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Chapter 1

Introduction

This thesis examines a system of elliptic partial differential equations. The
system itself is not elliptic. It will be called "the simplified k-ǫ model" and is
defined as:

{

ǫ−∆k = f1(x) on Ω

−∆ǫ + k = f2(x) on Ω.
(1.1)

There are two main goals in this thesis. The first goal is to determine if a
previously unused set of boundary conditions is numerically stable. The sec-
ond goal is to make a stable implementation (1.1) using a mixed finite element
method. If these goals are reached, the lessons learned from examining the
simplified model can be valuable when implementing the full k-ǫ-model.

The new set of boundary conditions (1.3) will be compared to a set of
boundary conditions (1.2) from the literature [1]

BC1 =

{

ǫ(x) = g1(x) on ∂Ω

k(x) = g2(x) on ∂Ω
(1.2)

BC2 =

{

ǫ(x) = g1(x) on ∂Ω
∂ǫ
∂n = g2(x) on ∂Ω.

(1.3)

Previous work on the k-ǫ-model by implementing the finite element method
discovered issues with convergence of the numerical scheme [2, 3, Smith, R.M].
Smith used a continuous Lagrange approach to the problem, which only al-
lows for one boundary condition for each variable.

The problem (1.1) is a simplification of the more complex turbulence prob-
lem called the k-ǫ- model (1.4):

∂tk + ū∇k − 1
2 cµ

k2

ǫ
|∇ū +∇ūT|2 −∇ ·

(

cµ
k2

ǫ
∇k

)

+ǫ = 0

∂tǫ + ū∇ǫ− 1
2 c1

k2

ǫ |∇ū +∇ūT|2 −∇ ·
(

cǫ
k2

ǫ ∇ǫ
)

+ c2
ǫ2

k = 0.
(1.4)
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8 CHAPTER 1. INTRODUCTION

The k-ǫ- model is one of the most commonly used turbulence models. It con-
sists of two transport equations and models the transport of the variables k,ǫ.
The variable k represents the turbulent kinetic energy, while ǫ represents the
turbulent dissipation. A new set of possible boundary conditions should be
useful for using the model in engineering problems.

In the study of the simplified k-ǫ- model, the finite element method (FEM)
is utilized. Both regular and mixed finite element methods are used. The work
on mixed finite elements largely depends on two publications [4, 5].

The element types Lagrange-2, Lagrange-3 and Hermite elements are used.
The Lagrange-elements are chosen because they are H1(Ω) conforming and
are among the simplest and most used elements. The Hermite elements are
H2(Ω) conforming and among the simplest elements to conform with H2(Ω).
Hermite elements are crucial because they allow for two boundary conditions
to be set. They are therefore needed to examine what boundary conditions can
be set. These two element types will be used when examining the stability of
the simplified k-ǫ- model.

Hermite elements are not commonly used. One of the reasons is round-
ing error issues pertaining to mesh refinement. These issues are solved in
this thesis in chapter 6 by scaling the basis functions. Since they are not com-
monly used, there is not a lot of literature on the matter, thus most of chapter
7 through 9 is original research.

In chapter two, the thesis enumerates a list of boundary conditions known
to work. The use of a different type of boundary conditions is potentially use-
ful when applying the k-ǫ model to real life problems where the experimental
information about the boundary conditions is limited.

Time is excluded from the simplified models. To implement time, it is nec-
essary to first calculate the current state of the system, and then use the time in-
formation to calculate the next time step. If the calculation of the current state
is inaccurate, it is not possible to calculate the correct states for later times. If
the approach proves useful, then adding time to the models can be done.

The analysis of condition numbers and the preconditioning of the systems
is based on the papers [6, 7]. The preconditioner is constructed so that when
it is combined with the differential operator becomes an automorphi. Analyz-
ing the preconditioned form will say something about how well defined the
differential form is and how stable the solutions are.

For the Finite Element Method the books [8, 9] are used.



Chapter 2

Arriving at the problem

For a sense of completeness we explain the assumptions, reasoning and ideas
that leads to the k-ǫ- model. We follow [1, p. 40-41].

The problem (1.1) is a simplification of the more complex turbulence prob-
lem called the k-ǫ- model (2.5). This is derived from the general Navier-Stokes
equations for incompressible flows (2.1)

∇ · u = 0

∂tu + u∇u +∇p − ν∆u = f
ρ

.
(2.1)

with ν as the kinematic viscosity, p = P/ρ is the reduced pressure, ρ is a
density field, u is a velocity vector field, P is a pressure field and f represents
external forces. Consider (2.1) with random initial data u0 = ū0 + u′0, where
ū represents the expected value and u′0 is the random element. Taking the
expected value of the entire Navier-Stokes then leads to

∇ · ū = 0

∂tū + ∇ · (ū + u′)⊗ (ū + u′) + ∇ p̄ − ν∆ū = f̄

which is the same as

∇ · ū = 0, R = −u′ ⊗ u′

∂tū +∇ · (ū ⊗ ū)+ ∇ p̄ − ν∆ū = f̄ + ∇ · R.
(2.2)

With the following assumptions, it is possible to derive the k-ǫ equations:

• Frame invariance and 2D mean flow, νT a polynomial function of k,ǫ.

• u′2 and |∇ × u′|2 are passive scalars when convected by ū + u′.

• Ergodicity allows statistical averages to be replaced by space averages.

• Local isotropy of the turbulence at level of small scales.

9



10 CHAPTER 2. ARRIVING AT THE PROBLEM

• A Reynold hypothesis for ∇× u′ ⊗∇× u′.

• A closure hypothesis |∇ ×∇× u′|2 = c2
ǫ2

k .

The set of equations used to find R, the turbulence in the flow, is

k =
1

2
|u′|2 ǫ =

ν

2
|∇u′ +∇u′T|2 (2.3)

with k as the turbulent kinetic energy or small scales, and ǫ is the rate of vis-
cous energy dissipation. Reynolds hypothesis is that the turbulence (R) in
flows and is a local function of ∇u′ + ∇u′T. In two dimensional mean flows
we have,

R = νT(∇ū + ∇ūT) +α I νT = cµ
k2

ǫ
. (2.4)

Combining the assumptions , (2.3), (2.4) with (2.2) we arrive at (2.5)

∂tk + ū∇k − 1
2 cµ

k2

ǫ
|∇ū +∇ūT|2 −∇ ·

(

cµ
k2

ǫ
∇k

)

+ǫ = 0

∂tǫ + ū∇ǫ− 1
2 c1

k2

ǫ
|∇ū +∇ūT|2 −∇ ·

(

cǫ
k2

ǫ
∇ǫ

)

+ c2
ǫ2

k = 0.
(2.5)

With the constants cµ , cǫ, c1, c2 chosen so that the model is accurate for:

• The decay in time of homogeneous turbulence.

• The measurements in shear layers in local equilibrium.

• The log-wall law in boundary layers.

The suggested set of boundary conditions according to [1] is:

• ū, k,ǫ given initially everywhere.

• ū, k,ǫ given on the inflow boundaries at all t

• νt∂nū, νt∂nk, νt∂nǫ given on the outflow boundaries for all t.

• u · n = 0, ū·s√
ν|∂nū|

− 1
χ log

(

δ

√

1
ν |∂nū|

)

+ β = 0 on Γ + δ.

• k|Γ+δ = |µ∂n(ū · s)|c−
1
2

µ , ǫ|Γ+δ = 1
χδ |µ∂n(ū · s)| 3

2 .

Where Γ represents a solid wall, and δ is an adjustable artificial boundary par-
allel to the wall with δ(t, x) ∈ [10, 100]ν/uτ . s is the tangent to the boundary,
and n is the normal to the boundary. In order to study other possible sets
of boundary conditions for 2.5, it is practical to do some simplifications. The



2.1. A SHORT DESCRIPTION OF FEM 11

main simplification is to assume that k2

ǫ is linear, and to not consider changes
in time. Thus (2.5) reduces to (2.6)

ū∇k − 1
2 cµ

k2

ǫ |∇ū +∇ūT|2 − cµ
k2

ǫ ∆k +ǫ = 0

ū∇ǫ− 1
2 c1

k2

ǫ |∇ū +∇ūT|2 − cǫ
k2

ǫ ∆ǫ + c2
ǫ2

k = 0
(2.6)

To study a problem similar to (2.6), yields valuable knowledge about possible
boundary conditions for (2.5). Thus we study an as simple set of equations
possible, the candidate set of equations (2.7) is chosen

{

ǫ(x)−∆k(x) = f1(x) on Ω

−∆ǫ(x) + k(x) = f2(x) on Ω.
(2.7)

2.1 A short description of FEM

The finite element method is a method of numerically approximating a func-
tion by describing it in terms of local polynomials. One usually starts out with
a problem, lets say Poisson problem (2.8).

{

−∆u = f on Ω

u = 0 on ∂Ω
(2.8)

where Ω is an open domain, and ∂Ω is its boundary. Then a weak form is
created by multiplying by a test function and integrating by parts creating
(2.9)

∫

Ω
∇u · ∇v dx =

∫

Ω
f v dx. (2.9)

We say; Let u ∈ H1
0(Ω) , u is a weak solution of (2.8) if (2.9) holds for all

v ∈ H1
0(Ω). H1

0(Ω) = C0
c (Ω) ∩ H1(Ω), where H1(Ω) is a Sobolev space and

C0
c (Ω) 1 is the space of all continuous functions with compact support.

For easier notation, we let W = {w ∈ H1
0(Ω)}. To discretize u, v we restrict

our numerical solution and test functions to a subspace vh, uh ∈ Wh ⊂ W.
The space Wh is spanned by a set of basis functions {φi}N

i=1 . The selection of
these basis functions is determined by which element is chosen. The domain
is subdivided into a set of elements. These elements is usually triangular or
square in 2D, and line segments in 1D. The element type defines local basis
functions for each sub domain. Each elements have a set of evaluation points.
The basis functions form a basis with respect to the evaluation points. They are
usually polynomials. If two basis functions φi,L1

,φ j,L2
has the same evaluation

point, then the sum of them is the global basis function.

1Notation Ω̄ = Ω ∪ ∂Ω is used.
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We make an assumption that our numerical solution can be described in
terms of the basis functions ũ = ∑ Ukφ(x)k . We then have;

∫

Ω
∑ Ukφ(x)′k · ∑ Viφ(x)′i dx =

∫

Ω
f ∑ Viφ(x)i dx (2.10)

∑ ∑ UkVi

∫

Ω
φ(x)′kφ(x)′i dx = ∑ Vi

∫

Ω
fφ(x)i dx (2.11)

Since this has to hold for any test function v, we can choose to use a set test
functions;

vi =
n

∑
j=1

Vi, jφ j (2.12)

{

Vi,i = 1
Vi, j = 0 for i 6= j

(2.13)

Meaning that (Vi,i) is equal to 1, while all of the other coefficients are 0. (2.11)
then becomes a set of n equations with {Ui} as the only unknown values. By
setting Ai, j =

∫

Ω φ(x)′kφ(x)′i dx, and b j = ∑
∫

Ω fφ(x)i dx, the system (2.11) is
the same as the matrix equations (2.14).

Aũ = b (2.14)

where ũ = [U1, U2, . . . , Un]T.
By solving (2.14) for ũ we obtain our finite element approximation
For this thesis this approach to the finite element method will be used, but

in a system of equations.



Chapter 3

Condition Numbers

This chapter describes condition numbers and their importance in PDEs. As
we know a linear PDE system Lu = f can be approximated by using FEM.
Such that approximating the solution can be done by instead solving the linear
system Ax = b. In general one would like to solve this by taking the inverse
of the matrix A. A natural question to ask oneself is: "Is the taking the inverse
numerically stable?" To answer this question we introduce condition numbers.
We let e represent the error in the vector b coming from the representation
of b in the computer. So we will have Ay = b + e. Then ‖A−1(e)‖/‖A−1b‖
will represent the relative error in the solution, and‖e‖/‖b‖ will be the relative
error in the data. We then figure out the error in the solution relative the error
in the data by dividing one by the other.

‖A−1e‖/‖A−1b‖
‖e‖/‖b‖ =

‖A−1e‖‖b‖
‖e‖‖A−1b‖

=
‖A−1e‖
‖e‖

‖b‖
‖A−1b‖ ≤ ‖A−1‖ · ‖A‖

on the other hand we have

‖A−1e‖/‖A−1b‖
‖e‖/‖b‖ =

‖A−1e‖‖b‖
‖e‖‖A−1b‖

=
‖A−1e‖
‖e‖

‖b‖
‖A−1b‖ ≥ 1

‖A‖ · ‖A−1‖

13



14 CHAPTER 3. CONDITION NUMBERS

by defining κ(A) := ‖A‖ · ‖A−1‖ we get

1

‖A‖ · ‖A−1‖ ≤‖A−1e‖/‖A−1b‖
‖e‖/‖b‖ ≤ ‖A‖ · ‖A−1‖

‖e‖
‖b‖

1

κ(A)
≤‖A−1(e + b)− A−1b‖

‖A−1b‖ ≤ ‖e‖
‖b‖κ(A)

‖e‖
‖b‖

1

κ(A)
≤‖y − x‖

‖x‖ ≤ ‖e‖
‖b‖κ(A).

Therefore we see that the condition number impose a bound on the error of
the solution of the linear problem.

