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Chapter 1

Introduction

The European Union emission trading scheme (EU ETS) is an attempt at
reducing emission of greenhouse gases such as CO,. Trading schemes is
widely considered as the most cost efficient way to reduce emissions. Simply
put, a trading scheme works as follows: The regulator sets a cap on the total
amount of emissions allowed in a certain market and then allocates emission
allowances to the market participants. The allowances can then be traded
freely during the so called trading period, until they are handed in to the
regulator at the end of the period. Producers that have emitted more than
what is covered by its allowances must either pay a penalty or buy unused
allowances from someone else.

Economic theory suggests that the trading of allowances lets the market
reach the target level of emissions at the lowest possible total cost[14]. With
that said, it should be noted that there is some controversy regarding the
effectiveness of the present scheme [5] [14].

The topic of this thesis, however, is not the efficiency of the ETS, but
rather the pricing of the emission allowances. Following the conventions of
Carmona et al. [5] we will not look at the spot prices of the allowances
but rather on futures contracts on these. We will also consider standard
European call options on these allowances.

In this thesis we take a reduced form approach based on the paper by
Carmona et al. [5]. They develop the following expression:

F(t,T) = E(1y|F) (1.0.1)

Here F(t,T) is the price at time t of a futures contract on an emission
allowance, and the constant 7 stands for the penalty which must be paid
upon non-compliance. The function 1y is the indicator function and N =
{w € Q| Qr > ~} is the event that the total emission Q7 in the market is
higher than the total amount of allowances . This expression will be the
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starting point for this thesis. In order to understand how the expression 1.0.1
is derived we will review the equilibrium model of Carmona et. al in chapter
2.

In this thesis we want to express equation 1.0.1 more explicitly. In order
to do this we must decide on how to model the underlying process ;. We
will model @), directly as a Levy process. In chapter 3 we will discuss this
choice and show some consequences of this choice. We will also prove a
result regarding bounded sub-martingales with binary final value (such as
F(t,T)). This result is new, to the best of my knowledge, and it will have
some interesting consequences in chapter 6.

Then we go on to develop expressions for the risk-neutral price of emission
futures when the underlying process is a Levy process in chapter 4.3.2. We
will use an approach based on the Fourier transform which has been success-
fully applied to option pricing [7]. Using the Esscher transform, as described
in [3], we will also find an expression for the risk premium.

In chapter 5 we will try to find explicit price expressions analytically
for some examples of Levy processes. We will also look at some numerical
simulations of the price processes.

As already mentioned we are interested in pricing options on emission
futures. With other approaches, such as in [4] and [6] it is possible to get
quite explicit expressions for this price. In chapter 6 we will try to find a
corresponding expression. We will also try to analytically approximating the
option risk-neutral price.



Chapter 2

Origins of price expression

As mentioned in the introduction, the starting point for this thesis is the
expression 1.0.1. In this chapter we will take a closer look at where this
expression comes from. We will begin by reviewing the equilibrium model
developed in the paper [5]. We then follow the lines of the same paper and
deduce necessary conditions for the existence of an equilibrium, which leads
to the price expression 1.0.1.

2.1 Equilibrium model

In this section we will introduce a large number of new variables. The table
2.1 is included to help the reader keep an overview over these variables.

The model in [5] describes a market where the demand is inelastic, and
a finite amount of firms are all trying to maximize their expected profits.
The inelasticity means that demand is independent of the price, which might
seem unrealistic, but might not be so far from the truth in energy markets.
Energy producers are also the largest polluters, and thus energy markets is
the main object of emission trading schemes.

In this model, the firms are assumed to be risk neutral. That is, their goal
is to maximize expected profit, regardless of risk. It is argued in the paper
that this assumption does not change the theoretical result, but simplifies
the model a great deal. The firms produce different goods using different
technologies. To each pair of good and technology used to produce the good,
there are different factors that the firm needs to take in to consideration.
Such factors include the price of the good, the marginal cost and the amount
of pollution emitted. Since an ETS is implemented, there is a fixed amount of
emission allowances on the market in every trading period. These allowances
can be traded among the firms, so if it’s cheaper for a firm to buy an allowance



4 CHAPTER 2. ORIGINS OF PRICE EXPRESSION
Table 2.1: Overview of constants

1€l Firm in the set of firms I.

ke K Good in the set of goods K.

jedJ Technology in the set of technologies J.

Ehik Quantity of good k produced by firm ¢ with technology j.

Sk Price of good k at time ¢.

ci ok Production cost of good k at time ¢, for firm ¢ with technology
J-

A Production capacity of good k for firm ¢ using technology 7 .

A; The amount of emissions allowances given to firm ¢ at time
t=0.

0: The amount of emission allowances held by firm 7 at time ¢.

Ay The price at time ¢ of an forward contract on an emission
allowance t.

ek The emission of firm 7 for producing a unit of good k using
technology j.

A The uncontrollable emissions of firm 4.

e Price of penalty.

IT; Total penalty paid by firm 1.

E; Total emissions by firm 3.

T, Total number of allowances owned by firm i, T; = 6% + A;.

Di Profit from production for firm 1.

O; Profit for firm ¢ from emission trading.

P Total profit of firm i. P, =0, + p; — IL,.

Demand for good k at time t.
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than reducing their emissions thats what they will do.

In the end of the trading period firms have to pay a penalty for all emis-
sions exceeding their allowances. In this model banking is not allowed, so
that in the end of the trading period, unused allowances are worthless. This
is natural since in this model we are only considering one trading period.!.
For simplicity some more assumptions are made. First it is assumed that no
new technologies ( i.e more carbon efficient power production) are invented
during the trading period. Second, the model does not consider abatement.
That means firms cannot get negative emissions by developing clean energy
projects. This differs from other common approaches such as in [15] where
they allow participants to reduce their emissions by abatement. Abatement
accordingly is an important factor in such models. It can be questioned
whether these assumptions are realistic, but the hope is that as long as the
model gives a good overall picture, one can somehow compensate for missing
details at a later stage.

There is a practical convention that should be mentioned: All cash flows
and values are expressed in time 7" currency, where 7" is the end of the trading
period. This way, we do not have to bother with discount factors.

The expression 1.0.1 comes out of the necessary conditions for the exis-
tence of a market equilibrium. In order to deduce these conditions we need
to know what is meant by market equilibrium. Loosely speaking, the market
(with ETS implemented) is said to be in an equilibrium state if the following
holds:

1. Every firm in the market is satisfied with their strategy.
2. The demand for every good is met.

3. The total amount of emission contracts bought is at all times equal the
total amount of emission contracts sold.

This is very intuitive but not so useful for proofs of any kind, so let us have
a closer look at each of these points. In order to do that we need a math-
ematical framework: Throughout the rest of the thesis we let (Q, F,F =
{Fi,t =1,2,...,T}, P) be a filtered probability space. (2 contains all possi-
ble scenarios from time 0 to 7. The o-algebra F defines which events have
a probability, and the probability measure P assigns a probability to all the
events in F. The filtration F is the set of o-algebras F; that represents the
information available at time ¢. With this in mind, let us start with the first
condition.

!The model can be extended to multi period trading, and indeed it is in [5].
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Condition 1

What does it mean that the firms are satisfied with their strategies? Since
firms are assumed to be risk neutral we say that that firms are satisfied when
they have maximized their expected profits. Profit is revenue minus costs,
so it is the expected value of this difference the firms are trying to maximize.
In this model there are three factors for a firm to consider when creating
their strategy. There is the production of goods, and the trading of emission
allowances. Both of these have a direct impact on the profit of the firms. In
addition the firms has to keep in mind that they will have to pay a penalty
7 per unit of emission exceeding their allowances. For an arbitrary firm ¢ in
the market, let us look at these three factors separately:

Production

In this model there are a finite set of goods K. In addition, for each good
k € K, there is a finite set of technologies J** that firm i can use to produce
good k. Firm ¢ needs to decide on which quantity ff’j ’k, of good k, to produce
using technology j. To decide this, firm i needs the price SF of good k, and
the production cost C’f’j’k of producing good k using technology j, both at
time t. With these quantities, an expression for the profit p; of firm ¢ due to

production is as follows:

T
p= 33 (s - it 21.1)

=1 k€K jeJk

We call the process (€%%)L_, the production strategy of firm 4. In reality,
there are limits to how much a firm can produce of a certain good. For
instance a power company only has a certain number of wind power stations,
and thus the amount of energy it can produce using wind is limited. To mirror
this, we introduce capacities k*/* associated with each firm, technology and
good. We let the production strategy of each firm (£49%)T_ be constrained
by

EPIR < ik (2.1.2)

Allowance trading

We assume that all firms are endowed with a certain number A; of emission
allowances. The firms are allowed to trade the allowances, and furthermore
they are allowed to trade forward contracts on these. A forward contract
(also called futures contract, or just futures) is a contract between two par-
ties. One party agrees to deliver a certain amount of the the so called un-
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derlying, which is emission allowances in our case, at a future date for a
price agreed upon when the contract is made. For simplicity, we will only
consider trading actual contracts in time 7T, and in the rest of the time look
at forward contracts. This is because the spot price and the forward price
will only differ by a discount factor if we assume no arbitrage.

To find an expression for the profit (or loss) due to trading, we need to
introduce some more notation. Let A; denote the price at time ¢ of a forward
contract granting one unit of emission at time 7. Let 6! denote the amount
of contracts firm i is holding at time ¢. If ! is positive, firm ¢ will receive
|0i| allowances at time T, and if it’s negative it has to give away the same
amount. Now the amount that firm ¢ gains from holding 0! contracts through
the time from ¢ to ¢ + 1 is given:

(A — Ap) = (Ar — Ap1))0; = (A1 — A6,

In the end of the trading period, at time T, the actual allowances has to
be bought in order to fulfill the contracts. Let 6% denote the quantity of
allowances bought at time 7. This % differs from 6! due to the fact that a
firm cannot sell more physical allowances than it actually has. Thus if we
denote the amount of allowances allocated to firm i by A; then we have:

Ay — 0 >0 s0 0 > — A, (2.1.3)

Now we have all we need to express the total trading profit ©; of firm i.
It is given as follows:

N

-1
O;= Y (A1 — A0 — 0L A7 (2.1.4)

t=1

We call the process (%)L, the trading strategy of firm i.

Penalty

At the end of the compliance period the companies has to pay a penalty
7 for each unit of emission exceeding the number of allowances they hold.
The amount of emissions F; for a business is dependent on their production
strategy. Say that when firm ¢ is producing good k with technology j, they
will emit e*/*. In addition we assume there are some uncontrollable emissions
for each firm, denoted A’. These emissions can be explained by the firms’
desire (for good reputation, or to comply with regulations) to always produce
enough to satisfy the demand. Therefore it has to overproduce a little, but
it is impossible to know how much. This will cause some (uncontrollable)
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amount to go to waste, and will also cause uncontrollable extra emissions
A", The total number of allowances 7" the firm has is given by A° + 6%
The firm only pays if the emissions exceed their allowances, they do not gain
anything for having unused allowances. Therefore the penalty paid II; can
be expressed as w(E; — 1;)", that is

T-1
I o= m(A ) D ) (&7 ™) — A —0p)* (2.1.5)

t=1 keK jeJk

= mw(E; — A" —05)* (2.1.6)

It turns out that we need to make some assumptions about A; and A?. We
make the following assumptions about A;:

Assumption 2.1.1.

and

P(A;>0)=1 (2.1.8)

The first one is for technical reasons, and the second is because there is
no point in looking at a cap and trade system without any allowances. Also
for technical reasons we make the following assumption about A®:

Assumption 2.1.2. A
Al e LY(Fr) (2.1.9)
And the Fr_1 conditional distribution of the total uncontrolled emissions

A =3, A" has almost surely no point mass.

Now that we have expressions for profits from trading in (2.1.4) and
production in (2.1.1), and an expression for emission penalty (2.1.5), we can
set up the firms total profit P; function as

PAS(EL 0 = p+0;—TI, (2.1.10)

T
= ) D) (SF-cprhgt (2.1.11)

=1 k€K jeJk
-1
Y (A — AN — 0 Ay (2.1.12)

t=1

T-1
A DY T A ) (2119

t=1 keK jeJk

N
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Notice that P; is a function of £ and ¢ with parameters A and S. We consider
£ and 6" to be the firms trading and production strategies respectively. These
are what the firm can change, the parameters A and S are the price processes
of allowances and products, and are outside of the firms’ control. Nevertheless
they are important to take into consideration.

With the expression 2.1.10 we can say that the price processes A* and
S* satisfy the first condition of an equilibrium if all firms have strategies
(6%, £*%) such that

E(BA*’S* (5,*7,7 9*2)) Z E(PlA7S(§Z, 0@)) (2114)

for all other strategies (6%, £%). However, we are by no means guaranteed that
this expression is defined, so it would be good if we made some assumptions
about our processes at this point.

