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ABSTRACT

Spectral flux is usually measured with the FFT, but here
a constant-Q IIR filterbank implementation is proposed.
This leads to a relatively efficient sliding feature extractor
with the benefit of keeping the time resolution of the output
as high as it is in the input signal. Several applications are
considered, such as estimation of sensory dissonance, uses
in sound synthesis, adaptive effects processing and visual-
isation in recurrence plots. A novel feature called second
order flux is also introduced.

1. INTRODUCTION

Many feature extractors are conventionally implemented
with an FFT, although in several cases there exist alterna-
tive time domain implementations. Sometimes well-known
time-frequency dualities can be evoked, such as carrying
out the spectral centroid estimation with a differentiating
filter in the time domain instead of multiplying the spectral
bins with a ramp function [1]. Certain feature extractors
are most naturally defined in the time domain, as is the
case with the zero crossing rate. Yet, the idea of process-
ing a buffer of samples at once, then hopping to the next
buffer, seems to be prevailing even in situations where a
sliding feature extractor is practical. The sliding DFT [2,3]
makes it possible to have sliding versions of feature extrac-
tors that usually rely on the FFT. However, sliding feature
extractors do not have to rely on the DFT. The principle of
any sliding processing is that an entire buffer of arbitrary
length may be efficiently processed and updated a single
sample at a time, and that the output sample rate is the
same as the input sample rate. Here we will consider a
sliding filterbank implementation of spectral flux.

The various feature extractors that are commonly in use
are more or less correlated. More precisely, for typical
signals, there are feature extractors that measure the same
thing in slightly different ways, such as the spectral roll-
off, centroid and slope which are all sensitive to the pres-
ence of high frequency content. Hence, the parallel use of
a set of feature extractors may be redundant. As Peeters et
al. have recently suggested [4], studies of musical sound
should at least use four types of mutually complementary
descriptors including a measure of the time-varying cen-
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tral tendency of the spectrum (e.g. the centroid); a mea-
sure of the temporal dispersion of time-varying spectral
features (presumably including spectral flux and statisti-
cal measures of the spread of other features); a descriptor
related to the temporal envelope of the energy, and finally
a descriptor related to periodicity, such as fundamental fre-
quency or noisiness. In some studies of timbre perception
with multidimensional scaling, the level of spectral fluctu-
ation over time (i.e. spectral flux) has been found to cor-
respond to one of the perceptual dimensions [5]. Spec-
tral flux has also been found to be useful for onset detec-
tion [6]. When temporally accurate onset detection is the
goal, a sliding onset detector may be preferred rather than
one with a hop size on the order of several milliseconds.
The proposed filterbank flux can be used for onset detec-
tion, although we will consider other applications.

In the present implementation, the spectral flux is mea-
sured with a small number of second-order IIR filters with
constant frequency ratio as well as a constant Q factor.
The idea is to measure the difference in amplitude in each
band of the filterbank between the current position and
a delayed position. In FFT-based flux, the difference in
amplitude is taken between the current and the previous
non-overlapping windows. In contrast, because the filter-
bank flux filters have an infinite impulse response, the cur-
rent and the past windows cannot be completely isolated.
Moreover, the filters’ variable bandwidth leads to varying
decay times of the impulse responses, with decay times de-
creasing with increasing centre frequency. Therefore it is
necessary to insert a delay of suitable length, proportional
to the decay time at each band, in order to keep the amount
of overlap at a reasonably low level. Otherwise spurious
correlations from the tail of the current impulse response
into the delayed position will bias the estimated flux to-
wards smaller values.

The single sample hop size leads to a sliding feature ex-
tractor, which is particularly useful when the temporal de-
tails of the analysed signal are of interest, or when an anal-
ysis with high temporal accuracy is preferred. Sliding fea-
ture extractors output samples at the audio sample rate; in
the case of constant-Q filterbank flux its output is restricted
to the range [0, 1], which means that the output can be used
as an audio signal, although it comes with a constant DC
offset. Hence, if one listens to the filterbank flux as an
audio signal, it tends to sound like a distorted, albeit of-
ten recognisable version of the input sound. In particular,
harmonic and spectrally rich sounds tend to sound like a
more buzzing version of the original tone. Anyone who
would like to use the filterbank flux for something it was
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not intended for may consider passing its output through a
highpass filter and treat it as an unconventional distortion
effect.

