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“Wir müssen wissen, wir werden wissen.”

David Hilbert



Abstract

We give a summary of the TTE-approach to computable anlysis, as background for

a discussion about Borel complexity on represented spaces. We study the hyperspace

A(X) of closed subsets of a separable metric space X, and consider the representations

ψ−, ψ+ and ψ of this space, corresponding to the upper Fell topology, lower Fell topology

and Fell topology, respectively. All of these representations are Borel equivalent, and

admits Borel measurable liftings of the Cantor derivative, if X is compact. However, if

X is an uncountable Polish space, the map A 7→ AP sending a closed subset to its perfect

component, which corresponds to the transfinitely iterated Cantor derivative, does not

have a Borel measurable lifting relative to any of these representations. Finally, we study

a representation φ of the Borel algebra B(X) on a topological space X, reflecting the

way the Borel sets are generated from the open sets. We show that complementation,

binary union and countable union all have computable liftings relative to φ, and we

find conditions ensuring that the dual of a continuous function has a continuous lifting.

Background from descriptive set theory is provided in an appendix.



Acknowledgements

First, I would like to thank my project advisor, Dag Normann, which throughout my

master studies have been more supportive, and has provided more accurate advice, than

I could possibly have expected. In particular, I want to thank him for picking such an

interesting topic for my thesis, and for always keeping his door open.

Also, thanks to everyone at the Department of Mathematics for helping me with all the

formal aspects of my studies and thesis.

Thanks to Steven Gunn and Sunil Patel for the LATEX-template I used to write this

thesis (http://www.latextemplates.com/template/masters-doctoral-thesis).

Thanks to the Theoretical physics group and all the people there for their hospitality.

The long hours would have been much longer in a less cosy working enviroment.

A big thanks to my family, friends, and cat, which have provided support, welcome

distractions, and at least for me, fruitful discussions.

Finally, I want to thank Ximena, for her love, understanding and patience, which has

made my final semester a lot less stressful and a lot more happy than it would otherwise

have been.

iii



Contents

Abstract ii

Acknowledgements iii

Symbols v

1 Introduction 1

2 Computable analysis via TTE-representations 3

2.1 A two-step approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Infinite computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Computing on names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Borel complexity of the Cantor derivative 19

3.1 Representations of the hyperspace of closed sets . . . . . . . . . . . . . . . 19

3.2 Borel measurable liftings of the identity and the Cantor derivative . . . . 20

3.3 Borel non-measurability of the transfinitely iterated derivative . . . . . . . 28

4 Computable and continuous operations on B(X) 37

4.1 A representation of the Borel algebra . . . . . . . . . . . . . . . . . . . . . 37

4.2 Computable liftings of complement and union . . . . . . . . . . . . . . . . 39

4.3 Continuous lifting of the dual of Borel functions . . . . . . . . . . . . . . . 40

A Some definitions and results from descriptive set theory 43

Bibliography 49

iv



Symbols

Σ A finite alphabet with {0, 1} ⊂ Σ.

Σ∗ The set of finite strings over Σ.

Σω The set of infinite strings over Σ.

wu,wp Concatenation of w ∈ Σ∗ with u ∈ Σ∗ or p ∈ Σω.

w v u,w v p w ∈ Σ∗ is a prefix of u ∈ Σ∗ or p ∈ Σω.

w C u,w C p w ∈ Σ∗ is a subword of u ∈ Σ∗ or p ∈ Σω.

f : X → Y A function from X into Y , which might not be total.

< · > A tupling function, which might depend on context.

v



Chapter 1

Introduction

In Chapter 2 we give a summary of the TTE-approach to computable anlysis. First

we introduce Type-2 machines, capable of handling infinite input and output. Then we

transfer the resulting computability concepts to other spaces by naming systems, that

is surjective functions from the set of finite or infinite string over an alphabet Σ onto

other spaces.

We define several levels of equivalence between naming systems, ensuring that the com-

putability, continuity or Borel measurability induced by equivalent systems are the same.

Of these classes, we consider the class of admissible representations, which is maximal

under continuous reductions, to be the most natural one. This chapter is essentially a

summary of the presentation given by K. Weihrauch, see [1] for more information.

The introduction of naming systems in Chapter 2 provides the context for our discussion

of complexity on represented spaces in Chapter 3. We study the hyperspace A(X) of

closed subsets of a separable metric space X, and consider the representations ψ−, ψ+

and ψ of this space, corresponding to necessary negative information about the elements

of A(X), full positive information about the elements of A(X) and both, respectively.

The main source for this chapter is the article [2] by V. Brattka and G. Gherardi. The

main difference is that we are not particularly concerned with the effective Borel hier-

archy, only the classical Borel hierarchy. This makes sense, considering that our main

result is negative.

We construct Borel measurable liftings of the identity and the Cantor derivative with re-

spect to these representations. In particular, if X is compact, all of these representations

are Borel equivalent, and admits Borel measurable liftings of the Cantor derivative.

However, if X is an uncountable Polish space, then the transfinitely iterated Cantor

derivative does not have a Borel measurable lifting relative to any of these representa-

tions. The transfinitely iterated derivative is the map A 7→ AP sending a closed subset to

1



Chapter 1. Introduction 2

its unique perfect component, which exists by the Cantor-Bendixson theorem. The non-

existence of Borel measurable liftings of this map is the main result of this chapter, and

in fact of this thesis. It illustrates a theorem from reversed mathematics, which says that

Cantor-Bendixson is equivalent to Π1
1-comprehension modulo elementary second order

number theory.

Finally, in Chapter 4 we construct a representation φ of the Borel algebra B(X) on a

topological space X, reflecting the way the Borel sets are generated from the open sets.

We show that complementation, binary union and countable union all have computable

liftings relative to φ, and ask for conditions ensuring that the dual of a Borel measurable

function has a continuous lifting. It turns out that this will hold for continuous functions,

if we start with only countably many names for the basis elements.

Background from descriptive set theory is provided in Appendix A, and is mostly from

Moschovakis book [3].



Chapter 2

Computable analysis via

TTE-representations

2.1 A two-step approach

The TTE (Type Two Enumeration) approach to computable analysis cosists of two

steps:

1. Introduce a concept of computability on infinite strings of symbols.

2. Name elements of other sets by infinite strings and consider the induced com-

putability.

For countable sets like the rationals, naming by finite strings of symbols would suffice,

but for uncountable sets the first step is essential. We handle this by generalizing Turing

machines to Type-2 machines with, possibly, infinite input and output. Computations

on Type-2 machines might go on forever, but we will ensure that any initial seqment of

the output can be obtained in a finite number of steps from an initial segment of the

input.

The second step introduces computability concepts on arbitrary named spaces. However,

the induced computability depends on the chosen naming system. Even if we consider

naming systems to be equivalent when they give rise to the same computability concepts,

we will in general obtain multiple equivalence classes. Among these, we will christen

the class of admissible representations as the “natural” one. We will consider second

countable T0 spaces, and define this class directly by a canonical representative. As we

3



Chapter 2. Computable analysis via TTE-representations 4

shall see, there is an equivalent characterization, in terms of maximality under continuous

reduction. This equivalent characterization can be extended to other topological spaces,

but all spaces we consider will be second countable and T0, hence we have little need for

this [4].

2.2 Infinite computations

A Type-2 machine takes a number of finite or infinite strings of symbols as input, and

gives a single finite or infinte string of symbols as output. In a successful computation,

the machine first reads a finite portion of the input, while doing all the necessary book-

keeping on designated work tapes, then, after a while, the machine writes some finite

portion of the output, only to start over again from the top, reading some more input.

This goes on until the machine halts, in the case of finite output, or forever, in the case

of infinite output. In the latter case it is important to note that the machine will always

continue to write, ensuring that some infinite string is being produced on the output

tape.

Definition 2.1 (Type-2 machine). A k-ary Type-2 machine M consists of:

1. A Turing machine over a input/output alphabet Σ with k one-way, read-only input

tapes, a finite number of two-way work tapes, and a single one-way, write-only

output tape.

2. A type specification (Y1, . . . , Yk, Y0), where Yi ∈ {Σ∗,Σω} for each i = 0, 1, . . . , k,

specifying whether the input/output on tape i is a finite or infinite string of sym-

bols.

The type specification allows us to interpret the behaviour of the machine differently,

depending on what kind of output we expect, which is important for the definition of

the function fM : Y1 × · · · × Yk → Y0 computed by a machine M .

Definition 2.2 (Function computed by a Type-2 machine). Let M be a k-ary Type-2

machine with type specification (Y1, . . . , Yk, Y0). We define the function

fM : Y1 × · · · × Yk → Y0

computed by the machine M by:

1. Y0 = Σ∗:

fM (y1, . . . , yk) = y0 iff M halts on input (y1, . . . , yk) after a finite number of steps,

with y0 on the output tape. Otherwise, (y1, . . . , yk) /∈ dom(fM ).



Chapter 2. Computable analysis via TTE-representations 5

2. Y0 = Σω:

fM (y1, . . . , yk) = y0 iff M computes forever on input (y1, . . . , yk) and writes y0 on

the output tape. Otherwise, (y1, . . . , yk) /∈ dom(fM ).

Note that this definition requires every finite portion of an infinite output to be produced

within finitely many steps, because otherwise the output will not be written in ω steps,

wich is what “forever” means here.

Definition 2.3 (Computable string function). A string function f : Y1 × · · · × Yk → Y0

is computable iff f = fM for some Type-2 machine M .

We give Σ and Σ∗ the discrete topologies, and we give Σω the topology induced by the

basis

{Bw}w∈Σ∗ , Bw = {p ∈ Σω : w v p}.

Unless otherwise specified, products are given the usual product topologies.

Theorem 2.4 (Computable implies continuous). Any computable function,

f : Y1 × · · · × Yk → Y0,

where Yi ∈ {Σ∗,Σω} for i = 0, 1, . . . , k, is continuous.

Proof. Let M be a Type-2 machine computing f . If (y0, . . . , yk) ∈ dom(f), then, by

definition, M writes any initial segment of f(y1, . . . , yk) in a finite number of steps.

Consequently, each finite initial segment of the output of f can only depend on a finite

initial portions of the inputs. With respect to the chosen topologies, this is equivalent

to continuity of f , even in the trivial case of finite input.

Proposition 2.5 (Computable extension of composition). Suppose f : Y1×· · ·×Yk → Y0

and g : Y0 → Y are computable functions. Then their composition g◦f has a computable

extension h, such that g ◦ f is exactly the restriction of h to dom(f). If Y0 = Σ∗ or

Y = Σω, the composition g ◦ f itself is computable.

Proof. Let Mf and Mg be Type-2 machines computing f and g, respectively. If Y0 = Σ∗,

we might construct a machine M computing g ◦f , simply by first running Mf , then Mg.

Unfortunately, this does not work if Y0 = Σω, because Mf computes forever, meaning

that Mg never gets started. We remedy this by letting Mg make one step each time Mf

writes a symbol, before Mf is allowed to continue. The cost of this approach is that the

resulting machine M may, in general, terminate on some inputs not in the domain of

f . However, if Y = Σω, this cannot happen, since Mg only makes finitely many steps if

Mf does not produce an infinite sequence.
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For a set A ⊂ Σ∗, we say that A is decidable if its characteristic function is computable,

and we say that A is semidecidable, if A is the domain of a computable function. It is

a wellknown fact that according to this definition A ⊂ Σ∗ is decidable iff both A and

Σ∗ \A are semidecidable. This is the motivation behind the following definition.

Definition 2.6 (Semidecidable and decidable subsets). Let Y = Y1 × · · · × Yk, where

Yi ∈ {Σ∗,Σω} for i = 0, 1, . . . , k. A set A ⊂ Y is semidecidable in Y if A is the domain of

a computable function with finite output. If A ⊂ Z ⊂ Y , we say that A is semidecidable

in Z if A is the intersection of Z and a semidecidable set. In any case, A is decidable if

both A and its complement are semidecidable.

