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Abstract

Recent progress in experimental methods has enabled probing of the

spatial organization of DNA. Several analyses have indicated that the

spatial organization of DNA is non-random and is related to its function.

There is a grand potential for analyzing this data, but the currently

available computational tools are lacking in their support. Chromatin 3D

data represents a new paradigm in genomics and requires the development

of new methods for analysis and interpretation. How this data is

represented in computer programs lays the foundation for all further use.

Not only does it affect the performance and efficiency of all computations,

but it also sets the premises for a programming interface and the ways in

which the data can be accessed.

This thesis is an account of the observations made when developing

the functionality of a chromatin 3D data analysis for The Genomic

HyperBrowser, a web-based tool for genomic computations. Different ways

of handling chromatin 3D data are evaluated, with a particular focus on

performance and usability. Suggestions and remarks are then made as

to how chromatin 3D data can successfully be handled in HyperBrowser

specifically, and in computer programs generally.

The effort led to significant performance improvements in a chromatin

3D data analysis performed in HyperBrowser.

In conclusion, performing analyses on the currently available chromatin

3D data is practically feasible through careful design and implementation

of data structures and algorithms. However, as experimental methods

improve, the increasing size of the data sets will pose new challenges to

the computational methods involved.
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Chapter 1

Introduction

The experimental methods for capturing the spatial structure of DNA are

relatively new. Unlike the data produced by regular DNA sequencing where

the linear structure of DNA is captured, the data produced by Chromosome

Conformation Capture (3C) and other similar techniques captures the

spatial structure of DNA. This data, referred to as chromatin 3D data, has

an inherently spatial structure, and can be represented as a graph.

With new data comes new challenges to the computational methods

that are used for analyzing it. Chromatin 3D data represents a new

paradigm within computational genomics. With its inherently spatial

structure it poses new challenges to the ways we interpret, manage and

process genomic data. Some popular computational tools are closely tied to

the traditional concept of linear genomic data, making them incompatible

with the spatially structured chromatin 3D data. Extending or adapting

existing tools to support spatial data can be challenging as it breaks one

of the fundamental assumptions they were built upon. Constructing new

methodology and computational tools capable of handling chromatin 3D

data is essential to the progress of genomics as it lays the foundation for all

further research on the spatial organization of chromatin. The performance

of such computational tools is of great importance, and designing them

is non-trivial. The large size of the chromatin 3D data sets magnifies the

cost of inefficient operations, leaving some implementations practically

unusable.

Although several studies have already been performed on chromatin 3D

data with great success, the computational methods involved seem to be

created on an ad-hoc basis to answer the research questions at hand. When

computational tools are created this way the same problems and challenges

are being solved several times by different people and in different projects.

An argument can be made for the necessity of generalized computational

tools capable of analyzing chromatin 3D data in different contexts and for

different purposes.

In general, the efficiency of the computational methods used are not

overly important. Time is always an important factor in scientific projects,

and the time spent on developing and optimizing the computational

methods could be spent doing possibly more important things. Sometimes
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the programs are created with a single goal in mind and might perform

reasonably well for their limited purpose. As long as the computations are

finishing within a reasonable time, improving their efficiencymight not pay

off.

However, if the computational methods are intended to be used by

numerous scientists for a great number of computations, this picture

changes drastically. The efficiency of the methods become increasingly

important, as the time spent on optimizing the computational methods is

time saved for potentially a lot of users. So is the case for a scientific tool

such as HyperBrowser, which is intended to be used by numerous users.

Because of this making sure the computations it performs are efficient is

worthwhile.

When working with relatively small data sets our powerful modern

computers will happily crunch away at the most inefficient programs

and return within seconds. How the data is structured, retrieved and

manipulated is of less importance, and many aspects of the computer

program might be more important than performance. How easy the source

code is to read and maintain for instance, or how well its user interface

communicates with the user, or its correctness and reliability. But for

some programs performance is a requirement that can make it or break

it. For this type of program its performance is what makes it a success

or a complete failure. The size of the chromatin 3D data sets makes

computations involving this data fall in the latter category of programs

where performance is an absolute requirement. Currently the size of a

typical data set can range from 100 megabytes to 10 gigabytes, but the

size of the data sets are growing at a quadratic rate as the experimental

methods improve. It is not unrealistic to assume that the size of the

data sets can approach terrabytes, and this will dramatically change the

requirements to the programs that are working with such data. When

working with data of this size the ways in which the data is structured does

not only determine how long a computation will take, but it determines

if a computation is practically feasible at all. In other words, developing

efficient algorithms and data structures is about more than impatience and

making computations fast. Making computations efficient is the only way

to get results at all.

The choice of data structure lays the foundation for every operation

it will be a part of, and so if this fundamental part of the design is

“wrong” everything that relies on it will suffer. By examining different data

structures and algorithms with respect to how they would affect different

aspects of the computer program a well informed decision can be made.

The aspects to consider includes running time, space requirements and

ease of use, to name a few. In this thesis some of the possible ways to handle

chromatin 3D data are surveyed and the findings and experiences from this

work are presented.

Some of the source code written as a part of this project can be found at

http://hyperbrowser.uio.no/dev2/static/downloads/TobiasGulbrandsenWaaler_

master_thesis_supplementary_material.zip.
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1.1 Problem Description

How data is structured sets the premises for how it can be accessed, and

so the algorithms operating on a given data structure are important when

evaluating the characteristics of a data structure.

Support for chromatin 3D data was added to HyperBrowser without

altering the fundamentals of the system. After experiencing performance

issues with the initial implementation, the need for further research to

improve the performance became obvious. The prospects of growing data

sets makes planning the most fundamental part of the system necessary

before developing other parts of the system that relies on the interface

provided.

The main research question in this thesis can be summarized as

follows: what is the best way to structure data from various Chromosome

Conformation Capture experiments. This statement is both imprecise and

ambiguous, but it provides some sense of direction. Two things must be

especially clarified for this to be useful: what does “to structure data” entail,

and what constitutes the “best” solution?

In this context to structure data refers to the design of data structures

for representation of the data at hand. This includes data representation in

main memory as well as on disk. The data to be represented is the results

from different experiments called Chromosome Conformation Capture and

includes 3C, 5C and HiC. The data produced in these experiments can

conceptually be represented as a weighted graph.

When it comes to the definition of what constitutes the best solution, the

criteria are not strictly measurable. In addition to being able to perform

computations efficiently there are a number of concerns that must be

addressed, such as how easy it is to use the interface provided by the data

structure. A complete collection of “guidelines” that should be considered

when evaluating solutions can be listed as follows, somewhat in order of

priority:

1. Optimize for low running times.

2. Don’t optimize for low memory usage unless exhaustive memory

usage prohibits the implementation from working at all.

3. A slow computation is better than no computation.

4. Provide good usability through the programming interface

Although the problem is quite general and applies to any computer

program that needs to handle chromatin 3D data, the focus of this thesis

is directed towards an implementation in HyperBrowser. This becomes

apparent throughout the thesis, for instance from the focus on Python

and NumPy, both of which are essential in todays implementation of

HyperBrowser.
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1.2 Method

The methods used throughout this thesis to gather experience and empiri-

cal results can be divided into three main categories: experiments, calcula-

tions and literature research.

The experiments are usually in the form of small programs performing

a given task while measuring the running time and memory usage.

Some of the experiments have been performed by altering parts of the

HyperBrowser source code andmeasure the effects, while others have been

constructed as stand-alone programs with little or no dependency on the

HyperBrowser system. An important part of the work that underlies the

findings in this thesis was the development of one of the first analysis in

HyperBrowser to handle chromatin 3D data, described in chapter 3.

Some rough calculations, or estimates, are also included. They are

usually imprecise and informal, and serve to “illustrate a point” rather than

providing a proof.

The main concern in this thesis is the evaluation and comparison

of different solutions for handling data from Chromosome Conformation

Capture experiments. As some of the criteria for assessing the different

solutions are not easily quantifiable or measurable an unavoidable part of

the research is from relevant literature. This includes scientific articles,

text books and various online resources.