First, since both the trading strategy 6! and the production §Z’j’k only
are based on information up to time ¢, it is natural to assume that they are
Fi-adapted. Second we assume that the processes C’Z’j’k, Sf’j’k and A; are
Fi-adapted integrable processes, and that Cf’j’k and Sf’j’k are nonnegative.

Condition 2

This condition is easy to understand; the demand for each good has to be
met for there be an equilibrium. Otherwise someone will be willing to pay
the price needed for one of the producers to produce one more unit of good.
To express this condition more precisely, we introduce some notation. For
each good k € K we denote the demand for that good, at time t by DF.
Then using the notation above, condition 2 can be expressed as

> &Mt =0

iel,jeJik

Condition 3

Using the notation above we can express this simply as

Y 0, =0vte{0,1,....T}
iel
Thus to recap, we have defined an equilibrium in the market to be as
follows:

Definition 2.1.3. We say that the market is in an equilibrium, with equilib-
rium price processes (A*, S*), if each firm i have strategies (6%, £*) satisfying
the following three conditions:
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(i) Given the price processes (A*,S*), firm i cannot achieve any greater
expected profit by changing strategy:

B(P2(07,6) = B(P/(¢1,0))
(ii) The demand for every good is met at all times:

Z é.*ZJk_Dk

iel,jeJik

(1ii) At all times the amount of forwards sold equals the amount of for-
wards bought:
» 67 =0 vte{o,1,...,T — 1}P-as

el

2.2 Condition for equilibrium

Above we have modeled a market with an emission cap implemented and
defined an equilibrium. We will now see that in order for this type of equilib-
rium to exist, there are some necessary conditions on the equilibrium price
of allowances A;. This is what leads to the price expression (1.0.1). The
following proof is an elaboration of the proof given in [5] with some of the
finer points explained in more detail. First, let us take a closer look at the
first condition. By expanding P/*" (0%, £*1), we see that it is the same as

E(p;" (§) + ©77(0") — m(Ey(€7) — A= 07)7) =
E(p" (&) + 67 (0") — m(Ei(&') — A" = 7))

for all strategies® (6%, £"). Since the strategies 6° and £ are independent, and
none of the summands in the expectations above depend on both, we see
that the strategies must be optimized separately.

E(O (07) + 7 05) > E(©]" (6") + 7 0}) (2.2.1)
Which is the same as

T-1 T-1
E (Z(A:H ANGT — 05 AL + 9T) (Z r = ANG 0L AL 9;)

t=1 t=1
(2.2.2)

2In the original paper they define what is an admissible strategy. We will not discuss
this since it is a distraction from getting an expression for the price.
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—A;
/ AT<O

Ei(")— Ai=1

Figure 2.1: Example plot of f;(z). The black and the dotted line is example
paths of f; when Ar < 0 and Ar > 0 respectively.

From this we can deduce that E (A}, ,|F;) = A; for all t. To see this, assume
the opposite: assume that we can find a time ¢ such that E(A;,,|F,) # A},
Then we can find and a set A € F; such that F(A}, 14|F;) > 14A; (also for
<). Now using this, we make a new strategy 6" by letting it be equal to fi for
all times except ¢t and setting éit = 0* +1,4. We see that gi outperforms 6%,
which is a contradiction with (2.2.2). Thus we must have E(A; ,|F;) = Af
for all . This is identical to saying that A* is a martingale with respect to
the filtration F.

From inequality 2.2.2 and condition 1 it can be seen that all the summands
depending on 6% can be grouped together. We then optimize 6% separately
and deduce:

E(=07 Ap—m(Ey(§") = A'=07)") > E(—0pA7—m(Ei(§)—A'=07)") (2.2.3)
Now consider the function (fig. 2.1)
fi(2) = =245 — w(B(&) — A" — 2)*

By looking at 2.2.3 we see that 63 must maximize f;(z) for z € [—A, 00) (The
lower bound is due to the constraint on 6% in (2.1.3)). We easily see that it
is either affine or continuous piecewise affine. This leads us to conclude some
interesting facts: Since 63 must maximize f;(z) for z € [—A% o), and 03
must be finite, we conclude that A% > 0. Also, we must have A% < 7 since
otherwise f;(z) is maximized on by z = 05 = —A’, but then ), ,(0*) =
—/A # 0 as. (from assumption (2.1.8))which breaks the third condition of
the equilibrium. Hence we know that A% € [0, 7] almost surely If we look on
fi we see that A% € (0,7] = 03 < E; — A' Vi a.s. since 03 maximizes f;.
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Hence

{wl4i@) € (0.7} S [{wlbF(w) < Ei(w) — A'(w)}

C vl Ze;;i(w) < Z(Ei(w) — A'(w))}
so {w|An(w) € (0,7]} N {w]Z )<O}C{w\29” ) <0}

and by condition three in the equilibrium, we get

{wlA7(w) =0} 2 {wl Y (B w)) < 0}

iel
Using that A% € [0,7) = 63 > E; — A’ Vi a.s. a similar argument leads to
{wlAi(w) =7} 2 {w] Y_(E; w)) > 0}
icl

If we denote >
N’ as follows.

A; by A and the sum ),

el

= {w[E(w) > A(w)}

Then, what we have just seen above means that

el E; by E we can define the set

A; = 7T1N/
Using the martingale property of A* we get a nice expression for Ay,

By assumption 2 P(E = A|F;) = 0so P(E > A|F,) = P(E > A|F;). Thus
if we let N = {w|E(w) > A(w)} we get

A: = WP(E > A’Ft) = WE(lN‘.Ft)

Which is the same as the price expression (1.0.1), since Q(w,T") = E(w) and
v = A.



Chapter 3

Choice of underlying process

In this section we will look closer at the underlying process ;. The under-
lying process ; can be understood as the total emission in the market up to
time ¢. In this thesis we suggest modeling @; directly as Levy process (with
jumps). If we think about ); as the actual total emissions in the market,
upwards jumps in (); can be justified by considering the following scenario:
Suppose we have an energy company A with two production options. The
first option is hydro power and the second is coal. As long as the demand
is lower than the production capacity for hydro power A will use this option
since it is cheaper, and A will have zero emissions. As soon as the demand
rises above the capacity (i.e. due to cold weather) A has to start its coal
plant and thereby causing a jump in the emissions. Strictly speaking the
jump will be in the emission rate and not the total emission. One can either
accept this inaccuracy, or think of (); not as the actual total emission, but
as the market’s perception of the total emission. Assuming that information
is not continuously available, a jump in the emission rate will then cause an
information shock. With this idea, one should allow (); to have both upwards
and downwards jumps. In [4] they seem to support the idea of thinking about
the underlying as the market’s perception of the total emission. They also
use jump processes to model the underlying in order to capture information
shocks.

In [6] they argue that these information shocks, and correspondingly the
jumps, will become less common and a less important feature as the emis-
sion market matures (this seems to be supported by figure 3). They argue
that most of the vital information, such as energy consumption and produc-
tion, is publicly accessible. They also argue that there is a growing number
of firms monitoring the market and providing better analyses as time pro-
gresses. These two factors will make information more readily available at
all times and prevent shocks. Nevertheless jumps has been an important

13
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Figure 3.1: Historical prices of EUAs!.

feature historically. Figure 3 shows the historical prices of EUAs. We can
clearly see the importance of jumps, especially downwards (A-06, O-08 and
J-11). Even though figure 3 shows jumpy behaviour, that is not the main
argument for including jumps in our model. Jump processes tend to better
model the large risk of drastic events that are so often present in financial
markets [9]. Therefore we will use jump processes to model the underlying.
More specifically we will use a special class of jump processes called Levy
processes. We will give a brief introduction to these processes in section 3.2.

A common approach to model the underlying is to model the emission
rate instead of total emission. Then one calculates the total emission as an
integral of the rate over time. This approach is in contrast to our direct
modeling approach. For reference we will include an example of how such an
approach would work, and what results can be derived. The following is a
synopsis of some of the paper [13] by Griill and Kiesel.

3.1 Example of reduced form model

The authors base their work on the same paper by Carmona [5] as we do, and
is thus an interesting comparison. As proposed by the paper of Chesney and
Taschini [8], the authors model the emission rate ¢ as a geometric Brownian

1Source: http://www.eea.europa.eu/data-and-maps/figures/eua-future-prices-
200520132011
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motion

g = ap el 5]

Then the cumulative emission @), is given

t
Qt:/ qst
0

Since this integral has no closed form density, the authors discuss different
approximations. In their numerical analysis, they find that the linear ap-
proximation used by Chesney and Taschini [8] differs from the two moment-
matching approaches introduced in their paper, which in turn give rather
similar results. The approach they focus most of their attention at is the
log normal moment matching approach. A description of this approach is as
follows:

Let ()4, +, denote the stochastic variable fttf gsds = Qi, — Qy,, then Qy, 4,
can be approximated by Qflh which is a log normally distributed variable
so that the first two moments of Qfm matches those of (), 4,. In order
to formulate this more precisely, an expression for the moments of (), ¢, is
needed. In the paper by Milevsky and Posner [19] the first two moments of
Qt,.1,, m1 and my are expressed analytically. We leave out these expressions
since the purpose here is not to dive into details, but give an overview of the
approach in [13].

Now, using the expression for the moments in [19] one can compute QtLl o
to:

In( of Y+, /In(21)z
QL _ V2Br 0472.
e = qt€

where Z ~ N(0,1) and 7 = T — t. Let S} denote the futures price in this
approach. Then using the price formula from Carmona, it is clear that when
Q; > 7 the price S = 7 since (Qr_; > v — Q;|F;) = 1. Remember that
7 is the penalty for non-compliance. When @Q; < v one can compute S as
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follows:

St =P(Qf— > 7 — Q[F) (3.1.1)
In(=22-)+, n(25) 7
= P(qie VET 7> v — Qi|Fy) (3.1.2)

— P(In (\/O%) +/In (2(52)2 > In (7 ;tQt) IF,) (3.1.3)

IF, (3.1.4)

qt

“In (W—Qi> + 2In (o) — %ln (ﬂ)
0]
VIn (26;) — 2 In(a,)

(3.1.5)

which is a very neat expression. We see that this price expression allows for
doing many useful calculations relatively easy. Using this nice price formula,
and the fact that they have an explicit expression for the emission rate ¢,
the authors use Ito’s formula to find an expression for the dynamics dS} of
the price. This is again be used to explicitly express how sensitive the futures
price is to changes in the underlying.

It is clear that this approach has some very strong points. The tractable
expressions for the SF and its dynamics, and that we can compute the sen-
sitivity on the underlying, are definitely among them. On the other hand
there are some drawbacks as well. The approximation of (); does not capture
the tail behaviour (probability for dramatic events). This tail behaviour, had
it been accounted for, might have had considerable influence on the price.
Furthermore, because the estimation is on the underlying, and not the price,
it is hard to say just how much the resulting price estimate differs from the
"real” price suggested by the model.

3.2 Levy processes

As mentioned, we are going to model @); directly as a Levy process. In this
section we will give a brief overview over these processes. All the results
regarding Levy processes in general is from the book on Levy processes by
Cont and Tankov [9] and will be given without proof.

Let’s start with the definition of a Levy process. Suppose (S;)i>0 is a
stochastic process on (£, F, P) with values in R%. Then (S;);>0 is a Levy
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process if it is a cadlag process with Sy = 0 and satisfies the following three
conditions:

1. Independent increments For any increasing sequence tg, t1,..., the
random variables Sy, Sy, — St,, ..., S, — S, are independent.

2. Stationary increments The distribution of S;,, — S; is independent
of t.

3. Stochastic continuity For all times ¢ and all € > 0, we have:

lim P(SH_(; - St Z E) =0
d—0

It can be deduced It is a famous result called the Levy-Ito decomposition,
which states that all levy processes can be represented in the following way:

Sy =t + B; + St + lim S (3.2.1)
€E—r

Where vt is linear drift, B, is Brownian motion, S! is a compound Poisson
process and S is a square integrable pure jump martingale:

Sy = / s[Js(ds x dx) — v(ds x dz)] (3.2.2)
|s|<1xz€[0,t]

Here Jg is the jump measure of S with intensity v(ds x dx) = v(ds)dz,
where v is the so called Levy measure of S. Intuitively the jump measure
J5([0,t] x B) counts the number of jumps in the time interval [0, ¢] with jump
size in B, for a given path of S. The Levy measure v(B) can be understood
as the expected number of (non-zero) jumps in the unit interval with jump
size in B.

