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Abstract

Concurrency is a ubiquitous phenomenon in modern software ranging from distributed sys-
tems communicating over the Internet to communicating processes running on multi-core pro-
cessors and multi-processors. Therefore modern programming languages offer ways to pro-
gram concurrency effectively. Still, writing correct concurrent programs is notoriously difficult
because of the complexity of possible interactions between concurrent processes and because
concurrency-related errors are often subtle and hard to reproduce, especially for safety-critical
applications. This thesis develops and formally investigates different static analysis meth-
ods for various concurrency-related problems in concurrent object-oriented programming lan-
guages to guarantee the absence of common concurrency-related errors, hence contribute to
the quality of concurrent programs.

Aspects covered by our analyses involve lock-based concurrency, transaction-based con-
currency, resource consumption and inheritance. In the lock-based setting, using explicit locks
in a non-lexical scope to protect critical regions might be the source of aliasing problems or
misuse of locks. In the transaction-based model, a similar problem of misuse of non-lexical
transactions can happen in the same way as the misuse of explicit locks. Furthermore, for
the purpose of checking conflicts and supporting rollback mechanisms, additional storage are
required to keep track of changes during transactions’ execution which can lead to resource
consumption problems. So it is useful to investigate different analysis methods to achieve
safe concurrent programs. In open systems, the combination of inheritance and late-binding
problematic, e.g., replacing one base class by another, seemingly satisfying the same interface
description, may break the code of the client of the base class. This thesis also investigates an
observable interface behavior of open systems for a concurrent object-oriented language with
single-class inheritance where code from the environment can be inherited to the component
and vice versa.

All analyses developed in this work are formulated as static type and effect systems resp.
an open semantics based on a type and effect system. As usual for type and effect systems,
they are formalized as derivation systems over the syntax of the languages, and thus composi-
tional. In all cases, we prove the correctness of the analyses. When based on a rigorous formal
foundation, the analyses can give robust guarantees concerning the safety of the program. To
tackle the complexity of large and distributed applications, we have insisted that all the anal-
ysis methods in this thesis should be compositional. In other words, our analyses are scalable,
i.e., a composed program should be analyzed in a divide-and-conquer manner relying on the
results of the analysis of its sub-parts, so they are useful in practice.
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CHAPTER 1

Introduction

1.1 Motivation

Software applications are today integrated in all aspects of life from simple applications like
children’s toys to complex ones, such as safety-critical systems, industrial automation, air traf-
fic control, hospital diagnostic X-ray systems, telecommunications, and software for financial
markets. The more complex the systems are, the more high-level programming languages are
needed. Programming languages have evolved enormously: modern functional languages are
influenced by the early language LISP and modern object-oriented languages are influenced
by Simula. For hardware applications, early low-level programming languages which pro-
vide little or no abstraction from a computer’s instruction set architecture are adequate, e.g.,
machine-dependent and assembly languages. With the dramatic increase of large and complex
software applications, it is, however, impossible to work directly with low-level layers of the
architecture using low-level programming languages. Those languages are simple, but diffi-
cult to use because the programmer has to remember numerous technical details. Hence, high-
level programming languages, such as object-orientation with machine-independent seman-
tics featuring data abstractions and structuring mechanisms, are needed. They make program
development simpler and more understandable, and hence they are widely used in practice.
Reasons for the growing popularity of high-level programming langugages include encapsu-
lation, re-use, isolation, and structuring.

Moreover, with the rapid development of multi-cores and multi-processors, concurrent
high-level programming languages and different models of concurrency are needed to take
advantages of multi-processors. Today there are three main concurrency models: lock-based,
transaction-based and actor models based on active objects. Some examples of popular con-
current languages following the lock-based model are: Ada [38], CC++[76], an integration of
C++[183] and Concurrent C, and Java [82]. For the transaction-based model, Clojure [42] is a
dialect of the Lisp programming language supporting STM and running on the Java Virtual
Machine, Common Language Runtime, and JavaScript engines; Transactional Featherweight
Java [110] is a recent, advanced transactional languages featuring multi-threaded and nested
transactions. Example languages based on the Actor model are: Scala [158], Erlang [24] and
Creol [119].

Even in high-level object-oriented programs, shared memory concurrency may sometimes
cause serious errors which can not be detected by normal testing at the later phase of the soft-
ware development cycle. Especially, accidents caused by software errors in critical systems can

3



4 1.1 Motivation

be catastrophic in terms of economic damage and loss of human lives. Software applications
have been responsible for many serious accidents in safety-critical systems. Some of the most
widely cited software-related accidents in safety-critical systems involved the Therac-25 [128],
a computerized radiation therapy machine supporting a multi-tasking environment with con-
current access to shared data. The six accidents caused by massive overdoses using this system
resulted in serious injuries and even deaths. There were a number of causes, but concurrent
programming errors played an important part. Race conditions between different concurrent
activities in the control program resulted in occasional erroneous control outputs. Furthermore,
the nature of the errors caused by faulty concurrent programs made it difficult to recognize
that there was a problem.

It was not because engineers had not taken care in building and testing the system. Actu-
ally, before the Therac-25 was deployed, the engineers did use many testing and safety-critical
techniques. Moreover, after one accident, the manufacturer tried to reproduce the condition
which occurred at the treatment by exhaustively testing the system. When the test did not re-
turn any error, they concluded that a hardware error caused the accident, and implemented a
solution based on that assumption. It was declared that the system was several orders of mag-
nitude safer, but accidents did not cease. In the end, the error was detected by chance when
a rare interaction combination resulting in the mentioned race condition appeared. One may
conclude that the designers of the Therac-25 software seemed largely unaware of the principles
and practice of concurrent programming. They did not use methods reliable enough to verify
the design as well as the implementation of the system to prevent such errors. Concurrency
errors such as race conditions or deadlocks can not be detected easily by testing the imple-
mentation due to the potential state explosion and arbitrary interferences between concurrent
components. Formal methods provide a more suitable approach for assuring the correct func-
tioning of concurrent software by detecting errors early in the design phases with the help of
systematic search and analysis techniques.

Detecting concurrent errors is in general challenging. Finding the causes and re-producing
the situations in which the errors occurred are even more demanding. Errors in concurrent
software systems might not be located in one particular line of code inside a specific compo-
nent, but by a combination of factors or interactions between them. When software systems
become bigger and more complex, the number of combinations of interactions between system
components can increase exponentially, and even infinitely. It means that exhaustively testing
all cases or all combinations to reproduce the situation is impossible. For certain systems, it is
unrealistic to test exhaustively in practice. One needs techniques to analyze and verify such
systems to help preventing software errors before the systems are executed in practice, i.e., one
needs to develop models and analyze these.

A methodology to build a large complex software system from software components sys-
tematically is needed. The concept of software components was proposed by M.D.McIlroy
[140]. Components in a broad view can be seen as independent building blocks which provide
services to the outside and can be combined with other components to construct larger sys-
tems. For example, a component can be a hardware driver, a bricklayer or wall in a house, or
a function or procedure in a software program. To be widely applicable to different machines
and users, software components are provided in categories as black boxes based on their prop-
erties and functionalities. With the advent of the Internet, communication, parallelism, and
distribution play a more and more dominant role. Developing large and complex systems,
especially for distributed systems often requires cooperation between people located at differ-
ent places and having different specialities. That cooperating process requires principles and
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techniques to produce high-quality software components systematically and efficiently.
However, analyzing the global behavior of complex systems is very difficult. The divide-

and-conquer technique which hierarchically decomposes programs into smaller ones is a pow-
erful principle to master the complexity of large software programs: it allows to reduce the
development and verification problem of a program to that of its constituent sub-programs
by starting from its top-level specification and verifying that specification on the basis of the
specifications of those sub-programs without any knowledge of their interior construction.
The components of a system can be composed in different ways wrt. the supported features of
the language used to program the system. It is important to provide a guarantee that the whole
composed system functions correctly based on the analysis results of its individual parts, be-
cause it can be the case that a safe program does not always consist of safe sub-programs, or
similarly when composing a program from safe sub-programs, the resulting program may not
be safe. For these reasons, we need compositional techniques which enable us to compose
a large system from verified subsystems without (much) additional verification effort or re-
doing all the work done for sub-systems. Compositional techniques are required to guarantee
that the composition of independent and verified sub-programs is done properly without in-
curring extra costs. In software development, the principle of compositionality describes how
components can be composed and what characteristics or constraints they have to follow to
reduce the cost and errors while building large and critical software systems. The semantics
of a programming language is compositional if the meaning of a composite expression is deter-
mined by the meanings of its constituent expressions. An analysis or a verification method
is compositional for a programming language if the analysis or verification of a composite pro-
gram is built on the analyses or verification of its constituent programs. In software analysis
and verification, compositionality is an important property of program correctness methods
because it allows a bottom-up method: Verifying whether a program meets its specification is
verified on the basis of specifications of its constituent components only, without additional
need for information about the interior construction of those components.

In this thesis, our analyses are concerned with concurrent object-oriented programming
languages. Such languages contain references as well as different forms of concurrency, namely
shared variable concurrency within objects and method calls, which make the analyses chal-
lenging.

1.2 Research goals

It is generally accepted that concurrent programs are notoriously hard to get right. Despite
their obvious usefulness, there is a lack of analysis methods to identify concurrency errors,
in particular for advanced constructs. Therefore the overall goal of this thesis is to guarantee
the absence of common concurrency-related errors and hence contribute to the quality of concurrent
programs. To achieve that goal, this thesis will address the following questions:

1. How can we statically guarantee safe use of non-lexical transactions for languages sup-
porting multi-threaded and nested transaction model?

2. How can we statically guarantee safe use of resources in a transaction-based model with
implicit synchronization.

3. How can we statically guarantee safe use of explicit non-lexical locks for languages fea-
turing dynamic creation of objects, threads, locks and lock aliasing, such as in the Java
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language?

4. How can we capture observable behaviors of open systems in the presence of inheritance
and late-binding? How can we present enough information in the interface specification
to capture all possible behaviors of the systems, but at the same time exclude impossible
interactions from outside?

In order to answer these questions, the work in this thesis develops different analysis meth-
ods for concurrent object-oriented programming languages based on the lock-based model,
the transaction-based model, and the actor model. Moreover, the developed analysis methods
have to meet the following requirements:

Formality and rigor: To give reliable guarantees, the analyses must be described in a formal
mathematical manner. Besides, the studied languages and their semantics should be
specified rigorously and concisely. Of course, the analyses are required to give correct
results wrt. the given semantics. This relationship is known as soundness which must
be formally established by means of proofs.

Scalability: To efficiently deal with large and complex systems, the methods must be scalable.
Consequently they must be compositional and make use of abstractions. To achieve
compositionality, a system must be characterized as an open system, i.e., as interacting
with an unknown environment and hiding its internal details.

Usability: To be accepted in practice, the analyses must provide their guarantees with as little
user involvement as possible, even more so, since the analyses will be based on formal
theories and advanced concepts. Therefore it is essential to automatize the analyses, i.e.,
they must be based on decidable theories. Again that requires the analyses are based on
abstractions of the concrete formally specified program behaviors.

Concurrency: Concurrency comes in many different flavours and modern programming lan-
guages use a diversity of mechanisms to express concurrent computations. Our goal
is to analyze relevant properties and to investigate prominent synchronization mech-
anisms, including lock-based synchronization as well as the transaction-based model.
Since modern languages include shared variable concurrency and message passing com-
munication, both should be investigated as well. As for message passing, we will cover
synchronous method calls as in Java’s multi-threading concurrency model as well as
asynchronous method calls as in languages based on active objects.

1.3 Outline

In the following chapters, I briefly give some background about concurrency and object orien-
tation to introduce the context for the work reported in the research papers in Part II. Chapter 2
reviews some main characteristics and principles of object-oriented programming languages,
the concept of concurrency, the principles of concurrent programming as well as the combi-
nation of concurrency and object-orientation in programming languages. Moreover, different
communication models of concurrency and synchronization mechanisms are also discussed in
the chapter. Chapter 3 discusses different problems related to concurrency, such as safety and
liveness and various approaches in the literature to solve them. In Chapter 4, I describe our
design choices for the syntax and semantics of our core calculus as well as our analyses based
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on type and effect systems to solve specific concurrency problems. I give a short overview
over various analyses and problems dealt with in all work of this thesis in Chapter 5. Chapter
6 gives an evaluation of the contribution of this thesis towards the goals stated in this chapter.
Chapter 7 conclude the thesis with an overview of the contributed research papers and their
main contribution.



8 1.3 Outline



CHAPTER 2

Concurrency and object-oriented
programming languages

In this chapter, we first recall in Section 2.1 problems and difficulties inherent in concurrent
programming and mention practices which help alleviating common pitfalls. Furthermore,
we discuss common synchronization and communication mechanisms. Afterwards in Sec-
tion 2.2, we mention language features and structuring mechanisms found in object-oriented
languages, and discuss a number of object-oriented languages. Finally, Section 2.3 discusses
design issues when combining concurrency and object orientation.

2.1 Concurrency

2.1.1 Concurrent programming

Concurrent applications are notoriously difficult to get right, i.e., to design, program, test, and
verify. Two reasons can be identified for that. One is that parallel executions gives rise to a typ-
ically enormous number of different schedulings and interferences which are difficult to grasp
and to analyze. The resulting non-determinism, moreover, makes errors hard to reproduce
which make testing of concurrent programs challenging. The second reason is that interesting
properties of concurrent programs and respectively their violations are non-local in nature, i.e.,
the violations of properties can not be pin-pointed to a single line of code responsible for the
error. Examples of such global concurrency-related bugs are race conditions and deadlocks. In
the book ”Java Concurrency in Practice” [79], the authors identify shared mutable states as the
root of the mentioned difficulties and give general guidelines to write good concurrent code,
which can be summarized as follows:

Immutability: It is not a good idea to have mutable states, as all concurrency issues boil down
to coordinating access to mutable states. The less mutable states, the easier it is to ensure
thread safety, i.e., absence of concurrency-related errors when used concurrently. Im-
mutable objects are automatically thread-safe and can be shared freely without protect-
ing it by locking or making defensive copying.

Isolation: for mutable states, one can restrict interference in the following ways:

9
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Thread locality: Avoid sharing mutable data in the first place. Working on thread-local
or process-local data obviously avoids interference problems.

Data encapsulation: Encapsulation is crucial to manage the complexity of concurrent
programs. For instance, encapsulating data within objects together with a suitable
synchronization mechanism makes it easier to preserve their invariants.

Protection: Use synchronization (mutexes) to control accesses to a mutable shared data by
multiple threads.

These general guidelines will be reflected in the design of the calculi used in our work as
follows: Our calculi are characterized by a strict separation between thread-local variables and
instance variables, i.e., fields. The latter are mutable and allocated on the heap, thus in gen-
eral shared among threads. Another form of isolation is inherent in the transactional setting
where each thread operates on a local copy of its data. All our calculi are object-oriented, and
objects are the units of encapsulated data. A protection mechanism we investigate is lock-
based. Immutability as protection against interference plays no role in our investigations. We
use, however, local variables in a single-assignment manner, i.e., each variable gets assigned
a value at most once. This standard form of representation simplifies the formulation of the
analyses without sacrifying expressivity.

2.1.2 Synchronization mechanisms

Essentially, concurrent programs are difficult to program, test, debug, and verify because:

• concurrency bugs do not manifest themselves predictably as they involve multiple pro-
cesses competing for shared resources

• concurrency bugs are often detected at the worst possible time may lead to a poor per-
formance and potentially state space explosion.

• different shared resources have different properties and act heterogeneously.

A concurrent system needs to make sure that each process acts correctly in the sense of
being in the right place at the right time to take advantage of what resources are available at
any given moment. A simplified illustration of a typical situation in a concurrent system is
depicted in Figure 2.1. Without loss of generality, we assume that the system has more than
two processes running concurrently on a machine with two processors. Since there are two
processors, only two processes can run simultaneously. The operating system must periodi-
cally allocate CPU time to different processes and swap them in and out of the CPUs so that
all the processes can make progress.

Another reason for swapping in and out processes from the processors is to reduce unnec-
essary waiting time. There is an enormous discrepancy in the speeds of operation of peripheral
or I/O devices. If a program is single-threaded, the processor remains idle while it waits for
a synchronous I/O operation to complete. In a multi-threaded program, the peripheral de-
vices can operate independently of the central processor, allowing the application to still make
process during the blocking I/O. For example, assume that the processes 1 and 2 are now oc-
cupying the processors 1 and 2 respectively. Assume further that process 1 is trying to access
some of the I/O devices. As known, I/O devices are much slower to access than registers and
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Process 1

Process 2

. . .

Processor 1

Processor 2

shared memory

I/O device

Figure 2.1: Concurrent processing architecture

RAM situated inside CPU. Moreover, at one time there is only one value that can physically be
written to a memory address, and only one part of a hard disk that can physically be accessed.

These factors pose two main problems:

• How to avoid unnecessary waiting time of a CPU when it needs to wait for a slower
resource, such as main memory or an I/O device.

• What to do when at least two CPUs want to access a shared resource simultaneously
which could lead to unexpected results, called data race problems. Data races arise when
at least two processors or processes want to write different values to a memory address,
or one writes and the other one reads. The same situation applies to a single-processor
machine with multiple processes because the processes are usually swapped in and out
of the available processor under interrupt, which can be described by Figure 2.1 when
we leave out the processor 2.

A simple solution to the first problem is that while one process is waiting on a slow re-
source, it is swapped out of processor 1 and another process that requires the CPU is swapped
in to run. For the second problem, the question of which process gets the right to access the
memory first is determined by software or hardware algorithms, called schedulers. Sched-
ulers and synchronization mechanisms are needed to coordinate simultaneous accesses to
shared resources in concurrent programs (both in small-scale multiprocessing systems and
in distributed systems). Thread (or process) synchronization is the application of particular
mechanisms to ensure that two concurrently executing threads or processes do not execute
specific portions of a program at the same time. There is at most one thread being executed at
a time, any other thread trying to access the same data must wait until the first thread finishes.
So synchronization can be used to guarantee thread-safe programs.There are two focuses of
synchronization:

• Explicit synchronization is a way of providing synchronization facilities in terms of lan-
guages primitives or functions. Concurrent programming languages are said to sup-
port explicit synchronization if they provide synchronization constructs at the user-level
where users can use those constructs to take control over how concurrent accesses act
on a shared data in order to avoid unpredicted results. In high-level programming lan-
guages (e.g, Java), these facilities include mutual-exclusion locks, semaphores, and noti-
fications. Each facility guarantees that when synchronization has been achieved, all the
side effects of another thread are visible, at least up to the point where that other thread
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last released the synchronization facility. On the one hand, explicit parallel program-
ming can be useful if skilled programmers can take advantage of explicit synchroniza-
tion primitives to produce very efficient code. On the other hand, it could cause errors, as
programming with explicit parallelism is often difficult and can be misused by unskilled
programmers. However, analyses for explicit synchronization programs are normally
more simple than implicit ones, where synchronization points are not represented syn-
tactically.

• Implicit synchronization: In contrast to explicit synchronization, implicit synchroniza-
tion is not (fully) represented in the source code by user-provided language primitives.
For example, invoking notifyAll on an object in Java is a synchronization command
affecting all threads waiting on that object without specifying which threads are meant,
i.e., leaving them implicit. Synchronization is taken care of by the underlying semantics.
Without worrying about with whom exactly to communicate or synchronize, this may
simplify the programming task, but may reduce the control users have over the parallel
execution of the program, resulting sometimes in less-than-optimal efficiency. The fact
that users may not be aware of when and which threads are being scheduled, can make
debugging more difficult. Furthermore, static analyses, which are often syntax-directed,
become more complex.

2.1.3 Communication mechanisms

In concurrent computing, programs are designed as interacting processes which may be exe-
cuted in parallel. They can be interleavingly executed on a single processor, or in parallel on a
set of processors that may be distributed across a network. The main challenges in designing
concurrent programs are ensuring the correct sequencing of the interactions or communica-
tions between different concurrent processes, and coordinating access to shared resources. A
number of different methods for implementing concurrent programs has been developed, such
as implementing each sequential execution as an operating system process, or implementing
the processes as a set of threads within a single operating system process. There are two basic
models for inter-process communication:

Shared Memory: In computing, shared memory is memory that may be simultaneously ac-
cessed by multiple programs. Read and write operations are used to exchange information.
Shared memory is an efficient means of passing data between programs because the programs
can directly access shared memory locations and change their values. Shared memory is used
in several concurrent programming languages, such as Java and C# as an indirect concurrency
mechanism in which concurrent components communicate by using shared variables. But
allowing simultaneous accesses to shared data can cause unexpected errors, such as race con-
ditions [152]. To control concurrent access to shared data, synchronization mechanisms are
used. They can be of the form of semaphores [61], a useful abstraction for controlling accesses
to a common resource by multiple processes where the value of the semaphore says how many
units of a particular resource are available; or they can be of the form of monitors [98], an object
intended to be used safely by more than one thread with its methods executed with mutual
exclusion, i.e, at each point in time, at most one thread may be executing any of the moni-
tor’s methods. They can use locks to mutually assure exclusive access, i.e, no two processes or
threads can be in a common critical section at the same time [62]. For example, the underlying
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model of Java is based on shared memory and uses lock-based synchronization to guarantee
mutual exclusion.

A shared memory system is relatively easy to program since all processes or processors
share a single view of data on a single address space. Synchronization and communication in
shared memory are distinct. Synchronization operations (e.g., locks and barriers), in addition
to read and write operations, need to be provided to assure mutual exclusions. Communica-
tion of data between processes and objects in shared memory is asynchronous as tasks share a
common address space (i.e., a sender does not wait for a receiver to get the data) and implicit
(it is hiddenly done under reading and writing operations) which allows users to concentrate
on the issues related to parallelism by relieving them of the details of the inter-process commu-
nication. Hence program development can often be simplified. In addition, that all processes
and objects communicate via reading and writing to the same address space helps avoid re-
dundant copies and helps provide high-performance access to shared information between
multiple processes.

Despite its advantages, such as efficient means of sharing data between programs and re-
ducing the overhead of communicating, one of the known disadvantages of the shared mem-
ory is the potential of data races. A data race is a situation where at least two processes try to
access a shared data at the same time and at least one of them is writing, which could lead to
non-determinist results. Furthermore, shared memory is less powerful and does not scale well,
as the communicating processes are running on the same machine, and care must be taken to
avoid issues such as data races or the problem of cache coherence. Checking cache coherence
must be performed to guarantee that the change in content of one cache is made visible to other
processes, which may use the data, to avoid incoherent data. Seeing inconsistent views of the
same memory space by processes could lead to unexpected behaviors. Moreover, controlling
data locality is hard to understand and beyond the control of the average user. For example,
to handle fine-grained locks correctly is challenging as users need to remember which lock is
attached to which region and what is the order over locks to avoid deadlocks. Users often lose
an overview of locks when dealing with a complex system using many locks at the same time.
Using coarse-grained locks can be a solution, but in many cases it can harm performance of
the system because of redundant waiting. This makes shared memory programming difficult
as far as synchronization is concerned. As far as distributed systems are concerned, many pro-
cesses accessing the same memory could cause bottlenecks as well as task switching overhead,
and thus decrease the performance of the whole system.

Message passing: Message passing, another form of communication used in parallel comput-
ing, object-oriented programming, and inter-process communication, does not share common
memory. In this model, processes or objects communicate directly with each other in some
form of points-to-points connection by sending and receiving messages which contain both
data and synchronization in a single unit. This form of communication is well adapted for
loosely connected processors (as in a distributed system), and for client-server topologies. The
exchange of messages may be carried out either synchronously letting the sender be blocked
until the message is received, or asynchronously letting the sender continue its work with-
out waiting for a receiver, which often involves a buffer for intermediate steps. Asynchronous
message passing is, however, considered to be more advanced than synchronous because: first
of all, synchronous communication can be built on top of asynchronous communication by
ensuring that the sender always waits for an acknowledgement message from the receiver to
continue; secondly, in the asynchronous model, the sender delivers a message to the receiver
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without waiting for the receiver to be ready, hence it does not block the whole system and
therefore increases the system performance. Message passing is used in Actor models, e.g,
Scala, Erlang, and various process calculi like CSP [99] and CCS [144].

Message passing employs an explicit communication mechanism. Programmers are in
charge of coordinating all communications events via explicit sends and receives. This can
make message passing programming difficult when communication is complex. Synchroniza-
tion and communication are unified in message passing. In the message passing model, each
process or object uses its own local memory during computation; no shared memory is needed,
therefore there is no danger of data races. Communication between processes is done by send-
ing and receiving synchronous or asynchronous messages. Multiple tasks can reside on the
same physical machine as well as on different machines which makes message passing scalable
and more suitable for distributed systems. Data transfer usually requires cooperative opera-
tions to be performed by each process. For example, a send operation must have a matching
receive operation. Supporting both synchronous and asynchronous makes the message pass-
ing model more flexible since a shared memory programming model (i.e, a single address
space) can be implemented using the message passing architecture; messages are used to keep
data values consistent to all processes. Besides, featuring asynchronous message passing helps
to reduce redundant waiting and to improve performance of concurrent programs.

As observed, both models have their advantages and disadvantages. Depending on the
particular application domains, either of the models is used. One tendency is to combine both
shared memory and message passing in general-purpose multi-processor systems.

2.2 Object orientation

Object orientation is one of the most popular current programming language paradigms. Cen-
tered around the notion of objects, they offer a combination of structuring and abstraction
mechanisms which have proven useful and flexible in practice. Objects combine data, the ob-
ject fields or instance variables, and code, its methods. Objects can be dynamically created at
run-time and are allocated on the heap. In the mainstream of object-oriented languages, such
as Simula [54], Smalltalk [80], C++ [183], and Java [82], they are created as instances of classes.
Furthermore, the following structuring principles play an important role in object-oriented
languages:

Abstraction: Abstraction in very general terms means reducing complexity when describ-
ing or understanding a phenomenon, for instance by ignoring irrelevant details. In computer
science, abstraction is used to describe not just one concrete piece of data or code, but a “col-
lection” of data or programs, by ignoring details of their implementation, or by grouping their
commonalities together while keeping other aspects abstract to be instantiated later when spe-
cializing the abstraction, for instance by parameter passing. Thus, a class can be seen as an
abstraction of objects, i.e., of all its instances abstracting away from the object identity and
potentially the arguments of the constructors. Another important abstraction mechanism in
programming languages is procedural or functional abstraction. In object-oriented languages,
methods are procedural abstractions. Describing objects which combine data and code, classes
can be seen as a form of abstract data types. In connection with inheritance, also a super-class
can be seen as an abstraction of all its sub-classes since, when designed so that it contains
fields and methods common to its sub-classes and inherited to them. In concurrent languages,
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the notion of threads or processes is an important abstraction which will be described later in
Section 2.3.