In the following section, the details of the filterbank flux
implementation are given. Then, the remaining sections
provide several examples of applications of filterbank flux.
First, a second order flux will be introduced, then the fil-
terbank flux is used as the core component in a sensory
dissonance model. The sliding implementation is particu-
larly suitable for use in certain kinds of feedback systems
as well as in adaptive effects processing, some examples of
which are mentioned towards the end of this paper.

2. FILTERBANK FLUX IMPLEMENTATION

The input signal x[n] is passed through a constant-Q filter
bank with N biquad bandpass filters bk with octave spac-
ing. When all channels of the filterbank are combined, a
nearly flat frequency response can be achieved by setting
Q = 1/

√
2. The lower and upper edges of the spectrum

are not within the passband of the filterbank. Let yk be
the output signals of the filterbank. Then, the amplitude ak
of each band is measured with a sliding RMS amplitude
feature extractor, which is efficiently implemented using a
moving average filter structure [7], hence

ak[n] =

√√√√ 1
Nk

Nk−1∑
j=0

(yk[n− j])2 (1)

where each band has its own length Nk which is set in-
versely proportional to the centre frequency.

The amplitude signals ak are then treated analogously to
the amplitude bins of an FFT in the computation of flux; in
either case, the point is to measure the amount of change
between the current frame and a past frame. In the IIR
filter bank implementation, however, each filter bk has its
own effective impulse response length, and therefore it is
preferable to make the delay time dk between the current
frame and the past frame a function of this duration. Since
IIR filters are used, the effective duration may be defined
in relation to the amplitude of the impulse response hk[n]
of the filter bk. Let us define this effective duration τk(ε)
as the last time when |hk[n]| ≥ ε.

For fixed ε, it turns out that τk(ε) follows a power law
log τk ∼ log fk, where fk is the filter’s centre frequency.
Hence, the decay time of the filter with centre frequency
fk is τk = Cfαk for some constants C and α. As ε → 0,
α approaches −1 from above. In the present implementa-
tion, the constants C and α have been estimated from the
measured effective durations of impulse responses using
the time when the impulse response has decayed by 60 dB,
or ε = 10−3, which yields α ≈ −0.8.

There are several alternative formulas in the literature for
the calculation of flux, and furthermore, it may be com-
puted from different signal representations [4]. Perhaps
most commonly, the amplitude spectrum is computed from
an FFT, but other representations may be used, including
the power spectrum, sinusoidal signal models, or even au-
ditory models such as gamma-tone filterbanks. Often, the

spectral flux is calculated as 1 minus the normalised corre-
lation of the current and previous amplitude bins [4]. Onset
detection using spectral flux depends on identifying rising
but not decreasing energy profiles, so the Heaviside step
function (a.k.a. half-wave rectifier) may be applied to the
difference between the current and the previous frames [6].
For the filterbank version, the average magnitude differ-
ence

Φn =
∑N
k=1 |ak[n]− ak[n− dk]|∑N
k=1 ak[n] + ak[n− dk]

(2)

is used. As we shall see in the next section, this formula-
tion allows for a generalisation to second order flux.

It is important to set the time constants to suitable lengths
in order to avoid spurious correlations between the current
and past frames. In the current implementation, the length
of the RMS window is doubled at each lower octave. Then,
the combined decay time of the filter bk followed by the
RMS processing gives the delay time dk = τk +Nk.

This implementation becomes computationally intensive
if there are many channels in the filterbank, but with octave
spacing, as little as 8 filters covers most of the audio range.
In all applications described next, the filter centre frequen-
cies have been set to fk = 100 · 2k, k = 0, 1, . . . , 7,
covering the range from 100 Hz to 12.8 kHz.

●

Right aligned

ak[n]ak[n−dk]

n − 2dk n − dk n

●

Symmetric non−causal

n − dk n n + dk

Figure 1. Different alignments of the current and delayed
frames.

There is scope for variation in the implementation details
of filterbank flux. Apart from the alternative formulas for
the flux measure itself, the amplitude may be measured in
different ways including the peak amplitude or the energy
a2
k. The filterbank may have denser spaced filters, and the

delays dk may be increased by selecting a smaller ε in the
formula for the effective durations τk(ε). In the proposed
version, the total delay

∑
k dk is minimised under the con-

dition that the processing is causal. Then, the past frame
becomes more delayed towards bass frequencies (as in the
top of Figure 1). It would also be conceivable to center the
frames symmetrically on top of each other (see bottom of
Figure 1), but this would require the additional complica-
tion of more delays. In fact, the sliding DFT might be used
instead of the IIR filterbank, not least since a constant-Q
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Figure 2. Comparison of flux as measured with the filter
bank method and with an FFT with a hop size of 0.03 sec-
onds. The analysed signal comes from the beginning of
S.709 by Xenakis.

version of the sliding DFT has been proposed [8]. How-
ever, that would lead to yet another different flux imple-
mentation.