Simply put, this means all Levy process consists of a linear drift, a Brow-
nian motion and a jump process. The reason for this relatively complicated
last term Sf, is a problem with convergence due to the nature of the jumps
of Levy processes. While it is true that for any § € R, every Levy process
S; has only finitely many jumps larger than 0, S; may have infinitely many
small jumps. The sum of these small jumps does not necessarily converge.
Therefore one has to split the jump process into a part with large jumps?,
and a part with small jumps. For the part with small jumps one subtracts
the intensity inside the sum, making sure that it converges almost surely,
and also making it a martingale in the process.

2For instance those larger than 1
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A class of Levy processes that are especially nice are the so called pro-
cesses of finite variation. These processes are made up of linear combinations
of increasing and decreasing processes.®> For processes of finite variation we
have:

/ sv(ds) < oo (3.2.3)
Is|<1

thus we do not have to split the jump process apart. These processes can-
not have any Brownian motion part since they are neither increasing nor
decreasing. Thus any finite variation process can be written as:

AS#0
Y+ S =qt+ Y AS,

z€[0,t]

that is, a linear drift and the sum of its jumps. A subordinator is an increasing
process, and thus a special case of finite variation processes with only positive
jumps and positive drift.

The characteristic function ®(u)x of a stochastic variable X is defined as
E(e*%). The characteristic function will be useful to us since it is always de-
fined, and fully characterizes the stochastic variable. Furthermore it is often
available in closed form. As a direct consequence of the first two properties
of Levy processes, it follows that the characteristic function ®g,(u) of a Levy
process (S¢)i>o can be written as follows:

Dg, (u) = E(e™5) = eV (3.2.4)

for some continuous function v : R* — R. Thus, if we know the charac-
teristic function of S; for any time, we know it for all times. When this is
combined with the Levy-Ito decomposition we get a way to represent Levy
processes called Lévy-Khintchine representation:

o0

1 .
(u) = —EuzA + iyu + / (e =1 —iux )y <1v(dx))

—00

where A is the correlation matrix for a d-dimensional Brownian motion, 7 is
a drift vector and v is the Levy measure of the process. The result is that
Levy processes are completely characterized by the triplet (v, A, ) which is
called the characteristic triplet. Since finite variation processes don’t have
any Brownian motion, their characteristic triplet is always (7,0, r) with v
satisfying 3.2.3. Subordinators additionally satisfy v((—o00,0]) = 0 and v >

3Since we work in 1 dimension
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0. One final property of Levy processes that might be of interest is the
Markov property. For any F;-adapted Levy process S; we have:

E(f(S)|F2) = E(f(S1)|o(5s)) (3.2.5)

for f : R™ — R being bounded and measurable, and t > z.

3.3 Early observations

Now that we have had a quick look at Levy processes, we shall see if we
can already use our knowledge in relation to our price expression. Before we
do this, we will introduce a new convention that we will use throughout the
rest of the thesis: From now on, when we talk about the risk-neutral futures
price, we will mean the normalized F(t,T) from expression 1.0.1. We will
denote this price by A;:

A; = B(lggs,|F) (3:3.)

This is done for practical reasons. The disadvantage of carrying the sym-
bol 7 around would be apparent in chapter 4.3.2 where we use the Fourier
transform, which involves the real number 7. With this convention we can
go on.

First, it will be interesting to know whether or not making the underlying
Q; a Levy process will make the derivative A; a Levy process as well. This
would make calculations with A; easier, but it would make the model less
realistic. Intuitively it seems very wrong to model the price process with
independent increments. The price is not going to rise sharply right after a
steep fall, people are afraid and will be cautious. Also intuitively it seems
wrong with stationary increments; the price should become more sensitive to
changes in the underlying and thus more volatile as t — T'. It turns out we
don’t have to worry:

Proposition 3.3.1. The price process A; is not a Levy process.

Proof. Since A, = E(1g,>~|Ft) = P(Qr > v|F:) it is bounded above and
below. This implies non-independent increments since A, — A4, <1 — Ay,
thus not independent of A, . O

Let us continue the line of thought in the last proof. It might seem
intuitive that since the increase is bounded by 1 — A;, and the expected
increase E(A;yp, — A|F) = 0, the probability of an increase must rise as A,
grows. We can write

E(Apin — A Fy) = diP(Ayn > A Fy) + doP(Apn < A F) =0 (3.3.2)
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o

dy Ay dy

Figure 3.2: This figure brings to mind two children playing on a seesaw,
which is a fitting analogy. The figure shows the seesaw in balance.

where d; and ds is the center of gravity given increase and decrease respec-
tively. Then the above mentioned intuition translates to d, growing as A;
grows. Consider figure 3.2 to get a picture of what is going on. Moving A,
is like moving the balance point; according to the intuition the sizes of d;
and dy must change corresponding to the movement of A; in order for the
"seesaw” to remain in balance. However we are forgetting that the position
of d; and d5 is allowed to shift depending on F;,,. Technically there is an
issue with the measurability of d; and d; reflecting that we don’t know where
they will be at time t 4 h.

The intuition is not completely wasted though: Suppose we force d; and
ds to stay at their respective ends of the "seesaw”. Then changing their size
is the only way to keep the ”seesaw” in balance as A; moves. We formulate
this more properly:

Theorem 3.3.2. Let (2, F, P) be a measure space. Let X, be a sub-martingale
with respect to the filtration Fy, where t € [0,T]. Assume X; is bounded
a < Xy < b for some a,b € R. Further assume that Xr is binary, that is
Xr=a or X0 => a.s. Then

Xt—a

P(Xp = bF) = 5=

a.s.

with equality when X, 1s a martingale.

Proof. Since X, is a sub-martingale we have E(Xr|F;) > X;. But since Xp
is binary we can write

E(XT|ft) == E(XTle:a(w) -+ XTlXT:b(W)l-Ft) (333)

= E(XTlXT:a(w)LFt) + E(XTle:b(W)|ft) (334)
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Now we can use that Xrly,—4(w) = alx,—.(w) a.s. and likewise on the
other side, so equation 3.3.4 can be written:

aBE(1xp=a(W)|Ft) + 0E(Lxy=p(w)|F2) (3.3.5)
= aP(Xp = a|F) +bP(Xr = b|.F) (3.3.6)
= a(l = P(Xr = b|.F)) + bP (X1 = b|.F1) (3.3.7)
= a+ (b—a)P(Xp = b|F) (3.3.8)

Now recalling the sub-martingale property the lemma is proven. ]
If we apply this to our price process A; we get the following:
Corollary 3.3.3. P(Ar =1|F) = A,

There is one more property of A; that can be deduced at this point. There
is a connection between the jumps of the underlying ); and the price A;:

Proposition 3.3.4. Any jumps in the underlying QQ; will cause the price A;
to jump in the same direction.

Proof. We will look at positive jumps: Let ¢+ denote lim; ;, ;~¢, and let
t1— be defined respectively. Suppose the underlying (), has a positive jump
in time 1, that is Q¢+ = Q4,— + 6 for some 6 > 0. Recall that A; = P(Qr >
Y| F) = P(Qr > v|Q:) since @, has the Markov property by being a Levy
process. We have:

Apt = P(Qr > 7[Q1+)

PQr-t, > v — (Qy- +9))
P(Qr—4, >7— Q)
P(Qr > 7|Qu-) = A, -

A%

Where we have used the stationary increments property of Levy processes.
Using a similar argument for negative jumps the lemma follows. O
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Chapter 4

Price expressions

In this chapter we will derive two price expressions for A; when @, is a
Levy process. A common approach, used amongst others by [6] and [14],
is to express the price as the solution to a stochastic differential equation
(SDE). Since we model the underlying as a Levy process, the dynamics of
the underlying and therefore the SDE, can get rather ugly. On the other
hand, as mentioned earlier, we know that characteristic functions are always
defined and often known in closed form. Therefore we will use an approach
along the lines of the one developed in the paper of Carr et al. [7]. In this
paper the Fourier transform is used to get an expression for the price of a
call option. This expression ends up as an integral of a function depending
on the characteristic function of the underlying.

We will first find an expression using a method from [7]. This expression
allows the fast Fourier transform (FFT) which makes numerical approxima-
tion efficient. The first expression seems more complicated than necessary
so we will go on to find a second price expression. Finally we will use the
Esscher transform as in [3] to find an expression for the risk premium and
the market dynamics of the emission futures.

This chapter contains much complex analysis, all of which can be found
in [20].

4.1 The first price expression
We begin by finding the Fourier transform of the indicator function 1 ~N(w).

Recall that for a function f : R — C the Fourier transform f of f is given as
follows:

fly) = /Re‘”yf(w)da: (4.1.1)

23
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and that as long as the integral is defined we can write f as:

fla) = 5= [ Sy (112)

We want to use this on 1y(w) = 1{,Q, >~} (w) in expression (1.0.1). Since
Q: QxR — R we can look at f(x) = 1{;~,} () and substitute @ for z later.
There is one problem with this approach. The integral [, 1{zsyy(z)de =
fwoo dx which does not converge, therefore f is not integrable over R. In
order to take the Fourier transform of f, we use the technique described in
[7]. We introduce the function g(z) = e~ ** f(x) for some o > 0. It is easily
seen that ¢ is integrable; we find the Fourier transform of g:

o(y) = / e g (z)d = / e () d

R

= / 6_(a+zy)$1{x>7}d1’
R

= / e~ @tz
Y

e~y

eV —
(o + 1y)

Since v and « are positive we can use Jordan’s Lemma to see that §(y)
integrates to 0 when integrating over R. Thus g(y) is integrable, and we can
try to use the inversion theorem. We will find the inverse formally and call
it f, and then check if f = f. To that end, we first find the formal inverse §:

] L [ aemay = L [ g 4.1.3

9(35)—%/]1{9(9)6 y—nge Y ()
e~y elz—)iy

= d 4.1.4

o /R(oz—l—z’y) 4 (4.1.4)

Since f(x) = e g(x) we get the following expression of f:

- e(z=7) el&=)iy g i1

Now let us check that f = f. We will look at the three cases, x < 7, © = ~
and z > v one at a time.
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e = =~: In this case the integrand becomes 1/(a + iy) so then

[ armt= [ o +/° —
T ay = T ay T ay
r (a+1y) o (a+iy) —oo (@ + 1Y)

This does not converge as an improper integral, but we can define f to
be the principal value

1 o .
fla) =5 pv / f(y)e™dy
m R
Then it converges and
1
W | ———dy = lim —i (log(|a + 1y| — log(|a — @
b [ sy = Jim =i (log(Ja + iy] ~ log(o — iy)

+ 1i_>m (Arg(a +iy) — Arg(a — iy))
Y—00

T T
= — — —— =T

2 2
then ) ]
fla)=5-m=35

x < 7y: For x < 7 we get a negative exponent in the integrand. Thus
the contour integral along a semicircle in the positive half plane will
diverge as the radius grows beyond bounds. In the negative half plane
though, it will vanish, by Jordan’s Lemma. Thus, if we continue to
consider the Cauchy Principal value we can find it by integrating along
the contour [—p, p] + e ** where 0 < § > m. Since the integrand has
no singularities in the lower half plane, the integral is zero. Thus for
x<7wehavef:f.

x > : For the case x > 7 we can use the same argument, except this
time we must use the semicircle in the upper half-plane, and there we
have a singularity in y = —ai. We find the residue and use Cauchy’s
residue theorem:

2

=1 (eo‘(x_'”) ( lim —ie(x_wy)

y——at

= (ea(wﬂ)) (_Z'efa(wfv))
=1

- (z—7)
f(z) =2mi (e ) Res(Integrand : —az1)
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Figure 4.1: Contour for z < ~

ai

Figure 4.2: Contour for x >

Thus f = f for = > .
We can conclude that our f = f almost everywhere, but because we
had to use the principal value we get f = 1/2f in the discontinuity at
xr=".

What consequences does it have that our transformed f differs from the

original in the point z = v 7 Recall that the reason we are interested in f is
because we want to find E(1y|F;), that is

RIS

And as long as
P(Qr=7)=0 (4.1.6)

we have that



4.1. THE FIRST PRICE EXPRESSION 27

Therefore we can use f as long as 4.1.6 is satisfied, which will be assumed
throughout the rest of this section.

Now, making the necessary assumptions about the law of )7, we can
substitute Q@ for x in (4.1.5) to get an expression for the price :

AR QT —7) e(QT_'Y)iyd x
= —pv [ —
t ( e & Ll )

4.1.1 Some technical difficulties

In order to continue we would like to pull out the integral outside of the
conditional expectation. At first it seems that this will be alright straight
from Fubini. But our expectation is conditional, which makes it a stochastic
variable, thus we are required to look more carefully to confirm the original
hunch.

Lemma 4.1.1. Let (0, F, P) be a probability space. Then for any (F & B)
measurable X : 2 x R — C such that fRX(w,y)dy < 00 for all w, we have
that if either

B / X(w,y)dy|F) (4.1.7)

/R E(X(w,9)|F:)dy (4.18)

1s finite, they are both finite and they are almost surely equal.