Note that while the semidecidable sets of Z ⊂ Y are exactly the intersections of semide-

cidable subset of Y with Z, the intersections of decidable subset of Y with Z are merely

a subcollection of the decidable sets of Z ⊂ Y . This is because the restrictions of two

sets to Z might be complements of each other, even though the original two sets was

not.

Proposition 2.7 (Semidecidable set are open). Let Y = Y1×· · ·×Yk, with Yi ∈ {Σ∗,Σω}
for i = 0, 1, . . . , k, and let A ⊂ Z ⊂ Y . If A is semidecidable in Z, then A is open in Z,

and if A is decidable in Z, then A is clopen in Z1.

Proof. Follows directly from the definition of semidecidable, since the topology of Σ∗ is

discrete, and computable functions are continuous.

Proposition 2.8 (Inverse images of computable functions preserves effectiveness). Sup-

pose f : Y1×· · ·×Yk → Y0, with Yi ∈ {Σ∗,Σω}, is computable, and suppose A ⊂ Z ⊂ Y0.

If A is (semi)decidable in Z, then f−1(A) is (semi)decidable in f−1(Z).

Proof. Let A = dom(g) ∩ Z, where g : Y0 → Σ∗ is a computable function. Let h be a

computable extension of g ◦ f , such that dom(g ◦ f) = dom(h) ∩ dom(f). Then

f−1(A) = f−1(dom(g)) ∩ f−1(Z) = dom(g ◦ f) ∩ f−1(Z)

= dom(h) ∩ dom(f) ∩ f−1(Z) = dom(h) ∩ f−1(Z).

Inverse images preserves complements, so the result for decidability follows immediately.

We now define a function that allows us to unambiguously code multiple finite strings

by a single finite or infinite string.

1We say that A is clopen in Z if both A and Z \A are open in Z.
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Definition 2.9 (Wrapping function). Define the wrapping function ι : Σ∗ → Σ∗ by

ι(a1a2 . . . an) = 110a10a20 . . . 0an011.

This definition ensures that ι(v) C ι(u) ⇒ v = u and that any combined suffix of ι(v)

and prefix of ι(u) must be one of λ, 1, 11, ι(v).

2.3 Computing on names

We can transfer the computability concepts defined via Type-2 machines to any set X

that is not to large, by naming the elements of X by either finite or infinite strings,

and then interpreting computations on names as computations on the corresponding

elements of X.

Definition 2.10 (Naming systems). A naming system for a set X is a surjective function

ψ : Y → X, where Y ∈ {Σ∗,Σω}. We call ψ a notation if Y = Σ∗, and a representation

if Y = Σω.

If ψ(y) = x, we say that y is a ψ-name for x.

Definition 2.11 (Naming systems for N and NN). We let νN : 2∗ → N to be the usual

binary notation of the natural numbers.

We also define a binary representation δNN : 2ω → NN of Baire space, by

p ∈ dom(δNN) ⇔ p(i) = 1 for infinitely many i’s,

and

δNN(0i010i110i21 . . .) = (i0, i1, i2, . . .),

where each in is a natural number.

We can transfer all kinds of concepts from Σ∗ or Σω to any named set X.

Definition 2.12 (Classes of subsets of named spaces). Let ψ : Y → X be a naming

system, and suppose A ⊂ X. Then

1. A is ψ-decidable iff the set of names for A is a decidable subset of dom(ψ).

2. A is ψ-open iff the set of names for A is an open subset of dom(ψ).

3. A is ψ-Borel iff the set of names for A is a Borel subset of dom(ψ).
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Let τψ denote the collection of all ψ-open subsets of X. It is trivial to check that τψ is

a topology, the final topology of ψ on X. As we will see later, the ψ-Borel subsets of X

are exactly the members of the Borel algebra generated by τψ.

Definition 2.13 (Liftings of functions between named spaces). Let ψ : Y → X and

ψ′ : Y ′ → X ′ be two naming systems. A (ψ,ψ′)-lifting of a function f : X → X ′ is a

function F : Y → Y ′ such that ψ′ ◦ F (y) = f ◦ ψ(y) for all y ∈ dom(f ◦ ψ).

Definition 2.14 (Classes of functions on named spaces). Let ψ : Y → X and ψ′ : Y ′ →
X ′ be two naming systems.

1. A function f : Y → Y ′ is (ψ,ψ′)-computable iff it has a computable (ψ,ψ′)-lifting.

2. A function f : Y → Y ′ is (ψ,ψ′)-continuous iff it has a continuous (ψ,ψ′)-lifting.

3. A function f : Y → Y ′ is (ψ,ψ′)-Borel measurable iff it has a Borel measurable

(ψ,ψ′)-lifting.

It is now natural to ask: Is (ψ,ψ′)-continuity and (ψ,ψ′)-Borel measurability the same

as continuity and Borel measurability with respect to the induced topologies τψ and

τψ′? We will answer this question for the admissible representations at the end of this

section.

Definition 2.15 (Computable functions on N and NN). A function f : N → N is

computable iff it is (νN, νN)-computable.

A function f : NN → NN is computable iff it is (δNN , δNN)-computable.

For functions from N to N this is of course nothing else than the usual definition in terms

of Turing machines.

We now turn our attention to relationships between different naming systems2.

Definition 2.16 (Translations between naming systems). Let ψ : Y → X and ψ′ :

Y ′ → X ′ be two naming systems3. We say that F : Y → Y ′ translates ψ to ψ′ iff for

any ψ-name of x ∈ X, F gives a ψ′-name of x, that is

∀y ∈ dom(ψ). (ψ′ ◦ F )(y) = ψ(y).

2Here we focus on naming systems, but the definitions of translation and reduction are the same for
arbitrary functions.

3We do not require X = X ′, but see the comment after the definition
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Note that, assuming the Axiom of choice, ψ : Y → X can be translated to ψ′ : Y ′ → X ′

iff X ⊂ X ′, and that a translation of ψ to ψ′ is the same as a (ψ,ψ′)-lifting of the

identity on X.

Definition 2.17 (Levels of reducibility and equivalence). Let ψ : Y → X and ψ′ : Y ′ →
X ′ be two naming systems.

1. ψ is reducible to ψ′, ψ ≤ ψ′, iff ψ can be translated to ψ′ by a computable function.

2. ψ is continuously reducible to ψ′, ψ ≤τ ψ′, iff ψ can be translated to ψ′ by a

continuous function.

3. ψ is Borel reducible to ψ′, ψ ≤B ψ′, iff ψ can be translated to ψ′ by a Borel

measurable function.

4. ψ ≡ ψ′ ⇔ ψ ≤ ψ′ ∧ ψ′ ≤ ψ.

5. ψ ≡τ ψ′ ⇔ ψ ≤τ ψ′ ∧ ψ′ ≤τ ψ.

6. ψ ≡B ψ′ ⇔ ψ ≤B ψ′ ∧ ψ′ ≤B ψ.

The composition of computable functions has a computable extension, the composition of

continuous functions is continuous, and the composition of Borel measurable functions is

Borel measurable. Furthermore, the identity function is computable, hence continuous,

and of course Borel measurable. Thus ≤,≤τ ,≤B are pre-orders, and ≡,≡τ ,≡B are

equivalence relations on the class4 of naming systems. The next result tells us that

these equivalences between naming systems correspond exactly to equivalence of induced

concepts.

Theorem 2.18 (Equivalent naming systems induces the same concepts). Let ψ : Y →
X, ψ′ : Y ′ → X be two naming systems.

1. The naming systems ψ,ψ′ induces the same computability iff ψ ≡ ψ′.

2. The naming systems ψ,ψ′ induces the same continuity iff ψ ≡τ ψ′.

3. The naming systems ψ,ψ′ induces the same Borel measurability iff ψ ≡B ψ′.

Proof. (⇐):

Functions: Suppose ψ0 : Y0 → X0 and ψ′0 : Y ′0 → X0 are naming systems for some space

X0. Furthermore, suppose

ψ′ ≤ ψ ∧ ψ0 ≤ ψ′0
4Even though we refer to class-relations, any restriction to a set contained in the class of naming

systems will be a relation in the usual sense, i.e. a set of ordered pairs.
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Suppose f : X → X0 is (ψ,ψ0)-computable. Choose a computable (ψ,ψ0)-lifting F :

Y → Y0 of f . Let ρ : Y ′ → Y be a computable reduction of ψ′ to ψ, and let ρ0 : Y0 → Y ′0

be a computable reduction of ψ0 to ψ′0. Then ρ0 ◦F ◦ ρ has a computable extension F ′,

which is a (ψ′, ψ′0)-lifting of f = idX0 ◦ f ◦ idX . So f is (ψ′, ψ′0)-computable. The reverse

direction follows by symmetry, so if

ψ ≡ ψ′ ∧ ψ0 ≡ ψ′0,

then any function f : X → X0 is (ψ,ψ0)-computable iff it is (ψ′, ψ′0)-computable.

Subsets: Suppose A ⊂ Y is ψ-decidable. Choose a computable reduction ρ′ : Y ′ → Y of

ψ′ to ψ. Then ψ−1(A) ⊂ dom(ψ) is decidable, that is, ψ−1(A) = B ∩ dom(ψ) for some

decidable B ⊂ X. Hence

(ψ′)−1(A) = (ρ′)−1(B ∩ dom(ψ)) ∩ dom(ψ′)

= (ρ′)−1(B) ∩ (ρ′)−1(dom(ψ)) ∩ dom(ψ′)

= (ρ′)−1(B) ∩ dom(ψ′)

is decidable in dom(ψ′), since inverse images of computable functions preserves decid-

ability. Consequently, A is ψ′-decidable.

(⇒):

Suppose ψ and ψ induces the same computability. Then in particular, since idX : X → X

is (ψ,ψ)-computable, it is (ψ,ψ′)-computable and (ψ′, ψ)-computable. Thus ψ ≡ ψ′.

The other cases are proved in the same way, the crucial properties being closure under

composition, relativization of concepts to subsets and preservation under inverse images.

There will in general be many non-eqivalent naming systems. We now define the ad-

missible representations, which are maximal with respect to continuity, and which will

ensure that the notions of (ψ,ψ′)-continuity and (ψ,ψ′)-Borel measurability correspond

to the usual notions of continuity and Borel measurability.

Definition 2.19 (Effective and computable spaces). An effective topological space is a

triple (X,σ, ν), where ν : Σ∗ → σ is a notation for a covering σ ⊂ P(X) of X, such that

the topology induced by σ as a subbasis is T0, or equivalently

x = y ⇔ {A ∈ σ : x ∈ A} = {A ∈ σ : y ∈ A}.
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We say that X is a computable space iff the relation

u, v ∈ dom(ν) ∧ ν(u) = ν(v)

is semidecidable.

The elements of A ∈ σ are often called atomic properties. In this terminology the T0-

requirement amounts to saying that the elements of X are identified by their atomic

properties. Note also that the basis induced by σ is countable, since, by assumption,

σ has a notation and thus is countable, so any effective topological space is second

countable.

Definition 2.20 (Standard representation of an effective space). Let (X,σ, ν) be an

effective topological space. The standard representation ofX induced by ν is the function

δν : Σω → X defined by

p ∈ dom(δν)⇒ {w : ι(w)C p} ⊂ dom(ν)5

δν(p) = x⇔ {A ∈ σ : x ∈ A} = {ν(w) : ι(w)C p},

and p 6∈ dom(δν) otherwise.

The standard representation of an effective space X will be the canonical element from

the class of admissible represtations for X.

Proposition 2.21 (The standard representation is continuous and open). Let (X,σ, ν)

be an effective topological space. The standard representation δν is continuous and open

with respect to the topology induced by σ.

Proof. If A is an element of the subbasis σ, then

δ−1
ν (A) = {p : ι(w)C p for some ν-name w of A}.