When abstractly describing programs and their properties, the concept of interface is cru-
cially important. Ignoring internal details and capturing only relevant information about a
system, interface descriptions allow to reduce and factor out implementation details. Further-
more, interfaces are the key to a compositional description of a system. The notion of interface
is rather general and depending on the programming language and properties to be captured,
interface descriptions can be of different forms and of different levels of details. For example,
in software engineering, a top-down development process could proceed by starting from very
high-level, abstract descriptions in the requirement phase to low-level ones when implement-
ing concrete algorithms. Protocols are typically designed in a layered manner where higher
layers of the protocols are built upon the lower ones using only the services provided at the
interfaces of the lower layers. In programming languages, a very common form of interfaces
are types which can be seen as abstractions of the values a program can evaluate to. In object-
oriented languages, such as Java, interfaces play the role of types of objects. To be precise, also
classes in Java for instance do not only play the role of providing the implementation of its
instances, but also the role of their interface or type.

Encapsulation and hiding: Encapsulation protects the integrity of a component by hiding its
internal structure, and thus preventing different parts of the program from interfering with
each other, for instance setting the internal data into an inconsistent state. Such protection is
in particular essential in a concurrent setting. Encapsulation enables to ensure that data struc-
tures and operators are used as intended, and by limiting the inter-dependencies between
software components, it helps to reduce system complexity, and thus increases robustness.
Encapsulation plays also an essential role in object-oriented systems. It can be used to restrict
access to the fields of an object preventing unwanted manipulations from outside. In lan-
guages like Java or C++, programmers can control the level of privacy or hiding via keywords
like public, private, protected and so on. Other object-oriented languages disallow direct ac-
cess to the object’s internal data from the outside altogether so that it can be accessed only via
their methods. In this thesis, addressing compositional analyses, we throughout assume fields
to be instance-private, i.e., accessible only via methods, never directly from outside.

Inheritance and reuse: Inheritance, a very important concept in object-oriented programming
languages, is a mechanism for code-reuse where a subclass inherits fields and methods of
its base or super-classes. Typically it is also connected to the notion of sub-typing where an
instance of a derived class can be safely used in a context where an instance of a super-class is
expected. Supporting inheritance as a code re-use mechanism, for sub-typing, or both depends
on a particular programming language [49]. There are mainly two forms of class inheritance:

• Single inheritance, originally proposed in Simula, means that each class has at most one
super-class, i.e., the class hierarchy forms a tree. For example, C# and Java support sin-
gle inheritance between classes. In those languages, however, one interface can have
multiple super-interfaces and a class can implement multiple interfaces.

• Multiple inheritance in contrast means that a class can inherit from more than one super-
class. Languages supporting multiple inheritance include C++, Common Lisp, Perl, and
Python. Although multiple inheritance is more powerful and allows more flexible re-use
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of code from different classes, it increases complexity and may cause ambiguity in case
of conflicting inherited features.

Despite of its accepted usefulness, inheritance can lead to problems. One is known as the
fragile base class problem [141]. In particular, the combination of inheritance and concurrency
is problematic and this phenomenon is sometimes called the inheritance anomaly [139, 122,
142]. In our work in Chapter 11, we consider single inheritance in a concurrent object-oriented
language and for open systems.

2.3 Object orientation and concurrency

The wide-spread adoption of multi-core processors has led to an increasing demand of con-
current software that can exploit the performance benefit by utilizing more than just a single
core. As the basic unit of concurrent programs is the process, a program with only one thread
can run at most one processor at a time. On an n-processor system, a single-threaded program
wastes (n − 1) available CPU resources. On the other hand, programs with multiple active
threads can run concurrently on multiple processors. When well-designed, multi-threaded
programs can enhance throughput by utilizing available processor resources more effectively.
In high-level programming languages, the concept of concurrency is captured by the notion
of processes or threads which are units of concurrent execution. As discussed above, object-
oriented languages offer different abstraction mechanisms to structure the code appropriately
and ease the task of programming. How to combine the object-oriented abstractions with pro-
cesses or threads can be done in different ways. The most important design decision is whether
the objects as units of code and data coincide with the units of parallelism [21]. Keeping these
two concepts separate leads to a design using multi-threading and synchronous method calls
as in Java. The threads are running in parallel, sharing the fields of the objects which may
be protected by the encapsulation and synchronization mechanisms of Java. The alternative
is to make the unit of data and code at the same time the unit of concurrency. This model is
also known as the Actor model where objects encapsulate both state and active behaviour into a
single unit. Since objects thus have an activity of their own, communicating with other objects
via asynchronous method calls or exchanging messages, they are called active objects and can
be seen as processes in concurrent programs. Many object-oriented programming languages
nowadays support concurrency. Java of course is one successful example of such languages
based on multi-threading concurrency. The model based on active objects is represented by
languages, such as Erlang [24], Scala [158], and Creol [119].

In conclusion, concurrent object-oriented programming is a successful way to specify and
develop parallel programs offering abstraction mechanisms that reflect the way programmers
design, analyze and reason about the problems. More concretely:

• the combination of parallelism and object orientation allows users to specify individ-
ual objects and their concurrent executions by means of threads locally or remotely on
physically remote processing elements.

• communications between objects can be abstracted and defined by synchronous and
asynchronous message passing concepts or method calls. Synchronizing concurrent
tasks is done by synchronization mechanisms in each particular language.

• abstract data types, classes of data structures that have similar behavior or similar se-
mantics, are used to separate design decisions from implementation issues. This allows
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efficient solutions for the problems to be parameterized and reused since it abstracts
away from placements of tasks onto processors.
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CHAPTER 3

Inheritance and concurrency: A
correctness perspective

In this section, we describe different problems caused by concurrency and also in connection
with object orientation.

3.1 Synchronization and concurrency

Programming concurrency is known to be difficult and error-prone. In particular, it can lead
to new kinds of errors which do not even exist in sequential programs. Typical examples
are deadlocks and data races in shared variable concurrency. One can classify these errors
depending on whether they violate safety or liveness properties.

3.1.1 Safety

Safety is a class of properties which states that “something bad never happens” [125]. There-
fore, a safety violation is a situation where undesired or erroneous behaviors occur, often
caused by incorrect inter-process synchronization. Race conditions are the simplest example
of such errors. A data race happens when two threads access a shared piece of data simulta-
neously and at least one of them performs a write access. Without a proper synchronization,
this may lead to unexpected and non-deterministic results, possibly leaving the memory in an
inconsistent unsafe state.

Consider the following example:

Listing 3.1: Interference
x i n i t i a l value = 1 ;

Thread 1 : x ++; p r i n t x ; / / x = 2 ;

Thread 2 : x ++; p r i n t x ; / / x = 2 ;

The simple code fragments show that there are two threads trying to increment the same
variable’s value simultaneously without synchronization. The problem is that the operation
x + + is not atomic, i.e., with some unexpected timing, two threads could execute that code
and terminate in a state where x has value 2 which is unwanted.

19
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thread1

thread2

x:=1 1+1 x:=2

x:=1 1+1 x:=2

Figure 3.1: Unwanted execution of Example 3.1

Figure 3.1 shows how that happens. The non-atomic increment operation ++ includes
three separate steps: reading the value from x the memory, adding 1 to x and then writing the
new value back to the memory. As thread 1 and 2 can arbitrarily interleave, it is possible for
them to read the value 1 at the same time, then both adding 1 to it. As a consequence the same
value is written back by both threads. Erroneous calculations and race conditions look harm-
less in a program like this, but may nonetheless lead to serious failures in real programs (cf.
the Therac-25 incidents mentioned earlier). Since they occur only under particular schedul-
ings, they are very difficult to detect and reproduce in real applications. In practice, with mod-
ern multi-core architectures with different levels of caches, weak memory models, and with
complex compiler optimizations, race conditions may occur unexpectedly even when using
seemingly correct synchronizations, leading to unintuitive outcomes (cf. [164, 170])

Whereas data races are ultimately a consequence of a lack of synchronization, deadlocks
[63, 47], another notorious class of concurrency-related errors, are caused by too much syn-
chronization. A deadlock is a situation in which processes wait forever in a cycle for each
other’s resources without releasing their own resources. The dining philosophers problem is a
classical illustration of deadlocks [61, 99]. A common source of deadlocks is the synchroniza-
tion mechanism of locks, i.e., the resources involved in the deadlock are the locks. Since the
lack of locks may lead to a data race and too many locks may lead to deadlocks, it is clear that
finding a correctly synchronized program is challenging. Using too many locks also reduces
the parallelism in a program, thus decreasing its performance. The traditional way of using
locks in Java is via the synchronized command respectively using synchronized methods. This
leads to a lexically-scoped discipline of locking and unlocking.

In version 5.0, Java introduced explicit locks to give programmers more freedom by allow-
ing non-lexical use of locks. However, more freedom in programming means more opportu-
nities for errors, and misuse of explicit locks in Java also causes safety problems. The code in
Listing 3.2 describes an instance of the producer-consumer problem using explicit locks in Java
where a safety problem occurs. In this example, the lock l is taken one time, but released two
times. This causes an exception in Java when the method put() of Producer is called. The
problem is that the programmer misused the lock l, i.e, releasing l without owning it because
after the first unlock command, l is already free.

Listing 3.2: Unlocking error
. . .
private f i n a l ReentrantLock l ;
c l a s s Producer implements Runnable {

. . .
public void put ( I n t e g e r key , Boolean value ) {

l . lock ( ) ; / / 1 t ime l o c k
t r y { c o l l e c t i o n . put ( key , value ) ;

. . .
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l . unlock ( ) ;
} f i n a l l y {

l . unlock ( ) ;
} / / 2 t i m e s u n l o c k

. . .
}

Now if we change the code by replacing the l. unlock right before the statement finally
by l. lock as in Listing 3.3, this leads to a starvation situation. The reason is that the producer
needs to release l two times to free the lock, but it does only one l. unlock instead before it
exits the method put. This means the consumer is starving while waiting for the lock l.

Listing 3.3: Hanging locks
. . .
private f i n a l ReentrantLock l ;
c l a s s Producer implements Runnable {

. . .
public void put ( I n t e g e r key , Boolean value ) {

l . lock ( ) ; / / 1 t ime l o c k
t r y { c o l l e c t i o n . put ( key , value ) ;
. . .
l . lock ( ) ; / / 2 t i m e s l o c k
} f i n a l l y { l . unlock ( ) ; } / / 1 t i me u n l o c k

. . .
}

3.1.2 Liveness

A liveness property says that something “good” eventually happens [125] and another kind
of unwanted behavior caused by concurrency is liveness violation. Often a prerequisite to
achieve liveness in a system is fairness. A scheduler is considered to be fair if it does not sys-
tematically neglect to schedule a process indefinitely even if the process is in principle able to
proceed. Under fairness assumptions, each enabled process will be eventually chosen. Live-
ness is an abstract property concerning the progress of a system. It is often the case that a
safety violation leads to a liveness problem. For example, a deadlock can potentially lead to a
liveness problem because when a program gets into a stuck state, the deadlocked process(es)
can not proceed. The starved consumer in Listing 3.3 is another example of a safety viola-
tion which results in a liveness problem: without releasing the lock l when terminating, the
producer prevents the consumer from proceeding.

Safety and liveness are desired properties of any system, but it can be very tricky to achieve
them both. Nonetheless a correct system must be safe and live at the same time, and sacrific-
ing one for the other is not an option: a program that does not do anything is trivially safe,
but useless and obviously not live. Sacrificing safety does not make sense either since one
would accept erroneous programs. In general, adding synchronizations using locks is help-
ful in achieving safety by avoiding race conditions. On the other hand it may compromise
liveness by introducing deadlocks, and furthermore it may affect performance negatively.

Above we have discussed some concurrency problems, classified into safety and liveness
violations. A lot of effort is spent on analyzing the causes of those problems, and how to detect
and prevent them. Sometimes, the combination of shared data and interference between con-
current processes can lead to data races, misuse of fine-grained locks can lead to deadlocks, or
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misuse of explicit re-entrant locks can lead to exceptions or starvation as illustrated in Listings
3.2 and 3.3. Moreover, there has been a lot of effort on improving programming languages
to support concurrency better by providing suitable mechanisms and abstractions expressing
synchronization and communication [30]. For example, a number of concurrency mechanisms
are directly supported in concurrent object-oriented programming languages, such as moni-
tors [98], locks and semaphores [63] or transactions [95] which are synchronization constructs
to protect the access to the mutable shared resources within a critical section.

In this thesis, we investigate various safety problems for concurrent object-oriented pro-
gramming languages, in particular we introduce different static analyses based on type and
effect systems to prevent certain concurrency errors [134, 118, 136, 194].

3.2 Problems caused by inheritance

A crucial feature in class-based object-oriented programming languages is class-inheritance,
which allows code reuse and is intended to support incremental program development by
gradually extending and specializing an existing class hierarchy. A well-known problem caused
by inheritance and late binding, especially in open systems is the fragile base class problem
[141, 179, 177, 169]. A base class in an inheritance hierarchy is a (common) super-class, and
fragile means that replacing one base class by another, seemingly satisfying the same interface
description, may break the code of the client of the base class, i.e., change the behavior of the
“environment” of the base class. Consider the following code fragment.

Listing 3.4: Fragile base class
c l a s s A { c l a s s B extends A {

void add ( ) { . . . } void add ( ) {
void add2 ( ) { . . . } s i z e = s i z e + 1 ;
. . . super . add ( ) ; }

} void add2 ( ) {
s i z e = s i z e + 2 ;
super . add2 ( ) ; }

The two methods add and add2 are intended to add one, respectively two, elements to
some container data structure. This completely (albeit informally) describes the intended be-
havior of A’s methods. Class B in addition keeps information about the size of the container.
Due to late-binding, this implementation of B is wrong if the add2 -method of the super-class
A is implemented via self -calls using two times the add -method, i.e., the statement super .add2
will call two times the method add of the class B instead of A which makes the value of size
added 4 instead of 2 as intended. With a behavioral interface specification of the methods
using standard pre- and post-conditions, the problem is that nothing in the interface helps to
avoid the problem: the information about the state of the program before and after execution
is not detailed enough, for instance in this case, to reflect the effect of the combination of in-
heritance and late-binding on behaviors of derived classes. The interface specification is too
weak to allow to consider the base class as a black box which can be safely substituted based
on its interface specification only. Therefore, in the presence of inheritance, a stronger rigorous
account of such an interface behavior is needed, in particular it has to reflect the information
whether a method is implemented via self -calls or not. A formal and precise interface descrip-
tion is as usual the key to formal verification of open programs as well as a formal foundation
for black-box testing.
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On the one hand, interface specifications should contain enough information to reason
about the behaviors of a program, for instance, they need contain intermediate steps in a con-
current setting, or as in the example of the fragile base class problem information about self-
calls is relevant. On the other hand, for the sake of compositionality, the specification should
not depend on internal details of an implementation; it should reflect only information which
can be seen at the interface of objects or components and the interactions between them. This
property is known as observability. For clarification, let us consider a very simple example in
Java (cf. Listing 3.5), to get an intuition of the observational set-up. The example shows two
classes, one is called P (for program, sometimes also called component) and one is called O
(for observer). The example assumes that the program P creates the observer. The observer
observes that the method m is being called, and then prints success. Of course, it could addi-
tionally observe that the number 42 is passed as argument using an appropriate conditional
expression.

Listing 3.5: Program and observer
publ ic c l a s s P { // program/component

publ ic s t a t i c void main ( S t r i n g [ ] arg ) {
O x = new O ( ) ;
x .m( 4 2 ) ; // c a l l to the i n s t a n c e of O

}
}

c l a s s O { // e x t e r n a l observer/environment
publ ic void m( i n t x ) {

. . .
System . out . p r i n t l n (” success ” ) ;

}
}

So in this case whether the method m is called or not is observable. One can say that a par-
ticular information is observable if it leads to a difference in behavior in its environment. Now
let us come back to the fragile base class example in Listing 3.4. From an observational point
of view, the only thing that counts is the interaction with the environment (or observer) and
whether this interaction leads to observable reactions in the environment. If done properly, it
ultimately allows compositional reasoning, i.e., to infer properties of a composed system from
the interface properties of its sub-constituents without referring to further internal representa-
tion details. A representation-independent, abstract account of the behavior is also necessary
for compositional optimization of components: only when showing the same external behav-
ior one program can replace another without changing the interaction with any client code. We
investigate formally observability in the presence of inheritance in Chapter 11 (cf. also Section
5.4).

Furthermore, the coexistence of concurrency and inheritance causes additional problems as
studied in [20, 121]. One of those problems is known as the inheritance anomaly [139, 122]. It
basically says that the two concepts of inheritance and concurrency do not work well together.
In other words, a program suffers from the inheritance anomaly when using inheritance as a
useful mechanism for code-reuse breaks due to the presence of concurrency and corresponding
control mechanisms. This code re-writing process can be so painful that the advantage of
code-reuse of inheritance is no longer practical. Let us take a look at the following Java-based
pseudo-code implementation of the classic bounded buffer example, where the inheritance
anomaly occurs [142]
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Listing 3.6: BoundedBuffer
public c l a s s BoundedBuffer{

. . .
synchronized public Object get ( ) throws Exception {

while ( ” b u f f e r i s empty” ){ wait ( ) ; }
. . .
n o t i f y A l l ( ) ;
return . . . ;

}
synchronized public void put ( Object c ) throws Exception {

while ( ” b u f f e r i s f u l l ” ) { wait ( ) ; }
. . .
n o t i f y A l l ( ) ;

}

}

The bounded buffer provides the methods get and put to respectively remove and in-
sert an element. In a concurrent setting, to prevent clients from removing an element from an
empty buffer or putting an element into a full buffer, the methods are guarded by the condi-
tions:

while ("buffer is empty"){ wait();}
and while ("buffer is full"){ wait();} respectively.

Moreover, to guarantee mutual exclusion ensuring that all clients have a consistent view
of the buffer, those methods are marked as synchronized. Mixing behavioural and synchro-
nization code in class BoundedBuffer causes complications, when one wants to reuse the
implementation of the bounded buffer in sub-classes, for instance by deriving a subclass, say
HistoryBuffer, that behaves like its super-class, except that it has an additional method
gget. The method gget behaves as get but it can not be called immediately after get, which
is represented by an additional variable afterGet initially set to true. In order to do that,
the method gget needs to keep track of whether or not the last method to be executed was a
get or not. As a consequence, we have to redefine all inherited methods (i.e., get and put) as
illustrated in Listing 3.7 which leads to unneccessarily complex code.

Listing 3.7: The class HistoryBuffer
public c l a s s HistoryBuf fer extends BoundedBuffer{

boolean a f t e r G e t = f a l s e ;
. . .
synchronized public Object gget ( ) throws Exception {

while ( ” b u f f e r i s empty” | | a f t e r G e t ){ wait ( ) ; }
a f t e r G e t = f a l s e ;
. . .

}
synchronized public Object get ( ) throws Exception {

Object o = super . get ( ) ;
a f t e r G e t = t rue ;
return o ;

}
synchronized public void put ( Object o ) throws Exception {

super . put ( o ) ;
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a f t e r G e t = f a l s e ;
}

}

However, the specific difficulties to combine inheritance with late binding or concurrency
depend on the particularities of the language. In this thesis, we just concentrate on the problem
of inheritance and late binding with concurrency without further investigations on solving the
anomaly problem.

3.3 Analyses for concurrent object-oriented languages

In the previous section we have discussed some concurrency problems, in connection with
object-oriented programming languages. Next, we present some techniques which have been
developed to deal with concurrency-related errors.

It is widely agreed that concurrent programs are inherently much more complex and dif-
ficult to understand than sequential ones. There are a number of reasons for that: first of all,
arbitrary interleavings of concurrent threads or processes introduce non-determinism. As a
consequence for testing, different executions of the same test can produce different results.
Thus, it is hard to reproduce and find bugs, because a particular bug may only exhibit itself
in one or a few of overwhelmingly many interleavings of a program. Secondly, different in-
teractions and schedulings lead to an enormous size of the state space, often exponentiali n
the number of processes, a phenomenon known as the state space explosion problem. This
makes a full exploration of the state space unfeasible in practice. Furthermore, the flexibility
and expressivity of modern object-oriented languages featuring pointers or references with
aliasing, shared variables, callbacks, dynamic object and lock creation, all in the presence of
concurrency make analyses challenging. In particular, the interactions between language fea-
tures, e.g., between synchronization mechanisms and concurrency, or between inheritance and
concurrency causes many problems as discussed previously which are hard to detect.

There is a variety of different analysis techniques to detect concurrency bugs. In general,
one distinguishes dynamic and static techniques. The dynamic ones analyze the running pro-
gram while the static ones analyze the code at compile-time. Both techniques have comple-
mentary advantages and drawbacks. Responsible software engineering often relies on both to
assure quality of software.

An advantage of dynamic approaches including testing and run-time monitoring, is that
working with running programs, they are immune from spurious results, i.e., if an error is
detected, it is an actual error in the programs. The drawbacks of dynamic techniques typically
result from the large state space to cover. Sources of the large state space are, as mentioned,
different interleavings in concurrent executions, but also the fact that the input of programs
or routines can be drawn from a large or even infinite domain. In general, an exhaustive and
precise exploration of all behavior is impossible, which means testing can in practice almost
never assure correctness of programs, it can only dectect errors. The challenge, therefore, is to
obtain an adequate coverage of behavior thus increasing the chance of spotting errors. The size
of modern software requires in any case very many test cases, therefore testing in general will
use adequate tools and techniques to automatically generate enough test cases. Since as said,
testing can nonetheless not fully guarantee correctness, the remaining bugs are often found
late or by customers which may be very expensive. Testing and dynamic analyses are not in
the scope of this thesis, for further material about testing software see for instance [149].
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An alternative to dynamic techniques are static analyses where compile-time information
is used to analyze properties of (concurrent) programs. To guarantee absence of errors of
a program, a static analysis should not overlook cases of incorrect behavior, i.e., it needs to
cover all potential error cases. Aiming at an automatic analysis and since in general, it is
undecidable, whether or not a concrete error occurs at run-time, static analyses always use
over-approximation. This may lead to spurious results, such as false positives reporting errors
which do not correspond to actual behavior. Too many false errors may render an analysis
useless in practice. Therefore accuracy is an important factor, i.e., the rate of false alarms and
spurious results should be minimal. Other important factors are scalability, i.e., the complexity
of the analysis should grow in a managable manner in the size of the program being analyzed,
and related to that efficiency. Designed to capture a specific class of errors, for instance, absence
of null pointer exceptions, uninitialized variables and many others, of course a static analysis
can not guarantee the overall correctness of a program and absence of all errors in general, just
the absence of the errors it was designed to capture.

Many different approaches and tools have been investigated and developed to analyze
programs at compile-time including model checking [45, 26], and abstract interpretation [51].
Many successful and efficient static analysis methods are based on type and effect systems
[154, 22, 155, 153]. A type is a static abstraction of set of values, for instance, the type of
booleans abstracts away from concrete values true and false, and an interface in object-oriented
languages describes all objects supporting the interface’s methods. The corresponding type
system prevents illegal applications of operations to values, for instance, prevents errors caused
by attempting to calculate true plus false, or invoking a method on an object it does not sup-
port.

Whereas traditional types are abstractions of program values, effects are abstractions of its
behavior. In static analysis based on type and effect systems, type judgements are augmented
with behavioural information to capture essential static information about a program’s po-
tential dynamic behaviour. This is in particular useful for analyzing concurrent programs
[22] where one is interested primarily in errors caused by incorrect behavioral interactions.
For concurrent programs, numerous different analyses based on type and effect systems have
been developed, for instance for deadlocks freedom [34, 184, 12], data-race freedom [36], and
liveness [151]. Typically, type and effect systems are defined as syntax-directed, i.e., composi-
tional over the structure of programming languages, and consequently efficient and scalable.
Another advantage is that they are often defined formally assuring the absence of errors in a
rigorous manner. Examples of static analysis tools for concurrency bugs which have proved
themselves successful in practice are JLint [114], Chord [111], Java PathFinder [91], Coverity
[31], and FindBugs [71]. A detailed comparison between different static analysis tools wrt. the
effectiveness of detecting actual concurrency bugs and the rate of false positives can be found
in [40, 123].

The analyses in this thesis are based on static type and effect systems. For more detailed
information about the design of the systems developed in this work, see the next chapter.



CHAPTER 4

Compositional analyses for concurrent
object-oriented languages

In this section, we start by presenting an overview of the formalization of the syntax and
semantics of the calculi most of our work is based on (cf. Section 4.1 and 4.2). In Section
4.3, we come back to the concept of compositionality and discuss compositional analyses, in
particular for type and effect systems and for problems related to concurrency. In Section 4.4,
we describe type and effect systems as a well-known approach to formal analysis, in particular
in the form needed in our analyses.

4.1 An object-oriented core calculus

Our formal techniques for different problems in concurrent object-oriented models are based
on (variations of) a core calculus. Having a precise, succinct syntax and well-defined seman-
tics allows us to focus on the nature of the problems and give a precise solution. By choosing
a core language judiciously, we can leave out unnecessary details to focus attention on issues
of interest which simplifies our type and effect systems without losing generality. Such an ap-
proach, to concentrate on a core calculus and introduce additional features as syntactic sugar,
was proposed by Landin in the context of the λ-calculus [126]. In this way, adding new features
into the calculus, and analyses for them, are orthogonal to existing ones.

Java is a concurrent, object-oriented programming language which is widely used in prac-
tice and well-studied in research. The core calculus in this thesis is inspired by Featherweight
Java (FJ) [105]. FJ is an object-oriented core language originally introduced to study typing is-
sues related to Java, such as subtype polymorphism and inheritance, type casts, etc. A number
of extensions have been developed for other language features, so FJ is today a generic name
for Java-related core calculi. Following that direction, when investigating different aspects
of concurrent object-oriented models, we base our calculi on FJ. In contrast to the original
FJ proposal, however, we largely ignore sub-typing and type casts, as orthogonal to the is-
sues at hand, but include imperative features such as destructive field updates, furthermore
concurrency and concurrency control mechanisms. In particular, we investigate pessimistic
concurrency control based on re-entrant locks as well as optimistic ones using transactions. In
the latter case, we use a variant of FJ known from the literature as Transactional Featherweight
Java (TFJ) [110].