1.3 Scope

Bioinformatics is an interdisciplinary field. Working within bioinformatics

therefore involves studying a multitude of topics, and pursuing any one

of them could result in interesting discoveries. However, in order to

accomplish anything within the time frame of a master thesis the scope

of the thesis must be limited. Some of my research questions are closely

tied to the Python programming language, the HyperBrowser system and

Chromatin Interaction Data, while others are of a more general nature. As

far as possible the questions and results are aimed at a wide audience, but

there is always a balancing act between the general and the specific.

The use of graphs is relevant to a number of applications and the use of

Python [30] and SciPy [31] is widespread within the scientific community.

The experience and results related to a combination of graphs, Python and

SciPy can therefore be of interest to a wider audience and throughout this

thesis I try to honor that by keeping both research questions and suggested

solutions as broad as possible while still being relevant to the development

of HyperBrowser and the representation of Chromosome Conformation

Capture data.

Naturally most topics within this thesis could be covered more exten-

sively, especially those relating to the biological properties of Chromatin

Interaction Data where interesting research is taking place at this very mo-

ment. This is one of the topics considered outside the scope of this thesis,

and is only briefly discussed in section 2.1 on page 7.

4



Another topic that could be covered in more detail is the vast field of

Graph Theory. Although the graph as a data structure is a central part

of this thesis, the relevance of the mathematical concepts that make up

Graph Theory is limited. The references to Graph Theory throughout this

thesis aremostly related to terminology for describing properties of graphs.

Graph Theory is therefore only briefly covered in the background material,

with emphasis on the relevant parts of its terminology.

1.4 Chapter Overview

This chapter overview offers a form of narrative to the thesis, explaining

why and when the different chapters came to be. The structure of this

thesis reflects the fragmented way in which the experimental work it is

based upon has been carried out. An important observation is that there

are many minor findings rather than a few important ones. Apart from the

inevitable chapters with background material and discussions, this thesis

consists of several shorter chapters each summarizing the findings from

distinct endeavors.

The background chapter covers most of the preliminary knowledge

for understanding the rest of the thesis.

Chapter 3 is a case study, and the observations made here are in many

ways the foundation on which this thesis is based upon. It is a detailed

account of the work that was carried out as a part of developing a hypothesis

test using chromatin 3D data. By workingwith a case for chromatin 3D data

that is of practical use some problems and challenges emerged as especially

relevant.

The three following chapters, chapter 4, chapter 5 and chapter 6 go

more into detail about different topics from the case study that was found

to be especially important: The graph implementation in HyperBrowser

was heavily reliant on the NumPy library, and so chapter 4 focuses on the

usage of NumPy and the generalized concept of vector programming. Op-

timizing certain operations was difficult, because the data was structured

in such a flexible way. In chapter 5 suggestions are made for how this

flexibility can be balanced with the need for optimizations. Monte Carlo

simulations play an important role in HyperBrowser and the effect this has

on the performance is the topic of discussion in chapter 6.

Chapter 7 takes a step back and makes a generalization based on some

of the observed patterns from the earlier chapters. Specifically it discusses

how memory usage and running time seems to be connected, and explores

the basis for this relationship.

Chapter 8 is an assessment of how well the graph database Neo4j is

suited for representing chromatin 3D data. Investigating Neo4j was the

first part of the research that found its way into the final thesis. The reason

for experimenting with Neo4j at such an early stage was the idea that if the

preliminary results were promising this could determine the direction of

the thesis.

5



6



Chapter 2

Background

2.1 Bioinformatics and Biology

The field of biology has experienced tremendous progress with the intro-

duction of computers and their computational capabilities. This has given

rise to the interdisciplinary field of bioinformatics and computational life

sciences, where a number of different disciplines come together.

One of the major breakthroughs in biological research came with the

discovery of DNA, and later the ability to sequence it. While an important

part of biological research still revolves around “physical” experiments and

laboratory work, computational tools are becoming increasingly important.

Some of these experiments are producing massive amounts of data that

need to be analyzed.

Recent development of experimental methods to extract the spatial or-

ganization of chromatin has led to a number of interesting discoveries. The

major breakthroughs came with the development of two such experimen-

tal methods: Hi-C and ChIA-PET.Hi-C was described by Lieberman-Aiden

et al. [14] in 2009, while ChIA-PET was described by Fullwood et al. [6]

the same year. Hi-C builds on the principles from Chromosome Confor-

mation Capture (3C) and its variants Circularized Chromosome Confor-

mation Capture (4C) and Carbon-Copy Chromosome Conformation Cap-

ture (5C). Both Hi-C and ChIA-PET measures the number of interactions

between regions in a genome. This number was found to be a reasonably

precise proxy for the spatial distance between the regions. The resulting

data from these experiments will be referred to collectively as chromatin

3D data in this thesis.

Several significant discoveries have been made by employing these

methods and studying the resulting data. One of the findings presented

by Lieberman-Aiden et al. [14] was that the genome had a fractal globule

structure. They were also able to observe the presence of two distinct

compartments within the chromatin. The regions in one compartment

was more likely to be in spatial proximity to other regions within the

same compartment, than in spatial proximity to the regions in the other

compartment. Another interesting discovery (by Fudenberg et al. [5])

found that the architecture of chromatin in human cells was related to
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chromosomal translocations and structural changes in DNA.

Together these findings, among others, confirm that the spatial struc-

ture of chromatin is linked to the biological function of the genome. Under-

standing this structure is therefore an important part of developingmodern

genomics.

##gtrack vers ion : 1 .0
##track type : l inked genome pa r t i t i o n
##edge weights : t rue
##uninterrupted data l i n e s : t rue
##sorted elements : t rue
##no over lapping elements : t rue
###end id edges
####genome=hg19 ; seqid=chr5 ; s t a r t =0; end=46405641
1000000 chr5 : 1 * 1M chr19 : 1 * 1M= . ; chr19 :2*1M=. ; chr19 :3*1M=. ;
2000000 chr5 :2*1M chr19 : 1 * 1M= . ; chr19 :2*1M=54.6154626708; chr19 :3*1M=44.4972605245;
3000000 chr5 :3*1M chr19 : 1 * 1M= . ; chr19 :2*1M=20.7421661021; chr19 :3*1M=16.8994186582;
4000000 chr5 :4*1M chr19 : 1 * 1M= . ; chr19 :2*1M=22.9421691221; chr19 :3*1M=16.293455264;

Listing 2.1: An excerpt from a fictitious Hi-C data set. The data is

represented in the gTrack file format [12] storing “linked segments” from

the hg19-genome. The file has a header of 8 lines, followed by 4 lines

of data. Each row contains the start position of a region, followed by its

name and a list of all its “neighbors”. Each neighbor has a value associated

with it that represents the number of observed interactions between the two

regions.

2.1.1 Terminology

There is quite a bit of terminology in the bioinformatics literature. Some

of the concepts are derived from other similar fields such as biology,

molecular biology, genetics and chemistry while others are more specific

to bioinformatics.

A genome is the entire collection of all hereditary material for an

individual organism. DNA encodes this hereditary information, and

simplistically DNA can be perceived as a collection of “blueprints” for

protein production. Chromatin is a combination of DNA and proteins, and

one of its functions is to fold the DNA to create a more compact structure

that fits within the cell. On the path from DNA to protein RNA is produced

in a process referred to as transcription. The mechanisms involved in this

process are complex and are undergoing research. One of the complicating

factors is the impact from environmental forces.

In eukaryotic organisms the DNA is organized into a number of

chromosomes, but their occurrence varies in number and size according

to organism. The DNA has the shape of a double helix, but for the purpose

of certain types of analyses the structure can be simplified to a long series

of molecules, where each molecule is one of adenine, cytosine, guanine or

thymine. Thesemolecules are referred to as bases, each with their own one-

letter abbreviation: A for adenine, C for cytosine, G for guanine and T for

thymine. As a result of the way the double helix is constructed each base in

the DNA has a complementary base on the other strand, and the two bases

together can be referred to as a base pair.