We can furthermore compute the condition number. The norm of a ma-
trix is the following: ‖A‖ := sup{‖Ax‖ : ‖x‖ ≤ 1} which in an l2 -matrix

norm can be re written as ‖A‖ = supx∈Cn
|xT Ax|
|x|2 which is the magnitude of

the largest eigenvalue of A called µA
max. Similarly ‖A−1‖ = supx∈Cn

|xT A−1x|
|x|2 =

1

infx∈Cn
|xT Ax|
|x|2

. And infx∈Cn
|xT Ax|
|x|2 is the smallest possible eigen value of A called

µA
min. By combining all this we get that κ(A) := ‖A‖ · ‖A−1‖ = |µA

max|
|µA

min|
≥ 1. The

smallest possible condition number A can have is 1.

3.1 Condition number relating to the k-ǫ model

It is useful to examine simpler versions of the k-ǫ-model and solve any is-
sues there before extrapolating the the full model. This thesis will look at the
properties of three different weak formulations of the simplified problem in
one and two dimensions. One of these formulations is the linear formulation,
the two others are systems of dependent equations. The main differences be-
tween the two systems are the selection of function spaces for the trail and test
functions in FEM. This will be described in detail in chapter 4. The matrices
produced by FEM is then preconditioned, and the condition number of the
preconditioned matrix is analyzed. The idea is that if the condition number of
the preconditioned matrix remain within O(1), then the unconditioned matrix
makes an isomorphism between the function space of the solutions ((k,ǫ)) and
the function space of the input data ( f1, f2)) [6, 7].

3.1.1 An example

Let (k,ǫ) ∈ H1(Ω)× H1(Ω) and the finite element method creates the pairing
< A(k,ǫ), (v1 .v2) >=< ( f1, f2), (v1 .v2) >∈ H−1(Ω) × H−1(Ω). We use the
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Riesz mapping1 to construct a preconditioner B. The preconditioner should be
constructed so that < BA(k,ǫ), (v1 .v2) >=< B( f1 , f2), (v1 .v2) >∈ H1(Ω) ×
H1(Ω). One may then analyze the condition number κ(BA) in order to figure
out if the mapping (k,ǫ) →< A(k,ǫ), (v1 .v2) > is an isomorphism.

If c0 ≤ κ(BA) ≤ c1 when the mesh is refined, then c0

‖(BA)−1‖ ≤ ‖BA‖ ≤
c1

‖(BA)−1‖ . Thus the inverse operator of BA is well defined. Therefor the map-

ping BA : H1(Ω) × H1(Ω) → H1(Ω) × H1(Ω) is an isomorphism. Since B is
known to be an isomorphism, it also follows that A itself is isomorphic.

1see appendix
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Chapter 4

Defining a weak formulation of the
simplified k -ǫ- model

For this section we assume Ω is open and bounded, with a C1 boundary. As
described earlier, a simplification of the k-ǫ problem can be defined as follow-
ing.

Find ǫ and k solving the equation

ǫ(x)− ∆k(x) = f1(x) on Ω

−∆ǫ(x) + k(x) = f2(x) on Ω.

Two possible sets of boundary conditions are

BC1 =

{

ǫ(x) = g1(x) on ∂Ω

k(x) = g2(x) on ∂Ω
(4.1)

BC2 =

{

ǫ(x) = g1(x) on ∂Ω
∂ǫ
∂n = g2(x) on ∂Ω.

(4.2)

Writing the problem in matrix form looks like:

[

I −∆

−∆ I

]

·
[

ǫ

k

]

=

[

f1

f2

]

. (4.3)

We can then multiply it with a test function, integrate, and integrate by parts
to obtain a weak formulation

[

v1 v2

]

·
[

I −∆

−∆ I

]

·
[

ǫ

k

]

=
[

v1 v2

]

·
[

f1

f2

]

∫

Ω
v1ǫ− v1∆k − v2∆ǫ + v2k d x =

∫

Ω
v1 f1 + v2 f2 d x.

17



18 CHAPTER 4. WEAK FORMULATION SIMPLIFIED OF THE K-ǫ

Integration by parts can yield two different weak formulations.

∫

Ω
v1ǫ +∇k · ∇v1 +∇v2 · ∇ǫ + v2k d x =

∫

Ω
v1 f1 + v2 f2 d x (4.4)

∫

Ω
v1ǫ− k∆v1 − v2∆ǫ + v2k d x =

∫

Ω
v1 f1 + v2 f2 d x. (4.5)

4.1 The Trace Theorem

The trace theorem [10, p. 258] states that:

Trace Theorem 4.1 Assume Ω is bounded and ∂Ω is C1.
Then there exists a bounded linear operator

T : W1,p(Ω) → Lp(∂Ω)

such that;
Tu = u|∂Ω if u ∈ W1,p(Ω) ∩ C(Ω̄)
and
‖Tu‖Lp(∂Ω) ≤ C‖u‖W1,p(Ω) for each u ∈ W1,p(Ω), with the constant C depending

only on p and Ω.

4.2 H2 × L2 formulation

A weak formulation reads as follows:

Weak formulation 4.2.1 Find ǫ ∈ H2(Ω) and k ∈ L2(Ω)
solving (4.5) ∀(v1, v2) ∈ H2(Ω) × L2(Ω).

For this formulation, we use the boundary condition (4.2). The advantage
of using (4.2) is that it bounded by the trace theorem. For all functions u ∈
H2(Ω), there exists a trace Tu with ‖ ∂u

∂n‖L2(∂Ω) ≤ C1‖u‖H2(Ω), and ‖u‖L2(∂Ω) ≤
C2‖u‖H2(Ω). Thus it makes sense to talk about the trace. It is not however ob-

vious that it makes sense to talk about the trace of L2(Ω), and it is not obvious
that it is bounded for every bounded function w ∈ L2(Ω).

4.3 H1 × H1 formulation

A weak formulation reads as follows:

Weak formulation 4.3.1 Find ǫ ∈ H1(Ω) and k ∈ H1(Ω)
solving (4.4) ∀(v1, v2) ∈ H1(Ω) × H1(Ω).
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For this formulation, we use the boundary condition (4.1). The advantage
of using (4.1) is that it bounded by the trace theorem. For all functions u ∈
H1(Ω), there exists a trace Tu where we have ‖u‖L2(∂Ω) ≤ C2‖u‖H1(Ω). Thus
we know it makes sense to talk about the trace. We can then construct a trace
function T(ǫ, k)H1(Ω)×H1(Ω) → (ǫ, k)L2(∂Ω)×L2(∂Ω) which is bounded.

4.4 Argument about choice in boundary conditions

The choices of the boundary conditions 4.2 and 4.3 are made to work on as
general problems as possible. Allowing (ǫ, k) ∈ H1(Ω) × H1(Ω), or (ǫ, k) ∈
H2(Ω) × L2(Ω) permits the usage of 12 different boundary conditions, some
of them listed here. The full table is listed in the appendix as 11.3. Most of these
possible boundary conditions have the disadvantage that they have higher
requirements for the function space of the solution. These requirements are
usually of the type: Find (ǫ, k) ∈ H2(Ω) × L2(Ω). They require the closure to
be included in the solution space. The Trace Theorem is not enough to prove
the existence of the boundary condition for all functions in the solution space.
The Trace theorem is used to determine the exact requirements.

The boundary conditions (4.2) and (4.1) exists for all functions in the func-
tion spaces H2(Ω) × L2(Ω) and H1(Ω) × H1(Ω) respectively.

List of boundary conditions requiring (ǫ, k) ∈ H2(Ω)× L2(Ω)

{

∂ǫ(x)
∂n = g1(x) on ∂Ω

∂2ǫ(x)
(∂n)2 = g2(x) on ∂Ω

(4.6)

{

ǫ(x) = g1(x) on ∂Ω
∂2ǫ(x)
(∂n)2 = g2(x) on ∂Ω

(4.7)

If we have ǫ ∈ H2(Ω) the Trace theorem says we know that the trace Tu exists
and is bounded by ‖ǫ‖H2(Ω). ǫ ∈ H2(Ω) means ‖ǫ‖H2(Ω) < ∞. So ‖Tu‖H1(∂Ω)
is well defined and bounded. The boundary condition

∂2ǫ(x)

(∂n)2
=g2(x) on ∂Ω (4.8)

is not bounded by ‖ǫ‖H2(Ω). So the problem has to read as follows to be well
defined:

Weak formulation 4.4.1 Find ǫ ∈ H2(Ω) and k ∈ L2(Ω)
solving (4.5) ∀(v1, v2) ∈ H2(Ω)× L2(Ω).
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Chapter 5

Uniqueness of Solutions of Bilinear
forms

This section contains proofs of uniqueness of solutions of the bilinear forms.
In 1969 Ivo Babuška submitted to Springer-Verlag the theorem later called
"Babuška-Lax-Milgram Theorem" [11, 5]. The "Babuška-Lax-Milgram Theo-
rem" is a generalization of the "Lax-Milgram Theorem" [10]. It will be used to
prove uniqueness of the H1(Ω) × H1(Ω) formulation in this thesis.

Babuška-Lax-Milgram Theorem 5.1 Let H1 and H2 be two Hilbert (complex and
complete) spaces with scalar product (·, ·)H1

and (·, ·)H2
. Let B[u, v] be a bilinear

form on H1 × H2 for u ∈ H1, v ∈ H2 such that;

|B[u, v]| ≤C1‖u‖H1
‖v‖H2

(5.1)

sup
u∈H1
‖u‖≤1

|B[u, v]| ≥C2‖v‖H2
(5.2)

sup
v∈H2
‖v‖≤1

|B[u, v]| ≥C3‖u‖H1
(5.3)

with C2 > 0, C3 > 0, C1 < ∞ .

Let f be a linear functional on H2 ( f ∈ H∗
2 ). Then there exists exactly one element

u f ∈ H1 such that

B[u f , v] = f (v)1 ∀v ∈ H2

and

‖u f ‖H1
≤

‖ f‖H∗
2

C3

1 f (v) is the complex conjugate of f (v)

21
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5.1 System H1 × H1

5.1.1 Preliminaries

Let ǫ, k ∈ H1(Ω)














ǫ(x)−∆k(x) = f1(x) on Ω

−∆ǫ(x) + k(x) = f2(x) on Ω

ǫ = g1 on ∂Ω

k = g2 on ∂Ω.

(5.4)

To examine (5.4) we look at a similar system (5.5)















u1(x) −∆u1(x) = f1(x) on Ω

−∆u1(x) + u2(x) = f2(x) on Ω

u1 = 0 on ∂Ω

u2 = 0 on ∂Ω.

(5.5)

We multiply it with a test function (v1, v2) ∈ H1(Ω) × H1(Ω) and integrate
by parts to get

[

v1 v2

]

·
[

I −∆

−∆ I

]

·
[

u1

u2

]

=

[

v1

v2

]

·
[

f1

f2

]

∫

Ω
v1u1 − v1∆u2 − v2∆u1 + v2u1 dx =

∫

Ω
v1 f1 + v2 f2 dx (5.6)

∫

Ω
v1ǫ +∇v1 · ∇k + ∇v2 · ∇ǫ + v2k dx =

∫

Ω
v1 f1 + v2 f2 dx. (5.7)

If we show that (5.7) holds for (u1 , u2) ∈ H1
0(Ω) × H1

0(Ω), there must exists

a pair (w1, w2) ∈ H1
g1

(Ω) × H1
g2

(Ω) such that (ǫ − w1, k − w2) = (u1, u2) ∈
H1

0(Ω) × H1
0(Ω) and

f̃1 = f1 − w1 + ∆w2 ∈ H−1(Ω)

f̃2 = f2 + ∆w2 − w1 ∈ H−1(Ω).

Thus with these substitutions (5.4) turns into this:

u1(x) −∆u2(x) = f̃1(x) on Ω

−∆u1(x) + u2(x) = f̃2(x) on Ω

u1 =0 on ∂Ω

u2 =0 on ∂Ω
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5.1.2 Using Babuška-Lax-Milgram

The proof in this section was created by the student.