Proof. The lemma is a consequence of Fubini as follows: By definition

E(/RX(w,y)dyIFt)

is the a.s unique F; measurable stochastic variable satisfying that:

/HE(/RX(w,y)dy]}"t)dP:/H/RX(w,y)dydP

for all H € F;. We also have that [, E(X (w,y)|F;)dy is the is the a.s unique
F; measurable stochastic variable satisfying that

// X(w,y |]:t)dey—// X (w,y)dPdy

for all H € F;. Thus, by Fubini we have that if [, [p X(w,y)dydP or
Jz Jiy X (w,y)dPdy is finite, then so is the other and they are equal.

Thus, since E( [ X (w,y)dy|F:) and [ E(X (w,y)|F:)dy are both the a.s
unique stochastic variables to have the same particular property, they must
be a.s the same. n
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Another point that requires some attention is the fact that we are using
the Cauchy principal value. On this point Lemma 4.1.1 is not enough for our
needs, but we can make the following addition:

Lemma 4.1.2. Lemma 4.1.1 holds even when the integral is interpreted as
the Cauchy principal value.

Proof. By definition p.v [, X(w,y)dy = limp_o [ L-rrX(w,y)dy. Now
let us make a sequence of ever increasing R. Let R, = 2", then we can find
an N so that for all n > N' lemma 4.1.1 holds for 1_g, g, X (w,y). This
means that:

E(/ LRy r) X (W, y)dy| F?) :/E(l[RmRn]X(w,y)\.Ft)dy as  (4.1.9)
R R

that is (by recycling the argument in the proof of lemma 4.1.1)

E([ X(wy)dy|F) = / " B(X(w,9)|F)dy as (4.1.10)

-Ry, —-Ry,

Suppose the limit lim,, ., exists and is finite on either side of the equality.
Then since the nth element is equal (a.s) for all n > N the limits must be
equal (a.s). This limit is of course the Cauchy principal value, which leads
to the conclusion:

E(p.U/RX(w,y)dm.Ft) —p.v/RE(X(w,y)]]:t)dy s (4.1.11)

]

4.1.2 Final steps

With these technical difficulties out of the way we are ready to proceed. For
simpler notation, we will often skip writing p.v, just knowing that if the usual
integral does not make sense we are talking about the Cauchy principal value.

We note that the conditions for the lemma are satisfied. Since measurable
functions are closed under composition, addition and multiplication, we see
that our integrand satisfies measurability requirement. The requirement that

IThis precaution is added it in case there are examples where p.v fRX (w,y)dy < oo
but [ 11— g,z X (w,y)dy £ oo for all finite R
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the integral is finite is what we just discussed above. So using lemma 4.1.2:

4 B ea(QT*’Y) e(QT*’Y)iy dulF A
— 1.12
t ( - /Rm@'y) y ) (4.1.12)
5 eoé(QT—’Y)-I-(QT—W)iyd x
_ 4.1.13
([ “oarsy ) (4.1.13)
5 6@(QT—7)+(QT—7)iy}_ p A A
— . 1.1
[2(Tomaray ) des a1
E e(a+iy)6(QT*’Y) ‘F‘ d 4 1 15
_/]R ( 21 (o + iy) | t) Y (4.1.15)
e E (eletivQr| F,) 4 4.1.16
_ a+iy)Qr
/R27r(a+z'y) (e ) dy (4.1.16)

We can now use the independent increments and stationary increments
properties of Levy processes to look closer on the conditional expectation:

E (e(a—i-iy)QT‘ft) - B (e(a+iy)(QT—Qt)+Qt(a+iy)|]:t) (4.1.17)
= E (elt)@r=Q0| F) E (o) F,) (4.1.18)
— B (e(aJriy)Q(T—t)) elatiy)Qe(w) (4.1.19)

As we see, we have gotten rid of the conditional expectation and we are
closer to a expression involving the characteristic function. We now plug
(4.1.19) in to (4.1.16) and get:

A, = / ey o G L PG (4.1.20)
r 27 (a + 1Y)
o(Q:—7) Qt—7)i
_ (6 t— / ?( = 3)/E (e(OH-iy)Q(Tft)) dy> (4_1,21)
2 R (& + Zy
(4.1.22)

Now, if we let b = y — ia, then b = a + 1y and:

E (e(a-l-iy)Q(T—t)) —E (eibQ(T—t)) (4.1.23)
_ (bQ(T,t)(b) (4.1.24)
— o(T=t)0q(b) (4.1.25)

Pulling everything together, we can now express the price using the charac-
teristic function as follows:
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Proposition 4.1.3. Let (Q, F,F = {F,t = 1,2,..., T}, P) be a filtered
probability space. Let Q(w,t) denote the total emissions in the market at
time t, and let vy be the total allowances allocated. Suppose that the forward
allowance price Ay is given

At - E<1N|ft)

where N = {w : Q(w,T) > ~} Then, if Qr is a Levy process satisfying
P(Qr =) =0, we have

a(Qt—) (Qe—)i
A, = e /e : 7 ye(T_tWQ(y_m)dy a.s
2 r (@ +1iy)

where ¢ 1s the characteristic exponent of ().

Remark 4.1.4. Note that
T—t)yY —ia
At _ ea(Qt*'Y)ffl |:€( ) Q$y ):|
(v + iy) Qi)

where )
FUAL = 5 [ Sy

denotes the inverse Fourier transform of f in x. Thus, depending the on
characteristic function of Qy, the inverse FFT might work well as a way to
solve this integral numerically.

4.2 Second price expression

The price expression in proposition 4.1.3 is nice enough, but the expression
seems to be more cumbersome than necessary due to the variable a. The
variable ar is just a “trick variable® introduced to make 1,-, integrable. It
seems unnecessary to carry it around; it is clouding the expression and it
will always be canceled out in the end. It would be nice to find a Fourier
transform straight from our indicator function, without any trick variables.
To do this, we have to find another Fourier transform of the indicator function

Lys~y(w). It turns out
—yiw

mo(w) + p.v -

is such a Fourier transform in a sense, but not quite. It is a not a function
but a distribution; it is not a Fourier transform in a classical sense. With
this in mind, we try our luck with so called distributions and see if we cannot
make some sense out of it. We start with a quick review of distributions.
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4.2.1 Distributions

Distributions can be seen as continuous linear functionals on an underlying
vector space of so called test functions. The space of test functions is the set
of functions used to decide whether or not two distributions are in fact the
same. To clarify this, let the test space be denoted T, and let f : T' — R
and g : T — R be functionals. Then f = ¢ iff f(¢) = g(¢)Vo € T [11].
Different test spaces can be chosen for different purposes [18], and we will
choose with Fourier transforms in mind. In [16] an intuitive space of Gaussian
test functions is developed, but it seems that the most standard choice is the
Schwartz space §. We will go with the standard choice and when we talk of
a distribution we will mean a continuous linear functional on the Schwartz
space J. Since we are interested in distributions in connection with Fourier
transforms, we need to know what is meant by the Fourier transform of a
distribution. Let f be a classically transformable function, then for all ¢ €
S the following identity hold:

/f ol dx—/ F)F(0)]ydy

where F(f)|. = [°2 f(y)e ™¥dy is the Fourier transform of f. This can be
used to define the Fourier transform of a distribution in the following way.
Let v be a distribution, then F ()|, is defined to be the distribution ¢ that

satisfies:
/ 2)di = / () F ()], dy

for all ¢ € S. The inverse is defined analogously.

4.2.2 Deduction
The distribution

takes a test function ¢ to

p-v/cb(a)) (5(W)+ ;w> dw = 2w $(0 +pv/¢ " dw

To see that this is indeed the Fourier transform we are looking for, we try to
inverse transform it and see if we get our original function. We need:

po [ (nde) + N F )t = J
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We use the fact that ¢ is classically transformable:

po [ o)+ ‘jj“w(@\wdw

—00

o] —71w ZW?J
= p. v/ (md(w) / o(y dy dw
5 —'yzw eiw o d
-/ pv/ . —)0ly) 5 dw dy
S e(yf’Y)lw
—i—pv/ —dw) dy

/ oy o 2miw
= /_ . P(Y)ly=y(y) dy

since

o0 o(z—)iw 1 >
e x
p.v / —dw = {2 =7
oo 2TiW —s <7
This shows that 7d(w) + p.v% is indeed the Fourier transform of 1,>,(y)
in the sense described above, and we can write: 2

00 ewyi e—fyiw
1y>+(y) =p~v/oo o (W5(w)+ — )dw

Thus if we are careful to remember that this is not a function in the normal
sense, we might try to proceed as above to find a nice expression for the
price. Let us substitute our process Q7 for y and calculate:

eiQTw e—wiw
F(t,T)=F (p.v/ (5(w) + — ) dw|]:t> (4.2.1)
2 1w
LB T | F 42.2
B 1+ /e‘vin( QTiw’]_-)d (4.2.3)
=13 P i e ;) dw | a.s 2.

where we have used lemma 4.1.2 in the last equation. Now as we have seen
E (e97|F,) can be written e“?®(w)q, , = e“@ T=Dve() Thus we get
the following expression:

N =

2This is really the point, all we want is an integral expression to use with lemma 4.1.2.
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Proposition 4.2.1. Let (Q, F,F = {F,t = 1,2,..., T}, P) be a filtered
probability space. Let Q(w,t) denote the total emissions in the market at
time t, and let v be the total allowances allocated. Suppose that the forward
allowance price F(t,T) is given:

F(t,T) = E(1n|F)

where N ={w : Q(w,T) >~} Then we have

1 Qe i (Tt (@)
F(t,T) = (— +p.v/ dw) a.s

2 2miw
where ¢ 1s the characteristic exponent of Q).

This expression is somewhat simpler, and does not contain the ”trick
variable” «. We might hope that this makes it easier to find analytical
solutions.

In the paper Carr et al. [7], an expression for the probability for a call
option being ’'in the money’ is stated. This expression is very similar to the
expression we have just found. This makes sense when we think about what
it means for an option to be ’in the money’, which is when the underlying is
greater than some threshold. Therefore we might think of our forward price
as the probability of an option on the total emission (), with strike price
~v to be in the money. This option would be in the money precisely when
Qr > 7.

In the paper [7] it is argued that this price expression does not allow the
use of FF'T since it is singular when w = 0. This is the reason why the other
method is developed. Therefore we conclude that 4.2.1 does not allow the
use of the FFT. It is still useful as a simpler and less clouded expression for
attempts at analytical solutions and proofs. It may also be used with other
numerical integration methods.

4.3 Market dynamics

In the derivation of the two price expressions above, one of the fundamental
assumptions was that all the firms are risk neutral. In reality most firms are
not risk neutral but rather risk averse. Thus we should not expect the above
model to reflect observed data. Let A, denote the market dynamics. Then
the problem can be rephrased as

Ay # E(1n|F)
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A common solution to this problem is to find another probability measure
P, which is (somewhat confusingly) called the risk neutral pricing measure.
It is a requirement of P that it satisfies®:

A = Ep(1x]F) (4.3.1)

In this section we will derive the pricing measure and the market dynam-
ics. We will begin by looking at the theory of pricing measures, and then go
on to use the Esscher transform to find it.

4.3.1 Pricing measure

We want to give a brief overview of the idea behind pricing measures. In order
to do that we need to discuss some of the common expressions in finance.
We will not dive into technical details when it comes to defining these, but
rather give an intuitive idea.

The first question that needs to be answered about the pricing measure
is whether or not it exists. The second is where to start looking. Luckily
for us, both of these questions are answered by the fundamental theorem
of asset pricing [9]. Assuming an arbitrage free market, the fundamental
theorem of asset pricing tells us that there must exist a measure P satisfying
requirement 4.3.1. Furthermore it states that this measure is equivalent to
the objective measure P, and that all tradable assets must be martingales
with respect to P. There are some new expressions here, we will give a short
explanation:

That the market is arbitrage free, means that there is no way of investing
so that there is zero chance of loss and a positive chance of gain. That is, there
are no risk free profit opportunities. In practice, arbitrages occur, but they
will disappear quickly once they are discovered. Therefore this assumption
is generally considered to be quite realistic.

When we talk about the market we mean the collection all the assets.
It can be thought of as an n-dimensional stochastic process where n is the
number of assets [22]. When we talk about assets we mean the underlying
processes in the market; the sources of randomness if you will. In our model
the only asset is ;. In a model of the stock market it could be all the
individual stocks.

The fact that all tradable assets must be martingales with respect to P
in order to avoid arbitrage is illustrated by example 4.3.1.

