Towards an unified policy for
Next-Generation Firewalls
Creating a high-level language for NGFWs

Aslak Gaaserud
master thesis spring 2013






Towards an unified policy for Next-Generation
Firewalls

Aslak Gaaserud

23rd May 2013



ii



Abstract

Computer applications are becoming more and more advanced, pushing
the evolution of security mechanisms in computer networks. For two
decades one of the most widespread and efficient security mechanisms
has been the network firewall. To keep up with the ever changing threat
landscape, more security features than ever before has been implemented
into the firewall, creating a new generation of firewalls named the next-
generation.

The increasing amount of next-generation firewalls hitting the commercial
market, shows that most vendors have their own definition of what fea-
tures a next-generation firewall should hold. While most traditional fire-
walls generally operate by utilizing the same properties, such a common
platform has yet to be established among next-generation firewalls.

By gathering features from various next-generation firewall products, the
possibilites for a common platform is investigated. This platform forms the
basis for a universal high-level language, a language designed to build and
deploy security policies across vendor platforms.

To show how this universal language can be used in a real world setting,
an expandable software prototype tool has been developed, designed to
convert policies written in the universal language to operational policies
used in firewalls. Investigation of language qualities, as well as significant
differences between the prototype and vendor vendor tools, are measured
and analysed through a series of experiments.
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Chapter 1

Introduction

Network security is an immense topic that embraces all aspects of secur-
ing network infrastructure, including network monitoring, management of
network access and protection of network resources. The field of network
security has grown tremendously over the past years as we see new threats
within the realm of computer networking, often driven by individuals and
groups looking for financial gain, and by some just seeking the thrill of
it. This growth is undoubtedly a result of the expansion of Internet and
the increased number of businesses and organizations moving their sales
and information channels online. It is a constant race between people with
malicious intent exploiting vulnerabilities and administrators working to
secure their networks. There is a multitude of hardware and software so-
lutions available to aid in the fight for mitigating network threats, and one
traditional and widely used component is the firewall.

Firewalls for large scale applications, like corporate use, are an essential
part of an organizations infrastructure. Their role is to enforce corporate
security policies by controlling data flow and log events that occur in order
to identify attacks and detect anomalies. A firewall normally resides at the
perimeter of a network, and when properly configured it makes sure no
unwanted traffic reaches or leaves the network. In segmented networks,
firewalls are often used as an intermediary to separate segments, making it
possible to operate with a variety of security policies within different net-
work zones. Despite the necessary first line of defense that firewalls pro-
vide, using only firewalls to secure a network is in most cases not adequate
to fully enforce a security policy.

Several components can be used in conjunction with firewalls to provide a
more extensive security infrastructure. These components can be systems
for intrusion detection and prevention, VPN-solutions, malware and repu-
tation filters, anti-virus and more. Together these components form a sus-
tainable security ecosystem, commonly found in organizations with com-
prehensive network security practices. Running these kinds of ecosystems
can be complex. There might be numerous different systems to manage,
and a number of physical boxes that needs to work together in a concerted



effort to maintain a secure network environment.

In the recent years a new network security technology has surfaced, namely
the next-generation firewall. The next-generation firewall is meant to be a
successor to port-based and stateful firewalls[19], consolidating a number
of security features into one, unified platform. While keeping firewall func-
tionality, additional security features include intrusion detection and pre-
vention, reputation and malware filtering as well as user and application
control[18]. This new breed of firewalls typically have all their functional-
ity compacted into one physical box, taking up less space than traditional
security infrastructure containing the same features. They gather all man-
agement operations into one unified interface, opposed to the traditional
approach where security components are spread out over multiple point
solutions using various interfaces.

Firewalls operate by sets of rules that determine which network traffic is
to be allowed and which is to be blocked. Rules can be specified for both
inbound and outbound traffic and together a collection of rules make up
a rule set, or firewall policy. Just like traditional firewalls, next-generation
firewalls are dependant on policies to operate. Rules in a next-generation
firewall policy can include a higher number of policy defining elements
compared to traditional firewall rules. In addition to typical elements
found in firewall rules like source addresses, destination addresses and
ports, next-generation firewalls support user- and application data, mak-
ing them much more customizable in terms of user and application con-
trol. This increased complexity means many legacy firewall rules needs to
be expanded in order to fit in to next-generation firewall policies.

Guidelines and recommendations on how to build optimal firewall poli-
cies regardless of vendor, have evolved for over two decades, docu-
mented in the published works of a number of reputable organizations
such as NIST[24], CERT[4] and SANS[23], and there has been several suc-
cessful attempts to create universal languages for firewall rule sets. As
next-generation firewall technology replaces existing firewalls in the years
ahead, comes the job of migrating complex and comprehensive security
policies from legacy firewalls to next-generation firewalls. The migration
process and development of new policies for next-generation firewalls can
be greatly simplified with the help of a high-level language designed to
build universal policies for all kinds of next-generation firewalls.

According to Infiniti Research[7], the prevalence of next-generation fire-
walls is expected to expand with an annual rate of nearly 17% in the years
to come, and the need for new and updated policies for these firewalls is
imminent. Current sets of firewall rules will have to be re-written in order
to facilitate the features of next-generation firewalls. While traditional fire-
wall policies are generally constructed from mostly similar properties. This
does not apply for next-generation firewalls as they to date have no com-
mon structure, hence the need for a high-level language that can be used to
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create policies across vendor platforms.

1.1 Problem statement

While in traditional firewall configurations one can normally find the same
features and properties in most products, but when it comes to next-
generation firewalls many vendors seem to have gone different ways in
the development process, leading to the fact that a common platform is
virtually non-existent. Next-generation firewalls all include legacy firewall
capabilities, but in addition to that they include a varying degree of added
functionality that can make it hard to build and compare similar policies on
different next-generation firewalls. Normally, a policy will have to be es-
pecially written and customised to match exact firewall requirements. Cur-
rently there are very few, if any, methods that can help on the way towards
unified policies for next-generation firewalls, which leads us to the follow-
ing questions:

Qq: How can a common platform be made for next-generation firewall rule struc-
ture and policies?

Q»: How can we make sure a universal language is a functional solution for policy
management in next-generation firewalls?

Q3: What can we achieve by making a universal language, and how can it be
evaluated against traditional vendor tools?

1.2 Thesis objectives

As an attempt to remedy the situation of the dispersion in next-generation
firewall products, the focus of this thesis is the development of a code
based, high-level language that makes it possible to build security poli-
cies that can be implemented on next-generation firewalls independent of
brand and platform. Being a critical component in network security in-
frastructure it is crucial that such a language will not compromise security,
making it a subject to thorough evaluation. After completing a language
development process, quality control and proper testing will need to be
performed.

Reflecting the questions Q1-Q3, the objectives of this thesis are:

Oq: In order to create a unified policy language, overview must be gained of the
next-generations difference in properties, to examine how a common platform can
be made. Collecting configurations and properties from a representable number of
various next-generation firewalls can form the basis for a prototype language.

Oy: Find a future-proof language concept to ensure expandability and both for-
ward and backwards compatibility. Develop a language that simplifies the process



of building security policies for next-generation firewalls that can be used on mul-
tiple firewall products. Develop or use existing tools to compile and implement
policies.

Og3: Perform realistic experiments using the universal language to uncover flaws
and inconsistencies, and evaluate significant aspects of the languages qualities,
both on its own and compared to native languages.

1.3 Thesis outline

This thesis is organized into 7 chapters.

Chapter 1: Introduction provides an overview of the problems asked in
this thesis, as well as goal objectives that descibe methods that might give
some answers to these problems. The problem statement is defined in this
chapter.

Chapter 2: Background describes internet history and firewall evolution
up till the first next-generation firewall in 2007. This chapter also includes
a related work section, that presents some previous attempts to build uni-
versal firewall languages.

Chapter 3: Approach concerns project methodology and planning of a pro-
totype, and describe how experiments are to be carried out.

Chapter 4: Results from the approach chapter are presented in this chap-
ter. Here the prototype from the development process and the experiment
results are presented.

Chapter 5: Analysis deals with comparing the prototype to similar ven-
dor tools, and the results from the previous chapter are analysed.

Chapter 6: Discussion gives a review of what has been accomplished, ideas
for further development and obstacles encountered during the project.

Chapter 7: Conclusion ties together the issues raised in the discussion
chapter and reflects on the introductory problem statement.



Chapter 2

Background

Next-generation firewall technology did not arise out of thin air. The next-
generation firewalls are a response to a constantly evolving threat land-
scape, leading to a need of increasingly sophisticated security measures
within computer networks. The sections ahead tell the story of some highly
influential events in network history, leading to the birth of the firewall
and intrusion detection systems, and finally the introduction of the first
known next-generation firewall. A history summarization is illustrated in
figure 2.2.

2.1 Internet History

Computer networking concepts were first described in 1962 by Joseph Carl
Robnett Licklider in a series of memos were he imagined a global group
of computers that gave everyone access to their resources from any lo-
cation[[12], Figure 2.2:B], much like the Internet we know today. In Oc-
tober that year Licklider began working as head scientist for the com-
puter research program at the Defense Advanced Research Projects Agency
(DARPA), a division of the United States Department of Defense. During
his employment at DARPA Licklider presented his ideas about this global
network to his successors, one of them a man by the name of Lawrence G.
Roberts.

The first paper published on packet switching was written by the UCLA
professor Leonard Kleinrock in 1961[[10], Figure 2.2:A]. Packet switching
is a way of transmitting data by splitting data streams into blocks, and
it is the fundamental technology used in Internet and local area network
communication today. Kleinrock presented the theoretical feasibility of us-
ing packets instead of circuits in communications to Roberts leading to a
ground breaking experiment carried out in 1965, when Roberts teamed
up with Thomas Merrill to build the first ever wide-area computer net-
work(WAN)[Figure 2.2:C]. This WAN connected a computer located at MIT
to a computer located at UCLA using a dedicated 1200 bps dial-up tele-
phone line. The experiment was successful, but concluded that circuit
switched networks were inadequate for such purposes[22]. Based on the
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ideas of Kleinrock it was suggested that packet switching methods might
be a better approach.

Using his findings Roberts started making a draft on a network concept
called ARPANET][[21], Figure 2.2:D]. A paper on ARPANET was presented
at a conference in 1967, along with a paper on packet networks by Don-
ald Davies and Roger Scantlebury of UKs National Physical Laboratory.
Another attendee at the same conference, Paul Baran from RAND, an or-
ganization that does research for the US Army, revealed that he had done
research in the field as well, uncovering the fact that the three parties had
been researching the same subject without the knowledge of each others
work.

The specifications for ARPANET were completed in 1968, but one key com-
ponent was missing; the packet switches, which is fundamentally used to
store and forward packets. DARPA issued a request for quotation for the
development of the packet switches, at the time called Interface Message
Processors(IMP). Late that year the request was won by research and devel-
opment organization BBN. September 1969 the IMP was ready and UCLA
was connected to ARPANET as the first node[Figure 2.2:E]. Stanford Re-
search Institute followed one month later and the first host-to-host mes-
sage was sent over the network. By the end of the year four nodes were
connected, the last two included UC Santa Barbara and the University of
Utah.

In the years to come ARPANET grew quickly and propelled the need for
more protocols and networking software. In 1972 the first email system
was demonstrated to the public using basic send and read software, mak-
ing it the predecessor of what we know as todays email and social net-
working[Figure 2.2:F]. The same year Bob Kahn from BBN, who had been
heavily involved with the development of IMPs for DARPA a couple of
years earlier, once again found himself working for DARPA. This time to
work on a program called “internetting”, which goal was to develop an
end-to-end protocol that could withstand network drop outs and interfer-
ence. The protocol was developed in collaboration with Vinton Gray Cerf
and later evolved into the Transmission Control Program / Internet Proto-
col (TCP/IP) protocol. In 1980 TCP/IP was adopted as a defense standard,
and after two years it was implemented into ARPANET[Figure 2.2:G]. To-
day TCP/IPis a part of the Internet protocol suite, the most common stack
of protocols used for communication on the Internet.

ARPANET eventually developed into the Internet, and by 1988 it had
grown into a community of organizations that used the network as a com-
munication channel for exchanging information. On November 2. an event
occurred that was to change Internet history forever[Figure 2.2:H]. A mes-
sage from Peter Yee at the NASA Ames Research Center hit the TCP/IP
mailing list saying:



“"We are currently under attack from an Internet VIRUS! It has hit Berke-
ley, UC San Diego, Lawrence Livermore, Stanford, and NASA Ames.”

In fact, what Yee described as a virus, was actually the first known propa-
gating network worm, the Morris worm, unleashed by Robert Tappan Mor-
ris Jr., a graduate student at Cornell University and son of a National Se-
curity Agency scientist. It was clear that the Internet was no longer a safe
haven for trusted colleagues, and security measures had to be taken from
now on.

2.2 Firewall and Intrusion Detection Evolution

The concept of using physical obstacles to keep out intruders dates back
thousands of years. Take the great wall of China as an example, it was built
over two thousand years ago to prevent invasions from the north. The term
“firewall” was originally used to describe a wall separating parts of a struc-
ture that were more likely to have a fire from the rest of the structure, in
order to slow down the spread of the fire. To this day the term has pre-
served its original meaning, but it has also become a common expression
in automotive and aircraft industry, buildings and constructions, electrical
transformer stations and in computing.

In the field of computing, a firewall is a device or a program that controls
traffic flow between computer networks. Firewalls are often mentioned
when discussing Internet connectivity, but they are also commonly used
for restricting traffic to and from internal networks. Organizations employ
firewalls to control network traffic to and from these areas to prevent unau-
thorized access to systems and resources, and as a way of enforcing secu-
rity policies. Firewalls are often also used as traffic loggers, keeping records
over time to provide traceable logs. A security policy is a detailed specifica-
tion of security properties included in a system. It defines goals for security
mechanisms like firewalls, in which case these policies are often referred to
as network policies.

The theory about firewalls in computer networks was first presented
in 1988[[9], Figure 2.2:I] by engineers at Digital Equipment Corpora-
tion(DEC). DEC was acquired by Compaq in 1998 and is now a part of
Hewlett-Packard. In the late 80s, what can be considered as early firewalls
were actually routers used to split networks into smaller LANs to prevent
noise spilling over from one LAN to another, not to enforce security policies
or as a security precaution against attackers. With the turn of the decade
routers with filtering rules emerged as the first security firewalls used to
enforce security policies. Developed in 1991 and shipped in 1992 the first
commercial firewall product was the DEC SEAL, an abbreviation for Secure
External Access Link[[20], Figure 2.2:K]. The SEAL consisted of a system
called “Gatekeeper” as its only link to the Internet, together with a gateway
and a mail hub[Figure 2.1].



GateKeeper

Internal network

Figure 2.1: DEC SEAL

The SEAL was followed by other commercial solutions like the Ball
Labs Raptor Eagle and the ANS Interlock, paving the way for more firewall
products throughout the 90s.

2.3 First generation: Packet Filtering Firewalls

The first generation of firewalls are considered to be the most basic kind of
firewalls, screening packets based on IP addresses, ports and services re-
quested, hence they are often called packet filtering firewalls or screening
routers. Today packet filtering is still one of the most important tasks for
any kind of firewall, as the firewall is, in most cases, the first destination for
any traffic travelling to or from an internal network.

A packet filter acts by inspecting each packet passing through the firewall.
If a packet matches the criteria of one or more firewall rules, the filter can
decide to drop, reject or accept the packet. Dropping the packet means
silently discarding it, while rejecting a packet means the firewall sends an
error message to the packet’s source before discarding it. These decisions
are made based on information found in the headers of each packet con-
taining vital packet data.

First generation firewall are considered to be ”stateless” since they do not

take into account that the packets they are inspecting might be a part of a
network session consisting of a number of coherent packets.
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2.4 Second generation: Stateful Packet Inspection

The concepts of the second generation of firewalls were conceived during
the period 1989 to 1990 by Dave Presetto, Janardan Sharma and Kshitij
Nigam at AT&T Bell Laboratories [[5], Figure 2.2:J]. Initially this new tech-
nology was called circuit level, but it was later re-named when Check Point
introduced the concept of stateful packet inspection to the commercial mar-
ket with their FireWall-1 in 1994[[25], Figure 2.2:M].