If we assume that (u1 , u2) ∈ H1
0(Ω) × H1

0(Ω)

|B[u, v]| =

√

∣

∣

∣

∣

∫

Ω
u1v1 +∇u2 · ∇v1 dx

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∫

Ω
u2v2 +∇u1 · ∇v2 dx

∣

∣

∣

∣

2

=

√

(∣

∣

∣

∣

∫

Ω
u1v1 + ∇u2 · ∇v1 dx

∣

∣

∣

∣

)2

+

(∣

∣

∣

∣

∫

Ω
u2v2 +∇u1 · ∇v2 dx

∣

∣

∣

∣

)2

≤
√

(

∫

Ω
|u1v1 +∇u2 · ∇v1| dx

)2

+

(

∫

Ω
|u2v2 +∇u1 · ∇v2| dx

)2

=

√

(

‖u1v1 + ∇u2 · ∇v1‖L1(Ω)

)2
+

(

‖u2v2 + ∇u1 · ∇v2‖L1(Ω)

)2

applying Minkowskis inequality

≤
√

(

‖u1v1‖L1(Ω) + ‖∇u2 · ∇v1‖L1(Ω)

)2
+

(

‖u2v2‖L1(Ω) + ‖∇u1 · ∇v2‖L1(Ω)

)2

≤
( (

‖u1‖L2(Ω)‖v1‖L2(Ω) + ‖∇u2‖L2(Ω)‖∇v1‖L2(Ω)

)2

+
(

‖u2‖L2(Ω)‖v2‖L2(Ω) + ‖∇u1‖L2(Ω)‖∇v2‖L2(Ω)

)2 )
1
2

=
(

‖u1‖2
L2(Ω)‖v1‖2

L2(Ω) + ‖∇u2‖2
L2(Ω)‖∇v1‖2

L2(Ω)

+ 2‖u1‖L2(Ω)‖v1‖L2(Ω)‖∇u2‖L2(Ω)‖∇v1‖L2(Ω)

+ ‖u2‖2
L2(Ω)‖v2‖2

L2(Ω) + ‖∇u1‖2
L2(Ω)‖∇v2‖2

L2(Ω)

+ 2‖u2‖L2(Ω)‖v2‖L2(Ω)‖∇u1‖L2(Ω)‖∇v2‖L2(Ω)

)
1
2

≤
(

‖u1‖2
H1(Ω)‖v1‖2

H1(Ω) + ‖u2‖2
H1(Ω)‖v1‖2

H1(Ω)

+ 2‖u1‖H1(Ω)‖v1‖H1(Ω)‖u2‖H1(Ω)‖v1‖H1(Ω)

+ ‖u2‖2
H1(Ω)‖v2‖2

H1(Ω) + ‖u1‖2
H1(Ω)‖v2‖2

H1(Ω)

+ 2‖u2‖H1(Ω)‖v2‖H1(Ω)‖u1‖H1(Ω)‖v2‖H1(Ω)

)
1
2
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=
((

‖u1‖2
H1(Ω)‖v1‖2

H1(Ω) + ‖u2‖2
H1(Ω)‖v1‖2

H1(Ω)

+ ‖u2‖2
H1(Ω)‖v2‖2

H1(Ω) + ‖u1‖2
H1(Ω)‖v2‖2

H1(Ω)

)

+ 2‖u1‖H1(Ω)‖v1‖H1(Ω)‖u2‖H1(Ω)‖v1‖H1(Ω)

+ 2‖u2‖H1(Ω)‖v2‖H1(Ω)‖u1‖H1(Ω)‖v2‖H1(Ω)

)
1
2

=
((

‖u1‖2
H1(Ω) + ‖u2‖2

H1(Ω)

)(

‖v1‖2
H1(Ω) + ‖v2‖2

H1(Ω)

)

+ 2‖u1‖H1(Ω)‖u2‖H1(Ω)

(

‖v1‖2
H1(Ω) + ‖v2‖2

H1(Ω)

))
1
2

=
(

‖u‖2
H1(Ω)×H1(Ω)‖v‖2

H1(Ω)×H1(Ω)

+ 2‖u1‖H1(Ω)‖u2‖H1(Ω)‖v‖2
H1(Ω)×H1(Ω)

)
1
2

= ‖v‖H1(Ω)×H1(Ω)

(

‖u‖2
H1(Ω)×H1(Ω) + 2‖u1‖H1(Ω)‖u2‖H1(Ω)

)
1
2

by Youngs Inequality

≤ ‖v‖H1(Ω)×H1(Ω)

(

‖u‖2
H1(Ω)×H1(Ω) + ‖u1‖2

H1(Ω) + ‖u2‖2
H1(Ω)

)
1
2

= ‖v‖H1(Ω)×H1(Ω)

(

‖u‖2
H1(Ω)×H1(Ω) + ‖u‖2

H1(Ω)×H1(Ω)

)
1
2

=
√

2‖v‖H1(Ω)×H1(Ω)‖u‖H1(Ω)×H1(Ω).

Thus the requirement (5.1) is met by:

|B[u, v]| ≤
√

2‖v‖H1(Ω)×H1(Ω)‖u‖H1(Ω)×H1(Ω).

Next step is to prove the coercivity requirements (5.2) and (5.3) .

B[u, w] =
∫

Ω
u1w1 +∇u2 · ∇w1 dx +

∫

Ω
u2w2 +∇u1 · ∇w2 dx

=(u1 , w1)L2(Ω) + (u2 , w1)H1
0 (Ω) + (u2 , w2)L2(Ω) + (u1 , w2)H1

0 (Ω).

We prove the coercivity requirements by finding a function that fulfills it. This
can be done because the coercivity requirements is a sup requirement. By care-
ful construction of a candidate function the sup requirement is met. This is
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done with

w =

[

w1

w2

]

=K

[

u2 − u1 + u1

u1 + u2 − u2

] (

= K

[

u2

u1

])

(5.8)

K =
1

√

‖u1‖2
H1(Ω)

+ ‖u2‖2
H1(Ω)

. (5.9)

Thus ‖w‖H1(Ω)×H1(Ω) = 1, so the requirements is met.

=K(u1 , u2 − u1 + u1)L2(Ω) + K(u2 , u2 − u1 + u1)H1
0 (Ω)

+K(u2 , u1 + u2 − u2)L2(Ω) + K(u1 , u1 + u2 − u2)H1
0 (Ω)

=K(u1 , u2)L2(Ω) − K(u1 , u1)L2(Ω) + K(u1 , u1)L2(Ω)

+K(u2 , u2)H1
0 (Ω) − K(u2 , u1)H1

0 (Ω) + K(u2 , u1)H1
0 (Ω)

+K(u2 , u1)L2(Ω) − K(u2 , u2)L2(Ω) + K(u2 , u2)L2(Ω)

+K(u1 , u1)H1
0 (Ω) + K(u1 , u2)H1

0 (Ω) − K(u1 , u2)H1
0 (Ω)

=K‖u1‖2
H1

0 (Ω)
+ K‖u2‖2

H1
0 (Ω)

+ K‖u1‖2
L2

(
Ω)

+ K‖u2‖2
L2

(
Ω)

−K‖u2‖2
L2(Ω) − K‖u1‖2

L2(Ω) + 2K(u2 , u1)L2(Ω)

=K‖u1‖2
H1

0 (Ω)
+ K‖u2‖2

H1
0 (Ω)

+ K‖u1‖2
L2

(
Ω)

+ K‖u2‖2
L2

(
Ω)

− K‖u1 − u2‖2
L2(Ω)

=K‖u1‖2
H1

0 (Ω)
+ K‖u2‖2

H1
0 (Ω)

+ K‖u1‖2
L2

(
Ω)

+ K‖ − u2‖2
L2

(
Ω)

− K‖u1 − u2‖2
L2(Ω)

minowskis inequality

≥K‖u1‖2
H1

0 (Ω)
+ K‖u2‖2

H1
0 (Ω)

+ K‖u1 − u2‖2
L2

(
Ω)

− K‖u1 − u2‖2
L2(Ω)

=K‖u1‖2
H1

0 (Ω)
+ K‖u2‖2

H1
0 (Ω)

=
K

2
‖u1‖2

H1
0 (Ω)

+
K

2
‖u2‖2

H1
0(Ω)

+
K

2
‖u1‖2

H1
0 (Ω)

+
K

2
‖u2‖2

H1
0(Ω)

Poincares inequality

≥K

2
‖u1‖2

H1
0 (Ω)

+
K

2
‖u2‖2

H1
0(Ω)

+
C1

2
‖u1‖2

L2(Ω) +
C2

2
‖u2‖2

L2(Ω)

≥D
(

‖u1‖2
H1(Ω) + ‖u2‖2

H1(Ω)

)

=D‖u‖2
H1(Ω)×H1(Ω)
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So the requirement (5.3). To show (5.2), note that B[·, ·] is symmetric so:

|B[u, w]| =

∣

∣

∣

∣

B

[[

u1

u2

]

, K

[

u2

u1

]]∣

∣

∣

∣

=

∣

∣

∣

∣

KB

[[

u1

u2

]

,

[

u2

u1

]]∣

∣

∣

∣

=

∣

∣

∣

∣

KB

[[

u2

u1

]

,

[

u1

u2

]]∣

∣

∣

∣

=

∣

∣

∣

∣

B

[[

u2

u1

]

, K

[

u1

u2

]]∣

∣

∣

∣

=|B[w, u]|

Which fulfills the requirement (5.2).

5.2 System H2 × L2

The argument in this section was created by the student. For simplicity we
write H−2 for the dual space of H2, and H−2 × L2 will be identified as the dual
space of H2 × L2,we also assume that Ω = (0, 1)n

5.2.1 Preliminaries

Before looking at the problem, we can examine a candidate for preconditioning
for the system. The preconditioner will be the matrix arising from the problem
(5.10)















∆∆u1(x) + u1 = f1(x) on Ω

u2 = f2(x) on Ω

u1 = 0 on ∂Ω
∂u1
∂n = 0 on ∂Ω

(5.10)

The bilinear from associated with (5.10) is (5.11).

P[u, v] =
∫

Ω
∆u1∆v1 + u1v1 + u2v2 dx (5.11)

P[u, v] is a positive definite and symmetric, so its an inner product on H2(Ω)×
L2(Ω). The system (5.10) has a unique solution for every pair f1, f2 in the dual
space of H2(Ω) × L2(Ω) by Riesz representation theorem. It is obvious that
P ∈ L(H2 × L2, H−2 × L2) (the space of linear functionals from H2 × L2 to
H−2 × L2). Since P−1 exists, it is a member of L(H−2 × L2, H2 × L2). P has a
unique solution, we know that P has an inverse so that that P−1 ◦ P = IH2×L2

(the identity functional on H2 × L2).
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5.2.2 The bilinear form

A similar argument as the one made in 5.1.1 can be made to show that we only
need to prove uniqueness for (5.12) with {u1 , v1} ∈ H2

0(Ω), {u2 , v2} ∈ L2(Ω)
The bilinear form of the system looks like:

B[u, v] =
∫

Ω
−∆v1u2 −∆u1v2 + u1v1 + u2v2 dx. (5.12)

With the matrix

B =

[

I −∆

−∆ I

]

. (5.13)

If we let the operator matrix B work on a pair of functions u = (u1, u2) ∈
H2 × L2, then

B · u =

[

I −∆

−∆ I

]

·
[

u1

u2

]

=

[

u1 − ∆u2

−∆u1 + u2

]

∈
[

H−2

L2

]

Thus B ∈ L(H2 × L2, H−2 × L2) as well. We conclude that P−1 ◦ B ∈ L(H2 ×
L2, H2 × L2).

We know (P−1 ◦ P) is bounded and 0 is not part of its spectrum If the same
holds true for (P−1 ◦ B), we can use Lax-Milgram to prove uniqueness of so-
lutions for (P−1 ◦ B)[u, v].

First we need to show that the maximal and the minimal eigenvalue of
P−1B is limited by constants c1, c2.















P =

[

∆∆ + I 0
0 I

]

B =

[

I −∆

−∆ I

] (5.14)

The corresponding eigenvalue problem of (5.14) is (5.15)
[

I −∆

−∆ I

] [

u
v

]

=λ

[

∆∆ + I 0
0 I

] [

u
v

]

. (5.15)

If we are working are working on C4
c ([0, 1]n) the operator −∆ has eigenvalues

λD = {k2π2}N
k=1 ∈ (π2, ∞) [12, p.67]. When applying FEM to 5.15, it turns

into a matrix problem; 5.16.
[

I C
C I

] [

u
v

]

=λ

[

D 0
0 I

] [

u
v

]

. (5.16)
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C is rectangular because u, v ∈ H2 × L2, so instead of squaring, we use D.

Since the function space is C4
c ([0, 1]n) the eigenvalues take the from λk =

(kπL(Ω))2 [12], and have single multiplicity. Let ei be the eigenvector associ-
ated with λi as an eigenvalue for −∆. Then we have that ui = [aei , bei] is an
eigenvalue for (5.15).

[

I −∆

−∆ I

] [

aei

bei

]

=ρ

[

∆∆ + I 0
0 I

] [

aei

bei

]

[

I λi I
λi I I

] [

aei

bei

]

=ρ

[

λ2
i I + I 0

0 I

] [

aei

bei

]

.

Further reductions is possible:

[

I λi I
λi I I

] [

aei

bei

]

=ρ

[

λ2
i I + I 0

0 I

] [

aei

bei

]

([

1 λi

λi 1

]

⊗ I

) ([

a
b

]

⊗ ei

)

=ρ

([

λ2
i + 1 0

0 1

]

⊗ I

) ([

a
b

]

⊗ ei

)

([

1 λi

λi 1

] [

a
b

])

⊗ (Iei) =ρ

([

λ2
i + 1 0

0 1

] [

a
b

])

⊗ (Iei) .

Where ⊗ is the Kronecker product. Then the eigenvalues are the eigenvalues
of (5.17).

([

1 λi

λi 1

] [

a
b

])

=ρ

([

λ2
i + 1 0

0 1

] [

a
b

])

. (5.17)

The eigenvalues of (5.17) takes the form

ρi =
λ2

i + 2 + |λi|
√

5λ2
i + 4

2λ2
i + 2

(5.18)

ρ′i =
λ2

i + 2 − |λi|
√

5λ2
i + 4

2λ2
i + 2

. (5.19)
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Where {ρi}, {ρ′} is two sets of eigenvalues. Zero is not an eigenvalue;

ρi =
λ2

i + 2 + |λi|
√

5λ2
i + 4

2λ2
i + 2

0 =
λ2

i + 2 + |λi|
√

5λ2
i + 4

2λ2
i + 2

no solution for λ ≥ 1

ρ′i =
λ2

i + 2 − λi

√

5λ2
i + 4

2λ2
i + 2

0 =
λ2

i + 2 + λi

√

5λ2
i + 4

2λ2
i + 2

{

λi,1 = 1
λi,2 = −1

Zero is not an eigenvalue of the system sinceλ ∈ (π2, ∞). We see that,

when discretizing of the operator −∆, the set (πk)2 N
k=1 will be all the eigen-

values of the N × N matrix representing the discretization. When the system
(5.15) is discretized, it is easy to confirm that there will be 2N eigenvalues in
the set {ρ(λi)} ∪ {ρ′(λi)}. Since there is exactly as many eigenvalues as there
is rows, we conclude that all of the eigenvalues are found. The eigenvalues has
single multiplicity. All the eigenfunctions are linearly independent and span
R

2N (see 11.2). Therefore we conclude that we have found all the eigenvectors
(discretized eigenfunctions). We find all of the eigenfunctions first by solving
the systems (5.20) and (5.21).