Due to the constant Q of the present implementation, the
bandwidth and the energy of hk are both proportional to
the centre frequency. Consequently, the frequencies have
a constant weighting across the spectrum, similarly to the
FFT implementation. Alternatively, one could normalise
the energy of each filter channel instead, which might qual-
ify as a perceptually motivated weighting. All these possi-
ble variations of the filterbank flux implementation would
deserve a closer study, but here we shall be contented with
a brief comparison with the common FFT version of flux.

The opening of Xenakis’ S.709 has been analysed with
both the filterbank and the FFT method using the average
magnitude difference (see Figure 2). The flux of the fil-
terbank version has been averaged over 512 samples for
the sake of visual clarity. Note that the FFT flux usually
takes higher values, although both versions of flux respond
to onsets. A direct comparison between the filterbank and
the FFT flux is complicated for several reasons. First, the
output sample rates need to be equal, preferably by setting
the hop size to one sample in the FFT version. Second, a
suitable window length has to be chosen for the FFT which
is in some sense representative for the time constants of the
filterbank. Third, the lag at which the cross correlation be-
tween the FFT and filterbank flux signals reaches its max-
imum depends on the analysed sound. All of these factors
need to be considered before a sensible comparison can be
made between the FFT and filterbank implementations of
flux. However, the lack of correlation at some fixed time
lag indicates that these are two independent and comple-
mentary feature extractors although they are both related
to short time spectral fluctuations.

The filterbank flux has been implemented as a C++ class
with a member function that processes one sample at a
time, although buffer processing can also be used. By de-
fault, all filters and delays are initialised with zero input.
Therefore, as soon as the analysed input signal contains its
first non-zero sample, the flux signal saturates at its high-
est value. This can be seen in Figure 2 where there is a

high peak at the start. In order to minimise these initial
transients, one may initialise the filters with low amplitude
white noise or other suitable signals. Next, we consider
some further elaborations based on the basic flux feature.

3. SECOND ORDER FLUX

Apart from responding to onsets, spectral flux also indi-
cates the amount of short time spectral fluctuation. Any
sound that perceptually appears static or smooth may be
expected to have a low flux level. However, the relation-
ship between spectral flux and the perception of a sound’s
smoothness or granularity may be complicated. For in-
stance, one may experience a sound to be granular at one
level but static at a higher level, as is the case with coloured
noise. This distinction may be explored with the aid of the
second order flux, which we will introduce now.

The spectral flux Φ, as defined in (2), may be compared
to a differentiating operator. Then, a second order flux Φ2

can be introduced in analogy with the second derivative.
When spectral flux is computed from the FFT amplitude
spectrum, a second order flux using the average magni-
tude difference |∆X[m]| = |X[m]−X[m− 1]| may be
defined in terms of the second difference

∣∣∆2X[m]
∣∣. Do-

ing so and applying the result to the filterbank flux, one
obtains a formula with delays of dk and 2dk which means
that the time support is highly asymmetric (this is equiv-
alent to adding another block on the left side of each of
those in the top of Figure 1). However, the total delay is
minimised for this right-aligned filter structure. If instead
a non-causal filter is used, the symmetric second order flux

Φ2[n] =
∑
k |ak[n+ dk]− 2ak[n] + ak[n− dk]|∑
k ak[n+ dk] + 2ak[n] + ak[n− dk]

(3)

becomes possible. In practice, further delays would be
inserted to make (3) causal. Therefore, the right-aligned
structure is simpler to implement and is also faster in its
response to events in the input signal than the causal ver-
sion of (3).

In general, the second order flux is positively correlated
to first order flux. Locally, however, there can be devia-
tions from a strict correlation. Since the first and second
order flux have already been likened to the first and sec-
ond derivatives, one may consider a scatter plot of these
variables as similar to the phase space portraits commonly
used in dynamic systems theory. Two such flux phase por-
traits are given in Figure 3 using the right-aligned versions
of both first and second order flux. The fine details of the
phase space portraits are only visible if the flux variables
come from sliding feature extractors; the details get blurred
if the flux variables are smoothed and downsampled by any
significant amount. As a plausible conjecture, the inequal-
ity Φ2 < Φ should be expected to hold for most sounds
that have a static perceptual appearance, regardless of the
level of first order flux.