In addition to packet filtering, a firewall with stateful packet inspection
includes the state and context of packets, thus keeping track of open con-
nections. Any packets going out is tracked by the filter and when packets
arrive the firewall can tell whether or not the incoming packet is a reply to
the sent packet. A stateful firewall has the capability of examining more
than just header information, it can also inspect contents of a packet up
through the application layer to gather more information about the packet
than its source and destination address.

The collected packet information is stored in a record of all established con-
versations called state table or session table. Using this method the speed
of network traffic flowing through the firewall is greatly increased. As the
first step in handling inbound traffic, the firewall can read from the state ta-
ble rather than the more time consuming task of having to iterate through
its rules.

Stateful packet inspection was not the only revolutionary innovations the
FireWall-1 had on board. Up to the release of the FireWall-1, administration
and configuration of firewalls was done editing ASCII files. The Firewall-1
was operated with the help of a graphical, mouse controlled user interface,
greatly simplifying firewall management.

2.5 Third generation: Application Gateways

Application gateways, also referred to as proxy-based firewalls and appli-
cation layer firewall, have the ability to inspect data located at application
level and provide elaborate logging. Jeffrey Mogul[14] described a sys-
tem working at the application level in 1991, but it was not until 1993 that
Trusted Information Systems introduced an open-source firewall called the
Firewall Toolkit[Figure 2.2:L], taking an important step forward in the field
of application gateways. Although application level inspection should be
credited to the DEC SEAL which pioneered the technology two years ear-
lier. The Firewall Toolkit was later commercialized under the name Gaunt-
let Firewall, incorporating application control, anti-malware and URL fil-
tering, greatly expanding the firewall field of operation.

Application layer firewalls do not make decision on whether to permit or
block network traffic based on ports like packet filters. Decisions are made
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by inspecting the data layer of the packet, making it possible to filter traffic
based on application or service.

A proxy firewall acts a middleman between communicating parties. It can
break the TCP/IP connection and re-establish a new connection to each
system acting on the behalf of the client to obtain the requested service,
making it appear like outgoing traffic is originating from the firewall, not
the internal host. This feature is useful when a client and server are incom-
patible for direct connection and it makes the gateway capable of network
address translation(NAT).

2.6 Hybrid Firewalls

While in theory, firewalls are split up into specific types, in most real-world
settings firewalls are hybrids of two or more of the technologies mentioned
in the previous sub-sections. The concept of the hybrid firewall dates all the
way back to the DEC SEAL, which was a mix of a proxy and a packet filter
illustrated in figure 2.1. Today it is possible to combine the advantages of
different firewall platforms into a multilayer inspecting architecture with
the ability to make use of packet filtering to provide high throughput low-
risk traffic, deep packet inspection for more thorough packet content inves-
tigation and application layer filtering for data-driven attacks.

2.7 Intrusion Detection Systems

Firewalls provide excellent methods for enforcing security policies in net-
works, but firewalls alone are not sufficient to ward off the highly devel-
oped range of attacks observed today. With the seemingly endless amount
of new Internet threats discovered daily, it is crucial striving to stay ahead
of the game to avoid intruders and malware from compromising your net-
work. Symantecs annual Internet Security Threat Report for 2011[31] re-
vealed a surge of 81% in network attacks and an increase in malware vari-
ants by 41% from the previous year, boosting the need for network hedging
solutions. No single security measure can recognize or stop all kinds of at-
tacks, thus firewalls are often partnered with intrusion detection systems,
creating an intrusion prevention systems to form a more secure platform.

Intrusion prevention systems(IPS) are extensions of intrusion detection sys-
tems. In addition to identifying network threats they have the ability to
perform proactive response protection to a network by blocking malicious
activity. An IPS is always situated in-line to actively detect and prevent un-
wanted network traffic.

The idea of intrusion detection was born in 1980, when James P. Ander-
son at USAF published a seminal study describing methods for monitor-
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ing networks using accounting audit files[Figure 2.2:0]. This is considered
to be a predecessing theory to the first intrusion detection system named
Intrusion Detection Expert System(IDES)[Figure 2.2::P]. The IDES was de-
veloped by Dorothy Denning and Peter Neumann between 1984 and 1986.
It was a real-time rule-based IDS that could detect known malicious activ-
ity. Throughout the 1990s the US government funded research on several
intrusion detection systems|[ref: history 344], and in the mid 1990s commer-
cial products became available to the masses. Netranger[Figure 2.2:Q] and
RealSecure[Figure 2.2:R] were two popular solutions, developed by respec-
tively Wheelgroup and Internet Security Systems(ISS).

Wheelgroup was aquired by Cisco in 1998 and is now a part of Cisco’s
security department. Netranger still exists in a re-engineered form as the
Cisco Adaptive Security Appliance. ISS released their first commercial
IDS named RealSecure 1.0 in 1997. The company was bought by IBM in
2006 and currently goes by the name of IBM Internet Security Systems. In
1998 a widely used open source IDS/IPS tool called Snort saw the light of
day[Figure 2.2:S]. Snort is maintained by Sourcefire which uses Snort tech-
nology in their next-generation firewall products.

Market statistic reveal that intrusion detection systems are among the top
selling network security technologies, and according to Frost & Sullivan[6]
they are predicted to remain in that position for years to come.

2.8 Next-generation Firewalls

In the early days of computer networking, security was relatively simple.
Network traffic could be of two states, either good or bad. The approach
was traditionally to permit “good” traffic and block everything seemingly
“bad”, and firewalls did a good job distinguishing between benign and
malicious traffic. Today this mentality can cause problems due to more
sophisticated evasive techniques used by applications to gain network
access, and the blurring line between business- and user- applications,
making it difficult to categorize traffic. As a response to the change in
the threat landscape, security vendors came up with a product blending
firewall technology with intrusion detection systems, making a unified
network security platform known as the next-generation firewall.
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The next-generation firewall collects features from all generations
of firewalls and intrusion detection systems into one physical product
promising:

¢ High throughput

¢ All-in-one functionality

* Single management interface

* Bulky appearance

¢ Lower cost ownership

* Better control, visibility and security
* Reduced rule-set complexity

¢ Encrypted traffic inspection

Palo Alto was the first vendor to release products falling into the next-
generation firewall category with their PA-4000 series in 2007[Figure 2.2:N],
two years before Gartner[18] published their definition of a next-generation
firewall.

According to Gartner the following attributes must be implemented for a
product to be regarded as a next-generation firewall:

Support in-line bump-in-the-wire configuration without
disrupting network operations.

Act as a platform for network traffic inspection and network
security policy enforcement, with the following minimum fea-
tures:

Standard first-generation firewall capabilities: Use packet filter-
ing, network- address translation (NAT), stateful protocol in-
spection, VPN capabilities and so on.

Integrated rather than merely co-located network intrusion pre-
vention:

Support vulnerability-facing signatures and threat-facing sig-
natures. The IPS interaction with the firewall should be greater
than the sum of the parts, such as providing a suggested fire-
wall rule to block an address that is continually loading the
IPS with bad traffic. This exemplifies that, in the NGFW, it is
the firewall correlates rather than the operator having to derive
and implement solutions across consoles. Having high quality
in the integrated IPS engine and signatures is a primary charac-
teristic. Integration can include features such as providing sug-
gested blocking at the firewall based on IPS inspection of sites

12



only providing malware.

Application awareness and full stack visibility: Identify appli-
cations and enforce network security policy at the application
layer independent of port and protocol versus only ports, pro-
tocols and services. Examples include the ability to allow Skype
use but disable file sharing within Skype or to always block Go-
ToMyPC.

Extrafirewall intelligence: Bring information from sources out-
side the firewall to make improved blocking decisions, or have
an optimized blocking rule base. Examples include using direc-
tory integration to tie blocking to user identity, or having black-
lists and whitelists of addresses.

Support upgrade paths for integration of new information feeds
and new techniques to address future threats.

13



History of the Internet
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2.9 Rules and rule sets

First and second generation firewalls operate with a focus on ports and
addresses when filtering network traffic. In rules for these kinds of
firewalls one may specify elements necessary for the filter to decide
whether or not to forward the packet. Such elements are often referred to
as "tuples”, and they specify a property that is used for packet filtering. A
rule consisting of protocol, source and destination address and ports makes
up a 5-tuple rule.

Source IP Destination IP Protocol Port Action

Figure 2.3: 5-tuple rule example

Generally all traditional firewall rules more or less follow a standard
structure containing source and destination addresses/zones, port and
protocol. Rules for next-generation firewalls might look exactly the same
as traditional firewall rules, but a next-generation firewall rule can also
include user and application tuples.

Source IP Destination IP Protocol Port Action _

Figure 2.4: 7-tuple rule example

The “Application” and “User” tuples are not mandatory, they are con-
sidered meta-tuples, and they make the rule more flexible and immune to
the increasingly common phenomenon of so called port hopping applica-
tions, described in Palo Alto’s “Application Usage and Risk Report”[17].

A collection of rules are often called rule sets, and a firewall normally op-
erate with one rule set at a time. It is very common for an organizations
network to include several firewalls in order to separate zones and net-
works, hence the need for one rule set per firewall. A number of rule sets
makes up a big part of the organizations security policy from the network
security perspective. In this thesis one or more rule sets are referred to as a

policy.

Gaining knowledge on how to create rule sets for next-generation firewalls
can be a complex task, taken into account that no generic format exists for
next-generation firewall rules. In the following chapters a possible solution
to this is presented, in the form of a unified high-level language that can be
used as a tool for making policies across next-generation firewall platforms.
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2.10 Firewall policy languages

The first theory addressing universal firewall languages was proposed by
Guttman[8] in 1997, where he describes a Lisp-like language used for spec-
ifying high-level packet filtering policies. Since then there have been sev-
eral attempts to create unified languages for firewalls. The majority of these
languages were designed for host-based firewalls, not for appliances, and
today most of these languages are deprecated.

Although ten years old, one of the most recent projects on the matter is the
HLFL(High Level Firewall Language) project[11]. The projects goal was to
provide a language that could be used to write firewall rules that could be
translated into usable rules for Linux host based firewalls and Cisco fire-
walls. The last version was released in 2003, and the project is no longer
maintained.

Research done at DePaul University in 2007 resulted in a firewall policy lan-
guage called FLIP[3]. FLIP is a block based language designed to be used
on different configurations by abstracting itself from the network topology.
As this research was performed at roughly the same time as the first next-
generation firewall was released to the market, no support is provided for
next-generation firwalls.

Since 2003 the commercial actor AlgoSec[1] has offered the management
solutions FireFlow(AFF) and Firewall Analyser(AFA), powerful tools de-
signed to manage firewall policies. The current versions of AFA and AFF
support policy modification and deployment for a few next-generation fire-
walls. The AlgoSec tools are operated by a graphical interface and provides
no unified language available to the user. Policy management is most likely
done under the hood using vendor specific commands, hence the reason
for limited for next-generation firewall support is most likely due to the
fact that they a relatively new product group, and it will take time to de-
velop full support for these products. One might try to modify or expand
AlgoSecs tools to perform the same tasks addressed by this thesis, but un-
derstanding AFFs and AFAs inner workings will probably prove difficult,
and modification is likely in discordance with AlgoSecs guidelines as they
are commercial products. The problem statement states that the goal of this
thesis is to promote an open, unified language, hence it cannot and should
not be directly compared to the AlgoSec solutions.
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Chapter 3

Approach

This chapter contains a development plan and describes a testing process
for a prototype high-level language designed to write firewall policies for
next-generation firewalls. The prototype will be used to build and imple-
ment several security policies using a real next-generation firewall appli-
ance in a laboratory environment. If using the language for policy imple-
mentation proves to be successful, functionality tests will be performed
to verify prototype functionality and to ensure that the outcome is in ac-
cordance with the objectives Oy to O3 from the problem statement in sec-
tion 1.1.

The next-generation firewall used for laboratory testing in this thesis is a
Palo Alto PA-200 appliance firewall. Steven Thomasons[28] study on next-
generation firewall devices states that Palo Alto is one of the top players
among next-generation firewalls, making the PA-200 a suitable candidate
for the laboratory experiments in section 4.6. The firewall appliance will
only be connected to a physical network through its management port for
remote management. Generating network traffic to ensure enforcement of
security policies is not a part of the experiments performed in this thesis,
as it is expected that a successfully implemented rule set will filter traffic
correctly.

All firewall products mentioned in this thesis are network based and runs
a Linux based operating system. Palo Alto uses a vendor specific Linux
distribution called PanOS, which incorporates command line tools, along
with a web-interface and SSH support. Experiments will be performed on
PanOS version 5.0.3, which is the latest available version at the time of the
experiment phase. Suitable experiments will be designed to review the
overall policy implementation process when using a universal language,
and all these experiments will be performed on Linux based systems. Linux
is also the preferred environment for software development in this project.
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3.1 Policy definitions

The universal term policy is used vastly throughout this thesis, hence a clari-
fication is provided to diminish any confusion. A policy describing the net-
work security policy for an organization is referred to as policy,. Policyy, is
a policy derived from the complete or a subset of policy,, and written by a
person using the prototype language. Policy. is compiled by the prototype
tool and ready for deployment to a next-generation firewall. The policy
implemented and operating in the firewall is called policy;.

A quick reference to the policy types is provided in table 3.1.

Description

Human readable policy in text form.

Policy implemented in firewall.

Table 3.1: Policy type definitions
A traditional firewall policy implementation process involves all of
these policy types, from policy, to policy;, as shown in figure 3.1. Normally
policy, is produced using vendor software, and kept within the firewall
itself. When using the prototype language, policy, can also refer to a policy
produced on a client computer and then transferred to the firewall.
Policy implementation process

From an organizations network policy to policy implemented in firewall

Network policy Universal policy Compiled policy Operational policy

ARLES

I |
. | . | . | .
Policy, | Policy, | Policy | Policy;
I I |
| | |

Figure 3.1: Basic implementation process
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3.2 Phase 1 - Property identification

This phase reflects on the question Q; and the objective O; outlined in the
introducing chapter, where we seek to investigate how a common platform
can be made for next-generation firewall rule structure and policies. The
process of forming a unified platform is initiated by uncovering what fea-
tures and tuples are relevant for a next-generation firewall.

As mentioned in section 2.8, firewall rules are formed by tuples, or proper-
ties, that dictate how to handle network traffic based on traffic directions,
ports, applications, users and addresses. A set of next-generation firewall
products will be subject to analysis in order to map relevant properties, and
to uncover any inconsistencies between them. Supported properties may
vary from vendor to vendor, so it is essential to be certain that all possible
properties are covered. Including all properties found in next-generation
firewalls in the universal language will assure support for all configura-
tions, and any excess or unsupported properties might be filtered out prior
to the final policy creation.

The findings in this phase will form a basis for the next phase, where the
goal is to design a prototype of a universal language.

3.3 Phase 2 - Design

Once a common standard has been established in Phase 1, the design of a
prototype language can commence. Mainly there are two code concepts
applicable for this task; tuple-based and block-based. They both have their
pros and cons, and there are a number of aspects that needs to be taken into
consideration when designing a language for the purpose we are seeking.
To ensure that solid groundwork for future development is laid, the two
concepts must be thoroughly examined before the final design is chosen.

Phase 2 seeks to answer and fulfill Q; and O, from the introduction. This
phase will describe a way of creating a functional solution for policy man-
agement in next-generation firewalls, namely by creating a form of express-
ing firewall policies with the help of an universal language to achieve sim-
plified policy management across next-generation firewall products.