3Recall that all prices are in time T currency, so we do not need to think about discount
factors.
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Example 4.3.1. Let S; be the price of a tradable asset, say a bar of gold. Let
IL;(Sr) = Ep(Sr|Ft). Suppose that I1,(Sr) < S, for instance 11;(St) = 90%
and S; = 100$. Then, supposing we have 10 bars to start with, we can sell
one bar of gold for 100%, buy a contract guaranteeing 1 bar at time T for 908.
Thus at time T we will have 10 bars and 10$. Thus a guarantee of making
10$ with no chance of loss, which is an arbitrage opportunity.

Now if instead 11,(St) > Sy, for instance I1,(St) = 100$ and S; = 903.
Then we buy a bar of gold and enter a contract to deliver a bar of gold at
time T in return for 1008 now. Thus at time T we will have made 10$ with
no risk, same as above, and again we have arbitrage.

So we know that a risk-neutral pricing exist and that it is equivalent with
the objective measure P. This gives us an idea about where we should start
looking.

The next question is: Are there more than one measure satisfying these
conditions? The second fundamental theorem of asset pricing states that
for complete markets there is only one suitable pricing measure, and thus
the price is uniquely determined. Loosely speaking, a market is complete if
for every derivative on the market one can construct a portfolio of tradable
assets that replicates the behavior of that derivative. At any given time, the
replicating portfolio will have the same value as the derivative a.s. This gives
a way of pricing the derivative: By finding the smallest price of a replicating
portfolio.

The assumption that the market is complete is generally considered more
unrealistic than the absence of arbitrage. In our model this assumption can
easily be shown to be false: In a complete market all assets must be tradable,
and in our model the underlying process is the total emission, which is not
tradable. Hence, as we model it, the emission market is incomplete.

The fact that the total emissions is not tradable means that even if
Es(Qr|F:) # @, we don not get an arbitrage since we cannot buy or sell
the underlying like we did in example 4.3.1. Therefore there is no martingale
requirement for non-tradable assets, and as pointed out in [3], any equivalent
measure will do* as a pricing measure.

How then are we to calculate the prices in our model? If any equivalent
measure will do, how can we say that one price is better than another?
One way is to use so called market price of risk. Suppose we find a way of
changing P into an equivalent measure that is a function of § € R. Then
we let A,(0) = Ep)(1g,5-|F) model the actual observed forward prices in
the market. We can then compute A;(6) — A;. We can think about this as a

4Tt will do in terms of satisfying the requirements of the fundamental theorem of asset
pricing
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way of quantifying the price of risk in the market. The difference A,(6) — A,
is called the risk premium and € is called the market price of risk. From
the difference in the observed data and our predicted price A; we estimate 6.
This estimate is called the implied market price of risk. The implied market
price of risk is used to decide on a pricing measure which again is used to
model A;. We can argue that P(f) is better than other equivalent measures
since it has been calibrated to data.

So now we know that all we have to do is to perform a measure change in
a way that the resulting measure is a function of some 6, and is equivalent to
P. Before we go on, let us quickly review what this means mathematically.

4.3.2 Measure change

We have mentioned that P is equivalent to P. Mathematically we say that
two measures i and v, defined on the same space X and the same sigma
algebra A, are equivalent, if for any A € A we have pu(A) =0 < v(A) = 0.
Now recall that the Radon Nikodym theorem gives us that as long as p
and v are o-finite, we can find measurable positive functions 2 and fl—’: called

d
the Radon-Nikodym derivatives so that g
dp
A)= [ 14—d
() = [ 1iGav
and p
v
V(A :/ 1A—dﬂ
(4) A

for any A € A. In our case with X = Q and P(Q2) = 1 = P(Q2) so we trivially
have o-finiteness. Hence we must have a stochastic variable Z%(w) > 0 such
that:

_ dP
P(A) = —(w)dP
= [ G5
Notice that since P = 1 we have:

P(Q):/Qj—i(w)szl

which is to say: E p(g—i) = 1. Therefore, finding an equivalent measure is to
find a suitable Radon-Nikodym derivative.

4.3.3 Esscher transform

We have already mentioned that we will use the Esscher transform to make
the measure change. This is mostly for practical reasons; under the Esscher
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transform the underlying ); will remain a Levy process with regards to the
new measure P. The Esscher transform works as follows: Let Q: be a Levy
process with characteristic triplet (A, b, ) such that f‘ 51 € e’ v(dr) < oo
Then the Esscher transform X; of ); is a new Levy process with characteristic
triplet (0, b, 7) such that :

b=1b z(e? — V(dz 4.3.2
f PECECE (43.2)
v(dx) = " v(dx) (4.3.3)

(4.3.4)

where 6 € R. The new process X;(0) defines a new measure P(6) on {2 such
that Q; is still a Levy process with respect to P(f) [9]. Furthermore the
Radon- Nikodym derivative of P with respect to P is given as follows [9]:

dP@)| @
dP |7 E(ef@r)
So in light of section 4.3.2, we know that:

_ 0Q:
Plo]|7(A) = /AW(WWP

This is what we need. We can now express:

eaQt
B(ehan)

Ai(0) = Ep)(lor>+|F1) = E( Lorsy[F)

In order to calculate A;(6,T) we can use the Fourier transform technique we
used above. For simpler notation we will suppress the dependence on ¢ in Ay
and P. With this in mind we compute:

At = EP < e (QT—7) fR e(faiz';)zyd |.Ft) (435)
e (QT =) o(QT—7)iy

= Je Ep ( o et ft) dy (4.3.6)

= Ji Steray Bp (TW| F) dy (4.3.7)

Since Q; is a levy process with respect to P we can compute:

Ep (e(a+iy)QT|ft) = Ep (e(a-i-ly)(QT Qt)‘ft) ( (a+1y)Qt’JT_') (4.3.
=Ep (e(aﬂy)(QT Qt)) elatiy)Qe (4.3
_ K (e(a+9+iy)QT7t) platiy)Qr (4.3.10)

E(efQr-t)
(4.3.11)
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We can express this in terms of the characteristic function of (). We have
E(e(a+9+iy)QT—t) _ E(ei(y—i(a+9))QT_t) — (T-t)¥qly—i(ato))

and
B(89r—1) = e(T-Dva ()

The final calculations give:

C(e+in)(@0) g

AlT) = g 2m(a +iy)  eT-Dve(=#) y

_ e atiy)  o(T-1)Yq(y—i(a+0))
/ (4.3.12)

e_’Y(O‘—"iy) . . .
:/—_e(T—t)(wQ(y—Z(a+9))—¢Q(—29))e(a+zy)(Qt)dy (4.3.13)
r 27 (a +1y)

a(Qe—) iy(Qr—)
_ e Q= / eyt .7 e(T—t)(wQ(y—i(aW))—%(_ie))dy (4314)
2 Jg (a4 1y)

We summarize this to a result:

Proposition 4.3.2. Under the assumptions of proposition 4.1.3 the market
dynamics Ay 1s given:

Qi— iy(Qe—
At _ e(Qt—7) / ey(Qt ’Y)e(T—t)(wQ(y—i(a+9))—¢Q(—i9))dy (4‘3.15)

where 0 is the market price of risk.

We can easily use the same method for the second price expression 4.2.1,
then we get:

AT) =G+ pw [ S Bp (€97 F) dw (4.3.16)

2miw

Doing similar computations as above we end up with the following proposi-
tion:

Proposition 4.3.3. Under the assumptions of proposition 4.2.1 the market
dynamics Ay is given:

At = 5 +pU

_ 1 e(Qt=7)iw+(T—t)(Yq(w—i0)—vq(—ib))
/ o (4.3.17)

2miw

where 0 is the market price of risk.
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Remark 4.3.4. We can add theq’s in 4.5.15 and in 4.3.17. This is possible
since they have the same levy measure. If we try to do so for 4.3.17, assuming
Q: is a subordinator, we see that

Vo(w — i) — to(—if)) (4.3.18)
= bi(w — i6 + i6) +/ e _ 1) — (0 _ Dp(dx)  (4.3.19)

— iw + / @m0 _ 20y (dy) (4.3.20)
0

= iw +/ e™ (e — 1v(dx) (4.3.21)
0

(4.3.22)

which is just YF(w), the characteristic exponent with Esscher transformed
Levy measure, which makes sense. So in this case we could have arrived at A,
using the Esscher transformed Levy measure instead of the Radon-Nikodym
derivative.

4.4 Findings

In this chapter we have arrived at relatively explicit price expressions for
general Levy processes in 4.1.3 and 4.2.1. We have also derived expressions
for the market dynamics in 4.3.3 and 4.3.2. We see that our price expressions
provide great flexibility since they hold for general Levy processes. It is
reasonable to believe that for some Levy processes, it should be possible to
use expression 4.3.3 or 4.3.2, and achieve a good fit to the empirical market
data.

In the article by Griill et al. they were able to use Ito’s formula to get
an expression for the dynamics dSF of the price expression [13]. This is
used to model the sensitivity of the price to the underlying. We have not
discussed it in this thesis, but there is a version of Ito’s formula for general
Levy processes [9]. It may be possible to use this to derive an expression
for the sensitivity corresponding to the expression in [13]. If the resulting
dynamics is not tractable, one could possibly estimate it instead. This would
be an interesting task for future work.
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Chapter 5

Examples

In this chapter we will look at some examples where we model (); as some
specific Levy process. For all of the examples we will include attempts at an-
alytical solutions. Even if the attempts are not successful, they are included
to show what approaches have been tried, and why they have failed. In the
last two examples we have also made numerical approximations.

The examples considered are the compound Poisson, the inverse Gaussian
and the Meixner process.

5.1 Compound Poisson

One of the simplest Levy-processes is the compound Poisson (C.P) process.
The C.P process is also a fundamental part of many Levy processes, and
all discretized paths of jump processes can be seen as a realization of a C.P
process. It us unlikely that the C.P process is a good way to model the total
emissions, but it is included because the properties just mentioned.

The C.P process is a process with exponentially distributed jump times,
and jump sizes following some probability distribution. The compound Pois-
son can be thought of as the sum of a Poisson distributed number of inde-
pendent identically distributed (i.i.d) stochastic variables. More precisely we
can define it as follows:

Definition 5.1.1. A Compound Poisson process X; with jump intensity A
and jump size distribution f is a Levy processes such that

Ny
X,=>Y

Where'Y; are i.i.d stochastic variables with probability distribution f and Ny is

41
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a Poisson distributed stochastic variable with parameter A\ independent from

Y; for all 1.

The characteristic function of a Compound Poisson process is connected
with its jump size distribution in a very nice and simple way [9)].

Theorem 5.1.2. Let X; be a Compound Poisson process with jump intensity
A and jump size distribution f. Then the characteristic function ®x,(z) is
given as follows

Dy, (2) = A1) _ At [ (€722 =1)f(da)

where f denotes the characteristic function of the i.1.d Y; with distribution

f.

This property of the Compound Poisson makes it easy to plug it into
our model. All we have to do is find a jump size distribution with tractable
characteristic function. The exponential distribution seems like the best
choice.

5.1.1 Computation

We will model the total emissions (); with a compound Poisson process with
intensity A and exponentially distributed jumps. So X; = vat Y; where Y;
are exponentially distributed with intensity § > 0. Then

So by theorem 5.1.2:

@Qt (2) — ekt<ﬁ_1) = ekt(ﬁfi2>

For easier notation we introduce two new variables: let h = T — ¢t and
q = Q; — . If we put this in to price expression 4.2.1 we get that the price
is given:

aiy ;
A = % " p'V/R 26m'y€Ah(ﬁ‘y”>dy (5.1.1)

Let us see what we can infer about the price from this expression. In
the special case when h = 0 the exponent is only ¢iy and the integral can
be easily computed using residue theory. Recall that A = 0 means that the
trading period is over and that the price must be either 1 or 0. By computing
the residues we confirm that for ¢ < 0 A; = 0 and for ¢ > 0 A; = 1. For all
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other cases we need to do some more work. It seems unlikely to find an anti
derivative so instead we will try a contour integral approach.

We see that the integrand has 2 singularities s; = 0 and sy = —¢3. Notice
that s; is a simple pole while sy is an essential singularity. Now let C'r be
the circle in C with radius R and parameterization y = Re® for 0 € [0, 27].

eAh(Blyy) .
If we look at 5, We see that:
7 eie
I {5tm) 0 5.1.2
p e | 5:12)

for all § € [0,27]. Thus we can use Jordan’s lemma to compute 5.1.1. Using
this, and that there are no singularities in the upper half plane we compute
the integral for ¢ > 0 and find A; = 1, which is reassuring. In order to find
A; when g < 0, if we want to make use of Jordan’s lemma, we compute the
contour integral in the lower half plane. Thus we must find the residue at s,,
unfortunately this is easier said than done. What follows is an unsuccessful
attempt that may shed some light on the difficulties.