For every element p ∈ δ−1
ν (A), any initial segment of p coding at least one ν-name of A

will give a neighbourhood of p contained in δ−1
ν (A).

It is a bit more complicated to prove that δν is open. For a general word w, note that

w = vv′, where v is either the empty word or ends in 11, and there is no u ∈ Σ∗ such

that ι(u)C v′. In any case, if we let w′ = w0411 = vv′0411, then ι(u)Cw′ iff ι(u)Cw iff

ι(u)C v. Thus, any x ∈ X named by vp ∈ vv′Σω = wΣω also have a name w′p ∈ w′Σω,

so

δ(wΣω) = δ(w′Σω) = {x : x ∈ ι(u) for all ι(u)C w′} =
⋂

ι(u)Cw′

ν(u),

which is of course open.
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Corollary 2.22 (Standard representation induces the topology of an effective space).

Let (X,σ, ν) be an effective topological space. The topology of X generateds by σ is

exactly the final topology of the standard representation δν .

Note that since the standard representation is surjective, continuous and open, it is in

particular a quotient map from its domain onto X, and the topology of X is in fact

nothing else than the unique quotient topology induced by this quotient map.

Proposition 2.23 (The standard representation is maximal w.r.t ≤τ ). Let (X,σ, ν)

be an effective topological space. Then any continuous naming system ψ : Y → X is

continuously reducible to the standard representation δν .

Proof. The result is trivial if ψ is a notation. Otherwise, for each ψ-name p, we need to

code all w ∈ Σ∗ such that ψ(p) ∈ ν(w) into a corresponding δν-name. Note that

ψ(p) ∈ ν(w) ⇔ ψ(p<nΣω) ⊂ ν(w) for some n ∈ N.

Let w0, w1, . . . be a list of dom(ν). Then we can define a continuous translation of ψ to

δν by

f(p) = h(0)h(1) . . . ,

where

h(< i, n >) =

ι(wi) if ψ(p<nΣω) ⊂ ν(wi),

11 otherwise.

Using this lemma once for each standard representation, we immediately obtain the

following corollary.

Corollary 2.24 (Topology of a space determines the standard representation). If (X,σ, ν)

and (X,σ′, ν ′) are effective topological spaces such that the topologies induced by σ and

σ′ are the same, then the standard representations induced by ν and ν ′ are equivalent,

δν ≡τ δν′.

In other words, the standard representation of a second countable T0-space X depend

only on the topology of X. Hence, as long as a topology of X is already given, we will,

from now on, just write δX for the standard representation of X. More importantly, we

can now define the admissible naming systems.

Definition 2.25 (Admissible naming systems). A naming system ψ : Y → X of some

second countable T0-space X is admissible iff it is continuously equivalent to the standard

representation δX of X.
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Lemma 2.26 (Admissible implies continuous). Every admissible naming system ψ :

Y → X of some second countable T0-space X is continuous.

Proof. Suppose B ⊂ X is open. Let g : Y → Σω be a continuous translation of ψ to

the standard representation δX : Σω → X of X. Choose an open set A ⊂ Σω such that

δ−1
X (B) = A ∩ dom(δX). Then

ψ−1(B) = g−1(δ−1
X (B)) ∩ dom(ψ) = g−1(A ∩ dom(δX)) ∩ dom(ψ) = g−1(A) ∩ dom(ψ),

which is open in dom(ψ).

Corollary 2.27 (Alternative characterization of admissible naming systems). Let X

be a second countable T0-space. A naming system ψ : Y → X is admissible iff it is

continuous and a maximal naming system for X with respect to ≤τ .

Proof. This follows trivially from assumptions by the known properties of ≤τ and the

previous lemma.

Proposition 2.28 (A space admits a notation iff it is discrete). Let X be a second

countable T0 space. Then X has an admissible notation iff every notation for X is

admissible iff X is discrete.

Proof. If X has an admissible notation, then using the Axiom of choice and the fact

that any function from a discrete space is continuous, we see that any notation of X

is admissible. But obviously, since X has the final topology of any admissible naming

system, this means that X is discrete. Suppose X is discrete. Then σ = {{x0}, {x1}, . . .}
is a subbasis for X. Fix a notation µ : Σ∗ → σ of σ. Then (X,σ, µ) is an effective

topological space. Define a notation ν : Σ∗ → X of X by

µ(w) = {ν(w)}, for all w ∈ Σ∗.

Let δX : Σω → X be the standard representation of X. We can define a continuous

reduction ρ : Σω → Σ∗ of δX to ν by

ρ(p) = w, where w is the first word such that ι(w)C p .

Hence ν is an admissible notation for X.

Example 2.1 (Admissible naming systems for N and NN). The binary notation νN for

natural numbers is admissible.

The binary representation δNN of Baire space is continuously reducible to the standard

representation of NN, and hence in particular admissible.
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Proof. That νN is admissible follows from the fact that N is discrete.

We now want to introduce naming by elements of N or NN as equivalent, but more

practical, variants of naming by Σ∗ and Σω, respectively. We will temporarily introduce

parallel terminology, but after we have seen that naming by N and NN in a natural way

is equivalent to naming by finite and infinite strings over a finite alphabet, we will just

use the language we are already familiar with.

Definition 2.29 (N/NN-naming systems). We call any surjective function ψ : Z → X,

where Z ∈ {N,NN}, a N/NN-naming system for X. We call ψ a N-notation if Z = N,

and a NN-representation if Z = NN.

Definition 2.30 (N-notated effective and computable spaces). A N-notated effective

topological space is a triple (X,σ, ν̃), where ν̃ : N → σ is a notation for a covering

σ ⊂ P(X) of X, such that the topology induced by σ as a subbasis is T0, or equivalently

x = y ⇔ {A ∈ σ : x ∈ A} = {A ∈ σ : y ∈ A}.

We say that X is a N-notated computable space iff the relation

i, j ∈ dom(ν̃) ∧ ν̃(i) = ν̃(j)

is semidecidable.

Definition 2.31 (Standard NN-representation of a N-notated effective space). Let (X,σ, ν̃)

be a N-notated effective topological space. The standard NN-representation of X induced

by ν̃ is the function δ̃ν̃ : NN → X defined by

α ∈ dom(δ̃ν̃)⇒ {i : i+ 1 ∈ range(α)} ⊂ dom(ν̃)

δ̃ν̃(α) = x⇔ {A ∈ σ : x ∈ A} = {ν̃(i) : i+ 1 ∈ range(α)},

and α 6∈ dom(δ̃ν̃) otherwise.

Note that unless we are interested in the computability part of the last two definitions,

the function ν̃ is superfluous, and we might just work with a general enumerated subbasis

instead. We will do this whenever it is convenient.

In any case, the results 2.21-2.24 goes through for N/NN-naming systems, with only

trivial modifications of the proofs. So in particular, the standard NN-representation of a

second countable T0 space depends only on the topology, and we are justified in making

the following definition.
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Definition 2.32 (Admissible N/NN-naming systems). A N/NN-naming system ψ : Z →
X of some second countable T0-space X is admissible iff it is continuously equivalent to

the standard N/NN-representation δ̃X of X.

Again, admissible N/NN-naming systems are continuous, and again, we obtain an alter-

native characterization in terms of maximality under continuous reductions.

Corollary 2.33 (Alternative characterization of admissible N/NN-naming systems). Let

X be a second countable T0-space. An N/NN-naming system ψ : Z → X is admissible

iff it is continuous and a maximal N/NN-naming system for X with respect to ≤τ .

We are now at the point where we can tie all of this together. To see that the topological

concepts related to admissible naming systems are the same, we only need to show that

the standard representation δX and the standard NN-representation δ̃X are continuously

equivalent.

Proposition 2.34 (δ̃X is continuously equivalent to δX). Suppose X is a second count-

able T0 space, with standard representation δX and standard NN-representation δ̃X . Then

δX ≡τ δ̃X .

Proof.

Note that this discussion also indicates that it does not matter which finite alphabet Σ

we use, as long as Σ contains two or more symbols.

From now on we will no longer distinguish between naming by N or NN, and naming by

finite or infinite sequences of symbols over a finite alphabet. In practice, we will only

work with N and NN, because it is so much easier.

Example 2.2 (Admissible representation of `2(R)). Fix an enumeration {q0, q1, . . .} of

the rationals, and for each s ∈ N, define γs = (q(s)1 , q(s)2 , . . . , q(s)|s|−1
, 0, 0, . . .). Then

{γs}s∈N is a countable dense subset of `2 = `2(R), and σ = {Bs} is a (sub)basis for the

topology of `2, where Bs = B(γs, q(s)0). Hence, the representation δ`2 : NN → `2 defined

by

δ`2(α) = γ ⇔ {s : γ ∈ Bs} = {s : s+ 1 ∈ range(α)}

is the standard representation of `2, and hence admissible. Furthermore, if we let ν :

N → σ be the obvious notation defined by ν(s) = Bs, then (`2, σ, ν) is a computable

topological space.
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Proof. First, lets check that {γ}s∈N is dense in `2. Note that for any γ ∈ `2,

lim
n→∞

(
∞∑
i=n

|γ(i)|2) = lim
n→∞

(‖γ‖2 −
n−1∑
i=0

|γ(i)|2)

= ‖γ‖2 − lim
n→∞

(
n−1∑
i=0

|γ(i)|2)

= ‖γ‖2 − ‖γ‖2 = 0.

Hence, given any ε > 0, we can choose an n such that
∑∞

i=n |γ(i)|2 < ε2

2 . Furthermore,

since the rationals are dense in the reals, we can choose si ∈ N such that

|qsi − α(i)|2 < ε2

2n

for 0 ≤ i ≤ n− 1 Then, if we let s =< 0, s0, s1, . . . , sn−1 >, we have

‖γ − γs‖2 =
n−1∑
i=0

|γ(i)− γs(i)|2 +
∞∑
i=n

|γ(i)|2

<
ε2

2
+
ε2

2
= ε2.

Second, we should also note that the relation

s, t ∈ dom(ν) ∧ ν(s) = ν(t) ⇔ ν(s) = ν(t)

⇔ (|s| = |t| ∧ ∀i < |s|. (s)i = (t)i) ∨ ((s)0 ≤ 0 ∧ (t)0 ≤ 0)

is semidecidable, and actually even primitive recursive. The crucial observation here is

that Bs = Bt only if they have the same center and the same radius, or otherwise, if

they are both empty. The rest is obviously true.

Proposition 2.35 (Borel measurable right inverse of admissible representations). [2]

Every admissible representation of a second countable T0 space X has a ∼∆
0
2-measurable

right inverse.

Proof. It suffices to consider the standard representation δX : NN → X. Since we are

not interested in effectivity at the moment, we might just assume that {B0, B1, . . .} is a

countable subbasis for X, and that δX is defined by

δX(α) = x⇔ {i : x ∈ Bi} = {i : i+ 1 ∈ range(α)}.
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We can define a right inverse of eX : X → NN by

eX(x)(i) =

i+ 1, if x ∈ Bi,

0, otherwise.

To analyse the complexity of eX , it suffices to consider inverse images of subbasis ele-

ments of NN, which are of the form B(i,j) = {α : α(i) = j}. There are three cases to

consider.

j = 0: Then e−1
X (B(i,0)) = X \Bi

j = i+ 1: Then e−1
X (B(i,i+1)) = Bi

j 6= 0 ∧ j 6= i+ 1: Then e−1
X (B(i,j)) = ∅, by definition of eX .

In conclusion, eX is Borel measurable, and even ∼∆
0
2. Furthermore, eX(X) ⊂ dom(δX),

so for any B ⊂ NN,

e−1
X (B ∩ dom(δX)) = e−1

X (B).

Hence, since eX : X → NN is Borel, the restriction e′X : X → dom(δX) is also Borel.

In general, we may restrict the codomain of a Borel function to any set containing the

range of the function, and still get a Borel function.