3.4 Phase 3 - Language development

Phase 3 combines the results of Phase 1 and Phase 2, hence the outcome
of these two initial phases are decisive for the code syntax and language
composition that is to be developed in this phase. The goal of this phase is
a prototype of an easily readable language that simplifies and unites next-
generation firewall rule sets. As well as Phase 3, this phase is also related to
Q; and O; from the introduction chapter.
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3.5 Phase 4 - Software design

Software tools are needed to convert policyj, written in the universal lan-
guage, to policy, in the respective firewalls native language. This software
has to consist of a parser and a compiler. Input files containing univer-
sal policies needs to be parsed and compiled into policy, files that can be
pushed directly to the firewall. For programming the parser and the com-
piler, Perl is the programming language of choice, as this is the language
the author is most familiar with, and it should prove more than capable of
dealing with such a task.

For future-proofing the compiler software needs to be expandable, in the
sense that it should support add-on capabilities for future firewall lan-
guages. This functionality can be implemented by introducing module
support in the compiler. Each module will compile the universal policyy,
into policy, in the desired vendor format, providing multi-vendor support.
Introduction of new properties will be solved by utilizing a plugin architec-
ture. Plugins can be customized to handle properties based on user needs.

Phase 4 reflects in Q, and O, defined in the introduction chapter.

3.6 Phase 5 - Implementation

This phase represents objective O3, the evaulation of the prototype lan-
guage and the software that has been developed in the provious phases.
Phase 5 will also try to give an answer the important question Qs:

What can be achieved by creating and utilizing a universal language?

When a policy. is produced using the Phase 4 software tools, it can be trans-
ferred to a next-generation firewall and set into production as a policy;.
Each vendor have their own set of control commands and interfaces that
are used to perform configurations and policy deployment. Most major
next-generation firewall vendors provide SSH and web interface access to
their products, so an investigation will be done to decide which method
proves to be the most suitable for policy transfer to the firewall. A detailed
implementation process is illustrated in figure 3.2.
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Policy implementation process

From an organizations network policy to policy implemented in firewall

Compiler modules

Operational policy

Software tools
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Network policy Universal policy file
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Software components
processing the
universal policy file to
produce a compiled
policy file for use in a
firewall.

Figure 3.2: Detailed implementation process

Implemented policy,
operating within the
firewall appliance.

Policy file written in
the universal
prototype language.
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3.7 Phase 6 - Experiments

Evaluation of the prototype language will be carried out by staging one ar-
tificial control scenario and one real-world like scenario, where a policy,
is created from the ground up and implemented into a Palo Alto PA-200
firewall. Time restrictions and resource availability limits the possibility to
perform experiments on more than one platform, although theoretically
the principles conceived in this thesis should be adaptable to any next-
generation firewall hardware.

To ensure a realistic outcome, a second test scenario will be designed to ex-
plore how the universal language and its complementing software perform
under real-world conditions. Given the time frame for this thesis, building
a policy;, and deploying it as policy; in a production environment is risky
due to the probability that the immatureness of the prototype language
could cause unforeseen security breaches, not to mention that a policy, de-
signed for an organization most likely would have to be kept confidential
for security reasons. Because of this, the experiments will be carried out in
an laboratory environment isolated from other network traffic.

The results of the experiments will hopefully unveil how the prototype
language performs compared to using the native language of the PA-200
next-generation firewall appliance. It is of importance that any significant
deviations and differences are uncovered, therefore a representative num-
ber of properties will be measured:

Px: Complexity
Complexity is measured by number of tuples and the number of lines
needed for the policies.

Pc: Compliance
Does the policy; implemented using the prototype tool comply with the de-
sired policy design?

Pp: Baseline differences
Are there any differences in the policies when using the prototype tool com-
pared to using the vendor tool?

Pr: Time
Are there any differences in time consumption when using the prototype

tool compared to using the vendor tool?

This final phase of the project is a part of the evaluation process and should
provide answers to Q3 and fulfill O3 described in chapter 1.
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3.7.1 Experiment1
Step A: Implementation

The first experiment will be implementing a basic policy; from a policyy,
solely to uncover any problems or bugs in the language itself, or in the
transition process from high-level policy, through compiled policy. to fully
implemented policy;. The policy; will be a simple policy for one client net-
work behind the firewall, which opens up for network traffic typical to a
private home network. The prototype language will be used when writ-
ing policyy,, and the developed software will be used to convert policy, to
policy. before it is finally compiled to policy; by the firewalls internal soft-
ware.

The implementation process should provide an answer to if the prototype
software can be considered to be a functional solution to firewall policy
building and management, as described in Q; and O;.

Step B: Quality control

Quality control is the next natural step if the policy, proves to be success-
fully implemented in Step A using the universal language. This means
ensuring that every element in the policy; is implemented in the next-
generation firewall without errors, and that it operates as expected. First
the policy will be implemented by using the PanOS web-interface, then by
using the prototype language. The desired result would be if the PanOS
policy; and the policy; generated by the prototype language proves to be
identical.

The results of this step should provide some answers to how the proto-
type performs compared to the vendor tool, as asked in question Qz and
described in O3.

Step C: Timing

While performing Step A, a stop watch will be used for timing the policy
creation process, both when using the web-interface when using the proto-
type. This step will require at minimum two test users, one novice user and
one expert user, to investigate if there might be variations in the learning
curve between the vendor tool and the prototype.

This last step in the experimentation process is a method for evaluation

of the prototype language, answering question Qs, as well as partially ful-
filling objective O3, the evaluation of language qualitites.
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3.7.2 Experiment 2

To provide realistic testing conditions a policy, for use at a hospital is
chosen as the scenario for the second experiment. A full security policy
of this proportion is usually too comprehensive for one firewall alone, so
the policy will be compacted for use in a single firewall. Hopefully this
will have little or no impact on the realism of the scenario and the value of
the results. Hospitals are something most people can relate to, hence the
threshold for understanding the policy, should be relatively low.

Step A: Implementation

The policy, for this experiment is heavily influenced by a production
policy; used in a real hospital. This experiment is to be considered as the
proof-of-concept for the prototype language. This step will be the process
of going from policy, to policy;, and the purpose of the following Step B
and Step C is to review this process in depth.

Step B: Quality control

Quality control will be executed by first implementing policy; through the
PanOS web-interface, followed by the implementation of the policy; using
the prototype language. If the desired result is achieved the PanOS policy;
and the policy; generated by the prototype language should be identical.

Step C: Timing

While performing Step A, a stop watch will be used for timing the
implementation processes, both when using the web-interface when using
the prototype. This step will require at minimum two test users, one novice
user and one expert user, to investigate if there might be variations in the
learning curve between the vendor tool and the prototype.
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3.8 Approach summary

The problem statement for this thesis states three questions, and three cor-
responding objectives designed to provide answers to these questions. In
short, these questions ask how a unified platform for next-generation fire-
walls can be used to form a language designed to write security policies,
what can be achieved by such a universal language and how the language
can be evaulated. The quest to fulfill these objectives is divided into 6
phases, all necessary to reach the goal, which is a working prototype of
a universal language for next-generation firewall policies. All phases de-
scribed in this chapter, along with the correspond elements from the prob-
lem statement are represented in table 3.2.

Question Objective Phase Experiment step

Q;:How can a | O;: Property collecting. 1: Property identification | -

common plat-

form be made?

Q>: How can 2: Design

a functional 02: Develop language and tools. 3 Devéglop language A: Implementation

solution be 3: Develop software

found?

Scie‘i/:[:;ii 8 O3: Evaluation process. 5: Implementation B: Quality control
’ 6: Experimentation C: Timing

How to

evaluate?

Table 3.2: Approach and problem statement affiliations
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Chapter 4

Results

The findings and results from Phases 1-6 in chapter 3 are presented here,
starting with the first phase, which aims to build a unified platform
for next-generation firewalls in order to be able to define features and
properties for a universal language.

4.1 Phase 1 - Property identification

In order to gain a greater understanding of how next-generation firewalls
operate and what are their similarities, a comparative study including six
next-generation firewall products from several major vendors was carried
out. The next-generation firewalls subject to comparison are shown in
table 4.1.

Vendor

Sonicwall E8500

Sourcefire

Check Point

Table 4.1: Comparison of NGFW products

The comparison of the six candidates[13][16][26][27][15] makes it clear that
many of them use terminology that is somewhat similar, while a couple
of the firewalls stand out by using unique properties, see comparison
table 4.2. These unique properties are product specific capabilities that
cannot easily be applied to all next-generation firewalls. One example is
the Palo Alto’s “HIP-profile” property, short for “Host Information Profile”,
that compiles information about client devices, a feature exclusive to Palo
Alto.
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Property Adyton Barracuda Check Point  Dell Palo Alto  Sourcefire

Action \ v v \ \ \
Application v \ v v
Comment \ \ v \

Destination \ \ \ \ \

Destination zone \

Enabled \ \ \ \ \ \
HIP-profile \

Install on \

Interface \

Log \ \

Name ] v v v \ \
Number \ \ \

Object \ ]

Options \

Profile \%

Service \ \ \ \

Source \ \ ' \

Source zone \

Type v \

User \ \ \ \

Table 4.2: Property overview

The products used for the property comparison is a small selection of the
products available on the market, meaning the differences are probably
even bigger than this study suggests. As a result of these inequalities a
major drawback is that writing a policy that is supposedly unified and
applicable to all next-generation firewalls, will be lacking product specific
capabilities that might make a product stand out from the rest. On the
other hand, the flexibility of the prototype language actually makes it
possible to define these properties if they are supported by the firewall.
When developing a policy;, for a firewall with unique properties, these
properties can be included in the policy by simply defining them as they
are defined in the firewalls native language. If compiled correctly, these
unique properties will be filtered out and removed if not supported by the
firewall product. See listing 4.5 in section 4.3 for instructions on how to
include product specific properties in rules.

If disregarding product specific properties, it is possible to gather the
equalities in the next-generation firewalls to form a semi-common plat-
form that covers the most important next-generation firewall capabilites,
as shown in table 4.3.
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Property Value

Table 4.3: Unified property platform
Most of the products mentioned in this study should be able to utilize

the properties in table 4.3, with the exception of the Sourcefire NGFW,
which is clearly a stand-alone IPS, labeled as a next-generation firewall,
but designed to operate in conjunction with a firewall.

Application Application object

Destination Address(es)

From Zone

Name Rule name

Service Service object

To Zone

Traffic filtering by user is possible for some next-generation firewalls,
but none of these seem to have their own user database. User data is
usually fetched from RADIUS, Active Directory or LDAP. This does not
eliminate the universal language’s ability to create custom users, but in
order to benefit from this, an authentication service interface must be
implemented. Such an interface is not covered in this thesis, but it might
be an idea for a future extension. As a result of this, the user property is
not applicable for any of the rules in the experiments.

4.2 Phase 2 - Design

Using the unified property platform created in Phase 1 as a basis, a proto-
type of a universal language is developed. This section deals with design
aspects of the language, and how a design conclusion was drawn after
weighing several alternatives.

Blocks of code can be used to represent the structure of an organiza-
tion and its network topology in a way that is fairly easily comprehensible
to humans. Network components can be defined using blocks that hold
information on the components, somewhat similar to a object based like
language. Using blocks also opens up for using classes, overriding, loops,
inheritance and variables with scope. One drawback that comes with a
block based language is the level of difficulty when it comes to parsing.
All blocks and their contained data have to be interpreted and parsed
correctly to avoid flaws in the policy, that can lead to corrupted policies
and subsequent malfunctioning firewalls.
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Figure 4.1 show how a firewall rule can be written in block format.

Number 19
Name web_access
rule "web_access"{

Source 192.168.1.3-192.168.1.6 number 19
source 192.168.1.3-192.168.1.6
destination any

Destination Any > port 80,443
user any
log yes

Ports 80,443 }
User Any
Log Yes

Figure 4.1: Block based code example

Sooner or later in the policy implementation process, the compiled
version of the policy. will be converted into a tuple structure to make it
understandable to the firewall before pushing it to an operational policy;.
This transition will in many cases happen inside the firewall itself, and
will not be visible to the firewall administrator. An alternative to the block
based approach is using tuples as a basis for a universal language, as tuples
have some advantages over blocks. Tuples makes it easier to compile
and implement policies, since the parser and compiler only need to do a
mapping operation from policy;, to policy,. In fact, most modern firewall
interface software display their rule sets using a tuple format.

Number Name Source Destination Ports User Log

19 web_access 192.168.1.3-192.168.1.6 Any 80,443 Any Yes

rule_19{name=web_access,source=192.168.1.3-192.168.1.6,destination=Any,port=80,443,user=Any,log=Yes }

Figure 4.2: Tuple based code example

For small rule sets tuples can possess a high grade of readability for
humans, but complexity is prone to increase with the number of lines
in the set. One of the great disadvantages that comes with a tuple
based language is the low level of expandability. With blocks, policies
can be modified and expanded by seemingly doing less editing, since
the structure allows for compressing the code used for writing policies.
While if modifying a tuple based policy, all affected lines needs to be edited.

Due to the flexibility of a block based approach and for the sake of

readability in large policies, the choice fell on using code blocks as the
preferred design for the universal language.
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4.3 Phase 3 - Language development

This phase presents the result of the development process, a working
prototype language for next-generation firewall policies, and it gives the
reader an introduction on how to use it to build objects and rules. The
development of the prototype was done using the Perl programming
language, and blocks and code syntax should be easliy graspable by most
individuals possessing basic programming skills in any object oriented
programming language.

The prototype has support for inheritance and variables. If a firewall
rule is incomplete and a superclass is defined, default values will be
placed in an attempt to preserve the integrity of the rule set by using
inheritance. Skipping properties in rules can also be done deliberately
utilizing inheritance to minimize the number of tuples in the policy.

4.3.1 Language structure and syntax
Variables are supported and prefixed with notation $, meaning defining a
variable is done as follows:

$variable = value

Blocks are defined with curly brackets, “{” for begin block, “}” for end
block. A block is defined by class type and must be given a name.

classtype name {
property value

3

Using SSH as an example,the following listing shows how a service object
is made:

Listing 4.1: Service declaration example

service ssh |
port 22
protocol tcp

}

As presented in the example above, the property represents an attribute
that is specific to the class type, for services ports and protocols are sig-
nificant properties, while when dealing with applications other properties
might be used.

Listing 4.2: Application declaration example

application facebook {
signature "www.facebook.com"

}
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The signature property can be used as an inspection string or to define a
regular expression that trigger intrusion detection alerts based on signa-
tures if the firewall supports deep packet inspection.

Inheritance makes it possible to define superclasses that hold general
properties which can be applied to classes where these properties are not
defined. A superclass block looks very similar to a normal class block,
by simply adding “superclass” in front of the classtype it can be made a
superclass.

superclass classtype name {
property value

¥

In order for a class to inherit from a superclass, the superclass must be
defined as a superclass within the class block.

classtype name {
property value
superclass superclassname

+

For an application the superclass and class definitions might look like this:

Listing 4.3: Superclass declaration example

superclass application application_common {
protocol tcp
port 80,443
)

application facebook {
signature "www.facebook.com"
superclass application_common

}

Now the properties protocol and port will be added to the application
facebook.

Rules share the exact same syntax as classes, although the rule name
must be quoted to specify that the name is one single string. This is a
deliberate choice of design as rule names often are text strings containing
whitespaces, which might otherwise confuse the parser.

rule "name goes here" {
property value

+

Below is an example on how to allow access for the application facebook
from the client network in zone internal to anyone in the zone external.

32



Listing 4.4: Rule declaration example

rule "facebook access" {
application facebook
from internal
to external
source client—network
destination any
action allow

}

Product specific properties, meaning they are not supported by all
firewalls, can be defined by simply defining them as they appear in the
products native language. Using Palo Alto’s “HIP-profiles” as an example,
this is how it is done:

Listing 4.5: Unique property declaration example

superclass rule rule_common {
hip—profiles any
)

It is crucial that the property exists and appear exactly as it does in
the native language of the firewall, or else it will be filtered out in the
compilation process and lost.

Ranges are defined with “-”, for example IP or port ranges are de-
noted “$beginrange-$endrange”. Netmask are prefixed with the CIDR
notation[30] “/”, followed by the number of bits assigned to the network
address. To assign multiple values to a property, the values are separated
with a comma.