Since sy is an essential singularity, the best bet is to find the Laurent
series of the integrand around s;. To do this, we rewrite the integrand and
make the substitution z = y + i3:

() e (222)

= 5.1.3

7y x—1f ( )

For simpler notation we let A = ¢f8 — M, B = iq,C = i\h3. Then the
integrand can be rewritten to the infinite triple sum:

00 oo ;
_ZeA-Q—Bz-i-Cx A " (L’ T jBkC]

— 5222 R (5.1.4)

7j=0 k=0 n=0

Since we are looking for the residue, we only need the coefficient of 27!, so

we set j =n + k + 1 and find that the residue is given by:

€A 00 Bkc(n—f—k-‘rl
Ekzzog (iB)k!(n + &k +1)! (5:1.5)
€A > n B n—k)C(n+1)
. (5.1.6)
5 2 2 B B T 11

A (n+1)
e C I'(n+1,i3B) (5.1.7)

A& (e )lp)
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Which again can be written as an integral. It can be seen that the sum 5.1.7
converges since:

Bn—Fk)(n+1)
(@8)*(n +11)

Bor-Rtth)
(@8)"(n — k)i(n+ 1)~

(5.1.8)

and _ .
C/(n+1) be= % (—1 + ebTBc)

5 ZZ zﬁ (n+1) i+bB (5.1.9)

n=0 k=0

for bB # i, but it is hard to find an explicit expression. It seems like numerical
approximation is a better approach, but then other more complex models are
more interesting.

5.2 Inverse Gaussian

In this section we will be using some well known facts about the inverse
Gaussian process as well as some complex analysis. This material is taken
from [9] and [20] respectively.

The inverse Gaussian (I.G) process is an example of a subordinator. The

[.G has Levy-measure:

Cef)\ac

1z>0dx

where changing ¢ will change the intensity of all jumps, and changing A will
change the decay rate of big jumps. In order to use our formula, we need to
know the characteristic function of the I.G. It can be found from its Laplace
transform:

E(eth) _ e—ZCtﬁ(\/)\—u—ﬁ)
We substitute u = zi and find that the characteristic function for Q; is given:

(I)Qt(z) = etlpﬂ? = _ZCﬁ( VA — 2z — \/X)

Now, plugging this in to the price formula 4.1.3 we get:

a(Qt— Q=)
4t Q=) / el j> ye(T_t)(_Qcﬁ(m—ﬁ»dy (5.2.1)
2 Jr (@ +1y)

5.2.1 Attempt at analytical solution

In order to make sure that we have a well defined function, we take 1/z to
mean the e'°8/#171a8(2)  Here arg(z) is taken to mean the principal value
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argument with branch cut along the negative real axis. This works since for
y and B € R, — yi is never a negative real number. In fact, in order for
B — yt to be on the negative real axis, we need:

y€{z|lz=ai,ae RNa < —f} (5.2.2)

where § = A — a. Now let us try to evaluate the integral. First observe that
the integrand has a singularity of order 1 at y = «ai. Second, observe that
our integrand has a branch cut in the set described in 5.2.2. This is the along
the negative imaginary axis from —f to —oc.

Now observe that

lim eAW=BVE—W — lim AW (5.2.3)
ly|—o0 ly|—o0
so for (Q; — ) > 0 and Im(y) > 0 the integrand will vanish as |y| — oc.
Therefore we have:
e(Qtf'Y)iy _
lim [ T 02V A—am V) gy, — (5.2.4)
5 o (ot iy)

for (Q: — ) > 0. Here C, is the half circle in the upper half plane with
radius p. So for (Q; —7) > 0 we solve the integral using residue theory. This
gives us A; = 1, which is as it should be. Also if T'—t = 0 the branch cut in
the lower half plane disappears. So when (Q; — ) < 0 we have A; = 0 since
there are no singularities in the lower half plane. In all the other cases, it
seems a little harder to solve the integral analytically.

It seems unlikely to find an anti derivative so the contour integration
approach seems like the best bet. But the branch cut gives us some trouble.
One could propose to integrate along negative semicircle and then up and
down on each side along the branch cut. This will not work since for a > \ we
get —( > 0 causing the branch cut will go through the origin and dividing the
proposed contour into two parts. Then the contour that follows the branch
cut will then double over itself, and it will no longer be simple closed.

Let us see what happens if we divide the integral into two parts, the
positive and negative line. Then we can create two contours, integrate them,
and add them together. Figure 5.1 illustrates the contours. In order to do
this let

KT = {lir%(xi +e)lreRAT < —B,e e R}
e—

and
K = {lin%(:ci —e)lreRAz < —B,e e R}
€E—
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L

Branch cut |,

NI

Figure 5.1: The contour is split in the middle.

The two sets kT and k™ is the branch cut approached from the two different
sides. Let us look at how the integrand behaves on these sets, for convenience
we will denote the integrand by f. We see that f is the same on both sets
except for the square root part, this is because:

Yy e k1, 3z € R,z < —f st: (5.2.5)

\/B—zyzllj%\/|ﬁ—z(xz+e)| S (5.2.6)

= —iy/|B+ 7] (5.2.7)
and

Vyer ,dr e R x < —f3 st. (5.2.8)

VB — iy =lim /|8 —i(zi - €)] S (5.2.9)
=i/[B + 7] (5.2.10)

So we see that f is different on each side of the branch cut, as should be
expected. Let us denote the integrand f by f; when integrating along s
and f; when integrating along ~. Now let C denote the semicircle in
the negative half of C with radius p. Recall that for Q); — v < 0 the contour
integral along €' will vanish as p — oo, except at the branch cut. Therefore,
all that is needed to solve the integral in 5.2.1 is to find:

—Bi —Bi

’ fay)dy — A fi(y)dy

—pi —pi

now for both f; and f; we can do the following substitution. Set z = yz,

then 5
—Bi 0
f:c(y)dy = / wa(Z)dZ, where z = yi

i B

—pi
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For convenience we set ¢ = (Q; — v) and K = 2hey/m. So what we want to
find can be expressed as follows:

pP—>00

p P
lim [ ifa(z)dz — / if1(z)dz, where z = yi (5.2.11)
B B

a 6

a [
p‘eqz—FK\/X—iK\/’B—Zl _eqz+K\/X+iK |8 — 2|
i

= lim dz
p—=oo Jg o+ z
(5.2.12)
p pa—if __ _a+i0
—lim [ i q: (5.2.13)
p—0 B a—+z
— tim ’)Z,e“(cos(—ﬁ) + isin(—6) — cos(0) — isin(é’))dz (5.2.14)
p—oo Jg o+ z
P et sin(f
i [0, (5.2.15)
p—oo ) a+z
Pt KV Gin(K _
—lim [ 2% S VIB = =) (5.2.16)
p—oo ) o+ z
P oq(zHA—a)+2heV TN ; 2h
= lim [ 2% sin(Zhevme) (5.2.17)
pP—30 Jo A +z

where we have substituted back for g in the final equality. If we multiply
with % we get the following expression for the price:

dz (5.2.18)

A — AT eV /OO e @2 5in(2(T — t)c\/72)
T 0

n A+ 2z

This seems to be as long as this approach takes us. It might well be possible
to solve 5.2.1 analytically but some original approach is needed.
In the next section we will try to simulate the price process numerically.

5.2.2 Simulation

In this section we will simulate the price processes when the underlying is
modeled as an inverse Gaussian process. We have chosen to use a straight
forward numerical integration approach. It is appropriate to mention how
an inverse FFT approach would work. -

The inverse FF'T is a fast way of computing the sum Z;-V:o ewx( 7)
for k = 1,2..N [7]. The sum can be used to approximate the integral in

expression 4.1.3 in analogy to the method described in the paper [7] by Carr
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et al. Then using the inverse FFT would give A;(k) for N equally spaced
values of k. This could be thought of as a discretization of the function
Ai(x), where x € [0, L].The upper limit L would have to be chosen with
consideration to Q.

In order to approximate A;(Q;) for some realization of @y, one could use
linear interpolation on the two closest k. This method might work very well,
but may need some more analysis with regards to efficient implementation,
and also with regards to the accuracy of the approximation.

For our purposes the straight forward numerical integration approach
will be fast enough. The simulations are done in Python using the numerical
integration routines in the numpy and scipy packages. These routines provide
estimates of the error due to numerical integration. They also warn when
these estimates seem to be inaccurate.

Simulation of the inverse Gaussian

Recall that since @); is a levy process we have

Qt, = Qu, — Qty + Qusy — Qs +Qpy — - — +Q4 (5.2.19)
~ Qytny F Quy ity o Quygy + Qi (5.2.20)

That is, the sum Qy, ¢, , + Qt, 11, » T+ + Qu—t, T @, have the same
distribution as ();,. Therefore we shall simulate Q); by partitioning ¢ in to n
parts, simulate every 4, using the marginal probability distribution

c- dtn ch-dtnm—)\m—ﬂ'CQ'dti/x
x3/2
and then add them all together.

Numerical challenges

There are some problems with numerically integrating the integral 5.2.1.
Therefore we will use the expression 5.2.18 that we ended up with after our
attempt at an analytical solution, which behaves better numerically. There
are still some challenges though; when the product 2(T — t)cy/7 is large
the sine function oscillates rapidly. Too rapid oscillations causes problems
with the numerical integration. Therefore we will use the scaling property of
stable processes described in [9]. We have that Q(), ¢) ~ R* - Qu/r(R*X, ¢).
This gives a more flexible price formula where R can be adjusted to minimize
numerical errors.

o (F2Qy/ n=7) AR +2(T—t)eV/7X /oo e(B*Qu/r—7)2 sin(Q(T—;t)c /7%)
0

d
RZ\ + ~ i

(5.2.21)

F(t,T) =

™
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Another problem that arises when integrating numerically is that when - is
big, e(®*Q:/r=is rounded off to zero. To try to mitigate this we can make the
substitution u = e* in the integral. This gives the following price formula:

e(R2Qt/R—’y))\R2+2(T—t)Cm /OO u(RZQt/R_F}/) Sln[Q%c /ﬂ' 1n(u)] d
U
1

F(t,T) =
(t.T) m R2Au + In(u)u

(5.2.22)

The integrand in this formula is less likely to be rounded off to zero, but the
integral will likely converge slower.

Still there are challenges with certain combinations of parameters. If we

let T grow we must increase R to maintain small error, but this will result

in the integrand being rounded off to zero. It also results in the product
(R?Qy p—MARZ4+2(T—t)cv/mX

(T —t) - c easily getting so big that < is rounded off to

inf.

s

Simulations

In figure 5.2 we can see the total emission and the price below it. In the price
plot, the green plot shows the result from using the polynomial integrand,
and the blue plot is from the exponential integrand. In this case, they seem
to agree very well. We see that jumps in the total emission leads to jumps
in the price. We also notice that, in accordance with proposition 3.3.4, since
there are a lack of downwards jumps in the underlying, the price never jumps
downwards. In some cases, not in this particular simulation, the downwards
movement is so steep that it might be argued that it is equivalent to a jump,
even though it is in fact continuous.

In the simulations we have used the quad function from the scipy library
to do the numerical integration. The quad function provides an estimated
upper bound for the error in the numerical integration. In figure 5.3 we can

: 1 (R?Qu /=" AR?+2(T—t)ev/ix : :
see this error multiplied by the constant € — , which will
be an estimation of the upper bound of the error in the price, due to the
error in the numerical integration.

In figure 5.4 the total emission hits the total allowance, and the price
becomes 1, as it should. We also notice that the exponential and the poly-
nomial integrands disagree quite much as the price grows closer to 1. This
is the numerical vulnerability of the polynomial integrand since its integral
converges much slower. We can see that the error is huge by looking at figure
5.5. Strangely enough the error in 5.5 is not big enough to account for the dif-
ference between the prices, but at this point in the simulation python warned
about round-off errors, and that it was not able to accurately calculate the
error.
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05| — Total Emission
— Total Allowance
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Figure 5.2: Above: Total emission, Below: Price. The parameters used were
T=1,R=1~y=04,c=1,X=20.
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Figure 5.3: Estimated maximal error, due to numerical integration, of the
price processes in figure 5.2.
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— Total Allowance
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14l — Exponential integrand
|| — Polynomial integrand
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Figure 5.4: Above: Total emission, Below: Price. The parameters used were
T=1,R=1~7y=04,c=1,\=20.
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Figure 5.5: Estimated maximal error, due to numerical integration, of the
price processes in figure 5.4.
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5.3 Meixner

In this section there is some general information about Meixner processes
which is given without proof, this information is from the report by Schoutens
21].

The Meixner distribution have enjoyed growing popularity in financial
applications due to its flexibility and tractability. It as been shown to model
the log returns of financial assets much better than for instance Normal
distribution. It has also been shown that models based on the Meixner
distribution shows great improvement over models where the underlying is
Brownian motion.