[

1 λi

λi 1

] [

ai

bi

]

=

[

ρiλ
2
i + ρi 0
0 ρi

] [

ai

bi

]

(5.20)

[

1 λi

λi 1

] [

ci

di

]

=

[

ρ′iλ
2
i + ρ′i 0
0 ρ′i

] [

ci

di

]

. (5.21)

The eigenfunctions will be with their respective eigenvalues will be

[

aiei

biei

]

, ρi (5.22)

[

ciei

diei

]

, ρ′i . (5.23)
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By letting λ tend to infinity, the eigenvalues converge towards

lim
i→∞

ρi =
1 +

√
5

2
(5.24)

lim
i→∞

ρ′i =
1 −

√
5

2
(5.25)

(5.26)

These are the golden ratio (φ), and the negative golden ratio conjugate. Since
both |ρ′i|, |ρi| are strictly increasing when i increases, the condition number of

P−1B is be limited by,

limκ(P−1B) ≥

∣

∣

∣

∣

∣

∣

∣

1+
√

5
2

λ2
0+2−λ0

√
5λ2

0+4

2λ2
0+2

∣

∣

∣

∣

∣

∣

∣

(5.27)

=

∣

∣

∣

∣

∣

∣

1+
√

5
2

π4+2−
√

5π4+4π2

2π4+2

∣

∣

∣

∣

∣

∣

≈ 1.6180

0.606127
≈ 2.66946 (5.28)

(5.29)

So we have that c1 ≥ ‖P−1B‖ and c2 ≤ ‖(P−1B)−1‖, then |(P−1Bu, v)| ≤
c1|(u, v)| ≤ c1‖u‖‖v‖. And also, infu supv

(P−1Bu,v)
‖u‖‖v‖ ≥ c−1

2 . Since the bilinear

form is symmetric, infv supu
(P−1Bu,v)
‖u‖‖v‖ ≥ c−1

2 is also true. All of the require-

ments of the Babuška-Lax-Milgram Theorem are meet, so the bilinear form
P−1 ◦ B[u, v] = Lp(v) has an unique solution. This can only be the case if
B[u, v] = Lb(v) has an unique solution.



Chapter 6

Technical issues and
implementation

6.1 Condition numbers

There are three different definitions of condition numbers used in this thesis.

Condition Number Definition 1 Let A be n × n matrix with real eigenvalues 0 ≤
λ1 ≤ λ2 ≤ · · · ≤ λn. Then the condition number is

κ1(A) =
λn

λ1
.

Condition Number Definition 2 Let A be n×n matrix with real eigenvalues λ1 ≤
λ2 ≤ · · · ≤ λn. Then the condition number is

κ2(A) =
maxi |λi|
min j |λ j|

.

Condition Number Definition 3 Let A be a real m × n matrix with real and com-
plex eigenvalues {λi}n

i=1. Let B = AT A, with real eigenvalues 0 ≤ γ1 ≤ γ2 ≤
· · · ≤ γn

κ3(A) =

√
γ1√
γn

.

6.2 Python issues

The simplified k-ǫ model is implemented in python. The libraries numpy [13],
scipy [13] and syFi [14] are used. The inverting algorithm in scipy is to unstable
for the purposes of this thesis.

1 sc ipy . l i n a l g . inv (A)

31
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Instead the matrixes are generated in python, and written in ".m" format. Then
they where implemented in octave [15], and the "qz" algorithm is used. This
approach proved more stable. A sample code for doing this looks like:

1 nMax= 8
2

3

4 def run (N) :
5 # c a l c u l a t i n g the matr ixes
6 .
7 .
8 .
9 .

10

11

12 f i _ S t r = " "
13

14 for key in AA. keys ( ) :
15 i , j = key
16 d[ i ] [ j ] = f l o a t (AA[ key ] )
17 f i _ S t r += "A%d(%d , %d )=%s ; \n " % (N, i +1 , j +1 ,d [ i ] [ j ] )
18

19 prCo = zeros ( [m,m] , f l o a t )
20 for key in PC . keys ( ) :
21 i , j = key
22

23 prCo [ i ] [ j ] = f l o a t (PC[ key ] )
24 f i _ S t r += " Pc%d(%d , %d)=%s ;\n " % (N, i +1 , j +1 ,prCo [ i ] [ j ] )
25 # eigenvalues of system
26 f i _ S t r += "v%d = eig (A%d) ; \n " % (N,N)
27 f i _ S t r += "C%d = max( abs ( v%d) )/min ( abs ( v%d) ) \n" % (N,N,N)
28 #qz for f ind ing the l i s t of e igenvalues
29 f i _ S t r += " eg%d = s o r t ( qz ( Pc%d , A%d ) ) ; \n " % (N,N,N)
30 f i _ S t r += " eg%d ( 1 ) ;\n" % (N)
31 f i _ S t r += " eg%d( s i z e ( eg%d) ( 1 ) ) ;\n " % (N,N)
32 # p r i n t i n g out the a bsolute values , they are c l o s e to 1
33 f i _ S t r += " maxEgenverdi%d = max( abs ( eg%d ) ) \n " % (N,N)
34 f i _ S t r += " minEgenverdi%d = min ( abs ( eg%d ) ) \n " % (N,N)
35 f i _ S t r + = " Cond%d=maxEgenverdi%d/minEgenverdi%d\n"%(N,N,N)
36

37 return f i _ S t r
38

39 i f __name__== " __main__ " :
40

41 f = open ( " t e s t P r e c .m" , ’w’ )
42 f i _ s t r = " "
43 for i in range ( 0 , nMax) :
44 # p r i n t " d e t t e er ’ i ’ " , i
45 p r i n t 2 * * i
46 # N = 125 = breakdown
47 a = run ( 2 * * i )
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48 f i _ s t r += a
49

50 f . write ( f i _ s t r )

6.3 SyFi

SyFi finite element package SyFi it is a C++ library built on top of the symbolic
math library GiNaC[16]. In this thesis it is used to generate the finite element
matrixes. This is a sample code used to generate a Hermite and a discontinu-
ous Lagrange reference matrix.

1 import SyFi as SF
2

3 SF . i n i t S y F i ( 2 )
4

5 l = SF . Line ( [ 0 . 0 , 0 . 0 ] , [ 1 . 0 /N, 0 . 0 ] )
6 f e = SF . Hermite ( l )
7

8 lagOrder = 2
9 feLa = SF . DiscontinuousLagrange ( l , lagOrder−1)

10

11 # hermite mass matrix
12 A = { }
13 # hermite biharmonic matrix
14 B = { }
15 # hermite mass matrix
16 M = { }
17 # biharmoic matrix with mass matrix
18 PaC = { }
19 weig = N
20 for i in range ( 0 , 4 ) :
21 i f i%2 == 1 :
22 p1 = weig
23 e lse :
24 p1 = 1
25

26 for j in range ( 0 , 4 ) :
27 i f j %2 ==1 :
28 p2 = weig
29 e lse :
30 p2 = 1
31 M[ ( i , j ) ] = l . i n t e g r a t e ( f e .N( i ) * f e .N( j ) ) * p1 * p2
32 B [ ( i , j ) ] = l . i n t e g r a t e ( swig . d i f f ( swig . d i f f ( f e .N( i ) , x ) , x ) *

swig . d i f f ( swig . d i f f ( f e .N( j ) , x ) , x ) ) * p1 * p2
33 A[ ( i , j ) ] = M[ ( i , j ) ]
34 PaC [ ( i , j ) ] = B [ ( i , j ) ]+ M[ ( i , j ) ]
35

36 # Lagrange mass funct ion
37 M2 = { }
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38 for i in range ( 0 , lagOrder ) :
39 for j in range ( 0 , lagOrder ) :
40 M2[ ( i , j ) ] = l . i n t e g r a t e ( feLa .N( i ) * feLa .N( j ) )
41

42 #mixed herm−lag matrix
43 AD = { }
44 for i in range ( 0 , 4 ) :
45 i f i%2 == 1 :
46 p1 = weig
47 e lse :
48 p1 = 1
49 for j in range ( 0 , lagOrder ) :
50 AD[ ( i , j ) ] = l . i n t e g r a t e (− feLa .N( j ) * swig . d i f f ( swig . d i f f ( f e .N(

i ) , x ) , x ) ) * p1



Chapter 7

Hermite elements

7.1 Hermite elements in 1D

The basis functions on the real line, where the element spans [0, 1] has the
following basis functions

φ0 =2x3 − 3x2 + 1

φ1 =− 2x3 + 3x2

φ2 =x3 − 2x2 + x

φ3 =x3 − x2.

For a visual representation of the Hermite basis functions see figures: 7.1, 7.2,
7.3, 7.4.
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Figure 7.1: φ0, the basis function evaluation value at 0.
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Figure 7.2: φ1, the basis function evaluation value at 1.
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Figure 7.3: φ2, the basis function evaluation derivative at 0.
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Figure 7.4: φ3, the basis function evaluation derivative at 1.

7.2 Scaling Hermite elements 1D

There are a few important issues to notice when working with implementing
FEM on this problem. The first issue is that has to be worked out an issue
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relating to scaling. When the mesh grid becomes more refined, the norm of
different basis functions scales differently for Hermite elements. This issue
caused a great deal of problems in the simulations before it was identified. If
left unresolved, the matrices quickly becomes very unstable when the mesh
is refined. Half of the diagonal values on the Hermite FEM matrix decreases
N2 times faster than the other diagonal values (as shown later in this chap-
ter). This makes the FEM approximation unstable when confined to double
precision.

The first attempt to solve this issue was to increase the mesh size, instead
of refining it. The normal procedure for refinement is :

[0, 1] → {[0,
1

2
], [

1

2
, 1]} → {[0,

1

4
], [

1

4
,

2

4
], [

2

4
,

3

4
], [

3

4
, 1]}

→ · · · → {[0,
1

N
], . . . , [

N − 1

N
, 1]}.

This was changed to

[0, 1] → {[0, 1], [1, 2]} → · · · → {[0, 1], . . . , [N − 1, N]}.

This refinement mapping was implemented and tested. It solved the issue of
the diagonal values but, was discarded for two reasons:

• The mass matrix (matrix representing I) dominated the eigenvalue anal-
ysis.

• The eigenvalue analysis in the literature is dependent on a fixed grid.

To mimic the positive results of the domain scaling idea, scaling of the ba-
sis functions is introduced. The basis functions associated with the rapidly
decreasing diagonal values are the basis functions representing the derivative.
These basis functions are multiplied with a number dependent on the mesh.
This solves the issue. Note that after solving a scaled system, the values have
to be rescaled to obtain the actual solution.

Next we calculate how to scale the basis functions. We compare how the
diagonal values will scale when the mesh is refined. The first integrals are

∫ 1

0
φ0 dx =

∫ 1

0
φ1 dx =

1

2
∫ 1

0
φ2 dx = −

∫ 1

0
φ3 dx =

1

12
.

By calculating the basis functions for the Hermite element on the domain [0, 1
N ]
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and sets N = 16 we get:

φN
0 =8192x3 − 768x2 + 1

φN
1 =− 8192x3 + 768x2

φN
2 =256x3 − 32x2 + x

φN
3 =256x3 − 16x2.

The integrals are

∫ 1
16

0
φN

0 dx =
∫ 1

16

0
φN

1 dx =
1

32
∫ 1

16

0
φN

2 dx = −
∫ 1

16

0
φN

3 dx =
1

3072
.

Divide φ0 on φN
0 and φ1 on φN

1 :

∫ 1
0 φ0 dx

∫

1
16

0 φN
0 dx

=
1
2
1

32

= 16 = N

∫ 1
0 φ2 dx

∫

1
16

0 φN
2 dx

=
1

12
1

3072

= 256 = N2.

Computed directly the condition number of a matrix produced with unscaled
basis functions is bound to run into rounding error. This is illustrated by the
table 7.2 (figures: 7.10, 7.11, 7.12, 7.13, 7.14). To avoid this problem, new scaled
basis functions are produced. The increased stability of the basis functions of
equation (7.2) over the natural reference basis functions (7.1), is easily demon-
strated by the table 7.1 (figures: 7.5, 7.6, 7.7, 7.8 and 7.9) as compared to table
7.2. As we can see in the table, the MH changes as O(1). The mass matrix
represents equations of the type u = f and should therefore have stable con-
dition numbers. AH changes as O(2N), this is as good as it should be, and a
big improvement over the table 7.2. AD, scales as O(2N), but it starts as a very
large number. B scales as O(4N), as it should.



















φN
0 (0) = 1

∂φN
1 (0)
x = 1

φN
2 (1) = 1

∂φN
3 (1)
∂x = 1

(7.1)



















φN
0 (0) = N

∂φN
1 (0)
∂x = N

φN
2 (1) = N

∂φN
3 (1)
∂x = N.