27
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We use three variations of FJ in the thesis; their syntax is shown in Table 4.1. Despite
slightly different syntax representation, all the calculi we consider share the following features:

• class-based object-orientation,

• thread-local variables with single assignment,

• instance-local mutable fields, and

• inter-object communication via method calls.

For the first two calculi, statically a program consists of a set of class definitions and one
initial thread/process. The syntax of the third calculus is inspired less by FJ, but more by
the various object calculi and ultimately the π-calculus. The representation of classes and ob-
jects is therefore syntactically slightly different. In particular the calculus contains a ν-binding
construct to express dynamic scoping of names.

The most significant differences in features as well as in the underlying models between
the three calculi are summarized in Table 4.2. We categorize the concurrency-related differ-
ences into the syntactical differences, i.e., which constructs are used for concurrency control;
semantics-related differences of how to achieve concurrency control and finally differences in
how to introduce concurrency into the language.

As said above, our goal is to study various aspects of concurrency. Calculus 1 is based on
transactions, an alternative concurrency mechanism to conventional lock-based mechanisms.
There we follow [110] by extending FJ with multi-threaded and nested transactions. Syntacti-
cally, two constructs onacid and commit are added to the calculus for opening and committing
a transaction. Semantically, to allow an optimistic form of concurrency control, a log is used
to record changes inside one transaction. The log is a local view of the transaction on the
global memory, and each transaction will work on its own local memory without interference
from other transactions. Conflicts will be checked at commit time when the transactions make
updates to the main memory. All considered calculi allow dynamic creation of concurrent ac-
tivities. In calculus 1, new threads can be created using the command spawn. In Java, this cor-
responds to instantiating a thread class or to instantiate an object implementing the Runnable
interface and calling the run method afterwards. In calculus 2, when dealing with pessimistic
concurrency control based on locks [117, 118], we syntactically extended FJ by supporting four
lock operators, new L for dynamically creating a new lock, lock and unlock for acquiring and
releasing a lock, which corresponds to the synchronization with explicit locks as in Java 5.0.
Additionally, trylock is a non-blocking variant of lock acquisition using conditional statet-
ments: if the corresponding lock is available, it is taken, otherwise the invocation returns false.
Moreover the locks are re-entrant as in Java which means that a thread can take a lock more
than one time and correspondingly release the lock the corresponding number of times it has
been taken. As far as thread creation is concerned, calculus 1 and 2 are identical. Unlike the
first two calculi, calculus 3 does not use explicit lock handling nor transaction handling, i.e.,
in the calculus there is no user-syntax corresponding to onacid and commit, respectively lock
and unlock, to achieve mutual exclusion. Mutual exclusion is achieved using locks implicitly,
but in contrast to the other two calculi method bodies are executed under mutual exclusion by
default, sometimes known as automatic mutual exclusion [107, 1]. The user can, however, release
the lock temporarily using suspend(n), also known as yield in other languages. An important
feature of calculus 3 is that it uses a different communication model, based on asynchronous
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Calculus 1 ([134, 138]): multi-threaded and nested transactions; non-lexical scope; synchronous method
calls.

P ::= 0 | P ‖ P | p〈e〉 processes/threads (process id p)
L ::= class C{�f : �T ; K; �M} class definitions
K ::= C(�f : �T ){this. �f := �f} constructors
M ::= m(�x:�T ){e} : T methods
e ::= v | x | v.f | v.f := v expressions

| let x : T = e in e
| v.m(�v) synchronous calls
| if v then e else e | new C(�v) | spawn e
| onacid | commit transaction constructs

v ::= b | r | () values (reference r, basic value b)

Calculus 2 ([117, 118]): re-entrant, explicit locks; exceptions; non-lexical scope; synchronous method
calls

P ::= 0 | P ‖ P | p〈t〉 processes/threads (process id p)
D ::= class C(�f :�T ){�f :�T ; �M} class definitions
M ::= m(�x:�T ){t} : T methods

t ::= stop | error | v
| let x:T = e in t | error(E) threads

e ::= x | t | v.f := v | v.f expressions
| v.m(�v) synchronous calls
| if v then e else e | new C(�v) |spawn t
| new L | v. lock | v. unlock lock expressions
| if v. trylock then e else e (L = type/class of locks)
| throw E | try e cb finally e exceptions E

cb ::= ε | catch E > e; cb
v ::= b | r | () values

Calculus 3 ([11]): Inheritance and sub-typing; active objects; asynchronous method calls
C ::= 0 | C ‖ C | ν(n:T ).C | n[(O)] component

| n[O, lock] | n〈t〉
O ::= n, M, F object
M ::= l = m, . . . , l = m methods
F ::= l = f, . . . , l = f fields
m ::= ς(n:T ).λ(x:T, . . . , x:T ).t method
f ::= v | ⊥n field
t ::= v | stop | let x:T = e in t thread
e ::= x | t | v.l() | v.l() := v expressions

| n@l(�v) asynchronous calls
| if v = v then e else e
| if undef (v.l()) then e else e
| new n | claim @(n, n) | suspend(n)
| get @n | grab (n) | release (n) run-time expressions

v ::= n | () values (n is an object/thread name)

Table 4.1: The core calculi

method calls where there is no blocking at a sender’s side when making a call to a receiver. In-
stead of blocking when calling a method, the caller asynchronously continues executing while
the body of the called method is being executed by a new thread. The identity of the new
thread also represents a reference to the result of the method’s execution after termination.
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Synchronization Mutex mechanism Dynamic
thread cre-
ation

Calculus 1 onacid | commit transactions spawn
Calculus 2 new L | lock | unlock re-entrant locks spawn
Calculus 3 claim @(n, n)

| suspend(n)
binary locks asynchronous

calls

Table 4.2: Comparison of syntax of the calculi

Thus the thread identifier also serves as a so-called future reference where the caller may get
the method’s result back on request as soon as it is available by using the claim operation. A
thread claiming a future not only tries to get the result back, but also releases its lock in case
the result is not yet there. In this model, each asynchronous method call creates a new thread
whose identity at the same time represents the future to obtain the result eventually. Unlike
the setting with Java style multi-threading, no activity ever ”leaves” an object because each
activity in a different object is carried out by a thread which is created by the asynchronous
method calls and thus different from the original thread. The object’s boundary encapsulating
its states is at the same time also the boundary for the units of concurrency, i.e., the method
bodies under execution. Due to mutual exclusion, at most one method body is active at any
given time. Another consequence of this model is that any call-back will be executed with a
different thread, therefore there is no need for re-entrant locks and active objects achieve mu-
tual exclusion using simple binary locks. This loosely coupled model based on active objects is
advantageous when aiming at a compositional description. We are in particular interested in
treating a set of classes as units of composition, therefore a compositional description profits
from the fact that the units of concurrency are “encapsulated” inside the active objects which
are in turn described by classes. We will use this model of loosely coupled objects to achieve
compositionality when investigating a behavioural specification of concurrent programs with
inheritance in an open setting.

4.2 Operational semantics

Semantics is important for all programming languages because it defines the meaning of gram-
matically correct programs written in a specific programming language. Operational seman-
tics describes how a program construct is executed by means of a transition system containing
a set of rules to express relations between program configurations. To allow rigorous argu-
ments and tools which give provable guarantees, one needs a precise semantics. Formal se-
mantics is the field concerned with the mathematically-based study of rigorously specifying
the meaning, or behavior, of programs and programming languages. It is rigorous and thus
can reveal ambiguities and subtle complexities based on mathematical reasoning. It provides
an important tool to reason about many aspects of the behavior of programs and programming
languages, ranging from implementation, analysis to verification. It allows language design-
ers to specify rigorously what a language is supposed to do in the same way that software
engineers are required to specify in a rigorous manner what the software artifact is supposed
to do.

There are many approaches to formal semantics, but here we just name three of them: de-
notational semantics, operational semantics, and axiomatic semantics. Denotational semantics
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[172] formalizes the meanings of programming languages by defining programming language
constructs as mathematical objects as, say, functions that map input to output (e.g., partial
functions). Thus only the effect is of interest, not how it is obtained. Axiomatic semantics [173]
defines the meaning of a program by expressing specific properties of the effect of executing
the constructs as assertions about the program state. The assertions are logical statements —
predicates over variables, where the variables define the state of the program. This kind of
semantics, using logical axioms and rules as examplified in Hoare logic in the form of pre-
and post-predicates of statements. An important tenet going through this semantics again is
compositionality, i.e., the semantics of a program should be built out of the semantics of its
constituents. For example, the meaning of the expression f(e1, e2) is defined in terms of the se-
mantics of its sub-components f , e1 and e2. This is, however, difficult to achieve, especially in
modern languages where the combination of concurrency and shared variables may cause in-
terdependences between sub-components of an expression or their executions can effect each
other. For example, assuming that f(e1, e2) is parallel composition in a concurrent program,
i.e., f(e1, e2) = e1 ‖ e2, evaluating e1 and e2 can be done concurrently; however due to inter-
leaving between them, the execution of one of them might affect the other because of shared
data causing their semantics to be defined in terms of each other. Or one execution can be
terminated by exceptions caused by the other. Moreover, in many cases to obtain composi-
tionality in the semantics of concurrency, one has to take many factors into account apart from
variables defining the state of the program, and hence, the semantical formulas become very
complex. One different form of semantics is operational semantics, which interprets a valid
program as sequences of computational steps. These sequences then are the meaning of the
program. Operational semantics of a program can be seen as an abstract machine or transi-
tion system where expressions are given meaning by the transitions they induce on states of
the machine. In particular, operational semantics captures how a program is executed. The
concept of operational semantics was for the first time introduced in [189].

One can distinguish two types of operational semantics: natural semantics, or big-step
semantics, which describe how the overall results of one execution is obtained and small-step
semantics, which formally describe how the individual steps of a computation take place in a
computer-based system. Structural operational semantics was introduced by Gordon Plotkin
in the form of a small-step semantics [161] as a logical means to define operational semantics. A
small-step semantics defines the behavior of a program in terms of a set of transition relations,
i.e., it takes the form of a set of inference rules which define the valid transitions of a composite
piece of syntax in terms of the transitions of its components.

For the concurrent setting, a small-step semantics is more suitable because it reflects changes
of every single step during execution, therefore taking interference into account. So we have
employed small-step structural operational semantics to specify the meaning of our calculi.
There are several reasons for that. First of all it is easier for concurrency than a denotational
semantics because one just has to define the meaning of every single step of a program. Sec-
ond, for the sake of compositionality, it allows us to separate local steps (per thread) and global
steps (involving more than one) when describing the semantics of the calculi in our papers. Fi-
nally, when proving soundness of the type and effect systems, one can employ a well-founded,
standard inductive proof technique, namely subject reduction.

For the sake of cleanness and compositionality, in this thesis we always present our se-
mantics and analyses at two levels: local and global. This clean manner helps to distinguish
between local variables and shared variables. To have an overview of our semantics rules, we
sketch our transition derivations as follows: let σ represent a state of a program, normally σ is
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of the form of a mapping from program references and variables to their values. In our setting,
we strictly separate thread-local variables and references located on the heap. The heap is a
mapping from references to object states (and locks when part of the language). Since local
variables are handled in a functional manner, where each variable is bound to a value only
ones (“single assigment”) via the let-construct, they are dealt with by a substitution-based
rewriting relation and thus not present in σ. In this thesis, we represent a configuration of a
given program e as a pair of its state σ and the program, we often write σ � e. So the opera-
tional semantics in this thesis is described as a transition system containing a set of transitions
between configurations of programs and presented at two levels:

Local semantics This level deals with the evaluation of one single expression and reduces con-
figurations of the form σ � e. Thus, local transitions are of the form

σ � e→ σ′ � e′ , (4.1)

where e is one expression and σ is the heap. Note that for programs written in our lock-based
calculi, σ represents the mutable states of the program and is shared between all threads. It is
a finite mapping from references to objects or locks although local semantics deals only with
expressions in a local thread. However in our transaction-based calculi, σ refers to a local
environment of each thread, written E instead of σ in semantical rules, recording changes to
only the local variables of the thread and is not shared between threads. At the local level, the
commands only concern the current thread and consist of reading, writing, invoking a method,
and creating new objects.

Global semantics This level involves the behaviors of more than one thread in the global
context which we formalize as global steps, i.e., steps which concern more than one thread. A
program under execution contains one or more processes running in parallel and each process
is responsible for executing one thread. A global configuration consists of the shared heap σ
and a program P containing a “set” of processes and is of the form:

σ � P , (4.2)

where σ contains the “passive” data part of the program whereas P contains the “active” part
and is given by the following grammar:

P ::= 0 | P ‖ P | p〈t〉 processes/named threads (4.3)

0 represents the empty process, P1 ‖ P2 the parallel composition of P1 and P2, and p〈t〉 a
process (or named thread), where p is the process identity and t the thread being executed.
A thread t in our calculi is of the form: let x : T = e in t, which is a representation of a
sequential composition. Another reason for our choice of using separate syntax for expressions
e and threads t is that we can simplify our operational semantics by removing the evaluation
context. The binary ‖-operator is associative and commutative with 0 as neutral element.
Furthermore, thread identities are unique. That way, P can also be viewed as a finite mapping
from thread names to threads. With global configurations as given in equation 4.2, global
transitions are of the form:

σ � P → σ′ � P ′, or σ � P → error (4.4)
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where P and P ′, σ and σ′ are the programs respectively the shared heaps before and after the
step. Basically, a program P consists of a number of threads running in parallel, where each
thread corresponds to one expression, whose evaluation is described by the local rules. In
the lock-based setting, σ is the same in both local and global level as it is shared between
threads. However, when formalizing transactions we use one local environment E for each
thread name p because the tenet of transactional models is that there is no shared data between
threads, each thread works on their own local memory. This means, σ or σ′ in the transactional
setting is a set of p:E-bindings where p is the name of a thread and E is its corresponding
local environment and σ � P → error is a transition where error is a special configuration
representing an error state.

4.3 Compositionality

A system description is compositional if a property of the system is established based on the
properties of its sub-systems alone. Of course, to have a compositional property is a pre-
condition to get a compositional verification method, which means the composed property
or correctness of the whole system follows the verified properties of the sub-components. To
analyze and verify large and complex systems, a compositional approach is crucial. This al-
lows a divide-and-conquer approach and thus is the key to scalability. Ideally, the analysis needs
to be based on a rigid mathematical foundation, thus giving a high confidence in the anal-
ysis’ results. Compositional analyses consider parts of a larger program as black boxes and
rely only on their specification respectively interface information to verify the larger program.
Users of components just need to know its observable behavior at the interface without further
information of their internal implementations or machine-dependent details. Compositional
specification techniques using assertional predicates over only their observable behavior have
a number of advantages [58]. In particular for concurrent and distributed systems, compo-
sitional reasoning techniques have been developed, known as assumption-commitment [120]
and rely-guarantee [146] paradigm.

In a simple setting, the specification of a component can contain information about inter-
faces or services and the exchanged values to guarantee the compatibility of the component as
in component-based software or web-services. But the interface specification could also take
a more complex form, such as assertions about behavioral properties of the component as in
software verification. Assume that we have two components C1 and C2 such that ϕ1 and ϕ2

are two predicates or assertions about their behavior. We write C1 :: ϕ1 and C2 :: ϕ2 to express
C1 and C2 satisfy properties ϕ1 and ϕ2 respectively. A compositional rule to reason about the
composition of C1 and C2 can be specified as follows:

� C1 :: ϕ1 � C2 :: ϕ2 ϕ = f⊗(ϕ1, ϕ2)

� C1 ⊗ C2 :: ϕ
(4.5)

where ⊗ is a syntactic composition operator to combine C1 and C2. It can be interpreted as
any binary syntax construct of the given programming language. It basically says that the
composed system C1 ⊗ C2 satisfies the property which is asserted by f⊗(ϕ1, ϕ2).

As a prominent example in software verification, compositionality is also characteristic for
Hoare logic [97]. Let us take a look at a Hoare rule for the sequential composition C1; C2 of
programs C1 and C2:

{� P} C1 {Q} � {Q} C2 {R}
� {P} C1; C2 {R} ,
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where P , Q, and R are assertions about the states, namely about the states before C1, between
C1 and C2, and after C2, respectively. For partial correctness, the triple {P} C1 {Q} says that
if C1 starts in a state satisfying the pre-condition P and it terminates, then the final state of C1

will satisfy the post-condition Q.
Hoare logic works well for sequential programs, but can be applied to concurrent ones, as

well. The above rule, for instance, is unsound for shared variable concurrency if used naively,
since the state may change between C1 and C2 due to interference from other processes not
mentioned in the rule. To get a sound version of such a rule in the presence of concurrency, the
pre- and post-conditions must be able to capture the possibility of other processes interfering.
Consequently, the program states must contain enough information about other processes, in
particular at which program points they are. However, pre- and post-conditions formulated
adequately based on this additional information can be very complex. However, this should
not be considered as a defect of Hoare logic, it just reflects that without appropriate concur-
rency control mechanisms shared variable concurrency results in complex behavior. Some of
the type and effect systems in this thesis can be seen as being based on a form of Hoare style
pre- and post-specifications. In particular, our effects will specify the state of shared locks and
certain aspects of the state of transactions respectively. In this particular setting, the above rule
of sequential composition is sound: in the case of transactions, because they are executed in
isolation, and in the case of locks, because they are protected against interference. This free-
dom of interference does not apply to all investigated problems and models of concurrency in
the thesis.

As just seen, a compositional specification of program behavior in the presence of concur-
rency is challenging. Another aspect which is difficult to capture in a compositional manner
and which is relevant to (not only) object-oriented languages, are pointers or references and
aliases. In a language without aliasing, the following simple “rule of constancy” is important
for modular reasoning:

{P} C {Q}
{P ∧R} C {Q ∧R} mod(C) ∩ fv(R) = ∅.

It expresses the obvious fact that a property R is invariant when executing C if C does
not modify variables mentioned in R. Unfortunately, this rule is unsound in the presence of
aliasing, since program C may change an alias of a variable mentioned in R. That this rule
breaks in the presence of aliasing shows that modular reasoning is significantly more complex
with references. To reason about the heap and aliasing, Peter O’Hearn and John C. Reynolds
invented separation logic [167, 159], where the rule of constancy is replaced by the following
rule, known as the frame rule of separation logic:

{P} C {Q}
{P ∗R} C {Q ∗R} mod(C) ∩ fv(R) = ∅.

The crucial modification is that the logical conjunction of the rule of constancy is replaced
by a more complex operator, called separating conjunction, which expresses that P and Q con-
junctively hold, but for different, separated parts of the heap. The introduction of this new
operator enables local reasoning in the presence of aliasing, therefore provides more compact
specifications and proofs, where specifications and proofs concentrate on the portion of mem-
ory heap used by a program component, and not the entire global state of the system. Parts of
this thesis address references and aliasing, in particular related to the dynamic lock creation.
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However, in our compositional analysis, we do not need to assume that different lock variables
refer to separate parts of the heap, and which therefore may be aliases.

To sum up, compositional reasoning analysis is not easy to achieve in a concurrent setting.
There are many cases where the formulation of the problem at hand, the inherent complexity of
the semantics of a program construct such as implicit synchronization, or the tight coupling of
the processes concerned, prevents a practical compositional solution. This applies especially to
concurrent object-oriented programming languages. For parallel composition, achieving com-
positional analyses becomes difficult as specifying properties of a systems can be much more
complicated due to exponential interaction between concurrent components and interleaving
semantics. Moreover, specifying assertional formulas is often very complex because they need
to capture different information in the interface, depending on the semantics of parallel com-
position and used synchronization mechanisms. Besides that also the kind of properties being
analyzed and abstractions used influence the formulation of the effect part.

In this thesis, we investigate various compositional, static analyses in particular wrt. par-
allel composition. We treat compositionality in different concurrency models: lock-based or
transaction-based, synchronous or asynchronous message passing in closed systems as well as
open systems whose environment is not known in advance.

4.4 Type and effect systems

4.4.1 Types and effects

Intuitionistic or constructive logic is different from classical logic in its definition of the mean-
ing of a statement being true. In classical logic, all well-formed statements are either true or
false, even if we do not have a proof of either. In constructive logic, a statement is true if and
only if there is a constructive proof that it is true, and is wrong only if there exists a proof that
it is wrong. Constructive type theory internalizes that idea of intuitionistic logic, i.e., there
exists an isomorphism between propositions and types, usually called the Curry-Howard iso-
morphism: a proposition is identified with the type of its proofs. There is an identification
between the following two predicates: the proposition A has a proof M in constructive logic
and a program M has a type A in programming languages. So type theory is a constructive
theory which can be automatized and supported by software tools.

Types are used in programming languages to restrict the underlying syntax so that only
meaningful expressions are allowed. This allows many programming errors to be detected by
the compilers. It guarantees that if a program has passed a static type system of the compiler,
then the type of that program needs no run-time checks since it is assured to be of correct
type. In other words, well-typed programs can not go wrong. Typically, that is proven in a
form of induction and breaks down into “well-typed programs don’t exhibit an error now,
resp. in the next step” and “a reduction step preserves well-typedness” (the latter also known
as subject reduction). Type systems are sets of type derivation rules. Compilers use type
systems to prevent unexpected operations due to misuse of a value. For example: to work
with numbers, only mathematical operations are allowed on them, or with strings, operations
are concatenating two strings, appending and so on. But to add a number and a string is a type
error. The process of verifying and enforcing the constraints of types is called type checking.
It may take place either at compile-time, called static checking, or at run-time, called dynamic
checking.
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Dynamic type checking: dynamic type checking is performed at run-time as opposed to at
compile-time. Dynamic type checkers generally associate run-time objects with their type in-
formation. Dynamic type checkers will result in a run-time type error during execution when
a value has an unexpected type. For example, the run-time system will throw an exception
if an integer variable is instantiated with a string value. Detecting program bugs at the later
phase of the development cycle, i.e., at run-time, could cause serious damages. Moreover, the
detected errors returned by dynamic type checkers might be non-deterministic as there may
be only some particular execution paths where the misuse occurs, but not in some other paths
depending on the input values or the scheduling. Furthermore, run-time checking may affect
negatively the efficiency of the program. The results from dynamic checking are, however,
more precise compared to static checking since it is based on the actual values. In practice,
dynamic and static type checking are often used in combination to increase efficiency and pre-
cision.

Static type checking: static type checking is a limited form of program verification, it allows
many program errors to be caught early in the development cycle. Static type checkers eval-
uate the program code at compile time, but are able to guarantee that the checked conditions
hold for all possible executions of the program, which eliminates the need to repeat type checks
at run-time. That may also help program execution to be more efficient (e.g. faster or more
memory efficient) by omitting run-time type checks and enabling other optimizations (e.g. de-
tecting dead-code, backward tracking). Because they evaluate type information during compi-
lation and therefore lack some information only available at run-time, static type checkers are
conservative in terms of over-approximation, i.e., some programs might be rejected by static
type check even though they are actually well-behaved at run-time. For instance, a program
may be rejected as ill-typed, because a static analysis cannot determine which branch in a con-
ditional will be executed. However, conservative approximation can be advantageous where
exhaustive checking is sometimes impossible due to a large or infinite state space, especially
in the concurrency setting where interactions between threads may lead to state space explo-
sion. In that circumstance, run-time checking might not detect the problem as a type error only
reveal itself in a particular execution path. Nonetheless, since it is a symbolic analysis, static
type checkers can detect type errors in all possible executions of the program as the state space
to be checked at compile-time is finite in the size of the program .

Evaluating an expression in a program sometimes does not result only in a value but also
an effect. For example, an exception raised when evaluating a division operator of a number
and zero is considered as an effect; or that a value of a variable is changed while it is read by
a thread is also a side-effect. In computer science, an effect system is a formal system which
describes the computational effects of computer programs, such as side effects. A type and
effect system is typically an extension of a type system where the type part is supplemented
with an effect part to reason about computational effects of a program. It can be used to
provide compile-time checking of the possible effects of the program.

4.4.2 Formalization of type and effect systems

In this thesis, we propose different static analyses based on type and effect systems to deal
with various kinds of concurrency errors which are reflected in the different forms of effects
and corresponding derivation systems. Type specifications presented in this thesis are divided
in two groups: pre- and post-conditions and assumption-commitment framework. Most of our
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analyses are based on pre- and post-condition, but when introducing an open semantics for
open programs, we go for an assumption-commitment framework because as we argue later
in the paper [9] pre- and post specification is too week to capture behaviors of concurrent pro-
grams in open systems with the presence of inheritance. Each of the frameworks strengthens
compositional reasoning.

For the sake of a clean presentation, our type and effect systems are presented at two levels:
a thread local level and a global level. At the local level, the derivation system deals with
expressions and judgments are of the form:

Γ; Δ1 � e : T :: Δ2 (4.6)

where we use Γ to capture typing information and Δ effects. The judgements are interpreted
as follows: Under the type assumptions Γ, an expression e is of type T and has an effect which
is the change from Δ1 to Δ2.

At run-time, expressions do not only contain variables but also references as values. They
are stored in the heap σ. To prove preservation of well-typedness under reduction (“subject
reduction”) we need to be able to check also the well-typedness of configurations at run-time.
Hence we extend the type and effect judgment from equation (4.6) to

σ; Γ; Δ1 � e : T :: Δ2. (4.7)

In all cases, the typing contexts (or type environments) Γ contain the type assumptions for
variables, i.e., they are finite mappings from variables to their types. The effect part captures
different properties of our calculi serving different purposes. In this thesis, when dealing with
lock or transaction handling, we use Δ to represent local lock or transaction environments which
capture lock or transaction information. They are finite mappings from either locks or trans-
actions to their values which say how many times a lock is taken or how deep a transaction is
nested. Those values we later call lock or transaction balances. Note that locks and transac-
tions are re-entrant and nested, so we use a natural number to represent the lock or transaction
status, i.e., they can be taken one or many times.

At the global level, we formalize judgments of the form

σ; Γ � P : ok , (4.8)

where P is given by equation (4.3). Moreover, we assume that Γ is well-typed and σ is well-
formed, i.e., σ � ok . A process p〈t〉 is well-typed if its code t is. Although well-typedness is
checked per process, our static analysis is compositional, hence we can conclude that a parallel
composition is well-typed if all sub-configurations are.

4.4.3 Formal proofs of soundness

A derivation system is sound if only true formulas can be derived by its derivation rules.
In our setting, the formulas to be derived are the type and effect judgements. The intended
meaning, i.e., the underlying semantics, of a judgement of the form σ; Γ; Δ1 � e : T :: Δ2 (cf.
Equation (4.7)) is as follows relative to the typing assumption Γ over the free variables of e:

1. if e terminates, the resulting value is a member of the set of values of type T .