Note that the right inverse defined in the proof above is Borel measurable with respect

to the Borel algebra B(X) built up from the open subsets of X.

Proposition 2.36 (Admissible representations induce the usual Borel structure). The

ψ-Borel subsets of X are exactly the members of the Borel algebra B(X) generated by

τψ.

Proof. Suppose A ⊂ X is in B(X). Then since inverse images of Borel sets under Borel

functions are Borel, and ψ is continuous, ψ−1(A) ∈ B(dom(ψ)), so A is ψ-Borel.

On the other hand, if A ⊂ X is ψ-Borel, then by definition, ψ−1(A) ∈ B(dom(ψ)). Let

e : X → dom(ψ) be a Borel measurable right inverse of ψ. Then A = e−1(ψ−1(A)) ∈
B(X), since e is Borel mesurable.

The main result of this section tells us that admissible naming systems of second count-

able T0 spaces induces exactly the same continuity and Borel measurability as the usual

topological notions, supporting the claim that the class of admissible naming systems is

particularly natural.

Theorem 2.37. Suppose ψ : Y → X and ψ : Y ′ → X ′ are admissible naming systems

of second countable T0-spaces X and X ′.

1. A function f : X → X ′ is continuous iff it is (ψ,ψ′)-continuous.
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2. A function f : X → X ′ is Borel iff it is (ψ,ψ′)-Borel.[2]

Proof. 1.): (⇒): Suppose f : X → X ′ is continuous. Then f ◦ψ is a continuous function

into X ′. Hence there exists a continuous reduction F : Y → Y ′ of f ◦ψ to ψ′. But then,

for every α ∈ dom(f ◦ ψ),

(f ◦ ψ)(α) = (ψ′ ◦ F )(α),

so F is a continuous (ψ,ψ′)-lifting of f , and f is (ψ,ψ′)-continuous.

(⇐): Suppose that f : X → X ′ is (ψ,ψ′)-continuous, and let F : Y → Y ′ be a continuous

(ψ,ψ′)-lifting of F . Then for every α ∈ dom(f ◦ ψ),

(f ◦ ψ)(α) = (ψ′ ◦ F )(α),

so f ◦ψ is continuous, which means that f is continuous, since X has the final topology

of ψ.

2.): (⇒): Suppose f : X → X ′ is Borel measurable. Let e′ : X ′ → Y ′ be a Borel

measurable right inverse of ψ′. Then F = e′ ◦ f ◦ψ is Borel measurable (ψ,ψ′)-lifting of

f .

(⇐): Suppose f : X → X ′ is (ψ,ψ′)-Borel, and let F : Y → Y ′ be a Borel measurable

lifting of F . Let e : X → Y be a Borel measurable right inveres of ψ. Then f = ψ′ ◦F ◦e
is Borel measurable.



Chapter 3

Borel complexity of the Cantor

derivative

3.1 Representations of the hyperspace of closed sets

Suppose X is a separable metric space, with a countable dense subset {r0, r1, . . .}. As-

sume further that {q0, q1, . . .} is an enumeration of the rationals. We define Bs =

B(r(s)0 , q(s)1), that is, the open ball with center r(s)0 and radius q(s)1 , and we let Bs be

the corresponding closed ball. Of course, {Bs}s∈N is a countable basis for X. Note that

relations between basis elements can be coded as relations between their indexes, which,

as subsets of discrete spaces, are trivially ∼∆
0
1. We will freely abuse notation, and write

things like

s ⊂ t⇔ Bs ⊂ Bt,

whenever the intended meaning is clear from the context.

We will be interested in the hyperspace A(X) of closed subsets of X. We will give three

different representations of this set.

Definition 3.1. Define a representation ψ− : NN → A(X) by

ψ−(α) = X \ (
⋃

s+1∈range(α)
Bs).

The representation ψ− identifies the elements of X by sufficient negative information,

and is admissible with respect to the upper Fell topology, which is generated by the

19
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subbasis of all sets of the form

K− = {A ∈ A(X) : A ∩K = ∅},

where K is a compact subset of X.

Definition 3.2. Define a representation ψ+ : NN → A(X) by

ψ+(α) = A⇔ {Bs : A ∩Bs} = {Bs : s+ 1 ∈ range(α)}.

The representation ψ+ identifies the elements of X by full positive information, and is

admissible with respect to the lower Fell topology, with subbasis consisting of all sets of

the form

U+ = {A ∈ A(X) : A ∩ U 6= ∅},

where U is an open subset of X.

Definition 3.3. Define ψ = ψ− ∧ ψ+, that is,

ψ(α) = A ⇔ ψ−(α−) = A ∧ ψ+(α+) = A,

where α−(i) = α(2i) and α+(i) = α(2i+ 1) for all i ∈ N.

The representation ψ identifies the elements of X by both sufficient negative information

and full positive information. It is admissible with respect to the Fell topology, wich has

a subbasis consisting of all sets of the form K−, where K ⊂ X is compact, and all sets

of the form U+, where U ⊂ X is open.

3.2 Borel measurable liftings of the identity and the Can-

tor derivative

It might be useful to know when the representations ψ−, ψ+ and ψ are Borel equivalent.

Hence, we will first try to construct Borel reductions between these representations, that

is, Borel measurable liftings of the identity with respect to different representations.

This should also give some idea of the problems involved in passing between these

representations.

Lemma 3.4. Suppose X is a separable metric space. The identity function on the

hyperspace of closed subsets of X, id : A(X)→ A(X), has a

1. ∼∆
0
1-measurable (ψ,ψ−)-lifting I−,
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2. ∼∆
0
1-measurable (ψ,ψ+)-lifting I+,

3. ∼∆
0
2-measurable (ψ+, ψ−)-lifting I−+,

4. ∼∆
0
2-measurable (ψ+, ψ)-lifting I+,

5. ∼∆
0
3-measurable (ψ−, ψ+)-lifting I+

−, provided X is compact,

6. ∼∆
0
3-measurable (ψ−, ψ)-lifting I−, provided X is compact.

Proof. 1.) Define I− : NN → NN by I−(α)(s) = α(2s), for all α ∈ NN and s ∈ N. The

inverse image of a subasis element B(i,j) = {α : α(i) = j} is the subasis element B(2i,j),

which is clopen.

2.) Define I+ : NN → NN by I+(α)(s) = α(2s+1), for all α ∈ NN and s ∈ N. The inverse

image of a subasis element B(i,j) is the subasis element B(2i+1,j), which is clopen.

3.) Define I−+ : NN → NN, for all α ∈ NN and s ∈ N, by

I−+(α)(s) =

0, if ∃i.α(i) = s+ 1,

s+ 1 if ¬∃i.α(i) = s+ 1.

To analyse the Borel complexity of I−+, it suffices to consider subbasis elements of NN,

of the form B(s,j) = {α : α(s) = j}. There are three cases to consider.

j = 0: Then (I−+)−1(B(s,0)) = {α : ∃i.α(i) = s + 1} is ∼Σ
0
1, since the evaluation map

(α, i) 7→ α(i) is continuous.

j = s+ 1: Then (I−+)−1(B(s,s+1)) = {α : ¬∃i.α(i) = s+ 1} is ∼Π
0
1.

j 6= 0 ∧ j 6= s+ 1: Then (I−+)−1(B(i,j)) = ∅, by definition of I−+.

In conclusion, I−+ is ∼∆
0
2-measurable.

4.) Define I+ : NN → NN, for all α ∈ NN and s ∈ N, by

I+(α)(s) =

I−+(α)(i), if s = 2i,

α(i), if s = 2i+ 1.

It suffices to consider subbasis elements B(s,j) = {α : α(s) = j}. There are two cases.

s = 2i: Then (I+)−1(B(2i,j)) = (I−+)−1(B(i,j)) is ∼∆
0
2, by 3.).

s = 2i+ 1: Then (I+)−1(B(2i+1,j)) = B(i,j) which is ∼Σ
0
1.

In conclusion, I+ is ∼∆
0
2-measurable.
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5.) This case is complicated by the fact that we do not have full information to begin

with. However, assuming that X is compact, we can remedy this. Define a relation

Disjoint−(α, s) ⇔ Bs ∩ ψ−(α) 6= ∅,

⇔ B(r(s)0 , q(s)1) ⊂
⋃

i
Bα∗(i)

⇔ ∀t.[((t)0 = (s)0 ∧ q(t)1 < q(s)1)→ Bt ⊂
⋃

i
Bα∗(i)]

⇔ ∀t.[((t)0 = (s)0 ∧ q(t)1 < q(s)1)→ ∃m.(Bt ⊂
⋃

i<m
Bα∗(i))],

where

α∗(i) =

< 0, 0 >, if i = 0,

i− 1, otherwise,

so in particular Bα∗(0) = ∅. The relation Disjoint− ⊂ NN × N is ∼Π
0
2, since the relation

(t, w)⇔ Bt ⊂ (B(w)0 ∪ (B(w)1 ∪ . . . ∪B(w)|w|−1
)

is trivially ∼∆
0
1, and the map (α,m) 7→< α(0), α(1), . . . , α(m− 1) > is continuous. Now

we can define I+
− : NN → NN by

I+
−(α)(s) =

s+ 1, if ¬Disjoint(α, s),

0, if Disjoint(α, s),

for all α ∈ NN and s ∈ N. Again we consider subbasis elements B(s,j) of NN. There are

three cases.

j = s+ 1: Then (I+
−)−1(B(s,s+1)) = {α : ¬Disjoint(α, s)} is ∼Σ

0
2.

j = 0: Then (I+
−)−1(B(s,0)) = {α : Disjoint(α, s)} is ∼Π

0
2.

j 6= 0 ∧ j 6= s+ 1: Then (I+
−)−1(B(i,j)) = ∅.

In conclusion, I−+ is ∼∆
0
3-measurable.

6.) Suppose X is compact. Then we can define I− : NN → NN, for all α ∈ NN and s ∈ N,

by

I−(α)(s) =

α(i), if s = 2i,

I+
−(α)(i), if s = 2i+ 1.

Consider inverse images of subbasis elements B(s,j) = {α : α(s) = j}. There are two

cases.

s = 2i: Then (I−)−1(B(2i,j)) = B(i,j) which is ∼Σ
0
1.

s = 2i+ 1: Then (I−)−1(B(2i+1,j)) = (I+
−)−1(B(i,j)) is ∼∆

0
3, by 5.).

In conclusion, I+ is ∼∆
0
3-measurable.



Chapter 3. Borel complexity of the Cantor derivative 23

The Cantor derivative is the the function d : A(X)→ A(X) mapping a closed set A to

the set A′ of all limit points of A. In other words, the Cantor derivative strips a closed

set of all its isolated points. However, this does not exclude the possibility that A′ might

have isolated points which was not isolated in A. To get a perfect subset of A, that is,

a closed subset without isolated points, we have to iterate the Cantor derivative more

than countably many times. We will discuss this in more detail in the next section.

Now we construct Borel-measurable liftings of the Cantor derivative, relative to the

representations ψ−, ψ+ and ψ.

In general, we must at least assume that the space X is σ-compact, as the Cantor

derivative is not Borel measurable relative to (ψ,ψ+) unless X is σ-compact [2].

Proposition 3.5. The Cantor derivative d : A(X)→ A(X) has a

1. ∼∆
0
2-measurable (ψ+, ψ−)-lifting F−+ ,

2. ∼∆
0
4-measurable (ψ+, ψ+)-lifting F+

+ , provided X is compact,

3. ∼∆
0
4-measurable (ψ+, ψ)-lifting F+, provided X is compact,

4. ∼∆
0
3-measurable (ψ−, ψ−)-lifting F−− , provided X is compact,

5. ∼∆
0
6-measurable (ψ−, ψ+)-lifting F+

− , provided X is compact,

6. ∼∆
0
6-measurable (ψ−, ψ)-lifting F−, provided X is compact,

7. ∼∆
0
2-measurable (ψ,ψ−)-lifting F−,

8. ∼∆
0
4-measurable (ψ,ψ+)-lifting F+, provided X is compact,

9. ∼∆
0
4-measurable (ψ,ψ)-lifting F , provided X is compact.