Listing 4.6: Range and multiple values example

zone internal {
address 192.168.0.1 —-192.168.0.255
}

network office {
netmask /24

}

service rdp {
port 5800,5801,5900,5901
}

This is a common way to specify ranges, netmasks and multiple values in
firewalls. If another format is required by the firewall, re-formatting can be
done in each individual compiler to accomodate other notations.
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4.4 Phase 4 - Software design

To cover the entire implementation process from policy, written in the
prototype language to the compiled policy,, the developed software
consists of a collection of elements designed with specific purposes in
mind. Please refer to figure 3.2 for an overview of these elements.

The policy; can be written in any standard text editor, and it is sepa-
rated into two files, one configuration file and one file containing the rule
set. The configuration file defines components like services, applications,
zones, networks and other objects relevant to the policy, while the rule file
exclusively specifies a set of rules.

Listing 4.7: Configuration file example

$eth0 = 10.0.0.1
$ethl = 192.168.1.1

superclass service service_common {
protocol tcp

)

superclass zone zone_common {
netmask /24

}

service web {
port 80,443
superclass service_common

}

service ssh {
port 22
superclass service_common

}

zone internal {
iprange 192.168.1.2 -192.168.1.255
superclass zone_common
interface $ethl

}
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Listing 4.8: Rule file example

rule "web browsing" {
service web
from internal
source any
to any
destination any
action allow
log on

}

rule "ssh access" {
from any
source any
to internal
destination any
service ssh
action allow
log on

}

If the firewall is already configured, only the rule file will need to be
created, and configuration objects can be inserted into the rule file by using
their respective names.

Utilizing superclasses for rules makes it possible to significantly de-
crease the amount of necessary properties in the policy,. Using a basic
superclass, as seen in listing 4.9, the number of properties can be reduced.

Listing 4.9: Rule superclass example

superclass rule rule_common {
action allow
from any
to any
source any
destination any
log on

}

This superclass allows the rule set to be written as simple as in listing 4.10.
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Listing 4.10: Rule inheritance example

rule "web browsing" {
service web
from internal

}

rule "ssh access" {
to internal
service ssh

}

Once a configuration file and a rule file has been created, the main program
can be executed, assuming a suitable compiler exists. Necessary input files
are specified using command line operators, as shown in figure 4.3.

prototype.pl -p rulefile -c configfile -o compiler

Figure 4.3: Program execution

Currently supported command line options are described in table 4.4
below.

Operator Function

[-c configuration] | File containing configuration

-v(verbose) Verbose output

Table 4.4: Command line options

Rule and configuration files are generated depending on how the compiler
is programmed to handle the data from the main program. In the case of the
Palo Alto compiler, several files are created as necessary by the internal file
structure in the firewall appliance. The PA-200’s complete configuration is
stored in one XML-file, which contains all rules, objects and configurations,
except for application and user information. The content of the XML-file
includes parts that are unrelevant for this project, and some important
content like application data is located within a large library file, which
can not be exported or imported in any convenient way. This means that
when working with the PA-200, applications are pre-defined and including
applications in a rule written in the prototype language can be done by
simply adding the applications name in the rule.

Listing 4.11: Use of remote desktop application in rule

rule "remote desktop" |{
application ms—rdp

}
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This of course requires first hand knowledge on available applications
before writing the policy.

Defining users can be done by creating user objects, but a user database is
usually located externally, and most next-generation firewalls are meant
to connect to authentication services like LDAP, RADIUS and Active
Directory to pull user data. To specify users simply add the desired user
name prefixed by the property source-user.

Listing 4.12: External user definition

rule "remote desktop" {
application ms-rdp
source—user john—doe

}

Many of the next-generation firewalls are designed with external user
databases in mind, hence they do not have the ability to store users within
themselves. It is nevertheless possible to define user objects manually if
this functionality is supported by the firewall:

Listing 4.13: Manual user definition

user john—doe {
firstname John
lastname Doe
email john—doe@example.com

}

44.1 PA-200 implementation process

After a policy; has been compiled and ready to deploy, there are various
ways of preparing the policy. for implementation, differing from vendor
to vendor. This section descibes the procedure used for Palo Alto PA-200.

The PA-200 configuration file is split into several parts, divided by
XML tags as seen in listing 4.14.
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Listing 4.14: PA-200 Configuration file example

<zone>
<entry name="Internal">
<network>
<layer3>
<member>ethernetl /2</member>
</layer3>
</network>
</entry>
</zone>
<service>
<entry name="http—proxy">
<protocol>
<tcp>
<port>8080</port>
</tcp>
</protocol>
</entry>
</service >
</service >

The elements relevant when dealing with firewall rules are <zone>,
<service>,<rulebase> and <address>(IP-ranges or single IP-addresses) and
<address-group>. Other elements hold various configuration options that
has little or no relevance to the rule set. With such a elaborate configuration
file, the file must be dissected and the output from the compiler has to be
merged into the correct location in the file. This is a manual process that is
performed before uploading the file to the firewall.

4.4.2 Data structure

The main program module initially does a listing of available plugins and
compilers and includes their code to utilize these external files during
parsing and compilation. Each data field in the configuration file and the
rule file is read and parsed by the corresponding plugin, which builds up
multi-level hashes containing rules and configuration. A hash is stored
in whatever format the plugin dictates. The plugins provided with the
prototype typically store the data structure similar to figure 4.4.

{CLASS} {NAME} {PROPERTY}

Figure 4.4: Generic hash structure
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The service class is used as an example to show what a hash structure looks
like in figure 4.5.

Service type Property

Protocol

SSH

Superclass

Hash type Class type

@ SERVICE FTP

Protocol

Superclass

Protocol

RDP

Figure 4.5: Service class hash structure

When all data is parsed and the hashes have been built, comes the process
of population configuration and rules with properties from their respective
superclasses. When this inheritance process is complete the compilation

process can commence, resulting in a compiled policy,, in the form of one
or several files.

The flowchart in figure 4.6 illustrates the five stages of data parsing,
inheritance and file creation through the policy building process.
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Figure 4.6: Software flowchart
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A overview of currently inluded classes with their underlying properties

is provided in table 4.5.
Classes
Port Integer
Service Protocol String
Superclass | Class hash
Port Integer
o Protocol Strin
Application Superclass Classghash
Signature String
Group Member Network,Zone
P Integer(x.x.x.x)
Network Netmask Integer( /X)
Zone Interface String
Interface String
User (Unsupported. See section 6.4)
Action String
Rule Source Network,IP
Destination | Network,IP
From Zone
To Zone
Log Boolean
Service Service hash
Application | Application hash

Table 4.5: Class overview
4.4.3 Plugins

Classes may need to be parsed in different ways, and the plugins are
essential components made to parse data in a way that provides the
desired output format. If the main program module finds a class block
during execution, the type and name of the block is passed to the plugin
corresponding to that specific type of block. The plugin will then iterate the
data fields contained within the block and store them in the correct hashes
before returning to the main program. If a block that contains a class type
with no corresponding plugin, the class will be considered unsupported.
The block will be skipped and the main program will continue to the next
block. Plugins included in the prototype software correspond to the classes
in the class overview table 4.5.

The plugin architecture opens up for tremendous expandability. The
plugins dictate how data is parsed and stored, which gives them control
of data processing before compile time. This ensures support for future
features in forthcoming firewall products.
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444 Generic compiler

Compilers are called from the compile sub routine in the main program,
and their purpose is to output data in a format readable to the desired
firewall. Data stored in hashes during the parsing process is now
processed by the compiler, and the data can be manipulated and filtered to
accomodate current needs. In order to build a complete rule set, a compiler
must contain the following sub routines, including the passed arguments:

* beginRuleset()

beginRule($name)

compile($property,$value)

endRule()

endRuleset()

The generic process of building a rule set begins with beginRuleset(), a
sub routine that defines a starting property for policy, if necessary. The
beginRule() routine receives the rule name from the main program and
begins the rule, before the compile() routine inserts all defined properties
and their values. endRule() ends the rule if required by policy., and
endRuleset() finalizes the entire rule set before returning to the main
program.

4.4.5 The PA-200 compiler

Currently one compiler is provided with the prototype, namely the com-
piler for the Palo Alto PA-200, used for the experiments in section 4.6. As
described in section 4.4, the Palo Alto configuration file policy,, is split into
a number of sections. This requires the rules to be processed separately
from the configuration elements like zones, networks, services etc. As
a result of this the PA-200 compiler generates the configuration sections
before processing the rule set. In its current state, the PA-200 compiler
creates 5 files, 4 configuration files and one rule file.

After generating all five files the compiler routine returns and the
main program exits. Now the files must be merged manually with a
Palo Alto configuration file in order to create a fully functional policy,
file, which can now be uploaded and set into production as described in
section 4.5.
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<zone>| ——— | <zones>
AN </zones>
_ \ <service>
<service> \
_[: </service>
<rulebase>
<rulebase> \
—
_B </rulebase>
<address>
]
<address> —
</address>
N <address-group>
<address- .
group> </address-group>
Compiler generated files PA-200 configuration file

Figure 4.7: File merging

4.5 Phase 5 - Implementation

Transferring policy. can be done using SCP file transfer or through the PA-
200’s web interface. During the experiments only the web interface has
been used for uploading files to the firewall, as in this case this proved to
be the most streamlined method for file uploading to the firewall. Once
policy. is uploaded it must be loaded, and changes have to be commited
to achieve policy; status. Committing a rule set can take several minutes
depeding on the size of the set, as this is in fact the process where policy; is
created and implemented.

4.6 Phase 6 - Experiments

The Palo Alto PA-200 has four physical network interfaces. During the
experiments each of these interfaces will be used as a connection to a zone.
A way of expressing policy, is by using tables containing a short write-up
of traffic flow that can easily be translated into rules, see table 4.9 for an
example.

Both Experiment 1 and Experiment 2 initially require a copy of the

firewalls running configuration to be downloaded. This configuration
is used as a template and merged with policy. created by the prototype
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software. After implementing the configuration and rule set into their
correct sections in the original downloaded configuration file, the file can
be uploaded back to the PA-200.

4.6.1 Experiment1

The purpose of the first experiment is to test the basic integrity of the
prototype language and the software components. A successful outcome
will be the transition from policy, to policy;. The policy;, should result in
a policy, after being processed by the software. The operational policy;
should prove consistent with the corresponding policy,, policy, and

policy..

The first experiment involves two zones, an external and an internal
zone. Only one client network is located in the internal zone, and the
external zone can be considered an Internet connection. The rule set opens
up for web surfing, Bittorrent and remote desktop traffic. See table 4.6 for
an overview of objects created for use in this experiment.

Ethemet 1

Web, Torrent

-
Zone: Internal

| |
| |
| |
l /[10.1.1.0/24 |
| |
. D |
| |
| |
| |

<)

Figure 4.8: Network setup used in Experiment 1.
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Objects Name
Zones Internal External
Services rdp
Applications | bittorrent,web-browsing
Networks int-client

Table 4.6: Objects used in Experiment 1.
Step A: Implementation

Using the prototype software, policy, was created without errors, up-
loaded to the firewall through its web interface and finally commited into
policy;. After achieving policy; status, the first attempt proved unsuccess-
ful. At first glance everything seemed to be in order, but after a closer look
it was obvious that the order of the rules in the now operational policy;
was incorrect. This poses a problem, since the order of the rules havily
impacts how the firewall operates. This could potentially lead to security
breaches or too strict policies. This bug turned out to be a result of how
hashes are stored i Perl, and the lack of ability to sort multi-layer hashes
by values instead of key, which seems to be the default way[2]. A solution
was found by automatically adding a number to each rule which made it
possible to correctly arrange the order of which the rules are written to the
policy, output file.

After implementing this fix, the transition from policy. to policy; was
successful, resulting in a perfect transition from policy, to policy, to
policy., and further testing could commence in Step B.

Step B: Quality control(Pc and Pp)

There is no noticable difference when implementing policy; using the
prototype software from when using Palo Alto’s web interface. Compar-
ing the policy. created by the compiler to the relevant sections in the file
downloaded from PA-200 reveal that they are identical.

This result means a fully compliant(Pc) policy; has successfully been
implemented into a product policy in the PA-200 firewall, giving a com-
pliance success rate of P-=100%, and a baseline difference rate of Pp=0%
after fixing the software bug described in Step A.

Step C: Timing(Pr)

Timing the entire process from policyj to policy. was done with the help
of two firewall administrators, one of which had great knowledge of the
prototype language as well as PanOS, while the other administrator was
unexperienced, but had been given a quick theoretical introduction to
both approaches. Using a video camera the policy; writing processes was
documented for further analysis.
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This step in the experimentation process is divided into two sections, object
creation and rule creation, object creation being the initial step. Objects
are considered as class elements, for example services, zones, groups,
networks etc., and these objects must exist before they can be used to
build rules. Object creation using the PA-200 web-interface is comparable
to creating a configuration file using the prototype language, while rule
creation represents the creation of the rule set file.

The resulting time consumption differences in rule and object cre-
ation for Experiment 1 are shown in tables 4.7 and 4.8. These tables
represent the combined creation time of each object type. For example
the creation time for two zones are considered one time variable. Total
policyy, creation times can be found by adding the individual object and
rule creation times.

Objects | Prototype | PanOS
Rules 148.8 | 2299
Networks 29.6 33
Services 27.7 17.7
Zones 61 62.8

| Total | 2671 [ 3434 |

Table 4.7: Object and rule creation times in seconds for novice user.

Objects | Prototype | PanOS
Rules 1043 | 198.8
Networks 16.9 28.8
Services 17.8 15.1
Zones 36.2 44.1

| Total | 1752 | 2868 |

Table 4.8: Object and rule creation times in seconds for expert user.
Tuple comparison(Pyx)

Tuple count per rule in PanOS” web interface is Tuplesp,,0s = 11, and rule
line count is Linesp,,0s = 4, resulting in a total tuple count Totalp,,0s:

TOtalp,mos = TuplESp,mos : Lii’l@Sp,mos =11-4=44

When using the prototype language, the number of tuples located in the
rule set is Tuples,; jeset = 18.
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4.6.2 Experiment 2

The second experiments is a compacted and simplified version of a
real hospital network security policy. This
network interfaces by using four zones, as
shows policy, in table form, infrastructural

experiment makes use of all

seen in figure 4.9.

Table 4.9

network objects are denoted

INTERFACE:ZONE:NETWORK.
From To Application Service | Action
Any 1:DMZ:email-segment smtp - | Allow
0:External 1:DMZ,2:Internal,3:Secure Any Any | Deny
1:DMZ:email-segment 0:External smtp - | Allow
1:DMZ:web-proxy 0:External - | http,https | Allow
1:DMZ 0:External Any Any | Deny
1:DMZ:email-segment 2:Internal:backoffice smtp - | Allow
1:DMZ 0:External,1:Internal,3:Secure Any Any | Deny
2:Internal:clients 1:DMZ:web-proxy - | http-proxy | Allow
2:Internal:clients 2:Internal:ts ms-rdp - | Allow
2:Internal:clients 2:Internal:backoffice | hp-jetdirect,ms-rdp,sap,ssl - | Allow
2:Internal:ts 3:Secure:sec scada,ftp - | Allow
2:Internal | 0:External,1:DMZ,2:Internal,3:Secure - - | Deny
3:Secure 0:External,1:DMZ,2:Internal Any Any Deny

Table 4.9: Network policy for Experiment 2 in table form.

The table form of policy, is a very similar to how the implemented policy;
appears in a firewalls graphical user interface, as displayed in figure 4.10.