(7.2)
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Table 7.1: Condition numbers (κ1) for scaled matrices from a one dimensional
grid.

number of MH AH + MH AD + MH B + MH

elements cond number cond number cond number cond number

1 = 20 1056. 67 31. 99 7. 1703 ·104 9. 1266 ·102

2 = 21 878. 62 37. 05 1. 9623 ·105 4. 7009 ·103

4 = 22 797. 01 88. 31 1. 7188 ·106 3. 2143 ·104

8 = 23 807. 56 336. 34 2. 8839 ·107 3. 1096 ·105

16 = 24 817. 33 1295. 55 6. 3369 ·108 3. 8925 ·106

32 = 25 820. 07 5058. 34 1. 4050 ·1010 5. 5665 ·107

64 = 26 820. 79 19957. 34 3. 1416 ·1011 8. 4549 ·108

128 = 27 821. 97 79246. 83 7. 0636 ·1012 1. 3197 ·1010

256 = 28 821. 01 315790. 78 1. 5919 ·1014 2. 0861 ·1011

512 = 29 821. 02 1260737. 96 3. 5711 ·1015 3. 3179 ·1012

1024 = 210 821. 03 5038069. 14 7. 0389 ·1016 5. 2948 ·1013

Bi, j =
∫

∆Hi∆H j dx

AH
i, j =

∫

DHi · DH j dx

AD
i, j =

∫

−Hi∆H j dx

SD
i, j =

∫

−Li∆H j dx

SS
i, j =

∫

∇Li · ∇H j dx

AL
i, j =

∫

∇Li · ∇L j dx

MS
i, j =

∫

HiL j dx

ML
i, j =

∫

Li L j dx

MH
i, j =

∫

HiH j dx
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Figure 7.5: Plot of the 2 − log condition number of scaled matrices in 1D as
described in the table 7.1.
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Figure 7.6: Plot of the condition number of Scaled mass matrix (MH) in 1D as
described in the table 7.1.
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Figure 7.7: Plot of the condition number of Scaled AH matrix in 1D as de-
scribed in the table 7.1.
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Figure 7.8: Plot of the condition number of Scaled AD matrix in 1D as described
in the table 7.1.
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Figure 7.9: Plot of the condition number of Scaled BH matrix in 1D as described
in the table 7.1.
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Table 7.2: Condition numbers (κ1) for unscaled matrices from a one dimen-
sional grid.

number of MH AH + MH AD + MH B + MH

elements cond number cond number cond number cond number

1 = 20 1. 0567 ·103 3. 1985 ·101 7. 1703 ·104 9. 1266 ·102

2 = 21 3. 4735 ·103 1. 4626 ·102 6. 5010 ·105 1. 2395 ·104

4 = 22 1. 2588 ·104 6. 3619 ·102 1. 6921 ·107 1. 88138 ·105

8 = 23 5. 1021 ·104 2. 6859 ·103 6. 0728 ·108 2. 8449 ·106

16 = 24 2. 0660 ·105 1. 0969 ·104 2. 4487 ·1010 4. 3518 ·107

32 = 25 8. 2922 ·105 4. 4140 ·104 1. 0434 ·1012 6. 7675 ·108

64 = 26 3. 3198 ·107 1. 7684 ·105 4. 5805 ·1013 1. 0656 ·1010

128 = 27 1. 3282 ·108 7. 0769 ·105 2. 0494 ·1015 1. 6905 ·1011

256 = 28 5. 3132 ·108 2. 8311 ·106 1. 0096 ·1017 2. 6930 ·1012

512 = 29 2. 1253 ·109 1. 1325 ·107 3. 1641 ·1018 4. 2990 ·1013

1024 = 210 8. 5013 ·109 4. 5298 ·107 5. 9802 ·1020 6. 8696 ·1014
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Figure 7.10: Plot of the 2 − log condition number of unscaled matrix in 1D as
described in the table 7.2.
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Figure 7.11: Plot of the condition number of unscaled mass matrix in 1D as
described in the table 7.2.
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7.3 Hermite elements 2D

For a two dimensional finite element mesh, the questions how to translate the
scaling are not trivial. In this section, two different scalings are tested.

The set of basis functions for a two-dimensional Hermite element is a tensor
product between the basis function sets of two 1D elements. These one dimen-
sional elements are the Hermite element running along one of the edges, and
of a Hermite element running along one of the other edges normal to the first
edge, I will call them L1, L2. Each basis functions of a Hermite-2D element on
a rectangle is a multiplication between one of basis functions L1, and one of
the basis functions of L2. The set {φi(x, y)}2D = {φi(x)φ j(y)}i, j=1,2,3,4. There
is a total of 16 basis functions for the 2-D Hermite element.
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Figure 7.12: Plot of the condition number of unscaled AH matrix in 1D as de-
scribed in the table 7.2.
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Figure 7.13: Plot of the condition number of unscaled AD matrix in 1D as de-
scribed in the table 7.2.
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Figure 7.14: Plot of the condition number of unscaled BH matrix in 1D as de-
scribed in the table 7.2.
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In 2D it is therefore natural to assume that the scaling also should be mul-
tiplied. For simplicity only the four basis functions evaluating the reference
square in the point (0, 0) will be provided when describing the scaling of the
basis functions. The unscaled basis functions that evaluate the reference ele-
ment are calculated so that they are zero in every evaluation point away from
(0, 0). In the point (0, 0) they will conform to the following conditions;

∂φ0(0, 0)

∂x
=

∂φ0(0, 0)

∂y
=

∂2φ0(0, 0)

∂x∂y
= 0

φ1(0, 0) =
∂φ1(0, 0)

∂y
=

∂2φ1(0, 0)

∂x∂y
= 0

φ2(0, 0) =
∂φ2(0, 0)

∂x
=

∂2φ2(0, 0)

∂x∂y
= 0

φ3(0, 0) =
∂φ3(0, 0)

∂x
=

∂φ3(0, 0)

∂y
= 0

φ0(0, 0) =
∂φ1(0, 0)

∂x
=

∂φ2(0, 0)

∂y
=

∂2φ3(0, 0)

∂x∂y
= 1.

A first suggestion for scaling of these basis functions will look like;

φ0(0, 0) = 1

∂φN
1 (0, 0)

∂x
= N

∂φN
2 (0, 0)

∂y
= N

∂2φN
3 (0, 0)

∂x∂y
= N2.

This is the most obvious choice, since this is the direct tensor product of the
scaled one dimensional elements from previous sections. Running the simula-
tion again but with these modifications gave the condition numbers of tables
7.3 and 7.4 (figures: 7.15, 7.16, 7.17, 7.18, 7.19 and 7.20). MH behaves good.
AH does not develop as it should, ideally it should scale as O(4N). AD scales
as it should, but it starts out with a fairly big condition number. B1 scales as
it should, but it starts out with a fairly big condition number. B2 scales as it
should, and seems to be the best choice for a biharmonic matrix.
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Table 7.3: Condition numbers (κ1) for matrices representing a 2- dimensional
grid with fully scaled basis functions.

number of MH AH + MH AD + MH

elements cond number cond number cond number

1 = (20)2 1. 1165 ·106 1. 6961 ·104 1. 7368 ·109

4 = (21)2 7. 7197 ·105 2. 1925 ·104 5. 3687 ·109

16 = (22)2 6. 3522 ·105 1. 7823 ·104 8. 8709 ·1010

64 = (23)2 6. 5215 ·105 1. 7296 ·104 5. 7546 ·1012

256 = (24)2 6. 6803 ·105 1. 7616 ·104 6. 9134 ·1014

1024 = (25)2 6. 7252 ·105 1. 7722 ·104 9. 5156 ·1015

Table 7.4: Condition numbers (κ1) for the two types biharmonic matrices rep-
resenting a 2- dimensional grid with fully scaled basis functions.

number of B2 + MH B1 + MH

elements cond number cond number

1 = (20)2 2. 4324 ·103 2. 7417 ·105

4 = (21)2 1. 1152 ·104 1. 2095 ·106

16 = (22)2 7. 4394 ·104 1. 6625 ·106

64 = (23)2 6. 6903 ·105 3. 8788 ·106

256 = (24)2 7. 9697 ·106 2. 0004 ·107

1024 = (25)2 1. 1081 ·107 1. 9406 ·108
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Figure 7.15: Plot of the 2 − log condition number of scaled matrices in 2D as
described in the tables 7.3 and 7.4.
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Figure 7.16: Plot of the condition number of Scaled mass matrix in 2D as de-
scribed in the table 7.3.
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Figure 7.17: Plot of the condition number of Scaled AH matrix in 2D as de-
scribed in the table 7.3.
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Figure 7.18: Plot of the condition number of Scaled AD matrix in 2D as de-
scribed in the table 7.3.
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Figure 7.19: Plot of the condition number of Scaled BH
2 matrix in 2D as de-

scribed in the table 7.4.
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Figure 7.20: Plot of the condition number of Scaled BH
1 matrix in 2D as de-

scribed in the table 7.4.
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This scaling is not the only scaling possible. To test the hypothesis that the
full scaling model is the best option, the "Reduced scaling" will be introduced.
The Reduced scaling, is a weaker form of scaling. It is different than the full
scaling in how it treats the basis functions φ4i. These are the basis functions
that conforms the suggested solution with both the derivative in x and y direc-
tion. The reduced scaling is defined by the following conditions:

φ0(0, 0) = 1

∂φN
1 (0, 0)

∂x
= N

∂φN
2 (0, 0)

∂y
= N

∂2φN
3 (0, 0)

∂x∂y
= N.

Running simulations with the reduced scaling gives the condition numbers
of the tables 7.5 and 7.6 (figures: 7.21, 7.22, 7.23, 7.24, 7.25 and 7.26). The AH is
the only condition number that benefits from the reduced scaling over the full
scaling.

Table 7.5: Condition numbers (κ1) for matrices representing a 2- dimensional
grid with reduced scaled basis functions.

number of MH AH + MH AD + MH

elements cond number cond number cond number

1 = (20)2 1. 1165 ·106 1. 6961 ·104 1. 7368 ·109

4 = (21)2 3. 0413 ·106 8. 6383 ·104 1. 5488 ·1010

16 = (22)2 9. 9365 ·106 2. 7881 ·105 5. 6817 ·1011

64 = (23)2 4. 0717 ·107 1. 0799 ·106 4. 7056 ·1013

256 = (24)2 1. 6678 ·108 4. 3982 ·106 9. 6000 ·1015

1024 = (25)2 6. 7154 ·108 1. 7698 ·107 3. 5710 ·1016
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Table 7.6: Condition numbers (κ1) for the two types biharmonic matrices rep-
resenting a 2- dimensional grid with reduced scaled basis functions.

number of B2 + MH B1 + MH

elements cond number cond number

1 = (20)2 2. 4324 ·103 2. 7417 ·105

4 = (21)2 1. 3862 ·104 3. 0276 ·106

16 = (22)2 7. 4437 ·104 8. 1370 ·106

64 = (23)2 6. 6903 ·105 2. 6019 ·107

256 = (24)2 7. 9697 ·106 2. 8929 ·108

1024 = (25)2 1. 1081 ·107 3. 4510 ·109

Figure 7.21: Plot of the 2 − log condition number of reduced scaled matrices
in 2D.
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Figure 7.22: Plot of the condition number of reduced scaled mass matrix in 2D
as described in the tables 7.5 and 7.6.
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Figure 7.23: Plot of the condition number of reduced scaled AH matrix in 2D
as described in the table 7.5.
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Figure 7.24: Plot of the condition number of reduced scaled AD matrix in 2D
as described in the table 7.5.

1 2 4 8 16 32
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

16

number of elements

 c
on

di
tio

n 
nu

m
be

r

 

 
AD

Figure 7.25: Plot of the condition number of Scaled BH
2 matrix in 2D as de-

scribed in the table 7.6.
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Figure 7.26: Plot of the condition number of reduced scaled BH
1 matrix in 2D

as described in the table 7.6.
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Chapter 8

Solving in 1D

8.1 Solving as a linear PDE system

8.1.1 Representation from H2(Ω) × L2(Ω).

As described, there are two competing weak representation (4.4) and (4.5).
This section will look at the H2 × L2 representation. We now select v1,ǫ ∈
H2(Ω) and v2, k ∈ L2(Ω). With this choice we use the equation (4.5) as our
weak form (bilinear). The finite element to use will be the Hermite elements
for v1,ǫ , and the Lagrange elements for v2, k. In order to increase the accuracy
and to keep the evaluations stable the choice to use the Lagrange-2 elements
was made. The reasoning behind this choice is that if a line is divided into
N different elements, then Hermite elements will give 2 · (N + 1) evaluations,
while a Lagrange-2 will give 2 · N + 1 evaluations. So combining this knowl-
edge, the matrices that will be tested are:

CoD =

[

MH SD

(SD)T ML

]

PrCo =

[

B + MH 0
0 ML

]−1 [

MH SD

(SD)T ML

]

.

The matrix PrCo is not symmetric and will have negative eigenvalues. The

definition of the condition number used is κ(PrCo) = maxi{|λi|}
mini{|λi|} . With this in

mind, the key matrices of the system is in table 8.1. The preconditioned system
in 8.1 does not scale as well as it should, and therefore the implementation
does not work properly. There is some minor issues with the SD + MS for
small meshes, but it seems to work out.

53
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Table 8.1: Condition numbers for scaled matrices from a one dimensional grid

number of κ3(SD + MS) κ1(CoD) κ(PrCo)
elements condition number condition number condition number

1 = 20 371. 19 7. 2404 ·101 1. 000 ·100

2 = 21 17. 117 1. 1163 ·102 1. 3417 ·100

4 = 22 17. 662 4. 4115 ·102 3. 2533 ·100

8 = 23 30. 475 1. 7138 ·103 1. 5295 ·101

16 = 24 57. 266 6. 6693 ·103 6. 2036 ·101

32 = 25 106. 13 2. 6186 ·104 2. 4880 ·102

64 = 26 199. 96 1. 0362 ·105 9. 959 ·102

128 = 27 385. 74 4. 1209 ·105 no data
256 = 28 756. 62 1. 6434 ·106 no data
512 = 29 1498. 2 6. 5635 ·106 no data

1024= 210 2981. 2 2. 6233 ·107 no data

8.1.2 Representations from H1(Ω) × H1(Ω).

As described, there are two competing weak representation (4.4), (4.5). This
section will look at the H1 × H1 representation.