Some relevant terminology relates specifically to chromatin 3D data. A
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chromatin 3D data set is divided into regions where each region, or bin,

contains a number of base pairs. Between each pair of regions there is a

weight representing (at least to some extent) the spatial distance between

the two regions. Each of these relationships between two regions can

either be within the same chromosome, referred to as intrachromosomal,

or between two regions from different chromosomes, referred to as

interchromosomal.

The resolution of the data set denotes the number of base pairs in each

bin. The data sets mentioned in this thesis have a resolution of 1mega base

pairs (Mb) , 500 kilo base pairs (kb), 200 kb or 100 kb.

2.2 Significance Testing

Significance testing is an important tool for scientific investigation, and is

relevant to all empirical sciences. The methods involved in significance

testing is one of the many contributions from applied mathematics and

statistics to bioinformatics. Significance testing aims at assessing the

evidence for a claim based on observations. It requires the definition of

a test statistic appropriate to the domain from which the observations

are drawn from. Based on the result of this test statistic the statistical

significance can be determined.

Hypothesis testing is a form of significance testing where a null

hypothesis is defined and subsequently put to trial. Simplistically a

hypothesis test can be said to answer the question of whether a hypothesis

can be confirmed or discarded on the basis of data from a scientific

study or experiment. To answer this question one must among other

things determine the likelihood of getting this (or a more extreme) result

given that the null hypothesis is true. The result of a hypothesis test is

affected mainly by the number of observations and how “extreme” those

observations are. For instance a result close to what would be expected

by chance can be statistically significant if the number of observations is

high, while a result far from the expected requires fewer observations to be

considered significant.

2.3 Graphs

2.3.1 Graph Theory

Thewell knownmathematician LeonhardEuler described graphs in a paper

on the Bridges of Königsberg as early as 1735 [10]. Since then graph theory

has been developed as a branch of mathematics, and has become relevant

in the field of Computer Science.

Graph Theory can be explained informally as the study of graphs.

Graphs consist of two key elements: nodes (or vertices) and edges, where

nodes are connected by edges. Nodes can typically represent people, places

or objects while the edges define the relationship between them. When
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(a) Two nodes connected by a di-
rected weighted edge.

(b) An undirected graph with 5 nodes
and 7 edges.

presenting graphs visually it is quite common to treat the length of the

edges as unrelated to their weights.

Within the graph theory literature there are some disagreements on

terminology, but on some of the most fundamental concepts there seems to

be a consensus. What follows is a brief overview of some of the definitions

within graph theory most relevant to this thesis, as defined by Reinhard

Diestel [4].

Graph A collection of nodes and edges, including all attributes thatmay be

associated with the nodes and edges (such as weight or other values).

Node or vertex A node can typically represent a physical or abstract

object, such as people or places. Nodes are connected by edges to

form a graph. In this thesis vertices are referred to as nodes.

Edge An edge connects to nodes, and has exactly one initial node ("from-

node") and one terminal node ("to-node"). Together with nodes,

edges are the basic building blocks of graphs. A typical interpretation

of an edge is as a relationship between nodes.

Weighted graph If the edges within a graph has weights associated with

them, the graph is said to be weighted. Weights typically represent

distance between nodes or the cost of traversing an edge.

Directed Graphs (Digraphs) If the edges in a graph has directions

associated with them, the graph is said to be directed.

Loop An edge starting and ending on the same node is called a loop. A

node containing a loop will thus have an edge to itself.
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Path An ordered listing of distinct adjacent nodes. A path can be thought

of as an instruction for how to navigate from one node to another

node.

Cycle or Circuit A path starting and ending on the same node.

Subgraphs A subgraph is formed by picking nodes and edges from a

graph, such that the set of nodes and edges in the subgraph is a subset

of all the nodes and edges in the original graph.

Multigraph A multigraph is a graph where loops and multiple edges

between nodes is allowed.

Node Degree The number of edges connected to a node.

Complete graph A graph where all nodes have edges to all the other

nodes.

Adjacency Two nodes are adjacent if there is an edge between them.

Density and Sparsity Density and sparsity is related to the number of

edges in a graph relative to its number of nodes. A graph with only

a few edges and many nodes is sparse while a complete (or almost

complete) graph is dense. There is no general consensus as to where

the distinction between a sparse and a dense graph goes.

Graph theory is a versatile tool for modeling a wide range of phenomena

involving relationships. There are multiple variations to what a graph can

legally consist of, such as loops, directions and edge weights.

2.3.2 Graph Representation and Implementation

There are several ways to represent graphs in a computer system. Two

of the more popular representations are the adjacency list representation

and the adjacency matrix representation. Multiple Computer Science text

books dealing with algorithms refer to these two representations [3] [1],

and most of the other possible ways of representing graphs can somehow

be seen as a variant of one these.

At the implementation level there are a multitude of ways to implement

both adjacency lists and adjacency matrices, but their memory characteris-

tics aremostly the same. Theirmemory requirement and their performance

is likely similar for all practical purposes. A common trade off between dif-

ferent implementations is betweenmemory consumption and running time

for different operations. This is the topic of discussion in chapter 7.

Adjacency List

One of the more popular representations is the adjacency list representa-

tion. As implied by its name this representation uses a list of adjacent nodes

to construct a graph. For a sparse graph this representation is potentially

more compact than the adjacency matrix.
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Figure 2.1: A comparison of the two most common weighted graph

representations: the adjacency list and the adjacency matrix. For a sparse

graph like this the adjacency list is more compact.

The adjacency list representation can be extended to include weighted

edges in a number of ways. For instance each of the elements in the

adjacency list can store two values (instead of one): a pointer to the

neighboring node and a weight.

Adjacency Matrix

Another popular representation is the adjacency matrix representation.

Its underlying data structure is a two-dimensional matrix of size n2 where

n is the number of nodes in the graph. For weighted graphs each cell in the

matrix contains the weight of the edge between the pair of nodes from the

row and column. For unweighted graphs a boolean value indicating if the

edge is present or not is sufficient. The size of the matrix is always n2, and

as a result of this the adjacency matrix is not very space efficient for sparse

graphs.

2.4 Performance Analysis

In the process of designing algorithms and implementing them as computer

programs performance analysis is crucial. Performance analysis can be

divided into theoretical analysis of algorithms and practical analysis of

implementations. Both theoretical and practical analysis are useful when

developing computer software.
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2.4.1 Terminology

There are especially two terms that need to be defined in this context,

because their meaning can be ambiguous: Performance is meant to

describe the work performed divided by the time it takes to perform.

Efficiency on the other hand is performance divided by resource usage.

Usually, the resource in question is main memory. Thus, a computer

program with high performance is a program that can achieve a lot in a

short time, but might require a lot of memory. How to measure a programs

achievement, and exactly what “short time” means, depends on the context.

An efficient program does not only achieve a lot in a short time, but does

so with reasonable resource usage. Again, what constitutes “reasonable

resource usage” is context dependent.

When discussing an algorithm or an implementation overhead is often

used in a negative sense to denote the resources spent on operations

that are not directly a part of achieving the goal of the algorithm. What

constitutes overhead thus depends on the context and what the goal of the

algorithm is. For instance, when considering the storage of data in a data

structure the overhead can refer to the space occupied by everything else

than the actual information stored.

2.4.2 Algorithm Analysis

Algorithm analysis denotes the theoretical ways to analyze and reason

about the performance of algorithms. Here the algorithms rather than

an actual implementation is the subject of analysis. Algorithm analysis

encompasses a number of techniques, one of which is computational

complexity class determination. A complexity class is a description of

how the resource usage of an algorithm changes as a function of its input.

The resource usage can either be related to time (running time) or space

(memory usage).

A typical use of algorithm analysis is to formalize the effect the size of

the input has on the running time of the algorithm.

On the basis of algorithm analysis some algorithms can be discarded

for practical purposes. If the size of the input for a given application of an

algorithm is estimated to be incompatible with the algorithms complexity

class, the algorithm can be deemed unfit as a solution to that problem. The

complexity class of an algorithm does not estimate the actual running time

of an implementation, for that we must turn to practical methods such as

benchmarking.