Proof. 1.) Suppose α is a ψ+-name for the closed subset ψ+(α) ⊂ X. We want to

find a ψ−-name F−+ (α) for ψ+(α)′ ⊂ X. Since ψ− is a representation by only suffi-

cient negative information and {Bs}s∈N is a basis for X, we only need to make sure

that every number s + 1 for which Bs ∩ ψ+(α) is empty or a singleton is included in

range(F−+ (α)). Remembering that X is Hausdorff, we can conveniently define the useful
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relation MaxOne+ ⊂ NN × N by

MaxOne+(α, s) ⇔Bs ∩ ψ+(α) contains at most one point.

⇔ There are no two basis elements intersecting

ψ+(α) which are contained in Bs and disjoint from each other.

⇔ There are no two numbers n+ 1,m+ 1 ∈ range(α)

such that Bn ⊂ Bs ∧Bm ⊂ Bs ∧Bn ∩Bm = ∅.

⇔¬∃m.∃n.[(∃i.α(i) = n+ 1) ∧ (∃i.α(i) = m+ 1)

∧ (n ⊂ s) ∧ (m ⊂ s) ∧ (n ∩m = ∅)].

Note that the evaluation map φ : NN × N → N defined by φ(α, i) = α(i) is continuous,

since

φ−1({j}) = {(α, i) : α(i) = j} =
⋃
i∈N

B(i,j) × {i},

where each B(i,j) = {α : α(i) = j} is a subbasis element of NN. Thus it is easy to

see that the relation MaxOne+ is ∼Π
0
1. Now we can simply define a (ψ+, ψ−)-lifting

F−+ : NN → NN of the Cantor derivative by

F−+ (α)(s) =

s+ 1, if MaxOne+(α, s),

0, if ¬MaxOne+(α, s).

We now want to analyse the Borel complexity of F−+ . There are three cases to consider.

j = 0: Then

(F−+ )−1(B(s,0)) = {α : ¬MaxOne+(α, s)},

which is ∼Σ
0
1, since α 7→ (α, s) is continuous for each fixed number s.

j = s+ 1: Then

(F−+ )−1(B(s,s+1)) = {α : MaxOne+(α, s)},

which is ∼Π
0
1, since α 7→ (α, s) is continuous for each fixed number s.

j 6= 0 ∧ j 6= s+ 1: Then (F−+ )−1(B(i,j)) = ∅, by definition of F (−+).

In conclusion, F−+ is ∼∆
0
2-measurable.

2.) Suppose α is a ψ+-name for the closed subset ψ+(α) ⊂ X. We want to find a

ψ+-name F+
+ (α) for ψ+(α)′ ⊂ X. The new challenge, compared to the problem of

constructing a (ψ+, ψ−)-lifting, is that because ψ+ is a representation by full positive

information, we now have to remove every number s+1 for which Bs∩ψ+(α) is discrete

from range(F+
+ (α)). However, this challenge is simplified by the assumption that X is
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compact. Since ψ+(α) is closed, it is compact, and

Bs ∩ ψ+(α) is discrete ⇔ Bs ∩ ψ+(α) is finite,

where we have also used the fact that X is T0. Hence it will be convenient to define a

relation Finite+ ⊂ NN × N by

Finite+(α, s) ⇔Bs ∩ ψ+(α) is a finite set.

⇔Bs ∩ ψ+(α) is exhausted by some finite number of singletons.

⇔There is a t, such that for any n > t, if Bn ∩ ψ+(α) 6= ∅ and Bn ⊂ Bs,

then there is an m < t such that |Bm ∩ ψ+(α)| = 1, and Bm ⊂ Bn

⇔∃t.∀n.[(n > t ∧ ∃i.α(i) = n+ 1 ∧ n ⊂ s)

→ ∃m ≤ t.(∃j.α(j) = m+ 1 ∧MaxOne+(α,m) ∧m ⊂ n)]

It is easy to check that the relation Finite+ is ∼Σ
0
3, and we can now define a (ψ+, ψ+)-

lifting F+
+ : NN → NN of the Cantor derivative by

F+
+ (α)(s) =

0, if Finite+(α, s),

s+ 1, if ¬Finite+(α, s).

To analyse the Borel complexity of F+
+ it is enough to consider subbasis elements B(s,j).

There are three cases.

j = 0: Then

(F+
+ )−1(B(s,0)) = {α : Finite+(α, s)},

which is of course ∼Σ
0
3.

j = s+ 1: Then

(F+
+ )−1(B(s,s+1)) = {α : ¬Finite+(α, s)},

which is easily seen to be ∼Π
0
3.

j 6= 0 ∧ j 6= s+ 1: Then F+
+ )−1(B(i,j)) = ∅ by definition.

Consequently, F+
+ is ∼∆

0
4-measurable.

3.) Define F+ : NN → NN, for all α ∈ NN and s ∈ N, by

F+(α)(s) =

F
−
+ (α)(i), if s = 2i,

F+
+ (α)(i), if s = 2i+ 1.

There are two cases to consider.

s = 2i: Then (F+)−1(B(2i,j)) = (F−+ )−1(B(i,j)) is ∼∆
0
2, by 1.).
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s = 2i+ 1: Then (F+)−1(B(2i+1,j)) = (F+
+ )−1(B(i,j)) is ∼∆

0
4 by 2.).

In conclusion, F+ is ∼∆
0
4-measurable.

4.) It suffices to ensure that every number s + 1 for which Bs ∩ ψ−(α) is empty or a

singleton is included in range(F−− (α)). If we assume that X is compact, then we can

define a relation MaxOne− ⊂ NN × N by

MaxOne−(α, s) ⇔Bs ∩ ψ−(α) contains at most one point

⇔ There are no two basis elements intersecting

ψ−(α) which are contained in Bs and disjoint from each other

⇔¬∃m.∃n.[¬Disjoint−(α,m) ∧ ¬Disjoint−(α, n)

∧ (n ⊂ s) ∧ (m ⊂ s) ∧ (n ∩m = ∅)],

where Disjoint− is the ∼Π
0
2-relation defined in the proof of 3.5. Hence MaxOne− is

also ∼Π
0
2. We can define a (ψ−, ψ−)-lifting F−− : NN → NN of the Cantor derivative by

F−− (α)(s) =

s+ 1, if MaxOne−(α, s),

0, if ¬MaxOne−(α, s).

There are three cases to consider.

j = 0: Then

(F−− )−1(B(s,0)) = {α : ¬MaxOne−(α, s)},

which is ∼Σ
0
2.

j = s+ 1: Then

(F−− )−1(B(s,s+1)) = {α : MaxOne−(α, s)},

which is ∼Π
0
2.

j 6= 0 ∧ j 6= s+ 1: Then (F−− )−1(B(i,j)) = ∅, by definition.

In conclusion, F−− is ∼∆
0
3-measurable.
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5.) If we assume that X is compact, it suffices to remove every s+1 such that Bs∩ψ−(α)

is finite from range(F+
− (α)). We define a relation Finite− ⊂ NN × N by

Finite−(α, s) ⇔Bs ∩ ψ+(α) is exhausted by some finite number of singletons.

⇔There is a t, such that for any n > t, if Bn ∩ ψ−(α) 6= ∅ and Bn ⊂ Bs,

then there is an m < t such that |Bm ∩ ψ−(α)| = 1, and Bm ⊂ Bn

⇔∃t.∀n.[(n > t ∧ ¬Disjoint(α, n) ∧ n ⊂ s)

→ ∃m ≤ t.(¬Disjoint(α,m) ∧MaxOne−(α,m) ∧m ⊂ n)]

Since Disjoint− and MaxOne− are both ∼Π
0
2, the relation Finite− is ∼Σ

0
5. We can

define a (ψ−, ψ+)-lifting F+
− : NN → NN of the Cantor derivative by

F+
− (α)(s) =

0, if Finite−(α, s),

s+ 1, if ¬Finite−(α, s).

There are three cases to consider.

j = 0: Then

(F+
− )−1(B(s,0)) = {α : Finite−(α, s)},

which is ∼Σ
0
5.

j = s+ 1: Then

(F+
− )−1(B(s,s+1)) = {α : ¬Finite−(α, s)},

which is ∼Π
0
5.

j 6= 0 ∧ j 6= s+ 1: Then F+
− )−1(B(i,j)) = ∅ by definition.

Consequently, F+
− is ∼∆

0
6-measurable.

6.) Define F− : NN → NN, for all α ∈ NN and s ∈ N, by

F−(α)(s) =

F
−
− (α)(i), if s = 2i,

F+
− (α)(i), if s = 2i+ 1.

There are two cases to consider.

s = 2i: Then (F−)−1(B(2i,j)) = (F−− )−1(B(i,j)) is ∼∆
0
3 by 4.).

s = 2i+ 1: Then (F−)−1(B(2i+1,j)) = (F+
− )−1(B(i,j)) is ∼∆

0
6 by 5.).

In conclusion, F− is ∼∆
0
6-measurable.

7.) Just define a (ψ,ψ−)-lifting F− : NN → NN of the Cantor derivative by F− = F−+ ◦I+.

Then, since I+ is continuous, and F−+ is ∼∆
0
2-measurable, so is F−.



Chapter 3. Borel complexity of the Cantor derivative 28

8.) Just define a (ψ,ψ+)-lifting F+ : NN → NN of the Cantor derivative by F+ = F+
+ ◦I+.

Then, since I+ is continuous, and F+
+ is ∼∆

0
4-measurable, so is F−.

9.) Define F : NN → NN, for all α ∈ NN and s ∈ N, by

F (α)(s) =

F−(α)(i), if s = 2i,

F+(α)(i), if s = 2i+ 1.

There are two cases to consider.

s = 2i: Then F−1(B(2i,j)) = (F−)−1(B(i,j)) is ∼∆
0
2, by 8.).

s = 2i+ 1: Then F−1(B(2i+1,j)) = F+)−1(B(i,j)) is ∼Σ
0
4, by 9.).

In conclusion, F− is ∼∆
0
4-measurable.

3.3 Borel non-measurability of the transfinitely iterated

derivative

Suppose X is a Polish space, that is, a separable completely metrizable space. We say

that X is perfect if it has no isolated points, and we say that a subset Y ⊂ X is perfect

if it is closed and has no isolated points in the subspace topology. Every perfect subset

Y of X is itself a perfect Polish space, since the restriction of any complete metric on X

is a complete metric on Y . Since each perfect Polish space is Borel isomorphic to Baire

space, this means, in particular, that any perfect Y ⊂ X has cardinality |Y | = |NN| = ℵ1.

By the Cantor-Bendixon theorem, every closed subset A ⊂ X of a Polish space has a

unique decompositon

A = AP ∪AS ,

where AP is perfect and AS is countable. In particular, the continuum hypothesis holds

for closed subsets of Polish spaces1. Since the decomposition of a closed set into a perfect

part and a scattered part is uniqe, we are justified in making the following definition.

Definition 3.6. Suppose X is a Polish space. The perfection map on A(X) is the

function P : A(X)→ A(X) defined by

P (A) = AP ,

1Via the notion of κ-Suslin sets one can prove that every ∼Σ
1
1 subset of a Polish space contains a

perfect subset, confirming the continuum hypothesis for analytic subsets of Polish spaces.
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for all A ∈ A(x). In other words, P maps every closed subset to its perfect component.

In this section, we will prove that the perfection map does not have a Borel measurable

lifting relative to any of the representations ψ−, ψ+ or ψ, unless X is countable, in which

case P (A) = ∅ for any closed A ⊂ X.

The next result, which is suggested as an exercise in [3], sheds some light on why this is

to be expected, and also gives a proof of the Cantor-Bendixson theorem.