∫

Ω

[

v1ǫ ∇k · ∇v1

∇v2 · ∇ǫ v2k

]

d x =
∫

Ω

[

v1 f1

v2 f2

]

d x

In this representation we choose v1, v2,ǫ, k ∈ H1(Ω), and solve the systems
with the following system matrices.

CoN =

[

ML AL

(AL)T ML

]

PrCoN =

[

SL + ML 0
0 SL + ML

]−1 [

ML SL

(SL)T ML

]

where N is the degrees of freedom allowed in the Lagrange FEM approxima-
tion. The eigenvalues of this system is given in the tables 8.2 and 8.3 (figures:
8.1, 8.2, 8.3, 8.4). All the results in the tables 8.2 and 8.3 does behave as ex-
pected and we can conclude that Co2 and Co3 are successful implementations.
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Table 8.2: Condition numbers (κ1) for Lagrange-type matrices from a one di-
mensional grid

number of Co2 PrCo2

elements condition number condition number

1 = 20 4.3333 1.1818
2 = 21 18.640 2.0026
4 = 22 73.041 1.8309
8 = 23 279.99 1.5931

16 = 24 1079.4 1.4500
32 = 25 4215 1.3845
64 = 26 16631 1.3374

128 = 27 66039 1.3041
256 = 28 263158 1.2807
512 = 29 1050614 1.2644

1024= 210 4198390 1.2529

Table 8.3: Condition numbers (κ1) for Lagrange-type matrices from a one di-
mensional grid

number of Co3 PrCo3

elements condition number condition number

1 = 20 25.453 3.7338
2 = 21 96.610 2.9384
4 = 22 371.52 2.4709
8 = 23 1436.78 2.2112

16 = 24 5617.36 2.0722
32 = 25 22172. 1.9997
64 = 26 88048 1.9627

128 = 27 350875 1.9439
256 = 28 1400816 1.9344
512 = 29 5597851 1.9297

1024= 210 22380528 1.9273
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Figure 8.1: Plot of the 2 − log condition number of Lagrange-2, Lagrange-3
and the preconditioned systems matrices in 1D as described in the tables 8.2
and 8.3
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Figure 8.2: Plot of the condition number of Co2 Lagrange-2 system 1D as de-
scribed in the table 8.2
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Figure 8.3: Plot of the condition number of Co3 Lagrange-3 system 1D as de-
scribed in the table 8.3
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Figure 8.4: Plot of the condition number the preconditioned Lagrange-2 and
the preconditioned Lagrange-3 systems matrices in 1D as described in the ta-
bles 8.2 and 8.3
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8.1.3 Representations from H2(Ω) × H1(Ω).

Another possible choice for the function spaces of the tests and trail functions
is to chose v2, k ∈ H1(Ω),v1 ,ǫ ∈ H2(Ω). With this representation the follow-
ing system is produced:

CoS =

[

MH SS + MS

(SS + MS)T ML

]

PrCo =

[

B 0
0 ML

]−1 [

MH SS + MS

(SS + MS)T ML

]

.

Before assembling the matrix CoS it is important to note that choosing to use
the Lagrange-1 representation will produce issues with the stiffness matrix
AS. Lets assume that we have the ordinary Hermite element. Then on a linear
element [a, b] the basis functions φτ

0 , φτ
1 , φτ

2 , φτ
3 are as previously defined. The

Lagrange functions will be L0 = x
a−b + b

b−a and L1 = x
b−a + a

a−b . We then get

∫ a

b
φτ

0(x)′L0(x)′ dx =
∫ a

b
φτ

0(x)′
1

a − b
dx

=
1

a − b

(

φτ
0(a) −φτ

0(b)
)

=
1

a − b

(

1 − 0
)

=
1

a − b
∫ a

b
φτ

0(x)′L1(x)′ dx =
∫ a

b
φτ

0(x)′
1

b − a
dx

=
1

b − a

(

φτ
0(a) −φτ

0(b)
)

=
1

b − a

(

1 − 0
)

= − 1

a − b
∫ a

b
φτ

1(x)′L0(x)′ dx =
∫ a

b
φτ

1(x)′
1

a − b
dx

=
1

a − b

(

φτ
1(a) −φτ

1(b)
)

=
1

a − b

(

0 − 0
)

= 0
∫ a

b
φτ

1(x)′L1(x)′ dx =
∫ a

b
φτ

1(x)′
1

b − a
dx

=
1

b − a

(

φτ
1(a) −φτ

1(b)
)

=
1

b − a

(

0 − 0
)

= 0.

With these kinds of calculations one can create the table 8.4 As showed in chap-
ter 7 scaling the Hermite elements basis functions φτ with a factor C(τ) =

1
|a−b| = 1

N has proven to be beneficial with regards to the condition number of

the FEM-matrix. The variant of 8.4 for scaled elements is the table 8.5 To avoid
this problem the Lagrange-2 scheme is used and it creates the table 8.6. The
matrix PrCos in table 8.6 is very bad, we conclude that this implementation
does not work.



8.1. SOLVING AS A LINEAR PDE SYSTEM 59

Table 8.4: Values of inner products between Lagrange-1 and Hermite basis
functions on a single linear element

(·, ·)L2(τ) φτ
0(x)′ φτ

1(x)′ φτ
2(x)′ φτ

3(x)′

L′
0

1
a−b 0 − 1

a−b 0

L′
1 − 1

a−b 0 1
a−b 0

Table 8.5: Values of inner products between Lagrange-1 and scaled Hermite
basis functions on a single linear element

(·, ·)L2(τ) φτ
0(x)′ φτ

1(x)′ φτ
2(x)′ φτ

3(x)′

L′
0 1 0 −1 0

L′
1 −1 0 1 0

Table 8.6: Condition numbers (κ3) for combined matrices using Lagrange-2

number of SS + MS CoS PrCoS

elements condition number condition number condition number

1 = 20 5. 8156 9. 1885 ·102 1. 5119 ·1017

2 = 21 11. 321 4. 8547 ·103 2. 9019 ·1019

4 = 22 13. 790 2. 0227 ·104 2. 5807 ·1017

8 = 23 22. 521 7. 3769 ·104 9. 8466 ·1016

16 = 24 42. 717 2. 7072 ·105 2. 5269 ·1017

32 = 25 83. 158 1. 0307 ·106 1. 2922 ·1017

64 = 26 163. 92 4. 0236 ·106 1. 6143 ·1017

128 = 27 325. 38 1. 5911 ·107 8. 4882 ·1016

256 = 28 648. 27 6. 3276 ·107 8. 6149 ·1016

512 = 29 1294. 0 2. 5238 ·108 9. 8993 ·1016

1024= 210 2585. 5 1. 0081 ·109 2. 6523 ·1019
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Table 8.7: Condition numbers (κ3) for combined matrices using Lagrange-2
without mass matrix

number of SS CoSH

elements condition number condition number

1 = 20 2. 9565 ·1016 9. 1885 ·102

2 = 21 17. 220 3. 8944 ·103

4 = 22 14. 997 1. 5337 ·104

8 = 23 22. 813 5. 8823 ·104

16 = 24 42. 840 2. 2672 ·105

32 = 25 83. 217 8. 8523 ·105

64 = 26 163. 95 3. 4926 ·106

128 = 27 325. 39 1. 3868 ·107

256 = 28 648. 27 5. 5263 ·107

512 = 29 1294. 0 2. 2063 ·108

1024= 210 2585. 5 8 8166 ·108

As one can clearly see this representation of the problem creates bad results,
and should not be used. A modification of this representation can be:

CoSH =

[

MH SS

(SS)T ML

]

PrCoSH =

[

B + MH 0
0 ML

]−1 [

MH SS

(SS)T ML

]

PrCoAH =

[

SH + MH 0
0 SL + ML

]−1 [

MH SS

(SS)T ML

]

,

where

SS
i, j =

∫

∇Li · ∇H j dx.

It produces the tables 8.7 and 8.8 (figures: 8.5, 8.6, 8.7). The condition number
of SS is very high, this can be expected. Derivatives without a mass matrix is
usually badly conditioned when there is only one element in the mesh grid.
The condition numbers of CoSH are good, but none of the two tested precondi-
tioner does not work. This might be because we used a H2 conforming element
to approximate a H1 function.
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Table 8.8: Condition numbers (κ3) for preconditioned combined matrices using
Lagrange-2 without mass matrix

number of PrCoSH PrCoAH

elements condition number condition number

1 = 20 1. 5206 ·105 7. 1572 ·102

2 = 21 1. 3918 ·106 1. 9253 ·103

4 = 22 2. 6644 ·107 5. 6273 ·103

8 = 23 5. 5366 ·108 1. 9746 ·104

16 = 24 1. 1995 ·1010 7. 3565 ·104

32 = 25 2. 6545 ·1011 2. 8346 ·105

64 = 26 5. 9378 ·1012 1. 1122 ·106

128 = 27 1. 3383 ·1014 4. 4058 ·106

256 = 28 3. 0841 ·1015 1. 7537 ·107

512 = 29 5. 1202 ·1016 6. 9974 ·107

1024= 210 2. 3051 ·1018 2. 7955 ·108

Figure 8.5: Plot of the 2 − log condition number of the preconditioned
Lagrange-3-Hermite systems matrices in 1D as described in table 8.8
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Figure 8.6: Plot of the condition number of the preconditioned Lagrange-3-
Hermite systems matrices in 1D as described in table of PrCoSH in 8.8
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Figure 8.7: Plot of the condition number of the preconditioned Lagrange-3-
Hermite systems matrices in 1D as described in table of PrCoSH in 8.8
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8.2 Solving as a Biharmonic equation

Assuming (ǫ, k) ∈ H2(Ω) × L2(Ω)
{

−∆ǫ + k = f1 |∆
ǫ− ∆k = f2

{

−∆∆ǫ + ∆k = ∆ f1 |+ (II)
ǫ− ∆k = f2

−∆∆ǫ + ∆k +ǫ−∆k =∆ f1 + f2

−∆∆ǫ +ǫ =∆ f1 + f2
∫

Ω
−v∆∆ǫ + vǫ dx =

∫

Ω
v∆ f1 + v f2 dx

∫

Ω
−∆v∆ǫ + vǫ dx =

∫

Ω
v∆ f1 + v f2 dx + boundery terms

the discrete representation of this problem is

[−BH + MH].

The table for the condition numbers was described in the table 7.1. It is not
preconditioned, but it scales as it should.

8.2.1 Representation from H2(Ω) × L2(Ω). Discontinuous La-

grange

In this section the Problem is implemented with discontinuous Galerkin. This
section will look at the H2 × L2 representation. We now select v1,ǫ ∈ H2(Ω)
and v2, k ∈ L2(Ω). With this choice we use the equation (4.5) as our weak
form (bilinear). The finite element to use will for v1,ǫ be the Hermite elements,
while for v2, k will be the Discontinuous Lagrange elements.

Bi, j =
∫

∆Hi∆H j dx

SdD
i, j =

∫

−dLi∆H j dx

MdL
i, j =

∫

dLidL j dx

MH
i, j =

∫

HiH j dx
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Table 8.9: Condition numbers (κ2) for preconditioned scaled combined matri-
ces using discontinuous Lagrange-2

number of PrCoD CoDH

elements condition number condition number

1 = 20 2.6249 72.404
2 = 21 2.6279 78.838
4 = 22 2.6279 123.82
8 = 23 2.6280 290.23

16 = 24 2.6280 899.37
32 = 25 2.6280 3206.4
64 = 26 2.6280 1.2166e+04

128 = 27 2.6280 4.7465e+04

CoDH =

[

MH SdD

(SdD)T ML

]

PrCoD =

[

B + MH 0
0 ML

]−1 [

MH SdD

(SdD)T ML

]

.

The matrix PrCoD is not symmetric and will have negative eigenvalues. The

definition of the condition number used is κ(PrCoD) = maxi{|λi|}
mini{|λi|} . The "qz"

algorithm in octave is used.
Table 8.10 and table 8.9 shows very good results. The condition numbers

unpreconditioned system shows the importance of the scaling for numeri-
cal stability. The condition numbers preconditioned system shows condition
numbers that conform with the expectations from chapter 5 (lim(κ(P−1B)) →
2.66946). It appears we have found a good implementation for the simplified
k-ǫ model with a H2 × L2 representation.
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Table 8.10: Condition numbers (κ2) for preconditioned unscaled combined ma-
trices using discontinuous Lagrange-2

number of PrCoD CoDH

elements condition number condition number

1 = 20 2.6249 72.404
2 = 21 2.6279 213.85
4 = 22 2.6279 731.68
8 = 23 2.6280 2660.7

16 = 24 2.6280 1.0055e+04
32 = 25 2.6280 3.8962e+04
64 = 26 2.6280 1.5324e+05

128 = 27 2.6280 6.0764e+05
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Chapter 9

System in 2 Dimensions

9.1 As a single equation in 2D

ǫ− ∆k = f1(x) on Ω (9.1)

−∆ǫ + k = f2(x) on Ω. (9.2)

By derivating one of the equations, we reduce this system into a system of one
unknown.

−∆ǫ(x) + k(x) = f2(x) on Ω

−
n

∑
i=1

∂2ǫ(x)

∂xi
+ k(x) = f2(x) on Ω

n

∑
j=1

∂2

∂x2
j

( n

∑
i=1

∂2ǫ(x)

∂x2
i

+ k(x)
)

=
n

∑
j=1

∂2

∂x2
j

f2(x) on Ω

n

∑
j=1

n

∑
i=1

∂4ǫ(x)

∂x2
i ∂x2

j

+
n

∑
i=1

∂2

∂x2
i

k(x) =
n

∑
i=1

∂2

∂x2
i

f2(x) on Ω.