2.4.3 Practical PerformanceAnalysis: Profiling andBench-
marking

Practical methods for performance analysis includes various forms of

benchmarking and profiling. These methods are tied to concrete imple-

mentations rather than abstract algorithms.
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While theoretically analyzing algorithms is a necessity when designing

algorithms, it is not enough to ensure that the performance of an

implementation of that algorithm is satisfying. Many algorithms within

bioinformatics scales poorly, but are useful nevertheless. Doing practical

experiments such as benchmarking is a useful tool for determining if a

given implementation of an algorithm is applicable for a problem or not.

A given algorithms complexity class, and thus its ability to scale, is of lesser

importance if the size of its input is estimated to be “small enough” for

computations to be performed within reasonable time.

Measuring memory usage and running time is an inherently imprecise

process, but the reliability can be improved by increasing the number of

samples and controlling for variables such as hardware and environment.

2.5 HyperBrowser

The Genomic HyperBrowser [25], or HyperBrowser for short, is a software

system providing “statistical methodology and computing power to handle

a variety of biological inquires on genomic datasets” [27]. It is available

through a web interface based on the Galaxy framework [26].

The Galaxy framework was developed to address some of the challenges

in life science research as it is becoming increasingly reliant on computa-

tional methods [8]. It allows scientists to perform computations that are

reproducible and provides easier access to the results. It also limits the

need for informatics expertise to analyze the computational methods used

to arrive at a given result, and instead provide information suited for scien-

tists from other disciplines such as biologists. To achieve this, Galaxy stores

extensive information about each analysis being performed. This includes

the datasets used as input, a history of actions that details the computations

performed on the input (also known as a workflow), and any parameters

and configurations. To limit the need for informatics expertise and pro-

gramming experience when using Galaxy to perform analyses, Galaxy en-

courages methods to be constructed as building blocks that can be chained

together to create new methods. This requires each method to perform a

limited task in a generalized fashion, so that it can be used in multiple con-

texts.

HyperBrowser was developed as a tool for biologists and bioinformati-

cians in need of computing power to analyze genomic data, and is based

on the Galaxy framework. In addition to the capabilities HyperBrowser

inherits fromGalaxy, such as reproducibility of results, it provides comput-

ing power and implementations of generic methods for analyzing genomic

data.

2.5.1 Architecture and Implementation Details

The design of HyperBrowser is driven by the need for high performance

computing performed in a high-level programming language. To make up

for the relatively slow running time of the high-level language (Python),
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a library (NumPy) with implementations in low-level languages (C and

Fortran) is used extensively. The architecture of the system reflects the

design goals by implementing mechanism to cache and reuse results from

computations, as well as techniques for dividing problems into smaller

parts and thus requiring less memory.

Tracks are Stored in ndarrays and memmaps

At the conceptual level data is represented as Tracks in HyperBrowser.

The implementation of a Track relies heavily on ndarrays to achieve

reasonable performance. For persistence, memmaps are used to write the

ndarrays to disk.

New data sets are installed as tracks by providing a file in one of the

supported file formats, such as gTrack, wig or bed. The file is then parsed

by an internal parser constructing the ndarrays and written do disk.

In addition to the contents of the track certain meta data is collected and

stored by the parser.

Modular Architecture to Encourage Reuse of Components

Reuse of the methods implemented in HyperBrowser is made possible by

adhering to the principle that each method should be written as generic as

possible, and only perform one task. As the number of implemented meth-

ods in HyperBrowser grows, the amount of work required to implement

new methods can potentially be reduced by combining the already imple-

mented methods in new ways.

Caching of Intermediate Computations

A recurring pattern in software in general is that computations that are

essentially equal, meaning that they have the same input and give the

same result, are performed more than once. When each computation is

expensive, as is typically the case for analysis of large biological datasets,

reducing the number of redundant computations can increase the efficiency

significantly. To avoid performing computations more than once, any

calculation that requires the results from other intermediate computations

must define its dependencies on other computations. Conceptually

HyperBrowser creates a dependency graph for the computations, and

reuses the results from the computations so that each computation with

identical input is performed exactly once.

Dividing Computations Using MapReduce

MapReduce is a technique for tackling computations on large data sets. It

requires computations to be expressed as two functions: one to perform the

computation on a partition of the data, and one to combine the results in an

appropriate way. MapReduce has a number of benefits: Computations can

be performed in parallel to reduce the running time; Memory usage can be

15



Figure 2.2: Showing the difference in number of computations performed

with and without caching of results. There are a number of redundant

computations performed when caching is disabled, such as calculating

mean and its children twice.

lowered because only a partition of the data set needs to be kept in memory

at one time; Reduce running time by limiting swapping of data between

memory and disk as a result of using less memory;

HyperBrowser implements a variant of MapReduce, foremost to limit

the memory usage. In order to use MapReduce when developing a statistic

for HyperBrowser a splittablemethod must be defined, as well as a reduce

method for combining the results of each computation. Some problems are

not dividable and can be defined as such in HyperBrowser by implementing

an unsplittablemethod.

2.6 NumPy

NumPy is a Python library for efficient scientific computing. At the core

of NumPy is its ndarray: a multidimensional array of a specified data

type. NumPy includes a lot more than the functionality surrounding mul-

tidimensional arrays, and is an essential tool for working with numerical

data in Python.

As described in the Online NumPy Documentation [32] NumPy

achieves its high performance by vectorizing operations, limiting the

amount of data to be copied in memory and reduces the number of op-

erations by implementing certain functions in C rather than Python.

The Standard Python Library provides an array class much like NumPy,

but this only supports one dimensional data. In addition there are a lot of

methods for working with arrays implemented in NumPy that is not a part

of the standard array class.

16



Chapter 3

Case Study: Assessing
Spatial Co-localization of
Regions

One of the first statistics that was implemented in HyperBrowser to analyze

chromatin 3D data was a hypothesis test for assessing the spatial co-

localization of regions. Most of the results and observations presented

in this thesis are somehow related to the development of this statistic.

The search for efficient data structures and algorithms for working with

chromatin 3D data began after experiencing severe performance issues

with the initial implementation in HyperBrowser. This chapter is an

account of how the development of this hypothesis test progressed and the

experiences gained along the way.

The focus was on implementing the statistic in an efficient manner

given the way HyperBrowser currently stores graphs. Changing the way

HyperBrowser stores graphs is outside of the current scope, but several

weaknesses and limitations were found when this hypothesis test was

developed. Chapter 5 addresses some of these aspects and provides

suggestions for improvements.

3.1 Background

Before discussing the details of the implementation of this hypothesis test,

some background material is necessary.

3.1.1 The Statistic

The statistic that was developed provides an answer to questions of whether

certain regions, referred to as query regions, within the genome are closer

to each other than what would be expected. A typical use case would be to

pick a number of genes known to be somehow functionally related as the

query region and determine their spatial proximity.

The calculation is performed by computing the average of the weights

within the query region and comparing that to what would be expected
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by chance. To determine what would be expected by chance a number

of Monte Carlo simulations are performed with randomized query regions

as input. On the basis of the results from the Monte Carlo simulations a

distribution is created and the results from the “real computation” (from

using the actual query region) is compared to this distribution to assess its

statistical significance. The way in which the query regions are randomized

throughout the Monte Carlo simulations are carefully designed and is one

of the topics in an article by Paulsen et al. [21].

There are several ways to implement this calculation in HyperBrowser.

An important characteristic of this calculation is that it requires a large

number of read operations from random positions in the data structures

responsible for storing the chromatin 3D data. Further, the number of

times that an average is calculated can become large as it depends on the

number ofMonte Carlo simulations performed. The implementation of this

statistic went through several revisions, where each change was driven by

the need for lower running times or lower memory use.

3.1.2 How Graphs are Stored in HyperBrowser

Graphs are stored much in the same way other sorts of genomic data is

stored in HyperBrowser. At the lowest level graphs are being stored in

NumPy ndarrays, and moved between disk and main memory using

memmaps [19] provided by the NumPy library. Using memmaps is a

convenient way of serializing ndarrays for persistence, and supports

reading segments intomemory rather than the entire array. There are three

separate ndarrays used to represent a graph:

ids A one-dimensional array containing the names of all the nodes in the

graph as strings.

edges A two-dimensional array containing lists of neighbors for each

node.

weights A two-dimensional array containing a list of weights for each

edge.