2. if e terminates when starting in a state satisfying Δ1, the ending state satisfies Δ2.
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Thus, the typing as well as the effect part are interpreted as partial correctness assertions
over the expression e. The key to soundness of a typing system is known as subject reduction.
For the typing part, the overall soundness argument involves the following three steps:

1. the initial configuration is well-typed because we consider only well-typed programs.

2. Well-typedness is preserved under an arbitrary steps of the operational semantics. This
property is known as subject reduction.

Starting from a well-typed initial configuration as a base case and with subject reduction as
induction case, the first two steps guarantee that all reachable configurations are well-typed.
This allows to avoid checking well-typedness at run-time, i.e., the programming language is
statically typed. Note that the well-typedness of all reachable configurations as a consequence
of the first two steps does not guarantee soundness of the systems in the sense mentioned
above. For instance, a “type system” which would assign any type to any expression satisfies
that all reachable configurations are well-typed. Since in our partial correctness interpretation,
the typing judgements express that the resulting value of an expression with a given type is
an element of the domain described by the type, the third step in the soundness proof is as
follows:

3. The typing rules for values are obviously true, i.e., sound.

The preservation of the effect part of the judgements requires some adaptations. In contrast
to the typing part which describes the potential results when evaluating an expression, i.e., its
value, the effect part captures aspects of what happens during the evaluation. That means that
reduction steps change the effect, i.e., we can not literally expect preservation of the effect part
under steps of the operational semantics.

Assume that we are given a judgement in the form of a pre- and post-specification σ1; Γ; Δ1 �
e1 :: Δ and the state σ1 is abstractly described by the pre-condition Δ1. If e1 does a step re-
ducing to e2 thereby changing the state to σ2, also the effect for e2 can be derived in the effect
system. However, the pre-condition has now changed to, say Δ2 which abstractly describes
the changed state σ2. This is shown schematically in Figure 4.1. Considering the pre- and post-
conditions of the form Δ as abstract states and the change from Δ1 to Δ2 as abstract semantic
steps, subject reduction can be understood as simulation relation between the concrete steps of
the operational semantics and the change of the corresponding effects, in this case in particular
the pre-conditions.

Δ1 Δ2

σ1; Γ; Δ1 � e1 :: Δ σ2; ΓΔ2 � e2 :: Δ

Figure 4.1: Subject reduction for effects

In this thesis, we prove soundness of different type and effect systems wrt. the opera-
tional semantics of the corresponding calculus using subject reduction in the general form as
explained. To prove subject reduction, one starts by assuming: 1) well-typedness of a given ex-
pression and 2) one reduction step. Both assumptions are justified by a respective derivation,
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i.e., a derivation in the type and effect system respectively a derivation using the rules of the
structural operational semantics. Note that both derivation systems are defined structurally
over the syntax of the expressions. In all cases, the proof proceeds by induction on the deriva-
tion of the operational semantics. In the chosen syntactic representation of the calculi based
on a-normal forms (or administrative normal forms) [74], many of the deduction rules of the
structural operational semantics are actually axioms, i.e., pure rewriting rules using top-level
rewriting. In this representation, for instance, the syntax is “restricted” in the following form:
instead of writing for a method call e1.m(e2), the call needs to be written in expanded form
as let x1 = e1 in (let x2 = e2 in x1.m(x2)). That makes the order of evaluation explicit;
in this case that the callee expression e1 is evaluated before the argument expression e2. Ob-
viosuly, in an imperative setting where the expressions may have side-effects, the evaluation
order matters. This is in contrast to purely functional calculi where the order of evaluation
does not matter as far as a potential end result is concerned, thanks to confluence. Obviously,
the more general and conventional expression syntax, which we would expect for any concrete
syntax, can always be transformed into an equivalent a-normal form as intermediate repre-
sentation, thereby making it easy to fix one evaluation order and thus making reduction (per
thread) deterministic. To achieve a deterministic evaluation order working directly on general
expression (not in a-normal form) an alternative would be rewriting rules based on evaluation
contexts which can be used to identify the place of the next redex in an expression. Com-
ing back to the inductive proof of subject reduction: As the operational semantics is given as
rewriting rules (as opposed to more general SOS-rules with non-trivial axioms) the induction
is mostly by case distinction between different rewriting rules. Often, to prove well-typedness
of the expression after the reduction step, requires to prove well-typedness of sub-expressions
of the original expression. This typically follows from inverting the last rule in the derivation
justifying well-typedness of the expression in assumption 1). As it is often the case in inductive
proofs, the challenge lies in formulating appropriately the induction hypothesis, i.e., finding
the exact formulation of the type system and the abstraction used therein, not in carrying out
the actual induction steps.

To summarize: the challenge in achieving a sound static analysis lies in obtaining the
following three goals at the same time: 1) compositionality, 2) precision, and 3) soundness.
Without compositionality, the analysis is guaranteed not to scale for large programs, there-
fore not usable in practice. Without precision, compositionality and soundness can trivially
be achieved by overly abstracting all details and ultimately rejecting all programs as poten-
tially erroneous. Of course without soundness, it is pointless to formally analyze programs.
Achieving all three goals in a satisfactory manner requires human ingenuity. Even if remov-
ing interface information by sacrificing precision typically makes a compositional description
easier to achieve, this is, however, not uniformly the case. A well-known example is the fact
that for parallel processes with shared variables, interface specifications consisting of pre- and
post-specifications of the processes’ variables are not compositional whereas refining the in-
formation into traces of states may lead to a compositional account. Indeed, representing the
behavior of a component in full detail as interface information also results in a compositional
interface description. Of course this contradicts the goal that it should be possible to calculate
automatically the interface description. To capture the exact behavior without any abstrac-
tion in the interface would lead to an undecidable, but compositional interface theory. This
would contradict the goal of this thesis that the analyses should be automatized to be useful
in practice.
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CHAPTER 5

Concurrency-specific problems and
their analyses

In this section, we give a short overview over various analyses and problems we solve in
the different settings described in Section 4.1. This overview is presented in Section 5.1 to
Section 5.4 for the different papers which are contained later in the main part of the thesis. This
section aims at giving an overall perspective of all work in this thesis, but does not provide
all details and concrete solutions corresponding to each paper. For details, the reader needs to
consult Part II where all the corresponding papers are included. A short schematic overview
of problems and solutions is also shown in Table 5.1.

Paper #1 Paper #2 Paper #3 and #4 Paper #5

[134] [138] [117, 118] [11]
Chapter 8 Chapter 9 Chapter 10 Chapter 11

Concurrency
model

Multi-
threading

Multi-
threading

Multi-
threading

Active objects

Synchronization Transactions Transactions Locks Locks
Problems Safe commits Resource esti-

mation
Safe locking Observable

behavior
Challenges Transactions Implicit join

synchroniza-
tion

Aliasing,
substitution,
parameter
passing

Inheritance

Analysis Single-
threaded

Multi-
threaded

Single-
threaded

Multi-
threaded

Analysis
effects

Pre- and post-
conditions

Pre- and post-
conditions

Pre- and post-
conditions

Traces

Table 5.1: Overview of the papers

Our analyses cover different aspects of concurrency, such as transactions vs. locks and
multi-threading vs. active objects. In different sections, we describe four different kinds of
problems. Two of them deal with avoiding misuse of concurrency synchronization constructs,
namely for transactions on one hand and for locks on the other, which we call safe commits
and safe locking. Another section statically calculates an estimation for resource consumption
in a transactional model. The last result formalizes a behavioral interface description of the
observable behavior of open components. These problems pose also different technical chal-
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lenges for static analyses. One distinguishing criterion in that context is whether the analysis
is single-threaded or multi-threaded.

Similarly as for the semantics, our typing rules are always presented at two levels: a thread-
local one and a global one. An analysis is single-threaded if the property being analyzed for the
global program follows in a trivial manner from the corresponding analyzed properties of indi-
vidual threads. Basically, each thread can be analyzed in isolation and considering the problem
at the global level does not add further complications. Analyses which are not single-threaded
are multi-threaded. For example, the two problems assuring safe usages of transactions respec-
tively safe usages of locks are single-threaded in this sense. Writing � p〈t〉 ::ok to express that
the thread named p executing t safely uses its locks, the rule to assure safe locking on the global
level looks as follows:

� p1〈t1〉 ::ok � p2〈t2〉 ::ok

� p1〈t1〉 ‖ p2〈t2〉 ::ok

which makes the problems single-threaded. Note, however, that it does not mean that the
two threads composed in parallel do not interact or synchronize with each other. In our case,
they do use locks or transactions. It means that the nature of the analyzed problems is single-
threaded. Later we will come back to discuss why safe commits and safe locking are single-
threaded in Section 5.1 and Section 5.3, respectively. In general, multi-threaded problems are
harder than single-threaded ones. There are, however, other specific challenges connected to
each problem. In the simplest analysis dealing with safe commits in a transactional setting, the
analysis needs to keep track of the number of onacids and commits executed in each thread to
avoid committing too often or forgetting to commit at the end of a thread.

Changes of the language and of the problem impose additional complications on top of
the analysis. In the paper to estimate resource consumption, the problem is no longer single-
threaded: due to concurrency, calculating maximal resource consumption for threads running
in parallel does not follow in a trivial manner from the resource consumptions of the individ-
ual threads. The reason for that is synchronization between threads, in particular the form
of synchronization characteristic for the chosen model which corresponds to an implicit form
of join synchronization. This is challenging because synchronization is implicit, i.e., without
explicit synchronization constructs in the syntax whereas our compositional analysis is syntax-
directed. The complication in the safe locking papers does not come from the change of prob-
lem —assuring safe locking is more or less analogous to assuring safe usage of transactions—
but from the differences in the language, in particular from the fact that locks have explicit
identities at the user-level whereas transactions have not. As a consequence, the analysis has
to deal with aliasing and passing lock identities as method parameters. To overcome problems
in connection with aliasing requires a special form of “resource-aware” substitution which not
only takes into account lock identities being substituted, but the values of their lock counters
as well. In the last paper, we are interested in the observable behavior of an open system con-
sisting of a set of classes. The particular challenge there is to capture the observable interface
behavior in the presence of inheritance, late binding, and overriding.

In all the analyses, the language and the nature of the problem determine also the form
of interface information often in terms of an effect needed for a compositional analysis. In all
problems except the one dealing with inheritance, the effects are given in the form of pre- and
post-conditions. For the resource analysis which is a multi-threaded problem, the pre- and
post-conditions are significantly more complex than for the single-threaded problems. The
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observable interface behavior for the inheritance problem is given in the form of traces. We
continue by discussing the individual problems in more detail.

5.1 Safe commits

Transactions are considered to be a high-level, more abstract, and more compositional alter-
native for concurrency control to more traditional mechanisms, such as locks and monitors.
As known from databases, transactions offer valuable safety and failure guarantees: atomic-
ity, consistency, isolation, and durability, or ACID for short. One characteristic difference of
transactions compared to locks is a non-blocking behavior. All threads/transactions may run
in parallel provided that they guarantee the mentioned ACID properties. As a result, transac-
tional programming languages may make better use of parallelism and resources in concurrent
systems, and may avoid also deadlock situations, but may on the other hand cause roll-backs.

How to syntactically capture transactional programming in the language may vary. One
option is lexical scoping, e.g., using an atomic keyword to mark a block of statements as a
transaction where all the code in that region must commit before leaving the transaction. More
flexible is non-lexical scoping, where transactions can be started and finished (i.e., committed)
freely. One proposal supporting non-lexical scoping of transaction handling is Transactional
Featherweight Java (TFJ) [110]. The start of a transaction in TFJ programs is marked by the
onacid keyword and the end by the commit keyword. The transactional model of TFJ is quite
general. It supports multi-threaded and nested transactions. Multi-threaded transactions mean
that inside one transaction there can be more than one thread running in parallel. Nesting
of transactions means that a parent transaction may contain one or more child transactions
must synchronize as follows: to commit an entire transaction, all child transaction must have
committed and the child threads and the thread itself must commit at the same time.

The flexibility of non-lexical use of onacid and commit comes at a cost: not all usages of
starting and committing transactions “make sense”. In particular, it is an error to perform a
commit without being inside a transaction. For example, by running main method in List-
ing 5.1, m is executed 4 times and we have: onacid; commit; onacid; commit; onacid; commit
; onacid; commit; onacid; commit. In this case, the program has no error at run-time, but it
will be an error if the main method had another commit, for instance void main(){ n(); commit;
commit;} since the last commit is executed outside any transaction. Note that due to non-lexical
scope, users can commit a transaction started inside a method outside its scope (e.g, the trans-
action created by a onacid inside method n is committed by a commit at the beginning of the
method m. Similarly the last transaction created by m is committed by a commit in the main
method). So checking errors of methods in isolation is incorrect. A method needs to be put in
a larger context together with other methods to know whether a commit is executed outside a
transaction.

Listing 5.1: Example of onacid and commit
1 void n ( ) { onacid ; m( 3 ) ; }
2

3 void m( i ){
4 commit ;
5 i f ( i ≤ 0)
6 then onacid ;
7 e l s e c a l c u l a t e e ; onacid ; t h i s .m( i −1) ;
8 //e doesn ’ t conta in onacid or commit
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9 }
10 void main ( ) { n ( ) ; commit ;}

Our solution for this problem is to keep track of starting and committing transactions in a
static type and effect system to assure that starting and committing transactions is done “prop-
erly”, in particular to avoid committing when outside a transaction, which we call commit er-
rors. To catch commit errors, the system keeps track of the number of onacids and commits;
we refer to the number of onacids minus the number of commits as the balance. E.g., for an
expression e = onacid; e1; commit; commit where e1 does not contain any onacid or commit,
the balance equals 1 − 2 = −1. An execution of a thread is balanced, if there are no pending
transactions, i.e., if the balance is 0 after the thread terminates. The model does not only sup-
port non-lexical use of nested transactions, but also multi-threaded transactions which must
be reflected in the analysis as well.

Thus to determine the effect in terms of the balance, we need to calculate the balance for
all threads potentially concerned, which means for the thread executing the expression being
analysed plus all threads (potentially) spawned during that execution. From all threads, the
one which carries the expression being evaluated plays a special role, and is treated specially.
A thread spawned inside a transaction executes inside this transaction, therefore in the static
analysis, the balance at the point of spawning will be used as pre-condition when analyzing
the spawned thread. Apart from this connection between the parent and child threads, the
analysis is basically single-threaded. The judgements of the analysis are of the following form:

n1 � e :: n2, S , (5.1)

which reads as: starting with a balance of n1, executing e results in a balance of n2. The
multi-set S of lock-balances contains the balances for new threads spawned by e, but not of
the thread executing e itself. The balance for the new threads in S is calculated cumulatively;
i.e., their balance includes n1, the contribution of e before the thread is spawned, plus the
contribution of the new thread itself. The judgement of method calls in our type and effect
system is slightly different: � m(�x:�T )e :: n1 → n2, S . Here we require that the balance of the
method itself has the form n1 → n2 where n1 is interpreted as pre-condition, i.e., it is safe to
call the method only in a state where the balance is at least n1. The number n2 as the post-
condition corresponds to the balance after exiting the method, when called with balance n1

as pre-condition. The pre- and post-condition formalization is needed for two purposes: to
allow flexibility of non-lexical scope of transactions where transactions can be opened in one
method and closed in another methods as in Listing 5.1, the precondition n1 is required to
assure that at the call-sites the method is only used where the execution of the method body
does not lead to a negative balance. And later when dealing with recursive method calls, an
additional constraint requiring n1 = n2 is used as loop invariant to make sure that body of a
method must not change the balance to be well-typed as explained below.

Now let us come back to Listing 5.1. First observe that the program shows no commit-
errors during run-time. Method m calls itself recursively and the two branches of the con-
ditional in its body both execute one onacid each. Especially, method m is called only via
method n, after n has performed an onacid, i.e., m is called inside one transaction. If m were
called outside a transaction it would result in an error, as the body of m starts by executing a
commit-statement. In our effect system, method m can be declared as of effect 1 → 1, which
expresses not only that the body of m does not change the balance, but that as a precondition,
it must be called only from call-sites where the balance is ≥ 1, as is the case in the body of n.
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For recursive calls, an effect like 1 → 1 can be interpreted as loop invariant: the body of the
method must not change the balance to be well-typed. However, not every method needs to
be balanced; the non-recursive method n is one example which (together with the call to m)
has a net-balance of 1. As an aside: if the method would contain the spawning of a new thread,
the recursive execution would lead to an unbounded number of new threads; for the analysis,
this does not pose a problem, as it analyses the method body in isolation (without “following”
the recursion, as is customary for type analyses).

The detail of our type and effect system to prevent commit errors is presented in Chapter
8 where we prove the soundness of our analysis using subject reduction and the analysis is
compositional.

5.2 Resource estimation

Although transactions based on optimistic concurrency control are a more compositional al-
ternative to conventional concurrency control mechanisms, in particular transaction models
based on versioning and roll-back mechanisms can lead to resource consumption problems.
In transactional programming, to achieve isolation, each transaction operates via reads and
writes on its own local copy of the memory, e.g., a local log is used to record these operations
to allow validation or potential rollbacks at commit time. As each transaction operates on its
own log of the variables it accesses, a crucial factor in the memory consumption is the number
of thread-local transactional memories (i.e., logs) that may co-exist at the same time in paral-
lel threads. Note that the number of logs neither corresponds to the number of transactions
running in parallel (as transactions can contain more than one thread) nor to the number of
parallel threads, because of the nesting of transactions. A further complication is that parallel
threads do not run independently; instead, executing a commit in a transaction may lead to a
form of implicit join synchronization with other threads inside the same transaction due to the
multi-threaded and nested transaction model. Unlike the previous analysis for safe commits,
the problem of resource estimation in this setting is multi-threaded. Let us take a look at an
example in Listing 5.2. The main expression of thread 0 spawns two new threads 1 and 2.
The onacid-statement expresses the start of a transaction and commit the end. Hence, thread 1
starts its execution at a nesting depth of 2 and thread 2 at depth 3. See also Figure. 5.1a, where
the values of n represent the nesting depth of open transactions at different points in the main
thread. We often write [ and ] for starting respectively committing a transaction. Note that
e.g. thread 1 is executing inside the first two transactions started by its parent thread and that
it uses two commits (after e1) to close those transactions. Important is that parent and child
thread(s) commit an enclosing transaction at the same time, i.e., in a form of join synchroniza-
tion. We call an occurrence of a commit-statement which synchronizes in that way a joining
commit. Figure. 5.1b makes the nesting of transactions more explicit and the right-hand edge of
the corresponding boxes mark the joining commits. E.g., e2 and e3 cannot execute in parallel
since e2 is sequentialized by a joining commit before e3 starts. If the child thread, say in e1,
starts its own transactions (nested inside the surrounding ones), e.g., if e1 = [ ; [ ; [ ; ] ; ] ; ],
then these three commits are no joining commits.

Listing 5.2: Joining commits
1 onacid ; // thread 0 ( main thread )
2 onacid ;
3 spawn ( e1 ; commit ; commit ) ; // thread 1
4 onacid ;
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[ [ [ ] e3 ] e4
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Figure 5.1: Nested, multi-threaded transactions and join synchronization

5 spawn ( e2 ; commit ; commit ; commit ) ; // thread 2
6 commit ;
7 e3

8 commit ;
9 e4 ;

As always, our goal is a compositional static analysis, in this case a worst-case estima-
tion of memory resource consumption for the sketched execution model. As mentioned, to
assure isolation, an important transactional property, each thread operates on a local copy of
the needed memory which is written back to global memory when and if the corresponding
transaction commits. We measure the resource consumption at a given point by the number of
logs co-existing at the same time. This ignores that different logs have different memory needs
(e.g., accessing more variables transactionally). Abstracting away from this difference, we con-
centrate on the synchronization and nesting structure underlying the concurrency model. A
more fine-grained estimation of resource consumption per log is an orthogonal issue and the
corresponding refinement can be easily incorporated. The refinement would need to rely on a
conservative estimation of the memory consumption of one log, which in turn depends on the
resource consumption per variable used in the transaction, and potentially, dependent on the
transactional model, how many times variables are accessed.

To illustrate the concept of resource consumption in our setting, let us take a look at Listing
5.2. Assuming that e1 opens and closes three transactions, e2 four, e3 five, and e4 six. The
resource consumption after spawning e2’s thread and before the subsequent commit is at most
15 = 5 + 3 + 7 (at the left vertical line): the main thread executes inside 3 transactions, thread
1 inside 5 (3 from e1 plus 2 “inherited” from the parent), and thread 2 inside 7. At the point
when thread 0 executes e3, i.e., after its first commit, the worst case is 14 = 5 + 7 + 2. Note
that e2 cannot run in parallel with e3 whereas e1 can: the commit before e3 synchronizes with
the commit after e2 which sequentializes their execution. Thus e1 still contributes 5, e2 con-
tributes only 2, and the main thread of e3 contributes 7 (i.e, 5 from e3 and 2 from the enclosing
transactions).

To be scalable and thus usable in practice, the analysis must be compositional. In our setting,
the analysis needs to cope with parallelism and synchronization. In principle, the resource con-
sumption of a sequential composition e1; e2 is approximated by the maximum of consumption
of its constituent parts. For e1 and e2 running (independently) in parallel, the consumption
of e1 ‖ e2 is approximated by the sum of the respective contributions. The challenges in our
setting are:
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Multi-threaded analysis: due to joining commits, threads running in parallel do not neces-
sarily run independently, and a sequential composition spawn e1; e2 does not sequen-
tialize e1 and e2. They may synchronize, which introduces sequentialization, and to
achieve precision, the analysis must be aware of which program parts can run in par-
allel and which cannot. Assuming independent parallelism would allow us to analyze
each thread in isolation. Such a single-threaded analysis would still yield a sound over-
approximation, but be too imprecise.

Implicit synchronization: Compositional analysis is rendered intricate as the synchronization
is not explicitly represented syntactically. In particular, there is no clean syntactic separa-
tion between sequential and parallel composition. E.g., writing (e1 ‖ e2); e3 would make
the sequential separation of e1 ‖ e2 from e3 explicit and would make a compositional
analysis straightforward. Here instead, the sequentialization constraints are entailed by
joining commits and it is not explicitly represented with which other threads, if any, a
particular commit should synchronize.

Thus, the model has neither independent parallelism nor full sequentialization, but synchro-
nization is affected by the nesting structure of the multi-threaded transactions. As usual, the
type and effect system will be presented in two levels: a thread-local one and a global one.

On the local level, the judgments of the effect part are of the following form:

n1 � e :: n2, h, l,�t, S . (5.2)

Compared to the judgment of equation (5.1) for safe commits, the form of the local judg-
ment is more complex. The interpretations of the natural numbers n1 and n2 are unchanged
representing the balances before and after executing e. Since the analysis is aiming at upper
bounds on the number of logs, h simply captures the maximal balance during the execution
of e. Assuming independent parallelism, i.e., ignoring the implicit join synchronization, the
maximal balance per thread captured in h would be adequate to get an approximation for
parallel programs. It could be calculated by summing up the maximal resource consumption
of each thread. Even in the presence of join synchronization, the analysis would be sound.
The remaining information �t and S in this judgment therefore serves to achieve a precise and
compositional analysis for parallel compositions with join synchronization. More precisely,
the information S is needed to achieve compositionality wrt. sequential composition and �t for
compositionality wrt. parallel composition:

• The S-part contains information concerning the resource consumption of threads being
spawned in e, more precisely their resource consumption after e. S needs to be taken into
account when considering e in a sequential composition with a trailing expression.

• In contrast, the �t is needed for compositionality wrt. parallel composition. The �t is a
sequence of non-negative numbers, representing the maximal, overall (“total”) resource
consumption during the execution of e, including the contribution of all threads (the cur-
rent and the spawned ones) separated by joining commits of the main thread. We call �t a
joining-commit sequence, or jc-sequence for short.

At the global level, the key is again to find an appropriate representation of the resource
effects which is compositional wrt. parallel composition of threads. Now that more than
one thread is involved, the jc-sequences are generalized to jc-trees which are basically finitely
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branching, finite trees where the nodes are labeled by a transaction label and an integer. With
t as jc-tree, the judgments at the global level are of the following form:

Γ � P :: t . (5.3)

Chapter 9 contains more examples illustrating the type and effect system and the intuition
behind jc-sequences and jc-trees. Furthermore, it proves soundness of the analysis using sub-
ject reduction.

5.3 Safe locking

Locks are a common synchronization mechanism for concurrency control in many concurrent
object-oriented languages. How to syntactically capture concurrent programming in the lan-
guage may vary. There are two syntactical ways to use locks in Java. The first one is to use
lexically-scoped locks via the synchronized keyword to protect a shared data within a block.
Later, Java 5.0 introduces non-lexical locks to give programmers more flexibility. Users can
take a lock l by executing l. lock in a block and release the lock by calling l. unlock in another
block as in Listing 3.2. Misuse of locks in Java, such as to attempt to release a lock without
owning it and to takes a lock without releasing it afterwards, could cause safety problems,
such as deadlock and even liveness. Java deals with these misuses of locking by throwing a
run-time exception. We introduce a static analysis to guarantee absence of certain erroneous
use of locks. We call such a discipline safe locking.

Our static analysis is formulated for an extension of Featherweight Java with concurrency
and explicit lock support, but without inheritance and type casts. Expressions dealing with
locks are of the following syntax:

e ::= . . . v. lock | v. unlock . . .

The problem with non-lexical scope at a first look seem quite similar to the one for trans-
actions. Generalizing our approach for transactions to lock handling, however, is not straight-
forward because locks and transactions have behavioral differences relevant for type-based
analysis which are summarized in Table 5.2.

Lock-based setting Transaction-based setting
non-lexical scope yes yes
program level iden-
tity

yes no

re-entrance yes no
nested transactions
(critical sections)

no yes

internal multi-
threading

no yes

Table 5.2: Transactions and explicit locks of Java

Both languages have one common feature which is the flexibility of non-lexical scoping.
Unlike transactions, locks have identities at the program level which can create aliasing prob-
lems since locks are passed around as arguments. Furthermore, locks and monitors in Java
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are re-entrant, i.e., one thread holding a lock can recursively re-enter a critical section or mon-
itor. Re-entrance is not an issue in the transactional setting: a thread leaves a transaction by
committing it (which terminates its transaction), hence re-entrance into the same transaction
makes no sense. Transactions in the transaction-based setting can be nested. Of course, in Java,
a thread can hold more than one lock at a time; however, the critical sections protected by locks
do not follow a first-in-last-out discipline, and the sections are not nested as they are indepen-
dent. For nested transactions, in contrast, a commit to a child transaction is propagated to
the surrounding parent transaction, but not immediately further, until that parent commits its
changes in turn. Finally, the transaction-based setting allows concurrency within a transaction
(supporting multi-threaded transactions), whereas monitors and locks in Java are meant to en-
sure mutual exclusion. In particular, if an activity inside a monitor spawns a new thread, the
new thread starts executing outside any monitor, in other words, a new thread holds no locks.