This can be added to (9.2)

n

∑
j=1

n

∑
i=1

∂4ǫ(x)

∂x2
i ∂x2

j

+
n

∑
i=1

∂2

∂x2
i

k(x) −
n

∑
i=1

∂2

∂x2
i

k(x) +ǫ(x) =
n

∑
i=1

∂2

∂x2
i

f2(x) + f1(x) on Ω

n

∑
j=1

n

∑
i=1

∂4ǫ(x)

∂x2
i ∂x2

j

+ǫ(x) =
n

∑
i=1

∂2

∂x2
i

f2(x) + f1(x) on Ω.
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We multiply with a test function

n

∑
j=1

n

∑
i=1

∂4ǫ(x)

∂x2
i ∂x2

j

v +ǫ(x)v =
n

∑
i=1

∂2

∂x2
i

f2(x)v + f1(x)v on Ω

∫

Ω

n

∑
j=1

n

∑
i=1

∂4ǫ(x)

∂x2
i ∂x2

j

v +ǫ(x)v dx =
∫

Ω

n

∑
i=1

∂2

∂x2
i

f2(x)v + f1(x)v dx.

Integrate by parts to obtain a weak solution,

∫

∂Ω

n

∑
j=1

n

∑
i=1

∂3ǫ(x)

∂x2
i ∂x j

vn j −
n

∑
j=1

n

∑
i=1

∂2ǫ(x)

∂x2
i

∂v

∂x j
n j dS(x)−

∫

Ω

n

∑
j=1

n

∑
i=1

∂2ǫ(x)

∂x2
i

∂2v

∂x2
j

+ǫ(x)v dx =
∫

Ω

n

∑
i=1

∂2

∂x2
i

f2(x)v + f1(x)v dx.

This can be written as
∫

Ω
∆ǫ(x)∆v +ǫ(x)v dx =

∫

Ω
∆ f2(x)v + f1(x)v dx+boundery term.

A different representation is

∫

Ω

n

∑
j=1

n

∑
i=1

∂4ǫ(x)

∂x2
i ∂x2

j

v +ǫ(x)v dx =
∫

Ω

n

∑
i=1

∂2

∂x2
i

f2(x)v + f1(x)v dx

∫

∂Ω

n

∑
j=1

n

∑
i=1

∂3ǫ(x)

∂x2
i ∂x j

vn j −
n

∑
j=1

n

∑
i=1

∂2ǫ(x)

∂xi∂x j

∂v

∂x j
ni dS(x)−

∫

Ω

n

∑
j=1

n

∑
i=1

∂2ǫ(x)

∂xi∂x j

∂2v

∂x j∂xi
+ǫ(x)v dx =

∫

Ω

n

∑
i=1

∂2

∂x2
i

f2(x)v + f1(x)v dx.

This can be written as
∫

Ω
D2(ǫ) : D2(v) +ǫv dx =

∫

Ω
∆ f2v + f1v dx + boundery term.

D2(u) is the Hessian matrix. These weak formulations are equal in one dimen-
sion. By setting n = 2 the left hand side of the equations looks like this:

∫

Ω
uxxvxx + uxxvyy + uyyvxx + uyyvyy + uv dx = < u, v >(B) (9.3)

∫

Ω
uxxvxx + 2uxyvxy + uyyvyy + uv dx = < u, v >(H) . (9.4)

uv is removed to obtain a H2
0 inner product ((9.6), (9.5))

∫

Ω
uxxvxx + uxxvyy + uyyvxx + uyyvyy dx = < u, v >(1) (9.5)

∫

Ω
uxxvxx + 2uxyvxy + uyyvyy dx = < u, v >(2) . (9.6)
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Table 9.1: functions in the null space of the functionals< ·, · >(1),< ·, · >(2)

< u, u >(1) < u, u >(2)

u = C 0 0
u = Cx 0 0
u = Cy 0 0

u = Cxy 0 2C2|Ω|

We identify which functions in H2 that are part of the null space of the inner
product. They are in table 9.1. The null spaces of these inner products are
different. To simplify further investigation of the stability of these represen-
tations, it is prudent to remove the zero eigenvalues when determining the
condition number.

9.1.1 Definition Point Spectrum

Let T be a non-invertible bounded linear operator. Then the point spectrum
σp(T) consists of all the nonzero eigenvalues of T.

9.1.2 Definition non-zero discrete eigenvalues

Let A ∈ Mn×n be a symmetric matrix, with eigenvalues 0 < λ1 ≤ λ2 ≤ · · · ≤
λn. Then an eigenvalue λi is said to be non-zero if and only if

λi+1 is non-zero (9.7)

λi

λi+1
>10−7 (9.8)

λi >10−4h4. (9.9)

9.1.3 Definition non-zero discrete condition number

κpd(A) =
max |σp(A)|
min |σp(A)| with the discrete definition of non-zero eigenvalues.

For the two representations, this works out to removing the 3 and 4 small-
est eigenvalues ((9.4) and (9.3) respectively) before computing the condition

numbers. Eight different scaling of the basis functions is selected. The
√

3
scaling is added to make all the diagonal elements of a B be exactly the same.
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Table 9.2: Condition numbers (κpd) of matrices arising from types of scaling
for Hermite elements

number of B1
1,1,1 B1

1,
√

3,1
B1

1,
√

3,2

elements cond number cond number cond number

1 = (20)2 2584.6 1116.5 500.35
4 = (21)2 382880 130028 49000

16 = (22)2 51853049 17331457 6468032
64 = (23)2 8252398263 2755125937 1016105092

256 = (24)2 1.5743e+12 525437544994 192216629691
1024 = (25)2 3.4127e+14 no result no result

9.1.4 The condition number of a Biharmonic matrix

(BN
2,w,p)i, j =

∫

D2(HN
i ) : D2(HN

j ) dx

(BN
1,w,p)i, j =

∫

∆(HN
i )∆(HN

j ) dx

φ0(0, 0) = 1

∂φN
1 (0, 0)

∂x
= wN

∂φN
2 (0, 0)

∂y
= wN

∂2φN
3 (0, 0)

∂x∂y
= (wN)p

With this, the tables 9.2, 9.3, 9.4 and 9.5. As we can see in these tables full scal-
ing with N is better than reduced scaling with N. Reduced Scaling with N is

better than no scaling. Adding the
√

3 scaling improves the condition num-
bers further. The Hessian inner product ((9.4)) is better than the biharmonic
inner product ((9.3)).

9.1.5 The condition number of the system as one equation

The ǫ-k equations is expressed in two different variational forms:

∫

Ω
∆ǫ(x)∆v +ǫ(x)v dx =

∫

Ω
∆ f2(x)v + f1(x)v dx + boundery term (9.10)

∫

Ω
D2(ǫ) : D2(v) +ǫv dx =

∫

Ω
∆ f2v + f1v dx + boundery term. (9.11)
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Table 9.3: Condition numbers (κpd) of matrices arising from types of scaling
for Hermite elements

number of B1
2,1,1 B1

2,
√

3,1
B1

2,
√

3,2

elements cond number cond number cond number

1 = (20)2 2427.2 999.36 512.07
4 = (21)2 54294 18351 9257.0

16 = (22)2 975975 325526 163189
64 = (23)2 16833179 5611233 2807417

256 = (24)2 275872937 91957807 45986184
1024 = (25)2 4442364060 1480788243 740423344

Table 9.4: Condition numbers (κpd) of matrices arising from types of scaling
for Hermite elements

number of BN
1,1,1 BN

1,
√

3,1
BN

1,1,2 BN
1,
√

3,2

elements cond number cond number cond number cond number

1 = (20)2 2584.6 1116.53 2584.6 500.35
4 = (21)2 98437 35381 29571 5620.4

16 = (22)2 3307999 1153197 433374 141023
64 = (23)2 135349903 49499784 14939717 8865144

256 = (24)2 7154662894 3059553590 1324295802 1112003947
1024 = (25)2 no result 308279719496 212530478242 202342715830

Table 9.5: Condition numbers (κpd) of matrices arising from types of scaling
for Hermite elements

number of BN
2,1,1 BN

2,
√

3,1
BN

2,1,2 BN
2,
√

3,2

elements cond number cond number cond number cond number

1 = (20)2 2427.2 999.36 2427.2 347.73
4 = (21)2 13860 4890.1 3547.3 451.39

16 = (22)2 61292 20670 3982.1 749.48
64 = (23)2 263290 87986 6953.1 5801.09

256 = (24)2 1077887 359511 68489 65081
1024 = (25)2 4338501 1446384 883276 871224
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Table 9.6: Condition numbers (κ1) of matrices arising from types of scaling for
Hermite elements

number of H1
1,1,1 H1

1,
√

3,1
H1

1,
√

3,2

elements cond number cond number cond number

1 = (20)2 274174 119207 99570
4 = (21)2 11824630 4004690 1866975

16 = (22)2 128049428 42776856 18323535
64 = (23)2 1631605949 544222077 198267421

256 = (24)2 72057123133 24024240804 8315282872
1024 = (25)2 3.4379e+12 1.1460e+12 389233623024

Table 9.7: Condition numbers (κ1) of matrices arising from types of scaling for
Hermite elements

number of H1
2,1,1 H1

2,
√

3,1
H1

2,
√

3,2

elements cond number cond number cond number

1 = (20)2 2432.38 1001.0 921.30
4 = (21)2 54306 18355 13779

16 = (22)2 975967 325523 181955
64 = (23)2 16833145 5611222 2807938

256 = (24)2 275872874 91957787 45986398
1024 = (25)2 4442364155 1480788307 740423427

The tables 9.6, 9.7 ,9.8 and 9.9 provides the condition numbers for the left hand
matrices as provided by FEM on these equations. H·

1,·,· = B·
1,·,· + M·

·,· repre-
sents the equation (9.10) and H·

2,·,· = B·
2,·,· + M·

·,· represents the equation (9.11).
They are the sums of the biharmonic and the mass matrix, with the same scal-
ing of the basis functions.

As we can see in these tables full scaling with N is better than reduced
scaling with N. Reduced Scaling with N is better than no scaling. Adding

the
√

3 scaling improves the condition numbers further. The Hessian inner
product ((9.4)) is better than the biharmonic inner product ((9.3)).

9.2 Representations as a Linear system in 2D

In this section the k-ǫ model is implemented with Lagrange-3 and Hermite
elements. The system is an H2 × L2 representation and is defined in (9.12).
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Table 9.8: Condition numbers (κ1) of matrices arising from types of scaling for
Hermite elements

number of HN
1,1,1 HN

1,
√

3,1
HN

1,
√

3,2

elements cond number cond number cond number

1 = (20)2 274174 119207 99570
4 = (21)2 3027583 1076377 286564

16 = (22)2 8136984 2813752 530594
64 = (23)2 26019491 9038317 1856347

256 = (24)2 289291368 101728884 13539678
1024 = (25)2 3451034726 1214028856 157858076

Table 9.9: Condition numbers (κ1) of matrices arising from types of scaling for
Hermite elements

number of HN
2,1,1 HN

2,
√

3,1
HN

2,
√

3,2

elements cond number cond number cond number

1 = (20)2 2432.4 1001.0 922.27
4 = (21)2 13862 7303.4 7295.6

16 = (22)2 74437 58516 58522
64 = (23)2 669028 612352 612364

256 = (24)2 7969676 7761649 7761663
1024 = (25)2 110812171 110021915 110021930
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Table 9.10: Condition numbers (κ1) of matrices arising from types of scaling
for Hermite elements when solving the equations in 2-D

number of Co1
1,1 Co1

3,1 Co1
3,2

elements cond number cond number cond number

1 = (20)2 5.3102e+06 2.1878e+06 7.6073e+05
4 = (21)2 9.5665e+05 3.2232e+05 1.1365e+05

16 = (22)2 5.2881e+07 1.7635e+07 5.9285e+06
64 = (23)2 1.3235e+09 4.4118e+08 1.4781e+08

Table 9.11: Condition numbers (κ1) of matrices arising from types of scaling
for Hermite elements when solving the equations in 2-D

number of CoN
1,1 CoN

3,1 CoN
1,2 CoN

3,2

elements cond number cond number cond number cond number

1 = (20)2 5.3102e+06 2.1878e+06 5.3102e+06 7.6073e+05
4 = (21)2 2.4307e+05 8.4899e+04 6.6080e+04 9516.7

16 = (22)2 3.3166e+06 1.1155e+06 2.2289e+05 3.4470e+04
64 = (23)2 2.0696e+07 6.9126e+06 3.8493e+05 6.8329e+04

The preconditioned system is (9.13).

Cok,n =

[

MH SD

(SD)T ML

]

(9.12)

PrCov,k,n =

[

Bv,k,n + MH 0
0 ML

]−1 [

MH SD

(SD)T ML

]

(9.13)

where v represents the type of biharmonic matrix used (as in the previous
section), k is the weighting of the Hermite basis functions and n is the power
of the weighting of the double derivative evaluation. If k = 3 and n = 2 all the
values along the diagonal of the Hermite stiffness matrix (without the mass
matrix) will be of the same size. The tables for the scaled matrices of (9.12) are
given in the tables 9.10 and 9.11. They confirm the importance of scaling the
Hermite elements.