There are some important aspects of this representation that affects the

performance, particularly its great flexibility. There is no guarantee about

the ordering of the nodes in the id and edges array. Also, the graph might

include loops (an edge from a node to itself) and it might be complete (all

nodes have edges to all the other nodes), but there are no guarantees for this

either. This uncertainty about the ordering and structure of the data makes

the data structures flexible, but has a major impact on the performance of

the operations that relies on it. A further discussion of this and suggestions

for how to improve the situation is provided in chapter 5 on page 39.

A genome consists of multiple chromosomes, and HyperBrowser stores

each chromosome separately. Internally a chromosome is referred to as

a Genome Region. This is a more general concept than a chromosome,

because it can refer to any region within a genome. However, for chromatin

3D data a genome region is synonymous with a chromosome.
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Figure 3.1: A graph of 4 nodes, and how it would be represented as

ndarrays in HyperBrowser.

Accessing the Graphs

An important part of any data structure is the interface it provides for

programmers to utilize in their programs.

An apparent way of accessing the graphs is to access the ndarrays

directly. This is efficient and requires no additional layer of abstraction.

However, the complex organization of the data makes it challenging to

write robust code for operating on graphs, and a lot of the logic for common

operations will typically be duplicated.

To provide a friendlier interface to the graphs a layer of abstraction

that provided the concepts of edges and nodes was implemented. Edges

and nodes could be accessed by calling iterators, and the appropriate

objects would be returned. This required little effort to implement, and

followed a typical object-oriented pattern. The logic in the computations

can be greatly simplified by using this interface instead of accessing the

ndarrays directly, but the performance is poor.

In developing the hypothesis test the limitations of these two interfaces

became obvious. Out of necessity a third option for accessing the graph

was developed: an adjacency matrix with weights represented as a NumPy

ndarray. Throughout this thesis this adjacency matrix is referred to as

a graph matrix. The rationale for creating this additional data structure is

discussed in section 3.2.2.

3.2 Implementations

What follows are descriptions of four different implementations of the

statistic, presented in chronological order. The implementations are

evaluated and discussed further in section 3.3.
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Figure 3.2: Implementation #2 creates amatrix representation of the entire

graph (a graph matrix) by creating Python objects for every node and edge

from the underlying data structure.

3.2.1 Implementation #1: Creating Subgraphs

The aim of the statistic was to create a subgraph consisting of a given

set of nodes and compute the average of all the edge weights within this

subgraph. One way of doing this is to create a copy of the graph containing

all the nodes and filter out the ones that are outside the desired subgraph.

This operation can be quite efficient as a result of some implementation

details in the way HyperBrowser stores graphs. The graph does not

have to be physically copied, new references to the same physical data

can be made. Before calculating the average, a two-dimensional NumPy

ndarray representing the subgraph is created and the edge weights are

inserted.

The running time of creating a subgraph this way isO(n2)where n is the

number of nodes in the subgraph. This is a result of the way HyperBrowser

represents graphs: as seen in figure 3.1 each node has an array of its

neighboring nodes, and for each of those neighbors a decision has to be

made to include this node in the subgraph or not.

3.2.2 Implementation #2: Creating the Graph Matrix
Using Iterators

To perform the calculations involved in assessing the co-localization of re-

gions, it seemed sensible to create a graph matrix as an intermediate rep-

resentation of the graph. As the elements of the matrix would be accessed

often and in a random order, a matrix representation implemented using

NumPy ndarray had the desired performance characteristics: the small

memory footprint meant that the entire matrix could be kept in memory,

and the efficient implementation of amean-function included in the library.

This graph matrix had to be constructed from the underlying data

structures in HyperBrowser. The data structures responsible for handling

chromatin 3D data in HyperBrowser is not suited for direct access from

developers (for a brief explanation of how chromatin 3D data is stored

in HyperBrowser see chapter 3.1.2 on page 18. To create an easy to use

interface for graph data a layer of abstraction was added on top of the
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underlying data structures. This layer relied heavily on iterators and

objects: Nodes and edges were represented as objects and each had an

iterator for accessing its related entities.

The initial implementation of the method for creating the graph matrix

used the iterators from the previously described “convenience layer” with

objects and iterators. Thus a lot of objects were being created and lots of

functions were being called in the process of creating the graph matrix.

Creating a Graph Matrix

There are several good reasons why creating a Graph Matrix is a good

idea. One of the reasons for creating a graph matrix is the possibility of

performing normalizations or other operations that require data from the

entire graph. Also, this graph matrix representation can act as an interface

for programmers that need access to graph data. This interface combines

two important features. It is easy to use because a NumPy ndarray is

familiar to many programmers experienced with scientific computing. It

is also efficient, because the NumPy operations are fast and the matrix

is stored in a memory efficient manner. A graph matrix can therefore

make it easier for future developers to create their own statistics without

worrying about the underlying data structure that represents graphs in

HyperBrowser. This makes the efficiency of creating the graph matrix

important for the efficiency of all other computations involving chromatin

3D data.

To encapsulate all the data associated with the graph matrix, a

GraphMatrix class was defined. It contains the ndarray with edge

weights between every pair of node, as well as a mapping from node id to

row number and column number. The row number and the column number

for a given node can be different, because this allows for an optimization

to be made when creating the graph matrix. The optimization involves

keeping the ordering of nodes that is present in the ndarray, instead

of rearranging the data when creating a GraphMatrix.

Reusing Results Across Monte Carlo Simulations

The time it takes to perform a hypothesis test can easily be dominated by

the number of Monte Carlo simulations performed. A naive implementa-

tionmight perform the exact same computations for eachMonte Carlo sim-

ulation. The efficiency of such computations can be improved by defining

independent Stat-classes with limited responsibilities for performing parts

of the computation. This way the HyperBrowser system is able to identify

the parts of the computation that needs to be recomputed for each Monte

Carlo simulation, and which parts that can be reused. A more thorough

discussion of how using Monte Carlo simulations affects the performance

is the topic of chapter 6.

For the statistic described in this chapter a Stat-class was defined with

the responsibility of creating the graph matrix. As a result the graph matrix

was reused for all Monte Carlo simulations. The time it takes to create a
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graph matrix is substantial, and thus reducing the number of times this

computations is being performed significantly reduces the running time.

3.2.3 Implementation #3: Creating the Graph Matrix
More Efficiently

As the data source was already an ndarray and the target was an

ndarray, although with a different organization of its elements, the

costly operation of temporarily creating objects to represent every single

element seemed unnecessary. A significant increase in running time was

achieved by creating the targetndarray directly from the source without

creating objects in between. This was implemented by accessing the

underlying data structures directly and copying the contents of it into a

newly created ndarray. The order and position of the elements did not

correspond between the underlying data structures and the graph matrix.

This required reordering of the elements and the lack of assumptions that

could be made about the order of the elements in the underlying data

structure limited the performance.

Optimizing byMaking Assumptions

By assuming that the graphs in the underlying data structures were

complete, meaning that each node has edges to every other node, How

the data in the underlying data structures are laid out is decided by the

component that is responsible for installing new tracks in HyperBrowser.

There is no guarantee for the assumptions that enable this optimization to

always be true, but currently the HyperBrowser system complies with it.

Several other optimizations that could be made by following this approach

are discussed in chapter 5 on page 39, as well as suggestions for how this

technique could be made more robust and not rely on assumptions that

might not be true.

3.2.4 Implementation #4: Splitting The Computation

As a result of the way HyperBrowser is designed a computation can be

performed for each chromosome separately, called local analysis, as well

as for all chromosomes, called global analysis. Implementation #2 and

#3 creates a graph matrix for each chromosome during the local analysis.

Then, in the global analysis, a bigger graph matrix is created consisting of

all the chromosomes. As a result the graphmatrices constructed in the local

analysis is also created as a part of the global analysis. This leaves room

for improvement, as the graphs matrices from the local analysis could be

reused.