Network objects created to perform Experiment 2 are shown in table

4.10.
Objects Names
Zones Internal External, DMZ,Secure
Services http,https,http-proxy
Applications smtp,ms-rdp,hp-jetdirect,sap,ssl,scada,ftp
dmz-email-segment,
dmz-web-proxy,int-backoffice,
Networks int-client-1,int-client-2,int-client-3,
int-ts,sec-journal, sec-medequip-xray,sec-medequip-mr
Groups dmz-email,int-client,sec

Table 4.10: Objects used in Experiment 2.
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el 1
Zone 0: External

Zone 2: Internal

dmz-email-segment:
192.168.2.0/24

dmz-web-proxy:
192.168.1.0/24

Zone 3: Secure

Journal system(FTP) Medical equipment
- -

f 1
sec-journal: sec-medequip-xray + sec-medequip-mr:

172.16.129.0/24 172.16.1.0/24 + 172.16.2.0/24
I L

int-backoffice:

10.2.0.0/16

Backoffice

Terminal server

<
Client net 1

Group: int-client

1
int-ts:
10.4.0.0/16

Printing

Sl

Client net 2

Client :mmw

int-client-1:
10.1.1.0/24

int-client-2:
10.1.2.0/24

int-client-3:
10.1.3.0/24

Figure 4.9: Network setup used in Experiment 2.
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Step A: Implementation

No problems were encountered when making policy; and compiling it to
policy., but when trying to load the policy, in order to create policy;, PanOS
displayed error messages stating that the application “sap” is dependant on
the application “ssl”. The missing element, application “ssl”, was included
as an allowed application in the correct rule in policy;, before recompiling,
uploading and loading it again. This time without encountering any errors.
This comes to show that awareness of service and application dependencies
is important when using the prototype language. Currently there are no
control mechanisms in the prototype to ensure dependencies are met. The
representation of the implemented policy; in the PanOS web interface is
shown in figure 4.10.
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Step B: Quality control(Pc and Pp)

After adding the necessary “ssl” element in the previous section Step A,
the transition from policy, to policy; went flawlessly. There is no noticable
difference when implementing policy; using the prototype software from
when using Palo Alto’s web-interface. Comparing the policy, created by
the compiler to the relevant sections in the file downloaded from PA-200
reveales that they are identical. This gives a compliance success rate of Pc
= 100% and no differences Pp = 0% after sorting out the dependency issue
descibed in section 4.9.

Step C: Timing(P7)

The timing experiment was performed by the same two administrators
using the same procedure as in 4.6.1, and with a video camera the policyy,
writing process was documented for further analysis. The resulting time
consumption differences(Pr) for Experiment 2 are shown in tables 4.11 and
4.12.

Table 4.11: Object and rule creation times in seconds for novice user.

Objects | Prototype | PanOS
Rules 5372 | 699.3
Groups 92.7 163.7
Networks 190 291
Services 27.7 16.5
Zones 131 88.3
| Total |  978.6 | 12588 |

Objects | Prototype | PanOS
Rules 473.5 631
Groups 95.3 122.3
Networks 188.2 241.1
Services 14.8 15.7
Zones 97.5 65.3

] Total \ 869.3 \ 1075.4 \

Table 4.12: Object and rule creation times in seconds for expert user.
Tuple comparison(Pyx)

Tuple count per rule in PanOS” web interface is Tuplesp,,0s = 11, and the
line count is Linesp,,0s = 13, resulting in a total tuple count Totalp,,0s:

Totalp,,os = Tuplespauos - Linespguos = 11 - 13 = 143

Using the prototype language, the number of tuples located in the rule set
is Tuples,jeset = 64.
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Chapter 5

Analysis

Analysing the prototype of the universal language and its accompanying
software components can be done in a number of ways, and thorough
analysis of all related aspects is an immense task. Given the scope and
time fram of this thesis only a small, but vital, selection of measurements
have been performed in chapter 4, and this chapter aims to analyse the
results of these measurements.

Comparing next-generation firewall products in chapter 4 showed a
discrepancy in supported properties and features among next-generation
firewall products. As legacy firewall are more or less equal in this area, it
came somewhat unexpectedly that the differences were so significant. This
comes to show the technologies behind this new wave of network security
products differs from vendor to vendor, probably among products origi-
nating from the same vendor as well. Despite of these obvious differences,
an attempt to create a common platform for the universal language was
carried out. By abstracting from the physical products and focusing on
an organizational view of computer networks, a common platform was
created, although product specific features, as described in 4.1, makes it
hard to ascertain such a fully unified platform. These unique features
are not disregarded, but rather manually applicable when using the uni-
versal language to build policies, refer to section 4.4 for further explanation.

Complexity of a universal language compared to native languages
can be measured in innumerable ways. In this thesis the method for
measuring complexity is by counting the amount of tuples, or properties,
used to form a rule set. Tuples are what define firewall rules, for example
source, destination, port, application and so forth. Refer to section 2.9 for more
details on this subject. To ensure full compliance with a security policy,,
all steps through the policy stages policy;, policy. and policy; have been
controlled to make sure no elements are dropped or corrupted along the
way. A successful transition from policy, to policy; using the prototype
language was the aim for full compliance to be achieved. The vendor tool,
PanOS, has not been measured for compliance, as it is anticipated that
PanOS should perform perfectly in this area.
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Uncovering any differences between policy building when using the
prototype and vendor tools is crucial to ensure reliability and robustness.
Baseline differences are investigated using an external software tool
designed to detect inequalities in files. The time frame leaves no room
to go in depth on user testing, but one property that can fairly easily be
measured is the time it takes to build policies;, when using the prototype
and when using PanOS.

The following sections provide analysis of complexity, compliance,
baseline differences and timing, based on the findings in chapter 4.

5.1 Px: Complexity

When comparing the policyy, files written in the experiments in section 4.6,
there are some significant differences that needs to be taken into account.
The aspect of complexity in this thesis can be difficult to measure, but in
this case the number of tuples and lines are two attributes that can be used
for measurement.

The number of tuples counted in Experiment 1 show that Tuples,,;zs. is
considerably less than for Tuplesp,,0s.

‘Experimentl : Tuples,yjeset < Tuplespanos = 18 < 44‘

The same reduction in tuples apply for Experiment 2, although to a
somewhat lesser extent.

‘Experimentz : Tuples,yjeset < Tuplespanos = 64 < 143‘

The differences are illustrated in figure 5.1.

Number of tuples in rule set
143

[02]
o
I I Y I |

Experiment 1 Experiment 2

B PanOS Prototype

Figure 5.1: Tuple count: PanOS versus Prototype
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The decrease in tuple count when using the prototype language can be
credited to the prototypes inheritance capabilites. For Experiment 1 a
reduction in tuples by approximately 59% was achieved.

Tuplesruteser _ 118 _ 5 591 ~ 509,

Experimenty : 1 —
P ! Tuplespanos 44

Experiment 2 shows an approximate reduction by 55%.

. Tuples,,jeset 64
E th:1l— —L ——"" =1 — — =0.552 ~ 55%
xperiment, Tuples panos 143 o

While the number of tuples are decreased, the number of lines are prone
to increase due to use of a block structure syntax. Using line count can be
considered an unfair mean of measurement, since one block represents one
line of tuples in a rule set, it is possible to flatten a block and achieve exactly
the same amount of lines as when using a tuple based language, hence the
amount of lines as a measure of complexity was disregarded.

5.2 Pc: Compliance

A vital step in the quality assurance process is checking compliance to
uncover any inconsistencies in the entire policy creation process. The
property Pc is used as a measure of compliance, to determine if the final
implemented policy; is in accordance with policy,. In both Experiment 1
and Experiment 2 the transition from network policy, to the implemented
policy; proved to be successful when using the prototype software for
policy;, and policy, creation.

5.3 Pp: Baseline differences

As well as compliance, baseline difference control has to be performed
to uncover any weaknesses in the transition process from compiled to
implemented policy. When using the prototype software, it is not possible
to spot any differences in the compiled policy. and the implemented policy;
from the policies created using the vendor tool. By using a file content
comparison tool like diff[29] this is proven to be correct.

5.4 Pr: Time

The entire policy creation process for both test users is analysed from
video, making it possible to accurately record creation times of the indi-
vidual objects in policy;, as well as the time taken to build the complete

policyy,.

Time experiments show that using the prototype is somewhat quicker
for policy creation compared to PanOS. The PanOS web interface has a
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periodically sluggish behaviour that can potentially slow policy and object
creation times down more than necessary. Although the prototype gener-
ally performs better in terms of speed, PanOS seems to be able to create
some objects faster than the prototype. Figure 5.2,5.3,5.4 and 5.5 provide
bar charts to illustrate object and rule creation times all experiments.

When it comes to the creation of a service in Experiment 1, PanOS
seems to be slightly faster, while all other objects and the rules are created
quicker when using the prototype.

Experiment 1: Novice user

Rules | 148.8 | 229.9

Networks 3 23%6

. 27.7
Services 77

zones %0

Prototype
PanOS

Object and rule creation times in seconds.

Figure 5.2: Experiment 1: Time measurements for novice user.
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The expert users times from Experiment 1 are illustrated in figure 5.3. This
shows the same tendencies as experienced with the novice user, service
creation time is lower when using PanOS, while all other objects and the
rules can be created faster with the prototype.

Experiment 1: Expert user

Rules | 104. ] 198.8

LH

N
®©
o0

Networks

Services 51 1157_ 18
Zones 32'42_1

Prototype
PanOS

Object and rule creation times in seconds.

Figure 5.3: Experiment 1: Time measurements for expert user.
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The novice users times from Experiment 2 are illustrated in figure 5.4. With
the more advanced policy in Experiment 2 it looks like both service and
zone creation times are at their lowest when using PanOS.

Experiment 2: Novice user
Rules | 537.2 ] 699.3
92.7
Groups % 163.7
Networks L oo
Services ?1267_'57
131
Zones 58_3 Prototype
PanOS
Object and rule creation times in seconds.

Figure 5.4: Experiment 2: Time measurements for novice user.
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The expert users times from Experiment 2 are illustrated in figure 5.5,
and they indicate the some of the same trend as seen in the novice
user experiment in figure 5.4; zone creation takes longer when using the
prototype. Service creation times are very close, and it is hard to draw any
conclusion from this, since there is only one single service involved in the
experiment. To properly measure service creation times, more elaborate
testing must be done.

Experiment 2: Expert user
Rules | 473.5 .
Groups 1523
Networks 3—1?%24?1 q
Services ] 1?,;?
97.5
Zones E&S.S Prototype
PanOS
Object and rule creation times in seconds.

Figure 5.5: Experiment 2: Time measurements for expert user.

Looking at rule creation, one can clearly see the decrease in time consump-
tion when using the prototype. The simple rule set from Experiment 1
experiences a reduction in creation time between approximately 1 and 1,
depending on the user.

‘ . RuleCreationTimepototype 148.8
E t N : 1 — — 1 _ =0. ~ 0O
xperiment, Novice user RuleCreationTimermos 2299 0.353 ~ 35%

, RuleCreationTimepototype 104.3
E t E t 11— =1———=0475~48%
Tpertmenty txpert user RuleCreationTimepa,os 198.8 0.475 ~ 487

It appears that when creating a more advanced policy, like the policy from
Experiment 2, a reduction the time difference between using the prototype
and PanOS is experienced. The reduction is user dependant here as well,
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but in this case the gap between user are not as significant as in Experiment
1. A reduction in rule set creation time of about } is achieved.

RuleCreationTimepmtotype 537.2
E | t>» Novi 01— - - =1— —— =0.232 = 23%
Xperimenity Novice user RuleCreationTimepa,0s 699.3 ?
RuleCreationTimepmwtype 473.5
E | tr E t 11— =1— —— =025~ 25%
Xperiments Lxpert user RuleCreationTimepy,0s 631 ?

The amount of time data is far too lacking in order to draw a solid
conclusion from the times recorded in these experiments, but there are
indications that the prototype is decreasingly faster proportionally with
the size of the rule set.

By adding object and rule set creation times the result is the time
used for the creation of a complete policy. Total policy creation times for
both users are shown in table 5.1 and figure 5.6.

Experiment | Prototype | PanOS
1: Novice user 978.6 | 1258.8
1: Expert user 869.3 | 10754
2: Novice user 267.1 343.4
2: Expert user 175.2 286.8

Table 5.1: Total policy creation times.
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Full policy creation

Exp. 1: Novice

Exp. 1: Expert

m—
T

67.1

343.4

] 978.6

Exp. 2: Novice

| 869.3

Exp. 2: Expert

71 1075.4

Prototype

PanOS

| 1258.8

Policy creation times in seconds.

Figure 5.6: Total policy creation times.

Judging from the total time it takes to create complete policies;, in Experi-
ment 1, a reduction in creation time when using the prototype ca be seen,
22% for the novice user and 39% for the expert user.

Experiment; Novice user : 1 —

PolicyCreationTimepyototype

PolicyCreationTimepa,0s

Experiment; Expert user : 1 —

PolicyCreationTimepyototype

PolicyCreationTimep,,0s

267.1 .
175.2 .

Total policy creation times in Experiment 2 show similar numbers for the
novice user, but the decrease in creation time for the expert user is 19%,
under half of the reduction seen in Experiment 1.

Experiment, Novice user : 1 —

PolicyCreationTimeprototype

PolicyCreationTimep,,0s

78.
_,_ 9786

@ =0.222 ~ 22%

Experiment, Expert user : 1 —

PolicyCreationTimep,,0s

PolicyCreationTimepmtotype _1q 869.3

m - 0192 ~ 19 /O
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These results indicate that when increasing the size of the rule set, the
gap in policy building time between the prototype and PanOS is reduced,
independent of user experience level.

Calculating the difference in time consumption in Experiment 1 and
Experiment 2 for each test user results in a ratio that is very similar for the
novice user.

PolicyCreationTimegxperimentn  343.4

; ; = ~ 0.27
PolicyCreationTimegyperiment2  1258.8

PanOS, Novice user :

PolicyCreationTimegxperiment  267.1

Prototype, Novice user : ~ 0.27

PolicyCreationTimegperiment2 9786

While for the expert user writing the bigger policy from Experiment 2,
this ratio is lower, which means the difference in time can increase as the
user gains experience in using the prototype language. This is a logical
outcome, as the users are likely to improve efficiency the more they use the
prototype, only limited by typing speed, whereas using the PanOS web
interface can be a restricting factor due to some periodical lag.

PolicyCreationTimegyperimentn  286.8

PanOS, Expert user : ~ 0.26

PolicyCreationTimegxperiment2 - 10754

PolicyCreationTimegyperiments  175.2
PolicyCreationTimegperimenta ~ 869-3

Prototype, Expert user : 0.2

This might indicate that the learning curve is approximately equally steep
for the prototype and PanOS, but the time spent on writing policies can
be decreased more when using the prototype, supporting the outcome of
previous findings in this chapter.
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Chapter 6

Discussion

This chapter will try to answer Qq, Q, and Q3 from the problem statement
in section 1.1 and seen when describing the approach methodology in
chapter 3. It will also review if the objectives O;,0, and O3 have
been fulfilled, and new possibilites for future development and obstacles
encountered along the project period are also presented.

6.1 The search for an unified platform

Question Q; in the problem statement asks how a common platform be
made for next-generation firewall rule structure and policies. A logical step
in the process of trying to find an answer to this question is by examining a
selection of next-generation firewalls, as done in section 4.1, to uncover
similarities and differences between these firewalls. This comparative
study concludes that a unified platform for next-generation firewalls can
be difficult to make, as they differ from traditional firewalls in terms
of features, functionality and filtering properties. For most traditional
firewalls, rules are based on the properties:

e Source
e Destination

e Service:
Port

Protocol
* Log
* Name
e Number

e Action
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This represents a very common recipe for creating firewall rules for the
majority of traditional firewalls. For next-generation firewalls the feature
sets differ to some extent, making it harder to find the same degree of sim-
ilarity. A platform covering the shared properties in the next-generation
firewalls compared in table 4.1 was found and is presented in table 4.3 in
section 4.1. This fulfills objective Oy, examining how a common platform
can be made. The level of differences in features and properties among
next-generation firewalls was suprising, a more unified base platform as
seen in traditional firewalls was expected.