Since the output of the flux feature extractor Φ[n] is itself
an audio rate signal, it may be submitted to any further
analysis that is commonly applied to audio signals. For
instance, the spectrum of Φ[n] will reveal something about



Φ

Φ
2

0 0.5 1
0

0.5

1

Φ

Φ
2

0 0.5 1
0

0.5

1

Bassoon

Speech

Figure 3. Two scatter plots of the first vs. second order
flux. Top: a speech phrase; bottom: a low bassoon note.

the balance of fast and slow variations in the signal x[n].
The same procedures can of course be applied to Φ2.

4. SENSORY DISSONANCE

Roughness or sensory dissonance arises from the occur-
rence of closely spaced partials, in particular from partials
that fall within the same critical band. Partials that are
close in frequency will cause beats, which contributes to
a higher flux value. Therefore, it should be possible to use
the filterbank flux as a sensory dissonance model.

Sethares has proposed a time domain sensory dissonance
model [9] that bears a certain similarity to the filterbank
flux. The sensory dissonance model of Sethares first splits
the input signal x[n] into several bands yk[n] with critical
band filters. Then the amplitude envelope of each chan-
nel is extracted with a half-wave rectifier followed by a
lowpass filter. Each channel’s amplitude envelope is then

Ratio

1.0 1.1 1.2 1.3 1.4 1.5

Dissonance

Flux

Figure 4. Flux and sensory dissonance score of two
square-wave tones detuned by an increasing ratio.

passed through a bandpass filter with pass band in the range
15 – 35 Hz, the purpose of which is to capture the fast mod-
ulation or beats that are the cause of perceived roughness.
Finally, the energy of the sum of all these signals yields the
dissonance level.

In filterbank flux, the RMS amplitude replaces the low-
pass filtered half-wave rectifier of the dissonance model.
There are other differences as well, such as the delays in
the amplitude variables in (2). However, if the flux signal
Φ[n] is submitted to the same processing as the last stages
of Sethares’ dissonance model, then it may be used as a
dissonance model as well. Thus, the flux signal is band-
pass filtered and the filter’s output RMS amplitude is used
as the dissonance value. Specifically, we use a biquad fil-
ter again and set the bandpass filter’s centre frequency to
25 Hz and use a Q factor 2. Although the flux-based disso-
nance obviously cannot be claimed to model the auditory
system, it seems to give a decent estimate of the degree of
sensory dissonance.

In Figure 4, two detuned bandlimited square-wave tones
are measured with respect to flux and sensory dissonance
according to the proposed method. The dissonance curve
shows a similar characteristic to other dissonance curves
obtained by the method described by Sethares. Most no-
tably, the highest dissonance peak occurs around the ra-
tio 1.066, or 110 cent, and several troughs can be found
around consonant ratios. The dissonance curve actually
shows the logarithm of the dissonance measure, because
the minima at consonances are more readily seen that way.

5. A FEEDBACK SYSTEM USING FLUX

There are also more creative applications for the filterbank
flux, some of which will be described next. Feature ex-
tractor feedback systems, or FEFS for short, are synthesis
models consisting of the following parts: a signal generator
synthesises the output signal which is analysed with a fea-
ture extractor, and the time varying feature is mapped to the
synthesis parameters of the signal generator [10]. In such
feedback systems, block based processing using an FFT
and some fixed hop size will tend to introduce discontinu-
ous changes every time the analysis window is advanced.
In contrast, a sliding feature extractor leads to smoother
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Figure 5. Flux time series of the FEFS for two parameter values. Top: slow periodic behaviour; bottom: more irregular
with intermittent spikes.

dynamics. Hence, the filterbank flux is suitable for use in
a FEFS.