Because of its flexibility and tractability we will try to use the Meixner
process in our expression 4.2.1. The Meixner distribution is an infinitely
divisible distribution with probability distribution function:

F<d+ix_m)
a

where a > 0, —7m < b < m,m € R and d > 0. Since it is infinitely divisible,
the Meixner distribution can be used to define a stochastic process called the
Meixner process. The Meixner process is like the Inverse Gaussian process,
a pure jump process, but contrary to the I.G it is not a subordinator. Now
let (); be a Meixner process, then its characteristic function is given:

b 2dt
®(2), = (%) e (5.3.2)

cosh( 52

2c0s%4(b/2) ba=m) ?
p(x;a,b,m,d) = We a

(5.3.1)

By theorem 4.2.1 we can express A; as follows:

1
At:§—1—p.v

oo _ i, (g+mh)iw 2dh (b
e COSs
/ g ) (5.3.3)

2
o 27rwcosh2dh(“w2_ )

Because of the following proposition we will only need to consider the ex-
pression 5.3.3.

Proposition 5.3.1. Let the total emission @y be modeled by a Meizner pro-
cess Q(a,b,m,d), then the risk neutral price Ay(a,b,m,d) is just:

2dh
1 o _jetiw [ cos({l)
At(a7 CLQ + b7 m, d) = 5 _l_ pv/oo 271'@00 <COSh(aw_i(9+b)) dw
2
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Proof. Using proposition 4.3.2 we see that

- 1 ® el d(w — 16
Ai(a,bym,d) = 5 + p.v/ QWiwq)((—iH)Q)Qh dw (5.3.4)
oo ,
2dh
1 % —jed cosh(e—‘”b))
= - . d 5.3.5
2 + P V/_‘OO 2miw (COSh(awz—M> w ( )
2dh
1 © _jediw cos((gﬁb))
= — . d 5.3.6
2 +pv/_oo 2miw (Cosh(%(%b)) w ( )

]

We are now ready to investigate how the price acts when the underlying
is a Meixner process. We will first look at the expression analytically, and
then we will look at simulations.

5.3.1 Attempt at analytical solution

Let’s see what we can say analytically about the price A; when the underlying
is a Meixner process. We will try to solve the integral in 5.3.3 using Cauchy’s
residue theorem. Therefore we need to identify the poles of the integrand.
Let’s denote the integrand by f

—jel CcoS

g+mh)iw 2dh(%)
27w cosh® (2-1b)
We will restrict ourselves to the case 2dh = n for n € N. In this case we see
that f has simple pole at wy = 0. Also for each n € N and k € Z we see
that f has a pole of order n at wy = W That is, the integrand has
an infinite amount of poles of order n spread out with regular intervals along
the imaginary axis.

Now let C'r+ and Cr- be the semi circles, with radius R, in the upper
and lower half plane of C respectively. In order for us to use Jordan’s lemma
on Cr+ we need

cos?( g)

lim .
. 0 _j
R—oo | Rei? (:osh%lh(—“Re2 Zb)

=0 (5.3.7)

for all § € [0, 7], and similarly for Cz-. This is not the case if we just let R
pass continuously along the real line, since as we just concluded, f has a pole

at wy = w for k € Z. To avoid this difficulty we pick a sequence in
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R\{%jl)”' :keN } and let the radius R increase as the elements of that

sequence. So, let the sequence R; be defined as follows:

b+ 27
R, = + 2l
a
Then we have
2dh (b
lim |——— (2; =0 (5.3.8)
7700 | Reif cosh? (4R =2 =)
= lim p.v/ f(w)dw =0, for ¢+ hm > 0 (5.3.9)
e Crt
and lim p.v (w)dw =0, for g+ hm <0 (5.3.10)
J]—00 CR.f

J

by Jordan’s lemma. This means that after accounting for the pole at 0, all we
have to do, is to find and sum up all of the residues in the upper or lower half
plane for g+ hm > 0 or g+ hm < 0 respectively. Let ST and S~ respectively
denote the sum of the residues in the upper half and lower plane of C. Then
the price A, is given:

[ 1=2mST Q-+ (T —t)m>0
A= { —2miST Qi —v+ (T —t)m <0 (5.3.11)
This follows from computing the residue of f at 0 and using Cauchy’s residue
theorem.

The residue of a pole of order n is easily found, and the sums seems
to converge, so that in principle there should be nothing stopping us from
computing the price for arbitrary n. The only problem is that the size of the
computation grows very quickly. Below is the computation for the simplest
cases dh = 1 and dh = 2. For simpler notation, we introduce the following
notation A = ¢ + hm and By = (b+ (2k + 1)), also the steps are kept to a
minimum. In the following Fi(.;.;.) denotes the Hypergeometric function.

o 2dh =1:
Res (f,wi) = lim (w — wg) f(w) (5.3.12)
wW—W
92 _Afk
== (5.3.13)

By,
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For A > 0 we find:

- Z Res (f,wk
k=0

00 . _ AG+EE+DT)
2ie -

< b+ (2k+ )m
2iF, (1 H_W.Iy-&-ﬁ_eﬂfﬁ)

om0 97
ew(b"‘ﬂ)
For A < 0:
) :ZRGS (f5wr)
k=1
2 9je- MG
0 b—(2k+ )7
2F (1.5 5 )
B Ty
o 2dh = 2:
. d ,
Res (f,wy) = lim —((w — wy)2f(w))
w—wy dx
di(a+ ABy)e "
aB}
For A > 0 we find:
:ZRGS (f?wk)
_247, a+Ab+(2k+1) )) M
a(b+ (2k + 1)7)2

95

(5.3.14)

(5.3.15)

(5.3.16)

(5.3.17)

(5.3.18)

(5.3.19)

(5.3.20)

(5.3.21)

(5.3.22)

(5.3.23)

(5.3.24)

di(a+ A(b +m))Fy (1 bir b (b43m)A+a. b43r be3m (b+27;)l;1+a; e%m)

) 2w ) 2 ) 2AT T R T

ae@ (b + 71.)2

(5.3.25)
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For A < 0:

- :iRes (f, wr) (5.3.26)

—A(b—(2k+1)7)

4i(a+Ab— (2k+1)m))e a
_Z a(b— (2k + 1)7)2

(5.3.27)

di(a+ A(b—m))F, (1 b n=b (Br—bA-a. 3r_b 3wb (r—bA-a, 24x

» 21 0 2m ) 2Am Y2 ) 2w ) 2Am )

)

aet (b —m)?

(5.3.28)

We see that for these two cases the price A; can be expressed in terms of the
Hypergeometric function, which can be reasonably easily and well approxi-
mated. As we have already commented, there should be nothing in the way
of computing the price for arbitrary n, except that the computation grows
quickly. For large n it is likely more feasible to just numerically approximate
the price. Another issue with the above solution is that it only holds when
2dh is an integer. This means that the number of times for which the price
can be computed this way is dependent on the parameters T and d, and is
potentially very limited for small d. In this case however, as we shall see,
numerical approximation works well.

5.3.2 Simulation

We use the same simulation method as in the inverse Gaussian case. We
choose a time window on which we want to model the price. Then we parti-
tion this window into n parts. We then draw n Meixner distributed samples,
and model the total emission as the sum of these. It turns out that the
Meixner process is not so easily sampled since the quantile function is not
known in closed form [12]. In order to get around this problem, we use
a method described in [1] to estimate a Meixner distributed sample. The
method is as follows:

Meixner distributed sample

1. Use the probability distribution function (PDF) and numerical integra-
tion to estimate the cumulative distribution function(CDF).

2. Draw uniformly distributed random variables on the interval [0, 1] using
a pseudo random generator.
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Figure 5.6: The PDF of the Meixner distribution and the distribution of the
random samples.

3. Use the estimated CDF to inverse map the uniform random sample.

The computations were done using Python and the numpy library for
numerical applications. There were some issues with the accuracy of the
approximation to the CDF which led to the sampled variables disagreeing
with the Meixner distribution. The accuracy depended on the parameters
a,b,d and m of the Meixner distribution. The parameter that seemed to
have the largest impact was d. For large d the CDF came completely off,
even for very fine grids in the numerical integration in step 1. On the other
hand, when d was small (0.01 or less), changing the other parameters only
had minor effect on the accuracy. In figure 5.6 the PDF is plotted with
parameters a = 6.7,b = 0.6,d = 0.001 and m = 0.3. Along with the PDF
the approximated Meixner distributed samples with the same parameters is
plotted. We see that the samples fit reasonably well with the PDF.

Price simulation Using the random samples the total emissions were mod-
eled. Then the futures price was computed using 5.3.3. This shows that the
expression 4.2.1 works well numerically when straight forward numerical in-
tegration is used.

Again there seemed to be a problem with roun-off errors for certain values
of the parameters, and again d seemed to have the most impact. For large
values of d Python report round off errors causing the numerical integration
to become inaccurate. It should be mentioned that it was the product dT'
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= Total allowances
—— Price path 1
— Price path 2
—— Price path 3
— Price path 4

200 400 600 800 1000
Time

Figure 5.7: A; when the underlying is Meixner process. The prices have been
multiplied with the total emission cap which is set to be E(A;) + Var(A;)/8.

that had to be kept from becoming to large. This is natural since part of the
integrand in 5.3.3 is exponentiated by 2d(T — t). With 7" = 1000 it works
well with d = 0.001. In figure 5.7 we see four different paths of the futures
price: The parameters are the same as in the samples generated above. We
see that the paths demonstrate both upwards and downwards jumps. We
can also see that they seem to become more volatile as t — T, just as in the
[.G simulations.

In figure 5.8 we see the estimate for the error due to numerical integration
provided by the numpy package. As in the I.G simulations, the error grows
towards the end of the trading period. But it remains small throughout the
whole trading period, and Python does not give any warnings.

5.4 Findings

We have now considered pricing of A; using three examples of the total
emission ). We have not been able to express the price analytically in any of
the examples, except semi analytically for some special times ¢ in the Meixner
case. Of the three examples we have looked at, the Meixner process seems
most promising. It has great flexibility and is simulated numerically without
much difficulty. Furthermore it allows for both positive and negative jumps
in the price. The inverse Gaussian is less flexible and does not allow negative
jumps. It might be argued that negative jumps are not so important since
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Figure 5.8: The figure shows estimated upper bound of the error due to
numerical integration. The price path considered is price path 1 from figure
5.7.

they can be approximated by steep continuous decrease.!

An issue with the model of Griill et al. was that it is hard to know
how much the approximation differs from the "real” price. In the simulation
method we used, we got a nice estimate of the error due to numerical inte-
gration. In the I.G case this should be the only source of error. Admittedly
the estimate is completely off as ¢ grows close to T', but we are warned about
this by the integrator. In this way we have good control over the error. In
the Meixner simulation another source of error is the estimation to Meixner
distributed samples. In spite of this, the numerical error should be reason-
ably well under control if the error due to numerical integration is considered
in combination the sample plot.

I'The market data will always be jumpy since it is discretized. It is a matter of taste if
one thinks about the data as the realization of some fundamentally jumpy, or continuous
process
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Chapter 6

Options on emission futures

In this chapter we will have a look at how to price standard call and put
options on forward emission allowances. Using an SDE approach, such as
in [4] and [6], the risk neutral option price can be expressed in terms of an
SDE. The expression can be evaluated using the Monte Carlo method and
the Markov property of the strong solution to the SDE [4].

We have not used the SDE approach, but the Fourier approach from Carr
et al. [7]. Thus it would be more close at hand to try to express the option
price in terms of an integral expression of the characteristic function of Q.
Before we go on, let us quickly review some of the standard theory regarding
options.

6.1 Options

We will only consider standard European call and put options. A European
call option on an underlying asset is a contract allowing the holder to buy
the underlying asset at an agreed upon price called the strike, at an agreed
upon time, called the maturity of the option. The payoff function for a call
option with strike price K and maturity ¢ looks like (4; — K)* where A, is
the underlying asset at time ¢. In our case the underlying is forward contract
on an emission allowance.
We know from the call-put parity relation that:

Ci(s,K) — Pi(s,K) = Ay — e "= K [9]
where C' and P are the prices of call and put options respectively. The call-
put parity relation can easily be deduced by looking at the general expressions

for P = E(max(4;) — K,0) and Q = E(K —max(A;),0), and then using the

61
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fact that max(z — K, 0)—max(K —x,0) = x — K. Therefore, if we know one,
we know the other. For this reason we will only consider call options.

In a complete market there would only be one price Cy(s, K) of a call
option, and it could be found by finding a replicating portfolio. Since our
market is not complete, there is no replicating portfolio and from a modeling
point of view the price will not be unique. Another way to find Cy(s, K) is
to find a risk neutral measure Q so that Cy(s, K) = Eg([A; — K]+ | Fs) =

E(R[A - K] "|F.), and then calculate that expectation. This is in analogy
with the way we found the market dynamics As.