Implementation #4 takes advantage of the MapReduce pattern imple-

mented inHyperBrowser. The graphmatrices constructed in the local anal-

yses are being reused by defining a method capable of combining the ma-

trices into the graph matrix needed for the global analysis.
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3.3 Results

To summarize the results the running times of the different implementa-

tions are presented in figure 3.3.

3.3.1 Implementation #1: Scales Poorly

Implementation #1 creates subgraphs and calculates the mean weight of all

the edges within that subgraph. As can be observed from figure 3.3 the run-

ning time of this implementation is acceptable for “smaller computations”

where the number of Monte Carlo simulations and the size of the query re-

gion is small. However, the running time grows at a high rate as the number

of Monte Carlo simulations and/or the size of the query region increases.

The running time of this implementation relates linearly to the number

of Monte Carlo simulations: an increase in Monte Carlo simulations by a

factor of ten results in a corresponding increase in running time. Increasing

the resolution of the graph from 1Mb to 200kb represents an increase in

the number of edges by a factor of 25, while the difference in running time

increases by a factor much lower than this. The biggest problem with this

implementation in terms of scalability is the relationship between running

time and query region size. When interpreting the results in figure 3.3 it is

important to keep in mind that the query region size is given as the number

of nodes in the subgraph, while the size of the computation is related to the

number of edges in that subgraph. The number of edges is approximately

given as the square of the number of nodes, as the subgraphs are complete

graphs. Increasing the size of the subgraph from 10 nodes to 100 nodes

should thus be considered an increase from 100 edges to 10,000 edges. By

analyzing the algorithm used in this implementation the running time can

be estimated to grow at a quadratic rate related to the number of edges.

Although the data is limited, there is support for this in the data.

The combination of a high growth rate and expensive operations makes

this implementation practically unusable. But the idea of creating the

subgraphs directly might not be a bad idea if the execution is better.

While this implementations could have been optimized a great deal, going

further with it was not interesting because the arguments for trying other

approaches were so strong.

3.3.2 Implementation #2: Slow Graph Matrix Creation

Implementation #2 was developed with two goals in mind: to improve the

scalability of the implementation and to allow for efficient global operations

(such as normalizing the weights of the graph). This was achieved by

creating a graph matrix representing the entire graph as a matrix. Creating

the graph matrix can be seen as an initial process taking place before

any other operation is performed. The running time of this operation is

determined by the size of the graph.

As shown in figure 3.3 the running time of this implementation is high

compared to implementation #1, but more stable. Implementation #2
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Figure 3.3: Color coded matrices showing the running time (in seconds)

for each of the three implementations as the number of Monte Carlo

simulations and the size of the query region varies.
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outperforms implementation #1 when the resolution of the graph is low

and the number of Monte Carlo simulations and the size of the query

region is high. This can be explained by considering the high one-time-cost

associated with creating a graph matrix. When this graph matrix is created

the rest of the computation can be quite fast.

By profiling the computation in particular three operations emerged as

potential bottlenecks:

• Creating a two-dimensional array from the underlying graph storage

mechanism in HyperBrowser.

• Creating a sub matrix from a super matrix and a set of indices to be

included.

• Finding the index in amatrix for a given position within a correspond-

ing genome.

Figure 3.4 illustrates how different parameters affect the running time of

implementation #2 and #3. From this figure it becomes apparent that one

operation in particular (creating the graph matrix) is responsible for the

high running time of implementation #2 in most cases.

The way the graph matrix is created explains this high running time.

From a bird’s eye perspective, the process of creating the graph matrix

involved going from the underlying NumPyndarrays via Python objects

to another ndarray. This implementation creates one object for each

edge and node in the graph, and it is well known that creating andmanaging

Python objects is expensive. As a result this implementation is practically

unusable.

3.3.3 Implementation #3: Faster Graph Matrix Creation

Implementation #3 is similar to implementation #2, but with one major

improvement. The graph matrix creation is implemented entirely by

using NumPy operations, making it significantly faster. Except for this

improvement the characteristics and scalability of this implementation are

identical to implementation #2: the time it takes to create a graph matrix

is still linearly related to the number of edges in the graph and the graph

matrix is reused for all Monte Carlo simulations. The size of the query

region has an insignificant effect on the running time, as the it is achieved

through highly efficient NumPy operations.

As can be seen in figure 3.4 the time usage is distributed more evenly

among the operations in implementation #3. This is a result of lowering

the running time for the graph matrix creation. By comparing the

absolute running time (in seconds) between implementation #2 and #3 the

difference for all the other operations can be determined as relatively small.

By making the graph matrix creation faster, the running time of the

other operations in the computation has become more significant. In

particular, the “overhead” (referred to as “other” in figure 3.4) is making up

a major part of the running time as the number of Monte Carlo simulations
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operation involved in computing the statistic on a 1 Mb data set. The
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table. 26



are increasing. This overhead includes the randomization of data that

occurs for each Monte Carlo simulation, and this can explain a part of the

overhead and why it becomes so significant when the number of Monte

Carlo simulations increases.

Comparing implementation #3 to the two other implementations from

figure 3.3 shows how this implementation outperforms the two others in all

situations. The experience from using this implementation to compute the

statistic described in section 3.1.1 proved it useful for practical purposes,

with an acceptable running time.

3.3.4 Implementation #4: To be Continued

Faster is always better when it comes to running times, and implementation

#3 left some room for further improvement: when the statistic was run on

more than one chromosome, there was some redundancy in the creation of

the graph matrix.

Surprisingly this implementation performed so poorly that it was

practically unusable. Both the running time and the memory usage

was exceptionally high, and further investigations pointed towards an

underlying issue in HyperBrowser that can induce a memory leak. As

a result no final conclusion on the efficiency of this implementation can

be drawn. However, this implementation should, at least in theory, be

capable of achieving lower running times and possibly lower memory usage

compared to the other implementations.
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Chapter 4

Array programming can
result in high performance,
but constrains the data and
usage patterns

NumPy plays an essential part in many scientific applications, including

HyperBrowser. Its importance in improving the performance of the

hypothesis test described in chapter 3 makes it relevant for further

discussion.

The difference in running time and memory usage can vary greatly

between a pure Python implementation, limited to using the Standard

Library, and an implementation that uses NumPy. This can be true even

for seemingly equivalent implementations of the same algorithm. This is an

example of how the complexity class of an algorithm is only partly relevant

to the performance of an implementation.

In order to use NumPy efficiently there are some constraints. In this

chapter NumPy is being compared with Python and its Standard Library.

The focus is mainly on storage and computation on chromatin 3D data, but

some observations are of a more general nature.

The findings presented in this chapter are a combination of general ob-

servations regarding NumPy and Python, and experiences from developing

one of the first statistics working on chromatin 3D data in HyperBrowser

as described in chapter 3.

4.1 Data Structures for Storing Graphs

4.1.1 Implementing Graphs with Linked Python Objects
Suffers from Poor Performance

Besides the matrix representation dominating this thesis, graphs can

also be represented using various forms of object hierarchies. In many

Computer Science textbooks graphs are introduced using some sort of

object hierarchy, with objects representing nodes and edges. The reason for
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using a different approach to graph data within the HyperBrowser is partly

an historical one: From an early point in the development of HyperBrowser

NumPy ndarrays were being used as a data structure for most of the

data sets. Representing graphs was not a part of the original design, but

was added later when this kind of data became available through various

chromatine conformation capture experiments. As all the other data sets

were represented using ndarrays already, the reason of choosing this

solution for representing graph data could be suspected of being driven

by the desire for easy integration rather than an analysis of performance.

Investigating whether a more efficient implementation to support graph

data could be made using other data structures altogether therefore seems

worthwhile.

In Python, where “everything is an object”, the distinction between this

type of implementation and one using nested Python Lists to formmatrices

is not clear. The vague definition used here is meant to include all graph

implementations where objects and their relation, rather than a matrix,

constitutes the graph.

There are several ways to implement undirected weighted graphs with

objects as the basic building blocks.

Representing chromatin 3D data requires a weighted graph.