The inequalities between next-generation firewalls probably comes as
a result of the differences in firewall technology used by each vendor,
technologies that have evolved over several year. The various paths the
vendors have chosen weakens the hope of a unified platform anytime
soon, but one possible solution would be if vendors could agree upon a
common standard. This is however a highly unlikely scenario, as large
sums has probably been spent developing products with unique capabili-
ties in order to stand out from the competition. Because of this technology
race, chances are security products, like next-generation firewalls, will
distance themselves from each other even more in the time to come, and
creating a unified platform might become increasingly difficult. There
are numerous fields within computer technology that are continously
evolving, and sometimes we just have to make the best of the technology
currently available. This means the need or use for a universal language
should not be eliminated beacuse of the lack of a common next-generation
firewall platform.

Even though making a completly unified platform for next-generation
firewalls proved to be difficult, the project commenced with the develop-
ment of a universal language and software tool, and possible solutions
to overcome the unforeseen events was investigated. A prototype was
developed, and a solution to the differing tuple problem was found. Any
unique properties that are not supported by all next-generation firewalls
can still be defined when writing rule sets. These properties can be filtered
out, by a compiler module if not supported by the current firewall. Of
course these properties will thereby be lost, but since the firewall lacking in
support for these firewalls anyway, the policy will still come out functional,
although it may not operate quite as intended.

This ability to filter out non-supported properties also allow for legacy
firewall support. User and application filtering properties in rules can be
removed in a compiler module designed for a legacy firewall. Such capa-
bilites greatly help the universality of the prototype language, although
the goal of a completely universal platform could not be achieved at this
point.
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6.2 The prototype and its impact

The prototype software was coded entirely from scratch with the intention
to save time by avoiding to learn external tools, and to remain in full
control of the development process. With that in mind, the technical level
of the project is not very advanced in terms of programming. For further
development, the introduction of external programs could be valuable.
This could save time in the development process by using already devel-
oped and tested code and programs, including more advanced parsers
and compilers.

An expandable software tool was the desired result of the develop-
ment process, in order to provide support for a diversity of future
expansions and added features. This gave birth to the idea of a plugin
architecture. There is virtually no limit to how a plugin architecture can
expand functionality. Plugins are a good way of securing support for
future features that may appear in future firewall products. Third parties
can easily make their own plugins containing new features and properties
without needing any insight to the main program’s workings. The use
of plugins also reduces the total size of the application, as only plugins
necessary to each individual user need to be installed. In the current state
of the prototype this may not be considered an issue, since the footprint of
the entire software package is quite small, but for future expansion and for
systems with low storage capacity, this is a valid point.

A plugin architecure can also be a way to circumvent software li-
cencing issues. In the event of a project such as the universal language
going commercial, third parties can develop functionality without having
access the source code of the main program. Or seen from another angle;
if the software source code remains open, vendors can develop closed
plugins to protect their technology.

In order to support a multitude of firewalls, the possibility of outputting
the policy in a desired format for a variety firewalls is vital. Vendors
could produce their own compilers, developed for and shipped with their
firewalls, making it possible for organizations to create policies before
deciding on purchasing a specific firewall. Universal policies also makes
it possible to exchange existing infrastructure without re-configuration
and the need to build new rule sets is eliminated, potentially saving great
amounts of time and money. The possibility for re-use of existing universal
policy code, for either new firewall installations or firewalls that can share
parts of or the entire code, is also a factor to take into consideration. One
thing is certain, in order to make a universal language useable, more
compilers need to be developed to add support for more firewalls.

The prototype language, along with its software tools, proved to be a

success. It can be used to write policies that compiles to a format under-
standable to next-generation firewalls, and the software design makes the
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concept future-proof. This leads to the fulfillment of objective O, from
the problem statement, developing a future proof concept that simplifies
the process of building security policies for next-generation firewalls.
The simplicity of the language seems to make it comprehensible even to
non-experienced users.

A universal language for firewalls will first of all influence the work
of network administrators. It might help to boost their efficiency in an
otherwise stressful environment. In the test results, discussed in the next
section, a reduction in time spent on constructing rule sets when using
the prototype is seen. This can be a major selling point to the professional
market. Policy building and deployment can be done faster, reducing
labour time and thereby saving money. This should make the language
attractive to any organization currently using, or planning to purchase,
firewall hardware that can be supported by the language.

6.3 Testing and results

Measuring various aspects of the prototype can be done in numerous
ways, hence only a selection of key experiments feasable within the project
time frame were conducted. The experimentation process includes a series
of tests that have a high degree of realism to them, and they are designed
to give answer to what is achieved with a universal language, and how
can it be evaluated against traditional vendor tools, like asked in question
Q3. The prototype must be considered a proof-of-concept, hence in order
to achieve release candidate status, more extensive testing should be
performed. All experiments can be reproduced by replicating the policyy,
files in appendices section, where the necessary program code can also be
found. A Palo Alto PA-200 or a device using the same version of PanOS
will also be required.

Objective O3 states that realistic experiments should be performed to
measure language qualities on its own, and in comparison to vendor tools.
After the initial implementations in Step A, complexity(Px) measurements
were carried out. Covering all aspects of complexity in a block based
textual language is a tremendous task. For this reason measurements of
complexity that give results that can be easily measured and interpreted
was chosen. By counting properties in rule sets one can clearly spot
differences between the prototype and the vendor tool, PanOS. One might
argue what is the best way to present large rule sets to an administrator,
but generally most people would probably agree that to the human eye
less information is easier to process. This means blocks containing stripped
down rules from the use of superclass inheritance can be considered less
complex. Of course this would require full overview of the properties
contained within the superclasses used. On the other hand, this reduction
in complexity can lead to higher errors rates in policies as a result of lack
of superclass insight by the administrator.
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Lowering tuple count also seem to be an efficient method for reduc-
ing policy creation time, escpecially for low complexity rule sets, as seen
in Experiment 1, section 4.6.1. Measurements of time(Pr) gave a slightly
different outcome from what one might expect. Suprisingly, creating
more advanced rule sets resulted in smaller time differences between
the prototype and PanOS. This reduction in policy creation time might
indicate that PanOS can in fact be more efficient when dealing with even
big rule sets, but this can not be verified unless more extensive testing is
conducted. To provide reliable results and to increase the scientific value in
these experiments, the experiments should be repeated a number of times,
using more testing personnel as well as a larger amount of more diverse
policies.

Measuring compliance(Pc) may seem like a trivial experiment, but
measuring compliance is an essential part of the testing process. Measur-
ing comliance by matching prototype generated and vendor generated
policies, shows the prototype is capable of generating policies that are
fully compliant with a PanOS generated policy. This is a result of carefully
studying original policy files generated by PanOS, to ensure correct output
by the prototype compiler. The successful transition from policy, to policy;
using the prototype show that a universal language is a functional solution
for policy management in next-generation firewalls, providing an answer
to question Q; in the problem statement in chapter 1.

6.4 Impediments and shortcomings

In retrospect, prototype development went fairly uncomplicated, no major
obstacles that had any significant deal of impact on the process was
encountered. Still, there has been some unforeseen circumstances that
made the creation of a rule language more difficult than anticipated.

First off, the Palo Alto PA-200 stores its application database in files
that are inaccesible to those using a standard administrator account. This
could be a measure to avoid tampering with the database which could
compromise security, or a result of the application database being very
large, and combining it with the rest of the configuration files would result
in a disorganized file structure. More likely it is due to the fact that this
database needs regular updates, and keeping the database separately
avoids frequent, time consuming changes to the rest of the configuration.
Unfortunately this makes it impossible to define your own applications
through the prototype language when using Palo Alto products, and one
would have to know exactly the names of the applications that are to be
implemented when building a rule set.

An issue similar to the lack of manual application definition, is how
the user database is used by the firewall to filter traffic based on users.
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It seems normal operation is to pull user account information from an
authentication service, and it is not possible to create users stored locally
within the firewall. This means when adding users to rules they must be
defined by their username. Currently there is no way of implementing
users created using the prototype language to Palo Alto firewalls, and it
seems the same goes for other next-generation firewalls as well. Since user
and application filtering is a great part of what makes a next-generation
firewall next-generation, the inability to define custom users and applica-
tions might be considered a fatal blow to the prototype language, but this
has in fact no relevance for the languages theoretical workings, it is solely
linked to the way Palo Alto, among others, have implemented their user
and application databases. Some vendors may have a different approach
when dealing with users and applications, but in the abscence of products
available for testing, this could not be investigated in this thesis.

Technical difficulties related to programming and PanOS was resolved
relatively quick. Two problems that could compromise the security in the
policies created using the prototype software are mentioned in section 4.6.1
and 4.6.2. The first one being a software bug that caused the rule order to
get cluttered by the way Perl internally sorts hashes. As each rule is a hash
stored within a hash, they proved difficult to sort, hence another way to
overcome this obstacle was needed. The solution came in the form of an
automated numbering function that assigns a number to each rule. This
number is used to write rules to policy, in the order they are written in
policy;. These numbers can easily be used to manually override rule order,
and this functionality can be utilized as a new feature in a potential future
version of the prototype software. Furthermore, a highly sophisticated
rule numbering method would be a to develop a rule analysis engine with
the purpose of placing rules in the correct order automatically. There are,
to the author’s knowledge, no such solution in existance in any firewall
today, but the design of the prototype allows for this functionality to be
implemented as a post-parse plugin module at a later time.

Services in PanOS rule sets might require other services in order for
the network traffic filtering to operate correctly, and an unforeseen glitch
that came to light in the final experiment was related to these service
dependencies. If a service is dependant on one or more other services,
the policy, will still be implemented, but most likely it will not operate as
wanted. This was rectified by simply adding the missing service to the
affected rule. Currently there is no way to make sure dependencies are met
before implementing policy;. This would require dependency handling,
and possibly a database containing services and their dependencies to
other services. All of this can be implemented as a module at a later time.
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6.5 Future work

The field of network security is a world of constant change and evolution,
and if a universal policy language is to keep up with security technology,
it will have to be continously maintained and developed. This would
require access to a large amount of next-generation firewall products
for development and testing, making it an extremely extensive project
requiring big time and financial investments, making it an unlikely project
for any private individual.

The inheritance implemented in the prototype is very functional but
quite basic in its current form, it allows only for one level of superclasses.
In a final product it would be desirable to have multi-level inheritance,
which could be achieved by for example using recursive programming
to loop through the superclasses. This would allow for superclasses to
have superclasses, greatly expanding the flexibility of the language, and
opening up for even more simplified policies.

In order to provide a truly universal language, product support must
be greatly expanded by developing more compilers, specifically crafted
for a variety of firewalls. Further, the PA-200 specific compiler could be
improved by adding merging or new configuration file capabilites, that
automatically writes a full configuration file. The policy building and
deployment process can be fully automated by using SCP and the firewalls
command line interface, to automatically send and load a policy..

To ensure full user support a piece of software that can function as a
connection to an authentication service would be a welcommed ad-
dition. This can come in the for of a plugin that parses user objects.
Such an integration would open up for manual user creation and the pos-
sibility to push new users to the user database of the authentication service.

Manually defining objects and writing rule sets when using the pro-
totype for policy building, is more susceptible to typing errors than when
using an interface like PanOS, and currently the prototype holds no syntax
error or data validity checking mechanisms. A graphical user interface that
mostly do object and rule set creation by using point-and-click operations,
presents the user with a limited number of choices, an it may the lower
error rate in policies. A study on firewall mis-configuration by Avishai
Wool[32] show that software mechanisms can be helpful for resolving
errors in configurations and policies in firewalls. This implies such error
detecting mechanisms could be a valuable contribution to future develop-
ment of the prototype, enhancing both user-friendliness and robustness.

Language syntax is simple, perhaps too simple. The use of operators
and delimiters would likely lead to a more robust language, less prone to
errors, which leads us to consider even more programming language like
features. How about introducing loops like for and while, or conditionals
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like if and else? Introducing such features opens up the possibility for
compacting policies even more. Loop functionality can be used to create
large amounts of objects like networks,groups and rules even faster, while
conditionals can prove valuable as a way of checking for policy errors
or dependencies. What other consequences the implementation of these
ideas could lead to is hard to predict without further development. There
might even more to gain in terms of reducing time consumption for policy
writing and lowering tuple count, not to mention the adoption of features
never before seen in any vendor tool.
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Chapter 7

Conclusion

Aiming to merge next-generation firewalls into one unified platform and
using this to create a universal language for building firewall policies, this
thesis has resulted in a fully functional universal language prototype along
with complimentary software. Together, the language and software form a
tool that can be used to build universal security policies for next-generation
firewalls. By introducing external module support, the prototype design
opens up for expandability, and can in theory support a wide range of
different firewall products, being appliances or host-based firewalls, legacy
or next-generation.

In an attempt to form a basis for the universal language, a compara-
tive study including a select number of next-generation firewalls was
performed. This study uncovered significant inequalities between differ-
ent firewall products, meaning there are certain product specific features
that cannot be applied to all types of next-generation firewalls. To truly
unleash the full potential of a universal firewall policy language, computer
security vendors would have to agree upon a common standard and
feature set for next-generation firewalls, thus creating a completely unified
platform. Despite of this lack of a common platform, the prototype’s mode
of operation allows for the use of product specific properties that can be
filtered out in a policy compilation process if not supported by the current
firewall.

Experiments designed to measure practical usability suggest that pol-
icy building can be done in less time when using the prototype compared
to using some vendor tools that come shipped with firewalls. One form
of complexity, namely the number of tuples in a firewall rule set, can
be reduced by taking advantage of the prototypes inheritance abilities,
that can help lower tuple count, resulting in time savings in policy creation.

First steps in the quest for a universal firewall language have been
taken with the work presented in this thesis. It proves that a universal
language can be used to define a range of network objects, services and
applications as well as their users, by using a blocks of code to build
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policies for firewalls. The concept can be further refined to form a sustain-
able software tool that can make life easier for network administrators,
as well as offering pay-offs in the form of reduced labour and cost for
organizations.
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.1 Source code

1.1 Main

#!/usr/bin/perl
use Data :: Dumper;
use Getopt::Std;

getopts("vp:hc:o:", \%options ) or usage();
usage () if $options{’h’};
my $CONFIG = $options{’'c’};
my $COMPILER = $options{’o’};
my $POLICY = $options{’p’};

if ($options{’v’}){$VERBOSE = 1};

our %VARIABLES;
our %SUPERCLASSES;
our %CLASSES;

our %RULES;

our $rulenumber;
our @RULELIST;

getPlugins ();
getCompilers ();
readConfig ();
readPolicy ();
inheritance ();
ruleInheritance ();
count ();
compile ();

sub readConfig|{
open (CONF, "$CONFIG") or die "Unable_to _open $CONFIG: $!\n";
verbose ("#Parsing, configuration file\n");

while( my $line = getNextLine( ) ){

# normal class block
if ( $line =~ /Ms*(\S+)\s+(\S+)\s+{/ ){
my $type = $1;
my $name = $2;
verbose ("Found _class_block: Type=$type. Name=$name.\n");

# checking if we have a parse function for type $type
my $parsefunction = $type . "_parse”;
if ( defined(&$parsefunction) ){
verbose ("Calling,_$parsefunction.\n");
if ( &$parsefunction($type, $name) ){
verbose ("$parsefunction_successful.\n\n");

Jelse {
verbose ("$parsefunction failed.\n");

}

# superclass declaration

} elsif ( $line =~ /Msxsuperclass\s+(\S+)\s+(\S+)\s+{/ ){
my $type = $1;
my $name = $2;

verbose ("Found,_superclass _block: _Type=$type._Name=$name.\n");

# checking if we have a parse function for type $type
my $parsefunction = $type . "_parse_superclass";
if ( defined(&$parsefunction) ){
verbose (" Calling _$parsefunction.\n");
if ( &$parsefunction($name) ){
verbose ("$parsefunction successful.\n\n");

}
else {

}

verbose ("$parsefunction failed.\n");

# variable declaration
} elsif ( $line =~ /A\s+(\$\S+)\ss=\s*(.*)$/ )|
my $key = $1;
my $value = $2;
chomp $value;
verbose ("Variable _declaration:_Key=$key._Value=$value\n\n");
$VARIABLES{ $key} = $value;
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sub readPolicy {