There are many ways of choosing the risk neutral measure [9], but we
will not concern ourselves with this. We will just use Q to denote any risk
neutral measure and do the computations in general.

6.2 Computation

We will try a direct approach using the technique we used to express A; in
terms of the characteristic function of @);. Before we start the computation,
it is appropriate to make a remark regarding the payoff function for a call
option. We have already used max(A, — K,0) and [4; — K|t to mean the
same thing, which it is. Also note that that:

A - gt = Ao KA K]
! 2

= (A = K)Li,— k>0 (6.2.2)

At any time, we will pick the most convenient way of expressing the payoff
function. Now recall that 4, = E(4£1,...,|F;) we see that:

dQ dp *
Ct(S,K) =F (d—P |:E (d—plQT>’y|ft) — K:| ‘fs>

So C} can be viewed as a function of Q7. Let us use the Fourier technique.
For practical reasons we will suppress the dependence on Q)7 and just write

A,. Recall that: ‘
1 _ efﬁb e(ﬁfb)Zyd
r>b — o ® 6+2y Yy

for some 8 > 0. Therefore we can write Cy(s, K) as follows:

—d
27 r B+iy

a(s,K):E@(( — K) 3
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using similar calculations as above we get the following:

(flt—K)e_BK/e(At_K)iy
K)=F d 2.
Cils. K) @( o | Gl (623)
(A; — K)e PE e(A—K)iy
= E Fld 6.2.4
/ @( B dy (6.2
e BK e Kiy _ -
= Eg (A, — K)e™|F,) d 2.
i | B (A=K IR )ay (629
(6.2.6)
So now what we need to do is to calculate:
Eq ((At . K)e"—‘”y|}"5> (6.2.7)
—Fy (Atef‘ﬂyyfs) _ KEq (eA”y\}“g) (6.2.8)

Unfortunately, by proposition 3.3.1 A is not a Levy process, so to find the
expectation may be difficult. Therefore it seems doubtful whether this direct
approach would be fruitful.

In the paper by Carr et al. the price of a European call option is expressed
in terms of the characteristic function of the logarithm of the underlying.
In our case that would translate to the characteristic function of In(A;).
Therefore, if we could express the characteristic function of In(4,) in terms
of the characteristic function of @)y, we would arrive at a relatively explicit
expression for C;. Let us see what happens with (™)) if we write out
the expression for A;:

E(eiyln(gt)) — E(Aiy) (629)
dP Z'y
1 Q)i+ (T—1) (o (w—if) —vo(~if)) W
=F {— +p.v/ , dw] (6.2.11)
2 R 2miw

If we assume that ); has a known closed form probability density function
g, we can write 6.2.11 as :

5 1 et=Twq(-ib) o(T=t)bg+(@—7)iw oy ty
-t . 6.2.12
b e [ [ o) w2
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The integral inside the expectation can be numerically approximated, giving
us an approximation of the characteristic function of In(A;). This approxi-
mation can be used in the method of Carr et al. If ¢); has no known closed
form probability density function, the Monte Carlo method may be used to
estimate F(A%). For the sake of clarity we summarize this idea in a propo-
sition:

Proposition 6.2.1. Let the risk-neutral price at time s of a call option with
strike K and maturity t be denoted C(t, K). If the total emission @Q; has
a closed form probability density function, the price Cy(t, K) can be approz-
imated. This is done by solving 6.2.12 as an approximation of the charac-

teristic function of In(A;), and then using this approzimation in the method
described in Carr et al. [7].

6.3 Analytical approximation

In this section we will try to gain more knowledge about the option price by
finding upper and lower bounds in the risk neutral case. It is appropriate
with a reminder that the futures price 4, is in time 7" money and normalized.
Therefore, the strike price K and all expressions derived on A, and K, will
also be normalized. With this in mind, we continue:

In the case when the buyer is risk neutral, the price for call option
C'(s,t, K) with maturity ¢ and strike price K on an emission forward contract
is given by the expected payoff Cy(s,t, K):

Co(s,t, K) = E(max(A; — K,0)|F,)
in time s. Thus lemma 6.3.1 can be interpreted as a lower bound for this
price.
Lemma 6.3.1. The expected value of an option on A, is bounded below by:

E(max([lt — K,0)|Fs) > (/_13 - K)li g

Proof. Since A, = E(%IQTM\]Q), it is a martingale with respect to the
objective probability P. Also notice that the payoff function max(A, — K, 0)
is convex. Thus we can use Jensen’s inequality for conditional expectations
as found in [22], so

E(max(4; — K,0)|F,) > max(E(4|F,) — K,0) (6.3.1)
= max(A4s; — K,0) (6.3.2)
= (A, — K)o g (6.3.3)

]
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Now that we have a lower bound for the risk neutral option price, it
would be interesting to see if we could find an upper bound. There has been
much work done on finding converses to the Jensen inequality, such as the
Lah-Ribari¢ inequality and the Jensen-Griiss inequality. The main focus in
the literature seems to be on discrete versions of the inequality. Discrete
inequalities is not without interest to us since any numerical approximation
will be bounded above by such an inequality and also since many of these
inequalities can no doubt be generalized to the integral case, as is indeed
remarked in [10]. However, for us the main objective is to show that a
decent upper bound can be found, and therefore we will not spend too much
time trying to find the absolute best inequality, but rather use one that
works in our case without too much customization. In the paper by Bakula
and Pecari¢ [2] they prove an integral version of Lah-Pecari¢ for m-convex
functions. In our case, with the max function, we have a 1-convex function
(just convex) in which case it is just a special case of the inequality of Pecari¢
and Beesack in [17], which is the one we will use. Incidentally, by theorem
6.3.4, it turns out that this is the best maturity-independent upper bound
we can hope for.

Lemma 6.3.2 (Converse Jensen [17]). Let E be a non-empty set, and L be
a linear class of functions g : E — R satisfying L1 and L2. Also let T be a
linear functional satisfying T'1,T2,T3.

L1: If g,h € L then ag + bh € L for a,b € R
L2: We have 1 € L where 1(t) =1 for allt € E

T1:  A(ag + bh) = aA(g) + bA(h) for all a,b € R and
g,helL

T2:  Ifge L and g(t) >0Vt e E, then A(g) >0
T3: A1) =1

Now, if f is a convex function on an interval I = [m, M] C R. Then for
all g € L such that g(E) C I and f(g) € L we have

< M-T(g)

T(f(g)) < =2 f(m) +

Theorem 6.3.3 follows directly from lemma 6.3.2 and lemma 6.3.1
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Theorem 6.3.3.

(A, — K) 14 g < E(maz(4, — K,0)|F,) < A,(1 - K)

Furthermore, the upper bound is the best possible upper bound that is inde-
pendent of maturity time t.

Proof. We see that the space L'(£2 x [0,00)) of stochastic processes with
finite expectation satisfies L1 and L2. Also, for all s € [0,00) we see that
E(:|F,) satisfies A1 — A3. The forward price A4; is bounded A;(Q2) C [0,1]
and thus A; € LY(Q x [0,00)). The function f:

f(Ay) = max(4, - K,0) = (A~ K) ; A — K|

is convex on [0,1] and |f(4;)| < 1, so f(A;) € LY(Q x [0,00)). Therefore
all conditions for using lemma 6.3.2 is satisfied, and the right side of the
inequality follows. The left side of the inequality is from lemma 6.3.1. The
fact that the upper bound is the best possible time-independent upper bound
follows from theorem 6.3.4. O]

Now we have both a lower and upper bound on the expected payoff of
the call option C(s,t, K). In the case t = T we can do even better. To see
this, notice that the expected payoff Cy(s,t, K) is a bounded martingale for
all £, 0 < Cy(s,t, K) <1, and Cy(s,T, K) is binary at time s =T s.t:

Co(T'T,K)=1—K or Co(T, T, K) =0 a.s.

Hence we can use theorem 3.3.2 to see that

P(C(T,T,K) =1 — K|F,) = % (6.3.4)

Using lemma 3.3.2, we can also find an expression for Cy(s, T, K), we sum-
marize in a theorem:

Theorem 6.3.4. For timet =T, the expected payoff Cy(s, T, K) for the call
option C(s,t, K) can be computed:

Co(s5,T,K) = E(max(Ar — K,0)|F,) = A, (1 — K) (6.3.5)

Also the probability that the option C(s,t, K) pays off can be computed:

P(Co(T, T,K) =1— K|F,) = A, (6.3.6)
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Proof. In the special case when ¢t =T we know :
max(Ar — K,0) = (1~ K) L, pe(@) = (1 - K)Lg, (@)
And thus, using lemma 3.3.2 we find
Co(s, T, K) = E(max(Ar — K, 0)|F,) = P(Ar = 1|F,)(1 - K) = A,(1 - K)

which gives 6.3.5. Combining this with equation 6.3.4 we get 6.3.6. The
expression 6.3.5 says that Cy(s, t, K) attains its upper bound for t = 7. This
means that our upper bound is indeed the best we can get that is not time
dependent. O

6.4 Findings

We have found that the expected payoff can be explicitly computed for ma-
turity time 7'. For many market participants this will be the most interesting
time. These options are written on actual emission allowances, and not fu-
tures. Therefore they provide a way of insuring power producers that they
will have enough allowances at the end of the trading period. Another use-
ful tool is equation 6.3.6. It can be used to assess the risk of the option
C(s, T, K).

In figure 6.1 the price of a call option with maturity 7" is plotted as a
function of A; for different strikes. The path of A; is simulated using a
Meixner process to model );. We see that the paths of the option prices
follow the path of the futures price. We also see that the options with higher
strikes are more volatile.

We have also found an upper and lower bound on the expected payoft of
a call option. If we subtract the lower bound from the upper bound, we get a
band within which the Cy(s, T, K') must lie. This band can be thought of as
the size of the uncertainty about Cy(s, 7T, K). In figure 6.2 we see the size of
the uncertainty for for different values of A; and K. The largest uncertainty
is 0.25 when A, = K = 0.5. For other values the uncertainty falls drastically,
such as for A, = 0.3 and K = 0.2, then the uncertainty is 0.02. It should be
mentioned that this uncertainty must be seen in relation to the size of the
price. However, when A, and K have the right values, the bounds may be
used as a very quick way of getting an estimate of Cy(s, T, K).

For Call options with maturities ¢ # T', the method described in proposi-
tion 6.2.1 may be used to evaluate the expected payoff. We have not imple-
mented this method, but it would be an interesting task for future work.
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Figure 6.1: The underlying price path of A, is price path 1 in fig 5.7.
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Figure 6.2: G(A;, K) = Ay(1 — K) — (Ay — K)14,>k. The plot shows the
normalized uncertainty within which Cy(s, ¢, K) must lie.



Chapter 7

Summary and ideas for further
work.

In this thesis we have taken a reduced form approach based on the work of
Carmona et al. [5]. By using their conditions for the existence of a market
equilibrium, we have expressed the risk-neutral price of emission futures in
terms of the characteristic function of ); in 4.1.3 and 4.2.1. We have done
this by modeling the total emission @); directly as a Levy process. We have
also found the expressions 4.3.2 and 4.3.3 for the market dynamics of emission
futures. These expressions are reasonably explicit, and even though attempts
at analytical solutions have not been successful, the expressions have been
shown to allow numerical approximations for some examples of @;. It would
be interesting to further investigate the price expressions for different ways
of modeling the total emission, and see how well they can be calibrated to
empirical data.

From the examples we have looked at, modeling the total emissions as
a Meixner process seems most promising. The resulting price expression
behaves well under numerical approximation, and even allows a semi analyt-
ical expression for some values of t. When the Mexiner process is used to
model the underlying, the price simulation shows both upwards and down-
wards jumps. This is in accordance with market data. The flexibility of the
Meixner process leaves hope that the model can be well approximated to
empirical data.

In the last chapter we considered European call options on emission fu-
tures. We analytically expressed the risk-neutral price of a call with maturity
T, and the probability of such an option being profitable, in theorem 6.3.4.
For call options with general maturity time ¢ we proposed a method for nu-
merical approximation of the risk-neutral price in proposition 6.2.1. We also
derived maturity independent bounds for the risk-neutral price and proposed

69
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that these may be used as a way approximation for the right values of the
futures price A, and strike K. The analytical results on options in chapter 6
are based on the result 3.3.2. This result is new to the best of my knowledge.
It would be an interesting task for further work to test the method of
proposition 6.2.1 and calibrate the results to empirical data. In adition,
taking the option prices, computed either by equation 6.3.5 or by proposi-
tion 6.2.1, and deriving the implied volatilities of Black-76 would provide an
interesting indication of our model’s inherent ability to account for risk.
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