When the data sets are small and traversal is important, working with

this sort of representation can be both efficient and intuitive. Implementing

graphs using object hierarchies falls short when the data sets grow. At

least in Python there is a significant overhead associated with creating and

managing objects, and this takes a toll on both running times and memory

usage.

From a software developers perspective working with graphs repre-

sented in an object-oriented way differs greatly from graphs represented

by matrices. While matrix representation allows for efficient operations

on the values stored in the matrix, the object representation favors graph

traversal. Which of the two representations is more intuitive or “natural”

is dependent on the sort of operations most likely to be performed on the

graphs.

The size of graphs for dealing with chromatin 3D data renders any

object-oriented implementation in Python practically unusable. To illus-

trate the problem of an object-oriented implementation consider this sim-

ple experiment:

The goal of this experiment is to estimate the minimum size of an

object-oriented graph implementation in Python. There are many ways

to implement graphs in Python and analyzing all of them would be

infeasible. Estimating the minimal memory usage for any of the possible

implementations is a bit easier, because only one implementation must be

analyzed.

The challenge lies in constructing this “minimal graph implementation”

in a convincing way, so that no other implementation could possibly be

smaller. One approach is to create an implementation so small that it is not

even a working graph implementation. It consists of an object representing

edges, and this object has only one attribute namely its weight. Many such
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Edge-objects were created to gain a more precise measurement for the size

of each object. In an attempt to subtract the size of the overhead from the

list in which the Edge-objects are kept, another list of the same size with

only float-objects was created and used as a “baseline”.

1 from random import random

2

3 class Edge :

4 def __init__ ( s e l f ) :

5 s e l f . weight = random( )

6

7 @profi le

8 def edges ( ) :

9 edges = [Edge ( ) for i in xrange (10**6) ]

10

11 i f __name__ == ’__main__ ’ :

12 edges ( )

Listing 4.1: The source code where the Edge-class is defined and a million

instances of it is created.

1 from random import random

2

3 @profi le

4 def base l ine ( ) :

5 base l ine = [random( ) for i in xrange (10**6) ]

6

7 i f __name__ == ’__main__ ’ :

8 base l ine ( )

Listing 4.2: The source code for the script used to create a baseline.

As shown in listing 4.3 Memory Profiler measures the baseline list

consisting of one float-object to be about 62 MB. A list consisting of the

same number of Edge-objects are measured to be roughly 408 MB. A

rough estimate for the size of a million Edge-objects, without the overhead

stemming from the list they are contained within can thus be found by

subtracting the baseline from the size of the edge list: 407.72 − 62.18 =

345.54 This gives a size per Edge-object of 345.54/106
= 0.00034554 MB or

3.62325e8/106
≈ 362 bytes.
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>> python −m memory_profiler base l ine . py

Increment Line Contents

=========================

@profi le

0.00 MB def base l ine ( ) :

62.18 MB base l ine = [ random( ) for i in xrange (10**6) ]

>> python −m memory_profiler edges . py

Increment Line Contents

=========================

@profi le

0.00 MB def edges ( ) :

407.72 MB edges = [Edge ( ) fo r i in xrange (10**6) ]

Listing 4.3: An excerpt from running Memory Profiler on the scripts listed

in figure 4.2 and 4.1 respectively

The results from this simple experiment can be used to reason about

the memory requirements involved when working with object-oriented

graph implementations in Python. Underestimating the size like this allows

the results to be used in argumentation for why object-oriented graph

representations in Python are unsuited for data sets as large as the ones

used to represent Chromatin Interaction Data.

From this experiment the minimal memory size per edge of an object-

oriented implementation in Python was estimated to be more than 300

bytes. For chromatin 3D data representing all chromosomes at a resolution

of 100kb, translating to 900 million edges, this would require 300 bytes ·

(900·106) edges≈ 250 gigabytes of memory. Even with the capacity of todays

hardware this is an uncomfortable memory requirement.

4.1.2 NumPy Arrays can Store Chromatin 3D Data Effi-
ciently

Although the focus of this thesis is on running software on high-end servers

with high memory capacity, limiting the memory usage is still important.

First of all, reading from- and writing to memory is time consuming, so

the amount of transmitted data affects the running time. Another reason

for limiting the memory usage is the prospect for larger data sets, possibly

outgrowing the memory capacity even for high-end clusters. NumPy arrays

can be used to address the problem of creating a two-dimensional array

from the underlying graph representation inHyperBrowser, wherememory

usage directly impacts running time and the ability to keep large data sets

in memory.

A series of experiments (presented in table 4.1) shows that the memory

size grows linearly with the number of elements in the matrix, both for

Python lists and NumPy ndarrays. Although they both grow at linear

rates, their total memory usage is quite different. While NumPy arrays

occupy 8 bytes per element Python lists are using 4 times as much memory

with about 32 bytes per element when storing float values of equivalent

precision.
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Size of matrix

(number of rows/columns)

Python List

(bytes per edge)

NumPy ndarray

(bytes per edge)

5,000 37.58 15.94

7,500 35.03 11.52

10,000 34.73 9.98

15,000 33.71 8.88

30,000 8.22

60,000 8.05

Table 4.1: A comparison of the memory usage for Python Lists and NumPy

ndarray.

Estimating the memory usage for a NumPy array is simple: upon

creation a chunk of memory is allocated, and the size of this chunk is

determined by the size of each element times the number of elements. All

the elements in the array are of the same size and the array can thus be

called homogeneous [18]. There is little overhead associated with a NumPy

array: the header contains a “Data Type Object” describing among other

things the type and size of the elements, but the size of this header is

constant and does not depend on the size of the array.

Measuring thememory usage for a Python list however, is more difficult

due to the way some Python implementations reuse immutable objects. If

the elements in the list are of an immutable type they may refer to the same

object, and the element will be a pointer to this object. The size of that

element will depend on the size of pointers for that Python implementation,

but generally they are either 32- or 64-bits depending on the processor. For

instance: a large Python list with a lot of “None”-values will have pointers to

the same “None”-instance, and so it will occupy less memory than a list of

equal length filled with unique float-objects. As a result the density of the

graph affects the memory usage of the list, making a sparse matrix more

memory efficient than a dense matrix. This could be relevant for storage of

chromatin 3D data, where the number of empty cells can be large.

In the case of chromatin 3D data each element is a float. NumPy

provides several float data types of different sizes, while Python has one

built-in float data type. The data type supporting the highest precision in

the NumPy library is the “float64”. As the name indicates a scalar of this

type is stored using 64 bits, and is capable of storing decimal numbers

with 11 bits exponent and 52 bits mantissa in addition to a sign bit. A

float object offers about the same precision as the float64 data type and

comparing a list of float objects to a list of float64 objects shows that the list

of float objects occupies less memory. This indicates that the big advantage

of using NumPy is not the float64 object itself, but the multidimensional

arrays in which they can be stored. The explanation for the difference

between in memory usage for two data types lies in the inevitable overhead

associated with objects, as well as the overhead required to manage the list

data structure. When an element from aNumPy array is extracted an object

is created, “wrapping” the float64 scalar.
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Even though nested Python Lists occupy far more memory than NumPy

ndarrays, they can not be ruled out completely for use with Chromatine

Interaction Data. Memory usage is one of several concerns, but in general

the concern for running times is more important, assuming that the

memory usage is not too exhaustive for the implementation to run at all,

even on a high-end server.

4.2 Efficiency of Operations

Another important aspect to consider when comparing NumPy to pure

Python is the efficiency of their operations. This section is comparing their

efficiency by focusing on the operations that are likely to be used frequently

for chromatin 3D data.

4.2.1 Vectorized Operations on ndarrays are Less Time-
Consuming than Operations on Python Lists

Applying a function to all edges of a graph is a common operation when

working with chromatin 3D data. The performance of such operations

is therefore highly relevant when evaluating different data structures.

Vectorization is a technique where the same operation operates onmultiple

scalars at the same time. NumPy includes many array-wide operations

for computation on its multi-dimensional arrays, and they achieve great

performance by exploiting the CPUs talent for vector processing.

When comparing the running time for some of the operations essential

to analysis of chromatin 3D data, functions from the NumPy library

outperform their equivalents from the Python Standard Library. Whether

data is copied or transformed in-place makes a big difference in running

times and memory usage.