For the signal generator, let us consider something that
is capable of producing both smooth sounds having low
values of flux as well as less smooth sounds where closely
tuned partials cause beats. Two wavetable oscillators that
can be more or less detuned will be used for the generator.
The waveform is arbitrary but assumed to be fixed over
time. Here, the two oscillators will use the bandlimited
square-wave that was investigated with respect to flux and
sensory dissonance level in the previous section. We write
the output of the signal generator symbolically as

x[n] = osc(f [n] + δ[n]) + osc(f [n]− δ[n]) (4)

where osc(f [n] ± δ[n]) denotes the wavetable oscillator
running at the instantaneous frequency f [n]±δ[n] Hz, and
the oscillators are assumed to have equal amplitude. The
flux

Φ[n] = flux(x[n]) (5)

of the signal is measured using the filterbank approach (2).
Then, the flux is mapped to the parameters of the signal
generator. The mapping from flux to the two synthesis pa-
rameters may be any function g : R → R2, but let us
consider an affine map

f [n+ 1] = AΦ[n] + C
δ[n+ 1] = BΦ[n] (6)

with the three parametersA,B,C in units of Hz. The com-
plete system (4, 5, 6) may be considered as a determinis-
tic autonomous dynamic system whose temporal evolution
depends entirely upon its control parameters and its initial
condition. When B = 0, this model may be compared

to feedback FM with C playing the role of a carrier fre-
quency, and A being the modulation index. Typically, cy-
cles of slow periodic pitch contours may arise, but setting
C = 0 and A > 0 results in irregular behaviour.

The flux time series at two distinct parameter configura-
tions can be seen in Figure 5. Note that the affine map (6)
guarantees that the frequency f and deviation δ have the
same shape as the flux signal, only scaled and shifted ac-
cording to the parameters. A slow but periodic pitch con-
tour can be seen in the upper plot, whereas a more irregular
contour results when C = 0. One might think that higher
values of B and increased amounts of detuning would lead
to more irregularities; however, the opposite is the case. If
C is close to zero, very slow developments will occur, in-
cluding periods when the two oscillators gradually phase
out and cancel each other, leading to moments when the
sound fades out and then fades in again.

It should be emphasised that these relatively complicated
pitch contours result even though the control parameters
are constant over time. FEFS in general are high dimen-
sional autonomous dynamic systems; specifically, they are
iterated maps whose dimension is given by the number
of unit delays in the feature extractor in addition to all
the other variables [10]. As with other, better known dy-
namic systems such as the Lorenz attractor or the Hénon
map [11], these systems may reach fixed points, periodic,
quasi-periodic or chaotic states. It is hard to tell whether
the system (4, 5, 6) is chaotic or merely quasi-periodic, al-
though the detuned oscillators by themselves cause quasi-
periodicity.

The mapping (6) does not contain any nonlinear terms,
which would usually be needed in the feedback path for
a system to be capable of chaos. However, the filterbank
flux is already a nonlinear system that may be the cause of



chaos. The extended time support of the flux extractor also
affects the dynamics of this system by smoothing it out
over its duration. Although the resulting pitch contours are
quite complicated and have a relatively long period with
the affine mapping (6), even more complicated and irregu-
lar pitch contours can easily be generated by using nonlin-
ear mappings.

6. RECURRENCE PLOTS

Systems such as the above example of a FEFS can ben-
efit from being visualised with recurrence plots. Origi-
nally conceived as a tool for dynamic systems [12], re-
currence plots have found important applications in other
areas including music analysis [13]. The recurrence plot
is a matrix constructed from the distances d(X[n], X[m])
between all pairs of observations in a signal, where the
observations in audio applications are often FFT frames
or MFCC frames. However, any feature extractor may be
used for the observations. The filterbank flux is well suited,
provided care is taken to make the successive observations
non-overlapping.

When the temporal patterns of a FEFS are displayed with
a recurrence plot, it is particularly interesting to use the
same feature or set of features that are used internally in
the system as the basis for the distance measure. In visu-
alisations of dynamic systems, the recurrence plot would
normally show the distances between each iteration of the
map if the system is in discrete time. Such a fine-grained
resolution is unpractical for audio data, which typically has
much slower time scales. Therefore, it is reasonable to use
some kind of averaging over a longer time segment for the
data points.
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Figure 6. Recurrence plot using flux as distance measure.

The recurrence plot in Figure 6 uses the Euclidian dis-
tance over the local mean and standard deviation of the
filterbank flux over windows of 2048 samples. The audio
signal comes from the system described above and with

the same parameter settings as in the bottom of Figure 5.
As can be gleaned from the regular block structure, there
are periodically repeating patterns, although these repeti-
tions are never exact. It is remarkable that such a simple
FEFS with comparatively short temporal support in its fea-
ture extractor can exhibit such long-term variability. This
is however not unique to this particular system, but has
been observed in other FEFS as well [10].