Proposition 3.7. Define the iterated Cantor derivatives dη : A(X) → A(X) by the

recursion

1. d0(A) = A,

2. dη+1(A) = d(dη(A)),

3. dη =
⋂
ξ<η d

ξ(A), if η is a limit ordinal.

Then P = dℵ1.

Proof. (Proposition 3.7 and the Cantor-Bendixson theorem). If A ⊂ X is closed, define

1. A0 = A,

2. Aη+1 = d(Aη),

3. Aη =
⋂
ξ<η Aξ, if η is a limit ordinal.

Suppose C ⊂ X is closed. Any limit point of d(C) is in particular a limit point of C,

and hence a member of d(C). Thus, since intersections of closed sets are closed, an easy

induction on η shows that each Aη is closed. So it suffices to prove that for any closed

subset A of X, there exists a countable ordinal λ, such that

(i) A \Aλ is countable.

(ii) Aλ has no isolated points.

(i): Let Y ⊂ X. For any isolated point y ∈ Y , there exists a basis element B, such

that {y} = Y ∩ B. Since X is second countable, this means that Y contains at most

countably many isolated points. Consequently, |Aη \ Aη+1| = ℵ0 for each ordinal η.

Because countable unions of countable sets are countable, this implies that A \ Aλ is

countable for every countable ordinal λ.

(ii): Assume, for contradiction, that Aη contains at least one isolated point for each
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countable ordinal η. Then, if η is countable, Aη′ \ Aη 6= ∅ for every η′ < η. Fix a

countable basis σ for the topology of X. For each η < ℵ1, choose xη such that xη ∈ Aη′
for all η′ < η, but xη 6∈ Aη. Then, since xη 6∈ Aη = Aη, there exists a basis element

Bη ∈ σ, such that Bη ∩ Aη = ∅, but xη ∈ Bη, implying Bη ∩ Aη′ 6= ∅ for all η′ < η.

Consequently, Bη 6= Bη′ if η 6= η′, contradicting the assumption that σ contains only

countably many elements.

Set AP = dℵ1(A) and AS = A\AP , so A = AP ∪AS . To prove uniqueness, suppose also

that A = A′P ∪A′S , where A′P is perfect, A′S is countable, and A′P ∩A′S = ∅. No point of A

removed in the process of iterating the Cantor derivative can be a member of any perfect

subset of A, since isolated points are preserved by subspaces. Hence dℵ1(A) = AP is the

largest perfect subset of A, and therefore A′P ⊂ AP .

If A′S ⊂ AS as well, uniqueness follows. To prove this, it suffices to show that AP \ A′P
is either empty or uncountable. Fix some complete metric on the perfect Polish space

XP , and suppose AP \ A′P 6= ∅. Since AP is a perfect metric space, any open subset

of AP contains two disjoint, non-empty closed balls. Using this fact repeatedly, we can

assign to each finite sequence w ∈ 2∗ a closed ball Bw = B(xw, εw) ⊂ AP \A′P such that

1. w v v ⇒ Bw ⊃ Bv,

2. w 6v v ∧ v 6v w ⇒ Bw ∩Bv = ∅,

3. εw < 2−|w|,

for all w, v ∈ 2∗. This gives a Cauchy sequence corresponding to each α ∈ 2N, and each

of these sequences will have distinct limits2. Hence |AP \A′P | ≥ |2N| > ℵ0.

We have seen that even in the least complicated cases, it is difficult to find simple liftings

of the Cantor derivative. Moreover, it has actually been proven that dn : A(2N)→ A(2N),

where n ∈ N, does not have a ∼Σ
0
2n-measurable (ψ,ψ)-lifting [2]. Thus, as long as we

restrict our attention to the Cantor space, one possible approach might be to extend

this result to transfinite ordinals η, and then prove that P 6= dη for all η < ℵ1
3. We will

not adopt this strategy, partly because we would also have to show that the composition

dℵ1 is in fact more complex than its components. However, it is a wortwhile exercise to

check that P 6= dn for any n ∈ N, especially since the demonstration of this fact gives

one of the key ideas for our subsequent approach.

Proposition 3.8. Let P : A(2N)→ A(2N) be the perfection map, and let dn : A(2N)→
A(2N) be the n times iterated Cantor derivative. Then P 6= dn for all n ∈ N.

2Actually, this construction gives a continuous injection of 2N into any perfect Polish space.
3This is not true in general, recall that the perfection map is trivial for countable spaces.
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Proof. It suffices to show that for any n, there exists a countable closed subset Cn ⊂ 2N,

such that dn(Cn) 6= ∅. Define recursively:

C0 = S0,

Cn+1 = Sn+1 ∪ Cn,

where Sn = {α : α(i) = 1 for exactly n indices i ∈ N}. Each α ∈ Sn is the limit of

{β ∈ Sn+1 : ∀i.[(α(i) = 1) → (β(i) = 1)]}. On the other hand, every β ∈ Sn+1 is an

isolated point of Cn+1, since no other sequence in Cn+1 agrees with β any further than

to the last index i such that β(i + 1) = 1. Hence d(Cn+1) = Cn for all n ∈ N, and

consequently dn(Cn) = C0 6= ∅.

The idea we extract from this proof is that the set P−1({∅}) might be very complicated.

Perhaps it wont even be Borel. Then if F : NN → NN is a lifting of the perfection map,

maybe the subsets F−1(ψ−1
− ({∅})), F−1(ψ−1

+ ({∅})) and F−1(ψ−1({∅})) of dom(F ) wont

be Borel either4. Because

{∅} = A(2N) \ (2N)+ = (2N)−

is Borel for each of these three representations, that would prove the non-existence of a

Borel measurable lifting for the perfection map on A(2N).

However, we promised to settle the question for all Polish spaces, not just Cantor space.

The next result tells us that neither this restriction, nor the particular choice of repre-

sentations among ψ−, ψ+ and ψ, cause any loss of generality.

Lemma 3.9. Suppose the perfection map PA(X) : A(X)→ A(X) has a Borel measurable

lifting with respect to some combination of the representations ψ−, ψ+ or ψ, for some

uncountable Polish space X. Then PA(2N) : A(2N) → A(2N) has a Borel measurable

lifting with respect to any combinations of these representations.

Proof. Since X is uncountable, by Cantor-Bendixson, X has a non-empty perfect sub-

space XP . Then there exists a continuous injection π : 2N → XP
5. Since Cantor space is

compact and continuous maps preserves compactness, Y = π(2N) is a compact subspace

of XP . But XP is Hausdorff, so Y is closed in XP , and therefore also in X, since XP is

closed. Consequently, A(Y ) = {A ∈ A(X) : A ⊂ Y }, and there is an obvious bijective

4Actually, since, for example, F−1(ψ−1
− ({∅}))∩dom(ψ−) = ψ−(F−1({∅})), Borel sets are well behaved

with respect to subspaces, and every admissible representation has a Borel measurable right inverse, this
would follow.

5See the proof of proposition 3.7.
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correspondence Φ : A(2N)→ A(Y ), defined by

Φ(A) = π(A).

We will show that this function is actually a Borel isomorphism for all the relevant

topologies. Since both 2N and Y are compact, the representations ψ−, ψ+ and ψ of

these spaces are all Borel equivalent, as we saw in section 3.2. Consequently, it suffices

to consider the lower Fell topology induced by ψ+, with subbasis elements of the form

U+ = {A : U ∩A 6= ∅}, where U is open. Since

Φ(A) ∈ U+ ⇔ π(A) ∩ U 6= ∅

⇔ A ∩ π−1(U) 6= ∅

⇔ A ∈ π−1(U)+,

Φ is a homeomorphism, and thus, in particular, a Borel isomorphism. If PA(X) : A(X)→
A(X) is Borel measurable relative to some of the Fell topologies, then so is the restriction

PA(Y ) : A(Y )→ A(Y ). Then, by the discussion above, PA(2N) = Φ−1 ◦PA(Y ) ◦Φ is Borel

measurable with respect to any combination of the Fell topologies.

This lemma tells us that if the perfection map PA(2N) : A(2N) → A(2N) does not have

a Borel measurable lifting relative to, say, (ψ+, ψ+), then PA(X) : A(X) → A(X) does

not have a Borel measurable lifting relative to any combination of ψ−, ψ+ and ψ, for

any uncountable Polish space X.

Hence, it suffices to show that if F : NN → NN is a (ψ+, ψ+)-lifting of the perfection

map, then F−1(ψ−1
+ ({∅})) ⊂ dom(F ) is not Borel, and consequently, F is not Borel.

But how do we show that a set is not Borel? Well, because B(X) � NN ( ∼Π
1
1 � NN

and B(X) is closed under Borel substitutions, it suffices to show that F−1(ψ−1
+ ({∅})) is

∼Π
1
1-complete with respect to Borel reductions, that is, any ∼Π

1
1-set is the inverse image

of F−1(ψ−1
+ ({∅})) under a Borel measurable function. Furthermore, it is enough to

show that some set which we already know to be ∼Π
1
1-complete is Borel reducible to

F−1(ψ−1
+ ({∅})) ⊂ dom(F ). The next result gives such a set [5].

Proposition 3.10. Suppose a bijective enumeration Q∩ I = {q0, q1, . . .} of the rational

unit interval is given. Identify P(Q∩ I) with the Cantor space 2N via the correspondence

Y ↔ αY ,
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where Y ⊂ Q ∩ I, αY ∈ 2N, and αY is defined by

αY (i) =

1, if qi ∈ Y,

0, if qi /∈ Y.

Define

WO = {α ∈ 2N : The restriction of <R to Yα is a well-ordering.},

IF = 2N \WO = {α ∈ 2N : The restriction of <R to Yα is not a well-ordering.}.

The set WO is ∼Π
1
1-complete, and the set IF is ∼Σ

1
1-complete.

We will allow ourself to use notation for sets to write things like α ⊂ β ⇔ Yα ⊂ Yβ

whenever we find this convenient. Recall that

F−1(ψ−1
+ ({∅})) ∩ dom(ψ+) = ψ−1

+ (P−1({∅})) ⊂ dom(F ).

We will try to construct a Borel reduction of IF to F−1(ψ−1
+ ({∅})) by passing through

P−1({∅}). First we need to describe this set.

Lemma 3.11. Let P : A(2N)→ A(2N) be the perfection map. Then

P−1({∅}) = {A ∈ A(2N) : |A| ≤ ℵ0}.

That is, P−1({∅}) consists exactly of the countable closed subsets of Cantor space.

Proof. By Cantor-Bendixson, every closed A ⊂ 2N can be written as a disjoint union

A = AP ∪AS of one perfect and one countable subset in a unique way. If A is countable,

then A = ∅ ∪ A, and by uniqueness, AP = ∅. On the other hand, if A is uncountable,

then AP 6= ∅, since otherwise we would have AS = A, contradicting countability of

AS . Alternatively, P (A) = AP 6= ∅ because AP = dλ(A) for some countable ordinal λ,

meaning that we have only removed countably many points of A.

So we want to construct a function ρ0 : 2N → A(2N) such that ρ0(α) ∈ P−1({∅}) when

α ∈ IF, and ρ0(α) ∈ A(2N) \ P−1({∅}) when α ∈WO.

In other words, we need to assign some countable closed subset of Cantor space to every

well-ordered subset of the rational unit interval, and some uncountable closed subset of

Cantor space to every ill-founded subset of the rational unit interval.

Lemma 3.12. Define ρ0 : 2N → A(2N) by

ρ0(α) = Sα,
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where

Sα = {β : β ⊂ α ∧DecSeqRep(β)},

with

DecSeqRep(α) ⇔ ∀i.∀j.[(α(i) = 1 ∧ α(j) = 1 ∧ i < j)→ qi > qj ].