Those differences cause the following difficulties for our static analysis of safe locking. A
consequence of identities and re-entrance is that our analysis needs to take lock identities into
account to keep track of which lock is taken by which thread and how many times it has been
taken. Furthermore, the analysis needs to handle dynamic lock creation, aliasing, and passing
of locks between threads.

On the local level, the type and effect system uses a judgment similar to the one for safe
commits (cf. equation (5.1)):

Δ1 � e :: Δ2 . (5.4)

Since locks carry an identity, the thread needs to keep track of balances per lock, i.e., how
many times a lock is taken or released, not just the global balance as in the transaction setting.
In the judgment, the pre- and post-conditions Δ1 and Δ2 are mappings from lock variables
or references to their values which are the natural number representing the lock status (or the
lock balance), and are either 0 in case the lock is marked as free, or n (with n ≥ 1) capturing
that the lock is taken n times by the thread under consideration. Our analysis will guarantee
that at no point in time, the lock status or balance goes to minus. In other words, our type and
effect system guarantees that our well-typed programs will not result in any run-time errors.
As mentioned, the presence of lock identities means that aliasing may become a problem. Two
variables are aliases if they refer to the same identity, in our case to the same lock at run-
time. There are static analyses which approximate aliasing information which are known as
pointer analyses or alias analyses. In particular, in the presence of concurrency, alias analyses
may be complicated and imprecise. For a particular property, namely the lock balances, both
problems, the aliasing problem and concurrency, can be dealt with smoothly. Concurrency
does not pose a major problem in this setting. Despite the fact that locks are shared between
threads and that they represent mutable data via lock counters, interference is not a problem
since each lock can be held at most by one thread. Therefore, assuring safe locking is a single-
threaded problem. As for aliasing, the core observation is as follows:

given two variables in a thread without knowing whether they are aliases or not,
if each variable behaves properly in isolation without leading to a lock error, the
same remains true if it turns out at run-time that they are aliases.

In our calculi, the local variables play two different roles, one is as formal parameters of
method definitions and the other is as thread-local variables. Variables are user-syntax and
at run-time they are bound to, which means substituted by, corresponding run-time values. In
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the case of lock-typed variables, the corresponding run-time values are lock references. The
above core observation stipulates that if during run-time two different variables happen to be
substituted by the same lock reference, i.e., they become aliases, this does not lead to a locking
error.

Slightly simplifying the later judgments, we write � p〈t〉 :ok to express that the process p,
starting without holding any locks and executing t, has no lock errors. The above observation
can then be written as follows:

� p〈t〉 :ok then � p〈t[l/x1][l/x2]〉 :ok .

In other words, the ok -judgment is preserved even under aliasing substitution. During
the analysis of the code, the judgments are of the form as shown in equation (5.4). In the
judgment, the pre- and post-conditions capture the lock balances, both the lock variables and
the lock references. Now substitution must, however, reflect the fact that the bindings in the
lock environments represent resources. For instance, a Δ of the form x1:1, x2:1 specifies that
the lock represented by the variable x1 has a balance of 1 and the same for the variable x2. If
at run-time x1 and x2 happen to be aliases, i.e., the variables x1 and x2 are substituted by the
same lock l, then the result of the substitution must take into account that the resources are to
be combined:

Δ′ = Δ[l/x1][l/x2] = l:(1 + 1)

i.e., l is of balance 2.
The substitution of lock variables by lock references at run-time occurs in two situations,

one for parameter passing in method calls and the other when doing a reduction step of a
let-construct of the form let x:L = l in t. The let-construct is in general of the form let
x:T = e in t and is a generalization of a sequential composition, in this case of e followed by
t. The standard rule of pre- and post-condition reasoning for sequential composition requires
that the pre-condition of t equals the post-condition of e. The let-construct, however, does
not only represent sequential composition but also introduces a local variable x with scope
t. In particular, after t, the post-condition of t can no longer about the balance of x since its
scope has ended. Therefore the correct typing rule for the let-construct must in its pre- and
post-conditions substitute x by the lock reference to which e evaluates. To be able to do so, the
type system must represent this information (in the part &v below) and the judgment looks as
follows:

Δ1 � e :: Δ2&v (5.5)

for lock-typed expressions.
Generalizing the treatment of method calls for safe commits described in Section 5.1, method

declarations are of the form:
� o.m() : Δ1 → Δ2, (5.6)

basically saying that method m must be called in a context where the actual locks have greater
or equal values compared to the required values of those lock parameters specified in its pre-
condition Δ1, again taking into account the resource-aware substitutions described above.

Apart from standard control flow, this work also deals with Java’s exception mechanism.
The construct for handling exceptions, in its general form, consists of three parts or blocks:
The try-part harnesses the code which may raise an exception, one catch-branch is executed
if it matches an exception raised in the try-block. The catch-clauses work like a case construct
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in that at most one case-branch is executed and which one (if any) is decided on a first-match
policy. Especially, if an exception is thrown in one of the catch-clauses, it cannot be fielded in
a subsequent catch-clause of the same try-catch-finally expression. The trailing finally-clause
is unconditionally executed, i.e., independent of whether or not an exception is raised and/or
caught in the try- and the catch-clauses. As known, exceptions complicate the sequential con-
trol flow by introducing non-local “jumps” from the place where an exception is raised to the
one where it is caught and handled (or alternatively “falls through”). Not only does this re-
quire to over-approximate thrown (and potentially caught) exceptions, but also, the analysis
must keep track of the different lock-status at the points where the exceptions may occur. As
a consequence, our type and effect system needs to be extended in general to express the pos-
sibility of exceptions being thrown. This is expressed by introducing another effect, basically
the “set” of potential exceptions raised (and not caught) during the execution of an expression
or thread.

We have proved soundness of our analysis for the calculus. The analysis is compositional
and can handle aliasing, dynamic lock creation, multi-threading concurrency, and exceptions
(cf. Chapter 10).

5.4 Observable behavior

A crucial feature in mainstream object orientation is inheritance, which allows code reuse and
is intended to support incremental program development by gradually extending and spe-
cializing an existing class hierarchy. However, as discussed in Section 3.2, inheritance is not
unproblematic as can be seen in the fragile base class problem, and in particular the combi-
nation of inheritance and concurreny can be complicated, known as inheritance anomaly. For
open systems, the problems become even more complex. With a behavioral interface specifi-
cation given as method pre- and post-conditions, replacing one super or base class by another
satisfying the same interface description may break the code of the client of the super class,
i.e., change the behavior of the “environment” of the super class. The problem is that the inter-
face specification is too weak to allow considering the super-class as a black box which can be
safely substituted based on its interface specification only. In the open setting, an open system
is a part of a larger system, which interacts with its environment, and best considered as a
black box whose internals are hidden. Such a separation of internal behavior from externally
relevant interface behavior is crucial for compositionality.

Our goal is to obtain a formal, compositional behavioral interface description for open sys-
tems which matches what can be observed by client code in the presence of inheritance and
late-binding. This means that observable phenomena must be represented in the interface de-
scription. In addition, the interface description should only include possible behaviors, i.e.,
behaviors generated by some actual (well-formed, well-typed) program in the given language.
From an observational point of view, only the interaction with the environment (or observer)
counts and whether this leads to observable reactions in the environment. A rigorous account
of such an interface behavior is the key to formal verification of open programs as well as a for-
mal foundation for black-box testing. It ultimately allows compositional reasoning, i.e., to infer
properties of a composed system from the interface properties of its sub-constituents without
referring to further internal representation details. A representation-independent, abstract ac-
count of the behavior is also necessary for compositional optimization of components: only
when showing the same external behavior one program can replace another without changing
the interaction with any client code.
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To achieve a compositional abstraction in terms of an open and compositional semantics to
reason about behaviors of open systems in the setting of missing information about their envi-
ronments, we need to keep in mind some important factors when defining a formal semantics.
E.g., self-calls lead to observable differences in the presence of inheritance and thus are part of
the observable behavior. On the other hand, behavior which is impossible can not be included
in the open semantics. Therefore, the question of what exactly can be observed from outside a
“component” when considering inheritance is subtle. An interface interaction happens if a step
of the component affects the environment and vice versa. Objects encapsulate their states, and
thus the interaction takes the form of method calls and returns, where the control changes from
executing component code to environment code (by an outgoing message) and vice versa (by
an incoming message). Thus the interface behavior will be given in terms of traces of call and
return labels exchanged at the interface, where in our setting component classes can extend
those from the environment via inheritance, and vice versa. Writing Comp t=⇒ ´Comp, the t
denotes the trace of interface actions by which component Comp evolves into ´Comp, potentially
executing internal steps, as well, not recorded in t. Being open, Comp does not act in isolation,
but interacts with some environment. I.e., we are interested in traces t where there exists an
environment Env such that Comp ‖ Env t=⇒̄

t

´Comp ‖ ´Env by which we mean: component

Comp produces the trace t and Env produces the dual trace t̄, both together “canceling out” to
internal steps. Our goal is an open semantics with the environment existentially abstracted away.
With infinitely many possible environments Env , the challenge is to capture what is common
to all those environments. This will be done in form of assumptions about the environment: the
operational semantics specifies the behavior of Comp under certain assumptions ΞE about the
environment. Following standard notation from logics, we do not write ΞE ‖ Comp, but rather
ΞE � Comp. Reductions thus will look like

ΞE � Comp t=⇒ Ξ́E � ´Comp . (5.7)

Such a characterization of the abstract interface behavior is relevant and useful for the
following reasons. Firstly: the set of traces according to equation (5.7) is in general more re-
stricted than the one obtained when ignoring the environments altogether. This means, when
reasoning about the behavior of Comp based on the traces, e.g., for the purpose of verification,
more precise knowledge of the possible traces allows to carry out stronger arguments about
Comp. Secondly, an application for a trace description is black-box testing, in the sense that one
describes the behavior of a component in terms of the interface traces and then synthesizes ap-
propriate test drivers from it. Obviously it makes no sense to specify interface behavior which
is not possible, at all, since in this case one could not generate a corresponding tester. Finally,
and not as the least gain, the formulation gives insight into the inherent semantical nature of
the language, as the assumptions Ξ and the semantics captures the existentially abstracted
environment behavior.

When additionally abstracting away from any concrete component Comp and replacing
it by a commitment context, in the symmetric way as abstracting the environment by an as-
sumption context in (5.7), one obtains a formalization of possible interface interactions in the
language which we call legal traces.

We formalize allowed interface behavior in general. We prove the soundness of the ab-
stractions. Including inheritance influences in subtle ways what is observable, e.g., the ob-
server may override component methods or inherit its own methods to the component which
then are rebound by late binding. Capturing the resulting interface behavior accurately com-
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plicates the semantics considerably. Several lessons drawn from this work are presented in
Chapter 12 where we argue that asynchronous concurrency with the actor model is good for
compositionality. The result of full abstraction is a future extension of this work and is useful
when proving that when two programs are equal.
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CHAPTER 6

Discussion

In this chapter, we return to the research questions of Section 1.2 and we summarize the con-
tributions of the thesis and how its results answer our goals. In addition, we discuss its limi-
tations and future work.

6.1 Summary of the contributions

Our overall goal is to investigate analysis methods for concurrent object-oriented program-
ming languages which can guarantee the absence of common concurrency-related errors, and
hence contribute to the quality of concurrent programs. We have developed different static
analysis methods for various concurrency-related problems to support higher-quality of code.
To tackle the complexity of large and distributed applications, we have insisted that all the
analysis methods in this thesis should be compositional. Analyzing and studying the behav-
ior of concurrent programs is known to be demanding because of the complexity of possible
interactions between concurrent processes.

As motivated in Chapter 1, the best time to find errors in concurrent programs is at compile-
time, when reviewing the source code. Therefore, this thesis has concentrated on static analysis
methods, i.e., studying a program without actually executing it. Furthermore, to handle large
and even infinite state spaces: the analyses of this thesis are based on abstraction and compo-
sitionality. Being based on abstraction which over-approximates the run-time behavior, static
analysis may have the advantage of symbolic execution, i.e., it can cover all possible behav-
iors of a program including those which occur under rare conditions or specific schedulings
and which are therefore hard to detect or reproduce. In this thesis, we have investigated static
analysis methods based on type and effect systems for different variations of an object-oriented
calculus, to prevent common concurrency-related problems occurring in different settings of
concurrency. To achieve the overall research goal, we have broken it down into more specific
sub-goals. We will now briefly summarize the contributions of the thesis wrt. these goals (cf.
also Chapter 7):

1. For the safe use of non-lexical transactions for languages supporting multi-threaded and
nested transaction model, we chose TFJ as a formal model. For that calculus, we have
developed a static type and effect system in paper #1 [134] that allows to keep track of
the nesting depth of the transactions and thus prevent commit errors.
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2. For resource estimation, we have developed a static, multi-threaded analysis in paper
#2 [138] for the same calculus which not only take the nesting depth into account, but
in particular the synchronization model of the language. The concurrency model based
on multi-threaded and nested transactions results in an implicit form of synchronization
which complicates the syntax-directed analysis.

3. For the safe use of explicit non-lexical locks, we have used a similar variant of Feather-
weight Java featuring dynamic creation of objects, threads, locks. The static analyses in
this case have particularly dealt with lock aliasing and exceptions and are developed in
papers #3 and #4 [117, 118].

4. The behavior of open systems in the presence of inheritance and late-binding has been
formalized as an observable interface behavior in paper #5 [11]. Since the observing en-
vironment can inherit code from the program being observed and vice versa, connectiv-
ity information about the heap is part of interface behavior to get a precise presentation.
A general description of possible interface behavior is given the form of traces.

In addition, the analyses developed in this thesis also meet the requirements stated in the
research goals section as follows:

Formality and rigor

Aiming at formality, we have taken a variant of Featherweight Java with a rigorous seman-
tics as a core calculus. From there we have investigated different extensions of the calculus
to study various concurrency aspects and different models of concurrency and synchroniza-
tion. To give a precise meaning of a program, we use structural operational semantics in all
of the papers where the steps of the program are formally defined by a given set of derivation
rules. Since all considered languages are concurrent, the derivation rules are given in form
of a small-step semantics. In the four papers #1, #2, #3 and #4, we have developed type
and effect systems to deal with various concurrency problems related to lock handling and
exceptions in Java, transaction handling as well as resource consumption. Paper #5 formally
specifies the behavior of open systems, especially in the presence of inheritance. The paper
introduces an open semantics in terms of traces for the given language to formally describe
the observable behaviors of a component given as a set of classes. In all papers, not only the
semantics is formally specified, but the static analyses as well, namely in the form of logical
derivation rules. This furthermore allowed to rigorously establish that the static analyses are
sound wrt. the run-time behavior as given in the operational rules. The core of these cor-
rectness arguments is the preservation of well-typedness under reduction, known as subject
reduction.

Scalability

As mentioned before, to be scalable, analyses must be compositional. As it is common, the
type and effect systems in this work are syntax-directed. This means there is one typing rule
per construct in the language breaking down each expression into its sub-expressions whose
analyses are specified by premises of the corresponding rule. Consequently, the complexity of
the analyses given in that way is linear in the size of the program code. Depending on prob-
lems and language features, achieving a compositional analysis is challenging. The challenge
in designing the analyses in the given setting is finding the right level of abstraction, i.e., the
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right amount of interface information such that the property of the composed system follows
from the properties of its subsystems. If a global property of the whole program depends on
the synchronization and communication between parallel parts of a program, the correspond-
ing analysis is multi-threaded. Even for the single-threaded analyses in papers #1, #3, and #4
where compositionality wrt. parallel composition is straightforward, other language features
and constructs can be difficult to capture compositionally because they involve global aspects.
For instance, in paper #3 featuring dynamic lock creation and explicit lock handling, aliasing
is an example of such a global aspect characteristic for object-oriented languages. Our contri-
bution here is a specific form of “resource-aware” substitutions which achieves soundness of
the analysis even without a global view on potential aliases wrt. lock identities. This yields a
compositional analysis.

Paper #2 deals with a multi-threaded problem, namely the estimation of resource con-
sumption. The problem is multi-threaded because a precise estimation of the maximal re-
source consumption of a current program depends on being able to determine which parts of
the code can run in parallel and which not. This of course depends on the specific synchroniza-
tion and communication model. A compositional account in the chosen transactional setting
is complicated by the following two facts: firstly, the complex form of join synchronization
based on nested and multi-threaded transactions requires a complicated form of abstraction.
Secondly, the synchronization caused by executing a commit is implicit, i.e., the syntax does
not express the synchronization partners. This renders the syntax-directed analysis more intri-
cate. The contribution of paper #5 is a formalization of the observable behavior over objects,
in particular the influence of inheritance on the specification of interface behavior. The paper
includes a compositional non-behavioral type system; the focus, however, is in getting a pre-
cise description of possible traces. Allowing inheritance across the boundary of components
given as a set of classes makes the structure of the heap partially observable which must be
reflected in the observable traces. It is observable in an over-approximate manner whether
objects communicating over the component’s interface may be connected through the heap or
not. The interface behavior therefore contains approximate “connectivity” information. To ob-
tain a compositional account, the observable behavior is formulated using the dynamic scope
extrusion mechanism as known from the π-calculus based on ν-binders.

Usability

To be accepted in practice, analysis methods must provide guarantees with as little user in-
volvement as possible. Using appropriate static abstractions of the run-time behavior, the
analysis methods in this thesis are decidable and moreover described in such a way that their
descriptions lend themselves in a straightforward manner toward implementation. The rule-
based specifications of the analyses almost directly specify recursive algorithms working on
the abstract syntax trees of the chosen programming languages. Since the rules are syntax-
directed, the termination of the corresponding algorithm is guaranteed. Moreover, the corre-
sponding algorithms are efficient and scalable as they are linear-time in the size of the analyzed
programs.

For clarification, as far as paper #5 is concerned, the contribution is to provide a theoret-
ical description of infinite sets of possible traces without being concerned with decidability.
Furthermore, in paper #4, the part dealing with exceptions makes use of a simple form of
sub-typing and the rules include a rule of subsumption. This subsumption rule is not syntax-
directed. However, it is straightforward to obtain an equivalent formulation without sub-
sumption which then is syntax-directed.
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Concurrency

Concurrency comes in many different flavours and modern programming languages use a
diversity of mechanisms to express concurrent computations. Our thesis covers several differ-
ent prominent mechanisms and analyzes relevant properties which are shown in overview in
Table 5.1 of Section 5. As discussed, we cover lock-based vs. transaction-based concurrency
control mechanisms, traditional Java multi-threading concurrency vs. active objects, i.e., syn-
chronous vs. asynchronous method calls. Dealing with object-oriented programs involves also
shared variable concurrency at least within objects. Another very important feature we inves-
tigate is inheritance. Design issues and lessons learnt when analyzing different concurrency
models are summarized and discussed in Chapter 12.

6.2 Limitations and future work

In this section, we discuss some limitations of our work, and identify some possible exten-
sions and future work. We consider our focus on a core calculus with a carefully chosen set
of constructs not as one of the restrictions. Of course, when dealing with a real language,
such as Java, other more complex features need to be covered as well. Many of those features
will be orthogonal to, or irrelevant for, the handling of locks and transactions, which the main
part of the thesis concentrates. Furthermore, we consider the abstract syntax of the core lan-
guage where more complex features could be captured by syntactic sugar. In particular, the
restriction to specific forms of threads and expressions restricting the syntax, for instance to
v.m(�v) instead of e.m(�e), does not restrict the expressiveness of the language. We choose this
formulation to simplify the formal definition of the semantics and since it allows to obtain
the deterministic evaluation order per thread without the use of evaluation contexts. More
importantly, this formulation simplifies the presentation of the type and (in particularly) ef-
fect systems without loss of precision. A general restriction for all type and effect analyses
is that they do not cover higher-order functions. The motivation for this restriction is that
we concentrate on object-oriented languages, such as Java, which do not feature higher-order
functions. It could be interesting to investigate how to integrate the analyses in a setting with
higher-order functions.

In the current formulation of the type and effect systems, the effect parts are automatically
inferred except for one case, namely the case where the user has to specify the interface in-
formation for method decorations. It could be interesting and practically valuable if also for
this case, no user annotations are needed but are automatically inferred as well. In particular,
the work dealing with resource consumption in Chapter 9 uses a coarse measure for resource
estimation, namely the number of transactions potentially running in parallel. A more precise
estimation should take into account that different transactions have different memory needs.
The difference comes from the size of data used in the transaction and how different versions
of a memory location is needed during the execution of the transaction. A corresponding re-
finement of the effect system seems feasible. This will require that also variable access in the
calculation are considered in the effect system. Another restriction in that work is concerned
with method calls. Currently the analysis requires that the balance at the call-site matches
exactly the specified pre-condition. The reason for that restriction is rather technical and it is
introduced to simplify the treatment of recursive method calls which lead to infinite resource
consumptions. Lifting that restriction so that the method can be called at the call-site with a
balance greater or equal than the specified pre-condition seems not as straightforward as done
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in Chapter 8 and 10. In general, a natural next step is to provide implementations for the anal-
ysis methods to study their usefulness in practice. In particular, implementations should allow
the analyses to be done without user involvement.
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CHAPTER 7

List of the research papers

This chapter gives a short summary of each research paper in Part II of this thesis. The contents
of the papers appear as in their original publication, but have been reformatted to fit the layout
of this thesis. The contribution of the papers is divided into two parts:

• one part is about static compositional analysis based on type systems to prevent concur-
rency errors caused by complications of concurrent object-oriented language features.
This includes papers #1, #2, #3, and #4.

• The second part (paper #5) investigates an abstract compositional semantics for an asyn-
chronous message passing language. Here the goal is to obtain a clean abstract descrip-
tion based on traces for capturing behaviors of open programs. Paper #6 discusses dif-
ferent design choices in that context.

7.1 Paper# 1: Safe commits [134]

Abstract: Transactions are a high-level alternative for low-level concurrency-control mecha-
nisms such as locks, semaphores, monitors. A recent proposal for integrating transactional
features into programming languages is Transactional Featherweight Java (TFJ), extending Feath-
erweight Java by adding transactions. With support for nested and multi-threaded transactions,
its transactional model is rather expressive. In particular, the constructs governing transac-
tions —to start and to commit a transaction— can be used freely with a non-lexical scope. On
the downside, this flexibility also allows for an incorrect use of these constructs, e.g., trying to
perform a commit outside any transaction. To catch those kinds of errors, we introduce a static
type and effect system for the safe use of transactions for TFJ. We prove the soundness of our
type system by subject reduction.

7.2 Paper# 2: Resource estimation [138]

Abstract: We present an effect-based static analysis to calculate upper and lower bounds on
the memory resource consumption in an execution model supporting nested and concurrent
transactions. The analysis is compositional and takes into account implicit join synchroniza-
tions that arise when more than one thread jointly commit a transaction. Central for a composi-
tional and precise analysis is to capture as part of the effects a tree-representation of the future
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resource consumption and synchronization points. The analysis is formalized for a concurrent
variant of Featherweight Java extended by transactional constructs. We show the soundness
of the analysis.

7.3 Paper# 3 and #4: Safe locking [117, 118]

Abstract: Many concurrency control mechanisms have been developed for high-level program-
ming languages such as Java. The original mechanism for multi-threading in Java is lexically
scoped. Answering the need for more flexible control protocols, Java 5 introduced non-lexical
control mechanisms, supporting lock primitives on re-entrant lock objects.

These more flexible operators, however, may lead to run-time errors and unwanted behav-
ior, e.g., taking a lock without releasing it, which could lead to a deadlock, or trying to release
a lock without owning it. This paper develops a static type and effect system to prevent the
mentioned lock errors for a formal, object-oriented calculus which supports non-lexical lock
handling and exceptions and which is inspired by Featherweight Java.

Based on an operational semantics, we prove soundness of the type and effect analysis.
Challenges in the design of the type and effect system are dynamic creation of threads, objects,
and especially of locks, aliasing of lock references, passing of lock references between threads,
and re-entrant locks as found in Java. Furthermore, the exception handling mechanism com-
plicates the control-flow and thus the analysis.

7.4 Paper# 5: Observable behavior [11]

Abstract: This paper formalizes the observable interface behavior of open systems for a strongly-
typed, concurrent object-oriented language with single-class inheritance. We formally charac-
terize the observable behavior in terms of interactions at the program-environment interface.
The behavior is given by transitions between contextual judgments, where the absent envi-
ronment is represented abstractly as assumption context. A particular challenge is the fact
that, when the system is considered as open, code from the environment can be inherited to
the component and vice versa. This requires to incorporate an abstract version of the heap
into the environment assumptions when characterizing the interface behavior. We prove the
soundness of the abstract interface description.

7.5 Paper#6: Design issues [135]

Abstract: This paper discusses different choices in the design of object-oriented, concurrent
language from the perspective of observability. Observability takes the standpoint that two
“program fragments” are observably equivalent if one can be replaced by the other without
leading to differences in a larger context. Characterizing the observable behavior of a program
fragment is therefore crucial for compositionality.

The choice of language constructs has a big impact on what can be observed, and thus also
how well-suited the language is for being composed. In this paper, we concentrate on well-
established variants of constructs in object-oriented languages and discuss their influence on
the observable semantics. In particular, we discuss classes as units of code, inheritance as the
mainstream way of code re-use in class-based, object-oriented languages. For concurrency, we
compare the two most prominent ways to combine objects and concurrency: multi-threading



Chapter 7 List of the research papers 63

as for instance done in Java vs. the active objects or actor paradigm. A final aspect is the
influence of the synchronization mechanism of locks and monitors.

7.6 Further papers

In the following, we list further papers which are technically not presented as part of this
thesis, or correspond to shorter and preliminary versions of the work reported in this thesis.

Safe commits: The type and effect system assuring safe commits has been presented as an ex-
tended abstract at NWPT’09 [182] and at the Young Researchers Forum of MFCS-CLS’10
[131]. A preliminary version has been published as UiO technical report [181].

Resource estimation: The type and effect system estimating resource consumption of trans-
actions has been presented as an abstract at NWPT’11 [137]. A preliminary long version
has been published as UiO technical report [136].

