use the same method as in 7.2 to find each ũϕ,t and
ũt :=

∑
ϕ∈Γ ũϕ,t.

It remains to show that when we regard it as a function of both
z and t, ũ is continuous and well-defined. For the continuity part,
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assume that R > r; we use the results in Section 6, combined with

‖ũt1 − ũt2‖L2(L̃|Bg(0,r),σ̃)

≤ C(r)
∑
ϕ∈Γ

e−d
′
g(ϕ(0),0)|ũϕ,t1 − ũϕ,t2|ϕ(0)

≤ C(r)
∑

ϕ(0)∈M\Bg(0,R)

e−d
′
g(ϕ(0),0)

(
|ũϕ,t1|ϕ(0) + |ũϕ,t2|ϕ(0)

)
+ C(r)

∑
ϕ(0)∈Bg(0,R)

e−d
′
g(ϕ(0),0)|ũϕ,t1 − ũϕ,t2|ϕ(0)

for some constant C(r) depending only on r. The first term tends to
0 as R tends to infinity by the remark at the end of Lemma 4.4, since
both the norm terms are bounded by the fact that

|ũϕ,t1 |ϕ(0) + |ũϕ,t2 |ϕ(0) ≤ C(|ṽϕ,t1 |ϕ(0) + |ṽϕ,t2|ϕ(0))

≤ C ′(‖ṽt1‖2 + ‖ṽt2‖2) <∞

while the third term tends to 0 by the convergence of the sum and
by the results of Section 6.

To be well defined, we need to have that ũt = ϕ∗ũγ(ϕ)(t). It will
be sufficient to show that ũid,t = ϕ∗ũϕ,γ(ϕ)(t) for all ϕ ∈ Γ. Since
by the definition of ṽ we have ṽid,t = ϕ∗ṽϕ,γ(ϕ)(t), and ∂̄ϕ∗ũϕ,γ(ϕ)(t) =
ϕ∗∂̄ũϕ,γ(ϕ)(t) = ϕ∗ṽϕ,γ(ϕ)(t), it remains to show that ũid,t and ϕ∗ũϕ,γ(ϕ)(t)

are the same solution; that is, that they are both L2(| · |0)-minimal.
This is by definition true for ũid,t. For ϕ∗ũϕ,γ(ϕ)(t), this equates to

saying that, for any holomorphic section h of L̃⊗k, we have∫
M

(ϕ∗ũϕ,γ(ϕ)(t))he
−σk+dg′ (0,·)dvgk = 0

But we have that∫
M

(ϕ∗ũϕ,γ(ϕ)(t))he
−σk+dg′ (0,·)dvgk =

∫
ϕ(M)

ϕ∗[(ϕ
∗ũϕ,γ(ϕ)(t))he

−σk+dg′ (0,·)dvgk ]

=

∫
M

ũϕ,γ(ϕ)(t)ϕ∗he
−σk+dg′ (ϕ(0),·)dvgk = 0

as ϕ is an automorphism, so ϕ(M) = M , σk and dvgk are Γ-invariant
by definition, since ϕ∗σk = ϕ∗(π

∗σ∗k) = π∗σ∗k = σk, ϕ∗h is still holo-
morphic, and ũϕ,γ(ϕ)(t) is L2(| · |ϕ(0))-minimal.

Pushing ũ forward to X by defining u := f∗ũ, we now have a
continuous section u solving ∂̄bu = v. �
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7.3. The "tower structure". In our second example, we shall show
that even for structures that might immediately appear quite differ-
ent from the case of suspensions, the method for solving ∂̄b remains
much the same.

Definition 7.5. LetX1 be a compact Riemann surface of genus greater
than or equal to one, and let f1 : M → X1 be a universal cov-
ering map, with Deck-group Γ; here M is either C if the genus of
X1 is one, or D otherwise. Further, we have a sequence of compact
Riemann surfaces {Xj}j∈N such that for each j ≥ 2 there exists a
πj−1 : Xj → Xj−1 where πj−1 is an unbranched covering of Xj−1 by Xj ;
that is, πj−1 is a covering that is also an immersion and globally mj

to 1, where mj is some integer depending on j.
We now define X∞ by letting it be the set of all points (x1, x2, ...)

of
∏

j Xj such that πj−1(xj) = xj−1. The basis for the topology on X∞
is given as follows: Given a point x = (x1, x2, ...) of X∞ and an open
disc Ux1 around x1 in X1, the basis consists of all sets

Un
x =

{
{y1, y2, ...} |π1 ◦ π2 ◦ · · · ◦ πj(yj+1) ∈ Ux1 ,with y1, y2, ..., yn

uniquely determined by the lifting ofx1 tox2 to · · · toxn
}

We call the construction X1
π1←− X2

π2←− · · · and X∞ a tower over X1.

