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ABSTRACT

A central part of the ubiquitous computing world of today is Wireless Sensor Net-
works (WSN), consisting of node-based components in a mesh that detects the
environment around it. The sensing and radio part of the WSN node are typi-
cally off-chip components which are needed in order to realize the required per-
formance. This thesis sets forth to investigate how to use MicroElectroMechani-
cal Systems (MEMS) resonators as signal processing units, directly integrated in
Complementary Metal-Oxide Semiconductor (CMOS) technology. By integrating
MEMS resonators directly with CMOS, one can omit some of the typical off-chip
devices and thus enable more compact and cost-efficient WSN nodes.

CMOS-MEMS resonator structures have been made by etching CMOS dies
after being processed, thus defining structures from the metal layers offered in
the CMOS process. Post-processing of CMOS dies was possible through a service
known as Application Specific MEMS Process Service (ASIMPS) where Carnegie
Mellon University (CMU) has etched and released the MEMS structures. This
post-CMOS process was further developed by making MEMS out of two different
90 nm CMOS processes. Five different CMOS runs were performed, three at UiO
and two at CMU in 0.35 pm, 0.25 gm and 90 nm CMOS processes from both Taiwan
Semiconductor Manufacturing Company (TSMC) and ST Microelectronics (STM).

Different resonator topologies have been modeled, simulated and measured. A
set of basic resonators were combined in order to make more advanced multi-
port MEMS resonators, enabling down-mixing of high-frequency signals to an
intermediate-frequency. Composite resonators have been connected at selected
nodal points in order to obtain higher order filtering characteristics. Higher-order
MEMS filters were made in different ways and compared. Soft frequency tunable
MEMS resonators and multi-mode features of composite MEMS resonators were
investigated.

Composite MEMS resonators and CMOS amplifiers have been combined to
convert the resonator current to a voltage, enabling voltage-to-voltage filters and
mixer-filters. High gain, low-noise Trans-Impedance Amplifiers (TTAs) was made
and different Trans-Impedance Amplifier (TIA) topologies were evaluated. The
various combinations of MEMS and CMOS resulted in unique filtering capabilities
with an increased Q-factor and low-noise performance.
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PREFACE

This PhD evolved from my undergraduate studies at Vestfold University College
and through working part time at SensoNor. From there I discovered that the
typical method of utilizing MEMS sensors was to make the MEMS using a custom
process and bonding a separate ASIC die to connect the two worlds together. This
subject fascinated me, and it became obvious to me that there was a clear interest
of attempting to tightly integrate MEMS with advanced signal processing through
a more common platform.

My path then lead me to do my graduate studies at University of Oslo where
I was attracted to the world of CMOS and the nanoscale transistors. Doing my
Master Thesis at UiO significantly increased my interest for further research on
this topic. Thus by engaging in a PhD position at UiO, my work on combining
MEMS and CMOS had started.

The job atmosphere at my Nanoelectronics group was diverse, interesting and
complementary. Indulging in physics, mathematics, informatics, mechanics and
electronics made my work environment both challenging and inspiring. Through a
scholarship from the Fulbright Foundation I was able to do research at an Amer-
ican university in Pittsburgh, Pennsylvania. My destination was Carnegie Mellon
University with a renowned expertise in this particular research field. My stay
there proved to be very valuable for my PhD thesis. After my stay at Carnegie
Mellon University I had started the final path of my PhD in a new building: “Ole
Johan Dahls hus”. With it came an entirely new environment and a refreshing end
of my PhD.

This PhD thesis supplies the reader with new knowledge about how to com-
bine CMOS and MEMS and to learn how one can use vibrating micromechanical
structures in combination with on-chip amplifiers to signal process intermediate
and high-frequency signals.
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Chapter 1

INTRODUCTION

”To make future wireless sensor devices smaller, smarter and more au-
tonomous, fully integrated and multifunctional nodes will be required.
It is challenging to design on-chip RF front-end devices, and today’s
solutions typically use discrete, off-chip components to meet the RF
performance requirements (external inductors, crystals, SAW and ce-
ramic filters). It has been shown that micromachined components (RF
MEMS) can beneficially replace a great number of those bulky off-chip
components with even better performance, smaller size and lower power
consumption.”

J. E. Ramstad et al.

In Proceedings of DTIP 2009

HE ongoing trend known as “More Than Moore” focuses more on total system
T integration rather than just reducing the Complementary Metal-Oxide Semi-
conductor (CMOS) transistor size [1]. Including typical off-chip components on the
same die provides a common platform for different technologies. MicroElectroMe-
chanical Systems (MEMS) has traditionally been a technology that has a separate
production method compared to CMOS. MEMS devices are typically coarse-grain
in size compared to the nanoscale CMOS transistors. Different MEMS oscilla-
tors and sensors are used extensively in many commercial and industrial products,
therefore there is a driving force of finding a common platform for combining these
two technologies. In short, combining MEMS directly with CMOS allows for much
more compact devices with less parasitics, lower power consumption and larger
Q-factors. For Wireless Sensor Networks (WSNs), the sensing devices and radio
transmitting devices are components which could be directly integrated on-chip
with the CMOS circuitry.




CHAPTER 1. INTRODUCTION

A tight integration of MEMS with CMOS can result in a reduction of space
by including typical off-chip components on the same chip. This compact integra-
tion will also result in reduced power consumption, less parasitics and a reduced
component price. A somewhat different sensor and transceiver technology with
slightly lower overall performance may turn out to be adequate enough for certain
application areas. As a consequence of “More Than Moore”, it is believed that a
new trend will develop within this CMOS industry where the most cost effective
integration method with sufficient performance will become popular. My work will
demonstrate one of many methods of integrating CMOS with MEMS to demon-
strate tight and compact technology integration. Another aspect of this thesis is
to evaluate a different method of processing signals than what is commonly done.
This is done by utilizing micromechanical beams in different ways used as filters,
mixer-filters or oscillators.

This thesis investigates methods of how to combine electronics and microme-
chanical parts in order to process signals in the context of WSN applications. The
combination of MEMS directly in CMOS has certain advantages and disadvantages
as will be described later on in this thesis. The combination method has been per-
formed in various CMOS processes of 0.35 pum, 0.25 pm and 90 nm technology
nodes. The newer CMOS processes have certain advantages such as lower power
consumption but will also have certain drawbacks, and a comparison between the
processes will be shown. The combination of CMOS and MEMS creates a founda-
tion to make resonators and filters where the signal processing is performed in the
mechanical domain.

On-chip amplifiers combined with these micromechanical resonators can give
filters with a large Q-factor compared to typical off-chip components used today.
The embedded CMOS circuitry is used to enhance filter characteristics through
controlled impedance levels and self-adjusting bias levels. The combination of
CMOS and MEMS results in a voltage-to-voltage conversion with low noise levels.
Electrically or mechanically connected resonators combined with on-chip amplifiers
results in filters and mixer-filters which may be used in front-end transceivers. The
filter characteristics of these CMOS-MEMS integrated filters will be shown with
suggestions for improvements and further research.

A part of this thesis has been performed at Carnegie Mellon University in
Pittsburgh, Pennsylvania USA. An exchange stay from 2009-2010 has proved to
be very valuable for this thesis. The project that I participated at CMU was
known as “Self-Healing MEMS Resonators” which was sponsored by DARPA. De-
sign, simulation and results from system implementations of that project will be
shown later in this thesis. The integration of CMOS and MEMS in this thesis has
been possible through the Application Specific MEMS Process Service (ASIMPS)
and through the contact and connections with CMU |2, 3]. The CMOS-MEMS
integration method is known as post-CMOS or CMOS-MEMS and will be further
explained in this thesis. The ASIMPS allows fabless customers to do prototyping
on CMOS-MEMS integrated designs at an acceptable price. The outline of this
thesis is shown in the next section.




1.1. THESIS OUTLINE

1.1 Thesis outline

This thesis is built up using the following disposition:

Chapter 2 : Expanding circuit design with MEMS - Examples of appli-
cation areas where MEMS resonators can be used to expand CMOS circuit design
are described. The method of how to combine CMOS and MEMS is explained with
examples, and tentative design rules for CMOS-MEMS are derived.

Chapter 3 : Resonator modeling - Mechanical beams with different bound-
ary conditions are modeled. The method of how to use the mechanical beams as
electrical signal processing elements is explained and low-level system performance
parameters, damping mechanisms and non-linear effects are explained.

Chapter 4 : Composite resonator structures - Beams with different
boundary conditions are combined to create more complex, composite resonators,
allowing resonators with multiple ports and multiple modes. Theory and analytical
equations are shown to create a base foundation for these composite resonators.
Theory and examples of how to couple composite resonators to create higher order
filters are shown.

Chapter 5 : CMOS-MEMS implementations - Actual implementations
of CMOS and MEMS integrated together are demonstrated with schematics, lay-
out and SEM photos. These implementations are in various CMOS technologies.
Analytical results, simulation results and measurements from these CMOS-MEMS
implementations are presented.

Chapter 6 : High-level tradeoff parameters - By investigating the most
promising CMOS-MEMS filter in this work, high-level system parameters are de-
rived and compared with other research results. The purpose of this chapter is
to show important higher level filter performance parameters, using the low-level
parameters defined in the previous chapters. The chapter ends with suggestions of
how to improve filter design by using refined high-level and low-level parameters.




CHAPTER 1. INTRODUCTION

1.2 Contributions and publications

The list below shows the papers produced in this thesis and Table 1.1 shows the
different CMOS runs that were performed during this PhD thesis.

[4] O. Soeraasen and J. E. Ramstad. From MEMS Devices to Smart Integrated
Systems. In Journal of Microsystem Technologies, vol. 14, no. 7, pages
895-901, Springer 2008.

[5] J. E. Ramstad, K. G. Kjelgaard, B. E. Nordboe and O. Soeraasen. RF
MEMS front-end resonator, filters, varactors and a switch using a CMOS-
MEMS process. In Proceedings of DTIP 2009, Symposium on Design, Test,
Integration and Packaging of MEMS/MOEMS, pages 170-175, IEEE 20009.

[6] J. E. Ramstad and O. Soeraasen. Higher order FFSFR coupled micromechan-
ical mixer-filters integrated in CMOS. In the 28th Proceedings of Norchip,
pages 1-4, IEEE 2010.

[7] J. A. Michaelsen, J. E. Ramstad, D. T. Wisland and O. Soeraasen. Low-
power Sensor Interfacing and MEMS for Wireless Sensor Networks. A book
chapter in Wireless Sensor Networks, pages 373-395, InTech 2011.

[8] J. E. Ramstad, J. A. Michaelsen, O. Soeraasen and D. T. Wisland. Imple-
menting MEMS resonators in 90 nm CMOS. In Proceedings of DTIP 2011,
Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS,
pages 463-470, IEEE 2011.

[9] J. E. Ramstad and O. Soeraasen. Modeling and design of higher order, multi-
mode, multi-port MEMS resonators in 90 nm CMOS. In Proceedings of the
FEurosensors XXV Conference, pages 1-4, Elsevier 2011.

Process Application Loc.
Nov. 2008 STM 0.25 pm 45° coupled base resonators as filters Uio
July 2009 STM 90 nm Tuneable MEMS VCO for A/D converter Uio

Oct. 2009 | TSMC 0.35 um | FFSFR mech. conn. mixer-filters w/diff. amp CMU
March 2010 | TSMC 0.35 pm El. summed FFSFR mixer-filter w/ CS TIA CMU
Oct. 2010 TSMC 90 nm | PPTF, CCSFR and FFSFR mixer-filters w/TIA | UiO

Table 1.1: CMOS runs during the PhD thesis

In publications [5] and [7], co-authors have contributed with details on varactors,
switches and FDSMs respectively. The author of this thesis has a large contribution
to most of the papers and publications produced in this thesis. The acronyms in
Table 1.1 are explained later on in this thesis. Three out of the five tapeouts have
been performed at UiO while two tapeouts have been performed during the stay
at CMU in 2009-2010. As can be seen in Table 1.1, 0.35 pym, 0.25 pm and 90
nm CMOS processes have been used. An evaluation of these processes is done in
chapter 2, and the system implementations are shown in chapter 5.




Chapter 2

EXPANDING CIRCUIT DESIGN
WITH M EMS

DVANCED signal processing can be complemented with other technology plat-

forms in order to enhance system capabilities and performance. A CMOS
LC tank with mixer and an LNA for front-end transceiver systems can be made
with CMOS inductors and varactors which unfortunately provide low Q-factors for
the filter part of the system. Circuit design can be expanded by using a different
technology platform for the filter part, as well as including the filter as a part of
the mixer, making it a mixer-filter. On-chip filters or mixer-filters with a large Q-
factor will put less stringent requirements on the amplifier design and may alleviate
the need for a separate mixer, allowing mixing high frequency signals down to an
intermediate frequency and perform filtering at the same time.

This chapter will show application areas for integration of CMOS with MEMS
including some examples of compact integration to illustrate the possibilities of ex-
panding circuit design with MEMS. The chosen CMOS-MEMS integration method
is described, pros and cons of different technology nodes will be highlighted and
tentative CMOS-MEMS design rules are developed.

2.1 MEMS and their applications

Using MEMS to complement CMOS circuit design can be done in different ways.
Using on-chip micromechanical filters, oscillators or sensor components is a popular
research field. The research in my work puts these MEMS resonators combined with
CMOS in a context of Wireless Sensor Networks. These micromechanical signal
processing elements or sensor elements can be tightly integrated with CMOS.

Table 2.1 shows a list of various research facilities, institutes and universities
which perform research on MEMS sensors or front-end transceiver components,
all integrated with CMOS with different methods. As can be seen, research is
being done in France, Finland, Spain, Canada, USA and Taiwan. Using inductors,
varactors or micromechanical resonators for front-end signal processing is shown to
be a popular research topic.




CHAPTER 2. EXPANDING CIRCUIT DESIGN WITH MEMS

Parameter Research area
U. of Barcelona [10, 11, 12| Resonators, oscillators and mixer-filters
U. of California, Berkeley[13, 14| Resonator amplifiers, mixer-filter, oscillators, switches
Carnegie Mellon U.[15] Biological sensors, gyroscopes, filters, inductors, varactors
U. of Florida [16 Accelerometers, gyroscopes
Georgia Institute of Tech.|17] Bulk Acoustic Wave (BAW) resonators
National Chung-Hsing University|18| Sensors and resonator filters
National Tsing Hua University [19] Sensors, resonators and oscillators
U. of Waterloo [20] Inductors, resonators
VTT [21] Filters, resonators, transmission lines

Table 2.1: Research areas

Fig. 2.1 shows a simple transceiver architecture [22]. The various processing
elements shown in Fig. 2.1 can potentially be done with different on-chip mi-
cromechanical components. Typically off-chip components that perform filtering
and mixing tasks may offer better specifications such as lower Insertion Loss (IL),
higher filter Q-factor or lower power consumption. The idea of using MEMS res-
onators as filtering components is to alleviate typical off-chip components for some
of these tasks by utilizing on-chip electronics combined with MEMS. The end result
of doing this to obtain almost the same results with more flexibility by using the
integrated electronics to tune and control the filter frequency.

On-chip amplifiers

Antenna
i
A

LN To A/D

converter
=

Mixer Mixer
Front-end

bandpass filter f
Replace with

micromechanical
Mixer-Filters

Figure 2.1: Simple transceiver architecture

Fig. 2.2 shows typical implementations of filters, oscillators and mixer-filters.
An LC tank can be done either on-chip or off-chip, but it only has two terminals,
and for CMOS LC tanks the Q-factor is low. An LC tank can offer a narrow
or a large bandwidth, depending on the desired usage. A crystal is a component
which is typically made of a Quartz material which offers a very large Q-factor, low
phase-noise and therefore a very clearly defined resonance frequency. The crystal
may also be used to tune the resonance frequency through a third terminal using
a polarization voltage on the resonator. Quartz are typically one-port devices,
therefore tuning the frequency with a polarization voltage may become difficult.
For the same reason Quartz crystals typically offer significant feedthrough from the
input to the output of the device which must be compensated. Finally, a mixer
can be implemented by using transistors, thus mixing two signals w; and ws down

6



2.1. MEMS AND THEIR APPLICATIONS

Filter with

LC tank —N— —> narrow or large

bandwidth

Filter with
Crystal _| D I_ —> narrow BW,
control frequency
| Mixing of

Mixer 1 — two signals

t0 Wo=w2-m1

Figure 2.2: Examples of typical filter, oscillator and mixer realizations

to a frequency defined as wy = wy —w;. Using transistors to mix down frequency is
a typical method of mixing two signals, although RF frequency capable transistors
must be used. Even though RF transistors are specially implemented from the
foundry they will also have feedthrough from the input to the output.

By using more complex MEMS resonator architectures, it is possible to include
more terminals, reduce feedthrough from the various terminals and to include on-
chip electronics to automatically adjust desired parameters. CMOS-MEMS imple-
mented resonators can offer more complex signal processing capabilities by combin-
ing the MEMS resonators with CMOS circuitry as well as reducing cost and size. In
addition to this, less off-chip engineering will be required, and external impedance
matching is not required because everything is done on-chip. This is true for fre-
quencies that are sufficiently low, i.e. lower than the typical 2.4 GHz consumer
frequency. Any impedance matching of MEMS resonators must be adjusted to
match the following amplifier or any electronics thereafter.

Automatic level

control circuitry
L]

Sust ainings amplifier Output buffer To digital

A/D circuitry
S L DS e
/ converter

Resonator  f—

Charge pump
circuit

Figure 2.3: Voltage-Controllable Oscillator with MEMS resonator and self-adapting elec-
tronics
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One example of using MEMS and CMOS together to complement each other
is shown in Fig. 2.3. It shows the realization of using the MEMS resonator in a
feedback circuit including a sustaining amplifier to make an oscillator circuit. Since
the MEMS resonator is a passive element, it requires an amplifier to initiate and
sustain oscillation. An Automatic Level Control (ALC) circuit is included to adjust
biasing levels at the input and output of the sustaining amplifier. If large voltage
levels are required for the MEMS resonator, a charge pump is also implemented.
The output of the oscillating circuit goes to an output buffer and a following A /D
conversion step. This type of circuit can also be used as a Voltage Controlled Oscil-
lator (VCO) circuit, adjusting the resonance frequency by increasing a polarization
voltage.

Oscillator circuits or VCO circuits both place stringent requirements on the pas-
sive element which dictates the resonance frequency as well as any parasitics from
the amplifier. CMOS-MEMS implemented resonators have a low Q-factor com-
pared to state-of-the-art Quartz or MEMS oscillator implementations [15]. How-
ever, by utilizing a clever and complex resonator architecture, feedthrough can
be substantially reduced. The resulting phase noise of such CMOS-MEMS imple-
mented oscillator circuits may not be as good as other implementations, however
the resulting performance may be “adequate” through the usage of CMOS circuitry.

Common-Mode
Feedback circuit
Feedback
clement

Common-Mode
Feedback circuit

Resonator Charge pump

— Feedback
V circuit -
To A/D W) = - clement To A/D

Resonator

Vin ~— Vout converter ~— H | Vout converter
= ~Ti >
' '
1 Mixer

'
| Transimpedance L 0L L. ' Transimpedance

Charge pump amplifier (TTA) Resonator amplifier (TTA)
circuit

Figure 2.4: Examples of CMOS-MEMS filters and mixer-filters

The left part of Fig. 2.4 shows CMOS-MEMS implemented resonator used
as a filter. A charge pump circuit can be implemented on-chip to increase the
polarization voltage, thus the total filter will comply with voltage levels required
from the CMOS foundry design rules. Following the output of the resonator filter
is a Trans-Impedance Amplifier (TIA) with a feedback element and a Common-
Mode Feedback (CMFB) circuit. The CMFB ensures correct voltage levels of the
input and output of the amplifier. The feedback element can consist of a resistor,
capacitor or transistor and converts the motional current out from the resonator
to a voltage at the output of the amplifier.

The right part of Fig. 2.4 demonstrates a RF signal mixed with an LO signal
down to an Intermediate Frequency (IF). This IF signal is at the same frequency as
the MEMS resonator and is further filtered through the resonator. Using multiple
terminals on a resonator, it is possible to both downmix a signal and filter at the
same time, using the one and same device to both tasks [23]. The LO frequency
is generated from a Local Oscillator (LO) which can also be implemented as a

8



2.1. MEMS AND THEIR APPLICATIONS

CMOS-MEMS resonator. The downmixed filtered current is then converted into
an output voltage V,,; by the same output circuitry.

Local Oscillator Common-Mode Common-Mode
* Feedback circuit Feedback circuit
Resonator Charge pump Resonator
circuit Feedback l Feedback
Jartl My T—- element element To A/D
' H Vout converter
, ~| L] ~=] L ;
P X ~ ! | ~
L .1\ P} O Transimpedance l Transimpedance
Resonator amplifier (TTA) amplifier (TTA)

Charge pump
circuit

Figure 2.5: Augmenting CMOS with MEMS resonator filters and mixer-filters

By combining both parts that were shown in Fig. 2.4, it is possible to achieve a
total on-chip CMOS-MEMS mixer-filter and CMOS-MEMS filter with appropriate
electronics. An example of this is seen in Fig. 2.5. At the receiver part of a
transceiver system, mixing down an RF to IF is performed and then followed by
low-noise amplifiers and an additional filtering step. All of this can be implemented
using CMOS-MEMS resonator filters, mixer-filters and oscillators. The output
from this system is then led to an Analog-to-Digital (A/D) converter. The system
implementation of Fig. 2.5 is less dependent on impedance levels and voltage levels
as they can be controlled internally. Even if the CMOS-MEMS resonators were to
have large impedance values, this could be compensated for by using the on-chip
circuitry to achieve a 1:1 conversion gain and still consuming little power.

Pros of CMOS-MEMS Cons of CMOS-MEMS
Integrate filters or sensors on-chip Possible small electrode area
Reduced parasitics Material composition limited
More routing capabilities Comply to CMOS foundry rules
Compatible with CMOS technologies Possible lower Q-factor
Can reduce bill of materials (BOM) Packaging challenges

Table 2.2: Pros and cons of CMOS-MEMS integration

A summary of pros and cons of implementing MEMS components directly in
CMOS is shown in Table 2.2. These advantages and disadvantages of making
MEMS directly in CMOS will be further pointed out throughout this chapter. It
should be mentioned that the final advantage of using CMOS-MEMS devices is
that even though it has some drawbacks, it may turn out that this implementation
method may offer sufficient performance at a cheap price.

This work will investigate one of several methods of combining CMOS and
MEMS which is shown in section 2.2.
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2.2 Integrating MEMS with CMOS

All methods of integrating MEMS with CMOS will face different types of chal-
lenges. A common denominator for these integration methods is that in order for
compact integration to take place, the MEMS process must adapt to the CMOS
process line as foundries typically do not want to change their existing process
line infrastructure too much. All integration methods must take into consideration
the fabrication temperature, photolithography mask complexity, internal stress,
acceptable materials, the possibility of creating good interconnections and using
acceptable packaging methods [24, 25, 26].

The different integration methods are illustrated in Fig. 2.6. A MEMS first
method is more difficult to implement as the CMOS foundries are reluctant to ac-
cepting “dirty” silicon wafers which have been processed in beforehand. An example
of MEMS first are processes that use Deep Reactive Ion Etching (DRIE) etches
deep into the silicon to make microstructures from Silicon On Insulator (SOI).
These SOI processes can offer lateral moving micromechanical resonators with a
large electrode area and high Q-factor [27].

CMOS transistor “MEMS first”
fabrication sequence process sequence
\ 4
Metallization stack “intra-CMOS”
fabrication sequence process sequence
“MEMS last”

process sequence

Figure 2.6: Process integration methods

An intra-MEMS process consists of integrating the MEMS part after the tran-
sistor fabrication part has been performed (deposition of polysilicon) but before the
metallization sequence takes place. For polysilicon microstructures, this method
makes it possible to anneal the polysilicon at high temperatures to get a good
stress profile. This type of integration method is relatively complex as it disrupts
the normal CMOS process flow, maybe requiring fabrication at different foundries.

The last integration method in Fig. 2.6 is the post-CMOS method which im-
plements microstructures after the metallization fabrication sequence has been per-
formed. This is known as “MEMS last” or post-CMOS. Because the polysilicon and
interconnects have already been made, the thermal budget is critical. The deposi-
tion temperature for the structural material must be lower than this thermal budget
in order to not alter the characteristics of the transistors and the interconnects.

There are two different types of post-CMOS implementation methods. The
first one is based on depositing materials on top of the top metal layer to make
microstructures. The second method is based on using the embedded metal layers
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2.2. INTEGRATING MEMS WITH CMOS

to make microstructures.

An example of the first post-CMOS method is by depositing AIN on top of
Pt to make Bulk Acoustic Wave (BAW) resonators. The deposition temperatures
during fabrication comply with the acceptable temperatures allowed by the foundry.
This method does not damage CMOS interconnects or the CMOS transistors after
fabrication.

There is a lot of research going on in the area of integrating MEMS and CMOS.
My work does not go into the depth of describing the different integration methods
and refers to the literature [24, 25, 26] for in depth details.

My work is based on a post-CMOS process where the already existing metal-
dielectric stack from the CMOS is used to make micromechanical structures. This
post-CMOS process has been made possible through a service known as Application
Specific MEMS Process Service (ASIMPS), offered both in Europe and in USA
[2, 3]. The process steps of this post-CMOS process are shown in Fig. 2.7.

Fig 2.7(a) shows the die immediately after being produced at the respective
CMOS foundry. The yellow metal layer is typically set to be the top metal layer
from the CMOS process and is used to protect the CMOS circuitry from becoming
etched during processing. The green metal layer is the top structural layer and is
used to define the MEMS structures.

Silicon substrate
Bottom level metal layers  1gms resonator structure
B Top structural metal layer (stack of metal-dielectric layers)

Top metal layer;
shielding layer Dielectric layers Remaining dielectric layers

after the first etch step.
Vias,

== 5
?\g T o = [ ==

CMOS circuitry

Silicon substrate

(@) (b)
CMOS shielded by Released MEMS resonator

tgwp metal layer Resulting silicons profile

after the third etch step

C T i [P %
\ ]

\

Figure 2.7: General CMOS-MEMS process etch steps

In Fig. 2.7(b) the openings without the green metal layer allows for etching
trenches down towards the silicon substrate by using an anisotropic etch step se-
quence. An optional DRIE etch step is shown in Fig. 2.7(c) etching about 35 um
into the silicon substrate. The last step is shown in Fig. 2.7(d) where an isotropic
etch releases the MEMS structures, creating circular trenches which cut in under
the openings. This process step is tentative and can be modified in many ways.
However, for this thesis, Fig. 2.7 shows the general dry etch steps that have been
used in this thesis through ASIMPS.
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CHAPTER 2. EXPANDING CIRCUIT DESIGN WITH MEMS

The process flow in Fig. 2.7(b) is based on Table 2.3. Etching the dielectric
where there are narrow gaps is the biggest challenge of this process due to chemical
reactions during the RIE etch. More details of this etch process is found in [28].