The tables for the scaled matrices of (9.13) are given in the tables 9.12 and
9.13. The condition numbers in the preconditioned tables increases. This im-
plies that this implementation does not work. As is evident in 9.13 and 9.12,
the scaling does not change the condition number, this is to be expected. Let
T be a scaling matrix. T will be a diagonal matrix, with diagonal values corre-
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Table 9.12: Condition numbers (κ2) of matrices arising from types of scaling
for Hermite elements when solving the equations in 2-D

number of PrCoN
1,1,1 PrCoN

1,3,1 PrCoN
1,1,2 PrCoN

1,3,2

elements cond number cond number cond number cond number

1 = (20)2 2.7184e+04 2.7184e+04 2.7184e+04 2.7184e+04
4 = (21)2 4513.0 4513.0 4513.0 4513.0

16 = (22)2 2.5914e+05 2.5914e+05 2.5914e+05 2.5914e+05
64 = (23)2 1.3422e+06 1.3422e+06 1.3422e+06 1.3422e+06

Table 9.13: Condition numbers (κ2) of matrices arising from types of scaling
for Hermite elements when solving the equations in 2-D

number of PrCoN
2,1,1 PrCoN

2,3,1 PrCoN
2,1,2 PrCoN

2,3,2

elements cond number cond number cond number cond number

1 = (20)2 1.4648e+05 1.4648e+05 1.4648e+05 1.4648e+05
4 = (21)2 9.2140e+04 9.2140e+04 9.2140e+04 9.2140e+04

16 = (22)2 1.0307e+06 1.0307e+06 1.0307e+06 1.0307e+06
64 = (23)2 1.0034e+07 1.0034e+07 3.8493e+05 1.0034e+07
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sponding to the square root of the scaling of the basis function corresponding
with that row and column. The elements on T−1 will be one divided by the
corresponding element on T. Thus the preconditioned problem will be;

(TPrT)−1(TCoT) =T−1Pr−1T−1TCoT

=T−1Pr−1CoT.

This gives no benefit when it comes to the condition number. The diagonal el-
ements of the unscaled and the scaled preconditioned problems are the same,
the only thing that changes is the off diagonal elements. Since the matrices are
diagonally dominant, the change between different scalings is dramatic. How-
ever including the scaling increases the stability when calculating the precon-
ditioner.
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Conclusions

In this thesis a system of elliptical partial differential equations called the sim-
plified k-ǫ model has been examined. Its weak form is well defined analyti-
cally. The boundary conditions we can apply are dependent on which solution
space we choose. For all (ǫ, k) ∈ H1(Ω)× H1(Ω) the trace ‖(ǫ, k)‖L2(∂Ω)×L2(∂Ω)

is bounded by ‖(ǫ, k)‖H1(Ω)×H1(Ω). For all (ǫ, k) ∈ H2(Ω)× L2(Ω) the trace of

ǫ (‖ ∂ǫ
∂n‖L2(∂Ω) + ‖ǫ‖L2(∂Ω)) is bounded by ‖ǫ‖H2(Ω). Therefore these formula-

tions were used with their respective boundary conditions. (ǫ, k) ∈ H1(Ω) ×
H1(Ω) is used with one boundary condition on each variable, while (ǫ, k) ∈
H2(Ω) × L2(Ω) is used for two boundary conditions on ǫ.

The formulations are well defined analytically and Riesz mappings has
been used as preconditioners for each formulation.

In this master thesis the H2 conforming Hermite elements has been success-
fully implemented. The identified issues pertaining to mesh refinement has
been fixed by scaling. To scale a Hermite element we multiply the basis func-
tions representative of the derivates based on the size of the element and how
many derivatives it includes. The scaling of the Hermite elements allowed for
numerical experiments. Various combinations of elements, scaling and weak
formulations were tested. Many of the experiments were implemented both in
one and two dimensions.

The results of the H2 × L2 formulations, when continuous Lagrange (CG) is
used, are not stable. The continuous Lagrange paired with Hermite elements is
H2 × H1 conforming. Because H1 ⊂ L2 the combination of Hermite and CG is
also H2 × L2 conforming. The idea was therefore that Hermite-CG formulation
would work. This thesis have showed by numerical experiments that this idea
is flawed, and the Hermite-CG formulation is not stable.

The results of the H2 × L2 formulations, when discontinuous Lagrange
(dCG) is used, are very uplifting. The condition numbers are very close to
the condition numbers of the analytical calculations in (5.28). This implies that

77
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the preconditioned simplified k-ǫ system is successfully implemented and that

B ∼ SdD · (SdD)T . (10.1)

The scaling of the basis functions for Hermite with dCG simulations shows its
usefulness when comparing unpreconditioned tables. It is reasonable to sus-
pect that scaling allows higher degree of mesh refinement for a fixed accuracy
demand, even when a system is preconditioned.

As expected from [1] the H1 × H1 formulation works. It gave quite good
results as the mathematical formulation suggest. The condition numbers are
stable as the tables of section 8.1.2 shows. However boundary conditions for
both ǫ and k are required. It does not work very well if Hermite combined
with CG elements are used.

In 2-dimensions with Hermite and CG elements the results is similar to the
1-dimensional case. Here, scaling shows its usefulness. We also learned that
(9.6) was more stable than (9.5).

It is reasonable to suspect that the lessons learned about CG vs dCG in the
1-dimensional case also applies to the 2-dimensional cases. We can suspect this
because the Hermite-CG system gave similar types of results in 1-dimensions
as it did in 2-dimensions, and because the systems that did not work in 1
dimensions used elements that conformed with higher order Sobolev spaces
than was strictly needed (see section 8.1.1 and 8.1.3).

Since the implementation of the preconditioned simplified k-ǫ model was
successful the next logical step is to implement the full k-ǫ model with this
new set of boundary conditions.

It is important to note that the H2 × L2 formulations are symmetric. There-
fore two new possible sets of boundary conditions can be used

BAk =

{

k = g1 on ∂Ω
∂k
∂n = g2 on ∂Ω

(10.2)

BAǫ =

{

ǫ = g1 on ∂Ω
∂ǫ
∂n = g2 on ∂Ω

. (10.3)

It is useful if the full k-ǫ model can be successfully implemented with the new
set of boundary conditions. The results of this thesis open up for numerical
approximations of the k-ǫ model in situations where it is possible to obtain
accurate information about one of the variables, but not the other. This can
be very useful in engineering where the k-ǫ models are among of the most
commonly used turbulence models.

So from this thesis we should be able to conclude that the H2 × L2 formu-
lations work. It should be implemented with Hermite and dCG elements. The
H1 × H1 formulation worked, but only if two CG elements are used. It is im-
portant to not chose elements that conform with Sobolev spaces of higher or-
der than the particular one we are interested in. The Hermite elements should
be scaled to produce a more stable approximation.
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Appendix

11.1 Definitions

Definition of L2(Ω) space [10] 1 L2(Ω) is the functions space of square integrable
functions on Ω. u is said to be in L2(Ω) if

‖u‖L2(Ω) =

(

∫

Ω
|u|2 dx

) 1
2

< ∞. (11.1)

Definition of Hn(Ω) space [10] 2 Hn(Ω) is the Sobolev space containing deriva-
tives of power n and and L2 type norm. The norm is defined as

‖u‖Hn(Ω) =





∫

Ω
∑

|α|≤n

|Dαu|2 dx





1
2

< ∞. (11.2)

It has the following inner product:

(u, v)Hn(Ω) =
∫

Ω
∑

|α|≤n

DαuDαv dx. (11.3)

Where α = (α1,α2, . . . ,αd) is a multi index, and |α| = α1 +α2 + · · · +αd. While
d is the number of dimensions and

Dαu =
∂α1 u

∂x
alpha1

i

+
∂α2 u

∂x
alpha2

2

+ · · ·+ ∂αd u

∂x
alphad

d

u ∈ Hn ↔ ‖u‖Hn < ∞ .
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Definition of H1
0(Ω) space [10] 3 H1

0(Ω) is the Sobolev space containing deriva-

tives of power n and and L2 type norm. the norm is defined as:

‖u‖H1
0 (Ω) =

(

∫

Ω
|∇u|2 dx

) 1
2

< ∞. (11.4)

It has the following inner product:

(u, v)H1
0 (Ω) =

∫

Ω
∇u · ∇v dx. (11.5)

Definition of H1(Ω) space [10] 4 H1(Ω) is the Sobolev space containing deriva-
tives of power n and and L2(Ω) type norm. The norm is defined as:

‖u‖H1(Ω) =

(

∫

Ω
|∇u|2 + |u|2 dx

)
1
2

< ∞. (11.6)

It has the following inner product:

(u, v)H1(Ω) =
∫

Ω
∇u · ∇v + uv dx (11.7)

Note that L2(Ω) = H0(Ω).

C∞

c (Ω) is the space of all infinitely continuous differentiable functions with
compact support.
Hn

0 (Ω) = Hn(Ω) ∩ Cn−1
c (Ω̄).

11.2 Theorems and Functional analysis

Youngs inequality [10] 5

ab ≤ a2

2
+

b2

2
. (11.8)

Minkowskis inequality [10] 6

‖ f + g‖L2(Ω) ≤ ‖ f‖L2(Ω) + ‖g‖L2(Ω). (11.9)

Definition of a Bounded Linear Functional [10] 7 Let X be a Banach Space. A
bounded linear operator u∗ : X → R is called a bounded linear functional on X.

We write X∗ to denote the collection of all bounded linear functionals on X. X∗ is
the dual space of X.
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Let H be a Hilbert space with inner product (·, ·) and u ∈ H, u∗ ∈ H∗ (so
u∗(u) ∈ R).

Riesz Representation Theorem [10] 8 H∗ can canonically be identified with H.
For each u∗ ∈ H∗ there exists a unique element u ∈ H such that u∗(v) = (u, v) for
all v ∈ H. u∗ 7→ u is a linear isomorphism from H∗ onto H.

Let L(H∗, H) be the set of all linear functionals from H∗ to H

Definition of Riesz map 9 R ∈ L(H∗, H) is the Riesz map if: Given u∗ ∈ H∗

then u∗(v) = (R(u∗), v)H .

Independent Eigenvector Theorem 1 If A is an real N × N matrix with {λ}N
i=1

distinct real nonzero eigenvalues. Then any set of {ei 6= 0}N
i=1 eigenvectors with

Aei = λiei form a basis for R
N

Proof

It is sufficient to prove that {ei}N
i=1 is a linearly independent set. If {ei}N

i=1 is
dependent, then there must exist at least one minimal subset of 2 ≤ j ≤ N

linearly dependent vectors {vi} j
i=1, with the eigenvalues {ρi} j

i=1. Since the

eigenvectors are dependent there must exist as set {ai} j
i=1 with at least two

non-zero constants such that,

a1v1 + a2v2 + · · ·+ a jv j = 0.

We can assume that a j 6= 0 and define bk = −ak/a j and get

v j = b1v1 + v2v2 + · · ·+ b j−1v j−1. (11.10)

Multiply (11.10) with A and get

ρ jv j = ρ1b1v1 + ρ2v2v2 + · · ·+ ρ j−1b j−1v j−1. (11.11)

Multiply (11.10) with ρ j and get

ρ jv j = ρ jb1v1 + ρ jv2v2 + · · ·+ ρ jb j−1v j−1. (11.12)

Subtract (11.11) from (11.12) and get

0 = (ρ j − ρ1)b1v1 + (ρ j − ρ2)v2v2 + · · ·+ (ρ j − ρ j−1b j−1v j−1. (11.13)

Since at least one of the bk is non-zero, the set {vi} j−1
i=1 is linearly dependent,

and we have a contradiction.
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Matrixes for 1D

Bi, j =
∫

∆Hi∆H j dx

AH
i, j =

∫

DHi · DH j dx

AD
i, j =

∫

−Hi∆H j dx

SD
i, j =

∫

−Li∆H j dx

SS
i, j =

∫

∇Li · ∇H j dx

AL
i, j =

∫

∇Li · ∇L j dx

MS
i, j =

∫

HiL j dx

ML
i, j =

∫

Li L j dx

MH
i, j =

∫

HiH j dx
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Matrixes for 2D

(BN
2 )i, j =

∫

D2(HN
i ) : D2(HN

j ) dx

(BN
1 )i, j =

∫

∆(HN
i )∆(HN

j ) dx

AH
i, j =

∫

DHi · DH j dx

AD
i, j =

∫

−Hi∆H j dx

SD
i, j =

∫

−Li∆H j dx

SS
i, j =

∫

∇Li · ∇H j dx

AL
i, j =

∫

∇Li · ∇L j dx

MS
i, j =

∫

HiL j dx

ML
i, j =

∫

LiL j dx

MH
i, j =

∫

HiH j dx

Where

D2u =
d

∑
i=1
j=i

∂2u

∂xi∂x j

∆u =
d

∑
i=1

∂2u

(∂xi)2

and d is the number of dimensions.

11.3 Boundary condition table
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Table 11.1: Table of different boundary conditions

(ǫ, k) ∈ H2(Ω) × L2(Ω) (ǫ, k) ∈ H1(Ω) × H1(Ω)
g1 = g2 = g1 = g2 =
∂ǫ
∂n ǫ ǫ k

(ǫ, k) ∈ H2(Ω)× L2(Ω) (ǫ, k) ∈ H1(Ω)× H1(Ω)
∂2ǫ

(∂n)2 ǫ ∂ǫ
∂n ǫ

∂2ǫ
(∂n)2

∂ǫ
∂n

∂ǫ
∂n k

(ǫ, k) ∈ H2(Ω) × L2(Ω) (ǫ, k) ∈ H1(Ω) × H1(Ω)

ǫ k ∂k
∂n k

∂ǫ
∂n k ǫ ∂k

∂n

(ǫ, k) ∈ H2(Ω)× L2(Ω) (ǫ, k) ∈ H1(Ω)× H1(Ω)
∂2ǫ

(∂n)2 k ∂ǫ
∂n

∂k
∂n
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