Then |SαY | ≤ ℵ0 if Y is a well-ordered subset of the rational unit interval, and |SαY | > ℵ0

if Y is an ill-founded subset of the rational unit interval. Hence ρ0(WO) ⊂ P−1({∅}),
and ρ0(IF) ⊂ A(2N) \ P−1({∅}).

Proof. Suppose Y ⊂ Q ∩ I. Note that

αY ∈ IF⇔ Y contains an infinite decreasing sequence.

Since every subset of a decreasing sequence is again a decreasing sequence, and since

there are only countably many finite sequences from a countable set, it follows that

αY ∈ IF⇔ Y contains more than countably many decreasing sequences.

So each Y ∈ P(Q ∩ I), or αY ∈ 2N, naturally corresponds to an uncountable subset of

P(Q ∩ I) ∼= 2N if Y ∈ IF, and to a countable subset if Y ∈WO.

This seems to be exactly what we asked for. There are, however, two problems to over-

come. Firstly, we would like to specify the decreasing sequences of Y ⊂ Q ∩ I, hence in

particular, we wish for a formula expressing that α ∈ 2N codes a decreasing sequence.

Secondly, we have no guarantee that the subset of 2N consisting of codes for decreasing

sequences in Y will be closed. We could try to fix this by taking closures, but we risk

accidentally passing from a countable set to an uncountable set in the process. Further-

more, it is possible that taking closures would significantly increase the complexity of

the function we are trying to construct. It is hard to tell how severe these problems are,

but they might turn out to be less serious if, in solving the first problem, we take care

to keep the set SαY assigned to αY small, and the assignment simple.

Hence, we might optimistically try to solve the first problem by defining a relation

DecSeqRep(α) ⇔ ∀i.∀j.[(α(i) = 1 ∧ α(j) = 1 ∧ i < j)→ qi > qj ].

Intuitively, if DecSeqRep(αY ), then the representation αY of Y explicitly lists the

elements of Y in decreasing order. This is not true in general for the representation αY

of a decreasing sequence Y ,

Y is a decreasing sequence of rationals 6⇒ DecSeqRep(αY ).
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But of course

DecSeqRep(αY ) ⇒ Y is a decreasing sequence of rationals,

and

DecSeqRep(α) ∧ β ⊂ α ⇒ DecSeqRep(β).

Furthermore, for every infinite decreasing sequence Y , it is easy to explicitly define by

recursion an infinite decreasing subsequence Z ⊂ Y such that DecSeqRep(αZ). Hence,

αY ∈ IF ⇔ SαY = {β : β ⊂ α ∧DecSeqRep(β)} is uncountable.

But is SαY closed? Note that

2N \ SαY = {β : β 6⊂ αY } ∪ {β : ¬DecSeqRep(β)}

Suppose β 6⊂ αY , and let n be the first index such that β(n) = 1 and αY (n) = 0. Then

{γ : γ≤n = β≤n} is a neighbourhood of β contained in {β : β 6⊂ αY }, so {β : β 6⊂ αY } is

open.

Suppose ¬DecSeqRep(β). Let n be the least index such that

β(n) = 1 ∧ ∃i < n.(β(i) = 1 ∧ qi < qn).

Then {γ : γ≤n = β≤n} is a neighbourhood of β contained in {β : ¬DecSeqRep(β)}, so

{β : ¬DecSeqRep(β)} is open. So by a stroke of good fortune SY is actually closed,

and we can just define ρ0 : 2N → A(2N) by

ρ0(αY ) = SY .

Lemma 3.13. Suppose F : NN → NN is a (ψ+, ψ+)-lifting of the perfection map P :

A(2N)→ A(2N). Then there is a Borel measurable function ρ : 2N → dom(F ) such that

ρ(IF) ⊂ F−1(ψ−1
+ ({∅}))

ρ(2N \ IF) ⊂ dom(F ) \ F−1(ψ−1
+ ({∅}))

Consequently, F is not Borel measurable.

Proof. Let eA(2N) : A(2N) → NN be the Borel measurable right inverse of the standard

representation ψ+ = δA(2N) of A(2N) with the lower Fell topology which we discussed in
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section 2.3, that is,

eA(2N)(A)(n) =

n+ 1, if A ∈ B+
n ,

0, otherwise.

Define ρ = eA(2N) ◦ρ0. We need to show that that ρ is Borel measurable, or equivalently,

that the graph Gρ of ρ is ∼Σ
1
1. Since

Gρ(α, γ) ⇔ eA(2N)(Sα) = γ

⇔ ∀n.[(Sα ∈ B+
n ∧ γ(n) = n+ 1) ∨ (Sα 6∈ B+

n ∧ γ(n) = 0)],

and

Sα ∈ B+
n ⇔ ∃β.Sα(β) ∧Bn(β)

⇔ ∃β.β ⊂ α ∧DecSeqRep(β) ∧Bn(β)

is Borel, Gρ is Borel. The result follows.

We have now arrived at the main result of this thesis.

Theorem 3.14. Suppose X is a Polish space.

If X is countable, then the perfection map P : A(X)→ A(X) is constant, P (A) = ∅ for

all A ∈ A(X), and in particular, P has a continuous (δ, δ′)-lifting for any representations

δ, δ′ of A(X)6.

If X is uncountable, then P has no Borel measurable (δ, δ′)-lifting for any representations

δ, δ′ ∈ {ψ−, ψ+, ψ}.

6If ∅ has a computable δ′-name, then P even has a computable lifting when X is countable



Chapter 4

Computable and continuous

operations on B(X)

4.1 A representation of the Borel algebra

Suppose X is a topological space. Lets assume that we are already given a representation

ψ : NN → τX

of the open subsets of X, or if X is second countable, a representation

ψ : NN → σX

of a countable basis for X, which we might assume have countable domain. We want

to construct a representation of B(X) that reflects the way the Borel algebra is built up

recursively from the open sets by the operations of complement and countable union.

Hence, in the case where X is second countable, and we have a representation of a basis,

we will in any case get a representation of the open sets. Thus we can forget about

this distinction for the moment. It will however be important in the last section of this

chapter.

First we define some functions which will be useful to us later.

Definition 4.1. We define:

1. The tupling function ♦ : (NN)N → NN by

♦(α0, α1, . . .) =< α0, α1, . . . >= β,

37
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where β(< n, i >) = αn(i).

2. The shift map ∗ : NN → NN by

∗(α) = α∗ = (α(1), α(2), . . .).

3. The function +n : NN → NN by

+n(α) = (α(0) + n, α(1) + n, . . .)

4. The negation map k : NN → NN by

k(α) = (1, α(0), α(1), . . .)

5. The countable union map
⊔ω : NN → NN by

⊔ω
(α) = (2, α(0), α(1), . . .)

6. The binary union map t : NN × NN → N by

t(α, β) =
⊔ω

(γ)

where γ =< α, β, 3ω, 3ω, . . . >.

Note that all of these functions are continuous and injective, and that the tupling func-

tion ♦ is actually a homeomorphism between (NN)N and NN. This demonstrates a

peculiar feature of Baire space, namely, Baire space is homeomorphic to the countable

product of Baire space with itself.

Now we define a new representation ψ′ : NN → NN of the open subsets of X, by

dom(ψ′) = +4(dom(ψ)), ψ′(α) = ψ(+−1
4 (α))

This leaves the numbers 0, 1, 2, 3 free to convey extra information, or no information at

all. We are ready to define a representation for B(X).

Definition 4.2. We define a representation φ : NN → B(X) of the Borel algebra on X.

The domain of φ is defined recursively by

1. dom(ψ′) ⊂ dom(φ),
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2. α ∈ dom(φ)⇒ k(α) ∈ dom(φ),

3. α1, α2, . . . ∈ dom(φ)⇒
⊔ω(♦(α1, α2, . . .)) ∈ dom(φ).

The value of φ is defined by recursion on complexity of α by

1. ψ(k(α)) = ¬ψ(α),

2. ψ(
⊔ω(α)) =

⋃
n<ω φ(πn(♦−1(α))),

3. ψ(α) = ψ′(α), if α(0) 6∈ {1, 2}.

4.2 Computable liftings of complement and union

We now prove that the topological operations of complementation and union are (φ, φ)-

computable.

Proposition 4.3. Complementation ¬ : B(X)→ B(X) has a computable (φ, φ)-lifting.

Proof. The function k : NN → NN is a lifting of complementation. We say that a function

on NN is computable iff it is (δNN , δNN)-computable. A computable (δNN , δNN)-lifting is

given by p 7→ 011p.

Proposition 4.4. Binary union ∪ : B(X) × B(X) → B(X) has a computable (φ, φ)-

lifting.

Of course, t : NN×NN → NN is a lifting of binary union. A (δNN , δNN)-computable lifting

of t is given by

(p, q) 7→ 0210γ(0)10γ(1)1 . . . ,

where the value

γ(s) =


α((s)2), if (s)1 = 0,

β((s)2), if (s)1 = 1,

3 otherwise.

is clearly computable by a Type-2 machine which takes as input δNN-names p, q for α,

β respectively, since (·)1 and (·)2 are computable.

Before we can discuss computability of countable union, we must agree on a represen-

tation for B(X). The following definition should come as no surprise.
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Definition 4.5. Define a representation φω : NN → B(X)N by

α ∈ dom(φω)⇔ α(0) = 0 ∧ α∗ ∈ ♦({(α0, α1, . . .) : ∀i.αi ∈ dom(φ)}),

φω((0, < α0, α1, . . . >)) = (φ(α0), φ(α1), . . .).

Proposition 4.6. Countable union
⋃ω : BN → B(X) has a computable (φω, φ)-lifting.

Proof. Of course,
⊔ω ◦∗ is a (φω, φ)-lifting for countable union. A computable (δNN , δNN)-

lifting for
⊔ω ◦∗ is given by 0i010i110i21 . . . 7→ 0110i110i11 . . ..

4.3 Continuous lifting of the dual of Borel functions

Let X and Y be topological spaces with representations ψX : NN → σX and ψY : NN →
σY , where σX and σY are bases for X and Y , respectively. Suppose f : X → Y is a

Borel measurable function. Then we can define a dual

f̂ : B(Y )→ B(X)

by

f̂(B) = f−1(B),

that is, f̂ is the operation of taking inverse images of f .

We want to explore the possibility of finding conditions such that:

f is Borel continuous⇒ f̂ has a continuous (φY , φX)-lifting.

Note that if we knew how to lift the operation f̂ on the the basis elements of Y , we

would automatically know how to lift the operation on all of B(Y ). Because B(Y ) is

the closure of σY under complements and countable unions, f̂ is the unique extension

of f̂ � σY to B(X) that preserves these operations. Suppose f̂ is defined for all B ∈ σY .

Then we can define f̂ recursively by

1. f̂(¬B) = ¬f̂(B),

2. f̂(
⋃
iBi) =

⋃
i f̂(Bi).

Note that this might cause us to define f̂ on the same input many times, but these

definitions must always agree, so this is not a problem.
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Similarly, suppose we have defined a lifting F̂ for every α ∈ dom(ψY ), that is, for every

φY -name of a basis element. Then we can define recursively

1. F̂ (k(α)) = k(f̂(α)),

2. F̂ (
⊔ω(α)) =

⊔ω F̂ (α).

A function G : NN → NN is continuous if and only if, for any α ∈ dom(G), and any

m ∈ N, there exists an n ∈ N such that, for any β ∈ dom(G), if β agrees with α up

to n, then G(α) agrees with G(β) up to m. Hence it is obvious that if we start with

a continuous function G = F̂ � dom(ψY ), then the extension defined by the recursion

above will also be continuous.

The next result gives conditions which ensure that a weaker version of the claim will

hold.

Proposition 4.7. Suppose X and Y are topological spaces, and ψX : NN → σX , ψY :

NN → σY are representations of bases for X, Y . Suppose the domains of ψX and ψY

are countable, so in particular, X and Y are second countable. Then if f : X → Y is

continuous, the dual f̂ : B(Y )→ B(X) has a continuous (φY , φX)-lifting.