7. ADAPTIVE EFFECTS

Signal-adaptive effects processing uses feature extractors
to control effect parameters [1]. By analysing the features
coming from the same signal as is being processed, adap-
tive processing can follow and exaggerate the variation of
a sound. Let us consider some applications of the filter-
bank flux to adaptive effects. For instance, dynamic pro-
cessing similar to a de-esser can be achieved by letting the
flux level determine the amount of gain. Because the filter-
bank flux signal tends to have a substantial high frequency
component, it may be necessary to lowpass filter it in or-
der to avoid noisy artefacts. Smoothing of the flux signal
would be needed even if an FFT version of flux were used,
but in that case it is needed for interpolation of the sudden
jumps that may occur as the window hops several samples
forward. In contrast, the filterbank flux typically has con-
tinuous high frequency content that introduces audio rate
amplitude modulation if used directly as a gain control.

As is the case with ordinary dynamics processing includ-
ing compressors, noise gates, expanders etc, there are as
many possibilities for the use of flux as a gain control.
Either portions of the signal containing high flux may be
suppressed, or these portions may be emphasised and the
static portions suppressed. A processing scheme that gives
interesting results is the following. First, the flux Φ[n] is
obtained from the signal x[n]. A smoothing one-pole filter
is applied to the flux signal, to obtain the smoothed flux
ϕ̄[n] = (1− b)Φ[n]+ bϕ̄[n−1]. The variations in ϕ̄[n] are
typically too shallow to be used directly as a gain function.
Therefore this signal is passed through a sigmoid function
such as

s(x) = (tanh(((x− β)G) + 1))/2 (7)

where β controls the cutoff point of the transition region,
andG is the sharpness of the transition region. Then, g[n] =
s(ϕ̄[n]) is used for the gain that multiplies x[n]. The pa-
rameters may be set by trial and error, unless the entire
signal is available for offline processing. If so, the statis-
tics of the flux feature can be collected in a first analysis
phase and, based on the probability distribution of Φ[n], a
certain proportion can be specified where the signal should
come through and where it should be blocked. The prob-
ability distribution of flux in a low bassoon tone is shown
in Figure 7. From the inverse of the cumulative distribu-
tion (not shown), a cutoff point can be found that gives the
parameter β in (7).

If the input is a percussive sound, it is possible to keep
only the onsets since they will have a higher flux value
than other parts of the signal. This can be used for instance
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Figure 7. The probability distribution of flux of a low bas-
soon tone.

on plucked string sounds to impose a staccato articulation
by chopping off the gradual decay. Conversely, if 1− g[n]
is used as the gain, one has a flux suppressor. When used
for attack suppression this can produce smoothly fading in
attacks, although the time delays introduced both by the
filterbank flux and the smoothing lowpass filter may need
to be compensated for by delaying the input signal. Then
the output is (1 − g[n])x[n − D] for some suitable delay
time D.

Gain processing using flux—as opposed to the amplitude
envelope that is used in standard dynamics processing—is
not sensitive to the absolute amplitude level of the signal.
Thus, the flux level of a note onset does not necessarily
depend on whether it is a pianissimo or a forte note.

Adaptive effects can also use the second order flux or
the dissonance features introduced above. Furthermore, all
these feature extractors can of course be applied to any au-
dio effect one can think of. Adaptive effects processing is
only limited by one’s imagination.

8. CONCLUSION

Sliding feature extractors can be used in any application
where block based processing would ordinarily be used,
including feedback systems and signal-adaptive process-
ing. Since the output is an audio rate signal, traditional
feature extraction applications that expect highly down-
sampled signals may need the flux feature to be smoothed
and downsampled as well. In other applications such as
the FEFS, the temporal resolution of an audio rate feature
is more useful.

The current implementation of constant-Q filterbank flux
is but one of many possible and, perhaps, equally valid im-
plementations. There is scope for variation as to how the
amplitude of each frequency band is measured. In the flux
formula itself, the distance measure between the current
and the past frames may be formulated in several different
ways. More channels may be used in the filterbank, with
closer spacing of the centre frequencies. The current im-
plementation has most of all tried to achieve efficiency. If
the first order flux is computed, the second order flux and
dissonance are obtained at little extra cost.

We have not tried to argue that the filterbank flux is bet-
ter than the traditional FFT or other implementations of
spectral flux, rather it is complementary to them. Which

implementation is most advantageous depends on the ap-
plication at hand, and here we have suggested a number
of contexts where a sliding flux feature extractor can be
useful. There is reason to believe that other sliding feature
extractors of all sorts will likewise find their uses.
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