Parameter Value
20 CHF3
Gas flow [sccm] | 20 CFy
95 Oy
Pressure [mT)| 100
Power [W| 65
DC bias [V] 270
Time |min| ~ 120

Table 2.3: Typical dielectric etch parameters

The reason for the dielectric step in Fig. 2.7(b) being the most difficult etch
step is because of the fluorocarbon (C, F,) reactions during the dielectric etch [28].
CHF3, CFyand O, in Table 2.3 contributes to this unwanted fluorocarbon reaction.
In general, there are four unknown factors to the dielectric etch:

e Type of etch equipment used for the dielectric etch

The type of dielectric material in the CMOS process
e The thickness of the dielectric layer(s)

e Type of metal layer, i.e. aluminum or copper

It is also possible to take the gap between two structures into account as an
unknown factor. However, due to these uncertain factors — it is not possible to
clearly define the gap between two structures. As will be described in chapter
3.5, a method of changing the gap after the etching has been performed is used
in order to achieve a controlled gap. This means that it is possible to tune the
process to get an adequately small gap size and then later on control the actual
gap. The etch equipment may be different for the different processing steps, i.e.
Plasma-Therm 790 parallel-plate RIE system for the dielectric etch and Surface
Technology Systems (STS) for the deep silicon RIE etch [28]. Steps (¢) and (d)
in Fig.2.7 are less challenging than the dielectric etch, although they may also
contribute to determine post-CMOS design rules.

This thesis is will not go into the very depth of topic of post-CMOS processing as
it is possible to write a PhD thesis on that topic alone [28]. It should be mentioned
that the materials offered in a CMOS process have changed throughout the years,
going from aluminum to a newer dual Damascene copper process. This means that
the etch process must be modified slightly in order to accommodate for this copper
composite material. The challenge of etching the dielectric layer remains the most
difficult etch step, which is why this thesis relies on using a gap reduction technique
after processing.

12



2.2. INTEGRATING MEMS WITH CMOS

Bottom level metal layers . Top structural metal layer Non-MEMS layer(s)

STM 0.25 pm STM 90 nm TSMC 90 nm TSMC 0.35 pm

M1-M4~5 pm a5
! } M1-M5~3 pm } M1-M5~3 pm } M1-M3~5 pm

Figure 2.8: Cross section of the selected CMOS processes

This work has implemented MEMS resonators in four different CMOS pro-
cesses, all through ASIMPS. Design rules for the official CMOS-MEMS process are
offered by ASIMPS and are not shown here due to copyright rules. This thesis has
attempted to implement CMOS-MEMS structures in more modern and fine-pitch
CMOS processes (sub 100 nm CMOS processes): An unofficial development of the
ASIMPS in two 90 nm CMOS processes has been attempted. This section will
describe and show the possibilities that open up when migrating from coarse-grain
(large transistor sizes) CMOS to fine-pitch CMOS. Fig. 2.8 shows a cross section
of various CMOS processes that are used in this thesis. These CMOS processes
offer different structural thicknesses and a different amount of metal layers.

Table 2.4 shows extracted parameters for 4 different CMOS processes encoun-
tered in this thesis. The STM 0.25 um process became obsolete in 2009, and the
STM 90nm became phased out to a newer STM 65nm process in 2010. One STM
0.25 pm run was done in November 2008. Two TSMC 0.35 pm runs were done while
doing an exchange stay at CMU (2009-2010) and one TSMC 90nm run was done
in October 2010. All implementations were performed using the ASIMPS service
offered by CMU. Creating MEMS devices from two different foundries (ST Micro-
electronics and TSMC) as well as implementing MEMS designs in both coarse-grain
(0.25 to 0.35 pm) and fine-pitch CMOS (90 nm or smaller) has provided insightful
information about CMOS-MEMS implementations. It should be mentioned that
0.35 pm CMOS are stable and old processes which will still be around for a while,
however they too will be phased out sometime in the future which was an important
reason for investigating CMOS-MEMS implementations in 90nm CMOS.

STM 0.25 ym STM 90 nm TSMC 90 nm TSMC 0.35 pm
# of metal layers 5 7 9 4
Stack thickness [pm] ~5um ~3pum ~3pum ~5um
Top stack layer M4 M5 M5 M3
Bottom stack layers M1-M3 M1-M4 M1-M4 M1-M2
Shield layer(s) M5 M6-M7 M6-M9 M4

1P5M aluminum 1P7M copper w/ | 1P9M copper w/ 1P4M
Material features w/M1 as tungsten | Dual Damascene | Dual Damascene aluminum

interconnect interconnect
VE]p ratio [\/;JTJ 6470 4115 4115 5435
Table 2.4: Extracted parameters for the selected CMOS processes
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CHAPTER 2. EXPANDING CIRCUIT DESIGN WITH MEMS

In this work, the microstructure which is a metal-dielectric composite is known
as “the stack”. The 0.25 and 0.35 pm processes define roughly 5 pm thick MEMS
structures while the two 90 nm processes defines a stack of about 3 pm thick.
The two 90 nm processes were implemented as a variant of the standard ASIMPS
service with extended etching time during dielectric etch in order to be able to etch
narrow gaps and be able to etch away all the dielectric and get to the silicon level.
With this in mind, both 90 nm processes were designed with a smaller thickness.
Also, the lower-pitch processes have a different thickness composition compared to
the coarse-grain processes as shown in Fig. 2.8.

Fig. 2.8 shows that the coarse-grain processes define a 5 pum thick stack using
3 or 4 metal layers, while for the 90 nm processes, 5 metal layers must be used to
achieve only 3 pum thick structures. The TSMC 90 nm run, which was performed
after the STM 90 nm run, was designed to have the same amount of metal layers (5)
to define MEMS structures. This was done even though the process had two extra
metal layers (M6 and M7) which in turn could have resulted in roughly 4.2 pm thick
structures. Certain beams tend to bend upwards after being released, this effect
is known as curling. The underlying mechanisms and equations behind the curling
phenomenon are explained in chapter 3.5. By making the stacks homogenous (that
is, metal and dielectric are roughly equally thick), will reduce the amount of curling.
Table 2.4 shows that the coarse-grain processes will have a higher F/p (Young’s
modulus E divided by material density p will define the resonance frequency, see
chapter 3.1) ratio compared to the fine-pitch copper processes while the coarse-grain
processes will allow for thicker structures instead and a larger electrode area. The
fine-pitch CMOS processes, however, allows for more intricate routing capabilities
as they have more bottom level metal layers.

§ oo

UL

Figure 2.9: An optical test island
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a b c d e f g
Row 1 | W=0.6 | W=0.8 | W=1.0 W=1.2 W=1.2 W=20 W=20
Row 2 | M4M1 | M5M4 | M7M6 | M5 (poly) | M5 (poly VW) | M5 (w/o active) | Alucap
Row 3 SA SA SA SA VH VH VH

Table 2.5: Optical test island table

An implemented optical test island with various structures are demonstrated in
Fig. 2.9. These test structures were implemented in a STM 90 nm process in the
first attempt to make MEMS in fine-pitch CMOS. Table 2.5 shows the implemented
optical test island where all dimensions are given in ym. Row 1 consists of cantilever
beams with varying width (W). Row 1 f and g consists of 20 um wide beams. Row
2 consists of varying the amount of metal layers internally. Some of these structures
include polysilicon beneath (2d and 2e) where 2e has Varied Width (VW) of the
polysilicon layer. 2f consists of all metal layers up to metal 5 (M5) but without
something called the Active layer (see p. 17-18) to see possible excessive out-of-
plane curling. 2g consists of the aluminum cap layer from foundry, typically used
for bond pads. The third row consists of rather wide beams of 40 um to see if they
were released (SA=Semi-Anchored). Row 3e to 3g consists of holes with varying
dimensions (VH=Vary Holes).

'\T'\"

20pm

- —

———— 20um F——"20um
515 XL TIF

14 SIS_XL.TIF

Figure 2.10: Delaminated and curling structures

Examples of delaminated and curling structures are seen in Fig. 2.10. In B, the
far left three beams are homogenous consisting of metal 1 up to metal 5, while the
other beams have a varying amount of metal layers embedded. A rather wide M5
part of a 20 um wide beam started to delaminate (detach itself from the underlying
structure) in C. D shows a rough aluminum surface, showing that it reacts more
with the etch recipe than the copper does.

The cross section of a STM 90 nm released beam with metal layers can be seen
in Fig. 2.11. From Fig. 2.11 it can be seen that metal layers M1-M5 have roughly
equal thickness of the dielectric and metal layer while M6 and M7 have roughly
twice the thickness. Table 2.6 shows the various thicknesses for both coarse-grain
and fine-pitch CMOS processes. Exact thicknesses are not stated due to copyrights.
However, the thicknesses in Table 2.6 give a general idea of possible stack thickness
that can be made from metal-dielectric stacks.
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Metal 7

Metal 6 —

Figure 2.11: SEM showing cross section of STM 90 nm metal layers

Dim. in nm Coarse-grain CMOS | Fine-pitch CMOS
Metal 7 800
Via6 (M7-M6) 800
Metal 6 800
Via5 (M6-M5) 800
Metal 5 1200 300
Viad (M5-M4) 1200 300
Metal 4 650 300
Via3 (M4-M3) 650 300
Metal 3 650 300
Via2 (M3-M2) 650 300
Metal 2 650 300
Vial (M2-M1) 650 300
Metal 1 650 300
Via (M1-Silicon) 650 300
Total thickness ~ 7600 ~ 6200

Table 2.6: General thicknesses for coarse-grain and fine-pitch CMOS processes
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2.2. INTEGRATING MEMS WITH CMOS

Released cantilever beams for process characterization are shown in Fig. 2.12.
The curling and delamination effects shown in Fig. 2.10 and 2.12 can occur due
to several reasons. The delamination effect consists of beams becoming detached
from the underlying material, starting to curl out-of-plane even before the silicon
release etch. This delamination effect occurs due to the processing temperatures
and the geometry of the device as seen in Fig. 2.12.

Figure 2.12: Wyco measurement of cantilever beams

A stack which is as homogenous as possible will reduce the internal stress in the
mechanical structure. If the internal stress is too large, the free parts of a released
beam may bend upwards or downwards. One method of reducing the amount of
internal stress is to include a layer offered from the CMOS process which is known
as the Active layer. The Active layer is used to define transistors as areas with
this layer will contain a small dielectric deposited at lower temperatures. This will
result in a reduced internal stress and therefore a reduced amount of curling [28].

The implementation of Active layers can be seen in Fig. 2.13. The light green
area defines the Active layer. The red layer is polysilicon. CMOS foundry rules do
not allow the Active layer to cross the polysilicon unless polysilicon and the Active
layer both overlap each other (something which is not possible for the structure
which is to be released). Therefore structures with polysilicon beneath are partially
covered by the Active layer. The CMOS rules state that there must be a small
separation from the Active layer to the polysilicon layer. Also, if the polysilicon is
too close to the edge of the structure, it may become etched.

Fig. 2.14 shows Wyco measurement of long thin simply clamped beams. Fig.
2.14(a) shows beams consisting of M1-M7 (thick blue line) and M1-M5 including
polysilicon beneath. It is clear that the M1-M7 beam has more curling, starting
to bend 4.5 um at 60 pum from the anchor. It was not possible to measure the
whole 100 pm long beam due to resolution limitations. This clearly shows that a
more homogenous beam will curl less. Fig. 2.14(b) shows a M1-M5 beam with and
without the Active layer. The thin green line is without the Active layer, showing
that the curling is roughly 700 nm for a 100 pum long beam compared to roughly
300 nm curling for the beam with the Active layer.
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Figure 2.13: Layout rules for Active and Poly layers
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Figure 2.14: Results from Wyco measurements
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2.2. INTEGRATING MEMS WITH CMOS

Figure 2.15: Corroded copper surface from a 2007 0.25 pm BiCMOS tapeout

As seen in Fig. 2.15, corrosion of the surface material may occur when exposed
to the environment for a too long time. If the die package is not sufficiently sealed,
moisture from the environment will cause corrosion of the surface material. CMOS
processes based on aluminum tend to corrode less. By cleaning with Ar or rinsing
with TPA (Isopropynol Alcohol), it is possible to reduce this corrosion effect for
copper composite materials [28]. Curling, delamination, corrosion, materials for the
microstructures and possible Q-factor are challenges for this post-CMOS method.

Dim. [gm] | Rule name Comment
Minimum width 1 W1 Delamination
Maximum width 10 W2 CMOS rule
Max length fixed-free < 60 L1 Delamination
Max length fixed-fixed < 100 L2 Curling
Max stack thickness 5 H1 Preliminary
Gap spacing 1.2 S1 Guarantees release
Poly from metal edge 0.6 S2 Prone to etch
Active cover edge 0.3 Al Reduce curling
Active sep poly 0.1 A2 CMOS rule

Table 2.7: Tentative fine-pitch CMOS-MEMS design rules

Table 2.7 illustrates the developed rules for 90 nm CMOS designs. These design
rules are tentative and are slightly adjusted compared to the coarse-grain CMOS-
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MEMS implementations. For example, to avoid delamination of structures, the
width should be 1 pm or larger. However, if a beam is sufficiently short and fixed
at two ends, the width may be designed to be less than 1 ym. The CMOS foundry
places maximum widths for the structures, although by clever design it is possible to
create larger widths. Due to curling and delaminated structures, a maximum length
has been set for fixed-free and fixed-fixed structures. The maximum thickness is
given by the selected CMOS process and the gap size has been limited to 1.2 pum
where self-adjusting gaps after release will create an even smaller gap as explained
in chapter 3.5.

Pros of fine-pitch Cons of fine-pitch
Less parasitics Excessive curling may occur

Lower Vpp and power consumption Small stack thickness
Intricate routing capabilities Stringent CMOS design rules

In line with newer CMOS technology Delamination effects

Table 2.8: Pros and cons of fine-pitch CMOS-MEMS

As can be seen in Table 2.8, a comparison of coarse-grain and fine-pitch CMOS-
MEMS has been demonstrated. It should be noted that the stack thickness can
be roughly 5 pum thick by including two more metal layers, making the total stack
thickness comparable to coarse-grain CMOS-MEMS. The reason why this was not
done was to keep the resonator thickness as homogenous as possible in order to
reduce delamination and curling effects. Fine-pitch CMOS has even less parasitics
compared to coarse-grain CMOS, and the power consumption is much less due to
a lower Vpp. The foundry design rules for 90 and 65 nm CMOS are much more
stringent and demanding compared to the 0.25 and 0.35 um CMOS processes,
requiring more of the designer to be able to implement the wanted micromechanical
structures. However, through the usage of Verilog-A code it is possible to make
semi-automated layout design which will satisfy the foundry rules. With clever
layout design and resonator architecture, fine-pitch CMOS can offer even better
results than coarse-grain CMOS-MEMS.

This chapter has gone through some examples of utilizing MEMS with CMOS
circuitry and described various methods of how to combine CMOS and MEMS.
The chosen implementation method has been explained with examples of tentative
derived design rules for fine-pitch CMOS-MEMS designs. With the implementa-
tion method being explained, the functionality and description of the resonator is
described in chapter 3.
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Chapter 3

RESONATOR MODELING

IBRATING beams inhibits behavior of self resonating modes which produces

distinct frequencies with maximum throughput, thus making it possible to
use resonating beams as signal processing elements. These self resonating modes
are due to a dynamic behavior of external forces which in turn generates a spring
effect from the beam; a force generated internally in the beam which counteracts
the external force. This spring effect results in a movement of the beam at dis-
tinct frequencies. It is possible to register this self resonating dynamic behavior of
a beam if the surrounding ambient does not produce a damping which is greater
than the internal spring force from the beam. A beam at a self-resonating mode
will vibrate back and forth until an external or internal damping mechanism limits
this vibration. Modeling of the resonator and its self resonating modes is necessary
in order to build more complex MEMS resonator filters. This chapter will describe
how beams can have different modes and show the model for an electromechanical
equivalent description. Finally this chapter will go through some damping mecha-
nisms, non-linear effects and a method of increasing resonator throughput by using
a gap reduction technique.

3.1 Mechanical beam model

By using the Euler-Bernoulli beam theory [29, 30], it is possible to find a static
spring stiffness and a dynamic resonating frequency. The Euler-Bernoulli beam
theory is valid for beams with a length to width ratio of 10 or more and assumes
that translational and angular shear forces are small compared to the bending
deformation. g 2
[*2 z

EI@—F/)AE =0 (3.1)
The dynamic beam behavior is described in eq. 3.1. E is the Young’s Modulus, I is
the area moment of inertia, p is beam density and A is the cross section area. z(z,t)
is the amount of bending of the beam depending on the position z throughout the
beam length where the time part of z is disregarded in this analysis:

z(x) = Cisin(Bz) + Cacos(fz) + Cssinh(Bzx) + Cycosh(fx) (3.2)
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The trial solution in eq. 3.2 is used to find solutions for the radial frequency of
the beam that have different boundary conditions. The mode number Sy (where
Bn = fz) in eq. 3.2 is related to the radial frequency of the beam:

EI
2 _ Bl oy
woprﬁN (3.3)

By [EW
nom — R 75
fo, i\ oI

The radial frequency is related to the resonance frequency by wy = 27 fo nom- Eq.
3.4 is a rearranged version of eq. 3.3 where a scaling factor k£ has been introduced
to model a possible frequency shift due to topological variations of the resonator
[31]. W is the resonator width and L is the resonator length. Eq. 3.4 is very
important in this work as it is used to model different resonator types which will
have different resonance frequencies depending on the mode number Sy.

(3.4)

Fig. 3.1 shows two different boundary conditions. The derivative of z(z) up
to three times results in the momentum M (2/(x) = M), the angle 6 (2"(z) = 0)
or the shear force V (z”(z) = V). The clamped condition has a boundary axis
which is fixed and it has zero displacement and bending because that part can not
move. The clamped condition has a momentum and shear forces. The right side
of Fig. 3.1 is the pinned condition where the boundary axis is not fixed, but the
circular dot in the middle is fixed, making it a fixed point. The pinned condition
will not experience displacement nor momentum, but it will have a bending angle
and shear forces.

Boundary axis Boundary axis
Fised wall } Movable part Movable part Movable part
H T H
W 220 M#0_ 4..2=0__M=0__
e=0 V=0 | | 0+0 V=0
X
Clamped condition Pinned condition

Figure 3.1: Two beam boundary conditions

For beams connected at one or two ends in various ways, the two boundary
conditions of Fig. 3.1 can then be used in eq. 3.2. The general characteristic
equation for beam bending can be solved by using boundary conditions that are
known.

In this work, there are five different beam boundary conditions which are used
as can be seen in Fig. 3.2. A Clamped-Clamped (CC) condition means that both
ends will not have any angle, but the Pinned-Pinned (PP) condition shows that
there will be an angle at the point where it is fixed. The Clamped-Free (CF)
condition in this work is referred to as a cantilever beam. The Clamped-Pinned
(CP) condition is another important beam type used in this thesis.

A final important bending condition for the beams is the Free-Free (FF) con-
dition. This mode can in one sense be seen upon as a Pinned-Pinned mode with
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Free-free (FF) Clamped-clamped (CC)

//_\\ ._/\_. Clamped-free (CF)
Pinned-pinned (PP) Clamped-pinned (CP) ._/

e N o

Figure 3.2: The 5 different boundary conditions

additional beams attached to its end. However, the fixed points are located at
strategically A/4 and 3\/4 positions on the beam. This will make the free ends
bend in an opposite direction as the middle part of the beam, making it vibrate
back and forth as one vibrating beam. The Free-Free beam can lead to certain
advantages as will be explained in chapter 3.3.

Boundary condition 51 5o 3
Clamped-Free (CF) 1.875105 4.694091 7.854757
Clamped-Pinned (CP) | 3.92660231 | 7.06858275 | 10.21017612

Pinned-Pinned (PP) T 27 3
Clamped-Clamped (CC) | 4.73004074 | 7.85320462 | 10.9956079
Free-Free (FF) 4.73004074 | 7.85320462 | 10.9956079

Table 3.1: 3 mode numbers for various beam clamping conditions

Finding the mode numbers for the beams presented in Fig. 3.2 is possible by
using the same general beam bending movement (eq. 3.2). The mode numbers
for all five beam types are shown in Table 3.1. The details on finding these mode
numbers are more thoroughly explained in chapter A in the appendix. These five
beam conditions, their mode numbers and equation 3.4 are important as they are
used extensively in this work. Not all of these five beam conditions are to be used
as resonators, but anchoring beams and coupling beams will be used which have
mode numbers different from the actual resonator.

All of these beam types will, regardless of boundary type, have a certain static

mass given by:
Mestatic = IOLWH (35)

where H is the thickness of the beam. A vibrating beam, however, will not have
a constant mass throughout the beam length due to the fact that kinetic energy
must be constant:

1,1 Yot
Ek—gmv —gpA/o v (L')dl (3.6)

Because the velocity of the beam will vary depending on the location x through-
out the beam length, the mass must also vary in order for the kinetic energy to
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remain constant. By integrating the length L from the start of the beam to the
end of the beam and dividing that by a non-integrated FEj term, it is possible to
obtain the effective mass:

N2 ’
e (z) = E; _ %pA fOLv (:r) dx
ST ()2 Lu(a)?

where the velocity is defined as

v (z) = —wal, g ()

mode

and where ,,,4. 1s & description of the deflection of the beam relative to z, and w
is the angular velocity. As an example of this, eq. 3.7 describes the beam shape of
a cantilever beam

Tmode(T) = 2 - Y(sinBx — sinhfz + a(coshfx — cosPx)) (3.7)

where v = 0.367, § = Y0 and o = 1.362 [26]. =z is the maximum deflection
that the beam experiences which will be due to electrostatic forces as described in
section 3.2. For the cantilever beam, a maximum amplitude occurs for x = L. By
inserting the z,,,4. equation and the velocity equation in the general effective mass
equation yields:
_pWH fOL [wmode(w')]de'
[xmode(x>}2

The modeling of resonators with effective mass is shown in eq. 3.8 where the
dynamic behavior of the beam is taken into consideration. The effective mass will
be larger towards any anchored ends and have its minimum at parts of the beam
which is displaced the most. For the cantilever beam, the lowest effective mass is
experienced at the tip of the cantilever which is lower than the calculated static
mass (Mstatic). The Free-Free, Pinned-Pinned and Clamped-Clamped beam types
follow the same type of analysis to find the effective mass, each with its own Z,,04e-
Most resonators used in this work has the lowest effective mass at the middle of
the beam due to pinned or clamped conditions at the start and at the end of the
beam. A special case occurs for the CC and FF boundary condition where their
mode number (and resonance frequency) are the same, but their beam mode shape
is different resulting in a slightly different effective mass.

(3.8)

Mepy(T)

The stiffness of the beam can be obtained through a static analysis similar to
the dynamic analysis which was performed earlier in this section. However, due to
the fact that effective mass is not constant throughout the beam length means that
the mechanical spring stiffness, k,,, must also vary throughout the beam length:

km

= kp(z) = w%meff(x) (3.9)
Meff

Wy =

wp is obtained from eq. 3.3 or eq. 3.4 where Sy depends on the type of beam
boundary condition. As with mesy, ky, will have its minimum value where maxi-
mum beam displacement occurs and k,,, will be rather large towards its anchoring
points.
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3.2 Electromechanical resonator description

The previous section described the vibrating beam as a pure mechanical device.
To make the beam vibrate back and forth at various frequencies is possible by
using electromagnetic, piezoelectric, magnetostrictive, electrostrictive or thermal
actuation [32]. This work will use the electrostatic actuation principle due to
relatively good coupling efficiency, speed and its simplicity. If the beam experiences
an external force, the net force the on the beam must be zero at all times and is
given by
€0A6V2
2¢?
where z = go—g. The total net force is the sum of the electrostatic force F,; and
the mechanical force F,..,. The electrostatic force has an opposite sign compared
to the mechanical force. The mechanical force Fi,..p, is given by Hooke’s law F' =
kz. This mechanical term opposes the electrical force which initiates displacement
of the beam. The electrostatic force equation originates from potential energy
equation:

Fnet:Fel+Fmech:_ +k(g0_g):O (310)

Ccv? dE, V2dC

== — Fy = i 2 dg (3.11)
where C' = %04= The solution in eq. 3.10 becomes unstable for a small change of
the net force divided by a small change of the gap less than zero (dF,./dg < 0).
This unstable area is not used for resonators but typically applied for mechanical
switches which cause the beam to collapse onto the electrode. The resonator must
therefore have a voltage lower than the pull-in voltage which is defined as

8]{390
i = A/ 12
‘/p 2780145 (3 )

The pull-in voltage becomes low for a small spring stiffness, low initial gap (go)
or large electrode area (A.). The resonator must be operated at voltage levels
lower than V,;. It should be mentioned that the analysis provided here is based on
a linear Hooke’s law and the parallel-plate theory, assuming that the displacement
of the beam is the same throughout the beam length, something which is not
necessarily the case for the different beams in this thesis. If the beam displacement
is only a fraction compared to the beam length, these simple equations can be used.
However, Finite Element Method (FEM) simulations must still be performed to
compare with analytical calculations. If the analytical equations are too coarse-
grain compared to the simulation results, expanding the resonator equations with
non-linear capacitive or stiffness terms will make the results more comparable with
FEM simulations. Non-linear resonator behavior is explained in section 3.4. The
effective spring stiffness of the resonator is defined as k and is given by:

Ly

[ — (3.13)

where k. the electrical spring stiffness. The effective beam stiffness is obtained by
subtracting the electrical spring stiffness from the mechanical spring stiffness [31].
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CHAPTER 3. RESONATOR MODELING

Large voltage values can cause a noticeable reduction of k as k. becomes large
enough. This effect is known as spring softening due to reduction of the effective
spring stiffness k in w? = %ff This softening of the spring stiffness may result in
a non-linear behavior of the beam. It is possible for the beam to also experience a
stiffening effect. Both of these effects are more described in section 3.4.

Beams that are stimulated with a sinusoidal electrostatic force has a counteract-
ing mechanical force which opposes the electrostatic force which causes the beam
to move back and forth; the beam starts oscillating. For an ideal case without
any damping, the beam would vibrate back and forth infinitely. However, the real
world will provide damping to these mechanical systems. Any vibrating beam with
damping mechanisms will follow

d2
F, = meffﬁ +b— + kz (314)

where F,; is the electrostatic force which initiates oscillation and b is a damping
term. Eq. 3.14 shows the physical behavior for a beam opposing the electrostatic
force. By using LaPlace and rearranging, this relationship can be rewritten as a
function of displacement z(jw)

Fel(jw) 1
k14 de w )2

Quo wo

z(jw) = (3.15)

Eq. 3.15 shows the resonator displacement response as a function of frequency.
If w = wy then the % term becomes amplified by Q, thus enhancing the res-
onator displacement by the resonator Q-factor. For really large Q-factors, the
displacement may become rather large:

FelQ
k

The resonator displacement at the first resonance mode of the beam is given
in eq. 3.16. The electrostatic force F,; was previously stated in 3.11 but is now
redefined as:

2w =wpy) = (3.16)

EerVp

Fel:‘/:zc g2

(3.17)

The V2 in eq. 3.11 has now been replaced by V,. and Vp. It turns out that
V2 = V2 sin?(wpt) will cause the resonator to oscillate at sin(2wgt) in addition to
sin(wot). By using a DC polarization voltage (Vp), the resonator will resonate at
the desired frequency. For this to be possible, Vp must be orders of magnitude
larger than V.. Vp will act as an amplifying term for the resonator, allowing an
increase in resonator throughput.

Eq. 3.14 stated that an oscillating behavior is stimulated from the electrical
force F,;. A simple schematic of a mechanical oscillating system and its electrical
equivalent is shown in Fig. 3.3. The left part of Fig. 3.3 shows F; attracting a beam
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3.2. ELECTROMECHANICAL RESONATOR DESCRIPTION

mass m which has a damping factor b and coupling to an anchored wall through
the beam stiffness k. The right part of Fig. 3.3 shows the electrical equivalent
of the mechanical model. Analyzing the electrical schematic results in a transfer
function which is comparable with the mechanical transfer function. From this
comparison it can be seen that the mass is proportional to the inductor (L), the
spring stiffness k is inversely proportional to the capacitor (1/C') and the damping
b is proportional to the resistor (R).