Safe locking: The type and effect system assuring safe locking has been presented as an ex-
tended abstract at NWPT’10 [115]. A preliminary long version has been published as
UiO technical report [116].

Observable behavior: The open semantics for an object-oriented language with inheritance
has been presented as an extended abstract at NWPT’11 [10] and at the Young Researchers
Forum of Concur’10 [132]. A preliminary version has been published as UiO technical
report [9].

Other papers: A different approach to the problem of resource estimation has been published
in the proceeding of SSoICT’12 [194]. A comparison of type systems for two different
models of concurrency based on locks and on transactions has been published in the
proceeding of KSE’10 [133]. Both papers are not part of the thesis.
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CHAPTER 8

Safe Commits for Transactional
Featherweight Java

8.1 Introduction

With CPU speeds and memory capacities ever increasing, and especially with the advent of
multiprocessor and multi-core architectures, effective parallel programming models and suit-
able language support are in need to take full advantage of the architectural advances. Transac-
tions, a well-known and successful concept originating from database systems [191][83], have
recently been proposed to be directly integrated into programming languages. As known from
databases, transactions offer valuable safety and failure guarantees: atomicity, consistency, iso-
lation, and durability, or ACID for short. Atomicity means that the code inside a transaction
is executed completely or not at all, consistency that all transactions have the same “view” on
shared data, isolation says that when a transaction is running, other transactions cannot inter-
fere, and durability states successfully committed changes are persistent. One characteristic
difference of transactions compared to locks is a non-blocking behavior. All threads/transac-
tions may run in parallel provided that they guarantee the mentioned ACID properties. As a
result, transactional programming languages may make better use of parallelism and resources
in concurrent systems, and may avoid also deadlock situations.

As mechanism for concurrency control, they can be seen as a high-level, more abstract, and
more compositional alternative to more conventional means for concurrency control, such as
locks, semaphores, monitors, etc. How to syntactically capture transactional programming in
the language may vary. One option is lexical scoping, e.g., using an atomic keyword, similar
to the synchronized keyword in Java for lock-handling. More flexible is non-lexical scoping,
where transactions can be started and finished (i.e., committed) freely. One proposal support-
ing non-lexical scoping of transaction handling is Transactional Featherweight Java (TFJ) [110].
In the free use of the transactional constructs, it resembles also the way Java 5.0 allows for lock
handling (using the lock and unlock methods via the Lock-interface). The start of a transac-
tion in TFJ programs is marked by the onacid keyword and the end by the commit keyword.
The transactional model of TFJ is quite general and supports nested transactions which means a
transaction can contain one or more child transactions, which is very useful for composability
and partial rollback. Furthermore, TFJ supports multi-threaded transactions, i.e., one transac-
tion can contain internal concurrency. To commit an entire transaction, all child transaction
must have committed and the child threads and the thread itself must commit at the same
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P ::= 0 | P ‖ P | t〈e〉 processes/threads
L ::= class C{�f : �T ; K; �M} class definitions
K ::= C(�f : �T ){this. �f := �f} constructors
M ::= m(�x:�T ){e} : T methods
e ::= v | x | v.f | v.f := v |if v then e else e

| let x : T = e in e | v.m(�v) expressions
| new C(�v) | spawn e | onacid | commit

v ::= b | r | () values

Table 8.1: Abstract syntax

time. The flexibility of non-lexical use of onacid and commit comes at a cost: not all usages of
starting and committing transactions “make sense”. In particular, it is an error to perform a
commit without being inside a transaction; we call such an error a commit error. In this paper,
we introduce a static type and effect system to prevent these errors by keeping track of start-
ing and committing transactions. The static analysis is formulated as a type and effect system
[154]. We concentrate on the effect part, as the part dealing with the ordinary types works in a
standard manner and is straightforward. See [181] for details.

The paper is organized as follows. After Section 8.2, which recapitulates the syntax and the
operational semantics of the calculus, Section 8.3 defines the effect system to prevent commit
errors. The soundness of the type system relative to the given semantics is shown in Section
8.4. Section 8.5 concludes with related and future work. In particular we draw some parallel
to the lock handling in Java 5.

8.2 An object-oriented calculus with transactions

Next we present the syntax and semantics of TFJ. It is, with some adaptations, taken from [110]
and a variant of Featherweight Java (FJ) [105] extended with transactions and a construct for
thread creation. The main adaptations are: we added standard constructs such as sequential
composition (in the form of the let-construct) and conditionals. Besides that, we did not use
evaluation-context based rules for the operational semantics. We first present the syntax, and
afterwards sketch the underlying type system (without the effects). The type system is fairly
standard and largely omitted here. For further detail, cf. the technical report [181].

8.2.1 Syntax

FJ is a core language originally introduced to study typing issues related to Java, such as inher-
itance, subtype polymorphism, type casts. A number of extensions have been developed for
other language features, so FJ is today a generic name for Java-related core calculi. Following
[110] and in contrast to the original FJ proposal, we ignore inheritance, subtyping, and type
casts, as these features are orthogonal to the issues at hand, but include imperative features
such as destructive field updates, further concurrency and support for transactions. Table 8.1
shows the abstract syntax of TFJ. A program consists of a number of processes/threads p〈e〉
running in parallel, where p is the thread’s or process’s identifier and e is the expression being
executed. The syntactic category L captures class definitions. In absence of inheritance, a class
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definition class C{�f : �T ; K; �M} consists of a name C, a list of fields �f with corresponding list of
types �T (assuming that all fi’s are different, see equation (8.1) below for the syntax of available
types), a constructor K, and a list �M of method definitions. A constructor C(�f :�T ){this. �f := �f}
of the corresponding class C initializes the fields of instances of that class, these fields are men-
tioned as the formal parameters of the constructor. We assume that each class has exactly one
constructor; i.e., we do not allow constructor overloading. Similarly, we do not allow method
overloading by assuming that all methods defined in a class have a different name; likewise
for fields. A method definition m(�x:�T ){e} : T consists of the name m of the method, the for-
mal parameters �x with their types �T , the method body e, and finally the return type T of the
method. Here the vector notation is used analogously to the vector �f which presents a list of
fields. The vector �T represents a sequence of types, �x stands for a sequence of variables. When
writing �x : �T we assume that the length of �x corresponds to the length of �T , and we refer by
xi : Ti to the i’th pair of variable and type. For brevity, we do not make explicit or formalize
such assumptions, when they are clear from the context.

In the syntax, v stands for values (where we also use u and vi, u′ etc. as syntactic variants),
i.e., expressions that can no longer be evaluated. In the core calculus, we leave unspecified ba-
sic values b like booleans, integers, . . . , so values can be object references r or the unit value ().
Expressions include variables x and furthermore, the expressions v.f and v1.f := v2 represent
field access and field update respectively. Method calls are written v.m(�v) and object instanti-
ation is new C(�v). The next two expressions deal with the basic, sequential control structures:
if v then e1 else e2 represents conditions, and the let-construct let x : T = e1 in e2 repre-
sents sequential composition: first e1 is evaluated, and afterwards e2, where the eventual value
of e1 is bound to the local variable x. Consequently, standard sequential composition e1; e2 is
syntactic sugar for let x : T = e1 in e2 where the variable x does not occur free in e2. The
let-construct, as usual, binds x in e2. We write fv(e) for the free variables of e, defined in the
standard way. The language is multi-threaded: spawn e starts a new thread of activity which
evaluates e in parallel with the spawning thread. Specific for TFJ are the two constructs onacid
and commit, two dual operations dealing with transactions. The expression onacid starts a new
transaction and executing commit successfully terminates a transaction by committing its ef-
fect, otherwise the transaction will be rolled back or aborted. A note on the form of expressions
and the use of values may be in order. The syntax is restricted concerning where to use general
expressions e. E.g., Table 8.1 does not allow field updates e1.f := e2, where the object whose
field is being updated and the value used in the right-hand side are represented by general
expressions that need to be evaluated first. It would be straightforward to relax the abstract
syntax that way and indeed the proposal of TFJ from [110] allows such more general expres-
sions. We have chosen this presentation, as it slightly simplifies the operational semantics and
the (presentation of the) type and effect system later: [110] specifies the operational semantics
using so-called evaluation contexts, which fixes the order of evaluation in such more complex
expressions. With that slightly restricted representation, we can get away with a semantics
without evaluation contexts, using simple rewriting rules (and the let-syntax). Furthermore,
the formulation of the typing rules, especially the effect parts, gets notationally simpler. This
form of representation is also known as a-normal form (or administrative normal form) [74].
Of course, this is not a real restriction in expressivity. E.g., the mentioned expression e1.f := e2

can easily and be expressed by let x1 = e1 in (let x2 = e2 in x1.f := x2), making the
evaluation order explicit. The transformation from the general syntax to the one of Table 8.1 is
standard.
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8.2.2 The underlying type system

We first describe the underlying type system, i.e., the standard type system for the object-
oriented language that assures that actual parameters of a method call match the expected
types for that method, that an object can handle an invoked method. The available types are
given in equation (8.1).

T ::= C | B | Unit (8.1)

In a nominal type system, class names C serve as types. In addition, B represents basic types
(left unspecified) such as booleans, integers. Finally, Unit is the type of the unit value (). As
usual it corresponds also to the empty sequence of types �T , i.e., the input type of a method
with an empty list of formal parameters. In general we return () when evaluating expressions
which do not return any “meaningful” value, i.e., it is used for expressions evaluated for their
side-effect, only.1

The type system is given inductively in Table 8.2. For expressions, the type judgments
are of the form Γ � e : T (“under type assumptions Γ, expression e has type T”). The type
environment Γ keeps the type assumptions for local variables, basically the formal parameters
of a method body and the fields. Environments Γ are of the form x1:T1, . . . , xn:Tn, where we
silently assume the xi’s are all different. This way, Γ is also considered as a finite mapping
from variables to types. By dom(Γ) we refer to the domain of that mapping and write Γ(x) for
the type of variable x in Γ. Furthermore, we write Γ, x:T for extending Γ with the binding x:T ,
assuming that x /∈ dom(Γ).

The rules of Table 8.2 are straightforward and similar to the ones found for other variants
of FJ. To define the rules, we need two additional auxiliary functions. We assume that the
definitions of all classes are given. As this information is static, we do not explicitly mention
the corresponding “class table” in the rules; relevant information from the class definitions is
referred to in the rules by fields(C) or mtype(C, m).

The type of a variable is looked up in Γ in rule T-VAR. The unit value has, as mentioned,
the type Unit (cf. rule T-UNIT). A conditional expression is well-typed with type T , if both
branches carry that type and if the conditional expressions is a boolean expression (cf. rule
T-COND). To determine the type of a field lookup in rule T-LOOKUP, we use the fields-function
to look up the types of the fields of the appropriate class. Similarly for methods calls in rule
T-CALL, where mtype yields the type of the method as found in the concerned class. For
assignments e1.f := e2, in rule T-UPD, the type of the appropriate field is determined using
fields as for field access, and furthermore checked that the type of e2 coincides with it. The
type of a let-construct is the type of the last expression e2 (cf. rule T-LET). A freshly instantiated
object carries the class it instantiates as type, and spawning a new thread has a side-effect, only,
and returns no particular value of interest, hence spawn carries type Unit (cf. rules T-NEW and
T-SPAWN). Similarly, the two operations for starting and ending a transaction, onacid and
commit, are evaluated for their effect, only, and carry both the type Unit (cf. rules T-ONACID

and T-COMMIT).
Rule T-METH deals with method declarations, explicitly mentioning the class C which

contains the declaration. The body e of the method is type checked, under a type environment
extended by appropriate assumptions for the formal parameters x and by assuming type C for
the self-parameter this. A class definition class C{�f : �T ; K; �M} is well-typed (cf. rule T-CLASS),
if all �M are well-typed in C (the premise � �M : ok in c of the rule is meant as iterating over all

1In a more imperative setting, one would use type Void representing the absence of a value. In the chosen
representation using the let-construct for local scopes and sequencing, using Void is problematic.
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Γ(x) = T
T-VAR

Γ � x : T

T-UNIT
Γ � () : Unit

Γ � e : C fields(C) = �f : �T
T-FIELD

Γ � e.fi : Ti

Γ � v : Bool Γ � e1 : T Γ � e2 : T
T-COND

Γ �if v then e1 else e2 : T

Γ � e : C mtype(C, m) : �S → T Γ � �e : �S
T-CALL

Γ � e.m(�e) : T

Γ � e1 : C fields(C) = �f : �T Γ � e2 : Ti

T-ASSGN
Γ � e1.fi := e2 : Ti

Γ � e1 : T1 Γ, x:T1 � e2 : T2

T-LET
Γ �let x : T1 = e1 in e2 : T2

T-NEW
Γ � new C : C

Γ � e : T
T-SPAWN

Γ � spawn e :Unit

T-ONACID
Γ � onacid :Unit

T-COMMIT
Γ � commit :Unit

�x:�S, this:C � e : T
T-METH

� m(�x : �S){e} : T : ok in C

K = C(�f : �T ){this. �f := �f} � �M : ok in C
T-CLASS

� class C{�f : �T ; K; �M} : ok

Γ � e : T
T-THREAD

Γ � p〈e〉 : ok

T-EMPTY
Γ � 0 : ok

Γ1 � P1 :ok Γ2 � P2 :ok
T-PAR

Γ1, Γ2 � P1 ‖ P2 :ok

Table 8.2: The underlying type system

of the class’s methods, using T-METH for each individual one). A thread p〈e〉 is well-typed, if
the expression e it evaluates is (cf. rule T-THREAD). Rules T-EMPTY and T-PAR assure that a
program is well-typed if all its threads are.

8.2.3 Semantics

This section describes the operational semantics of TFJ with some adaptations at two different
levels: a local and a global semantics. We use let-constructs, a simple rewriting formulation,
instead of using evaluation contexts of [110]. Second, the operational semantics there uses la-
belled transitions (for technical reasons). For the soundness of the type system, the labels are
irrelevant, so we omit them. The local semantics is given in Table 8.3. These local rules deal
with the evaluation of one single expression/thread and reduce configurations of the form E � e.
Thus, local transitions are of the form

E � e −→ E′ � e′ , (8.2)
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where e is one expression and E a local environment. At the local level, the relevant commands
only concern the current thread and consist of reading, writing, invoking a method, and creat-
ing a new object.

Definition 1 (Local environment). A local environment E of type LEnv is a finite sequence of the
form l1:
1, . . . lk:
k, i.e., of pairs of transaction labels li and a corresponding log 
i. We write |E| for
the size of the local environment (number of pairs l:
 in the local environment).

Transactions are identified by labels l, and as transactions can be nested, a thread can exe-
cute “inside” a number of transactions. So, the E in the above definition is ordered, with e.g.
lk to the right refers to the inner-most transaction, i.e., the one most recently started and com-
miting removes bindings from right to left. The number |E| of a thread represents the nesting
depth of the thread, i.e., how many transactions the thread has started but not yet committed.
The corresponding logs 
i can, in a first approximation, be thought of as “local copies” of the
heap including bindings from references to objects. The log 
i keeps track of changes of the
threads actions concerning transaction li. The exact structure of such environments and the
logs have no influence on our static analysis, and indeed, the environments may be realized
in different ways (e.g., [110] gives two different flavors, a “pessimistic”, lock-based one and
an “optimistic” one). Relevant for our type and effect system will be only a number of ab-
stract properties of the environments, formulated in Definition 7 later. The operational rules
are formulated exploiting the let-construct/sequential composition, and the restricted form of
(abstract) syntax. The syntax for the conditional construct from Table 8.1, e.g., insists that the
boolean condition is already evaluated (i.e., either a boolean value or value/reference to such
a value), and the R-COND-rules apply when the previous evaluation has yielded already true,
resp. false. We use the let-construct to unify sequential composition, local variables, and hand-
ing over of values in a sequential composition, and rule R-LET basically expresses associativity
of the sequential composition, i.e., ignoring the local variable declarations, it corresponds to a
step from (e1; e); e′ to e1; (e; e′). Note further that the left-hand side for all local rules (and later
the global ones) insists that the top-level construct is a let-construct. That is assured during
run-time inductively by the form of the initial thread and the restiction on our syntax. The
first two rules deal with the basic evaluation based on substitution and specifying a left-to-
right evaluation (cf.R-RED and R-LET). The two R-COND-rules deal with conditionals in an
obvious way. Unlike the first four rules, the remaining ones do access the heap. Thus, in the
premises of these rules, the local environment E is consulted to look up object references and
then changed in the step. The access and update of E is given abstractly by corresponding
access functions read , write , and extend (which look-up a reference on the heap, update a ref-
erence, resp. allocate an entry for a new reference on the heap). The details can be found in
[110] but note that also the read -function used in the rules actually changes the environment
from E to E′ in the step. The reason is that in a transaction-based implementation, read-access
to a variable may be logged, i.e., remembered appropriately, to be able to detect conflicts and
to do a roll-back if the transaction fails. This logging may change the local environment. The
premises assume the class table is given implicitly where fields(C) looks up fields of class C
and mbody(m, C) looks up the method m of class C. So, field look-up in R-LOOKUP works as
follows: consulting the local environment E, the read -function looks up the object referenced
by r; the object is C(�v), i.e., it’s an instance of class C, and its fields carry the values �v. The
(run-time) type C of the object is further used to determine the fields �f (using of the object the
object referenced by r, fields finds the fields of the object referenced by r, and the step replaces
the field access r.fi by the corresponding value vi. Field update in rule R-UPD works similarly,
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again using read to look up the objects, and additionally using write to write the value v′ back
into the local environment, thereby changing E′ to E′′ (again, the exact details of the function
are left abstract). The function mbody in the rule R-CALL for method invocation gives back the
method’s formal parameters �x and the method body, and invocation involves substituting �x
by the actual parameters �v and substituting this by the object’s identity r. Rule R-NEW, finally,
takes care of object creation, using a fresh object identity r to refer to the new instance C(�v),
which has all fields set to �v. The function extend in that rule extends E by binding the fresh
reference r to the newly created instance.

The five rules of the global semantics are given in Table 8.4. The semantics works on con-
figurations of the following form:

Γ � P , (8.3)

where P is a program and Γ is a global environment. Besides that, we need a special configura-
tion error representing an error state. Basically, a program P consists of a number of threads
evaluated in parallel (cf. Table 8.1), where each thread corresponds to one expression, whose
evaluation is described by the local rules. Now that we describe the behavior of a number
of (labeled) threads t〈e〉, we need one E for each thread t. This means, Γ is a “sequence” (or
rather a set) of t:E bindings where t is the name of a thread and E is its corresponding local
environment.

Definition 2 (Global enviroment). A global environment Γ of type GEnv is a finite mapping,
written as p1:E1, . . . pk:Ek, from threads names pi to local environments Ei (the order of bindings does
not play a role, and each thread name can occur at most once).

So global steps are of the form:

Γ � P =⇒ Γ′ � P ′ or Γ � P =⇒ error . (8.4)

E � let x : T = v in e −→ E � e[v/x] R-RED

E �let x2 : T2 = (let x1 : T1 = e1 in e) in e′ −→ E �let x1 : T1 = e1 in (let x2 : T2 = e in e′) R-LET

E � let x : T = (if true then e1 else e2) in e −→ E �let x : T = e1 in e R-COND1

E � let x : T = (if false then e1 else e2) in e −→ E �let x : T = e2 in e R-COND2

read(r, E) = E′, C(�v) fields(C) = �f
R-LOOKUP

E �let x:T = r.fi in e −→ E′ �let x:T = ui in e

read(r, E) = E′, C(�v) write(r 	→ C(�v) ↓v′
i , E′) = E′′

R-UPD
E � let x:T = r.fi := v′ in e −→ E′′ �let x:T = v′ in e

read(r, E) = E′, C(�v′) mbody(m, C) = (�x, e)
R-CALL

E � let x:T = r.m(�v) in e′ −→ E′ �let x : T = e[�v/�x][r/this] in e′

r fresh E′ = extend(r 	→ C(�v), E)
R-NEW

E � let x:T = new C(�v) in e −→ E′ �let x = r in e

Table 8.3: Semantics (local)
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E � e −→ E′ � e′ Γ = Γ′, p:E reflect(p, E′, Γ) = Γ′
G-PLAIN

Γ � P ‖ p〈e〉 =⇒ Γ′ � P ‖ p〈e′〉

p′ fresh spawn(p, p′, Γ) = Γ′
G-SPAWN

Γ � P ‖ p〈let x : T = spawn e1 in e2〉 =⇒ Γ′ � P ‖ p〈let x : T = () in e2〉 ‖ p′〈e1〉

l fresh start(l, p, Γ) = Γ′
G-TRANS

Γ � P ‖ p〈let x : T = onacid in e〉 =⇒ Γ′ � P ‖ p〈let x : T = () in e〉

Γ = Γ′′, p:E E = E′, l:� intranse(l, Γ) = �p = p1 . . . pk

commit(�p, �E, Γ) = Γ′ p1:E1, p2:E2, . . . pk:Ek ∈ Γ �E = E1, E2, . . . , Ek
G-COMM

Γ � P ‖
kY

i=1

pi〈let x:Ti = commit in ei〉 =⇒ Γ′ � P ‖
kY

i=1

pi〈let x:Ti = () in ei〉

Γ = Γ′′, p:E E = ∅
G-COMM-ERROR

Γ � P ‖ p〈let x : T = commit in e〉 =⇒ error

Table 8.4: Semantics (global)

As for the local rules, the formulation of the global steps makes use of a number of functions
accessing and changing the (this time global) environment. As before, those functions are left
abstract and only later we will formalize abstract properties that Γ and E considered as abstract
data types must satisfyin order to achieve soundness of the static analysis. Rule G-PLAIN

simply lifts a local step to the global level, using the reflect-operation, which roughly makes
local updates of a thread globally visible. Rule G-SPAWN deals with starting a thread. The
next three rules treat the two central commands of the calculus, those dealing directly with
the transactions. The first one G-TRANS covers onacid, which starts a transaction. The start
function creates a new label l in the local environment E of thread p. The two rules G-COMM

and G-COMM-ERROR formalize the successful commit resp. the failed attempt to commit a
transaction. In G-COMM, the label of the transaction l to be committed is found (right-most)
in the local context E. Furthermore, the function intranse(l, Γ) finds the identities p1 . . . pk of
all concurrent threads in the transaction l and which all join in the commit. Note that, by
definition of intranse, the process p in the premise must be one of the pi’s. In the conclusion of
the rule,

∏k
i=1 builds the parallel composition of the k mentioned processes. In the erroneous

case of G-COMM-ERROR, the local environment E is empty; i.e., the thread executes outside
of any transactions, which constitutes an error.

In the following, we use the following definitions. Let TrName be the type of transac-
tion labels. Given a local environment E, the function l : LEnv → List of TrName is de-
fined inductively as follows: l(ε) = ε, and l(l: , E) = l, l(E). Overloading the definition, we
lift the function straightforwardly to global environments (with type l : TName × GEnv →
List of TrName), s.t. l(p, (p:E), Γ) = l(E). We furthermore define the length of a local environ-
ment, written |E|, as the number of bindings in E.

The first part of this definition, extracting the list of transaction labels from a local environ-
ment E is a straightforward projection, simply extracting the sequence of transaction labels.
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l1

t1
t2

(a) Multi-threaded transac-
tion

l1

t1 e′1
t2

(b) Sequential composition

Figure 8.1: Transactions and multi-threading

As for the order of the transactions, as said: the most recent, the innermost transaction label is
to the right.

8.3 The effect system

The effect system assures that starting and committing transactions is done “properly”, in par-
ticular to avoid committing when outside a transaction, which we call commit errors. To catch
commit errors at compile time, the system keeps track of onacids and commits; we refer to
the number of onacids minus the number of commits as the balance. For instance, for an ex-
pression e = onacid; e1; commit; commit, the balance equals 1 − 2 = −1. An execution of a
thread is balanced, if there are no pending transactions, i.e., if the balance is 0. The situation
gets slightly more involved when dealing with multi-threading. TFJ supports not only nested
transactions, but multi-threaded transactions: inside one transaction there may be more than
one thread active at a time. Due to this internal concurrency, the effect of a transaction may be
non-deterministic. Figure 8.1 shows a simple situation with two threads p1 and p2, where p1

starts a transaction with the label l1 and spawns a new thread p2 inside the transaction. An ex-
ample expression resulting in the depicted behavior of Figure 8.1b is e1 = onacid; spawn e2; e′1,
where e1 is the expression evaluated by thread p1, and e2 by the freshly created p2. In TFJ’s
concurrency model, to terminate the parent transaction l1, both p1 and p2 must join via a com-
mon commit. To keep track over the number of open and yet uncommitted transactions, we
must take into account that e2 and the rest e′1 of the original thread are executed in parallel,
and furthermore, that when executing e2 in the new thread p2, one onacid has already been ex-
ecuted by p1, namely before the spawn-operation. Hence, we need to keep track of the balance
not just for the thread under consideration, but take into account the balance of the newly
created threads, as well. Even if a spawning thread and a spawned thread run in parallel,2

the situation wrt. the analysis is not symmetric. More precisely, the current thread of control
plays a specific role when it comes to sequential composition of expressions. Consider the ex-
pression onacid; spawn e2; e′1. The first expression is depicted in Figure 8.1b, where the “open
box” represents the transaction started by the first onacid. Considering the balance for the
left of onacid; spawn e2, the balance for both “threads” after execution amounts to +1, i.e., both
threads are executing inside one enclosing transaction (assuming that e2 itself does not start
or end any transactions). When calculating the combined effect for onacid; spawn e2; e′1, the bal-
ance value of onacid is treated differently from the one of e2, as the control flow of the sequential
composition connects the trailing e′1 with onacid, but not with the thread of e2(indicated by the

2Both the original thread and the freshly spawned one run without preference or priority to either one. Indeed,
in the semantics, the information which threads is the father of which other thread is not maintained.
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dotted line in Figure 8.1b). I.e., the analysis of the sequentially composed expression calculates
the sum of the balance of onacid and of e′1 cumulatively.