$rulenumber = 0;
open (POLICY, "$POLICY") or die "Unable_to _open $POLICY: $!\n";

verbose ("\n#Parsing, policy_file\n");
while( my $line = getNextLine( ) ){

if ( $line =~ /Ms*+(\S+)\s+" (.+?)"\s+{/ ){
my $type = $1;
my $name = $2;
$rulenumber++;
verbose ("Found_rule_block: Name='$name’\n");

# checking if we have a parse function for type $type
my $parsefunction = $type . "_parse”;
if ( defined(&$parsefunction) ){
verbose ("Calling_$parsefunction.\n");
if ( &$parsefunction($type, $name, $rulenumber) ){
verbose ("$parsefunction_successful.\n\n");

}

Jelse verbose ("$parsefunction _failed.\n");}

Jelsif ( $line =~ /Msx(\$\S+)\s+=\sx(.%)$/ ){
my $key = $1;
my $value = $2;
chomp $value;

verbose ("Variable_declaration: Key=$key._Value=$value\n\n");
$VARIABLES{ $key} = $value;

}
sub count {
verbose ("#Summary:\n");
foreach my $type ( keys %CLASSES ){

$typecount = scalar (keys $CLASSES{$type});
verbose ("Found _$typecount $type" ."s.\n");

}
sub rulelnheritance {
verbose ("#Rule_inheritance\n");

foreach $rule (keys %RULES) {
foreach $rulename (keys %{$RULES{$rule}}){

foreach $ruleproperty (keys %{$RULES{$rule}{$rulename}}){

# find superclass
foreach $supername (keys %{$SUPERCLASSES{$$rule}}){

foreach $rsuperproperty (keys %{$SUPERCLASSES{$rule }{$supername}}){
#if ($rsuperproperty eq $ruleproperty ){}else
if ($rsuperproperty ne $ruleproperty )
{
# merge if non—existent property
if (not exists $RULES{$rule}{$rulename}{$rsuperproperty}){
$RULES{ $rule }{$rulename } { $rsuperproperty} = $SUPERCLASSES{ $rule }{$supername }{$rsuperproperty };
verbose ("Inserting, $rsuperproperty,  '$SUPERCLASSES{$rule }{ $supername }{$rsuperproperty}’\n");

}

}
verbose ("\n");
}
sub inheritance {
verbose ("#Class_inheritance\n");
foreach $class (keys %CLASSES){
foreach $name (keys %{$CLASSES{$class }}){
# find superclass
my $superclass = $CLASSES{$class }{$name}{"superclass”};

if ($superclass eq ""){next;}
verbose ("\nInherit_for_$name\n");
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178 verbose ("Superclass _is_$superclass\n");
179 if ( $superclass ){

180
181 # get superclass tree

182 my $temph = getSuperclassHash($class ,$superclass);
183 my %superhash = %$temph;

184
185 # merge if non—existent property

186 foreach $superproperty (keys %superhash ){

187 verbose ("Checking_superproperty, $superproperty\n");
188
189 print "HER: _$superproperty, = $CLASSES{$class }{$name}{$superproperty}\n";
190
191 if (not exists $CLASSES{$class }{$name}{$superproperty}){

192 $CLASSES{ $class }{$name }{ $superproperty} = $superhash{$superproperty};

193 verbose ("Inserting,_$superproperty_’$superhash{$superproperty}’ into_class ’$name’\n");
194
195
196 }
197
198 }
199
200 }
201
202 |}

203 | verbose("\n");
204
205 |}
206
207
208 | sub compile {
209
210 |my $name;
211 |my $value;
212
213 | # sort rule by number and store in hash
214
215 | foreach $rule (keys %RULES) {
216
217 foreach $rulename (keys %{$RULES{$rule}}){
218
219 $RULELIST[$RULES{ $rule }{ $rulename } { "number" }] = $rulename;
220 }

21 |}

222
223
224 verbose ("\n#Compiling.\n");
225
226 | # send rules ordered numerically to compiler
227 | beginRuleset ();

228 foreach $rulenames (@RULELIST){

229
230 foreach $rule (keys %RULES) {
231
232 foreach $rulename (keys %{$RULES{$rule}}){
233
234
235 if ($rulenames eq $rulename)(
236 $name = $rulename;
237 beginRule ($name);

238
239
240 verbose ("\nCreating _rule: $name:\n");
241
242 foreach $property (keys %($RULES{$rule }{$rulename}}){
243
244
245 $value = $RULES{$rule }{$rulename}{$property};

246 compiler ($property , $value);

247 verbose ("Inserting_$property_=_$value\n") unless ($property eq 'number’);
248
249
250 }
251 }

252
253 }
254
255 1

256 if ($rulenames != undef){endRule();}
257
258 }
259
260 endRuleset ();

261 verbose ("\nDone._Wrote_$rulenumber_rules_to_file.\n");
262 |}

263
264
265
266 | sub getNextLine {
267
268 if ( CONF ){

269 while ( my $line = <CONBE ){
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270 chomp $line;

271 return $line unless $line eq
272 }

273 }

274 if ( POLICY ){

275 while ( my $line = <POLICY> ){

276 chomp $line;

277 return $line unless $line eq
278 }

279 }

280
281 |}
282
283 | sub getPlugins {

284 my $plugin_path = ‘pwd’;
285 chomp $plugin_path;

286 $plugin_path .= "/";
287
288 my @pluginlist = “1s plugins/+.plugin”’;
289
290 verbose ("#Loading, _plugins\n");
291
292 foreach my $plugin (@pluginlist ){

293 chomp $plugin;

294 verbose ("Found_plugin: ".$plugin ."\n");
295 require $plugin_path . $plugin;

296 }

297 verbose ("\n");

298
299 |}
300
301 | sub getSuperclassHash {

302 my $class = $_[0];

303 my $superclass = $_[1];

304 return $SUPERCLASSES{ $class }{$superclass};
305
306 |}
307
308 | sub getCompilers {

309 my $compiler_path = ‘pwd’;

310 chomp $compiler_path;

311 $compiler_path .= "/";

312 my @compilerlist = “ls *.comp’;
313
314 foreach my $compiler (@compilerlist ){

315 chomp $compiler;

316 verbose ("Found_compiler: ".$compiler ."\n");
317 require $compiler_path . $compiler;

318 }

319 verbose ("#Using_compiler : $COMPILER\n" );
320 |}

321
322 | sub verbose {
323
324 print $_[0] if $VERBOSE;
325
326 |}
327
328 | sub expandString {
329
330 my $string = $_[0];

331 $string =~ s/(\$\S+)/$VARIABLES{$1}/g;
332 return $string;

333 |}

334
335 | sub usage {

336 | print "Usage:_$0_[—p_policy]_[—c_configuration] _[-o_output_format]_—v(verbose)_—~h(help) _\n";
337 | exit (0);

338 |}

339
340 | 1;

1.2 Plugins

Application

sub application_parse {

my $name = $_[1];
verbose ((caller (0))[3]." _called_for_block: $name\n");

while( my $line = getNextLine ()){
if ( $line eq "}" ){
last;
}

$line = expandString($line);
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$line =~ /\s+(\S+)\s+(.+)$/;

$CLASSES{"application"}{$name}{$1} = $2;
verbose ("Inserting _into_application:$name:$1_—>_,$2\n");

}

verbose ("Block, parsing, complete.\n");
return 1;

sub application_parse_superclass {

my $name = $_[0];
verbose ((caller (0))[3]." called_for_block: $name\n");

while( my $line = getNextLine ()){
$line = expandString($line);
if ( $line eq "}" ){
last;

}
$line =~ /\s+(\S+)\s+(.*)$/;

$SUPERCLASSES{ "application”}{$name}{$1} = $2;
verbose("Inserting _into_application:$name:$1_—>_,$2\n");

}

return 1;

Service

sub service_parse {
my $type = $_[0];
my $name = $_[1];
verbose ((caller (0))[3]." _called_for_block: _$name\n");

while( my $line = getNextLine ()){

if ( $line eq "}" ){
last;
}
$line expandString ($line );

~ /\s+(\S+)\s+(.%)$/;

$CLASSES{ "service" }{$name}{$1} = $2;
verbose ("Inserting _into_service :$name: $1_—>_$2\n");

}

verbose ("Block _parsing,complete.\n");
return 1;

sub service_parse_superclass {

my $name = $_[0];
verbose ((caller (0))[3]." _called_for_block: $name\n");

while( my $line = getNextLine()){
$line = expandString($line);
if ( $line eq "}"
last;
}
$line =~ /\s+(\S+)\s+(.*)$/;

$SUPERCLASSES{ "service" }{$name}{$1} = $2;
verbose ("Inserting _into_service :$name: $1_—>_$2\n");

}

return 1;
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sub zone_parse |{

my $name = $_[1];
verbose ((caller (0))[3]."_called_for_block: _$name\n");
while( my $line = getNextLine ()){
if ( $line eq "}" ){
last;
}

$line = expandString($line);

$line =~ /\s+(\S+)\s+(.*)$/;

$CLASSES{"zone" }{$name}{$1} = $2;

verbose ("Inserting into_zone:$name:$1_—>_$2\n");

verbose ("Block_parsing_complete.\n");
return 1;

sub zone_parse_superclass |{

my $name = $_[0];
verbose ((caller (0))[3]."_called_for_block: $name\n");

while( my $line = getNextLine ()){
$line = expandString($line);
if ( $line eq "}" ){
last;
}

$line =~ /\s+(\S+)\s+(.*)$/;

$SUPERCLASSES{ "zone" } {$name }{$1} = $2;
verbose ("Inserting _into_zone:$name:$1_—>_$2\n");

}

return 1;

Network

sub network_parse {

my $name = $_[1];
verbose ((caller (0))[3]." _called_for_block: $name\n");
while( my $line = getNextLine ()){
if ( $line eq "}" ){
last;
}

$line = expandString($line);

$line =~ /\s+(\S+)\s+(.%)$/;

$CLASSES{ "network" } { fname }{$1} = $2;

verbose ("Inserting into_network:$name:$1_—>_$2\n");

verbose ("Block_parsing_complete.\n");
return 1;

sub network_parse_superclass {

my $name = $_[0];
verbose ((caller (0))[3]."_called_for_block: _$name\n");

while( my $line = getNextLine ()){
$line = expandString($line);
if ( $line eq "}" ){
last;

}

$line =~ /\s+(\S+)\s+(.%)$/;

$SUPERCLASSES{ "network" } {$name } {$1} = $2;

verbose ("Inserting _into_network:$name:$1_—>_$2\n");
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Group

sub

sub

group_parse {

my $name = $_[1];
verbose ((caller (0))[3]." _called_for_block: $name\n");
while( my $line = getNextLine ()){
if ( $line eq "}" ){
last;
}

$line = expandString($line);

$line =~ /\s+(\S+)\s+(.%)$/;

$CLASSES{"group" }{$name}{$1} = $2;

verbose ("Inserting _into_group:$name:$1,_—>_$2\n");

verbose ("Block _parsing, complete.\n");
return 1;

group_parse_superclass {

my $name = $_[0];
verbose ((caller (0))[3]." called_for_block: $name\n");

while( my $line = getNextLine ()){
$line = expandString($line);
if ( $line eq "}" ){
last;
)

$line =~ /\s+(\S+)\s+(.*)$/;
$SUPERCLASSES{ "group " } {$name } {$1} = $2;
verbose ("Inserting _into_group:$name:$1,—>_$2\n");

}

return 1;

Rule

sub

sub

rule_parse {
my $name = $_[1];

verbose ((caller (0))[3]." _called_for_block: _$name\n");
while( my $line = getNextLine ()){

if ( $line eq "}" ){
last;
}
$line expandString ($line );

$line =~ /\s+(\S+)\s+(.*)$/;

$RULES{"rule" }{$name}{$1} = $2;
$RULES{ "rule" }{$name}{ "number"} = $_[2];

verbose ("Inserting, _into,_rules:$name:$1_—>_$2\n");

}

verbose ("Block _parsing,_complete.\n");
return 1;

rule_parse_superclass |

my $name = $_[0];
verbose ((caller (0))[3]." _called _for_block: $name\n");

while( my $line = getNextLine()){
$line = expandString($line);
if ( $line eq "}"
last;
}
$line =~ /\s+(\S+)\s+(.*)$/;

$SUPERCLASSES{ "rule" } {$name}{$1} = $2;
verbose("Inserting _into_service :$name: $1_—>_$2\n");

}

return 1;
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1.3 PA-200 Compiler

require "parser.pl”;

my $rules = "rules";

my $zones = "zones";

my $networks = "networks";
my $groups = "groups";

my $hosts = "hosts";

my $services = "services";

open (OUTPUT, '>>".%rules) or die
open(ZONE, '>>".$%zones) or die "\
open (NET, '>>" . $networks) or die
open (GROUP, ">>".$groups) or die
open (SERVICE, '>>". $services) or

"\nUnable_to _create_’'$output’\n";
nUnable_to_create_’'$zones’\n";
"\nUnable_to_create_’$networks’\n";
"\nUnable_to _create ’$groups’\n";

die "\nUnable_to_create_’'$services’'\n";

zoneGenerator ();
serviceGenerator ();
groupGenerator ();
networkGenerator ();

sub beginRuleset{

print OUTPUT "\t\t\t<rules>\n";
}

sub beginRule {

}

sub compiler

$negate_source = 0;
$negate_destination =

0;
if ($_[0] eq "superclass” Il $_[0] eq "number"){return 1;}
if (($_[0] ne "log’) and ($_[0] ne “action’)){

my @values = split(/,/, $_[11);

print OUTIPUT "\t\t\t<$_[0]>\n";
foreach (@values){

if ($_ =~ s/"™\I//s){

if ($_[0] eq ’source’){

$negate_source = 1;

}
if ($_[0] eq ’destination’){
$negate_destination =
}
}

print OUTPUT "\t\t\t__<member>$_</member>\n";

1;

}

print OUIPUT "\t\t\t</$_[0]>\n";
}

if ($_[0] eq ’action’){
print OUTPUT "\t\t\t<$_[0]>$_[1]</$_[0]>\n";
}

if (($_[0] eq ’"log”) and ($_[1] eq ’on’)) {
print OUTPUT "\t\t\t<log—end>yes</log—end>\n";
}

if ($negate_source){
print OUTPUT "\t\t\t<negate—source>yes</negate—source>\n";
}

if ($negate_destination){

}

return 1;

}

sub endRule |{
print OUTPUT "\t\t
return 1;

</entry>\n";

86

print OUTPUT "\t\t__". <entry _name="’".$_[0]. ">";

print OUTPUT "\n";

print OUIPUT "\t\t__,  <option>\n";

print OUIPUT "\t\t\t_<disable—server—response—inspection>no</disable—server—response—inspection>\n";
print OUTPUT "\t\t__,  </option>\n";

return 1;

print OUTPUT "\t\t\t<negate—destination >yes</negate—destination>\n";
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}

sub endRuleset {
print OUIPUT "\t\t_</rules>\n";
return 1;

}

sub zoneGenerator {

print ZONE "\t\t<zone>\n";

foreach $class (keys %CLASSES){
if ($class eq ‘zone’){

foreach $name (keys %{$CLASSES{$class}}){

print ZONE "\t\t__". ’<entry_name="".$name. ">"."\n";

print ZONE "\t\t <network>\n";
print ZONE "\t\t <layer3>\n";

foreach $property (keys %{$CLASSES{$class }{$name}}){
if ($property eq "interface"){
print ZONE "\t\t\t_<member>$CLASSES{ $class }{$name}{ $property}</member>\n";

}
}
print ZONE "\t\t__ . . </layer3>\n";

print ZONE "\t\t__ . </network>\n";
print ZONE "\t\t__</entry>\n";