Mechanical system: Electrical system:
b
\—E/:| Fel
k m

&2
F, = mﬂffﬁs +b(— + kz

H(jw) = L ¥ H(i :Vout: LC
(5w) Foa  (jw)?+ —m(bﬂjw + Tf,, (5w) iw)? j

Figure 3.3: Schematic comparison of a mechanical and electrical system

The LCR schematic of Fig. 3.3 is a direct conversion schematic of mechanical
components to electrical ones. A more accurate schematic for the resonator is
developed which takes into account a transformation between the mechanical and
electrical domain. Eq. 3.17 showed that F; will increase linearly with V,. due to
Vp. From eq. 3.17 it is now possible to define this linearized relationship:

d A,
Fy =nV,. wheren = VP—C = VPEO 3
dz g

(3.18)

Eq. 3.18 shows an important parameter, the electromechanical coupling coef-
ficient . The 7 is valid for small perturbations of the beam and represents the
winding ratio of the schematic equivalent of the resonator. Explained in a simple
manner, the n describes the winding ratio of a transformer, converting the electrical
signal to a mechanical signal. As the vibrating beam is a mechanical device, this
part of the resonator schematic is really just a mechanical response induced by an
electrostatic force. Going from the resonator to an output electrode, the output
from the resonator goes through a transformer with winding ratio which represents
going from the mechanical energy domain to the electrical energy domain again.

The equivalent schematic of the resonator with transformers is shown in Fig.
3.4. The resonator is described by [,, ¢, and r, that are assigned in lower case to
specify that these are component values in the mechanical domain. Looking at the
resonator from the outside of this two-port schematic, the ., ¢, and r, are turned
into L,, C, and R, by removing the transformers and including 7. The upper case
LCR values then represents the electrical values as seen in or out of this “black
box” which represents the resonator.
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1: n |Z Cz Iz n: 1
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L

Figure 3.4: Simple electromechanical resonator schematic

+ O

Vac

L. = % (3.19)
772
kme
Ro= Yo" (3.21)

Eq. 3.19-3.21 shows that L., C, and R, are converted into electrical component
equivalents in the electrical domain through the usage of . R, can be represented
in an alternative way:

kg*

R, = NGV (3.22)
Eq. 3.22 shows the resonator motional impedance [31]. This is one of the most
important equations when describing the performance of a resonator. This value
should typically be around 50 €2, thus matching any previous or following circuitry.
Achieving a very low R, is possible by a low electrostatic gap g, a large electrode
area A., a large polarization voltage Vp or a large resonator Q-factor. There is a lot
of ongoing research on various methods of how to achieve a very low R, value by
different means. This could for example be tuning the process thus allowing a small
gap or a large electrode area, applying a large Vp or make the MEMS resonator
using a material which inhibits a very low intrinsic loss and therefore resulting in
a large Q-factor. The latter example is possible by making the MEMS resonator

out of a material such as diamond [33].

This work does not focus on trying to fine tune the process to achieve a very low
R, value. However, what is of focus in this work is the investigation of expanding
CMOS by using MEMS to simplify signal processing. This does not mean that R,
can be designed to be huge, however it is possible to allow it to have a value in the
few tenths to hundred of k2 (in contrast to sub k2 in other research literature).
This is possible by having control of the following on-chip amplifier accompanying
the resonator. More details on total filter description of CMOS-MEMS resonators
with important performance parameters are described more throughout this thesis.

_ ac dCdz  woQelA?
iy = Vpe = Vpo—e e = 200y 2y, 2
o = VP Pz dt kgt TP (323)
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3.2. ELECTROMECHANICAL RESONATOR DESCRIPTION

Eq. 3.23 shows the resonator output motional current which arises from a time
varying capacitance (dC/dt) multiplied by the polarization voltage across the gap
at the output of the resonator. This term can be split into dC/dz times dz/dt
where the time varying part can be replaced by zwy. Alternatively, eq. 3.23 can be
obtained by from eq. 3.22 and assuming that L. and C, are of equal value during
resonance, thus canceling each other. The i, for micromechanical resonators is
typically on the orders of a few nA up to a few hundred nA.

Vp Vp Vio Vp

: | ' Tou
Vrr —L/O-II%H—/O:—OLT Vrr

Figure 3.5: Filter and mixer-filter resonator symbol

Fig. 3.5 shows the symbol of the micromechanical component as a schematic
symbol. The left part shows the symbol of a 2-port MEMS resonator filter with
a spring-mass-dashpot attached to it. Internal routing of the resonator may al-
low different terminals inside the resonator itself, thus allowing two Vp terminals.
These may be connected together or can be two different voltages, depending on
the desired usage of the device. By referring to Fig. 3.4, the left Vp is the left
transformer and the right Vp is the right transformer.

In the right part of Fig. 3.5, the resonator is connected as a mixer-filter. It is
almost the same symbol, except that one of the Vp terminals has been replaced by a
mixer symbol and a V7o terminal. This allows the possible mixing of Vzpcos(wgrpt)
with Vipcos(wrot). The internal routing of the resonators gives the flexibility of
both doing mixing and filtering of a signal at the same time, which in transceiver
architectures are typically done with two different components. Eq. 3.24 and 3.25
describes the down-mixing functionality of frequency and electrostatic forces due
to the mixing of the V2 term from eq. 3.10 [34]:

Wrrp = Wy = WRF — WLo (324)

c0A:Vio

22 % (lwrr — wrolt) (3.25)

Fel,mizerffilter = VRF

Both symbols of Fig. 3.5 results in a filtered motional current out from the res-

onator. This current needs to be converted to a voltage for further signal processing.

The conversion through the resonator filter (or mixer-filter) is a voltage-to-current

conversion. As will be discussed in chapter 5.3, this current can be converted back

to a voltage with a unity gain conversion (i.e. 1 V in, the output is a filtered 1 V
signal out).
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CHAPTER 3. RESONATOR MODELING

3.3 Damping mechanisms and the Q-factor

Vibrating beams that are to be used as filtering components inhibits a dynamical
oscillating behavior. Because of the complex transfer function of the system, for
certain frequency modes, the system will be located between being able to oscillate
and be damped due to imaginary and real parts in the transfer function. This can
be represented as a graph with an imaginary axis being the oscillation and a real
axis being the damping as seen in Fig. 3.6.

jo

More osclllauon‘ >

. - =¥ <€«—— Undamped

. -

More damping ,’

]
Q

Figure 3.6: Examples of a critically damped or undamped micromechanical system

In reality these vibrating beams will have a damping factor which will cause a
stable system to reside in the left half of the complex plane. For Q-factors larger
than 1/+/2 allows for oscillation of micromechanical beams [35]. The Q-factor is an
important parameter which defines the gain of the system. The transfer function
for the resonator is shown below:

ic wp
H(jw) = : — = 7 . (3.26)
To T Hw+ (w)? Wi+ Fiw + (jw)?

The left part of eq. 3.26 describes the resonator as an electromechanical LCR
transfer function with wy = 1/v/LC. The R/L can be shown to be equal to b/m.;
as was described earlier. The right part of eq. 3.26 shows that the system is only
related to wy and the Q-factor. The resistive part R, creates the damping part,
while the L, and C, creates the oscillating part for the transfer function. Eq. 3.21
shows that R, is inversely proportional to the Q-factor.
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3.3. DAMPING MECHANISMS AND THE Q-FACTOR

It is desirable to have a low R, value in order to match previous or following
signal processing parts and because narrow filter bandwidth may be desirable. In
the end, tweaking the geometry to achieve a low R, will at some point reach a
limit, which is why it is important to focus on achieving a large Q-factor for these
micromechanical systems. It should be mentioned that for frequencies above the
GHz range, the Q-factor must be on the order of hundreds of thousands in order
to achieve sufficient performance. This work relates to frequencies below the GHz
area for WSN nodes, something which will place a less stringent requirement on
the Q-factor.

Estimating and calculating the Q-factor for these micromechanical filter systems
is a difficult task, it could be possible to write a thesis on that topic itself. Trying
to precisely define the Q-factor becomes out of scope for this thesis, so the main
damping mechanisms will be explained here and crude estimations of the Q-factor
for CMOS-MEMS resonators. The usual definition of the Q-factor is:

w
=2r—— 3.27
Q=2ry: (3.27)
Eq. 3.27 defines Q as energy stored (W) over energy dissipated per cycle (AW),
specified in radians. In short, micromechanical systems have various damping
terms. Finding the loss mechanisms and the energy stored is a difficult task. In-
stead, it is typical to define damping terms that are inverse Q-factor:

L S SR B
Q QAZ'T QTED QSurface QAnchor

Eq. 3.28 describes the total inverse Q-factor as a sum of four inverse Q-factor
(damping) terms: Air, Thermoelastic damping (TED), Surface damping and damp-
ing through anchoring parts [36, 37, 38]. There may be more terms which contribute
to damping, however these are the most important ones. The largest 1/Qerm will
be the dominating part which in turn will contribute to most damping.

(3.28)

The first term is @ 4; which is damping due to energy loss through the sur-
rounding environment. The surroundings may be air or vacuum depending on the
conditions and is given by

k
= — 3.29
Qur = i (3.29)
where by, is a damping factor obtained from rectangular parallel-plate geometry
calculated using Reynolds gas-film (squeeze film) equation:

3 A

by = —p— 3.30
q 271,/1/ gg ( )
where p = 1.78 - 10° for air and is a coefficient which describes the viscosity of the
surroundings and depends on pressure and the mean free path of the gas molecules.
Notice that eq. 3.29 was obtained from eq. 3.21 where the Q in that equation is
the total Q-factor of the system while eq. 3.29 is used to just find the @ 4; term.
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CHAPTER 3. RESONATOR MODELING

The second term is due to movement of beams which may cause a generation
of thermal energy which causes damping:

Ed2Ty wr

= 3.31
@rip Cp 14wt ( )
where 7 is defined as o
pW
= .32
T CT7T2 (3 3 )

Cp is the specific heat at constant pressure of the material, ar is the Thermal
Coefficient of Expansion (TCE), Tj is the environmental temperature, Cp is the
thermal conductivity of the beam and w is the angular frequency of the resonator.

The third damping term is 1/Q gy foce that is a result of energy loss mechanisms

of surface loss:
WH E

3W + H2E46

where § is the characterized thickness of the surface layer and Egys is a constant
which is related to surface stress.

QSurfacc = (333)

Finally, the 1/Q anchor defines the damping and loss of energy due to energy
being pumped into the anchoring parts of the resonator:
Ek,tot
Eloss

QAnchor =27 (334)
The stored flexural energy is defined as Ej, 4, which varies for each resonant mode
and is expressed as:

1 1
Ek;,tot = gnleffv2 = §pHWLUJ()Z (335)

where wy is the resonance frequency at that mode and Z is the maximum vibrational
amplitude. FEj,s, is the loss of energy which is dissipated per cycle of vibration
through the anchor or support parts into the substrate. For a Clamped-Clamped
beam, this is calculated as:

1.3441 +v

Eoss = TS/ N
! EH(1—v) °

(3.36)

v is the Poisson ratio for the support beam, I'y is the vibrating shear force of
the support. It is evident from eq. 3.34-3.36 that a large geometry, high operating
frequency and beam displacement is desirable in order for low loss in the supporting
beam of the resonator. As will be shown in chapter 4, it is possible to alleviate some
of this anchor loss by designing special support beams with certain dimensions.
As a summary, the 1/Q 45 term is more or less dependent on a low A, or large g
something which contradicts resonator design methodology. u is fixed as it depends
on the environment conditions. Q. can be kept large by designing for high & while
retaining a low mass. The Qrgp is a factor which will depend greatly on the type of
material and its heat capacity and the thermal coefficient of expansion. In general,
as micromechanical resonators scale down the Qrgp will decrease, especially for
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beams with small widths. The Qsurface is also difficult to design to be large as
it also depends on the material parameters. It should be mentioned that the Q-
factor could be loaded and reduced in the same manner as the spring stiffness of
the resonator [39]. Eq. 3.37 and eq. 3.38 describes this effect:

ke
f() = fO,nom 1-— ]{,‘7 (337)

Q = Qnom \/ 1- :76 (338)

As a conclusion to this section, it should be noted that Q-factor estimations
are difficult and time consuming. It requires a good knowledge of the materials
involved and the anchoring methods of the resonator. Analytical calculations alone
can not provide sufficient estimations without the use of FEM tools. CMOS-MEMS
implemented resonators have shown to provide Q-factors between 1000 and 2000
in vacuum conditions and up to 50 in air [28, 40]. The Q-factor estimations in this
thesis assume both a Q-factor of 1000 and 2000 in vacuum. For all micromechanical
systems there will be a variation of the Q-factor, both with respect to design
properties, material properties and environmental conditions which will cause the
Q-factor to fluctuate from device to device. It is possible to utilize on-chip CMOS
circuitry to adjust for lack of gain (low Q-factor) by using amplifiers to achieve a
1:1 conversion factor of the total resonator filter system.

3.4 Non-linearity effects

The displacement z from micromechanical resonators will result in a filtered out-
put current i,. Both the displacement and current can contain non-linear terms
from mechanical or electrical contributions. The electrical contributions are from
capacitive effects while mechanical terms can be from strain and deformations, for
example causing length elongation of the beam. The mechanical spring stiffness
may contain non-linear terms:

km,tot = km (1 + kmlz + kn1222) (339)

The mechanical spring stiffness k,, is the first term and is a linear term. k,,; and
kmo are higher order terms which are given by

£ E,
km = 7 km = 75
ot e

(3.40)
The E; and Es in eq. 3.40 are non-linear Young’s modulus terms and depends on
the type of beam material [41]. In this work, mechanical non-linearity is typically
not dominant due to the resonator architectures used. Pure Clamped-Clamped
beam resonators with large deflections and with a large F will experience more
mechanical non-linearity.

33



CHAPTER 3. RESONATOR MODELING

Capacitive non-linearities will cause k. to be non-linear. Typically eq. 3.16 is
sufficient to describe resonator displacement. However, when the resonator has a
low mechanical stiffness &, and is at the same time operated with a large Vp value,
the linear k, model may become inaccurate [42, 43]. The electrical stiffness k. with
non-linear terms is modeled as:

ketot = ke (14 kerz + kea?® + .. kenz") (3.41)

Eq. 3.41 shows that the electrical spring stiffness consists of higher order terms
that all are related to the displacement z. The k. term is the first term and is
linear. k.; and k., are square and cubic electrical spring coefficients respectively.

e 3 2
= 92 7kcl = 27.97 ke? = E (342)

ke

The k. terms contribute to reducing or increasing the frequency depending on
which term that dominates. When operating the resonator with high vibration
amplitudes, the square and cubic spring stiffness terms will become more dominant.
Because the amplitude-frequency curve no longer becomes a single valued function,
the oscillation may become chaotic once the amplitude is larger than a critical value
known as z.. The maximum usable vibration value is extracted from the largest
value that appears before a bifurcation (hysteresis of the curve). The bifurcation
amplitude and critical amplitude are respectively [42]:

1 2
2 = 2= (3.43)
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Figure 3.7: Non-linear resonator behavior and possible hysteresis effect
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Fig. 3.7(a) is an example of how s will affect the response from the resonator.
k1 is the lowest value and k3 is the largest value. In this example, « is negative and
contributes to a reduction of the resonance frequency as well as tilting the curve
to the left. ki is the lowest value and shows less tilting of the curve. When the
negative value of « is too large (see k3), the curve enters a state of hysteresis. At
the point when the hysteresis starts, the bifurcation amplitude z, is reached (see
Fig. 3.7(b). For any curve with a hysteresis, the maximum usable amplitude of
vibration is z. as shown in Fig. 3.7(b). z. is always larger than z, and ultimately
sets the limit for the maximum vibration amplitude as well as it sets the maximum
output current out from the resonator. k is a factor which will contribute to a
modified resonance frequency due to the spring stiffness non-linearities. The new
resonance frequency is therefore expressed as

Wo(ef fective) = Wo (1 + /4322) (345)

Equation 3.44 and eq. 3.45 shows that the x will either increase (the resonator
becomes more stiff) the operational resonance frequency or decrease the resonance
frequency. The resonator used here will have a negative x, thus the capacitive
non-linearities will contribute to reduce the electrical spring stiffness. Because &
contributes to “soften” and tilt the output response, Vp should be reduced. By using
equation 3.43 and 3.44, an expression for the maximum output current possible
from the resonator can be developed:

i = nwoze (3.46)

smax

i0'** sets the limit for how much current that can be detected at the output electrode
before bifurcation (the hysteresis). It is also possible to define the maximum energy
stored in the resonator by using z. in a similar manner

1
= Sk (3.47)
where k is the linear spring constant (k = k,, — k.). The maximum energy stored
also decides the energy dissipation out from the resonator which is
max 2
Pdissipated - Rzii - WOESOTSd = w;kcf;c (348)
Fig. 3.8 is an example of a resonator with a low k where Vp is increased. The
result is an increase in the displacement and a reduction of the resonance frequency.
The displacement equation is relatively inaccurate for a very soft beam and a large
electrostatic coupling (i.e. small gap and/or large electrode area). By taking into
account non-linear capacitive contributions as well as possible mechanical beam
stiffening terms, the displacement is adjusted as seen in Fig. 3.8(a) (the green line).
In Fig. 3.8(b), the resonance frequency is more rapidly reduced for an increased Vp
compared to the FEM simulation. The FEM simulator is more accurate and takes
these non-linear terms into consideration. A compensated term has been included
here as well to get close to the results from the FEM simulator.
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Figure 3.8: Analytical and FEM simulation comparison of z and fy

As can be seen in Fig. 3.9, the initial sweep of Vp hardly increases the displace-
ment of the resonator. Beyond a certain voltage, the displacement starts to increase
rapidly. Critical displacement is defined in eq. 3.43 and when the resonator dis-
placement crosses this value, the resonator enters a highly non-linear domain and
chaotic behavior occurs. The importance of investigating z;,, z. and & is to find the
maximum motional current (eq. 3.46) and the power handling capability of the
resonator (eq. 3.48). For all resonator filters and oscillators, this chaotic behavior
must be avoided, thus z. sets the limit of the vibration amplitude.
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Figure 3.9: Displacement as a function of Vp showing critical displacement

36



3.5. GAP REDUCTION TECHNIQUE

3.5 Gap reduction technique

As mentioned earlier, a low gap between the electrode and the resonator or a large
electrode area results in an increased electrostatic coupling and therefore a reduced
R.. The thickness of a post-CMOS resonator depends on the amount of metal
layers and the thickness of the metal layers provided from the CMOS process. The
thickness of a metal-dielectric stack is about 3 to 5 pm, thus limiting A.. As this
work does not focus on tuning a CMOS-MEMS process, a method on gap reduction
after processing has been implemented. The method is based on utilizing built in
stress differences internally in electrode beams. These electrodes are known as
Self-Assembly (SA) beams which will move laterally after being released, creating
a narrow gap. The SA beam is demonstrated in Fig. 3.10 with before etch (left
side) and the released SA beam after etch (right side).

1.2 ym
H ||
Out %

-

.6 ym

o

In Out

1.2 ym ﬁ
.
.

ﬁm

0.6 p

=]

Figure 3.10: The Self-Assembly principle

As can be seen in Fig. 3.10, long thin beams are anchored at one end and free
to move in the other end. For one half of the beam, half the beam width has more
metal layers on one side. A top metal layer acts as a mask and makes it possible
to have more dielectric on the other side. The second half of the beam is the exact
opposite where the metal and the dielectric has switched sides.

This structure is a bimorph beam with two different materials. The dielectric
and metal layers will have different Thermal Coefficient of Expansion (TCE) which
will cause an induced stress force between the metal and the dielectric. During
the post-CMOS processing, the beam will move laterally due to this built in stress
after being etched and released. In order to not physically touch the resonator, the
electrode must somehow be stopped. By implementing limit stops as demonstrated
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in Fig. 3.11, it is possible to create small gaps that are in the order of 200-300 nm.
The stoppers touching each other are internally routed in a way which does not
create any short circuit. The resulting gap will depend on any sidewall deposition
on the electrode and the limit stops, so the gap is typically 10-50 nm larger than
intended. In this work, it turned out that the fine-pitch 90 nm CMOS-MEMS
implementations had much less sidewall polymer depositions than the coarse-grain

0.25 and 0.35 um processes.
I eﬁe(‘u\e lelea:ed I

a) Before MEMS release ) After MEMS release
Figure 3.11: Limit stops

The governing equations of these self-assembly beams are based on the bimorph
theory [44, 45, 46]. Two materials with a different TCE but equal lateral width
will cause the beam to curl laterally according to eq. 3.49:

1 24(0[2 — Otl)(T — To)

g 3.49
P WSA(14+TL+%) ( )

As seen from eq. 3.49, the curvature depends on the difference between the TCE
(ag — ) between the two materials. A small beam width (Wgsy4) will result in
more curvature as well. The temperature T and the characteristic temperature Ty
will also affect the curling [46]. From eq. 3.49 it is evident that an increase in
temperature will increase the curvature.
Esy
n= E (3.50)
n given in eq. 3.50 is the difference of Young’s Modulus between the two
materials. ¢ is the half beam deflection and AD is the total deflection of the
entire Self-Assembly composite structure. As seen in eq. 3.51, the midway beam
deflection depends on the beam length and the curvature. From eq. 3.51 it is
evident that a large curvature or long beam length will result in an increased 9.

(3.51)
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The SA electrode can be regarded as four beams where eq. 3.51 indicates the
displacement of one of these four beams. The total displacement AD is shown to
be four times 9:

AD =%} 6, =46 (3.52)

Fig 3.12 demonstrates the relationships between § and AD more clearly where
it is seen that the SA beam can be regarded as four half-beam deflections:
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Figure 3.12: SA half beam displacement and calculations of beam displacement

The bottom part of Fig. 3.12 is an estimation of how much the SA electrode will
move after release. These estimations are relatively similar for all of the technology
nodes in this work. The calculations in Fig. 3.12 are based on a TSMC 0.35 um
process. In this work, SA electrodes were placed close to each other, which required
smaller beam lengths in order to not overlap other structures. This required that
the SA electrodes were designed with a smaller length.

As seen in eq. 3.51, a reduction of the length will drastically reduce the dis-
placement of the SA electrode. By making the SA electrodes as 2 serpentine beams
it is possible to achieve the required displacement. As an example of this, for a
desired gap of 300 nm requires a designed gap of 1.8 ym and a SA displacement of
1.5 pm. According to Fig. 3.12, 75 pm long beams with one serpentine or 50 pum
long beams with two serpentines will move 1.8 and 1.65 pum respectively, which is
more than the required 1.5 pm.
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Figure 3.13: Calculating Self-Assembly displacement as a function of temperature

The lateral deflection of these SA electrodes will also depend on the temperature
according to eq. 3.49. As the temperature is increased, the displacement will
increase significantly as seen in Fig. 3.13. SA electrode A is a modified SA electrode
with slightly shorter length to the anchoring point compared to the movable end
in order to fit in more complex layouts as will be shown later in this thesis. SA
electrode B has multiple serpentines and is less dependent on the temperature.
Both SA designs will meet a limit stop, thus the displacement will not increase for
an increased temperature. However, for excess temperatures, out-of-plane curling
may cause the beam to no longer to touch the limit stops, resulting in a lateral and
out-of-plane displacement at the same time. Research on reducing those effects
should be further investigated.

A Wyco measurement of a double-jointed SA electrode is shown in Fig. 3.14.
It can be seen from Fig. 3.14 that the lateral displacement is much larger than
the out-of-plane curling which is hardly visible. Out-of-plane curling was explained
in chapter 2.2 with a suggestion for reducing curling seen in Fig. 2.14. Another
method of reducing this out-of-plane curling effect can be done by using tempera-
ture compensated structures [47, 48].

It is possible to make the SA move laterally after release by including polysilicon
(heating) resistors at the bottom of the beams. From this polyresistor loop, an
increased current will induce motion of the SA electrode due to the different TCE
as explained earlier. This work has not focused on implementing poly-heaters to
move the SA electrodes after release, but for certain applications this can be used
as a feature to lock electrodes to create more controlled gaps between structures
[49]. Be aware that too large currents may cause material meltdown as can be seen
in Fig. 3.15.
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Figure 3.14: Wyco measurement of an SA electrode

| Melted structure

——F ——

Figure 3.15: Melted Self-Assembly electrodes
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Chapter 4

COMPOSITE RESONATOR STRUCTURES

OMBINATIONS of basic beam topologies can lead to more complex resonator
C architectures with multiple ports, increased internal routing possibilities, re-
duced feedthrough and a more symmetric design. These beam combinations leads
to a resonator architecture called composite resonators.

This chapter will describe a method of connecting basic resonator topologies
such as the cantilever, Clamped-Clamped, Clamped-Pinned and Pinned-Pinned
and Free-Free beam types to make more advanced multi-terminal resonators. These
combinations have lead to various Square-Frame Resonator (SFR) architectures.
Some of the SFR architectures are symmetrical devices with similarities to the
Wine-Glass resonators [50]. The composite resonators are of a flexural type and
move laterally above the surface.

The final part of this chapter will show various methods of coupling multiple
resonators together for improved filter design. The chosen coupling method for this
thesis is investigated and described in detail. The coupled resonator filters and the
standalone resonators all inhibit multiple operational modes and the output from
these devices is a filtered motional current to be used for further signal processing.
The composite resonators vibrate in different modes which depends on the beam
boundary conditions which are explained in chapter 3.1 and appendix A.

4.1 Composite resonator modeling

The Square-Frame Resonator (SFR) is a symmetrical composite resonator made by
using basic resonator topologies. Chapter 3.1 explained these basic beam bending
modes. The Clamped-Clamped (CC), Pinned-Pinned (PP), Clamped-Pinned (CP)
and Free-Free (FF) beam types are all used in this section to describe the SFR
behavior. The main advantage of the SFR is its symmetrical behavior with clearly
defined input and output ports. This leads to reduced capacitive feedthrough
from the input to the output of the device. The architecture also offers multiple
electrodes and more intricate and flexible internal routing capabilities.
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4.1.1 Square-Frame Resonators

The Square Frame Resonators in this work has been made in two versions. The
FFSFR (Free-Free Square-Frame Resonator), which is based on the Free-Free and
Clamped-Pinned beam types. The Free-Free beam type constitutes the resonator
and the Clamped-Pinned beam types are used as anchoring parts.
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Figure 4.1: Free-Free Square-Frame Resonator top view

Fig. 4.1 is a top view of four laterally movable Free-Free resonators connected
together, creating a square-frame composite resonator. The grey part is the res-
onator and the blue parts are the input and output electrodes. The Free-Free part
has a width W and a length L and the tether (anchor) beams have a width W),
and a length L;.. The four 45° anchor beams are clamped at one end and attached
to the Free-Free beams at the other end. Connecting these four Free-Free beams
together at strategical nodal points will make this device resonate as if it was only
one Free-Free beam. This is, of course, if the nodal points are exactly at the desired

locations.