Proof. Let {αXi } and {αYj } be enumeratons of dom(ψX) and dom(ψY ), respectively.

Write σX = {BX
i } and σY = {BY

j } for the corresponding bases, that is ψX(αXi ) = BX
i

and ψY (αYj ) = BY
j . Suppose f : X → Y is continuous. Then for any basis element

BY
j ⊂ Y ,

f̂(BY
j ) =

⋃
{BX

i : f(BX
i ) ⊂ BY

j }

Define a relation ImageIncf ⊂ N× N by

ImageIncf (i, j)⇔ f(BX
i ) ⊂ BY

j .

For αYj ∈ dom(ψY ), we might define

F̂ (αYj ) =
⊔ω

(βj),

where

βj =< βj0, β
j
1, . . . >

with

βji =

αXi , if ImageIncf (i, j),

3ω, if ¬ImageIncf (i, j).
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Then F̂ � dom(ψY ) is trivially continuous, since it has discrete domain, and hence the

unique extension F̂ is continuous.

The proof of this proposition hinges upon the fact that we only need to consider count-

ably many names, which enable us to shamelessly code any relation between basis ele-

ments by trivial functions and relations. It is therefore unlikely that we can extend this

result to the higher Borel classes, since we immediately will have to consider uncountably

many names.



Appendix A

Some definitions and results from

descriptive set theory

We start by discussing the Borel structure on arbitrary topological spaces, before we

restrict our attention to Polish spaces, that is, separable spaces which are completely

metrizable. Thus until otherwise stated, all definitions and results are with respect to

general topological spaces.

Definition A.1. Suppose X is a topological space. The Borel algebra B(X) on X is

the smallest collection of subsets of X, containing the open sets, that is closed under

complement and countable union. The members of B(X) are called the Borel sets of X.

Definition A.2. Let X be a topological space. The Borel class of order η restricted to

X, denoted by ∼Σ
0
η � X, is defined recursively as follows for all ordinals η < ℵ1:

∼Σ
0
1 � X = all open subsets of X.

∼Σ
0
η � X = all sets of the form

⋃
i∈N

X \ Pi,where each Pi is a in lower Borel class.

The Borel class of order η, ∼Σ
0
η, is the proper class of all sets wich are elements of ∼Σ

0
η � Y

for some topological space Y . The dual Borel class of order η, denoted by ∼Π
0
η, is the

class of all complements of members of ∼Σ
0
η, and the ambiguous Borel class of order η is

their intersection, ∼∆
0
η = ∼Σ

0
η ∩ ∼Π

0
η.

This gives a quick and economical way of inductively defining the class ∼Σ
0
η for any

countable ordinal η, and thereby, as the next result shows, B(X), for any topological

space X.

Proposition A.3. Suppose X is a topological space. The Borel algebra B(X) on X is

exactly the collection of all Borel subsets of X of countable order.

43
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Proof. 1 Set B = {A ⊂ X : A ∈ ∼Σ
0
η � X for some η < ℵ1}. Of course, B contains

the open sets, and if A ∈ ∼Σ
0
η, then X \ A ∈ ∼Σ

0
η+1, so B is closed under complements.

Furthermore, for each j ∈ N, if Aj ∈ ∼Σ
0
ηj , then X \Aj ∈ ∼Σ

0
ηj+1, so

⋃
j∈N

Aj =
⋃
j∈N

X \ (X \Aj)

is in ∼Σ
0
η, where η = sup({ηj +2 : j ∈ N}). Thus B is also closed under countable unions,

and hence B(X) ⊂ B. On the other hand, a trivial induction on η shows that for any

η < ℵ1, if A ∈ ∼Σ
0
η, then A ∈ B(X).

This recursive characterization of B(X) enables us to use proofs by transfinite induction

to obtain a number of useful facts about Borel sets and functions.

Proposition A.4. Suppose X is a topological space, and Y ⊂ X. Assume that Y is

given the subspace topology. Then B(Y ) = {B ∩ Y : B ∈ B(X)}.

Proof. Let BY = {B ∩ Y : B ∈ B(X)}. Then BY contains the open sets of Y , and if

A = B ∩ Y , then Y \ A = (X \ B) ∩ Y , so BY is obviously closed under complements.

Furthermore, if Ai = Bi∩Y for each i ∈ N, then
⋃
i∈NAi = (

⋃
i∈NBi)∩Y . Hence BY is

also closed under countable unions, and thus B(X) ⊂ BY . On the other hand, an easy

induction on η shows that any set of the form B ∩ Y , with B ∈ Σ0
η � X, is a member of

B ∈ Σ0
η � Y . Consequently, BY ⊂ B(Y ).

Definition A.5. Suppose X and Y are topological spaces. A function f : X → Y is

Borel measurable if f−1(U) is Borel whenever U is open, and ∼Σ
0
η-measurable if f−1(U)

is in ∼Σ
0
η whenever U is open.

Lemma A.6. The inverse image of a Borel set under a Borel measurable function is

again Borel.

Proof. Let f : X → Y be a Borel measurable function, and let B be a Borel set of Y . If

B is open, then f−1(B) is a Borel set of X by definition. Suppose the result is known

for any Borel set of order η′ < η. If B ∈ ∼Σ
0
η, then by definition, there exists ηi < η and

Pi ∈ ∼Σ
0
ηi � Y , such that B =

⋃
i∈N Y \ Pi. Consequently, since inverse images preserves

unions and complements,

f−1(B) = f−1(
⋃
i∈N

Y \ Pi) =
⋃
i∈N

X \ f−1(Pi).

1Moschovakis [3] gives this proof in the setting of Polish spaces, but the same proof goes through for
general topological spaces.



Appendix A. Some definitions and results from descriptive set theory 45

It follows from the induction hypothesis that f−1(B) ∈ B(X), by closure of this collection

under complements and countable unions.

Corollary A.7. The composition of Borel measurable functions is Borel measurable.

We now restrict our attention to Polish spaces. So from now on all definitions and results

refer to Polish spaces, their subsets and classes of these subsets.

We summarize some useful facts about the Borel and Lusin classes of subsets of Polish

spaces from Moschovakis “Descriptive Set Theory” [3], to make our presentation as self-

contained as possible, but omit the proofs.

We first introduce some operators on sets and classes of sets, which will allow us to use

logical notation to define and discuss classes of sets. Let us agree to think of a set as a

property of its members and to use the notation

A(x)⇔ x ∈ A,

whenever this is convenient.

Definition A.8. The complementation operator ¬ is defined by

¬A = X \A,

whenever A ⊂ X. If Γ is some class of sets, then we define

¬Γ = {¬B : B ∈ Γ}.

Strictly speaking, there is one complementation operator ¬X for each set X, but the

subscript is cumbersome and adds little in terms of clarity, so we will never bother to

write it down.

Definition A.9. The operation of projection along Y , denoted ∃Y , is defined by

∃YA = {x ∈ X : ∃y.A(x, y), }

whenever A ⊂ X × Y . If Γ is some class of sets, then we define

∃Y Γ = {∃YB : B ∈ Γ ∧B ⊂ X × Y for some set X}.
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The other logical symbols also have corresponding operators, defined in a similar fashion.

For Polish spaces we usually define the Borel pointclasses of finite order recursively by

∼Σ
0
1 = all open subsets

∼Σ
0
n+1 = ∃N¬∼Σ

0
n,

rather than using the equivalent definition above. We could also define the Borel classes

of countable order in similar language. Hence, the following definition of the Lusin

classes of subsets of Polish spaces is a quite natural extension of the Borel hierarchy.

Definition A.10. The Lusin class of order n, denoted by ∼Σ
1
n, is defined recursively for

all n ∈ N as follows:

∼Σ
1
1 = ∃NN¬∼Σ

0
1

∼Σ
1
n+1 = ∃NN¬∼Σ

1
n,

where ∼Σ
0
1 and all other classes of sets are understood to be restricted to subsets of Polish

spaces. The dual and ambiguous Lusin classes of finite order are defined by ∼Π
1
n = ¬∼Σ

1
n

and ∼∆
1
n = ∼Σ

1
n ∩ ∼Π

1
n, respectively.

Theorem A.11. Each Borel class, dual Borel class and ambiguous Borel class is closed

under finite unions and intersections, and inverse images of continuous functions. Fur-

thermore, each Borel class is closed under countable unions, each dual Borel class is

closed under countable intersections, and each ambiguous Borel class is closed under

complements.

The following diagram of inclusions holds among the Borel classes:

∼Σ
0
1

⊂
. . .

⊂
∼Σ

0
η

⊂
. . .

∼∆
0
1

⊂

⊂
∼∆

0
2

⊂

⊂
. . . ∼∆

0
η

⊂

⊂
∼∆

0
η+1

⊂

⊂
. . .

∼Π
0
1

⊂

. . .

⊂

∼Π
0
η

⊂

. . .

If we restrict these classes to one fixed perfect Polish space, then this diagram holds with

strict inclusions.

Theorem A.12. Each Lusin class, dual Lusin class and ambiguous Lusin class is closed

under countable unions and intersections, and inverse images of continuous functions.

Furthermore, each Lusin class is closed under ∃Y , each dual Borel class is closed under

∀Y , and each ambiguous Borel class is closed under complements, where Y is any perfect



Appendix A. Some definitions and results from descriptive set theory 47

Polish space.

The following diagram of inclusions holds among the Lusin classes:

∼Σ
1
1

⊂
∼Σ

1
2

⊂
∼Σ

1
3 . . .

∼∆
1
1

⊂

⊂
∼∆

1
2

⊂

⊂
∼∆

1
2

⊂

⊂
. . .

∼Π
1
1

⊂

∼Π
1
2

⊂

∼Π
1
3 . . .

If we restrict these classes to one fixed perfect Polish space, then this diagram holds with

strict inclusions.

In particular, any Borel set is ∼∆
1
1.

Actually, ∼∆
1
1 is exactly the Borel sets, which follows from the more general Suslin theo-

rem, see Moschovakis for a proof of this [3]. Note that since inverse images of Borel sets

under Borel functions are again Borel, and B(NN) = ∼∆
1
1 � NN ( ∼Σ

1
1 � NN, any subset of

Baire space which is ∼Σ
1
1-complete with respecct to Borel reductions is not Borel. This

observation will be important when we want to prove that a function F : NN → NN is

not Borel measurable.

We now restrict our attention even further, to finite products of N and NN, and define

the effective Borel classes, starting with the semidecidable subsets2 instead of the open

sets.

Definition A.13. We say that Y1 × . . .× Yk, with the product topology, is of type 1 if

each Yi is either N or NN, with Yi = NN for at least one 1 ≤ i ≤ k. If Yi = N for each

1 ≤ i ≤ k, then we say that Y1 × · · · × Yk is of type 0.

From now on, all definitions and results will refer to spaces of type 1 or 0. Note that

these spaces might be considered to be Polish spaces.

Definition A.14. The effective Borel class of order n, denoted Σ0
n, is defined recursively

for all n ∈ N as follows

Σ0
1 = all semidecidable sets

Σ0
n+1 = ∃N¬Σ0

n,

2See Chapter 1.
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where Σ0
1 and all other classes of sets are understood to be restricted to subsets of spaces

of type 1 or 0. The dual and ambiguous effective Borel classes are defined by Π0
n = ¬Σ0

n

and ∆0
n = Σ0

η ∩Π0
n, respectively.

Definition A.15. The effective Lusin class of order n, denoted by Σ1
n, is defined re-

cursively for all n ∈ N as follows:

Σ1
1 = ∃NN¬Σ0

1

Σ1
n+1 = ∃NN¬Σ1

n,

where Σ0
1 and all other classes of sets are understood to be restricted to subsets of spaces

of type 1 or 0. The dual and ambiguous effective Lusin classes are defined by Π1
n = ¬Σ1

n

and ∆1
n = Σ1

n ∩Π1
n, respectively.
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