To sum up: to determine the effect in terms of the balance, we need to calculate the balance
for all threads potentially concerned, which means for the thread executing the expression be-
ing analysed plus all threads (potentially) spawned during that execution. From all threads,
the one which carries the expression being evaluated plays a special role, and is treated spe-
cially. Therefore, we choose a pair of an integer n and a (finite) multi-set S of integers to
represent the effect after evaluating an expression as follows:

n, S : Int× (Int → Nat) . (8.5)

The integer n represents the balance of the thread of the given expression, the multi-set the
balance numbers for the threads potentially spawned by the expression. The multi-set can
be seen as a function of type Int → Nat (the multi-set’s characteristic function), and we write
dom(S) for the set of elements of S, ignoring their multiplicity. As an example: we use also
the set-like notation {−3, 1, 1, 2} to represent the finite mapping −3 �→ 1, 1 �→ 2, 2 �→ 1 (and
all other integers to 0). We write ∅ for the empty multi-set, ∪ for the multi-set union. Note
that multi-set union is defined by building the maximum of the characteristic functions, i.e.,
{1, 1, 2} ∪ {1, 2, 2, 2} = {1, 1, 2, 2, 2}. As a further operation, we use “addition” and “sub-
traction” of such multisets and integers illustrated on a small example: {−3, 1, 1, 2} + 5 gives
{2, 6, 6, 7}. Based on S, we know how many newly created threads with their corresponding
balances in the current expression, including threads with the same balance. The judgements
of the analysis are thus of the following form:

n1 � e :: n2, S , (8.6)

which reads as: starting with a balance of n1, executing e results in a balance of n2 and the
balances for new threads spawned by e are captured by S. The balance for the new threads
in S is calculated cumulatively; i.e., their balance includes n1, the contribution of e before the
thread is spawned, plus the contribution of the new thread itself.

The effect system is given in Table 8.5. For clarity, we do not integrate the effect system
with the underlying type system of Section 8.2.2. Instead, we concentrate on the effects in iso-
lation. Variables, the unit value, field lookup, and object creation have no effect (cf. T-VAR,
T-UNIT, T-LOOKUP, and T-NEW in Table 8.5), so they leave the balance unchanged and since
no threads are generated, the multi-set of balances is empty. A field update has no effect (cf.
T-UPD), as we require that the left- and the right-hand side of the assignment are already eval-
uated. In contrast, the two dual commands of onacid and commit have the expected effect:
they simply increase, resp. decrease the balance by one (cf. T-ONACID and T-COMMIT). A
class declaration (cf. T-CLASS) is correct if the effect of all of its methods corresponds to their
declaration, which is looked up in the class table. Rule T-METH deals with method declara-
tions. In this rule, we require that all spawned threads in the method body must have the
balance 0 after evaluating the expression e, that the balance of the method itself has the form
n1 → n2 where n1 is interpreted as pre-condition, i.e., it is safe to call the method only in a
state where the balance is at least n1. The number n2 as the post-condition corresponds to the
balance after exiting the method, when called with balance n1 as pre-condition. The precondi-
tion n1 is needed to assure that at the call-sites the method is only used where the execution
of the method body does not lead to a negative balance (see also the T-CALL-rules below).
Rule T-SUB captures a notion of subsumption where by S1 ≤ S2 we mean the subset relation
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on multi-sets.3 In a let-expression (cf. T-LET), representing sequential composition, the effects
are accumulated. Creating a new thread by executing spawn e does not change the balance of
the executing thread (cf. T-SPAWN). The spawned expression e in the new thread is analyzed
starting with the same balance n in its pre-state. The resulting balance n′ of the new thread is
given back in the conclusion as part of the balances of the spawned threads, i.e., as part of the
multi-set. For conditionals if v then e1 else e2 (cf. T-COND), the boolean condition v does
not change the balance, and the rule insists that the two branches e1 and e2 agree on a balance
n′.

For method calls, we distinguish two situations (cf. T-CALL1 and T-CALL2), depending on
whether the method being called creates new threads or not. In both cases, the class C in the
premise is determined by the type system (cf. the rule T-CALL there) resp. by the combination
of the type and the effect system; for clarity we presented the type system first in isolation and
we do not repeat the typing part here. In the case of T-CALL2, the multi-set of balances for
method m in class C is required to be empty by the third premise of the rule. In that situation,
the precondition of the method can be interpreted in a “loose” manner: the current balance
n in the state before the call must be at least as big as the pre-condition n′

1.4 If, however, the
method may spawn a new thread (cf. T-CALL1), the pre-condition is interpreted strictly, i.e., we
require n = n′

1 (with this equality, T-CALL1 could be simplified; we chose this representation
to stress the connection with T-CALL2, where n > n′

1). Allowing the loose interpretation
also in that situation would make the method callable in different levels of nestings at the
caller side; however, only exactly one level actually is appropriate, as with concurrent threads
inside a transaction, all threads must join in a commit to terminate the transaction (remember
also the explanations concerning Figure 8.1). A thread t〈e〉 is well-typed (cf. T-THREAD), if
the expression has balance 0 after termination, starting with a balance corresponding to the
length |E| of the local environment E. We use ok to indicate that the thread is well-typed, i.e.,
without commit-error. This balance in the pre-state corresponds to the level of nesting inside
transactions, the thread p〈e〉 currently executes in. A program is well typed, if all threads
in the system are well-typed (cf. T-PAR). In the conclusion of that rule, by writing Γ1, Γ2,
we implicitly require that Γ1 and Γ2 are disjoint in the sense that no thread name occurs in
both Γ’s. We illustrate the system with the following two examples: the first one deals with
multithreading, and the second one concentrates on method calls.

Example 3. The following derivation applies the effect system to the expression e1; spawn(e2; spawn e3);
e4 :: n4, {n2, n3}, when starting with a balance of 0.

0 � e1 :: n′
1, {}

n′
1 � e2 :: n2, {}

n2 � e3 :: n3, {}

n2 � spawn e3 :: n2, {n3}

n′
1 � (e2; spawn e3) :: n2, {n3}

n′
1 � spawn(e2; spawn e3) :: n′

1, {n2, n3} n′
1 � e4 :: n4, {}

n′
1 � spawn(e2; spawn e3); e4 :: n4, {n2, n3}

0 � e1; spawn(e2; spawn e3); e4 :: n4, {n2, n3}
The derivation demonstrates sequential composition and thread creation with a starting balance of 0 for
simplicity. Remember that sequential composition e1; e2 is syntactic sugar for let x:T = e1 in e2,

3The non-structural rule of subsumption makes the system non syntax-directed. To turn it to an algorithm, one
would have to disallow subsumption and derive a minimal multiset instead.

4To keep the situations where rules T-CALL1 and T-CALL2 apply disjoint, we actually require n > n′
1, not n ≥ n′

1

here.
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where x does not occur free in e2; i.e., assume that the expressions e1,. . . e4 themselves have the following
balances 0 � ei :: n′

i, {}, which implies (cf. Lemma 5 below):

n′
1 � e2 :: n′

1 + n′
2 = n2, {}

n2 � e3 :: n2 + n′
3 = n3, {}

n′
1 � e4 :: n′

1 + n′
4 = n4, {}

Example 4. Assume the following code fragment:
. . .
v o i d n ( ){ onacid ; m( 1 0 ) ; }

v o i d m( i ){ commit ;
i f ( i ≤ 0)
th en onacid ;
e l s e . . . . ; onacid ; t h i s .m( i −1); }

v o i d main ( ){ n ( ) ; commit ; }

First observe that a program using that methods, when being executing shows no commit-errors (con-
cerning the shown fragment of code). Method m calls itself recursively and the two branches of the
conditional in its body both execute one onacid each. Especially, method m is called (in this fragment)
only via method n, especially after n has performed an onacid, i.e., m is called inside one transaction.
If m were called outside a transaction it would result in an error, as the body of m starts by executing
a commit-statement. In our effect system, method m can be declared as of effect 1 → 1, which expresses
not only that the body of m does not change the balance, but that as a precondition, it must be called
only from call-sites where the balance is ≥ 1, as is the case in the body of n (cf. also T-METH and
T-CALL). So the declarations of the two shown methods are of the form5

n() :Unit→Unit, 0 → 1 and m(i) : Int →Unit, 1 → 1

For recursive calls, an effect like 1 → 1 can be interpreted as loop invariant: the body of the method
must not change the balance to be well-typed. However, not every method needs to be balanced; the
non-recursive method n is one example which (together with the call to m) has a net-balance of 1. As
an aside: if the method would contain the spawning of a new thread, the recursive execution would
lead to an unboundenden number of new threads; for the analysis, this does not pose a problem, as it
analyses the method body in isolation (whithout “following” the recursion, as is customary for type
analyses).

Lemma 5. If n1 � e :: n2, S, then n1 + n � e :: n2 + n, S.

Proof. By straightforward induction over the length of derivation.

8.4 Soundness of the type and effect system

Next we prove that the type and effect system does what it is designed to do, namely absence of
commit errors. The main part of the proof is preservation of well-typedness under reduction,
also called subject reduction.

Lemma 6 (Subject reduction (local)). Let n = |E|. If n � e :: n′, S′ and E � e −→ E′ � e′, then
|E′| = n and n � e′ :: n′, S′.

5In the code fragment which is intended to resemble more concrete syntax we use void as it corresponds to the
conventions of Java. In the formal analysis, as said, we use type Unit instead.
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Proof. First observe that by the properties of read , write , and extend , |E| = |E′|. Proceed by case
analysis over the operational rules of Table 8.3. The cases R-LOOKUP, R-UPD, R-CALL, and
NEW are immediate. For R-COND1, we need subsumption (R-COND2 works analogously):
Case: R-COND1

In this case, the expression e before the step is of the form if v = v then e1 else e2 and the
step is given as E � e −→ E′ � e1. Note that E′ = E, and hence |E′| = n. Concerning the
typing, we are given n �if v = v then e1 else e2 :: n′, S′, which implies by the premises of
rule T-COND that n � e1 :: n′, S1 and n � e2 :: n′, S2 with S′ = S′

1 ∪ S′
2. The result follows by

subsumption (rule T-SUB).

The global semantics accesses and changes the global environments Γ. These manipula-
tions are captured in various functions, which are kept “abstract” in this semantics (as in [110]).
To perform the subject reduction proof, however, we need to impose certain requirements on
those functions:

Definition 7. The properties of the abstract functions are specified as follows:

1. The function reflect satisfies the following condition: if reflect(p, E, Γ) = Γ′ and Γ = p1:E1, . . . , pk:Ek,
then Γ′ = p1:E′

1, . . . , pk:E′
k with |Ei| = |E′

i| (for all i).

2. The function spawn satisfies the following condition: Assume Γ = p : E, Γ′′ and p′ /∈ Γ and
spawn(p, p′, Γ) = Γ′, then Γ′ = Γ, p′:E′ s.t. |E| = |E′|.

3. The function start satisfies the following condition: if start(l, pi, Γ) = Γ′ for a Γ = p1:E1, . . . , pi:Ei, . . . , pk:Ek

and for a fresh l, then Γ′ = p1:E1, . . . , pi:E′
i, . . . , pk:Ek, with |E′

i| = |Ei|+ 1.

4. The function intranse satisfies the following condition: Assume Γ = Γ′′, p:E s.t. E = E′, l:

and intranse(l, Γ) = �p, then

(a) p ∈ �p and
(b) for all pi ∈ �p we have Γ = . . . , pi : (E′

i, l:
i), . . ..
(c) for all threads p′ with p′ /∈ �p and where Γ = . . . , p′:(E′, l′:
′), . . ., we have l′ �= l.

5. The function commit satisfies the following condition: if commit(�p, �E, Γ) = Γ′ for a Γ =
Γ′′, p:(E, l:
) and for a �p = intranse(l, Γ) then Γ′ = . . . , pj :E′

j , . . . , pi:E′
i, . . . where pi ∈

�p, pj /∈ �p, pj :Ej ∈ Γ, with |E′
j | = |Ej | and |E′

i| = |Ei| − 1.

Lemma 8 (Subject reduction). If Γ � P : ok and Γ � P =⇒ Γ′ � P ′, then Γ′ � P ′ : ok .

Proof. Proceed by case analysis on the rules of the operational semantics from Table 8.4 (except
rule G-COMMERROR for commit errors). For simplicity (and concentrating on the effect, not
the values of expressions) we use ; for sequential composition in the proof, and not the more
general let-construct.
Case: G-PLAIN

From the premises of the rule, we get for the form of the program that P = P ′′ ‖ t〈e〉, further-
more for p’s local environment Γ � p : E and E � e −→ E′ � e′ as a local step. Well-typedness
Γ � P : ok implies n � e :: n′, S′ for some n′ and S′, where n = |E|. By subject reduction for
the local steps (Lemma 6) n � e′ :: n′, S′. By the properties of the reflect-operation, |E′| = n, so
we derive for the thread p

n � e′ :: 0, {0, . . .}

Γ′, p:E′ � p〈e′〉 : ok
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from which the result Γ′ � P ′′ ‖ p〈e′〉 : ok follows (using T-PAR and the properties of reflect
from Definition 7.1).
Case: G-SPAWN

In this case, P = P ′′ ‖ p〈spawn e1; e2〉 and P ′ = P ′′ ‖ p〈(); e2〉 ‖ p′〈e1〉 (from the premises of
G-SPAWN). The well-typedness assumption Γ � P : ok implies the following sub-derivation:

n � e1 : 0, S1

n � spawn e1 : n, S1 ∪ {0} n � e2 : 0, S2

n � spawn e1; e2 : 0, {0, . . .}

p:E � p〈spawn e1; e2〉 : ok

(8.7)

with S1 = {0, . . .} and S2 = {0, . . .}. By the properties of reflect , the global environment Γ′

after the reduction step is of the form Γ, p′:E′ where p′ is fresh and |E′| = |E| (see Definition
7.2). So we can derive

p:E � p〈(); e2〉 : ok

n � e1 : 0, {0, . . .}

p′:E′ � p′〈e1〉 : ok

p:E, p′:E′ � p〈(); e2〉 ‖ p′〈e1〉 : ok

The left sub-goal follows from T-THREAD,T-SEQ, T-UNIT, and the right sub-goal of the pre-
vious derivation (8.7). The right open sub-goal directly corresponds to the left sub-goal of
derivation (8.7).
Case: G-TRANS

In this case, P = P ′′ ‖ p〈onacid; e〉 and P ′ = P ′′ ‖ p〈(); e〉. The well-typedness assumption
Γ � P : ok implies the following sub-derivation (assume that |E| = n):

n � onacid :: n + 1, ∅ n + 1 � e :: 0, {0, . . .}

n � onacid; e :: 0, {0, . . .}

p:E � p〈onacid; e〉 : ok

(8.8)

For the global environment Γ′ after the step, we are given Γ′ = start(l, p, Γ) from the premise
of rule G-TRANS. By the properties of start from Definition 7.3, we have Γ′ = Γ′′, p:E′ with
|E′| = n + 1. So with the help of right sub-goal of the previous derivation (8.8), we can derive
for thread p after the step:

n + 1 � e :: 0, {0, . . .}

p:E′ � p〈e〉 : ok

Since furthermore the local environments of all other threads remain unchanged (cf. again
Definition 7.3), the required Γ′ � P ′ : ok can be derived, using T-PAR.
Case: G-COMM

In this case, P = P ′′ ‖ �p〈commit;�e〉 and P ′ = P ′′ ‖ �p〈�e〉. The well-typedness assumption
Γ � P : ok implies the following sub-derivation for thread p:

n � commit :: n − 1, ∅ n − 1 � ei : 0, {0, . . .}

n � commit; ei : 0, {0, . . .}

pi:Ei � pi〈commit; ei〉 : ok

(8.9)

For the global environment Γ′ after the step, we are given Γ′ = commit(�p, �E,Γ) from the
premise of rule G-TRANS, where �p = intranse(l, Γ) and �E are the corresponding local envi-
ronments. By the properties of commit from Definition 7.5, we have for the local environments
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�E′ of threads �p after the step that |E′
i| = n − 1. So we obtain by T-THREAD, using the right

sub-goal of derivation (8.9):
n − 1 � ei :: 0, {0, . . .}

pi:E
′
i � pi〈ei〉 : ok

For the threads pj〈ej〉 different from �p, according to the Definition 7.5, we have |E′
j | = |Ej | so

pj :E′
j � pj〈e′j〉 : ok straightforwardly. As a result, we have Γ′ � P ′ : ok .

Lemma 9. If Γ � P : ok then it is not the case that Γ � P =⇒ error .

Proof. Let Γ � P : ok and assume for a contradiction that Γ � P −→ error . From the rules of
the operational semantics it follows that P = p〈commit; e〉 ‖ P ′ for some thread t, where the
step Γ � P −→ error is done by p (executing the commit-command). Furthermore, the local
environment E for the thread t is empty:

E = ∅
G-COMM

Γ′, p:E � p〈commit; e〉 ‖ P ′ −→ error

To be well-typed, i.e., for the judgment Γ � p〈commit; e〉 ‖ P ′ : ok to be derivable, it is easy to
see that the derivation must contain Γ′, p:∅ � p〈commit; e〉 : n, S as sub-derivation (for some
n and S). By inverting rule T-THREAD, we get that 0 �let commit in e : 0, {0, 0, . . .} is
derivable (since |E| = 0). This is a contradiction, as the balance after commit would be negative
(inverting rules T-LET and T-COMMIT).

Corollary 10 (Well-typed programs are commit-error free). If Γ � P : ok then it is not the case
that Γ � P =⇒∗ error ,

Proof. A direct consequence of the subject reduction Lemma 8 and Lemma 9.

8.5 Conclusion

This work took the TFJ language design from [110] as starting point. That paper is not con-
cerned with static analysis, but develops and investigates two different operational semantics
for TFJ that assure transactional guarantees. As mentioned, however, the flexibility of the lan-
guage may lead to run-time errors when executing a commit outside any transaction; we called
such situations commit-errors. To statically prevent commit-errors, we presented a static type
and effect system, which keeps track of the commands for starting and finishing transactions.
We proved soundness of the type system.

In the following we discuss related work, and especially compare transactions in TFJ with
the flexible ways of lock manipulation supported in Java 5, to consider our approach in that
setting.

A comparison with explicit locks of Java The built-in support for concurrency control in
Java is lock-based; each object comes equipped with a (re-entrant) lock, which can be used
to specify synchronized blocks and, as a special case, synchronized methods. The lock can
achieve mutual exclusion between threads that compete for the lock before doing something
critical. Thus, the built-in, lock-based (i.e., “pessimistic”) concurrency control in Java offers lex-
ically scoped protection based on mutual exclusion. While offering basic concurrency control,
the scheme has been criticized as too rigid, and consequently, Java 5 now additionally sup-
ports explicit locks with non-lexical scope. The ReentrantLock class and the Lock interface
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allow more freedom, offering explicit lock and unlock operations. Locking and unlocking
can be compared, to some extent, to starting and committing a transaction, even if there are
differences especially wrt. failure and progress properties. See e.g., [33] for a discussion of such
differences. Besides the more behavioral differences, such as different progress guarantees or
deadlocking behavior, the lock handling in Java 5 and the transactional model of TFJ differ in
the following aspects, as relevant for the type analysis (cf. Table 8.6).

One basic difference is that we proposed a static scheme to catch commit errors, whereas in
Java, improper use of locking and unlocking is checked at run-time. Both schemes, as men-
tioned, have all the flexibility of non-lexical scoping. The rest of Table 8.6 deals with the
structure of protected areas (the transaction or the execution protected by a lock) and the con-
nection to the threading model. One difference is that locks have an identity available at the
program level, whereas transactions have not. Furthermore, locks and monitors in Java are
re-entrant, i.e., one particular thread holding a lock can recursively re-enter a critical section
or monitor. Re-entrance is not an issue in TFJ: a thread leaves a transaction by committing
it (which terminates the transaction), hence re-entrance into the same transaction makes no
sense. Transactions in TFJ can be nested. Of course, in Java, a thread can hold more than one
lock at a time; however, the critical sections protected by locks do not follow a first-in-last-out
discipline, and the sections are not nested as they are independent. For nested transactions in
contrast, a commit to a child transaction is propagated to the surrounding parent transaction,
but not immediately further, until that parent commits its changes in turn. Finally, TFJ allows
multi-threaded transactions, whereas monitors and locks in Java are meant to ensure mutual
exclusion. In particular, if an activity inside a monitor spawns a new thread, the new thread
starts executing outside any monitor, in other words, a new thread holds no locks. In [133], we
discuss the differences and similarities in more depth by comparing the analysis developed
here with a corresponding one that deals with the safe use of a statically allocated number of
locks.

Related work There have been a number of further proposals for integrating transactional
features into programming languages. , e.g. AtomCaml [168], X10 [41], Fortress [19], Chapel
[53]. The paper [2] presents the AME calculus, a calculus for automatic mutual conclusion, a
concept proposed in [107]. The sequential core is a λ-calculus with references and imperative
update, extended by the possibility to create asynchronous threads and means for atomic exe-
cution. Unlike other approaches, where the user is required to mark parts of the code intended
for atomic execution, in AME, atomic execution is the default. For code parts where transac-
tional behavior is not intended or possible (e.g., legacy code from libraries) can be marked as
unprotected. A calculus and a proof method (implemented in the tool QED) for atomic ac-
tions is presented in [69]. For transactional languages, lexical scope for transactions, so called
atomic blocks, have been proposed, using e.g., an atomic-construct or similar. Examples are
Atomos [39], the AME calculus [2], and many proposals for software transactional memory
[85, 192][53], but none of them deals with assuring statically proper use of the corresponding
constructs. Besides, many early language designs, especially for data base programming, sup-
ported non-lexical scoping of the transactional constructs, cf. e.g. CICS [93], R* [129], Camelot
[70], Argus [130], Quicksilver [87], Arjuna [174], Avalon [60]. A recent proposal to integrate
software transactional memory into a full-fledged general purpose language is Clojure [96],
an extension of Lisp. Static analysis is a well-established method to assure desired proper-
ties ranging from resource consumption (e.g., concerning memory, time . . . ), absence of dead-
locks and race conditions. When dealing with concurrency, most static analyses (e.g., [35, 4]



Chapter 8 Safe Commits for Transactional Featherweight Java 83

. . . ) [150]. . . ) focus on avoiding data races and deadlocks, especially for multi-threaded Java
programs. Static type systems have also been used to impose restrictions assuring transac-
tional semantics, e.g. in [86, 2, 107]. A type system for atomicity is presented in [73, 72]. [32]
[127]develops a type system for statically assuring proper lock handling for the JVM, i.e., on
the level of byte code. Their system assures what is known as structured locking, i.e., (in our
terminology), each method body is balanced as far as the locks are concerned, and at no point,
the balance reaches below 0. Since the work does not consider non-lexical locking as in Java
5, the conditions apply per method only. Also the Rcc/Java type system tries to keep track of
which locks are held (in an approximate manner), noting which field is guarded by which
lock, and which locks must be held when calling a method. [148] presents a type and effect
system for a transactional calculus to assure strong isolation, which assures non-interference
of an atomic block even with code that is not marked as atomic. Slicing [176, 186] is one
particular general static analysis and program optimization technique that has been applied
(among many other uses) to analyze multi-threaded Java programs [88]. The analysis has been
implemented in the context of the Bandera tool [50]. Especially safe lock analysis, supported
e.g. by the Indus tool [163][106] as part of Bandera, is a static analysis that checks whether a
lock is held indefinitely (in the context of multi-threaded Java). Software model checking is
a prominent, alternative way to assure quality of software. The underlying techniques often
are based on automatic (static) abstractions of the programs, albeit mostly not formulated as
type systems. By using some form of abstraction (typically ignoring data parts and working
on an abstract, automata-based representation), model checking can be used as a form of static
analysis of concrete programs, as well (as opposed of full verification of a given “model”). The
Blast analyzer [94] (“Berkeley Lazy Abstraction Software verification Tool”)allows automatic
verification for checking temporal safety properties of C programs (using counter-example
guided abstraction refinement), and has been extended to deal with concurrent programs, as
well [56]. Similarly, Java PathFinder is an automatic, model-checking tool (based on Spin) to
analyze Java programs [89][90]. The sat-based static analyzer Saturn [193][171][16] has been
used, amongst other thing to analyze C code (a Linux kernel) to check for lock errors.

Future work The work presented here can be extended to deal with more complex language
features, e.g. when dealing with higher-order functions. In that setting, the effect part and its
connection to the type system become more challenging. Furthermore, we plan to adopt the
results for a different language design, more precisely for the language Creol [119], which is
based on asynchronously communicating, active objects, in contrast to Java, whose concur-
rency is based on multi-threading. As discussed, there are similarities between lock-handling
in Java 5 and the transactions as treated here. We plan to use similar techniques as explored
here to give static guarantees for lock-based concurrency, as well. It is worthwhile to try to
generalize the techniques also beyond the simple lock-based (or transaction based) synchro-
nization discipline to more recently proposed ones such as chords [30], state classes [55], or
non-uniform object behavior by temporal constraints as proposed in Jeeg [143]. Of practical
relevance is to extend the system from type checking to type inference, potentially along the
lines of [104].
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T-VAR
n � x :: n, ∅

T-UNIT
n � () :: n, ∅

T-LOOKUP
n � v.f :: n, ∅

T-NEW
n � new C :: n, ∅

n � v1 :: n, ∅ n � v2 :: n, ∅
T-UPD

n � v1.fi := v2 :: n, ∅

T-ONACID
n � onacid :: n + 1, ∅

n ≥ 1
T-COMMIT

n � commit :: n − 1, ∅

K = C(�f : �T ){this. �f := �f} mtype(C, �M) :: �n1 → �n2, �S � �M :: �n1 → �n2, �S
T-CLASS

� class C{�f : �T ; K; �M} :: ok

n1 � e :: n2, S S = {0, . . .} or S = ∅
T-METH

� m(�x : �T ){e} :: n1 → n2, S

n � e :: n′, S1 S1 ≤ S2

T-SUB
n � e :: n′, S2

n0 � e1 :: n1, S1 n1 � e2 :: n2, S2

T-LET
n0 �let x : T = e1 in e2 :: n2, S1 ∪ S2

n � e :: n′, S
T-SPAWN

n � spawn e :: n, S ∪ {n′}

n � v :: n, ∅ n � e1 :: n′, S1 n � e2 :: n′, S2

T-COND
n �if v then e1 else e2 :: n′, S1 ∪ S2

n � v :: n, ∅ n � vi :: n, ∅ mtype(C, m) :: n′
1 → n′

2, S S �= ∅ n = n′
1

T-CALL1

n � v.m(�v) :: n′
2 + (n − n′

1), S + (n − n′
1)

n � v :: n, ∅ n � vi :: n, ∅ mtype(C, m) :: n′
1 → n′

2, ∅ n > n′
1

T-CALL2

n � v.m(�v) :: n′
2 + (n − n′

1), ∅

|E| � e :: 0, {0, 0, . . .}
T-THREAD

t:E � p〈e〉 : ok

Γ1 � P1 : ok Γ2 � P2 : ok
T-PAR

Γ1, Γ2 � P1 ‖ P2 : ok

Table 8.5: Effect system

Java 5.0 TFJ
when? run-time compile time
non-lexical scope yes yes
program level identity yes no
re-entrance yes no
nested transactions/critical sections no yes
internal multi-threading no yes

Table 8.6: Transactional Featherweight Java and explicit locks of Java



CHAPTER 12

Design issues in concurrent
object-oriented languages and
observability

12.1 Introduction

Compositionality is important in large and distributed systems as it allows programmers to
build a larger system from smaller components. In general, a large system cannot be built
from scratch by a single programmer or by a company. It often requires a cooperation from
different organizations and from different places. In that setting, we need a good mechanism
to compose components or replace a component with another one. In general, to replace a
component with another, one needs to observe their behaviors to see whether two components
are observably equal, if no context can see a difference. One of the most widely adopted
solutions is to consider components as black-boxes, and only observe the interactions via their
interfaces. So the question is that what can be observed or seen from the outside, from the
“client code”.