In reality, these nodal points are not exactly where they should be which will
cause a slight change of the resonance frequency of the resonator. Ideally these
nodal points should be exactly located at % and % positions of the beam. As can
be seen in chapter 3.1 and appendix A, the FF-beam and CC-beam have the same
resonant mode Jy. By designing the tether beams using a A/4 design methodology,

it is possible to derive an equation for the tether beam length L. [51].
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te_i /BN W

where f3;. is the tether beam mode which consists of a Clamped-Pinned beam
bending type. These tether beams will have a torsional bending, and during oper-
ation these tether beams will not (ideally) contribute to translational movement.
That means that the energy loss through these anchoring points is minimized as
these beams will behave like acoustic transmission lines. The tether beam will
present virtually no impedance to the resonator through this quarter-wavelength
of the resonator operating frequency. Seen from the anchoring points, there is infi-
nite acoustic impedance which is transformed to zero impedance at the resonator
nodal attachment points. As a consequence of this, the resonator (ideally) does
not see the supports and operates as if it is levitated above the surface. At these
frequencies and with the materials of the resonator (metal-dielectric stack), the
damping mechanisms are primarily due to intrinsic losses and not due to losses
through the anchoring points. The acoustic network model of the tether beam is
shown in Fig. 4.2 where ki, is the tether spring stiffness.

2
2=t (ﬁt> Wee 12 (4.1)

45° tether beam:
(anchored end) y

(pinned end)

Acoustic network:

o il H S
‘ktc Jy ‘ktc

7= ke 7=0
(anchored end) —\7 (pinned end)

(e, O

Figure 4.2: The tether beam and its acoustic network schematic

Q-factors of 1000-1400 for CMOS-MEMS resonators up to 10 MHz has been
demonstrated |23, 38, 49]. Those research results show that the Q-factor has been
primarily limited by Thermoelastic Damping (TED) and surface loss and not an-
chor losses. Another factor to take into consideration is the width of the resonating
beams. For widths that are small enough, thermoelastic damping starts to limit
maximum achievable Q-factor.

Fig. 4.3 shows the total FFSFR composite including self-assembly electrode
structures and internal routing of the device. Due to the single-resonator being
built up by several Free-Free resonators, the FFSFR can be implemented with
various routing schemes inside the resonator. This allows the FFSFR to become
a four-terminal, two-port device. The west and east sides of the resonator are
stimulated while the north and south sides of the resonator act as two variable
capacitors thus creating two resonator currents which can be summed in one node.
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Figure 4.3: FFSFR with Self-Assembly electrodes and internal routing
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Figure 4.4: First 8 modes of an FFSFR
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Figure 4.5: Schematic overview of the two first modes of the FFSFR
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Figure 4.6: Mode shapes M1 and M2 for the FFSFR and its tether beams
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The first 8 modes of the FFSFR are shown in Fig. 4.4. The first and seventh
mode (i1 and m7) are the only modes that are excited electrically. The first and
seventh mode in Fig. 4.4 are referred to as the first and second detectable (and
operative) mode of the FFSFR, designated as M1 and M2. A schematic view of
the two first modes of the FFSFR is shown in Fig. 4.5. Simulated and analytic
mode shapes for the FFSFR and its associated tether beams are shown in Fig. 4.6.
These mode shapes show the relative displacement of the resonator and its tether
beams as a function of the length. For the tether beam, the left side is the anchor
and the right side is the pinned end, similar to Fig. 4.2.

The second SFR type, the Clamped-Clamped Square-Frame Resonator (CCSFR)
is shown in Fig. 4.7. Four Clamped-Clamped resonators are connected together
at the anchoring points, creating a square-frame composite resonator with tether
beams to the anchoring (“clamped”) locations.

Width “W” -

Length “L”

Tether length

.

Single Clamped-Clamped
resonator

Tether width “W "
Tether beam

Figure 4.7: Clamped-Clamped Square-Frame Resonator top view

As seen in Fig. 4.8, the CCSFR has two operative modes where the first
mode follows a Pinned-Pinned boundary condition and the second mode follows a
Clamped-Clamped boundary condition. This is a special case where one and the
same composite resonator can lead to two different modes for the same physical
structure. The CCSFR is, of course, designed to operate at both of its two modes
due to a specified length of the tether beams which operate at the \/4 of the
resonance frequency for a Clamped-Clamped beam case. The CCSFR is optimally
designed for the second mode, and the Pinned-Pinned mode (which is the first
mode) is still stimulated with almost the desired resonator stiffness. The simulated
and analytical mode shapes for the CCSFR and its attached tether beams are
shown in Fig. 4.9.
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Figure 4.8: Schematic overview of the two first modes of the CCSFR
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4.1.2 The Parallel-Plate Tuning Fork

The other composite resonator type is the Parallel-Plate Tuning Fork (PPTF).
Unlike the FFSFR and CCSFR, the PPTF is not driven from two sides but will
resonate back and forth with one input and one output terminal. The PPTF has
its input and output clearly separated in a similar fashion as the other SFRs. The
operational mode of the PPTF will depend on the spring stiffness as the device
will resonate at two distinct frequencies.

Frame width

Frame length
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1
1
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Figure 4.10: Parallel-Plate Tuning Fork overview

A top view of the PPTF is shown in Fig. 4.10. The blue rectangles are the
input (left) and output (right) electrodes. For the first mode (M1), the PPTF
operates as a large “Clamped-Clamped” resonator where the two cantilever beams
make up the “CC-beam” the and the square frame in the middle results in an extra
mass. The second mode (M2) of the PPTF can be regarded as a proper tuning fork
behavior where the “Frame width” and “Frame length” will dictate the resonance
frequency. These two frequency modes are clearly spaced apart and it is possible
to route the device internally to have two internal terminals of the PPTF (i.e. Vio
on the input side and Vp at the output side). A schematic view of M1 and M2 for
the PPTF is seen in Fig. 4.11.
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Clamped-Clamped Tuning Fork
beam with extra beam behavior -
mass - 1st mode 2nd mode

Figure 4.11: Schematic overview of the two first modes of the PPTF
The following list is a summary of the operation of the three different composite
resonators, each operated with two modes M1 and M2.
e FFSFR - M1: Normal 1st mode Free-Free, Sy = 4.73004074
e FFSFR - M2: Normal 2nd mode Free-Free, By = 7.85320462
CCSFR - M1: Pinned Pinned mode, Sy =7

e CCSFR - M2: Clamped-Clamped mode, Sy = 4.73004074
e PPTF - M1: Clamped-Clamped mode -+ square frame mass, Sy = 4.73004074
e PPTF - M2: Tuning fork mode, S = 4.73004074
The FFSFR and CCSFR both follow the normal resonance frequency equation:
% [ew

ArV/3\ p L?
M1 of the PPTF, however, follows a slightly different resonance equation:

fO,nom =

fo = 1/ ke (4.2)

2m \l mee + Msquare
The koo and mee are based on geometry of the long and thin anchoring beams.
Msquare 15 the mass of the square-frame in the middle. M2 of the PPTF follows the
normal resonance frequency equation with the length and width of the beams in
the middle dictating the frequency. FEM (Finite Element Method) simulations of
two mode shapes for these three composite resonator types are shown in Fig. 4.12.
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Figure 4.12: FEM simulated mode shapes M1 and M2 for the FFSFR, CCSFR and PPTF
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4.1.3 Electromechanical equivalent circuit

The composite resonators presented in section 4.1 follows an electromechanical
equivalent representation, similar to the one presented in Fig. 3.4 (chapter 3.2).
The FFSFR and CCSFR have two input and two output terminals, thus the
schematic representation is split into two branches:

1: Nin L Cz1 Tz1 Nout : 1
R —— o
+
Vrr E») Cr—
o

1: Nin L2 Cz2 rz2 Nout : 1
I
I

W

Figure 4.13: Electromechanical schematic for an SFR

Cp is parasitic capacitance from the resonator and the routing. There are two
branches with transformers as shown in Fig. 4.13. The branches are represented
with two transformers to define the two terminals. I,,, ¢, and r,, are without
transformers. The lcr and the electromechanical coupling coefficients are given by

lzn = me/.f (43)
1
o = — 4.4
Con =7 (1.4)
k
TZFL 45
0@ (45)
dCin
Nin = VLO dz (46)
dCou
Nout = VP d : (47)
z

As seen in Fig. 4.13, the transformer is clearly split into 7;, and 7,,; to designate
the different ports of the resonator. The 7);, can be connected to a Local Oscillator
(LO) signal for a mixer-filter or a DC voltage (V}) for filtering. Using the input
and output transformers with lcr equations above results in
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L., = et (4.8)
NinTout
Czn _ NinTout (49)
k
k
R, =— 4.10
wOQninnout ( )

where n depends on the branch. The SFR has the same filtering characteristics
as earlier. Slight differences in k and m.ss as well as the input and output termi-
nals may lead to a change in resonance frequency and resonator motional current.
Variations in these parameters can be utilized as an advantage as will be explained
later. The PPTF composite resonator has only one branch as it is a one-terminal,
two-port device and follows the same electromechanical schematic in Fig. 3.4

4.2 Coupling techniques
This section will go through two different coupling techniques: Coupling resonators

electrically or mechanically. The first method will present examples and results
from my exchange stay at Carnegie Mellon University, Pittsburgh 2009-2010.1

4.2.1 Electrical summation

i(out)
N\, Y
Resonator 1 Nl

: i i(out)
oy —7 | e i(Resonator 1) +
Ry i(Resonator 2) +
/ T N i(Resonator 3) +
15 i(Resonator N)

N
Resonator 2 >~

i H
/ T \
o L
Resonator 3 N
HE
JI—
T N
oL
Resonator N N
Hi {1
il
[

Figure 4.14: Schematic of identically summed resonators

The principle of electrical summing of resonators is shown in Fig. 4.14. This
is an array of ideally identical resonators which will add multiple currents to a
common node where the currents are summed together. This requires that the

!Figures and graphs in section 4.2.1 are reproduced by permission from Gary Fedder, CMU
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resonators are at exactly the same frequency. A variation of kHz in fj for resonators
in the MHz area results in a larger bandwidth and not an increase of the throughput.
This observation leads to the natural expansion of this electrical summing principle:
A matrix of resonators to sum currents at various frequencies. With a matrix of
identical resonators, it is also possible to select the resonators with the exact same
resonance frequency to sum currents to get an increased throughput. The filter
order, however, remains the same — in this case a second order FFSFR filter array.

in T T i(out)
L(1)=L+AL
Vi ——1 [l — = — b= | Rowl
1 T 1
L L L
L(2)=L+2AL
— — — — — . Row 2
1 T T
L L L
L(3)=L+3AL
— — — I t— f—4 Row 3
1 1 1
L(N)=L+NAL
H H| H H H H | Rown
T T T
Column 1 Column 2 Column M

Figure 4.15: Resonator array with intended length shift for an increased bandwidth

The principle of summing the resonators can be expanded to make a larger filter
bandwidth, or even better; a controllable bandwidth! This can be seen in Fig. 4.15
where the columns are identical while the rows consists of resonators with varied
lengths. This will make it possible to pick and choose resonators to control both
the bandwidth and the total gain of the filter. A proposed system schematic for
electrical summing is seen in Fig. 4.16.

MEMS —f 7723 MHz
resonator array W

\
.

i ooNx 10 MHz — 11.23 MHz
H@_‘ -}_T 3 ] i v ADC ——ucontroller
VP,o—T L i L‘
RF Local | Vip T Vo ) N
Oscillator T m ‘
Vv
= LH oscillator phase select

Figure 4.16: Proposed system schematic for the Self-Healing MEMS project at CMU

55



CHAPTER 4. COMPOSITE RESONATOR STRUCTURES
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Figure 4.17: Filter response from a 128 resonator FFSFR array

Results from a summed filter is shown in Fig. 4.17. These are NODAS simula-
tions (Verilog-A beam models at Carnegie Mellon University) which shows an array
of 128 resonators with a slight shift in beam lengths in order to vary the resonance
frequency and therefore to create a 1 MHz bandwidth going from 10 MHz to 11.23
MHz. As can be seen from this, there is a drop in the middle of the passband and
more gain at the filter ends.
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Figure 4.18: Improved filter band with varied amount of resonators per bin

The filter output drop was investigated and it was found that the cause was
that the filter total 180 degree phase shift was not completely linear towards the
middle of the passband. By adding more resonators in the middle compared to the
edges, the phase shift for these becomes stronger as can be seen in Fig. 4.18.
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Figure 4.19: Zoom of ideal matlab filter with adjusted resonators per bin
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A closeup of the filter with the number of resonators per frequency bin (bin
being a set of identical resonators for that particular frequency) is seen in Fig. 4.19.
From this it can be seen that the phase shift is becoming more linear throughout
the total bandwidth of the filter where the green line is the complete theoretical
linear phase shift.

Tour Vp
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(Latch RAM) Vir
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ALD 3BIT

(IN 3BIT)
Vio

Figure 4.20: Using a DEMUX to couple in and out electrically summed resonators

Another example of electrically summed resonators is seen in Fig. 4.20. This
example uses a multiplexer to select which PPTF resonators to use in an array.
The resonators share a common Vp and the 8:1 DEMUX selects which resonators
receives the Vip. The multiplexer must be designed to be able to handle the Vo
which is a high-frequency signal. For filters, Vo can be replaced by a V), which is
lower than Vp in order to comply with transistors voltages.
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Average [MHz| | Standard deviation [kHz|
Mismatch 10.0002 20.411
Process 10.0151 348.344
Process & mismatch 10.0097 364.287

Table 4.1: Simulated mismatch and process variation example of a 10 MHz resonator

As can be seen in Table 4.1, a statistical simulation on a 10 MHz FFSFR has
been performed. The resonator has been implemented in Verilog-A code, taking
into consideration possible deviations in the geometry and the undercut etch both
locally and a globally. These models make it possible to perform Monte Carlo simu-
lations of the CMOS-MEMS resonators. It can be seen that the process mismatch
contributes to the most variation, showing that the center frequency of the res-
onator varies greatly. However, it should be mentioned that this variation depends
on the complexity of the resonator geometry. As can be seen from this example of
electrical summing, the process variations can be utilized as an advantage to make
filters with controlled bandwidth and throughput.

4.2.2 Mechanical summation

The other coupling technique is by mechanically coupling (sum) resonators to-
gether. Depending on how the resonators are coupled together, this can increase
the order of the filter as shown in Fig. 4.21a). Mechanically coupled resonators
will also have a statistical spread, as was mentioned in section 4.2.1. By designing
the resonator to have a slightly larger resonance frequency than desired, it is then
possible to use Vp to reduce the frequency of the resonator to the desired level.
By doing this, it is possible to circumvent the statistical variation of the resonance
frequency and to control a higher order filter with an adjustable bandwidth.

Amplitude Amplitude

- = - Terminated filter

Frequency Frequency

(a) 2nd and 4th order filter (b) Terminated filter
Figure 4.21: Filter responses and filter termination
The 2nd and 4th order filter in Fig. 4.21(a) are of an unterminated type.

That is, there is a ripple within the passband which is larger than 0.5-1 dB. In
Fig. 4.21(b) a 4th order filter with and without termination is demonstrated. By
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Bode Diagram
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Figure 4.22: Filter and phase response of a mechanical 4th order filter

including resistors at the input and output stage of the filter, it is possible to
attenuate and reduce the ripple [22]. Depending on the filter type (i.e. Chebyshev,
Butterworth) and the filter specifications, the total Insertion Loss (IL) of the filter
should be as low as possible.

As was seen for the electrically summed resonators, there is a correlation be-
tween the Q-factor and the phase, this is demonstrated in Fig. 4.22 where the
Q-factor is increased from 50 to 2000. If the Q-factor of the individual resonator
is large enough, the need for terminating the filter becomes more obvious. A 4th
order filter will have two resonant modes which will create a larger bandwidth than
the individual resonators:

BW = f,— f, (4.11)
inlter = .Bfi;V (412)

Eq. 4.11 and 4.12 above describes the filter relationships. f; and f, are two distinct
modes which creates a filter bandwidth by subtraction. It is important to point
out that the f is a frequency which is -3dB prior to the first mode M; and f> is
a frequency is the -3dB past the second mode Ms. The center frequency f. of the
filter is defined as the frequency between the two modes M; and Ms.

1 k 1 Jk+k
h=g = =1/ (4.13)
™ Mefy 2r Mefy

The two frequencies f; and f, are described analytically in eq. 4.13. f; is simply
the stiffness divided the effective mass of the resonator. The second frequency
f2 leads to an increased total spring stiffness of the total resonating device. The
coupling beam is considered as an ideal mass-less component, thus only introducing
additional spring stiffness.
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4.3 Mechanically coupled composite resonators

The description of mechanically coupled resonators in section 4.2.2 was in a sim-
plified sense. By coupling two resonators together, the acoustic network of the
resonators is expanded with an acoustic network for the coupling beam. Depend-
ing on the chosen dimensions for the coupling beam, the acoustic network for the
coupling beam becomes a T-network with capacitors or a T-network with inductors
and a capacitor as shown in Fig. 4.23:

45° coupling beam:

L./ h
Sl N .. < Moy
o 6
We Nz N
(resonators in phase) (resonators out of phase)
Acoustic network (A/4): Acoustic network (A/8):
71 72 71 Z

o—={}| |—>-o c—’mlm—’o

-ke -ke me me
fl[ ke =+ lfg flI ke —\— lfz
O O

°] (e,

Figure 4.23: The coupling beam and its acoustic network schematic

The bottom left part of Fig. 4.23 shows that if the coupling beam is designed
to be four times the operational frequency of the resonators, it will follow a A\/4
operational mode. This is possible by choosing the width W, and the length L. of
the coupling beam so that f. = 4f,. Similarly, if the coupling beam is designed
to be eight times fo of the resonators, it follows a A\/8 mode. The SFRs in this
work are designed for A/4 while the PPTF is designed for A/8. This section will go
into the depth of mechanically coupling the SFR and PPTF resonators together in
order to make higher order filters.

The top part of Fig. 4.23 shows the two phases which occurs for the coupling
beam when two resonators are connected together. The in-phase mode results in
a two nodal locations for the coupling beam while the out-of-phase mode results
in three nodal locations. By analyzing the acoustic network of the coupling beam
for resonators that vibrate in phase it is possible to find the mechanical impedance
Z, of the coupling beam [52, 53]. Z. is given by the force (effort) divided by the
velocity (flow):

_h_ ELo*Hs

7 == >
¢ Z.l ]WLgHg

(4.14)
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1. is the area moment of inertia and L. is the length of the coupling beam. «, I,
Hj and Hg are given by

W H W2 o5
- I . 4.1
HW?
I.= ——=< 4.1
¢ 12 (4.16)
Hj = cosh(a)cos(a) — 1 (4.17)
Hg = sinh(a)cos(a) + cosh(a)sin(a) (4.18)

The mechanical coupling beam stiffness when the resonators are vibrating in phase
is given by
El.o*Hg
L3H;
Likewise, the mechanical impedance for the coupling beams when two coupled
resonators are out of phase is given by

ke = (4.19)

I2 El.o’H;
L= = —— 4.20
2 JwL3H; ( )
where H; is given by
H; = sin(a) + sinh(a) (4.21)

For the case of two resonators vibrating out of phase the mechanical spring stiffness
of the coupling beam is given by

Elo*H;

kg = — 0
2 LH,

(4.22)

From these two cases it is possible to derive the spring stiffness of the coupling
beam, depending on the desired usage. By setting Hg = 0 and solving for L. it is
possible to find the values for k. and k.. A quarter-wavelength of the operating
frequency results in the following coupling beam stiffnesses

k(:l =0 (423)

oy = EI.o?(sin(a) + sinh(a))
‘ L3(cos(a)cosh(a) — 1)

(4.24)

From this analysis, k., for the first mode does not contribute to a change in the
filter frequency while k. effectively adds to the original fy for one resonator. This
analysis is valid for the FFSFR and CCSFR. As was done with the tether beam,
a A/4 dimensioning of the coupling beam leads to an equation defining the length
of the coupling beam as seen in eq. 4.25. In eq. 4.25, the . defines the mode
of operation for the coupling beam and varies depending on beam bending of the
composite resonator.

2_1 & 2% 2 5
LC_4</3N> WL (4.25)
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Figure 4.24: A 4th order FFSFR filter with a coupling beam

Two FFSFRs connected together with a coupling beam are demonstrated in Fig.
4.24. Fig. 4.25 shows an electromechanical schematic for Square-Framed resonators
which is the same for both the FFSFR and the CCSFR. The \/4 coupling beam
is included with transformers as given in eq. 4.26. 7., is the electromechanical
coupling coefficient for the coupling beam and depends on resonator i and terminal
J- Meij is related to the coupling beam stiffness k. divided by the stiffness k:

ke
Neij = e (4‘26)
k
1:Na1 lza rza  1:nNac —Cc —Cc Nbe: 1 Izb b b Mp1:l
VR
Vour+
VOUT
1:na2 Nb2: 1

Figure 4.25: Electromechanical schematic for two SFRs connected as a higher order filter
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Figure 4.26: A 6th order FFSFR filter with coupling beams

P

Fig. 4.26 shows an example of three FFSFRs connected together with two
coupling beams. The resonator in the middle does not have its electrode terminals
connected, thus only the input and output resonators perform stimulation and
detection of signals. Terminals for the differential drive are shown in Fig. 4.26.

FEM simulations of two mechanically connected FFSFRs are shown in Fig.
4.27. These plots are exaggerated in order to illustrate bending behavior where
M1 is out of phase and M2 is in-phase. Fig. 4.28 shows the modal analysis for
three mechanically coupled FFSFRs. For M1, the input and output resonator are
in-phase while the middle resonator is out-of-phase. For M2, the input and output
resonator are out-of-phase. Finally M3 shows that all three resonators are in-phase.

e

Figure 4.27: 2-FFSFR and its two modes

e sde] wiSardPesde] eSendSundSn

Figure 4.28: 3-FFSFR and its three modes
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Na-to-b Nb-to-c Nout
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Figure 4.29: Electromechanical schematic for three SFRs connected as a 6th order filter

A filter schematic of a 6th order FFSFR or CCSFR is shown in Fig. 4.29. The
electromechanical schematic in Fig. 4.29 and Fig. 4.25 has merged the lcr from
the two terminals into one common [cr for simplicity.

FEM simulations for two mechanically coupled resonators for the CCSFR and
the PPTF are demonstrated in Fig. 4.30. Fig. 4.31 shows an electromechanical
schematic for two PPTF resonators connected together with a coupling beam. A
top view of all three composite resonator types is shown in Fig. 4.32 where dark
colors are parts that do not move while light parts have maximum displacement.

> >

) CCSFR

),\/ )\/
b) PPTF
Figure 4.30: M1 and M2 for mechanically coupled CCSFR and PPTF
1: Na1 lza lza 1: Nac le le Nbc - Izb Czb Izb Nbi1:

GO W

Figure 4.31: Electromechanical schematic for two PPTF connected as a higher order filter

The V-shaped coupling beam of the PPTF follows a special design case of \/8.
This means that the mass of the coupling beam must be taken into consideration.
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(a) FFSFR

(b) CCSFR

(c) PPTF

Figure 4.32: Top view of mechanically coupled FFSFR, CCSFR and PPTF
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The coupling beam stiffness is inversely proportional to c. while the coupling beam
mass is proportional to [. in the acoustic T-network. Eq. 4.27 defines this relation-
ship where the mass is multiplied by 2 due to the two 45 degree beams connected
together creating a V-shape [52]:

1 2 [ L.\*
le=m.=2pHW,_L, (4.28)

With the electromechanical equivalents for the FFSFR, CCSFR and PPTF
described, the remaining component which needs to be described is the termination
resistor Rg;. As was shown in Fig. 4.21b), the introduction of termination resistors
will reduce the ripple in the passband. Eq. 4.29 shows termination resistor Rg;
being related to the motional impedance R,, the resonator Q-factor, the filter Q-
factor, a filter mode constant ¢; and the number of terminals n. It is obvious from
this equation that designing for a low R, is important. Trying to reduce R, will at
some point reach a limit due to process constraints or non-linearities. Rg; can be
decreased by increasing the number of terminals instead of trying to reduce R,.

R. Q >
Roi==2|———-1 4.29
@ 2n (qufilter ( )

As can be seen from the figures presented in this section, the composite res-
onators present certain layout challenges with regard to feedthrough between ter-
minals, including space requirements in order to use self-assembly beams to make
small gaps. These layout considerations are discussed in section 4.4.

4.4 CMOS-MEMS layout considerations

There are important aspects to take into considerations when making MEMS res-
onators. For instance, the feedthrough between the input and output of the res-
onator should be as low as possible. Due to the complexity of the FFSFR and
CCSFR, there are parts where routing of one signal crosses the other. In addition
to this, any parasitics from the output of the resonator will add to any follow-
ing amplifier. Designing for low feedthrough and small parasitic capacitance is of
importance.

An example of how to reduce the parasitic capacitance is shown in Fig. 4.33.
This example is taken from a 90 nm CMOS process where a signal layer has almost
equal distance between the silicon and any top metal layer (which protects against
the etch). The top metal layer will be grounded, as is the silicon beneath. This is
because CMOS foundry rules does not allow floating layers (except dummy layers).
Having the signal layer equally spaced to ground will reduce the total capacitance
added to the signal layer.
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Top “ground” plane (slotting M8-M9)

Distance = 2.5um

Signal layer

Distance = 2.2pm

Bottom “ground” plane (Silicon)

Figure 4.33: Schematic of how to to position a signal layer to reduce parasitics

Fig. 4.34 shows the input signal (Vzr) as a vertical line which at some point
crosses another line which is the motional current (I,,) out from the resonator.
Feedthrough between input and output of a resonator is very critical for the filter
performance. For most of the path, both signals are routed in the middle signal
layer. Closer to the crossing point one of the signals is routed to a different level
so the input and output signal layers do not short-circuit each other. In addition
to that, a grounded metal layer is placed between the two signals. This leads to a
drastic reduction of input to output capacitance, which is extremely important for
the filter characteristics.

“.\ A piece of metal 2 is

. inserted to reduce coupling
2. between Vge and lour

Figure 4.34: Layout overview showing a piece of metal to protect from feedthrough

Capacitive feedthrough is shown in eq. 4.30 [54]. From this it is evident that if
CfF is large, there will be a substantial current leakage proportional to the frequency
through the device. It is possible to reduce feedthrough by the addition of feedback

67



CHAPTER 4. COMPOSITE RESONATOR STRUCTURES

compensation circuitry [55]. By reducing the capacitive feedthrough, the signal
only passes the filter and does not pass through Cr.