}
}
print ZONE "\t\t</zone>\n";

sub serviceGenerator |{

my $last;
print SERVICE "\t\t<service>\n";

foreach $class (keys %CLASSES){
if ($class eq ’'service’){
foreach $name (keys %{$CLASSES{$class }})|{

print SERVICE "\t\t__".’<entry _name="’.$name.’ ">’."\n";
foreach $property (keys %{$CLASSES{$class }{$name}}){
if ($property eq "protocol"){
print SERVICE "\t\t__,  <protocol>\n";
print SERVICE "\t\t\t _<$CLASSES{$class }{$name}{$property}>\n";
$last = $CLASSES{$class }{$name}{$property};

}
if ($property eq "port"){

print SERVICE "\t\t\t <port>$CLASSES{ $class } {$name}{ $property}</port>\n";
}

}
print SERVICE "\t\t\t_</$last>\n";
print SERVICE "\t\t__  </protocol>\n";
print SERVICE "\t\t__</entry>\n";
}

}

print SERVICE "\t\t</service>\n";

}

sub networkGenerator {

print NET "\t\t<address>\n";
foreach $class (keys %CLASSES){
if ($class eq 'network’){
foreach $name (keys %{$CLASSES{$class}}){

print NET "\t\t__".’ ’<entry _name="’.$name. ">"."\n";

foreach $property (keys %{$CLASSES{$class }{$name}}){
if ($property eq "ip"){
print NET "\t\t\t_<ip—netmask>$CLASSES{ $class }{$name}{$property}";

Jelsif ($property ne "superclass"”) {print NET "$CLASSES{$class }{$name}{$property}</ip—netmask>\n";}
}
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print NET "\t\t__</entry>\n";
}
}
print NET "\t\t</address>\n";
}
sub groupGenerator {
print GROUP "\t\t<address—group>\n";
foreach $class (keys %CLASSES){
if ($class eq ’"group’){
foreach $name (keys %{$CLASSES{$class }}){
print GROUP "\t\t_". <entry_name="'.$name.’ ">"."\n";
foreach $property (keys %{$CLASSES{$class}{$name}}){
my @values = split(/,/, $CLASSES{$class }{$name}{$property});

foreach (@values){
print GROUP "\t\t\t_<member>$_</member>\n";

}
print GROUP "\t\t_ </entry>\n";

}
print GROUP "\t\t</address—group>\n";

.2 Configuration files
2.1 Experiment 1

superclass rule rule_common {
action allow
from any
to any
source any
destination any
log on
hip—profile any
source—user any
category any

}

service rdp {
port 5800,5900
protocol tcp

}

zone Internal {
interface ethernetl/1
}

zone External {
interface ethernetl/2

}

network int—client {
ip 10.1.1.0
netmask /24

2.2 Experiment 2

superclass service service_common {
protocol tcp
admin aslak

}

superclass rule rule_common {
source—user any
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}

superclass network network_common ({

}

category any
hip—profiles any
action allow
source any
destination any
from any

to any

log on

service any
application any

netmask /24

zone External {

}

interface ethernetl/1

zone Internal {

}

interface ethernetl/2

zone DMZ {

}

interface ethernetl/3

zone Secure {

}

interface ethernetl/4

application smtp {

}

service

}

network

}

network

}

network

}

network

}

network

}

network

}

network

}

network

}

network

}

network

http—proxy {
port 8080
superclass service_common

dmz-email—segment {
ip 192.168.2.0
superclass network_common

dmz-web—proxy {
ip 192.168.1.0
superclass network_common

int—backoffice {

ip 10.2.0.0

netmask /16

superclass network_common

int—client -1 {
ip 10.1.1.0
superclass network_common

int—client -2 {
ip 10.1.2.0
superclass network_common

int—client -3 {
ip 10.1.3.0
superclass network_common

int—ts {
ip 10.4.0.0
netmask /16

sec—journal {
ip 172.16.129.0
superclass network_common

sec—medequip—xray {
ip 172.16.1.0
superclass network_common

sec—medequip—mr {
ip 172.16.2.0
superclass network_common
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group dmz—email {
members dmz-email-segment

}

group int—client {
members int—client —1,int—client —2,int—client -3

group sec {
members sec—journal , sec—medequip—mr, sec—medequip—xray

.3 Policy files
3.1 Experiment1

rule "web_access" {
from Internal
to External
application web—browsing

rule "allow_torrents" {
from Internal
to External
source int—client
application bittorrent

rule "remote_desktop access" {
from External
to Internal
destination int—client
service rdp

rule "clean_up" {
from External,Internal
to External,Internal
action deny

3.2 Experiment 2

rule "0—1_Email_receive" {
to DMZ
destination dmz-email-segment
application smtp

rule "0-123_deny" {
from External
to DMZ, Internal ,Secure
action deny

rule "1-0_Email-send" {
from DMZ
source dmz-email-segment
to External
application smtp

rule "1-0_Web-access" {
from DMZ
source dmz-web—proxy
to External
service service—http ,service—https

rule "1-0_deny" {
from DMZ
to External
action deny

rule "1-2_Email-backoffice" {
from DMZ
source dmz-email-segment
to Internal
destination int—backoffice
application smtp
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rule "1-023_deny" {
from DMZ
to External,Internal ,Secure
action deny

rule "2-1_client—webproxy" {
from Internal
source int—client
to DMZ
destination dmz-web—proxy
service http—proxy

rule "2-2_client—ts" {
from Internal
source int—client
to Internal
destination int—ts
application ms-rdp

rule "2-2_client—backoffice" {
from Internal
source int—client
to Internal
destination int—backoffice
application hp—jetdirect ,ms—rdp,sap, ssl

rule "2-3_ts_secure" {
from Internal
source int—ts
to Secure
destination sec
application cygnet—scada, ftp ,socks2http

rule "2-013_deny" {
from Internal
to DMZ, External , Internal , Secure
action deny

rule "3-012_deny" {
from Secure
to DMZ, External , Internal
action deny
log off

4 Compiler generated files
4.1 Zones

<zone>
<entry name="Internal">
<network>
<layer3>
<member>ethernetl /2</member>
</layer3>
</network>
</entry >
<entry name="Secure">
<network>
<layer3>
<member>ethernetl /4</member>
</layer3>
</network>
</entry>
<entry name="DMZ">
<network>
<layer3>
<member>ethernetl/3</member>
</layer3>
</network>
</entry >
<entry name="External">
<network>
<layer3>
<member>ethernetl /1</member>
</layer3>
</network>
</entry >
</zone>
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4.2 Groups

<address—group>

<entry name="sec">
<member>sec—journal </member>
<member>sec—medequip—mr</member>
<member>sec—medequip—xray </member>

</entry>

<entry name="int—client">
<member>int—client —1</member>
<member>int—client —2</member>
<member>int—client —3</member>

</entry>

<entry name="dmz—email">
<member>dmz—email —segment</member>

</entry >

</address—group>

4.3 Networks

<address>
<entry name="int—client—-1">
<ip-—netmask>10.1.1.0/24 </ip—netmask>
</entry>
<entry name="dmz-email-segment">
<ip—netmask>192.168.2.0/24 </ ip—netmask>
</entry>
<entry name="sec—medequip—xray ">
<ip-netmask>172.16.1.0/24 </ip—netmask>
</entry>
<entry name="int—client —2">
<ip—netmask >10.1.2.0/24 </ ip—netmask>
</entry >
<entry name="int—ts">
<ip—netmask >10.4.0.0/16 </ ip—netmask>
</entry>
<entry name="int—client—-3">
<ip-—netmask>10.1.3.0/24 </ip—netmask>
</entry >
<entry name="sec—journal">
<ip-—netmask>172.16.129.0/24 </ ip—netmask>
</entry>
<entry name="int—backoffice">
<ip—netmask>10.2.0.0/16 </ ip—netmask>
</entry >
<entry name="dmz-web—proxy">
<ip-netmask>192.168.1.0/24 </ip—netmask>
</entry>
<entry name="sec—medequip—mr">
<ip—netmask >172.16.2.0/24 </ ip—netmask>
</entry >
</address>

4.4 Services

<service>
<entry name="http—proxy">
<protocol>
<tcp>
<port>8080</port>

</tcp>

</protocol>
</entry>
</service>

4.5 Rules

<rules>
<entry name="0-1_Email _receive">
<option>
<disable—server—response—inspection >no</disable—server—response—inspection>
</option>
<source>
<member>any </member>
</source>
<destination>
<member>dmz-email —segment</member>
</destination >
<application>
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<member>smtp</member>
</application>
<source—user>
<member>any </member>
</source—user>
<service>
<member>any </member>
</service>
<to>
<member>DMZ / member>
</to>
<from>
<member>any</member>
</from>
<action>allow</action>
<hip—profiles >
<member>any </member>
</hip—profiles >
<category>
<member>any </member>
</category>
<log—end>yes</log—end>
<entry name="0-123_deny">
<option>
<disable—server—response—inspection >no</disable—server—response—inspection>
</option>
<source>
<member>any</member>
</source>
<destination >
<member>any</member>
</destination >
<application>
<member>any </member>
</application>
<source—user>
<member>any </member>
</source—user>
<service>
<member>any </member>
</service >
<to>
<member>DMZ / member>
<member>Internal </member>
<member>Secure </member>
</to>
<from>
<member>External </member>
</from>
<hip—profiles >
<member>any </member>
</hip—profiles >
<action>deny</action>
<category>
<member>any </member>
</category>
<log—end>yes</log—end>
<entry name="1-0_Email-send">
<option>
<disable—server—response—inspection>no</disable—server—response—inspection>
</option>
<source>
<member>dmz-email—segment</member>
</source>
<destination >
<member>any </member>
</destination >
<application>
<member>smtp</member>
</application>
<source—user>
<member>any </member>
</source—user>
<service>
<member>any </member>
</service >
<to>
<member>External </member>
</to>
<from>
<member>DMZ / member>
</from>
<action>allow</action>
<hip—profiles >
<member>any </member>
</hip—profiles >
<category>
<member>any </member>
</category>
<log—end>yes</log—end>
</entry>
<entry name="1-0_Web-access">
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<option>
<disable—server—response—inspection >no</disable—server—response—inspection>
</option>
<source>
<member>dmz-web—proxy </member>
</source>
<destination>
<member>any </member>
</destination>
<application>
<member>any </member>
</application>
<source—user>
<member>any </member>
</source—user>
<service>
<member>service —http </member>
<member>service —https </member>
</service >
<to>
<member>External </member>
</to>
<from>
<member>DMZ /member>
</from>
<action>allow</action>
<hip—profiles >
<member>any </member>
</hip—profiles >
<category>
<member>any </member>
</category>
<log—end>yes</log—end>
</entry>
<entry name="1-0_deny">
<option>
<disable—server—response—inspection >no</disable—server—response—inspection>
</option>
<source>
<member>any </member>
</source>
<destination>
<member>any </member>
</destination>
<application>
<member>any </member>
</application>
<source—user>
<member>any </member>
</source—user>
<service>
<member>any</member>
</service >
<to>
<member>External </member>
</to>
<from>
<member>DMZ /member>
</from>
<hip—profiles >
<member>any </member>
</hip—profiles >
<action>deny</action>
<category>
<member>any </member>
</category>
<log—end>yes</log—end>
</entry>
<entry name="1-2_Email-backoffice">
<option>
<disable—server—response—inspection >no</disable—server—response—inspection>
</option>
<source>
<member>dmz-email —segment</member>
</source>
<destination>
<member>int—backoffice </member>
</destination>
<application>
<member>smtp</member>
</application>
<source—user>
<member>any </member>
</source—user>
<service>
<member>any</member>
</service>
<to>
<member>Internal </member>
</to>
<from>
<member>DMZ /member>
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</from>
<action>allow</action>
<hip—profiles >
<member>any </member>
</hip—profiles >
<category>
<member>any </member>
</category>
<log—end>yes</log—end>
</entry >
<entry name="1-023_deny">
<option>
<disable—server—response—inspection >no</disable—server—response—inspection>
</option>
<source>
<member>any </member>
</source>
<destination>
<member>any </member>
</destination >
<application>
<member>any</member>
</application>
<source—user>
<member>any </member>
</source—user>
<service>
<member>any</member>
</service>
<to>
<member>External </member>
<member>Internal </member>
<member>Secure </member>
</to>
<from>
<member>DMZ /member>
</from>
<hip—profiles >
<member>any</member>
</hip—profiles >
<action >deny</action>
<category>
<member>any</member>
</category>
<log—end>yes</log—end>
</entry>
<entry name="2-1_client—webproxy">
<option>
<disable—server—response—inspection >no</disable —server—response—inspection>
</option>
<source>
<member>int—client </member>
</source>
<destination>
<member>dmz-web—proxy </member>
</destination >
<application>
<member>any</member>
</application>
<source—user>
<member>any</member>
</source—user>
<service>
<member>http —proxy </member>
</service>
<to>
<member>DMZ /member>
</to>
<from>
<member>Internal </member>
</from>
<action>allow</action>
<hip—profiles >
<member>any</member>
</hip—profiles >
<category>
<member>any </member>
</category>
<log—end>yes</log—end>
</entry>
<entry name="2-2 client—ts">
<option>
<disable—server—response—inspection>no</disable—server—response—inspection>
</option>
<source>
<member>int—client </member>
</source>
<destination>
<member>int—ts </member>
</destination >
<application>
<member>ms-rdp </member>
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</application>
<source—user>
<member>any </member>
</source—user>
<service>
<member>any </member>
</service>
<to>
<member>Internal </member>
</to>
<from>
<member>Internal </member>
</from>
<action>allow</action>
<hip—profiles >
<member>any </member>
</hip—profiles >
<category>
<member>any </member>
</category >
<log—end>yes</log—end>
</entry>
<entry name="2-2 client—backoffice">
<option>
<disable—server—response—inspection >no</disable—server—response—inspection>
</option>
<source>
<member>int—client </member>
</source>
<destination>
<member>int—backoffice </member>
</destination >
<application>
<member>hp—jetdirect </member>
<member>ms—rdp </member>
<member>sap </member>
</application>
<source—user>
<member>any </member>
</source—user>
<service>
<member>any </member>
</service>
<to>
<member>Internal </member>
</to>
<from>
<member>Internal </member>
</from>
<action>allow</action>
<hip—profiles >
<member>any </member>
</hip—profiles >
<category>
<member>any </member>
</category>
<log—end>yes</log—end>
</entry >
<entry name="2-3_ts _secure">
<option>
<disable—server—response—inspection >no</disable—server—response—inspection>
</option>
<source>
<member>int—ts </member>
</source>
<destination>
<member>sec </member>
</destination >
<application>
<member>cygnet—scada</member>
<member>ftp </member>
<member>socks2http </member>
</application>
<source—user>
<member>any </member>
</source—user>
<service>
<member>any </member>
</service>
<to>
<member>Secure </member>
</to>
<from>
<member>Internal </member>
</from>
<action>allow</action>
<hip—profiles >
<member>any </member>
</hip—profiles >
<category>
<member>any </member>
</category>
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<log—end>yes</log—end>
</entry>
<entry name="2-013_deny">
<option>
<disable—server—response—inspection>no</disable—server—response—inspection>
</option>
<source>
<member>any</member>
</source>
<destination >
<member>any</member>
</destination>
<application>
<member>any</member>
</application>
<source—user>
<member>any </member>
</source—user>
<service>
<member>any </member>
</service >
<to>
<member>DMZ< /member>
<member>External </member>
<member>Internal </member>
<member>Secure </member>
</to>
<from>
<member>Internal </member>
</from>
<hip—profiles >
<member>any</member>
</hip—profiles >
<action>deny</action>
<category>
<member>any </member>
</category>
<log—end>yes</log—end>
</entry>
<entry name="3-012_deny">
<option>
<disable—server—response—inspection>no</disable—server—response—inspection>
</option>
<source>
<member>any</member>
</source>
<destination >
<member>any</member>
</destination >
<application>
<member>any </member>
</application>
<source—user>
<member>any </member>
</source—user>
<service>
<member>any</member>
</service >
<to>
<member>DMZ / member>
<member>External </member>
<member>Internal </member>
</to>
<from>
<member>Secure </member>
</from>
<hip—profiles >
<member>any </member>
</hip—profiles >
<action>deny</action>
<category>
<member>any </member>
</category>
</entry>
</rules>
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