In an object-oriented setting, an open program interacts with its environment via method
calls or message exchange. Besides message passing, of course, different communication and
synchronization mechanisms exists (shared variable concurrency, multi-cast, black-board com-
munication, publish and subscribe and many more). We concentrate here, however, on basic
message passing using method calls. In that setting, the interface behavior of an open program
C can be characterized by the set of all those message sequences (traces) t, for which there ex-
ists an environment E such that C and E exchange the messages recorded in t. Thereby we
abstract away from any concrete environment, but consider only environments that are com-
pliant to the language restrictions (syntax, type system, etc.). Consequently, interactions are
not arbitrary traces C

t=⇒; instead we consider behaviors

C ‖ E
t=⇒̄
t

Ć ‖ É (12.1)

where E is a realizable environment and trace t̄ is complementary to t, i.e., each input is replaced
by a matching output and vice versa. The notation C ‖ E indicates that the component C runs
in parallel with its environment or observer E. To account for the abstract environment (“there

185
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exists an E s.t. . . . ”), the open semantics is given in an assumption-commitment way:

Δ � C : Θ t=⇒ Δ́ � Ć : Θ́ , (12.2)

where Δ (as an abstract version of E) contains the assumptions about the environment, and
dually Θ the commitments of the component. Abstracting away also from C gives a language
characterization by the set of all possible traces between any component and any environment.

Such a behavioral interface description is relevant and useful for the following reasons. 1)
The set of possible traces given this way is more restricted (and realistic) than the one obtained
when ignoring the environments. When reasoning about the trace-based behavior of a compo-
nent, e.g., in compositional verification, with a more precise characterization one can carry out
stronger arguments. 2) When using the trace description for black-box testing, one can describe
test cases in terms of the interface traces and then synthesize appropriate test drivers from it.
Clearly, it makes no sense to specify impossible interface behavior, as in this case one cannot
generate a corresponding tester. 3) A representation-independent behavior of open programs
paves the way for a compositional semantics, a two-level semantics for the nested composi-
tion of program components. It allows furthermore optimization of components: only if two
components show the same external, observable behavior, one can replace one for the other
without changing the interaction with any environment. 4) The formulation gives insight into
the semantic nature of the language, here, to different design choices concerning concurrency
and object orientation. Some technical material underlying this paper can be found in [180];
here we concentrate on discussing the influence of various design choices from a more practi-
cal and global view.

In Section 12.2, we discuss closer observability and the problem of characterizing the in-
terface behavior. Afterwards in Section 12.3 resp. 12.4, we discuss the influence of classes and
inheritance, resp. of the concurrency model. In Section 12.5 we conclude by summarizing
lessons learned from the theoretical approach in more practical terms.

12.2 Observable behavior

In this section, to give an intuitive understanding of the formal framework, we first sketch in
Section 12.2.1 the object-oriented calculus which concentrates on the object-oriented features
we are interested in; later we extend or modify it by inheritance, by two different concurrency
models, and considering synchronization. Afterwards, Section 12.2.2 describes the steps of an
open semantics, based on the ideas mentioned in the introduction.

12.2.1 An object-oriented, concurrent core calculus

The abstract syntax is given in Table 12.1 (where run-time syntax is underlined). The calculus
is rather standard and a class-based variant similar to the object calculi of Abadi and Cardelli
[3][81]. The syntax supports objects as instances of classes, local variables, and standard con-
trol constructs like conditionals; later we will add concurrency. Objects carry a name or refer-
ence, likewise classes and later threads, and via destructive field update, the model supports
mutable heap and aliasing.

A component C is a collection of classes c[(M, F )], objects o[c, M, F ], and (for now) one single
thread �〈e〉, with empty component 0. The ν-binder is used for hiding and dynamic scoping,
as known from the π-calculus [145]. An object o references the class c it instantiates, con-
tains embedded the methods it supports plus the fields. The thread �〈e〉 contains the running
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C ::= 0 | C ‖ C | ν(n:T ).C | c[(O)] | o[c, O] | �〈e〉 component
O ::= M, F object
M ::= m = ς(n:T ).λ(�x:�T ).e, . . . method suite
F ::= f = fd , . . . fields
fd ::= v | ⊥c field
e ::= v |stop|let x:T = e in e expressions

| if b then e else e
| v.m(�v) | v.f | v.f := v |new c

v ::= x | n | () values
n ::= o | c names

Table 12.1: Syntax of an oo core calculus

code, basically as incarnation of method bodies “in execution”. The expression e is basically
a sequence of expressions, where the let-construct is used for sequencing and for local decla-
rations. Sequential composition e1; e2 abbreviates let x:T = e1 in e2, where x does not occur
free in e2. The (closed) semantics can be given operationally in a standard way, describing
steps of the form C

τ−→ C ′, modulo standard algebraic laws for parallel composition (such as
associativity and commutativity). Being closed, the steps of the semantics are labelled with an
internal τ -label, only.

12.2.2 Characterizing the observable behavior

Whereas the closed semantics uses internal steps, the open semantics interacts with the envi-
ronment via communication labels a, and the behavior can be characterized by sequences or
traces t of such interaction labels. In an object-oriented setting, the message labels are catego-
rized in method calls, returning the results, and ν-labels which communicate fresh names and
which correspond to instantiate a new object from a class. In a concurrent setting later, also
fresh thread names are created and communicated via ν-labels. The communication labels are
either incoming (from the environment to the component) or dually outgoing (marked ? resp. !).

As said, without concrete environment, the open semantics uses assumptions as existential
abstraction of all potential environments, and the interaction steps are of the following form:

Δ � C : Θ a−→ Δ́ � Ć : Θ́ , (12.3)

(cf. also the traces as sketched in equation (12.2)). In the step, Δ is the mentioned assumption
context, and Θ a commitment context, describing dually relevant interface information about
the component C. In software engineering, the terms provided and required interface are also
used instead of commitments and assumptions. In the steps of the open semantics, the two
contexts are used as follows: For incoming communication, originating from the environment,
(mainly) the assumption context Δ is used to check whether there exists an environment that
can send the incoming step (written Δ, Θ � a below). The information exchanged over the
interface via the communication label a updates the (assumption and commitment) contexts in
the step (written Δ́, Θ́ = Δ, Θ + a below).

The steps of equation (12.3) existentially abstract away from the environment but keep the
component part C of the configuration concrete. Abstracting away in the same way from C
as well gives a representation-independent characterization of interaction traces possible for
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Env. Comp.
o1

o2

o3

o′3 o′′3

(a)

Env. Comp.
o1

o2

o3

o′3 o′′3

〈call o2.m(o3)〉!

(b)

Figure 12.1: Connectivity

well-formed and well-typed open programs. The corresponding judgment

Δ, Θ � r � t : trace

captures the statement: “under assumptions Δ and given commitments Θ, and with history r,
the further trace t is possible”. The rule of equation (12.4) inductively formalizes the basic step
of that judgment:

Δ, Θ � a Δ́, Θ́ = Δ, Θ + a

Δ́, Θ́ � r a � t : trace other conditions

Δ, Θ � r � a t : trace

(12.4)

The details of the check Δ, Θ � a and the update Δ, Θ +a as well as the “other conditions”
depend on the design decisions concerning the language constructs. We describe the influence
of classes, inheritance, two forms of concurrency and related synchronization mechanisms in
the following.

12.3 Classes and inheritance

Since Simula [54], classes are a central concept in most object-oriented languages. Actually,
classes combine different roles in programming languages: 1) they structure the code and offer
an abstraction mechanism (as they are also used as type or at least implement an interface). 2)
They offer a mechanism of code reuse, typically via inheritance. 3) Finally, they are generators
of objects. We describe the influence on the interface behavior of all three roles in turn.

12.3.1 Classes as units of composition

In class-based, object-oriented languages, classes describe data together with operations or
methods to operate on the data and thus provide a programming abstraction, similar to ab-
stract data types [48]. At run-time, the global heap contains the state of all instances, where
objects are identified via their references or addresses, and objects may refer to each other via
references stored in their instance variables.

When considering a global class-based program as an open system and taking classes as the
unit of composition, some classes belong to the component, and others are external, i.e., belong
to the environment. Consequently, also the the method implementations are only partially
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part of the component. This distinction between the program and environment, both given
by sets of classes and their methods, is a static distinction, to start with. Considering the open
behavior of the set of program classes in an environment, however, requires to think which
part of the run-time configuration belongs to the component, and which part conceptually to
the environment. In other words, the distinction between “component” vs. “environment”
becomes relevant at run-time as well, when investigating the open behavior starting from a
static program where the overall set of classes is split into environment and program classes.
In particular the heap can be considered only partially part of the component: conceptually,
instances of component classes reside in the component part of the heap, and instances of
external environment classes are part of the “environment heap”, i.e., abstracted away when
modelling the behavior of the component.

If in that situation a component object creates an environment object by an instantiation
across the border between component and environment, then, without further interface com-
munication, the new environment object cannot be connected to any other object, in the sense
that the new object itself cannot contain references to any other object and also that it itself can-
not be pointed to by other environment objects. The reason is that all communications which
would put the new object in connection in this way would be visible at the interface. For in-
stance, in Figure 12.1, after the component object o1 has created the environment objects o2 and
o3, indicated by the two arrows, it is guaranteed that both o2 and o3 are unconnected with each
other and no other objects from the environment can point to them. However, o3 could create
environment instances in turn, to which it would be connected, but that would not be visible
at the interface. The fact that o3 has created 2 objects internal to the environment is indicated
by the two corresponding dotted arrows. The (potential) connectivity of objects among each
other is important for describing the interface behavior, since certain communications are im-
possible. For instance, in the situation described so far, no incoming call label a of the form
〈call o.m(o2, o3〉? (for some callee o) is possible, since no caller object in the environment can
point to both o2 and o3, as they are necessarily unconnected.

To prevent such impossible interface interaction, the assumption context must contain an
over-approximation of such connectivities as an existential abstraction of the heap structure.
In particular, the check and update mentioned in the rule of equation (12.4) must check the
connectivity, resp. update that information appropriately.

The potential connectivity of, for instance, environment objects among each other is a re-
flexive, transitive, and symmetric relation (written �). We call the equivalence class of poten-
tially connected objects a clique. Note that the reflexive, transitive, and symmetric closure over
the father-son arrows does not apply to the arrows crossing the border. For instance, in the
described situation, the check whether o2 and o3 are potentially connected, i.e., members of
the same environment clique, would fail, i.e.,

Δ, Θ �� o2 � o3 but Δ, Θ � o3 � o′3 � o′′3 . (12.5)

In Figure 12.1, the arrows show the tree of object creation (with cross-border instantiation as
full arrows), and the resulting cliques of objects as dotted bubbles.

The picture so far is static and the cliques are “induced” by the tree of creation. Commu-
nication over the interface updates the connectivity information, as formalized by the update
Δ́, Θ́ = Δ, Θ + a. For instance, if the component sends an outgoing call 〈call o2.m(o3)〉! with
o1 as caller, o2 as callee and o3 as argument, then all four objects o2, o3, o′3, and o′′3 are assumed
to be connected after the step (see Figure 12.1b).
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12.3.2 Classes as units of code reuse

Besides describing the implementation of their instances, one common role of classes is that
they are units of code reuse via inheritance. The most established form of inheritance is single
inheritance, on which we concentrate, even if the results apply to multiple inheritance, as
well, only the details get more involved. To represent (single) inheritance, the syntax requires
a small addition, only: each class mentions its immediate super-class, i.e., for c1[(c2, M, F )], c2

is the super-class of c1.
In the open semantics in Section 12.3.1, the heap is split into a component heap and to

an (abstracted) environment heap, containing instances of component resp. of environment
classes. Introducing inheritance means that instances may contain members (fields or meth-
ods) whose code is provided by the component as well as ones whose code is provided by
the environment. Concerning the state of the open system, this existence of component and
environment fields in one instance has the following consequence. Not only is the heap sep-
arated into component instances on one side and environment instances on the other, now
each instance state itself is split into two halves, one containing the content of the instance’s
component fields and the other that of the environment fields.

Figure 12.2a schematically sketches that split when instantiating an instance of a compo-
nent class c2 which inherits from an environment super-class c1. The new object o2 contains
fields from c2 and from c1. It is thus depicted as consisting of two halves, where the absent en-
vironment half is drawn shaded. Similar to the situation in Section 12.3.1, and without further
communication, the environment fields of the new object o2 do not point to any other object and
furthermore, o2 is not pointed at by environment fields of any object. In that sense, the envi-
ronment half of o2 forms a separate clique, indicated by the dotted circle and unconnected until
interface interaction puts it into connection. We assume the standard good practice that fields
are “private”, so a method added in a sub-class cannot access (via this) fields inherited from
a super-class. As a consequence of that privacy restriction, component fields can be accessed
only by component methods, and analogously for fields and methods of the environment.

A second consequence is that, due to late binding and overriding, seemingly internal im-
plementation details are actually externally observable. One symptom of that is known in
software engineering as the fragile base class problem [141]. A base class in an inheritance
hierarchy is a (common) super-class, and fragile means that replacing one base class by an-
other, seemingly satisfying the same interface description, may break the code of the client of
the base class, i.e., change the behavior of the “environment” of the base class. Consider the
following code fragment.

Listing 12.1: Fragile base class
c l a s s A { c l a s s B extends A {

void add ( ) { . . . } void add ( ) {
void add2 ( ) { . . . } s i z e = s i z e + 1 ;
. . . super . add ( ) ; }

} void add2 ( ) {
s i z e = s i z e + 2 ;
super . add2 ( ) ; }

}

The two methods add and add2 are intended to add one respectively two elements to some
container data structure. Even if informally, this completely describes the intended behavior
of A’s methods. Class B in addition keeps information about the size of the container. Due
to late-binding, this implementation of B is wrong if the add2-method of the super-class A is
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Figure 12.2: Connectivity and inheritance

implemented via self -calls using two times the add -method. The problem is that nothing in
the interface, e.g., in the form of pre- and post-conditions of the methods, helps to avoid the
problem. The interface specification is too weak to allow to consider the base class as a black
box which can be safely substituted based on its interface specification only. In other words,
due to late binding, the version of A where add2 implements its functionality via seemingly
internal self-calls add and the version where it directly implements it are observationally dif-
ferent. In the open semantics of the form of equation (12.3), this is reflected by the fact that the
mentioned self-call constitutes a call across the interface; assuming e.g., that A is a component
class and the sub-class B an environment class, a self call from method add2 of A is an out-
going call from the component to the environment if add2 is executed on an instance of B, as
in that case the this refers to the environment method add of B. Note that the observability
of the self-call does not depend on the use of the super-keyword (which is used here only to
make the example more plausible).

When formulating the open semantics, the assumption and commitment contexts must
represent two equivalence relations, one as abstraction of the environment fields and their
connectivity and one for the component fields. These abstractions are used to check the inter-
face steps and are correspondingly updated similar to before. Taking the tree of object creation
from Figure 12.1a, in the setting with inheritance, the clique structure now looks schematically
as in Figure 12.2b. Since each object is now split into two halves, all objects from the original
figure have now a “mirrored” counterpart. For instance, if the component half of o1 instanti-
ates o2 and o3 (as before), the environment half of o1 is connected to both o2 and o3 (indicated
here by 2 pairs of arrows). Note that the clique structures on the component side and on the
environment side differ. For instance, in the figure, the component half of o3 is connected to o′3
and o′′3 , however, for the environment part o3, o′3, and o′′3 are all members of different cliques.
Also in case of communication (as shown in Figure 12.1b in the setting without inheritance),
the two clique structures are updated differently. For instance, an outgoing communication
merges only cliques at the receiving side of the component, i.e., only environment cliques.
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12.3.3 Classes as generators of objects

One last aspect of classes we shortly discuss is that classes are generators of objects. In particu-
lar, two instances of the same class are, until the first differentiating incoming input, identical
up to their name or address. That means, that their behavior, when confronted with the same
sequence of inputs must be identical (up to the object names). In the description of the open
behavior and the possible traces from equation (12.4), the “other conditions” must therefore
require that the trace is “deterministic” in that sense, i.e., given the history r, the next step a
must not contradict behavior seen earlier on an “equivalent” instance of the same class. This
restriction of course only applies when the language is deterministic, i.e., in particular in ab-
sence of concurrency. Note further that the problem of assuring deterministic reactions from
instances rests also on the fact that objects may be unconnected from other objects (by being in
different cliques). In the presence of global variables, for instance, class variables, no newly
instantiated object would have “a fresh start” and would therefore not be required to show the
same behavior as an earlier instantiation of the same class. Of course the complication does
not occur when objects are not created from classes, or each class is instantiated only once. The
formal study of full abstraction in a class-less object-oriented calculus [112] basically allows
to instantiate objects only once (and besides that disallows cross-border instantiation/inheri-
tance, which therefore avoids these problems.

12.4 Concurrency model

How to marry concurrency and object-orientation has been a long-standing issue; see e.g., [21]
for an early discussion of different design choices. Actually, the basic distinction already dis-
cussed in [21] is between considering threads and objects as separate concepts on the one hand
or considering objects conceptually as a unit of concurrency (and state) on the other. The first
model is the multi-threading model, prominently represented by object-oriented languages
like Java [82] and C�, [68]. The alternative is known as active objects or actor model. When com-
paring both models, we assume that part of the model are locks as mechanism for concurrency
control, i.e., objects are now of the form o[F,M, L] were L is the lock.

12.4.1 Multi-threading

The concurrency model, as known from languages like Java, separates the unit of state (the
objects) from the units of concurrency (the threads).1 The locks to protect shared data are re-
entrant locks. To formalize that model means to extend the calculus of Table 12.1 by a spawn e-
expression plus operations for synchronization such as wait and notify. In order to charac-
terize the interface behavior, the formalization of legal traces from equation (12.4) needs to be
adapted capturing the following two aspects,

• re-entrant calls, and

• the lock-status.

We discuss the two issues in turn.

1The fact that in Java concretely a thread is created as an instance of a specific thread class does not change the
conceptual distinction between threads and objects.
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Figure 12.3: Locks

Re-entrant calls

In the multi-threading model, call-backs and re-entrant calls between component and environ-
ment are possible, e.g., an outgoing call by one thread from the component to the environment
is not directly answered by the corresponding return giving back the result, but followed by
an incoming call. Each thread for a legal trace from equation (12.4) must therefore be a) strictly
alternating wrt. incoming and outgoing communications and b) each return must be preceded
by a matching call. This amounts to a context-free condition on the interactions of one thread p,
where on equation (12.4), one needs one check of a form � r � a : wbalanced+

p where p is the
name of the thread executing a and “weak balance” formalize the condition just mentioned,
requiring that the next interaction a must be incoming for instance (� r � a : wbalanced−

p is
dual).

Lock status

In Java, each object is equipped with a (re-entrant) lock which can be used to protect the in-
ternal state of the object from interference or also for programming synchronized blocks. The
actual state of a lock is not observable.2 However, from the interface trace, under certain cir-
cumstances, one can draw the conclusion that a lock of an object is definitely taken. That is
the case when a call is answered by a call-back. With the information of a lock being definitely
taken, certain interface interactions are known then to be impossible and must therefore be
excluded form the legal traces. Those conditions complicate the description of the interface
behavior considerable [7]. The complications are caused, basically, by the important fact that
interface interactions have no instantaneous effect on the state. This decoupling in the formula-
tion of the open behavior is crucial, because enabledness of a step of, say, the component must
not depend on the (internal) state of the environment and vice versa. This would contradict
a compositional description of the open system. In our setting, e.g., sending a call across the
interface is independent on the state of the callee’s lock, as the lock itself is unobservable.

The issue is illustrated in Figure 12.3. The scenario of Figure 12.3a shows a trace with
interactions of 2 threads (red and blue), where after two incoming calls of the two threads, each
one responds with a corresponding return. Since neither the interface interaction in the form
of a call takes the lock instantaneously nor a return indicates the exact point of lock release,

2In our theoretical calculus we do not include a method as isLocked() from Java’s ReentrantLock-class
which allows direct inspection of the lock status.
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the behavior of 12.3a is actually possible: since the object lock guarantees mutual exclusion,
either p1 executes its the method body completely before the method body executed by p2, or
conversely. Both serialized executions are consistent with the shown interface behavior of 12.3a.

The situation of Figure 12.3b is similar, only now the red thread p1 responds with a call-
back instead of a return. Also this scenario possible: The call-back of p1 makes it observable
that p1 at that point actually holds the lock. The outgoing return of p2 makes it observable, that
at some point in the past, p2 must have held the lock (but does no longer). A possible serial
execution consistent with the shown scenario therefore is that p2 takes the lock first, releases it
again, and afterwards p1 takes it and holds it till the end of the scenario. Unlike the situation
of 12.3a, this time the observed behavior imposes an order in which the method bodies are
entered.

As discussed so far, the constraints on the order derived from the observable interaction
depended only on observations concerning synchronization via the locks. Object creation and
thus the exchange of dynamically created identifiers, e.g., object references, impose another
ordering constraint: a value cannot be communicated before it has not been created. Consider
Figure 12.3c, which shows the same communication pattern as 12.3b except that the first in-
coming call of thread p1 sends a freshly created object identifier o as argument, indicated by
the binder ν(o). The shown scenario, where p2 returns the o in the last interaction is impossi-
ble. As discussed for 12.3b, the serialization constraint concerning the locks enforces that p2 is
executed before p1. The data dependence concerning o requires that p1 is executed before p2.

In summary, to capture the legal behavior in the presence of lock synchronization and re-
entrant multi-threading concurrency, the conditions of equation (12.4) need to keep track of
the mentioned order constraints and the rule need to check that the order constraints remain
acyclic.

12.4.2 Active objects

An alternative to the multi-threaded model of concurrency is one based on active objects, where
the object is not only the unit of (encapsulated) state but also a unit of concurrency. One
way to move from multi-threading to active objects is to replace standard method calls v.m(�v)
by asynchronous method calls, written say v@m(�v). In an asynchronous call, the caller can
proceed concurrently with the called method and get the result back from the call only if and
when it needs it. In this way, each asynchronous method calls spawns an new thread; hence
there is no stack of method calls. For the interface behavior that means the balance condition of
Section 12.4.1 is not needed, resp. it degenerates to check that there is no return without prior
call and the condition degenerates from a context-free restriction to a regular one (per thread).
Also, in the rule of equation (12.4), when checking Δ, Θ � r � t : trace, the history r needs no
longer be remembered, when formalizing the check for possible traces.

As in the multi-threaded setting the encapsulated state of an active object needs to be pro-
tected against unwanted interference. Without re-entrance, that can be achieved by simple
binary locks, as opposed to re-entrant locks. Likewise as before, the actual lock status is not
directly observable and in particular an interface interaction (still) does not indicate the in-
stantaneous acquisition (in case of a call) or release (in case of returning the value) of a lock.
Without re-entrance and call-backs, the scenario shown in Figures 12.3b and 12.3c is not possi-
ble, the one of 12.3a of course is. Remember that in Figure 12.3b it is the call-back which makes
the fact observable that the lock is actually taken. In 12.3a, no information about the current
lock status can ever be observed, which means the lock status needs not be represented when
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formalizing the legal traces of an open system which simplifies the description considerably.
This corresponds to the situation with active objects.

Both facts —regular behavior is simpler than context-free and non-observability of the in-
ternal lock status for active objects— are a clear formal indication that the active object models
with its simpler interface behavior are better suited for open systems and when considering
compositionality.

12.5 Conclusion

In this paper we discussed issues for object-oriented, class-based languages from the perspec-
tive of compositionality and observable behavior. We gave an overview of how design deci-
sions in an object-oriented language influence the description of the black box behavior when
considering classes as units of composition. The question of observable black-box behavior
can be and has been studied theoretically. Apart from the theoretical problems, there are also
practical lessons to be learned: a clean and simple description of the component behavior is
an indication that the chosen constructs are suitable for modular design and compositional
reasoning. Or conversely, if the open semantics makes clear that the behavior directly or indi-
rectly exposes internal details at the interface, this is an indication of an inherently non com-
positional design, for instance not providing enough encapsulation, resp. that the interfaces
are too abstract to reflect the reality of what actually is observable.

Based on the sketched theoretical results, we opine the following three main points.

Object-orientation and modularity

Using classes as units of composition and as generators of objects exposes an abstract repre-
sentation of the heap (in the form of connectivity of objects) as part of the interface behavior,
which is a considerable complication. Taking into account also inheritance across component
boundaries the description becomes even more involved. Basically, classes and sets of objects
are no good units of composition, especially if it is allowed to instantiate instances of classes
from another component or if inheritance between component borders is possible.

Concurrency

The comparison between the two main competing models of concurrency for object-oriented
programs in Section 12.4 clearly showed that the multi-threading model is unsuitable as in-
teraction model between components. Components are better considered as communicat-
ing asynchronously. Furthermore, the discussion in Section 12.3.3 indicates that components
should be considered as inherently concurrent from the start since assuming a sequential
model actually complicates the description of the interface behavior. In other words, a con-
current model of interaction surprisingly simplifies composition.

Synchronization

The presence of concurrency requires concurrency control. Especially in connection with
multi-threading, the (in principle unobservable) status of the lock may sometimes be inferred
by interacting with an object. This fact further complicated the multi-threaded setting by in-
troducing some order constraints. One underlying reason for that seems to be that lock based
synchronization is a rather low-level means of guarding against interference. The purpose
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of using locks is to protect critical regions against unwanted interference, but the way it’s
achieved is by low-level lock acquisition and release on shared locks. A more compositional,
declarative, and high-level way on the user level to achieve protection would be based on
transactional constructs. Known long from databases, such constructs have recently been pro-
posed as user-level constructs for programming languages, for instance for Java [110] as well
as for other languages. We leave the study of observational semantics for such designs as
future work.
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