Z.feedthmugh = ‘/CLCwCF (430)

T
Creeammugh 1aF

sl
— — = Creedtnrougn=100aF

i) [nA]

i i
6 6.5 7 75 8 8.5 9
Frequency [MHz]

Figure 4.35: Simulation of an FFSFR with and without feedthrough

This feedthrough effect is more clearly demonstrated in Fig. 4.35. The feedthrough
will cause a major impact on the output response of the filter. A capacitive
feedthrough of 100 aF is enough to make the output voltage increase linearly with
frequency because of the coupling capacitor. Feedthrough capacitances calculated
in this thesis have been limited to tenths of aF after introducing these types of
layout “shields” as shown in Fig. 4.34. Parasitic capacitance to ground is also
important: The routing capacitance, Cp, from the output of the resonator to the
amplifier is simulated and calculated to be about 10 fF:

2(06,0.10632501/2.1350) = 2.7fF
2(20e,0.1u1751/2.135) = 730a F
2(200.1p2200/1.5u) = 1fF

fF

~ 10fF

CP(route,SAftofsA

CP(Toute,SA—to—amp

Il
ot

) —

)
Cp(sA,air—to—sidewall) =
Cplamplifier)

)~

CVP (total

This is an example where the layout has been implemented from one of the chip
tapeouts. The SA-to-SA parasitics consist of the routing from two self-assembly
beams until they join the same electrical path. The SA-to-amp parts are the
remaining routing from that point to where the amplifier is located. The air-to-
sidewall parts are capacitances which occurs from the sidewalls in the open etched
areas and the Cpmpiifier) 15 the assumed input capacitance from the gate-source
capacitance of the input transistor of the amplifier. Cadence simulations have
been performed as well, and the capacitance has been calculated to be close to the
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theoretical values. However, Cadence does not “understand” the part of the MEMS
structure which is released and which may lead to different parasitics than what
Cadence can calculate. Therefore a crude manual estimation is performed, leading
to an assumed worst case parasitics of 15-25 fF. This means that the amplifier
must be able to drive at least 15-25 fF of input capacitance. Layout of dimensions
and internal routing of a Self-Assembly beam is demonstrated in Fig. 4.36 and Fig.
4.37.

es-to-elec imit stop distance

is 1.7pm

75pm

Figure 4.36: SA electrode layout

Cut-in of

Figure 4.37: SA layout, showing the details of the limit stops

Since the SA electrodes move after being etched and released, a cut-in of the
sidewall has been made. This causes the SA structure to not hit the sidewall and
only hits the limit stops instead as seen in Fig. 4.38. Another detail of the SA

69



CHAPTER 4. COMPOSITE RESONATOR STRUCTURES

\ short-circuit

Figure 4.38: Sidewall cut-in to avoid short-circuit

Cut-in to avoid
short-circuit

Figure 4.39: Details of the anchoring of the SA electrode
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electrode is seen in Fig. 4.39. All of the metal layers are used to route the signal
internally in the SA electrode, therefore a cut-in “metal bridge” is used to not
short-circuit the signal with the large grounded metal plane.

Cy In
——

Out § £ Out

4‘ "“ Lop

Top metal layer
(grounded shield)

’ Vour
TIA

Figure 4.40: Feedthrough and ground parasitics example

The examples from the layout considerations for CMOS-MEMS resonators are
demonstrated by showing the layout with the schematic as seen in Fig. 4.40.
The input to output feedthrough capacitance Cr is related to the FFSFR layout
including self-assembly electrodes. From the layout it can be seen that the south
and west SA electrodes create a feedthrough from input to output, as does the
north and east SA electrodes. As was explained with Fig. 4.34, a grounded metal
layer between the signals can be included to significantly reduce the feedthrough
parasitics. The Cp in Fig. 4.40 shows that the sidewall along the SA electrode
adds parasitics to ground. By putting the signal layer as a sandwich between a
top layer (which is used the mask against the etch) and the bottom layer (silicon
level), the signal-to-ground parasitic Cp can be greatly reduced as shown in Fig.
4.33.

It is important to have a clever layout methodology for CMOS-MEMS res-
onators in order to have low parasitics to ground (Cp) and as low input-to-output
capacitive feedthrough (Cr) as possible. This chapter showed the modeling of com-
posite resonators. When coupling resonators together some considerations must be
done for the layout of these devices. These devices can now be put into a larger
context and chapter 5 shows CMOS-MEMS implementations done in this PhD
thesis.
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Chapter 5

CMOS-MEMS IMPLEMENTATIONS

AsIC CMOS-MEMS resonators and composite resonator types can be inter-

faced to amplifiers in various CMOS processes. The filtering capabilities of
each resonator and composite resonator type will have certain advantages which
can be utilized in different forms in combination with CMOS circuitry.

This chapter shows implemented CMOS-MEMS designs such as soft tunable
resonators used as VCOs, low-noise amplifier designs and composite resonators as
filters and mixer-filters with associated circuitry for voltage-to-voltage conversion.
The results from these implementations are evaluated and discussed.

5.1 Simulation techniques

Modeling and simulation of MEMS resonators are challenging and critical for
CMOS-MEMS design. Electrical engineers with the knowledge of CMOS circuit
design are typically not familiar with mechanical beam models where knowledge
of physics and mechanics is important. By including filtering components on-chip,
there is less need for off-chip engineering and instead an increased need for un-
derstanding of the mechanical domain of the resonators. For CMOS-MEMS to be
successful, proper resonator models which can be directly used in regular CMOS
CAD (Computer Aided Design) software are important.

FEM tools are typically used to design and model MEMS devices as they are
based on detailed node-to-node simulation techniques; a beam is meshed with a
large density of nodes. Using FEM tools to design and analyze MEMS structures
is important, however it is a very time consuming design methodology. Alterna-
tive semi-FEM tools have appeared in order to simplify simulation time and to
be able to simulate (co-simulate) this in CMOS CAD. SUGAR from University of
California, Berkeley [56] uses Matlab algorithms of three-dimensional mechanical
structures and electrical circuits. Another example is NODAS from Carnegie Mel-
lon University, Pittsburgh, which is based on a Verilog-A code [57]. This Verilog-A
code is also based on three-dimensional mechanical beam models, and the Verilog-A
code can very easily be used with CAD software.
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As these nodal simulation tools become more readily available and integrated
with CMOS CAD software from Mentor Graphics or Cadence, it becomes easier for
designers to make MEMS structures combined with CMOS circuitry and to perform
co-simulation of CMOS and MEMS. It should be mentioned that Coventor has an
official add-on software for Cadence with the name “MEMS~+" which is based on
Verilog-A code similar to the one used at CMU [58].

CW (simple mesh) ————— fo, k,mejsy Compare /w Matlab

CMOS co-simulation <—— CW (detailed mesh)

Adjust design

Figure 5.1: CoventorWare and analytic (Matlab) design methodology flow chart

A proposed design methodology using CoventorWare (CW) is shown in Fig.
5.1. Some of the simulation results in this thesis are based on NODAS Verilog-A
simulations performed during an exchange stay at CMU. However, most simulations
are based on a combination of CoventorWare and Matlab as shown in Fig. 5.1. Pure
analytical equations become too coarse-grain. The results from CW and Matlab
have then been ported to Cadence by using LCR equivalents and transformers as
was shown in chapter 3 and 4. This has been done because CoventorWare is not
able to model the beam as an electromechanical LCR equivalent which then can
be directly used for simulation together with CMOS circuitry. Using results from
CW and Matlab in Cadence has enabled co-simulation of CMOS and MEMS in
order to get more realistic simulation results.

5.2 Tuneable MEMS VCO for A/D converter

This section describes an implementation of soft tuneable resonators combined
with A/D (Analog-to-Digital) circuitry in a 90 nm STM CMOS process. The
reason for this implementation was two-folded: It served as a purpose to investigate
the possibility of going from coarse-grain CMOS processes to fine-pitch CMOS
processes as well as expanding A/D design methodology with MEMS. The result
from this implementation gave the possibility of implementing MEMS in a different
90 nm process later on. The work in this section is a result of a cooperation with
PhD student Jgrgen Andreas Michaelsen resulting in a tapeout, a book chapter [7]
and a publication [8].

5.2.1 System idea

A Frequency AY Modulator (FDSM) based converter is used to convert frequency
modulated (FM) signals to a quantized and discrete bitstream. Quantization

74



5.2. TUNEABLE MEMS VCO FOR A/D CONVERTER

noise is shaped away from the signal band as a part of the FDSM. As a result,
a Frequency-to-Digital (F/D) conversion takes place. The input FM signal is
Zrm(t) = cos[f(t)] where the 6(t) is given by

o(t) = 2r /0 ot far(r)dr (5.1)

fa is the maximum deviation from the carrier and f, is the carrier frequency. The
relationship between zy,, and the digital output y is shown in Fig. 5.2:

Xfm \:)D_
D Q D Q Yip
> CK > CK
Clk

Figure 5.2: First order, single-bit FDSM using two DFFs and an XOR port

The time varying FM signal @, is converted to a digital bit signal as shown
in Fig. 5.2 by using two Digital Flip-Flops (DFF) and an XOR port. The result
is a digital bitstream y[n]. This is a simple implementation for a first order FDSM
where the resolution for the converter is given by

2 3
SQN Ry = 20l0gs (‘/?f d) — 10log1o (;TG (2;0 ’>> ) (5.2)

where f is the output bitrate and f; is the bandwidth of the input signal. f,/f. is
assumed to be orders of magnitude larger than 1.

X(t)—" Biasing ‘—> MEMS Resonator —>— Buffer '—> FDSM —=y[n]

Figure 5.3: MEMS resonator and FDSM schematic

A schematic overview of the MEMS resonator and FDSM is seen in Fig. 5.3.
The biasing of the resonator is from a DC voltage, Vp, which can be used to tune
the resonance frequency of the resonator. This frequency tuning of x(t) is detected
as a bitstream y[n] from the FDSM. By placing the resonator in a feedback loop
with an amplifier and using Vp to control the frequency, this results in a Voltage
Controlled Oscillator (VCO) circuit.

This thesis does not focus on the design of the FDSM, but concentrates on the
resonator and analog amplifier design. More details about the FDSM are given in
[7]. Combining a MEMS VCO and an FDSM circuit demonstrates the feasibility
and possibilities that can be achieved when combining CMOS and MEMS. In order
to create a self-oscillating loop with the MEMS resonator, a sustaining amplifier is
required as described in section 5.2.2.
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5.2.2 Sustaining amplifier design

The configuration of the resonator in a feedback loop including a sustaining am-
plifier is shown in Fig. 5.4. From the feedback loop, one path goes to a buffer
and then to the FDSM. The clock for the FDSM is V1 while the terminal which
tunes the frequency of the resonator is Vp.

@
= x(1) ’ yn]
O FDSM —=©

o Verk

[|gl]
il
o Ve

Figure 5.4: MEMS and amplifier creating an oscillator loop

The sustaining amplifier with its bias circuitry is shown in fig. 5.5. A diode
connected nMOS transistor from the cascode current mirror configuration sets a
fixed voltage on the gate of the nMOS transistor between Vp and V7, causing the
transistor to act as a high-impedance resistor. The input V; is routed to the source
of this feedback transistor as well as to the gate of an nMOS transistor (bottom
right transistor in Fig. 5.5) which acts as a Common-Source (CS) amplifier. The
current mirror provides a bias current I; which controls the gain of the CS transistor
through the transconductance g,,. The motional current from the resonator is
converted to a voltage at the output of the node Vj.

oL
| ="

e o Cp

BIAS

Sustaining
amplifier

Figure 5.5: Pierce amplifier and belonging bias circuitry

In order to initiate and sustain oscillation, the feedback loop must have zero
degree (or n multiple of 360 degrees) phase shift from the start to the end of the
loop. In addition to this, the loop gain must be larger than one. The amplifier
is designed to have a transimpedance gain Zrra (gain given in Q). Zpy4 must be
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larger than R, which is the impedance representing the resonator during resonance.
The gain of the amplifier should not be too large or else the oscillator will start
oscillating with a damping factor which eventually turns it off again [59]. The
transistor dimensions in Table 5.1 show that the feedback transistor is small and
that the mirror and the CS transistor has a large W/L (transistor width over
transistor length) ratio in order to achieve a large gn,.

nMOS | pMOS
Width top left transistor [pm] - 0.75
Length top left transistor [nm)] - 600
Width feedback transistor [nm)] 150 -
Length feedback transistor [nm| | 800 -
Width all other transistors [um| | 3.0 3.0
Length all other transistors [nm| | 600 600

Table 5.1: STM 90 nm Pierce Oscillator circuit dimensions

The are two main challenges for CMOS-MEMS oscillators: Having a sufficiently
large Q-factor and a small frequency drift. For oscillator applications it is possible
to reverse the polarity of Vp in order to reduce frequency drift over time [60]. For
CMOS-MEMS resonators with a sufficiently large Q-factor, it would be possible
to add compensation circuitry which would reverse the polarity of Vp, making the
frequency stable over time and giving low phase noise at the same time. The
challenge, however, is to achieve adequate phase noise as the Q-factor for CMOS-
MEMS resonators (with metal-dielectric stack) is limited to values between 1000
and 2000.

5.2.3 Results from soft-tuneable resonator implementations

Resonators implemented in the STM 90 nm process are designed to have a relatively
low mechanical spring stiffness &, so that the electrical spring stiffness &, will reduce
the effective spring stiffness k. It should be noted that non-linear terms become
more dominant for this type of soft beam design, which was explained in chapter
3.4. This limits the maximum motional current of the resonator. Instead of showing
this limit with respect to current, eq. 3.46 has been rearranged to demonstrate the
minimum achievable motional impedance

min _ ‘/I
TWozc

(5.3)

where V7 is the input voltage shown in Fig. 5.5. This equation demonstrates that
n and z. can only have a certain value before the resonator output produces a
non-linear response, resulting in poor oscillator performance. This sets a design
goal for how much gain the sustaining amplifier requires. If R, is too large, the
circuit may never start oscillating. Unfortunately, for the resonators presented
here, the k& was too small compared to ke, resulting in pull-in conditions of the
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beams instead. However, measurement results as well as results from analytical
modeling and simulations will be shown in this section.

In order to understand the stability of the resonance frequency, the phase-noise
of the system can be evaluated. Leeson’s equation models the phase-noise-to-carrier

ratio in an ideal oscillator:
ksT  Q ( fo )
— 2|1+ 5.4
"B To ( 2087 o4

where kp is Boltzmann’s constant, 7' is the absolute temperature, Af is the fre-
quency offset and E7%% , is the maximum energy stored (eq. 3.47). It is common

to relate eq. 5.4 to the power dissipated by the resonator (eq. 3.48), as well as
adding a buffer noise source from the following amplifier after the resonator[41]:

L(Af) = 10log

L(Aw) =

QkBT ( Wo >2 Pk[uffer (5 5)

Pdissipated QQAW 2Pdissipated

Pﬁ,”ff " is buffer noise from an amplifier source. This value can be set to -155
dBm/vHz (or v, = 4 nV/V/Hz for a 50 Q system). The phase noise is given by
an offset in radial frequency w. Investigating eq. 5.4 and 5.5, better energy storage
capacity or less power dissipation will improve the phase noise of the oscillator. 1/f

flicker noise arising from 1/Aw? will limit the performance of these systems

T
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Figure 5.6: Theoretical comparison of Phase Noise for different resonator types

As can be seen in Fig. 5.6, the phase noise of the CMOS-MEMS cantilever beam
is not as good as the phase noise of Quartz or SOI Bulk-Acoustic resonators. This
shows that the phase noise for the cantilever beam is not good enough, mostly due
to the low energy storage capacity but also due to the low electrostatic coupling.
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Figure 5.7: SEM and layout of implemented chip
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Figure 5.8: Cantilever beam with static electrode
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The right part of Fig. 5.7 is a layout view of the implemented chip while the
left part of Fig. 5.7 shows a SEM of the CMOS-MEMS processed chip. As can
be seen in the figure, various resonators have been implemented as cantilevers, a
CC-resonator and a PPTF. Input/output pads have been specially designed with
ESD protection as well as bare MEMS pads for Vp voltages. The die and the pads
complied with the CMOS foundry rules, albeit it took a long time to make the
layout for this chip due to manual filling of dummy metal layers.

A SEM of a soft cantilever beam is seen in Fig. 5.8. An input and output
electrode with holes surround the resonator. The cantilever beam does not curl
with the same extent as the electrode frame surrounding the beam. The frame is
mechanically connected, but the input and output part of the electrode is sepa-
rated. Unfortunately, the beam is too much misaligned from its electrodes and the
resulting output current is too low to be properly detected by the amplifier.

Another soft resonator implemented in this STM 90 nm tapeout is a CC res-
onator. The CC resonator including an SA electrode is seen in Fig. 5.9. This
particular CC resonator is a 1-port beam, thus requiring decoupling of the Vp at
the output. A narrow gap between the resonator and the electrode is seen at the
left part of Fig. 5.9.

Narrow 200
nm gap

f——— 20 um
TIF

Figure 5.9: Clamped-Clamped resonator with self-assembly electrode
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Figure 5.10: Overview of a STM 90 nm PPTF

The third resonator type implemented is a PPTF as seen in Fig. 5.10. The
PPTF has input electrodes on the left side and output electrodes on the right
side. These electrodes consist of double-jointed SA electrodes in order to achieve
a large electrode area and design symmetry with less curling (both out-of-plane
and lateral curling). Fig. 5.11 shows a zoom in of the PPTF in order to see the
narrow gap between the SA electrode and the movable resonator. Table 5.2 shows
the implemented designs and their respective dimensions. The cantilever resonator
was designed as two versions with different gap sizes. The dimension labels for the
PPTF in Table 5.2 are displayed in Fig. 4.10 on page 50. The thickness is roughly
3 pm for the metal-dielectric stack.

Cantilever | CC-beam PPTF
Lprane=100

Resonator length [pm] 100 100
LeantieevEr=50

Werame=2

Resonator width [pm] 1 1
Weanripver=1
Resonator thickness [pm] 3 3 3
Electrode length [pm] 100 100 100
Electrode gap [nm] 1200/1000 200 200

Table 5.2: STM 90 nm resonator dimensions
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Figure 5.11: A zoom of the PPTF to see the narrow electrode gaps
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The implementation of these resonators in this 90 nm process was the first
attempt of using the 90 nm process, therefore the cantilever beams were imple-
mented without self-assembly beams to be on the “safe side”. The CC-resonator
and PPTF were designed to “push the technology edge”, and it turned out that

these resonators were successfully released with a gap of 200 nm.
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Figure 5.12: Simulation of fy as a function of Vp

Simulations using CW and analytical equations were calculated to model these
resonators. The Matlab script describing the resonators was refined to take into
account the important non-linear terms which may affect resonator performance.
The simulations took a long time due to a large mesh density. The non-linear terms
appearing from the FEM simulator was compared to analytical equations.

The frequency tuning range is demonstrated in Fig. 5.12. Vp is increased and
fo is reduced for these four resonator designs. The four designs are denoted as D1,
D2, D3 and D4. From the cantilever types, the D2 has the largest tuning range
because it has a static gap of 1000 nm. D3 and D4 are resonators with a gap of 200
nm (using SA electrodes) where the CC-resonator (D4) gives the largest tuning
range. The Vp voltage used for the PPTF is rather low compared to the other
designs.
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An AC plot of the D1 to D4 can be seen in Fig. 5.13. The transimpedance
gain of the sustaining amplifier allows for voltage to voltage conversion giving the
results in dB. Various voltages for Vp have been chosen because they are not the
same for all resonators. A larger Vp results in a reduced resonance frequency and
a larger throughput due to an increased motional current i,,.

|
&
3
& IS
3 &

Conversion Loss [dB20]
|
&
&

Conversion Loss [dB20]

g

V=3V V=26V
V=15V V=18V

45 50 55 60 65 70 - 45 50 55 60 65 70
Frequency [kHz] Frequency [kHz]

(a) D1 - Cantilever (b) D2 - Cantilever

-24

Conversion Loss [dB20]
Conversion Loss [dB20]

&5 Vp=0.75V Vp=15V
= -38 =
Vp=0.3V V=10V

—40
40 50 60 70 80 90 100 110 120 130 140 340 350 360 370 380 390 400 410 420 430 440
Frequency [kHz] Frequency [kHz]

(c) D3 - PPTF (d) D4 - CC

Figure 5.13: Simulated AC plot showing the frequency tuning using Vp

Fig. 5.14 shows measurements of a CC-beam from the STM90 nm run, compar-
ing results from before and after etching. Fig. 5.15 shows the same results, of the
derivative. For a maximum output the derivative is zero. The unetched measure-
ment showed a capacitive coupling of the CC-resonator as this is a 1-port topology.
This shows that feedthrough is a factor which will greatly affect performance. The
released beam shows a larger throughput due to the smaller electrode gap. The
Q-factor of the resonator is rather low as this was measured in air.

A probed test of FDSM was performed as shown in Fig. 5.16. This was per-
formed before and after etching the dies to make sure that the CMOS circuitry
survived the post-CMOS etching process. The FDSM worked after etch as seen in
Fig. 5.16, although not properly stimulated for the setup. This showed that the
tapeout was successful with its special designed CMOS pads and pad ring.
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Figure 5.14: Feedthrough measurement for STM 90 CC-resonator
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Figure 5.15: Feedthrough measurement for STM 90 CC-resonator (the derivative)
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Figure 5.16: Measurement setup and results for measuring before and after CMOS-MEMS
etch

The CC resonator has been designed to have a tuning-range of slightly more
than 20 kHz using Vp from 0.5 V to 1.4 V. Potentially this results in a Signal-to-
Quantization-Noise ratio (SQNR) of 38 dB which is about 6 effective bits. The
testing of the FDSM before and after post-CMOS processing was done with 1 V on
the ESD pads. The input of the FDSM was stimulated with 1 V at 10 kHz while
the CLK signal was applied with 1 V at 40 kHz. The output of the FDSM was
measured using an Agilent 54524A oscilloscope. Unfortunately, due to the beams
being too soft to allow for a tuning range, the R, of the resonator was significantly
larger than the transimpedance gain provided by the sustaining amplifier, thus the
systems would not start to oscillate.

Table 5.3 shows the results of the implemented resonators. The cantilever col-
umn is from design D2 with a gap of 1000 nm. The tuning range is best for the
CC-beam while the PPTF shows the best percentage tuning range. The electrome-
chanical coupling coefficient is best for the PPTF due to the large electrode area.

Cantilever | CC-beam | PPTF

Nominal resonance frequency [kHz| 66.63 424.73 102.84
Frequency tuning range [kHz| 10.4 27.35 7.12
Tunability in percentage %] 5.00 6.43 6.92
Effective spring stiffness [N,/m)] 0.074 4.74 4.30
Electromechanical coupling [nN/V] 8.19 35.24 55.34

Table 5.3: STM 90 nm resonator results
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5.3 Low-noise amplifier design considerations

The previous section described a sustaining amplifier consisting of a Common-
Source topology. That amplifier was designed to provide a gain between 1-10 M€Y,
but was not really optimized for other important amplifier parameters. There are
many specifications of an amplifier that can be considered: Power consumption,
Total Harmonic Distortion (THD), slew rate, stable bias circuit, phase margins,
gain, bandwidth, noise and so forth. Research on amplifier topologies for all of
these parameters (and more) can be a topic by itself. This work has a specific
focus on evaluating some amplifier topologies and at the same time studying the
phase margins, gain, bandwidth and the amplifier noise. The different amplifier
types studied in this thesis are:

e Common-Source amplifier (STM 90 nm)

e Common-Gate, Common-Source, Common-Source, Source Follower (CG-CS-
CS-SF) in TSMC 0.35 pum (single transistor, 4 stages)

Full differential amplifier with common-mode feedback in TSMC 0.35 pm

Class AB output buffer in TSMC 0.35 pm and 90 nm

Differential-to-single-ended amplifier in TSMC 90 nm

e Full differential folded cascode amplifier in TSMC 90 nm
e Inverter amplifier in TSMC 90 nm

In addition to this, the conversion method converting the motional current to
an output voltage can be evaluated. Some evaluations of these amplifier implemen-
tations will be discussed.

5.3.1 Noise contributions

It is difficult to measure noise levels, so the noise analysis is based on simulations.
From an analytical point of view, the following thermal noise contributions are the

most important ones:
kT
En,C - 6 (56)

Eynp = JAKTRAS (5.7)
Ey oy =/ 4kTvgm, (5.8)

These three thermal noise contributions are given in V/v Hz. E, ¢ is the ther-
mal noise from capacitive contributions, integrating noise over the band of interest.
E, r is thermal noise from resistors while E, 5; is thermal noise from transistors.
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There are other noise sources, such as flicker noise, shot noise and popcorn noise
but for simplicity thermal noise is considered here as it contributes to most of the
noise. For transistors, v depends on the length of the transistor and is 2/3 for
short channel transistors and up to 2 for coarse-grain processes with large transis-
tor lengths. The methodology for analytically deriving input referred noise is by
collecting all the noise terms at the output and dividing by the transimpedance
gain of the amplifier. The end result is an input referred noise current:

fa
[Jz\f(in,tot) = /f IJQV(v.n)df (59)

In(ny is the input referred noise at one particular frequency. However, this noise
must be integrated over the band of interest. For micromechanical resonators,
f2 — f1 is equal to the bandwidth of the filter. This leads to the development of
the equation for Signal-to-Noise Ratio (SNR):

SNR = 20log1, <Z> (5.10)

IN(inA,tot)
Eq. 5.10 shows that if the motional current is 10 times the noise, then the SNR
is 20 dB which is a target goal. That is, the resonator current should be designed
to be at least larger than 20 dB if possible. A general differential amplifier is shown
in Fig. 5.17. This is an open-loop configuration with no feedback element. The
current from the resonator goes through the parasitic capacitances C,;, which
creates a voltage at that node which is then amplified through the open loop
gain. Capacitors at the output part of the TTA indicates parasitics which can
limit the bandwidth of the amplifier. The parasitic capacitances C,;, can be the
internal capacitances of the amplifier (i.e. gate-source capacitance of an input
transistor), routing capacitances as well as any capacitance originated from the
MEMS resonator. The load capacitance (Cj, ) at the output is from the routing
and the load which the next amplifying stage represents.

Cp,inI T Cp.out
I [

IiN
I
Cp,in:l: I Cp,out

Figure 5.17: General full differential TTA schematic

A simulation of integrated noise is shown in Fig. 5.18. The total noise for this
full differential amplifier is 75 fA/v/ Hz. In this example the integration has been
done over a bandwidth of 1 MHz, giving 80 pA of noise. For an input of 25 nA
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motional current from the filter results in an SNR of 49 dB. If the current is only
1 nA, then the SNR is 21.93 dB, thus the i, should not be lower than 1 nA.
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Figure 5.18: Simulated integrated noise for 1 MHz BW at 1 MHz and 10 MHz

Analytical calculations of a CG-CS-CS-SF transimpedance amplifier have been
performed to validate the importance of noise contributions from transistors and
resistors. Fig. 5.19 shows the schematic of the 4 transistor stage amplifier. The
noise study confirmed that thermal noise is the most dominant source of noise and
that adjusting transistors accordingly will cause a reduction of noise. The feedback
resistor Rp will contribute to noise in addition to the transistors, due to their
transconductance g,,.

L | v,

: p L e

CG CS CS SF

Figure 5.19: Single-ended 4 stage transistor TIA

The CG-CS-CS-SF transimpedance amplifier proved a low input resistance due
to the common-gate (CG) configuration at the first stage of the amplifier. The
second amplifying stage is a common-source (CS) stage with a resistor in feedback.
The second CS stage is without any feedback path and finally the source-follower
(SF) provides low output impedance and is able to drive large loads. It should
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be noted that although the single-ended transistor topology is simple, this chained
four transistor stage resulted in numerous complex poles which complicated the
design methodology.

From the CG-CS-CS-SF, the leftmost nMOS and pMOS bias transistors includ-
ing the CG transistor, provided most of the noise in the circuit. The next largest
contribution came from the Rp resistor. This single-ended 4 stage transistor TIA
proved to have low noise, however it was relatively difficult to make the biasing
and DC voltages become stable for the four corner simulations. Due to the diffi-
culties of the biasing circuit and providing stable DC voltages for the nodes, it was
interesting to investigate how to achieve less noise, better phase margins and more
stable bias circuitry by using other amplifier topologies.

Rt

Vio Vv —

|
Vi % |_/ i Vour

TIA

]

Figure 5.20: Differential-to-single-ended amplifier with resistive feedback

Fig. 5.20 shows the resonator represented as a mixer-filter symbol in combina-
tion with a TIA that has a resistive feedback element Ry. A full differential TIA
with output buffer is shown in Fig. 5.21. This topology was interesting as the
capacitors do not directly contribute to noise, however it was not further investi-
gated due to the non-linear gain from the capacitors and the challenge of setting
DC values at the input and output of the amplifier.