We shall show that there exists a compact topological space T and
a continuous surjective map f∞ : M × T → X∞. Take y1 := f1(0); we
then define T := {(x1, x2, ...) ∈ X∞ |x1 = y1}.

This can be used to define the map f∞. For take any x̄ = (x1, x2, ...) ∈
T . Then we can define f x̄2 : M → X2 as the uniquely determined lift-
ing of f1 by π1 such that f x̄2 (0) = x2; inductively, let f x̄j : M → Xj be
the uniquely determined lifting of f x̄j−1 by πj−1 such that f x̄j (0) = xj ,
and so on for all j ≥ 2. We now set f∞(z, x̄) := (f1(z), f x̄2 (z), ...).

Furthermore, given any x̄ ∈ T , consider, for any ϕ ∈ Γ, the point
x̄′ = (f x̄1 (ϕ(0)), f x̄2 (ϕ(0)), ...) ∈ T . This relation means that there must
exist some homomorphism λ : Γ → Homeo(T ) such that f∞(z, x̄) =
f∞(ϕ−1(z), λ(ϕ)(x̄)) for all z ∈M and all x̄ ∈ T .

We will define coordinate charts on X∞ in the following manner:
Let U ⊂ M be a domain such that ϕ(U) ∩ U 6= ∅, ϕ ∈ Γ ⇒ ϕ = id.

We let Ũ := {(f x̄1 (z), f x̄2 (z), ...)|z ∈ U, t ∈ T}, and define ΦŨ : Ũ →
U × T by (f x̄1 (z), f x̄2 (z), ...) 7→ (z, x̄).

Suppose Ṽ is another chart with Ũ ∩ Ṽ 6= ∅. Then there must be
a point (z, x̄) ∈ U × T and a point (z′, x̄′) ∈ V × T with f∞(z, x̄) =
f∞(z′, x̄′). This means that, for some ϕ ∈ Γ, z′ = ϕ(z) and x̄′ =
λ(ϕ)(x̄). As such, the transition between ΦŨ(Ũ ∩ Ṽ ) and ΦṼ (Ũ ∩ Ṽ )
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is given by (z, x̄) 7→ (ϕ(z), λ(ϕ)(x̄)). Now X∞ has the structure of a
Riemann surface lamination, with leaves given by f∞(M ×{t}). The
map F : X∞ → X1 given by (x1, x2, ...) 7→ x1 is a natural projection,
and each fibre Xx1

∞ := F−1(x1) is homeomorphic to T .
Suppose L1 → X1 is a positive holomorphic line bundle with met-

ric σ1. Now L∞ := F ∗L1 is a positive holomorphic line bundle with
metric σ∞ := F ∗σ1. Given a smooth, L2(σ∞) (0, 1)-form v on X∞
taking coefficients in L∞, we would like to find a smooth, L2(σ∞)
section solving ∂̄bu = v.

In order to do this, we will push the problem over to M × T and
solve it there, by use of Theorem 3.8, and then pull the solution back
to X∞. However, in order to do this, we would need to work on a
line bundle over M × T , with a corresponding metric, satisfying the
requirements of Theorem 3.8; that is, viewing the restriction of the
line bundle to every M × {t}, we would want the geometry to be
bounded with radius greater than 1, and the Ricci curvature to be
bounded from below by −1/4 - however, by exactly the same logic
as previously, this will be the case as long as we have such conditions
on L1.

The theorem we want to prove is the following:

Theorem 7.6. Assume that we are given X1
π1←− X2

π2←− · · · and X∞ as
above, as well as a line bundle L1 → X1 with metric σ1. Let L∞ be as
above. Then there exists an integer k0 such that, given any k ≥ k0 and any
smooth (0, 1)-form v with coefficients in L⊗k∞ , there exists a smooth section
u of X∞ in L⊗k∞ such that ∂̄bu = v.

Proof. We start by determining k; but this is done exactly as in the
previous example.