Vio: Ve,
R e R . Cr
' | v Toury !
Vi — |—€/ o— {1
E Vour;
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Vio- Vp. - Vour.
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Figure 5.21: Fully differential amplifier with capacitive feedback and output buffer
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5.3.2 Investigating amplifier toplogies

The output buffer of Fig. 5.21 can be implemented in various ways depending on
the desired usage. For high frequency measurements, or for transmitters, the buffer
should provide a low output impedance with very little loss and at the same time be
able to drive large loads. An example of such a buffer is the Class AB buffer shown
in Fig. 5.22. The Class AB amplifier provides good linearity, although it consumes
a lot of power. As seen in Fig. 5.22, the input stage is a push-pull common-drain
transistor configuration and the output is a push-pull source-follower which results
in a low output impedance.

Paias
Vi t Vo
o o

Figure 5.22: Class AB amplifier
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Figure 5.23: Simulated class AB amplifier output impedance as a function of W,,

Achieving a low output impedance is possible by having large transistor widths.
Fig. 5.23 shows variation of the output transistor widths Wy (where Wp = 2Wy).
The output transistor dimensions are quite large in order to achieve good output
impedance matching. This example requires a large bias current of 50 pA, thus
leading to a power consumption of 582.9 uW. A stable Class AB amplifier is difficult
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to make, especially in lower pitch CMOS technologies. There is a tradeoff between
power and area consumption for this type of output buffer. For a CMOS-MEMS
mixer-filter receiver, the impedance matching and load driving can be provided
directly from the transimpedance amplifier with output impedance which matches
the succeeding circuitry.

Input stage | Output stage
Width [pm] 11.5 13
Length [nm] 800 750
# of fingers 13 2

Table 5.4: TSMC 90 nm Class AB transistor dimensions

The sizes of the transistor widths, lengths and number of fingers are shown
in Table 5.4. The total width at the output is much larger due to the amount
of fingers. This setup was optimized to get an output impedance close to 50 €.
Transistors that are sliced up with multiple amount of fingers are less prone to
process variations and should be centered around a middle finger in order to achieve
best symmetry.

TT SS SF FS FF
Power [puW]| 582.9 | 533.92 | 578.52 | 587.89 | 623.13
Bandwidth [MHz| | 31.59 | 30.26 | 31.26 | 31.92 | 33.62
Gain @ 10MHz [dB] | 26.28 | 24.1 26.14 | 26.41 | 27.62
Zow @ 10MHz [Q] | 50.29 | 55.21 | 51.16 | 49.43 | 46.64

Table 5.5: Corner simulation results for the TSMC 90 nm Class AB amplifier

The results from corner simulations of the TSMC 90 nm class AB amplifier are
shown in Table 5.5. The power consumption is rather large for this amplifier due
to the fact that it is able to drive large capacitive loads with a good gain and a
low output impedance of about 50 Q2. The Class AB amplifier is relatively stable
on all four corners.

100fF | 300fF | IpF | 10pF | 100pF

Bandwidth [MHz] 31.59 | 31.62 | 31.72 | 32.64 | 24.60
Gain @ 10MHz [dB]| 26.28 | 26.28 | 26.27 | 26.17 | 23.68
Ringing pole location [MHz] | 104.71 | 104.71 | 104.71 | 69.18 | 13.18

Table 5.6: Results for TSMC 90 nm Class AB amplifier when varying the load capacitance

In Table 5.6 the Class AB amplifier has been simulated with increasing load
capacitance. The bandwidth is about 31-32 MHz up to 10 pF and starts to de-
crease to 24.6 MHz at 100 pF, showing that the circuit is able to drive large
loads. The undesired ringing pole has been extracted from the simulator and is
constant at 104.71 MHz up to 1 pF, but for about 100 pF the ringing pole loca-
tion is at 13.18 MHz which is inside the passband, making the circuit unstable.
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This shows that the circuit is good to drive off-chip measurement equipment when
characterizing CMOS-MEMS resonators. Having evaluated buffer amplifiers, the
Trans-Impedance Amplifier (TIA) topologies need to be investigated.

Fig. 5.24 shows an implemented full-differential amplifier with bias circuitry
and a common-mode feedback circuit. The implementation is based on an amplifier
simulated while staying at CMU and was used in one out of two tapeouts there.
The diode connected nMOS transistors between the gate and the drain of the
differential input transistors ensures that the DC voltages are correctly set. The
setup of the amplifier is the same as shown in Fig. 5.17 where the differential
amplifier provides an open-loop gain of 73 V/V at 10 MHz for an output load of
10 pF. The cut-off frequency was simulated to be at 20 MHz. The noise at 10 MHz
is simulated to be 74.85 fA/v/Hz which leads to an SNR of 70 dB and 65.6 dB
for two different filter bandwidths. The gain is rather large due to open-loop gain,
however the gain is not precisely controlled and will vary with process variations.
This amplifier is used for measurement of mechanically coupled SFRs described in
the next section.
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Figure 5.25: Simple Differential and Folded Cascode amplifiers
Based on the TSMC 0.35 pum 4-stage transistor of Fig. 5.19 and the full dif-

ferential amplifier of Fig. 5.24, the next step was to investigate TSMC 90 nm
amplifier topologies which could be suitable for a following tapeout. Fig. 5.25
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shows a simple differential to single-ended amplifier and a full differential folded
cascode amplifier. The dimensions of the TSMC 90 nm folded cascode amplifier
with multiple fingers are shown in Table 5.7. The third amplifier type which was
investigated was an inverter based amplifier with one or an odd order multiple of
inverters with a feedback resistor R;.

Dimensions
Width Pgrasi & Pgrase output branches [pm)] 2
# fingers Ppras1 & Pprase output branches 6
Length Ppras1 & Pprass output branches [nm] 500
Width Pprasi & Pprase input branch [pm] 2
# fingers Ppras1 & Pprase input branch 12
Length Pprasi & Pprase input branch [nm] 500
Width Nprage [pm] 1
# fingers Ngraso 2
Length Nprage [nm] 500
Width NBIASI [um] 1
# fingers Npras: 4
Length Nprag: [nm] 500
Width input nMOS transistors [pm] 1
# fingers input nMOS transistors 4
Length input nMOS transistors [nm] 500

Table 5.7: TSMC 90 nm Folded Cascode amplifier dimensions
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Figure 5.26: Differential amplifier gain as a func. of input and output load capacitances

An example of reduction of gain due to increased load capacitance is demon-
strated in Fig. 5.26. The simple differential amplifier of Fig. 5.25 has been sim-
ulated, showing that the gain is drastically reduced for either input or output
capacitive loads in the range of tens of fFs. The designed gain of 3.5 M(2 is able to
drive up to a few fF of load capacitance.

94



5.3. LOW-NOISE AMPLIFIER DESIGN CONSIDERATIONS

In Fig. 5.27, various amplifier architectures are for a TSMC 90 nm process are
compared at 10 MHz to see how good they are to drive input and output capacitive
loads. The gains that can be achieved vary between 3 and 5 M2, where the folded
cascode (FC) has the best gain. The inverter based amplifiers were best at driving
large output loads as shown in Fig. 5.27.

9.00E+06 6.00E+06
/| \
=t \
) =)
€ 450406 TS T o= £ 3.00E+06
s ~ o 5
8 8
S, S dinverter 2 3 Inverters
iy imple-Diff £+ Folded Casc
2.25E+06 1.50E+06
®
v N
O Tlnverter Z 3lnverters | i !
Simple-Diff L+ Folded Casc S\
‘ hial
0E+00 4 0E+00 -
03 05 09 15 25 43 7.3 124 211 358 609 100 176 300 03 05 09 15 25 43 73 124 211 358 60.9 100 176 300
Input capacitance [fF] Output capacitance [fF]
(a) Input load (b) Output load

Figure 5.27: Simulated gain as a function of input and output capacitive load for various
amplifiers
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Figure 5.28: Simulated integrated noise and SNR as a function of input capacitive load

The comparison of the four amplifier types is continued in Fig. 5.28, showing
integrated noise and SNR. The integrated noise is from 10 MHz to 11 MHz in order
to get noise for a 1 MHz bandwidth. This will lead to a certain Signal-to-Noise
ratio (SNR) as seen in fig. 5.28(b). These amplifiers have been implemented to
test the different noise levels of the amplifiers due to the low current provided by
the MEMS resonators.

CMOS amplifiers with low noise are important. Thus, a large gain, large band-
width and low noise are focused. The folded cascode amplifier stands out as a
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possible candidate which will provide good results. However, due to limited time
when preparing the tapeout, an inverter based amplifier was chosen. The SNR for
the amplifiers varies from 45 dB to around 55 dB where the single-inverter type
shows good results. Varying the output capacitance is demonstrated in Fig. 5.29.
The integrated noise at 10 MHz will vary while the SNR (integrated over a 1 MHz
bandwidth) remains constant for all the amplifier types.
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Figure 5.29: Simulated noise at 10 MHz and 10-11 MHz SNR as a function of output
capacitive load

SNR 10 11MHz | Noise @10MHz | Noise 10- 11MHz | Z;;, @10MHz
[dB] [fA/VH?| [pA] [MQ]
1 Inv 24.68 73.61 58.35 4.642
3 Tnv 21.51 174.0 84.06 4.956
SD 19.50 224.2 105.9 3.562
SD, cap 19.86 15.39 101.6 0.1492
FC 24.55 90 59.2 5.040
FC, cap 27.93 3.54 40.15 1.300

Table 5.8: TSMC 90nm amplifiers with SNR, noise and gain @ 10MHz or 10-11MHz

Table 5.8 is a summary of simulation results in Cadence of different amplifier
topologies. The simple differential (SD) and folded-cascode (FC) were tested with
capacitive feedback as well. They were all simulated in the TSMC 90 nm kit with
a feedback resistor of 5 M or feedback capacitor with 10 fF. A 10 fF capacitor
is “low enough” according to the specification of the capacitor of the foundry and
will not vary much with the process. The gain of a feedback capacitor, however, is
not constant and decreases with increasing frequency. The output load is only set
to 10 fF for simplicity.

The results show that the 3 inverter amplifier is next best, even with worse
SNR, but with a large gain. The folded cascode with a capacitor has the best
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SNR, but the lowest gain. The folded-cascode is more difficult to design and it
also requires a common-mode feedback circuit (CMFB) which will increase the
power consumption. To make it easier to test the amplifier for the TSMC 90 nm
tapeout, an inverter based amplifier was made, although a folded-cascode amplifier
was considered. The feedback resistor was chosen instead of the capacitor because
it makes the biasing of the amplifier more simple. The noise generated from the
resistor will directly add to the input and a resistor in the M(2 range is rather
large, so a capacitor is a preferred solution if the input and output of the amplifier is
properly biased. The capacitor will not directly add to noise but will be responsible
for shaping the noise bandwidth and accumulate the noise over the band.

Another important factor is the input capacitance of the amplifier. An input
capacitor will represent the parasitics arising from the input transistors, the routing
to the feedback element, routing to the MEMS resonator and possible parasitics to
the substrate from the open areas beneath the SA electrode. Careful design and
calculations on this has been done for the TSMC 90 nm tapeout, aiming for a rather
low input capacitance. Fig. 5.30 shows the TSMC 90 nm inverter amplifier which
consists of three amplifiers in series where the first stage converts from current to
voltage and the last two stages are voltage-to-voltage gain stages.

Rn Re R

_—F T T

Iin RQ R3

&

Inverter 2 Inverter 3

Cp,oul‘

1

Figure 5.30: TSMC 90 nm inverter TIA schematic

Resistor value Transistor width
Ry [kQ] 800 Wy [pm] 1.6
Ry 9] 200 Wi [pem] 3.36
Rys [kQ] 800 We [pm] 2.4
Ry [9) 200 Wpo [pm] 5.04
Rys [kQ] 10 Ws [pm] 9.6
Wys [pm] 20.16

Table 5.9: Resistors and transistors sizes in the inverter TIA circuit

Table 5.9 shows the resistor dimensions and the dimensions of the pMOS tran-
sistors in the circuit. All transistor lengths are 100 nm. The setup of simulations
for the TSMC 90 nm was 1 nA current from the MEMS filter. The routing from the
output of the resonator is about 25 fF. The circuit was made to drive an output load
of up to 10 pF in order to be able to drive off chip measurement equipment. The
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output was expected to be between 10-12 mV. 300 Process & Mismatch variation
runs were performed to see the statistical variation of the circuit performance.

TT | FF FS SF SS | MC, | MC,
Phase Margin [°] 92.5 | 9527 | 92.78 | 92.1 | 88.56 | 92.34 | 0.79
Bandwidth [MHz| 38.11 | 34.62 | 38.03 | 38.21 | 40.59 | 38.08 | 0.75

TIA gain @ 10MHz [MQ] | 11.84 | 12.26 | 12.19 | 11.39 | 9.21 | 12.02 | 0.22

SNR 10-11 MHz [dB] 16.56 | 16.51 | 16.55 | 16.58 | 16.62 | 16.52 | 0.01

Table 5.10: TSMC 90 nm inverter amplifier simulation results

Table 5.10 shows the results of corner simulations. The input and output DC
voltages are stable around 620-650 mV. The phase margin is very stable, typically
above 90°. The bandwidth of the circuit provides a bandwidth of about 38 MHz,
which makes it possible to encompass higher order modes of some of the resonators
within the passband as explained later. The SNR is roughly 16.5 dB, close to the
desired specification of 20 dB.

Re
————
Vio+ Vp+

v : IOUT+
|—d o—r -
RF+ \ T VOUT+
' ! TIA
: : +
1
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Vour.
TIA

o]
T

Figure 5.31: Schematic of differential mixer-filter with amplifiers

Fig. 5.31 shows two inverter amplifiers together with their respective resonators
making a differential filter in the TSMC 90 nm run. The two mixer-filter symbols
are one and the same component (and not two different components), the differen-
tial resonator has 8 terminals, creating two differential currents Ipyry and Iopr—
which is further processed by two different inverter-amplifiers.
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5.4 SFR and PPTF implementations

Square-Frame Resonators (SFRs) have been implemented in coarse-grain and fine-
pitch CMOS processes. The FFSFR was first implemented in a TSMC 0.35 um
process, both as a single resonator and as a mechanically coupled higher order
filter. Another implementation was performed in a TSMC 90 nm process where
FFSFR, CCSFR and PPTF higher order filters were made.

5.4.1 TSMC 0.35 ym FFSFR filters

Two different chip designs in a TSMC 0.35 um CMOS process were made. The first
design consisted of a single FFSFR, one 4th order and one 6th order mechanically
coupled FFSFR-filter. The second design consisted FFSFRs coupled electrically,
as was described in chapter 4.2.1. All of the composite resonators shown here
follow a voltage-to-voltage conversion using Trans-Impedance amplifiers (TIAs).
A common measure of performance of a resonator including a succeeding TIA is
known as “Conversion Loss” (CL):

10ZTIA Zria Vo
CL =20l — ] =201 = 201 —_— 5.11
0910( Vir ) 0910( R ) 0g10 <VRF> (0 )

Z

Eq. 5.11 shows the conversion loss of a resonator which produces a motional current
i, due to an input voltage Vyp. i, times Zr;4 equals the output voltage detected
at the output of the amplifier. Eq. 5.11 can be stated in three different ways, all
defining the one and same “Conversion Loss”. The reason for the name “Loss” is
due to the fact that the resonator and the amplifier typically results in a lower
output voltage than the input voltage for these CMOS-MEMS resonators.

Fig. 5.32 shows the implemented chip layout where 1-FFSFR is a standalone
resonator and 2-FFSFR & 3-FFSFR are mechanically coupled resonators. The 1-
FFSFR was made in two different versions: One which is stimulated as usual with
west and east SA electrodes and north and south SA electrodes used for the output.
The other type was made with static electrodes and gaps of 1.5 ym seen as version
b in Fig. 5.32. This FFSFR is a full-differential resonator with inside and outside
electrodes where the outside electrodes stimulate and the inside electrodes are the
output. This adds four more terminals to the whole device. The drawback of that
device is that it requires intricate routing, and it becomes difficult to implement
SA electrodes for the whole device. It is also more difficult to stimulate and test
the device and the gap is limited to 1.5 pm.

Fig. 5.33 shows a 4th order mechanically coupled FFSFR including its SA
electrodes. The internal routing shows the intricate internal routing of the device,
allowing Vro_ and Vo, to be routed to the one and same tether beam without
electrically short-circuiting each other. The device is stimulated with + and —
input signals as well as differential Vo and Vp signals internally in the resonator.
The output is a differential current which leads to the full differential amplifier
shown in Fig. 5.24 in chapter 5.3.1.
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Figure 5.32: Layout of the TSMC 0.35 um tapeout
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Figure 5.33: Schematic of a 4th order FFSFR with self-assembly and routing
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FFSFR

Resonator length [pm)] 47
Resonator width |pm 4
Electrode length |pum 16.5

Electrode gap [nm 300

Tether length [pm 9.1

Tether width [pm] 0.6
Coupling length [um] | 16.62
Coupling width [pm)] 2

Table 5.11: Dimensions for TSMC 0.35 ym FFSFR resonator filter

Table 5.11 shows the dimensions of the 4th order FFSFR implemented in a
TSMC 0.35 pum CMOS process. The Free-Free beams are 4 pm wide with a length
of 47 pm. The tether beams only have a width of 0.6 m and are 9.1 ym long. The
coupling beams are designed with a A/4 length of 16.62 pm and a width of 2 pm.
The increased size of the coupling beams was necessary in order to separate the two
FFSFRs from each other, making it possible to create a layout of this mechanical
filter with self-assembly electrodes.

Fig. 5.34 shows a 6th order FFSFR filter. A zoom in of the middle resonator
with dummy electrodes (not connected) is shown in Fig. 5.35. By designing all
gaps in the layout to be 1.5 pm before the mechanical structures are released, it is
possible to reduce process variations. Fig. 5.36 and 5.37 are SEMs of a standalone
FFSFR with SA electrodes. A narrow gap between the SA electrode and the
resonator is possible due to the limit stops which prevent the SA electrode from
physically touching the FFSFR.

Figure 5.34: SEM picture of implemented 6th order FFSFR
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Figure 5.35: SEM of middle part of 6th order FFSFR

Figure 5.36: SEM of standalone FFSFR with SA

Figure 5.37: SEM of standalone FFSFR with narrow gap
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Vio+ Vio-
VRF- 60— - -

2-FFSFR
VrRF+ o0— + +
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Figure 5.38: Measurement setup for testing differential resonators

The measurement setup for differential resonators is shown in Fig. 5.38. This
example shows two mechanically coupled resonators (2-FFSFR) although three
mechanically coupled resonators (3-FFSFR) follow the same setup.

A simulated filter response of a 2nd, 4th and 6th order FFSFR filter is shown
in Fig. 5.39. The input stimulus is 1 V and Vp is 10 V. The current generated at
the output is simulated to be 25 nA, leading to a motional impedance of 40 M.
The TIA gain of 6 M2 from the differential amplifier results in ca 150 mV at the
output. The differential amp is designed to have Vpp=3.3V and Vp,=1.65V. The
bias current drawn for the circuit, including the common mode network is 160 pA.

0

.
| I PRI 1 resonator

1 4th order filter
|| — — — 6th order filter

Normalized response [dB20]

-100 : : : i

-120 1 1 1 1 1 1 1 1 1
95 9.6 9.7 9.8 9.9 10 10.1 10.2 10.3 10.4 10.5
Frequency [MHz]

Figure 5.39: Simulated filter response of 2nd, 4th and 6th order SFR filters
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Figure 5.40: TSMC 0.35 pm differential amplifier measurements

The differential amplifier was tested with various voltage levels in order to find
the optimal biasing conditions. As can be seen in Fig. 5.40, the bias current has
been swept and voltage levels and the current consumption have been measured
for Run 1, Die 1 (R1D1). The input was stimulated with 1 V and 180 degree phase
shift at the resonator input in order to check the desirable operation level of the
amplifier with respect to the input and output DC voltage levels. The nMOS bias
voltage of the biasing transistor should not be too large either, so it is kept in a
mid-range in order to secure proper operation of the amplifier when testing the
different dies. The power consumption exceeds 1 mA current consumption if the
bias current is more than 175 pA.

Two different post-CMOS etch runs were performed. The first run gave better
results than the second run and is used here to show measurements from these
voltage-to-voltage FFSFR filters. Fig. 5.41 on the next page shows measurements
for five different dies in the first run. R1D6 has an offset in its center frequency
compared to the other dies. These measurement results were performed in air,

which is why the Q-factor is rather low.
A comparison of 4th and 6th order filters for two different dies is shown in

Fig. 5.42 on the facing page. The filter bandwidth is extracted from the -3dB points
in these measurement results. Table 5.12 on the next page shows the average of
the 3-FFSFR for run 1 where only two values have been averaged. The Q-factor is
relatively low with a value of ca 4. The center frequency is about 9.68 MHz and is
slightly lower than the the theoretical calculated value.

Fig. 5.43 on page 106 shows a logarithmic comparison of the filter order. The
dashed dark green line shows the extracted 4th order of the filter while the dashed
purple shows the extracted 6th order a filter. It shows that the 2-FFSFR decreases
by 40dB per decade and that the 3-FFSFR decreases by 60dB per decade. Due to
measurement feedthrough and an out-of-band mode, the lowest detectable signal
floor became higher. The measurement sweep did not go beyond 20 MHz due to
the instruments that were used.
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Figure 5.42: TSMC 0.35 pm 2-FFSFR vs 3-FFSFR measurements for two dies

R1D1 | R1D4 | Averaging
f1 [MHz] 8.5 8.5 8.5
fo [MHz] 10.75 | 11.00 10.88
fe [MHz] 9.625 | 9.750 9.688
BW [MHz | | 2.250 | 2.500 2.375
Q 4.278 | 3.900 4.089

Table 5.12: FFSFR 3-mech, Run 1 average values
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Figure 5.43: 2-FFSFR vs 3-FFSFR measurements to extract filter order

R1D1 | R1D4 | R1D5 | R1D6 | R1D8 | Averaging
/1 [MHz] 9.25 9.5 9.25 8.75 10.00 9.35
f2 [MHz] 11.75 | 11.50 | 12.00 | 11.25 | 11.75 11.65
fe [MHz] 10.50 | 10.50 | 10.63 | 10.00 | 10.88 10.50
BW [MHz] | 2.50 2.00 2.75 2.50 1.75 2.30
Q 4.200 | 5.250 | 3.864 4.00 6.214 4.706

Table 5.13: 2-FFSFR, Run 1 average values
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Table 5.13 on the preceding page shows the average values from the 4th order
FFSFR filter for run 1. The Q-factor is about 4.7, the bandwidth is about 2.3 MHz
and the center frequency is 10.5 MHz which is slightly higher than the theoretical

calculated value of f..

2-FFSFR 2-FFSFR 3-FFSFR 3-FFSFR
Measurement | Analytical | Measurement | Analytical
f1 [MHz] 9.350 9.942 8.50 9.95
fo [MHz] 11.65 10.014 10.88 10.07
fe [MHz| 10.50 9.978 9.688 10.01
BW [MHz| 2.30 0.072 2.375 0.12
Q 4.706 139.4 4.089 84.97

Table 5.14: Comparing 2-FFSFR and 3-FFSFR measurements and analytical results

As can be seen in Table 5.14, the measurement results and analytical results are
close, except for the lower Q-factor due to measurements performed in air. It can be
concluded from the measurement results that the filters were close to the designed
specifications. The output voltage from the resonators were from a few mV up
tenths of mV. A vacuum chamber is required to perform proper characterization of
the resonators which was not available when testing these devices.

The results from these TSMC 0.35 pm mechanically coupled FFSFRs gave the
possibility of trying to implement similar structures in a TSMC 90 nm process
which is explained in chapter 5.4.2.

5.4.2 TSMC 90 nm SFR filters

The first attempt of implementing MEMS resonators in a 90 nm STM CMOS
process was explained in chapter 5.2. Based on the experience from the SFRs in
the TSMC 0.35 pm process and the STM 90 nm CMOS-MEMS implementations,
higher order SFR filters were made in a TSMC 90 nm process. These resonators are
able to resonate at two distinct frequency modes. The material parameters which
dictate the resonance frequency of these devices have been extracted from data
sheets and other documentations which can not be shown here due to copyright
rules. The E/p ratio, which dictates the resonance frequency, is given in Table 2.4.

An FFSFR and CCSFR were made in an attempt to compare the two resonator
types. The FFSFR is a true Free-Free mode resonator type which may lead to
a larger Q-factor depending on the internal material losses. The CCSFR is a
Clamped-Clamped type resonator with both ends clamped and has the possibility
of using a larger electrode area than the FFSFR. The Parallel-Plate Tuning Fork
(PPTF) has a larger electrode length than the CCSFR and FFSFR, however it has
only one input and output terminal. The FFSFR and CCSFR, however, have two
input terminals and two output terminals. All three composite resonator types are
more thoroughly explained in chapter 4.
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The layout of the TSMC 90 nm chip is shown in Fig. 5.44, showing six different
designs. Three different type of resonators were made as 2nd order resonators.
These base models were used to create mechanically coupled (4th order) resonator-
filters for comparison reasons.

[
|15 ]

| e |

Figure 5.44: Layout of TSMC 90 nm resonator filters

The dimensions for the resonators, tethers and coupling beams for the three
resonator types can be seen in Table 5.15. The CCSFR and FFSFR are designed
with equal dimensions for direct comparison, the only difference between the two
is a larger electrode area for the CCSFR. The PPTF will resonate in two specific
modes. For the first mode the equations describing the resonance frequency is
based on a soft 60 ym CC-beam with a width of 4 ym and with an extra mass
(the squared frame) in the middle. The second mode of the PPTF is a tuning-fork
resonance type behavior originating from 50 ym beams with 6 ym width. The two
modes of operation for each of these three resonator types are more thoroughly
explained in chapter 4.

Fig. 5.45 shows the layout of the FFSFR and SA electrodes. It also shows the
internal routing of the Vo (alternatively V} for filter operation) signal and the Vp
signal. The internal routing of a signal passing through the tether beam is sepa-
rated using the top metal layer. This causes the resonator to be one mechanically
vibrating structure with signals routed to different parts internally in the structure.
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Figure 5.45: Layout of FFSFR with Self-Assembly beams and routing

FFSFR | CCSFR PPTF

Resonator length [pm] 47 47 100 and 50
Resonator width [pm] 4 4 6 and 4
Electrode length [pm] 16.5 45 100

Electrode gap [nm| 300 300 200

Tether length [pm] 9.1 9.1 -

Tether width [pm)| 0.6 0.6 -
Coupling length |pm] 16.62 16.62 14
Coupling width [pm] 2 2 1

Table 5.15: Implemented TSMC 90 nm resonator and filter dimensions
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Figure 5.46: Simulated mode shapes M1 and M2 for the FFSFR, CCSFR and PPTF
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Simulation results from the SFRs and PPTF in the TSMC 90 nm process
are shown in Fig. 5.46. These simulations include the differential inverter based
amplifiers for a voltage-to-voltage conversion. Fig. 5.46(a) and (b) show that the
FFSFR operates at around 7.75 MHz at M1 and 23.12 MHz at M2. Fig. 5.46(c)
and (d) show that the CCSFR resonates at 4.05 MHz and 9.24 MHz. The bottom
two graphs in Fig. 5.46 show that the PPTF filter resonates at 1.27 MHz and 6.52
MHz.
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Figure 5.47: 4th order PPTF with SA electrodes

A SEM photo of a 2-mechanically coupled PPTF is shown in Fig. 5.47. It shows
the coupling beam as a V-shaped beam between two PPTFs. The SA electrodes
consist of double jointed SA beams to create a large electrode area.
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Figure 5.48: 4th order CCSFR with SA electrodes
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Figure 5.49: 2nd and 4th order FFSFRs with SA electrodes
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5.5. SUMMARY OF RESULTS

PPTF | PPTF | FFSFR | FFSFR | CCSFR | CCSFR

M1 | M2 M1 M2 M1 M2

fo IMHZ] | 1.267 | 6578 | 7.662 | 23.02 3.982 9.238
mers kgl | 166 | 4.89 2.88 4471 5.83 4417
% [N/m] 993 | 8357 | 6684 | 93540 3654 14884
nm MN/V] | 422 | 50.63 | 2.45 2.45 6.63 6.68
Now IDN/V] | 422 | 5063 | 49.1 491 133.7 133.7
R. [MQ)] 7 7.88 290 194.1 11 14.09
CL[dB| | 309 | 206 | -2933 | -25.76 | -0.89 2.97

f.[MHz| | 1277 | 6.522 | 7.754 23.12 1.052 9.243
BW [kHz| | 29.07 | 58.7 222.3 52.84 95.92 19.35

Q fitter 43.93 | 111.1 | 34.89 4375 12.25 4775
Rg: [MQ] | 185.1 | 1305 | 3001 109.8 804.9 27.4

Table 5.16: TSMC 90 nm filter results

Fig. 5.48 and 5.49 show the photos of the CCSFRs and FFSFRs. Table
5.16 shows the most important results from the three base resonators. The tran-
simpedance gain from the amplifier is 11.84 M) and the bandwidth is 38.11 MHz
which was shown in Table 5.10. It can be seen from Table 5.16 that a low R, does
not necessarily result in a low R;. Instead, R, can be tuned to a more appropriate
value depending on the required Insertion Loss (IL) and the filter bandwidth.

The CCSFR has a much lower R, than the FFSFR due to the larger electrostatic
area as well as larger Qer values. The PPTF has better electrostatic coupling
(Min, and 7oy ), resulting in a better Conversion Loss (CL) and Rg;, compared to
the FFSFR and CCSFR. The resonator spring stiffness, @ fier, and low R, of the
CCSFR mean that this resonator type can be used as an example of improving
resonator performance which will be shown in chapter 6.

5.5 Summary of results

This chapter has described implemented CMOS-MEMS resonators used as an os-
cillator, a filter or a mixer-filter. Implementations were done in 0.35 ym and 90
nm CMOS technologies. A method of co-simulating CMOS and MEMS was dis-
cussed by using NODAS with Verilog-A code in CMOS design software to model
the micromechanical devices. Most simulations in this thesis have been done as a
co-simulation of MEMS and the CMOS together, based on analytical results and
CoventorWare FEM simulations.

The MEMS VCO and FDSM design was made in STM 90 nm CMOS as an
initial test of implementing MEMS in a newer CMOS process. This meant going
from coarse-grain (0.35 pm) CMOS processes with aluminum metal layers to copper
composite metal layers. Additionally, the newer processes have dielectric layers
with a higher k-factor in order to reduce transistor current leakage. Since the
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CHAPTER 5. CMOS-MEMS IMPLEMENTATIONS

metal layer and the dielectric are different, for newer CMOS processes, the etching
procedure is slightly changed. The main advantages for making MEMS in a newer
CMOS process is obtaining a larger Young’s Modulus, less deposition of polymer
residuals on the sidewalls, lower power consumption and reduced parasitics. The
STM 90 nm MEMS VCO designs showed this feasibility of making MEMS in fine-
pitch CMOS. Special designed bonding pads were made, and the CMOS circuitry
was tested before and after etching of the MEMS. However, using post-CMOS
resonators as oscillators turns out to be a challenge due to the large R, value.
More research needs to be performed on how to reduce phase noise and R, in this
technology.

Various amplifier types were investigated throughout this thesis. An analytic
versus simulated noise analysis was performed on a CG-CS-CS-SF four-stage single
transistor amplifier topology. This showed that the first amplifying stages (or
transistors) are the most crucial parts which will contribute mostly with thermal
noise. A large g,, results in a larger amplification (i.e. for a CS amplifier), although
that will also increase thermal noise. The feedback element has been primarily
implemented as a resistor in this thesis which will directly add noise to the system.
Brownian noise from the micromechanical resonators are much smaller than the
noise from the transistors and resistors and is not included in the analysis. An
analysis of various amplifiers in 90 nm CMOS was performed, showing that a full
differential folded cascode resulted in the lowest noise contribution and the largest
gain. Due to difficulties of proper biasing of the folded cascode amplifier and limited
time, an inverter based amplifier type was chosen instead.

Implementations of Square-Frame resonators were performed in both 0.35 pum
and 90 nm CMOS processes from TSMC. In the TSMC 0.35 gum process, FFSFR
resonators and mechanically coupled resonators were made. These resonators
showed adequate results when operated in air with results close to analytical calcu-
lations and simulations. Based on the experience from the previous runs, FFSFR,
CCSFRs and PPTFs were made in a newer TSMC 90 nm process. These three
base resonator structures are able to resonate at two distinct mode frequencies.
The resonators were also implemented as 4th order mechanically coupled filters.

The main outcome of these implementations is that it shows the feasibility
of making more advanced resonator architectures with increased performance as
well as the possibility of making these micromechanical resonators in more mod-
ern CMOS processes. Using the resonator as a filter or mixer-filter shows a great
potential for front-end transceiver signal processing. For the filter designs, a fo-
cus has been put on achieving a low R, and Rg;. However, Insertion Loss and
linearity are important performance parameters as well. High-level resonator per-
formance parameters will be shown and discussed in the next chapter, and the most
promising SFR from the TSMC 90 nm run is used as an example to show possible
improvements of the performance.
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Chapter 6

HIGH-LEVEL TRADEOFF PARAMETERS

T HERE are several types of parameters which show the performance of MEMS
resonators as a filtering device. These performance parameters can be divided
into three levels as shown in Table 6.1 - Low, medium and high-level:

Parameter level Parameters
High-level 1IP3, Rq;, IL, ZL, N,;, SFDR
Medium-level R., Zria, SNR, CL, ko, BW, Qyitter, Ceed
Low-level frr, BN, Ae, €ry 8, k

Table 6.1: Overview of system parameters in a hierarchical view

The low-level parameters can enhance resonator performance by increasing the
electrode area and by reducing the gap between the electrodes and the resonator.
The spring stiffness k will also dictate performance for some of the higher level
parameters. It is possible to enhance the electrostatic coupling by modifying the
relative permittivity, €,, typically done by adding a material between the resonator
and the electrodes [61]. The medium-level performance parameters are typically
the motional impedance R, of the resonator, the transimpedance gain Zr;4, the
signal-to-noise ratio SN R and the conversion loss C'L. Another important factor
which dictates medium-level performance for higher-order filters is the coupling
stiffness k. which in turn will decide the bandwidth and filter Q-factor. Finally,
any capacitive feedthrough between the input and output of the device will also
affect the performance.

The high-level parameters in Table 6.1 are typical filter parameters which can
be understood even without the knowledge about MEMS filters. By looking in and
out of the “black box” or viewing the resonator as a two-port device it is clear that
impedance levels, linearity, insertion loss and noise are important parameters to
take into consideration.

fir BW FL 1IP3 Rqi
10 MHz | 20 kHz | 12dB | 9.5 dBm | <10 kQ

Table 6.2: Typical specification list for a sub-GHz front-end mixer-filter
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Table 6.2 is a typical specification list for a filter or mixer-filter with a frequency
of 10 MHz and BW of 20 kHz [62]. The filter loss (FL) is defined as \/ Py, / Pout- Any
filter is susceptible for out-of-band interference by the third-order input interception
point (ITP3) product. The IIP3 is the first odd order frequency component of
the filtering frequency which interferes with and distorts the desired band. It is
desirable to have a large IIP3 product as possible in order to achieve better linearity
of the filter. A final parameter for filter design is the termination resistor(s), Re;.
For best power transfer, an ideal termination resistor should be as low as possible.
As will be explained later, the Rg; must be larger than R, by having a certain filter
bandwidth and filter frequency.

There are other important high-level parameters which are important which
will be discussed in this chapter and evaluated and compared with other research
results in the same research area. These parameters are: Insertion Loss (IL), Input
referred noise (N,;), Spurious Free Dynamic Range (SFDR) and the termination
impedance to linearity product (ZL). Low to high level parameters all affect each
other. If one parameter is improved, another parameter could become worse — a
compromise will be needed for some of these performance parameters.

6.1 Discussing the trade-off parameters

When designing MEMS resonator filters, termination resistors, Rq;, are required to
flatten the passband. Insertion Loss is a parameter which indicates the impedance
mismatch between a termination resistor Rg; and the actual impedance R, rep-
resenting the filter. Summing Rq; and R, gives the total impedance of the filter
which should be as low as possible. Eq. 6.1 defines the Insertion Loss (IL) of the

filter:
Rgi + R.
IL = 20logi (Q+> (6.1)
Ro:

Insertion Loss [dB]

|
25 30

I I
[ 5 10

15
Ry, over R ratio
Qi 2

Figure 6.1: Insertion Loss as a function of Rg;/R.
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6.1. DISCUSSING THE TRADE-OFF PARAMETERS

From Fig. 6.1 it is clear that Ry, must be approximately 8 times larger than
R, in order to achieve an IL of less than 1 dB. Rg; is related to R, and the filter
specifications: Rg; = (R./2n)[(Q/q:Q fiiter) — 1]. Achieving an Rg; that is 8 times
larger than R, is achieved by designing the filter to have a certain bandwidth and
center frequency. This relationship is shown in eq. 6.2:

anc%'
QBW>

IL = 20logio (1 + (6.2)

Eq. 6.2 is the same as eq. 6.1 by replacing R, and R,. From this relationship it
is evident that the filter must be carefully designed in order to achieve an insertion
loss of less than 1 dB. The number of electrodes (n), the filter center frequency f.,
the resonator Q-factor and the filter bandwidth are all parameters which decide the
IL. The next high-level performance parameter to be discussed is the IIP3 product
which depends on some lower-level performance parameters. Fig. 6.2 illustrates
the relationship between the signal and the IIP3.

A

OIP3 [dB] [= === ====mmmmmmmmmmmas

Signal

IM3

[ p3[aB)

Figure 6.2: Output power as a function of input power, showing I1P3

The desired output signal through the filter is a 1:1 ratio (in terms of power).
Both the desired signal and the third order intermodulation signal (IM3) are a
function of the input power. At a certain point, the IM3 crosses the real signal as
shown in Fig. 6.2. This crossing point is known as the third-order input interception
point (IIP3). It can be shown that the IIP3 for MEMS filters can be described as

the following equation®:
[ k3
V =0.97T | —=— 6.3
11P3 3050V (6.3)

IFor development of the IIP3, see the appendix
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The IIP3 in eq. 6.3 shows that a better linearity is achieved by tuning low-level
resonator performance parameters. From a perspective of increasing the ITP3 only,
it is clear that a large gap and spring stiffness or a low Q-factor, polarization voltage
and static capacitance (C' = £A4,/g) will increase the ITP3. This shows us that when
designing a filter for low Rg;, R, and IL it will come for the cost of a decreased
ITP3. This is where an important compromise must be made when making filters.
A new high level performance parameter is therefore established: Impedance-to-
linearity (ZL). This is done by defining ZL as the termination resistance divided

by the IIP3:
Ry BW | 303
ZL = = 6.4
IIP3  Wiq; \| keopAeg (6:4)

By performing some algebra, dividing R, by IIP3 results in eq. 6.4. The ZL should
be as low as possible. This ZL parameter will simplify the filter design methodology,
allowing the designer to see the compromise which must be made. For the purpose
of this analysis and the fact that an intermediate IF filtering frequency has been
set, wp, ¢; and gy are fixed. As can be seen in eq. 6.4 it turns out that ZL will
decrease for a low Q-factor or a large gap. This clearly shows that any filter design
is susceptible for non-linearities from large Q-factors or small gaps. It turns out
from eq. 6.4 that a low filter bandwidth and large spring stiffness or electrode area
will contribute to reducing the ZL.

Another high-level performance parameter to evaluate is the total input referred
noise, N,; [39]. The N,; is given by

Noi = Npoi + 1L 4 10logyo(BW) (6.5)

where Nprg; is the noise delivered by Rg; to the matched load. It can be seen from
eq. 6.5 that the total noise depends on how large Ry);, the Insertion Loss and the
bandwidth of the filter are. Keeping all these three factors low will result in a low
input referred noise.
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Figure 6.3: N,; as a function of @ fiiter
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6.1. DISCUSSING THE TRADE-OFF PARAMETERS

Fig. 6.3 shows that the N,; becomes saturated for a large filter Q-factor. How-
ever, the filter Q-factor must be 1/10 or 1/20 of the resonator Q-factor and not
more. In this case, for a resonator Q-factor of 2000, the @ fier should not exceed
100 for optimal filter design. The last high-level performance parameter to consider
is the Spurious Free Dynamic Range (SFDR) parameter [39]. This parameter de-
pends on the IIP3, the input referred noise power (N,;) and the specified minimum
signal-to-noise ratio (SN Ry, ) shown in eq. 6.6:

2
SFDR = 2 (I1P3 = Noi) = SN By (6.6)

By keeping IIP3 as large as possible, the N,; subtraction from the IIP3 will be
larger and the SFDR will be kept on an acceptable level. As can be seen in eq.
6.3, the IIP3 is not related to the filter specifications (BW, Q fiter, kc), while the
IL will change with those parameters. A plot of the SFDR as a function of IL is
shown in Fig. 6.4:
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Figure 6.4: SFDR as a function of Insertion Loss

It is evident from Fig. 6.4 that low Insertion Loss, less than 1 dB, will greatly
impact the SFDR. A compromise between the IL and the SFDR must be made, and
aiming for a filter design of an IL between 0.5 dB and 1 dB is an example of making
that compromise. All these high-level parameters are important when designing
filters and portraits a complex picture when designing filters. The equations in this
section will be used in section 6.3, where I will come with practical examples of
what can be done to improve filter design.
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CHAPTER 6. HIGH-LEVEL TRADEOFF PARAMETERS

6.2 Comparison of research results

When doing research on MEMS resonator filters, it is typical to focus on certain
medium or low-level parameters. Many research papers do not mention or discuss
the high-level parameters that were presented in Table 6.1. This makes it difficult
to compare research results from one paper to another. This section intends to
collect some high-level parameters from various research results and compare them
with results from this thesis.

Low level | CCSFR | [40] [34] [39] [39)° [63]
fo [MHz| 3.98 10 1.05 8.76 70 72
k |kN/m 3.65 8230 22 1.89 64.2 70.7
A, [pm? 137 100 35 160 121 540
g [nm 300 800 800 95 20.3 100
Vp [V 10 10 10 15 6 35
Co; [fF] 4.04 1.11 0.38 14.9 52.8 47.8
R, Q] 12.1M | 195M | 1.79G | 3.17k 186 478
High level
Rg; 9] 98.2M 219M | 9.52G 15.3k 2.82k 12.8k
Rgi/R. 8.12 1.12 53.1 3.15 10.8 18.8
1L |dB] 1.01 5.54 0.16 2.39 0.77 0.45
1IP3 [dBm)| 41.71 54.48 | 32.42 0.40 6.05 0.71
Ny |dB] -84.92 | -89.68 | -55.64 | -126.19 | -127.31 | -119.53
SFDR [dB]| 74.42 86.11 | 85.76 | 77.53 82.87 69.21
ZL |dB] 63.72 66.04 | 94.68 | 45.85 26.68 42.54

Table 6.3: Comparing the specification list with other results

Table 6.3 presents the CCSFR that is described in chapter 5.3. The third
and fourth column [40, 34] are CMOS-MEMS based research papers while column
five through seven [39, 63] are based on more state-of-the-art MEMS processes.
The frequency varies from 1 MHz to 72 MHz and the processing technologies are
different, so Table 6.3 is not a concise comparison. It should be mentioned that the
70 MHz filter ([39]’) is based on a theoretical assumption of tweaking the process,
enabling a very small gap and designing for a larger spring stiffness.

The post-CMOS implemented filters of reference [40, 34] has a rather large
R, and Rg; because of large resonator-to-electrode gaps. This results in a good
linearity (large ITP3) and a decent IL. The 8.76 MHz and 70 MHz filter designs
of ref. [39] shows low R, and R, and a good IL. However, due to a very narrow
resonator-to-electrode gap, the IIP3 becomes rather small. The 72 MHz resonator
of ref. [63] has a large spring stiffness and multiple electrodes for electrical summing
as well as a low gap of 100 nm, leading to a low R, R, and IL. However, the IIP3
product is relatively small because of the large Vp. The common denominator for
linearity is clearly seen; a small gap and a large Vp will lead to decreased linearity.

The last three columns [39, 63| are based on custom MEMS processes which
may be possible to integrate directly with CMOS although that is not addressed
in the papers. Therefore it is clear that even the state of the art papers do not
completely satisfy the typical filter specifications. The CCSFR resonator in this
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thesis and reference [40] and [34] are not as good as the state of the art MEMS
resonators, although they show adequate results. It should be mentioned that other
research results could have been included, however those papers have a focus on
different figures of merit. Research results of CMOS-MEMS integrated resonators
from [11, 12] shows promising results within this research field. By using some of
the results given in those publications it is possible to analytically calculate R, R,
IL and I1P3. Publication [11] results in R, in the kQ area with a low insertion loss
and at the same time using low Vio and Vp voltages. However, as shown earlier,
these results comes at the cost of the linearity. The remaining part of this chapter
intends to take the results of the CCSFR even further and come with suggestions
for improvements with a special focus on linearity.

6.3 Suggestions for improved filter design

There are two main methods of connecting MEMS resonators together, either elec-
trically (summing currents) or mechanically (adding modes). Fig. 6.5 shows lat-
erally moving square resonators with and without coupling beams. The method
of electrical summation (X,;) is based on stimulating identical resonators with the
same signal so that the output consists of filtered currents which can be summed
together in a common electrical node as shown in the left part of Fig. 6.5. Cou-
pling the MEMS resonators mechanically (¥,,..n) has already been explained and
shown in this thesis and can be seen in the middle part of Fig. 6.5. Performing the
mechanical coupling of resonators requires differential input and output for these
square-framed resonators.
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Figure 6.5: Three methods for micromechanical signal processing

Combining these two coupling methods leads to a hybrid electrical-mechanical
coupling method (X,.,) seen in the right part of Fig. 6.5. The input resonators
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have shared terminals for differential input stimulus and are connected through
very small coupling beams (or stubs). These stubs do not (ideally) add any mass
to the total transfer function of the filter. A specific resonator (the middle one)
is used to couple to an identical output resonator array, thus increasing the order
of the filter. By doing this, it is possible to both electrically sum filtered currents,
add higher order of the filter and to boost the total mechanical spring stiffness
[64, 65, 66].

Summing the resonators both electrically and mechanically will add additional
electrodes A, per extra resonator. A multiplication factor M is used to define the
number of arrayed resonators. Stimulating the outer resonators with the oppo-
site phase of the middle resonator will ensure that the first array will act as one
resonator with summed electrodes (M - A.). Due to this type of stimulation, the
resonators will together act as one resonating element with more electrodes and a
larger total spring stiffness. The increased electrode area leads to a reduced R,

k

R,=——
Muwo@Qn?

(6.7)

where the combination of 1 and k contributes to scaling down R, by a factor
of M. This means that R, is reduced by the same amount shown in eq. 6.8:

k Q
P = -1 :
Rq 2nMwoyQn? (%inlter > 0

Equations 6.7 and 6.8 show that both R, and Rg; scale down with M. As can
be seen in eq. 6.1, if both Rg; and R, are reduced by the same factor M, then
the IL will remain constant. This means that IL can not be improved through this
technique. The same goes for the IIP3:

GO MBS
Vitps = 0.57) [ =0 (6.9)
\/ 3MBEC3 Q3 VA

In eq. 6.9, the k is replaced by M - k and the C is replaced by M - C' (where M
comes from C' = (MA.)/g). As can be seen in eq. 6.9, the M’s will cancel each
other, meaning that the IIP3 will not change. Instead this technique shows that
the impedance-to-linearity product ZL becomes reduced:

Bw [ 30
ZL = 6.10
Mwig; \| keoAeg (6.10)

Eq. 6.10 shows that ZL will be improved because IIP3 does not change while
Rgi becomes reduced. This means that this technique can be used to reduce
Rg; (and R,) while maintaining the same linearity. For example, an array of 10
resonators will decrease both R, and R, by 10 while maintaining the same IIP3. A
systematic approach for designing for high-level parameters for IF CMOS-MEMS
filters is shown in Fig. 6.6.
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f. & BW IL ke R. & Rgi—= M — ZL

Figure 6.6: CMOS-MEMS filter design flow chart

The design flow in Fig. 6.6 does not take into account resonator architecture,
how large A. can be or how small the gap can be. First the filtering frequency
and bandwidth are chosen. This will in turn decide the IL to aim for. Designing
the mechanical coupling beam will therefore control both the bandwidth, filter Q-
factor and set the compromise for achievable IL. The IIP3 is not affected by this
and can only be increased by k or M. The k. will decide the bandwidth which then
sets the Rg;/R, ratio. The final step is then to decide how many resonators to
array together to reduce Rg; and R, at the same time, thus reducing the ZL. Two
key parameters become apparent here: Design the square-frame resonators with
as large k as possible without compromising on the electrode area A, and couple
them in an array. An example of improved CCSFR filter performance is shown in
Table 6.4:

Low-to-medium level | Regular CCSFR | Improve tech. | Tech. & X,¢s
k [kN/m 3.65 3.65 32.9
A, [um? 137 225 2003

g [nm]| 300 150 150
Vio |V] 1 5 5
Vp [V] 10 10 10
Co; [fF] 4 10 100
R, |9 12.1M 55.9k 6.21k
High level
Ry 9] 98.2M 454k 50.4k
Rgi/R. 8.12 8.12 8.12
IL [dB] 1.01 1.01 1.01
IIP3 |dBm)| 41.71 17.93 17.93
Noi [dB] 84.92 10827 11781
SFDR [dB]| 74.42 74.13 80.50
ZL |dB] 63.72 44.03 34.49

Table 6.4: Suggestion for improved CMOS-MEMS filter design

The middle column is based on a theoretical assumption of tweaking the CMOS-
MEMS process and utilizing a CMOS technology with a larger structural stack
thickness. The technology part of Table 6.4 is based on a 5 um thick stack and
a 150 nm gap, which could be achievable by tuning the process. By including a
stack of silicon from the CMOS it could be possible to achieve a thickness of 10-20
pum [67, 68, 16], however this is not considered in this example. A 5 pm thick
stack increases the A, from 137 um? to 225 um?2. The static input capacitance Cy;
increases from 4 fF to 10 fF. The V;o was kept at 1 V for the LO to be able to
keep a sub-GHz stable frequency, however with a charge pump it could be possible
to get this value larger in order to enhance resonator performance. The Vp is kept
at 10 V for all cases.
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The right column in Table 6.4 is based on both tweaking the CMOS-MEMS
process and utilizing mechanical & electrical summation of signals, known as ¥,..
The combination of both tweaking the process and X,., show that a composite
filter array of 9 resonators enhances the spring stiffness from 3.65 kN/m to 32.9
kN/m and increasing the area to 2003 um?. This reduces the R, from 55.9 kQ
to 6.21 kQ and Rg; from 454 k2 to 50.4 k2 which is a much more acceptable
level of impedances. The IL and ITP3 remain constant. The input referred noise is
improved, leading to an increased SFDR. Finally the ZL parameter is reduced to
a level better than other research results, showing the feasibility of reducing Re;
while retaining the linearity of the filter.

This discussion chapter has described some high-level parameters which are im-
portant to consider and come with suggestion for improved design. The far right
column in Table 6.4 is now comparable with other research results that were pre-
sented in Table 6.3, showing the feasibility of making CMOS-MEMS implemented
filters with a performance which could be good enough.
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Chapter 7

CONCLUSION

7.1 Thesis summary and conclusions

The main focus of this thesis has been how to use the micromechanical resonator as
a signal processing element. Another focus area has been how to combine CMOS
and MEMS by choosing one of several possible methods as a platform for these
resonators. A survey of the various methods showed that 3D-integration, SOI and
post-CMOS are the most popular methods. This work has implemented MEMS
resonators by using a simple post-CMOS process. The top metal layer of the CMOS
process is used to define the MEMS structures and acts as a mask for free etching.
The structures are released through a few mask-less etch steps. A CMOS-MEMS
implemented resonator will typically have a small thickness because the bottom
metal layers up to the top metal layer from the CMOS process will define roughly
3-5 pm thick structures. Another challenge was to be able to etch and release
the narrow gaps required to achieve good electrostatic actuation. The simplicity,
compatibility with CMOS foundries and the possibility of implementing resonators
as filters, mixer-filters or VCOs in combination with on-chip circuitry has made
this method quite attractive.

This thesis has not focused on developing the process itself by enhancing the
thickness, varying structural material parameters or achieving narrow gaps. It has
instead utilized a “standardized” CMOS-MEMS method (ASIMPS). Collaboration
with CMU has made it possible to implement CMOS-MEMS designs in 0.35 pm,
0.25 pm and 90 nm processes from ST Microelectronics and TSMC. Coarse-grain
CMOS (0.25 and 0.35 ym) and fine-pitch CMOS (90nm) have been compared to see
the pros and cons from each process type. The coarse-grain CMOS processes are
cheaper to produce and the metal layers typically consist of aluminum. The fine-
pitch CMOS processes offer more metal layers for routing, an increased E/p ratio
(due to a copper composite material), lower transistor voltages and lower power
consumption. Implementations show that the layout design rules for old CMOS
processes make it more easy to implement MEMS resonators in these processes
compared to implementations in fine-pitch CMOS. However, it is possible to make
scripts and parametric cells which will make layout much easier by fulfilling the
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metal density “filling” constraints. Layout of parametric cells has been done in
this thesis for the “electrically summed resonators” project at CMU. In short, the
advantages outweigh the disadvantages when implementing MEMS in fine-pitch
CMOS due to the low power consumption, the low parasitic capacitances and that
it is more in line with newer CMOS signal processing.

The investigation of the resonator as a signal processing element shows its filter-
ing capabilities through a Q-factor which is larger than on-chip CMOS inductors.
The various resonators have been modeled analytically and simulated with the
FEM tool CoventorWare to find resonator performance parameters such as the
motional impedance and the electromechanical coupling coefficient. It is possible
to configure vibrating beams in five principal ways depending on the mode and
the anchoring method: Clamped-Free (cantilever), Clamped-Clamped, Free-Free,
Pinned-Pinned and Clamped-Pinned. The modes and behavior of these configura-
tions have been investigated. The combination of these beam configurations makes
it possible to implement more advanced, composite types of resonators such as the
CCSFR, FFSFR and PPTF. Simulation results show that the vibrational modes
for these composite resonators are close to analytical calculations.

The FFSFR and CCSFR are square-shaped resonators which are symmetric
and are operated differentially. The FFSFR, CCSFR and PPTF have been in-
terconnected by A/4 long beams to make higher order filters. FEM simulations
are close to analytical calculations for the mechanically coupled resonators. A 6th
order filter design has been demonstrated in a 0.35 pm TSMC process. SFRs and
PPTFs have been implemented, simulated and measured in 0.35 ym and 90 nm
technologies from TSMC.