Let {Uj}1≤j≤n be a cover of X1 by simply connected open sets. Let-
ting {αj}1≤j≤n be a partition of unity relative to {Uj}1≤j≤n, we can
limit ourselves to solving ∂̄buj = vj := (αj ◦ F ) · v for each j. Focus-
ing on one such j, we drop the subscript.

We shall write ṽ := f ∗∞v, and ṽt := ṽ(·, t). Let Uid be a pre-image of
f ∗U ; for simplicity, we will assume that 0 ∈ Uid. Define Uϕ := ϕ(Uid)
for all ϕ ∈ Γ, and let ṽϕ,t := ṽt|Uϕ . Again, we can just repeat the
process from the simple case on each leaf.

Now we can show that ũt is continuous as a function of t, using
the results in Section 6; once again, this shall prove quite similar to
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the previous example, as

‖ũt1 − ũt2‖L2(L̃|Bg(0,r),σ̃)

≤ C(r)
∑
ϕ∈Γ

e−d
′
g(ϕ(0),0)|ũϕ,t1 − ũϕ,t2|ϕ(0)

≤ C(r)
∑

ϕ(0)∈M\Bg(0,R)

e−d
′
g(ϕ(0),0)

(
|ũϕ,t1|ϕ(0) + |ũϕ,t2|ϕ(0)

)
+ C(r)

∑
ϕ(0)∈Bg(0,R)

e−d
′
g(ϕ(0),0)|ũϕ,t1 − ũϕ,t2|ϕ(0)

and this tends to 0 as R tends to infinity and t1 and t2 are chosen
sufficiently close by the exact same logic as in the previous example.

To be well defined, we need to have that ũt = ϕ∗ũλ(ϕ)(t). It will
be sufficient to show that ũid,t = ϕ∗ũϕ,λ(ϕ)(t) for all ϕ ∈ Γ. Since
by the definition of ṽ we have ṽid,t = ϕ∗ṽϕ,λ(ϕ)(t), and ∂̄ϕ∗ũϕ,λ(ϕ)(t) =
ϕ∗∂̄ũϕ,λ(ϕ)(t) = ϕ∗ṽϕ,λ(ϕ)(t), it remains to show that ũid,t and ϕ∗ũϕ,λ(ϕ)(t)

are the same solution; that is, that they are both L2(| · |0)-minimal.
This is by definition true for ũid,t. For ϕ∗ũϕ,λ(ϕ)(t), this equates to

saying that, for any holomorphic section h of L̃⊗k, we have∫
M

(ϕ∗ũϕ,λ(ϕ)(t))he
−σk+dg′ (0,·)dvgk = 0

But we have that∫
M

(ϕ∗ũϕ,λ(ϕ)(t))he
−σk+dg′ (0,·)dvgk =

∫
ϕ(M)

ϕ∗[(ϕ
∗ũϕ,λ(ϕ)(t))he

−σk+dg′ (0,·)dvgk ]

=

∫
M

ũϕ,λ(ϕ)(t)ϕ∗he
−σk+dg′ (ϕ(0),·)dvgk = 0

as ϕ is an automorphism, so ϕ(M) = M , σk and dvgk are Γ-invariant
by definition, ϕ∗h is still holomorphic, and ũϕ,λ(ϕ)(t) is L2(| · |ϕ(0))-
minimal.

All that remains is to regard ũt as a function of z and t and define
u := f∞∗ũ; it is now well defined, continuous, and solves ∂̄bu = v. �

We notice that after breaking down the structure of the two exam-
ples, the methods of solution are essentially identical. This shall give
us a good indication as to how to work even in more general cases.



36 CHRISTIAN AARSET

8. HYPERBOLIC LAMINATIONS

In the previous section, we demonstrated how to solve the Cauchy-
Riemann equations on some simpler laminations. However, we did
not utilise the full power of Section 6; if we could actually construct
the µ-s, we could work on more advanced cases. In this section, we
would thus like to prove the main theorem.

In both our previous examples, we worked on line bundles orig-
inating on a simple Riemann surface. The main point of interest in
this section is to be able to work on line bundles originating on the
lamination itself.

8.1. Line Bundle Isomorphisms. Another point is that in our pre-
vious examples, the covering map was the same for each leaf. How-
ever, this might not always be the case. However, as long as all leaves
are hyperbolic, that is, as long as each leaf is covered by D, the follow-
ing result, whose proof can be found in [11], states that the covering
maps indeed vary with some form of regularity.