A part of this thesis was to investigate different methods of converting the
resonator motional current to a voltage through the usage of on-chip CMOS am-
plifiers. At the same time this demonstrates integration of electronics and MEMS.
The transimpedance conversion from current to voltage can be done with a feed-
back element between the input and output of the amplifier. The feedback element
can either be a resistor, a capacitor or a transistor. It is obvious from simulations
and analytical calculations that a resistor will lead to a larger noise contribution,
but on the contrary it is much easier to set node voltages using a resistor. A ca-
pacitor or transistor in feedback makes it more difficult to set the node voltages.
A capacitor or a transistor in feedback could potentially give a much larger tran-
simpedance gain. However, defining a very small capacitance value is difficult. A
capacitor of 1 fF is about the lowest controllable capacitance level offered by the
foundry. Amplifier designs have been made according to a single-stage, cascode
differential and inverter based procedure.

Modeling and simulation show that the noise levels of a combined MEMS res-
onator and CMOS amplifier are important to take into consideration. By inte-
grating all noise contributions to the input referred noise current, it is possible to
find the total noise for the bandwidth of a filter. Examples of noise simulations
resulted in 70 dB SNR for SFRs implemented in TSMC 0.35 pym technology. An
investigation of the tuneability of soft cantilever beams and PPTF resonators in
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90nm CMOS have been performed. The resonator and a common-source amplifier
are put in a feedback loop, and the frequency can be tuned by varying the Vp
voltage. Simulations and measurements of a VCO-FDSM system in a STM 90 nm
CMOS process show the feasibility of using MEMS directly with analog and digital
systems, with a special focus on low voltage operation of the MEMS resonators.
However, it turns out that the Q-factor and the phase-noise of the system are
not good enough for the intended operation. This indicates that CMOS-MEMS
implemented oscillators or VCOs should be fabricated in a manner which would
increase the Q-factor and reduce the electrostatic electrode gaps in order to achieve
adequate resonator performance.

Comparison of results from this thesis and other research results show that
the CMOS-MEMS implemented filter designs in this thesis are currently not good
enough to be used as real signal processing elements. Certain high-level parameters
show compromises which must be made. A target goal for an IF filter or mixer-filter
between 1 and 10 MHz is an IL between 0.5 dB and 1 dB. Equations for linearity
and termination resistance show that it is possible to achieve a compromise between
IL, SFDR and the impedance-to-linearity product (ZL). The motional impedance
of the resonator and the termination resistor for the filter must be reduced while
maintaining sufficient linearity (IIP3). The idea of a combination of electrically and
mechanically summed resonators shows that the current research work in this thesis
becomes “good enough” for the given system requirements or adequate compared
to state-of-the-art MEMS resonator research.

7.2 Further work

There is currently still a lot of research to be performed in the field of integrating
CMOS and MEMS and research on techniques of how to enhance resonator signal
processing capabilities. Implementing MEMS directly in CMOS is a niche market
due to several reasons. The electrostatic coupling of these resonators is limited due
to the stack thickness. Research is being done on how to include silicon beneath to
increase the structural thickness which would help increasing the total electrostatic
electrode area [67, 68, 16]. Creating small gaps is possible by using self-assembly
beams. However, too small gaps should be avoided because it drastically reduces
the ITP3. Non-linear behavior for MEMS resonators still needs to be investigated
and is a popular research topic [41, 42, 43].

Summing resonators electrically can prove to be a challenge, but is definitely an
interesting research topic [69]. One challenge arises from the process variations of
the CMOS or MEMS processing which will result in a large standard deviation of
the resonance frequency. A part of the work in this thesis showed the feasibility of
summing large arrays of MEMS resonators, selecting the resonators that are within
the desired filter bandwidth. Having an array of many resonators and statistically
adding them to a desired frequency of operation requires a large chip area. An
evaluation of how large area is required must be done, but preliminary results
show that the electrically summation method is feasible.
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CHAPTER 7. CONCLUSION

Sub-GHz MEMS resonators can be feasible to implement using post-CMOS.
With an increased stack thickness including silicon, a large spring stiffness, a low
mass and an array of resonators might prove to give adequate results for signal
processing. Further research on this field needs to focus on improving the post-
CMOS process to achieve a larger electrostatic area, and using a combination of
electrically and mechanically summed resonators in combination with CMOS cir-
cuitry to select the best resonators to make the desired filter. Linearity, motional
impedance, termination resistors, thermal stability and mechanical stability over
time needs to be further addressed. Improved CMOS-MEMS resonators with em-
bedded on-chip electronics will offer very low parasitic capacitances and low power
consumption. This offers promising possibilities to create frequency stable filters
and mixer-filters with low noise and low power for WSN nodes.
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APPENDIX

This appendix contains description about the different beam boundary conditions,
non-linear capacitive filter analysis and implementations of CMOS-MEMS filters.

A Beam boundary conditions

In order to find mode numbers for the beams and resonators used in this work, an
analysis on beam bending for the desired beam elements must be performed. A
general rectangular beam with displacement z depending on position x throughout
its length can have the following trial solution for z(z):

z(z) = Cisin(Bx) + Cacos(Bx) + Casinh(fz) + Cycosh(fx) (A1)

The general equation for beam bending has four terms C; to Cy. These terms
have to be solved in order to find an expression for the beam bending based on
boundary conditions of the beam. The third derivative of the bending equation
z(z) results in the following relationship:

Resulting parameter

z(x) Beam bending z

2 (x) Beam angle ©

Z"(x) | Beam curvature or bending moment M
2"(x) Beam shear force V'

Table A.1: The derivative of z(x)

The four relationships listed in Table A.1 is to be used to find the solution for
the general beam bending equation, and then to calculate the necessary beam mode
constant Sy for that type of boundary condition. The desired mode numbers for
the following beam types: Free-Free (FF), Clamped-Clamped (CC), Clamped-Free
(CF), Clamped-Pinned (CP) and Pinned-Pinned (PP).

cosh® — sinh* = 1 (A.2)
sin® + cos® = 1 (A.3)

The relationships used in the equations above are also used to find the beam
boundary conditions.
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Appendix A. Beam boundary conditions

Free-Free beam

The Free-Free (FF) beam has no anchoring points at the start or end of the beam.
It is, however, supported at L/4 and 3L/4 along its length. The analysis is still
based on the start and ending point of the whole resonating beam element. At
the start and end of the Free-Free beam, there is a displacement and an angle,
but no curvature or shear force can occur there. Therefore 2”(0) = 0, 2”(L) = 0,

2"(0) =0 and 2"(L) = 0.

Resulting general beam bend eq.
Z"(x =0) —Cy+Cy=0
z”/(oc 0) —-Ci1+C3=0
Z"(x = L) | —Cysin(BL) — Cocos(BL) + Cssinh(BL) + Cycosh(SL) =0
2"(x = L) | —Cicos(BL) + Cysin(BL) + Cssinh(BL) + Cycosh(BL) =0

Table A.2: Boundary conditions for the Free-Free beam

By using the results above, it is possible to relate all equations to Cy and Cs.
This leads to the following matrix:

) o) e e ] 16

By taking the determinant of the relationship above leads to

sin(BL)sinh(BL) + sinh?(BL) — sin®(BL) — sin(BL)sinh(8L)
—(cosh?(BL) — cosh(BL)cos(BL) — cosh(BL)cos(BL) + cos*(BL)) =

Further analysis of this leads to
sinh®(BL) — sin*(BL) — cosh*(BL) — cos*(BL) + 2cosh(BL)cos(BL) = 0

where the relationships in equations A.2 and A.3 are used to achieve

cosh(BL)cos(BL) =1 (A4)

Mode number Sy 6L
4.7300
7.8532
10.9956
14.1371
17.2787

QU W N =

Table A.3: First five modes for the Free-Free beam

The first 5 modes which satisfies eq. A.4 are shown in Table A.3. In this
work, the first two modes of the Free-Free beam are used to model the resonance
frequency for the Free-Free Square-Frame Resonator (FFSFR).
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Clamped-Clamped beam

The Clamped-Clamped (CC) beam is anchored at both ends. This means that at
the anchoring points, the beam cannot move nor have any angle. However, at its
anchoring points the beam will have a bending moment and shear forces. This
leads to z(0) =0, z(L) =0, 2/(0) = 0 and 2'(L) = 0 as shown in Table A .4

Resulting general beam bend eq.
Z'(x=0) Ci+C3=0
z(z = L) | Cysin(BL) + Cocos(BL) + Cssinh(BL) + Cycosh(SL) =0
Z'(x = L) | Cicos(BL) — Cysin(BL) + Cscosh(BL) + Cysinh(BL) =0

Table A.4: Boundary conditions for the Clamped-Clamped beam

By using the results above, it is possible to relate all equations to Cy and Cs.
This leads to the following matrix:

i) oonien) e e - 10

By taking the determinant of the relationship above leads to

—sin?(BL) — sin(BL)sinh(BL) + sinh(BL)sin(BL) + sinh*(8L)
—(cos?(BL) — cos(BL)cosh(BL) — cosh(BL)cos(BL) + cosh?(BL)) =0

Further analysis of this leads to

—sin?(BL) + sinh?(BL) — cos*(BL) — cosh*(BL) + 2cosh(BL)cos(BL) = 0

where the relationships in equations A.2 and A.3 are used:

cosh(BL)cos(BL) =1 (A.5)
Mode number By BL
1 4.7300
2 7.8532
3 10.9956
4 14.1371
5 17.2787

Table A.5: First five modes for the Clamped-Clamped beam

The first 5 modes which satisfies eq. A.5 are shown in Table A.5. These are
the same mode numbers as the Free-Free beam. Be aware that the static bending
shape for the CC-beam is not the same as the FF-beam, even though they have
the same mode numbers.
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Appendix A. Beam boundary conditions

Clamped-Free beam

The Clamped-Free (CF) beam is anchored at one end and free to move at the other
end. This means that at the anchored point, the beam cannot move nor have any
angle. At the free end of the CF-beam there will be no bending moment nor shear
force. This means that z(0) = 0, 2/(0) =0, 2”(L) = 0 and 2”"(L) = 0 as shown in
Table A.6

Resulting general beam bend eq.
z(z =0) Co+Cy=0
Z(x=0) Ci+C3=0
Z"(x = L) | =Cysin(BL) — Cycos(BL) + Cssinh(BL) + Cycosh(SL) =0
2"(x = L) | =Cycos(BL) + Cysin(SL) + Cscosh(BL) + Cysinh(BL) =0

Table A.6: Boundary conditions for the Clamped-Free beam

By using the results above, it is possible to relate all equations to C; and Cj.
This leads to the following matrix:

—sin(SL) — sinh(BL) —cos(BL) — cosh(BL) Gi| [0
—cos(BL) — cosh(BL)  sin(BL) —sinh(BL) | | Co | | 0
By taking the determinant of the relationship above leads to
—sin?(BL) + sin(BL)sinh(BL) — sinh(BL)sin(BL) + sinh?(8L)
—(cos?(BL) + cos(BL)cosh(BL) + cosh(BL)cos(BL) + cosh*(BL)) =0

Further analysis of this leads to

—sin?(BL) + sinh*(BL) — cos*(BL) — cosh?(BL) — 2cosh(BL)cos(BL) = 0

where the relationships in equations A.2 and A.3 are used:

cosh(BL)cos(BL) = —1 (A.6)

Mode number Sy BL
1.8751
4.6940
7.8547
10.9955
14.1372

QU W N =

Table A.7: First five modes for the Clamped-Free beam

The first 5 modes which satisfies eq. A.6 are shown in Table A.7. These mode
numbers are lower compared to the FF and CC beam mode numbers.
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Clamped-Pinned beam

The Clamped-Pinned (CP) beam is anchored at one end and pinned at the other
end. This means that at the anchored point, the beam cannot move nor have any
angle. At the pinned end of the CP-beam there will be no displacement nor any
bending moment. This means that z(0) =0, 2/(0) =0, (L) =0 and 2”(L) =0 as
shown in Table A.8

Resulting general beam bend eq.

z(x =0) Co+Cy=0
Z'(x=0) Ci+C5=0
2(x=1L) | Cisin(BL) 4 Cycos(BL) + Cssinh(BL) + Cycosh(BL) =0

2'(x = L) | —Cysin(BL) — Cycos(BL) + Cssinh(BL) + Cycosh(SL) =0

Table A.8: Boundary conditions for the Clamped-Pinned beam

By using the results above, it is possible to relate all equations to Cy and Cs.
This leads to the following matrix:

sin(BL) — sinh(BL)  cos(BL) —cosh(BL) | [ Ci | _ |0
—sin(BL) — sinh(BL) —cos(BL) — cosh(BL) Cy| |0
By taking the determinant of the relationship above leads to

—sin(fL)cos(BL) — sin(BL)cosh(BL) + sinh(BL)cos(BL) + sinh(BL)cosh(BL)—
(—cos(BL)sin(SL) — cos(BL)sinh(BL) + cosh(BL)sin(BL) + cosh(SL)sinh(SL)) =0

Further analysis of this leads to

2(sinh(BL)cos(BL) — sin(BL)cosh(BL)) =0

which finally results in

sinh(BL)cos(BL) — sin(SL)cosh(SL) =0 (A7)

Mode number Sy BL

3.9266
7.0685
10.2101
13.3518
16.4934

QU W N =

Table A.9: First five modes for the Clamped-Pinned beam

The first 5 modes which satisfies eq. A.7 are shown in Table A.9. These mode
numbers are slightly lower compared to the FF and CC beam mode numbers.
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Appendix A. Beam boundary conditions

Pinned-Pinned beam

The Pinned-Pinned (CP) beam pinned at both ends. At both of the pinned ends
of the CP-beam there will be no displacement nor any bending moment. At the
pinned ends there will be an angle and a shear force. This means that z(0) = 0,
2"(0) =0, z2(L) = 0 and 2”(L) = 0. Table A.10 shows that this analysis becomes
even more simplified

Resulting general beam bend eq.
z(x=0) Co+Cy=0
Z(x=0) —Cy+Cy#0

Table A.10: Boundary conditions for the Pinned-Pinned beam

Because of the two boundary conditions of z(z = 0) = 0 and 2”(z = 0) =0
leads to different results means that there are only two degrees of freedom, reducing
the beam bending equation to:

z(z) = Cysin(Bzx) + Cycos(Bx) (A.8)
Eq. A.8 shows that there are only two constants. Using z(z = 0) = 0 leads to

Thus the final equation for the beam bending for a Pinned-Pinned beam is
defined as:

sin(BL) =0 (A.9)

This equation is much more simple than the other analysis’ with mode numbers
given as:

Mode number By | BL
1 T
2 27
3 3
4 47
5 o

Table A.11: First five modes for the Pinned-Pinned beam

The first 5 modes which satisfies eq. A.9 are shown in Table A.11. These
mode numbers are lower compared to the Pinned-Pinned beam and is defined by
an integer multiple of 7r. This was the final analysis of five different beam bending
conditions used in this thesis. The Clamped-Clamped Square-Frame Resonator
(CCSFR) uses a Pinned-Pinned mode for its first lateral frequency and a proper
Clamped-Clamped mode for the second lateral frequency. The coupling beams
to make higher order filter utilizes the Pinned-Pinned mode and all tether beams
connecting any Square-Frame Resonator (SFR) to an anchored point utilizes the
Clamped-Pinned mode.
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B Non-linear capacitive higher order components

This section contains non-linear behavior of the resonator, due to mixing of higher
order components into the filter passband [39, 40, 63]. The input force of the
resonator is related to the mass, damping and spring stiffness:

dz?> dz

F,=m—+b—+kz

a ot
Using LaPlace and rearranging, this relationship can be rewritten as a function of
displacement Z(jw)

29 == e o (B.1)

Quo wo
O(jw)
where ©(jw) becomes equal to @ if w = wp. Both the input force Fj, and the
transfer function © are susceptible of mixing out of band frequencies into the
desired bandwidth of the filter. Two out of band frequencies are defined as w; and
wWay:
2&)1 — W2 = W

where w; and wy are spaced by 2Aw and Aw respectively. The input force Fj, is
due to an electrostatic force from the electrode and is expressed as

()]

where the input force can be expanded with non-linear terms:

dc 1 d
(VP - Uac)Zi = 7(VP - vac)Zi

Fin = dz 2 dz

1
2

1 —C 2 3 4
Fop==(Vp—vge)?— [1— =2+ S22 — =22+ . B.2
5 (Ve = Vac) g [ Tt Tt (B-2)

The non-linear force is related to an ac input voltage v,. and a displacement z
which both are susceptible to undesired out-of-band frequency components and
are given by

Vae = Vicos(wit) + Vacos(wat)

The displacement can be written as
z = Zycos(wit) + Zacos(wat)

It is possible to rewrite eq. B.1 as a function of the following:

2(ji) = “E -V (G)0(i) (B3)

Z(jw) is now rewritten with the polarization voltage Vp, the static capacitance C,
the effective spring stiffness & and the gap g. Z(jw) also includes the non-linear
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Appendix B. Non-linear capacitive higher order components

voltage V (jw) and the gain O(jw). By assuming that V} = V4, v, becomes V;,, =
Vi(cos(wit) + cos(wot)). The same is valid for z as it becomes Z = Z;(cos(w;t) +
cos(wat)).

In order to derive the equation for the third order intermodulated fore (F;ys3),
a weak parameter must be defined. The electrode gap is set as the weak parameter
in this analysis. The displacement and force consist of a linear term and non-linear
higher terms. An iterative process must be performed where the displacement of
non-linear force terms are collected. Doing this results in the Fyy3 product [39)]:

0202]

e3 A2V, g2 A2V 3e3 A3V3 33 A3V 3eg AV

3 P 0 P 0 P 2 0 P 0 P

Fivs = Vi, { 59 O+ i R 45°K? O1 + 205K2 ©:0: + 29113
(B4)

From the above equation it is possible to express the Frys3 in terms of voltage

Viips = (B5)
g0 A, g0 A, 3e2A2VE |, 3eRA2VE 3e3A3VA -3
257k O T 1k 02 T Tagagz 01T gz 9102t g 010
where ©; = O(w;), O = O(ws) and
1
O(w) = (B.6)

1+ jw/(Quo) — (w/wo)?

The equation for Vj;p3 is not easily analyzed with ©; and ©,. A similar expres-
sion for Vips is therefore derived [40]. The output voltage (IM) due to the first
non-linear input term V;3 will be used in this case. For simplicity it is possible to
assume that an output voltage is detected at the output of the resonator through
a parasitic capacitance Cp. Later on in this analysis, the C'p will cancel out and
a final equation for the IIP3 is achieved. Using the gap as the weak parameter
and expanding the force and displacement with these terms results in a rewritten
displacement Z:

7 = —jVi, (CVZQ> [cos(wit) + cos(wat)] +
(B.7)
2 2 .
Vin 60977‘21@ (4C?VEQ* + j3Ce*kVEQ — g4k2)} cos(2t)cos(HL21)

The Z in eq. B.7 is used to obtain the V,, ., in eq. B.8. Following the same
analysis as earlier, the output motional voltage can be expressed as

A 2 2
‘/out,un = dCV = Vin (]C QVP

9CRQWE  27CPQPV2
zey, )|) ®s)

Crg’k [ VU= ~ g
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Only the first term in eq. B.8 will be used in the analysis to derive the IIP3.
The IM tone for the resonator and its first non-linear product is given by

S [3C3QPVE OCAQBVE 3CSQWE  3CQUVE
Vour(rnmry = Vi, -7 - - - (B.9)
) 40Pg4k2 QCngks 2Cpg8k4 2CP98k4

For narrow gap, high-Q resonators, the two last terms in eq. B.9 dominates.
The linear output from eq. B.8 and the IM tone of eq. B.9 are used to derive the
Virps:

C2QVE
_ Cpg3k
Virps = 3C3Q2VE _ 9CiQPVA  3CPQIVE  3C5QIVE (B.10)
1Cpgikz — ) 2Cpgk3  2Cpg®K  20pgskA
The two last terms in eq. B.10 will dominate which gives
2 2
vy 6.3
Viips = _Cpg?k | _ | 9N (B.11)
B 3C5QAVS | 30314 )
-~ Qv 3C3Q3V5
Pg°k

which results in the equation for IIP3:

1IP3 C5Q5"4 ( )

The final equation for the Virps is given in eq. B.12. It should be noted that
this analysis takes into account an analysis with the resonator as a filter. The
same analysis can be performed for a non-linear mixer-filter which will result in a
very similar end equation and is therefore not done here. The result from these
equations will give insight in how to design and model a MEMS resonator with
respect to linearity.
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Appendix C. Resonator filter & amplifier layouts and results

C Resonator filter & amplifier layouts and results

This part of the appendix contains simulation results, measurement results, layout
screenshots and SEM photos from various CMOS-MEMS implementations in this
thesis. These figures and tables are from the TSMC 0.35 pm and the TSMC 90nm
process, as well as from the STM 0.25 pm and the STM 90 nm process. Results
from the Self-Healing MEMS (SH MEMS) project at CMU from 2009-2010 are
shown.

0
o o t
| u] 0 —
o

go

(a ) FFSFR - Normal (b) FFSFR - Full differential

(c) FFSFR - 2mech FFSFR dmech

Figure C.1: Layout of four FFSFR filters in TSMC 0.35 ym
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= Resonator and Amp NORTH

g% Slot cover (M4/M3)

Slot cover (with fill)

Figure C.2: Layout of electrically summed array (Self-Healing MEMS project at CMU)

1 Resonator area = 144um x 144pm Bias circuit area = 18um x 34;:|m Buffer circuit area = 58um x 58um

4 Resonator area = 288um x 288um 7

288um

RNWOD resistor (500k Ohms) A
area = 72um x 60um N

4 PIP capacitor (500fF each)
area = 60pm x 54um

Figure C.3: 2 systems of 4 electrically summed resonators (SH MEMS project at CMU)
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Appendix C. Resonator filter & amplifier layouts and results

TT SS SF FS FF

Power [mW 16.5 | 4.84 6.1 37.6 | 30.98
Gain @ 10MHz [dB | 137.8 | 130.4 | 128.7 | 140.8 | 140.3
Gain @ 11.23MHz [dB] 137.5 | 129.8 | 128.5 | 140.4 | 140.2
BW [MHz| 18.35 | 12.78 | 18.63 | 15.37 | 21.35

Noise 10-11.23MHz [pA] | 888.5 | 860.9 | 890.1 | 884.5 | 908.4
Noise @ 10MHz [fA / VHz] | 830 | 851.9 | 881.6 | 876 | 900.4

Table C.1: Self-Healing MEMS project @ CMU: Amplifier results

TT | SS | SF | FS | FF
fo IMHz] | 9.999 | 9.999 | 9.999 | 9.999 | 9.999
BW [MHz| | 4454 | 4463 | 4456 | 4453 | 4449

Q 2245 | 2241 | 2244 | 2246 | 2248

i, nA] @ fo | 14.99 | 15.02 | 15.02 | 14.98 | 14.97

Vot [mV] @ fo | 110.8 | 46.97 | 39.75 | 154.4 | 148
Zria [MQ] | 7.389 | 3.128 | 2.647 | 10.3 | 9.88

Table C.2: SH MEMS project @ CMU: Standalone resonator with amplifier

Figure C.5: Wyco measurement showing slight curling of released FFSFR (SH project at
CMU)
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Figure C.6: STM 90 nm die with probes, testing CMOS circuitry before and after etch
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Appendix C. Resonator filter & amplifier layouts and results

Current draw [mA]

1.6
1.2 ]/I L 2 "
e
=
(D) 0.8
= [ o vDC@VinMA)[V] £t VDC @ Vout (from TIA) [V] |
0.4
0
5 10 15 20 25 30 35 40 45 50

Bias current [pA]

Figure C.7: In & out V(DC) results TIA with CS buffer (SH project at CMU)

-y b [ [ oo
3.75 / = 525 L
od 3 At
| ) =
25 5 35
5
[ o Current draw VDD TIA § [ & Current draw VDD Bias circuit_|
1.25 17.5
0
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50

Bias current [pA] Bias current [UA]

Figure C.8: In & out I(DC) results TIA with CS buffer (SH project at CMU)
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Figure C.9: AC measurement, testing feedthrough (SH project at CMU)

Figure C.10: STM 0.25 pm lateral moved Self-Assembly electrode
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Appendix C. Resonator filter & amplifier layouts and results

Figure C.11: STM 0.25 pm lateral Free-Free resonator
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Acronyms

A/D
ALC
ASIMPS
BAW
CAD
cc
CF
CMFB
cP
CCSFR
CG
CMOS
cMU
cs
CcW
DEMUX
DRIE
ESD
FC
FDSM
FEM

Analog-to-Digital

Automatic Level Control

Application Specific MEMS Process Service
Bulk Acoustic Wave

Computer Aided Design

Clamped-clamped

Clamped-free

Common Mode Feedback

Clamped-pinned

Clamped-clamped Square-Frame Resonator
Common-Gate

Complementary Metal-Oxide Semiconductor
Carnegie Mellon University
Common-Source

CoventorWare

Demultiplexer

Deep Reactive lon Etching

Electrostatic discharge

Folded Cascode

Frequency Delta Sigma Modulator

Finite Element Method
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Acronyms

FFSFR
FF
LNA
MEMS
NODAS
PP
PPTF
RF MEMS
RIE
SA
SD
SF
SFR
sol
SQNR
STM
STS
TCE
TED
THD
TIA
TSMC
VCO
WSN

Free-free Square-Frame Resonator
Free-free

Low Noise Amplifier
MicroElectroMechanical Systems
Nodal Design of Actuators and Sensors
Pinned-pinned

Parallel Plate Tuning Fork

Radio Frequency MEMS

Reactive Ion Etch

Self-Assembly

Simple Differential

Source-Follower

Square-Frame Resonator

Silicon On Insulator
Signal-to-Quantization-Noise Ratio
ST Microelectronics

Surface Technology System
Thermal Coefficient of Expansion
Thermoelastic damping

Total Harmonic Distortion
Trans-Impedance Amplifier
Taiwan Semiconductor Manufacturing Company
Voltage Controlled Oscillator

Wireless Sensor Networks
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Nomenclature

Ael

BW

CL

Fc,in

feff
fnom

IL
IIP3
Iy

io

Resonator mode constant

Coupling beam mode constant
Tether beam mode constant
Topographical scaling factor
Nominal resonator radial frequency
Effective material density

Amplifier voltage-to-voltage gain
Resonator-to-electrode area

Filter bandwidth

Resonator motional capacitance
Total system conversion loss in dB
Effective Young’s Modulus
Mechanical force at the resonator input
Effective resonance frequency
Nominal resonance frequency
Resonator thickness

Insertion Loss

Third-order Input Interception Point
Amplifier input referred noise current
Resonator motional current

Static resonator stiffness
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Nomenclature

kij Normalized filter coefficient

k, Effective resonator stiffness

ksij  Coupling beam stiffness

L Resonator length

L. Coupling beam length

L, Resonator motional inductance

L;e  Tether beam length

m Static resonator mass

Mefy Effective resonator mass

n;,  Resonator input electromechanical coupling coefficient
Nnew  Resonator output electromechanical coupling coefficient
Qi Filter scaling factor

Qerr Effective Q-factor

Qnom Nominal Q-factor

R, Resonator motional resistance

Rg; Filter termination resistance

SFDR Spurious Free Dynamic Range

SNR Signal-to-Noise ratio

Vio Resonator Local Oscillator voltage

Vp Resonator polarization voltage

Vrr  Resonator (RF) input voltage

w Resonator width

W,  Coupling beam width

Wi  Tether beam width

z Resonator displacement

ZL  Termination Impedance to Linearity Product

Zrra Amplifier current-to-voltage (transimpedance) gain
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