Theorem 8.1. Let X be a compact Riemann surface lamination, and as-
sume that all leaves in X are hyperbolic. Then, if xj is a sequence of
points in X converging to a point x0 ∈ X , if vj is a sequence of tangent
vectors at the points xj converging to a nonzero tangent vector v0 at x0,
and if fj : D → Lxj are the universal covering maps with fj(0) = xj ,
f ′j(0) = λj · vj for some real numbers λj > 0, then the sequence fj con-
verges uniformly on compacts to the universal covering map f0 : D → Lx
with f(0) = x and f ′(0) = λ0 · v0 for λ0 > 0.

By mimicking the methods from the previous section, it becomes
easy to find solutions on the universal cover of each leaf, and show
that these solutions are well defined when pushed forward to the
lamination. Demonstrating continuity, however, relies on the exis-
tence of the µ-s. This will follow from the following:

Proposition 8.2. Suppose X is a compact hyperbolic manifold, and let
L∗ → X be a positive holomorphic line bundle. Let L→ D× T be defined
by L|D×{t} := f ∗t L

∗. Then for any 0 < r < 1 there exists an isomorphism
Φr : L(r)→ (Dr × T )× C, where L(r) := L|Dr×T .

Proof. As X is compact, we can find a finite covering {Vα} of simply
connected open sets, along with the lamination-defining homeomor-
phisms φα : Vα → D×Tα, such that the line bundle is trivial over each
Vj .
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For any α, φ∗αVα can be written as a locally finite covering {Uj} of
D × Tα, with L trivial on the restriction to each Uj - working on any
one of the α, we henceforth drop the subscript.

Now we view the line bundle L as the covering {Uj} and a family
of functions fij(z, t) ∈ O∗(Ui ∩ Uj) satisfying the condition fij · fjk ·
fki = 1 on Ui ∩ Uj ∩ Uk for all i, j, k.

As the line bundle is trivial over Uj , and as any line bundle over
D is trivial (see for example [12]), we can choose branches gij(z, t) :=
log fij(z, t), smooth in z and continuous in t, such that we have gij +
gjk + gki = 0.

Now we construct a smooth partition of unity {αj} relative to
{Uj}. By the local finiteness of the covering, we can repeat the con-
struction from Lemma 3.11 to create αj that are smooth in z and con-
tinuous in t. So define

gj(z, t) :=
∑
k

αk(z, t) · log fkj(z, t)

Clearly we have

gj − gi :=
∑
k

αk · (log fkj − log fki) =
∑
k

αk · log fij = gij

And, as {Uj} is locally finite, gj(z, t) is smooth in z and continuous
in t.

Now define ω := ∂̄bgj ; this is well defined, as, since fij(z, t) ∈
O∗(Ui ∩ Uj), we have, on Uj ∩ Ui,

∂̄b(gj − gi) = ∂̄ log fij = 0

Thus ω is smooth in z and continuous in t.
Now define χ̃r(z) : D → R as a smooth function identically 1 on

D̄r, with compact support, and χr(z, t) : D × T → R by χr(z, t) :=
χ̃r(z).

From [13], we know that the fact that there exists some function
hR(z, t) with ∂̄h = χR · ω, on the form

hR(z, t) := − 1

2πi

∫
D

χR · ω
ζ − z

∧ dζ

In particular, ∂̄hR = ω on DR, and so gj−hR is holomorphic onUj∩DR

for every j. Furthermore we see from the above formula that hR is
smooth in z and continous in t.

Thus defining fj := egj−hR on Uj ∩ DR, we have that on (Uj ∩ Ui ∩
DR)× T ,

f−1
i fj = egj−gi = egij = fij
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In particular, this means that we have found a splitting of the line
bundle L|DR×T , and this means the required ΦR exists by standard
line bundle theory. �

Thus the required µR from M1 to M2 would be the Φ−1
R,t2
◦ ΦR,t1 .

8.2. Proof of Theorem 1.1.

Proof. Since X is compact, we can take a finite covering {Vα} of open
sets. Consider, for any given α, the flow-box

φα = (zα, tα) : Vα → D× Tα
and let T0 denote the transversal φ−1

α ({0} × T ). For each t ∈ T0, let
Lt be the leaf through t, and let ft : D → Lt be a universal covering
map with ft(0) = t.

For each t, consider Lt := f ∗t L with metric σt := f ∗t σ. We begin
by determining k0; this will prove to be almost identical to doing
this in the case of a single Riemann surface, for by a simple gener-
alisation of Lemma 7.1, bounds on the geometry of the leaves of X
give us similar bounds on the geometry of each D× {t}. Thus, there
exist k1 and k0 such that, for all t, and all k ≥ k0, we know from
Lemma 4.4 that

∑
ξ∈Ξ e

−dg′ (x,ξ) converges for all x ∈ D, all δ > 0 and
all δ-separated sets Ξ ⊂ D, where g′t := gt,k1 is the kählerian metric
derived from (L⊗k1t , σt,k1). Letting Γt be the Deck group of ft, then
for any ϕ ∈ Γt, we can use this together with Lemma 3.12 to find a k0

such that we can find smooth, L2(edg′ (ϕ(0),·)| · |) solutions for smooth,
L2(edg′ (ϕ(0),·| · |) (0, 1)-forms with coefficients in L⊗kt for all k ≥ k0, and
again by Corollary 4.6, we have that

∑
ϕ∈Γt

e−dg′ (0,ϕ(0)) converges.

Thus, we can on D × {t} look at the Deck group Γt and construct
ut :=

∑
ϕ∈Γt

uϕ,t; as in the case of a single Riemann surface, this sum
converges. We would want to define u := (ft)∗(

∑
ϕ∈Γt

uϕ,t) on each
Lt. It remains to check that this notion is well defined, and that it is
continuous.

To check that it is well defined, consider any two points t1, t2 ∈ T0

both contained in the leafLt (they may be the same point). We would
want to show that if there is some γ ∈ AutholD such that ft2 = ft1 ◦ γ,
then ut2 = γ∗ut1 .

For any ϕ ∈ Γt, we have that vϕ,t2 = γ∗vγ(ϕ),t1 , and would want
to show that uϕ,t2 = γ∗uγ(ϕ),t1 . Thus since both uϕ,t2 and ϕ∗uγ(ϕ),t2

are solutions for vϕ,t2 , we would want to show that they are both
L2(Lt, | · |ϕ(0))-minimal. This follows from the fact that, for any holo-
morphic section h of Lt2 , we have (dropping the index k and writing
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1 and 2 in place of t1 and t2 for ease of notation)∫
D
(γ∗uγ(ϕ),1)he

−σ2+dg′2
(ϕ(0),·)

dvg2 =

∫
γ(D)

γ∗[(γ
∗uγ(ϕ),1)he

−σ2+dg′2
(ϕ(0),·)

dvg2 ]

=

∫
D
uγ(ϕ),1γ∗he

−σ1+dg′1
(γ◦ϕ((0),·))

dvg1 = 0

since uγ(ϕ),1 is L2(e
dg′1

(γ◦ϕ((0),·))| · |)-minimal, and because γ(D) = D,
γ∗h is holomorphic, and, as L2 = f ∗2L = γ∗(f ∗1L), we have γ∗σ2 = σ1

and γ∗dvg2 = dvg1 , and γ∗dg′2(ϕ((0), ·)) = dg′1(γ ◦ ϕ((0), ·)).

As for continuity, this proof works just like in the two examples
we worked on, although µ is now as described above, rather than
being completely trivial; again we use the convention of dropping k
and writing 1 and 2 instead of t1 and t2, for simplicity. So as long as
we at least have R > r,

‖u2 − µR∗u1‖L2(L2|Bg2 (0,r),σ2)

≤ C(r)
∑
ϕ∈Γ2

e−d
′
g2

(ϕ(0),0)|u2 − µR∗u1|ϕ(0)

≤ C(r)
∑

ϕ(0)∈D\Bg2 (0,R/8)

e−d
′
g2

(ϕ(0),0)
(
|u2|ϕ(0) + |µR∗u1|ϕ(0)

)
+ C(r)

∑
ϕ(0)∈Bg2 (0,R/8)

e−d
′
g2

(ϕ(0),0)|u2 − µR∗u1|ϕ(0)

for some constant C(r) depending only on r; and by the exact same
logic as in our two examples, coupled with the fact that when t1 is
sufficiently close to t2, µR is 2-bilipschitz, this can be made arbitrarily
small by making R sufficiently large and t2 and t1 sufficiently close.

�

8.3. Closing Observations. Although we were able to find a some-
what generalised result, the method has further potential. In partic-
ular, the µ-s of Section 6 allow for the leaves to not have the same
universal covering space, as opposed to only not having the same
covering map. Furthermore, the concepts of bounded goemetry and
convergence of δ-separated sums makes sense even on more compli-
cated spaces than C or D.
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