In order to compare the performance of NumPy operations with

operations from the Python Standard Library there are some challenges.

While NumPy operates natively on multi-dimensional arrays, the Python

Standard Library does not include arrays of higher dimensions. A simple

Python implementation could be made as a sequence of sequences, where

each sequence could either be a list or a tuple. Defining operations on a data

structure like this soon becomes complex and difficult to comprehend. For

the sake of clarity this can be simplified to a one-dimensional sequence,

containing the same number of elements as its NumPy counterpart. This

simplification probably leads to lower estimates than what would be the

realistic case for a two-dimensional structure, but should give a decent

indication for the purpose of comparison.

4.2.2 Native Python Lists are Superior to NumPy for
Random Access

Here the term Random Access is meant to describe a usage pattern where

elements from arbitrary positions within the array are accessed for reading
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Python List

(nanoseconds

per operation)

NumPy ndarray

(nanoseconds

per operation)

read 120 260

write 140 220

Table 4.2: Average time per operation for NumPy ndarray and Python

List.

or writing. In working with chromatin 3D data this can be a useful

way of accessing the data, for instance when performing significance tests

involving random sampling.

The results were produced on the same server that runs HyperBrowser

and shows an average time per operation for graphs of multiple sizes.

One possible explanation for the poor performance of NumPy

ndarray stems from the time it takes to create an object in Python.

While Python Lists store objects, NumPy ndarray does not and there-

fore an object must be created for each element being read,when it is being

read. One might argue that the objects in a Python List must be created

as well, but this happens upon initialization of the List and therefore the

total time spent creating objects is not different, but the time is spent at an

earlier stage when using Python Lists. There is no built-in caching mech-

anism storing the objects that have been read from a NumPy ndarray,

so a computation where the same element is read many times will spend

less time creating objects if the underlying data structure is a Python List

compared to a NumPy ndarray.

4.2.3 Slicing can Improve Iteration Speed for NumPy
ndarrays

Although many operations seem natural to implement using iteration, this

can sometimes be avoided by extensive usage of the operations provided

by the NumPy library. Still, in some cases, iterating through the elements

of an array is necessary and doing this in an efficient manner can be time

saving.

When iteration through elements in an ndarray is necessary,

temporarily copying a part of the array and storing it as a Python List

can be a cheap technique to improve the performance. This comes at

the cost of increased memory usage from storing the copied slice of the

array. Also, the size of the slices must be determined in such a way that

the overhead associated with creating a slice does not diminish the benefit

of increased iteration speed. However, even relatively small slices can

improve the iteration speed. This technique can not be used directly to

improve random access performance, but can be a serious improvement

when iterating through a NumPy array in a predetermined order.

35



max([axis, out]) Return the maximum along a given

axis.

mean([axis, dtype, out]) Returns the average of the array ele-

ments along given axis.

min([axis, out]) Return the minimum along a given

axis.

sum([axis, dtype, out]) Return the sum of the array elements

over the given axis.

sort([axis, kind, order]) Sort an array, in-place.

var([axis, dtype, out, ddof]) Returns the variance of the array ele-

ments, along given axis.

Table 4.3: An excerpt of the 53 methods that operate on ndarrays from

the online NumPy reference [20].

4.3 Other Remarks

4.3.1 Giving Developers Access to the ndarrays Exposes
the Full Power of NumPy

Besides running times andmemory usage, an important part of a successful

graph implementation is its ability to allow developers to utilize it in

an efficient way without requiring too much knowledge about its inner

workings. When programming with NumPy using the included operations

is a safe way to ensure the most efficient implementation are being used.

The same is desirable for a graph implementation. It is also desirable to

encapsulate the underlying graph representation and bundle it with other

associated data such as node identities and other meta data. One way of

accomplishing this Python is by defining a class that acts as a thin layer of

abstraction over the graph representation.

By implementing a thin layer of abstraction on top of a NumPy

ndarray developers of statistics for HyperBrowser can access the

ndarray directly and utilize all the functionality NumPy has to offer.

Although exposing NumPy data structures to developers requires

knowledge of NumPy, the library has a simple interface with extensive

documentation making it relatively easy to learn.

4.3.2 Readability of Python Code using NumPy

An important motivation for the development of Python has always been

to guide developers towards writing readable (some will even say beautiful)

code. This is an important part of the Zen of Python [22], acting as a style

guide for Python programmers.

Following the best practices for writing readable Python becomes

difficult when using NumPy. For instance, using indexes to lookup values

in arrays can be considered less readable than using iterators, but is

unavoidable when using NumPy.
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On the other hand, NumPy code can be quite readable because the

NumPy library provides a lot of the needed functionality. The developer

should therefore focus on finding and applying the right NumPy functions

rather than implement their own functions. This can possibly lead

to more readable code considering the maturity and the quality of the

documentation of the NumPy library.

The implications of how easy source code is to read and understand are

many, and can often be overlooked in favor of other factors that are easier

to quantify. Measuring readability is difficult and many arguments used

in discussions concerning programming language design and readability

are not exactly scientific. This argument is no exception, but might still be

worth taking into account when determiningwhich situations usingNumPy

is appropriate. When developing the statistic described in chapter 3NumPy

was essential for achieving acceptable performance, and bad readability

would not be a valid argument for not using it.

4.3.3 Modularized Code and Overhead from Function
Calls

There is a trade off between writing modularized code with plenty of

functions and its performance. While both readability and possibly the

correctness of the code might improve when using function calls and

objects, it comes at the cost of performance. In contrast to compiled

languages that can utilize inlining as a part of the optimization step during

compilation, Python will go through the same expensive function call

mechanisms every time a function is called. Inlining involves copying the

body of a function to the places where the function is called from. This leads

to duplication of code and thereby makes the size of the file to be executed

larger, but has the advantage of removing the overhead from the function

call procedure.

37



38



Chapter 5

Storing Meta Data With
Graphs Can Improve Best
Case Performance

The data structure representing a graph in HyperBrowser is flexible

and allows data to be stored in several different ways. In some cases

this flexibility is an advantage, but when developing algorithms where

performance is critical, the cost of this flexibility can result in poor

performance. To improve performance without sacrificing this flexibility

altogether the implementation could use meta data to improve best-case

performance.

Graceful degradation describes various types of algorithms that perform

at their best effort, but are fault tolerant and work even for non-optimal

conditions. In this context graceful degradation refers to the ability of the

algorithms that perform operations on graphs to do as many optimizations

as the data set allows for, while still functioning when the underlying

data set is represented in a way that is less ideal. When the data set

is represented in a way that is non-optimal for a given computation a

gracefully degrading algorithm will still perform the computation, but at

the cost of higher running times or higher memory usage.

There are a few pieces of information about the way a given graph is

stored that can allow for highly optimized algorithms to process it. Instead

of reducing the flexibility of the graph-holding data structure by limiting

the ways data can be stored, meta data can be stored together with the data

structure and hold information about which optimizations can be applied

to a given graph. Themeta data, or flags, can be created either when parsing

the source file, or later by inspecting certain properties of the resulting data

structure. This strategy does not change the worst-case performance of an

algorithm, but improves its best-case performance.
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5.1 Matrix Creation Can Be Optimized if Appro-

priate Flags are Set

An important feature of HyperBrowser is its “extendability”, meaning that

developers can extend its functionality by writing scripts to run as a part

of HyperBrowser. For this to be successful the interface provided by

HyperBrowser to the developers must be friendly and ideally should not

require too much in depth knowledge about the internal workings of the

system. Working directly on the data structures used to represent graphs

at the lowest level is difficult and error prone, thus creating a simpler

and more intuitive data structure for graphs is desirable. For chromatin

3D data a well suited data structure combining efficiency and a developer

friendly interface is a two-dimensional NumPy ndarray consisting of
weights between all pairs of nodes in the graph. By creating a single

ndarray developers are exposed to a much simpler data structure than

the one offered by HyperBrowser natively, and provides access to all of

the operations provided by the NumPy library for working with this data

structure. This simplifies the process of writing algorithms to be applied to

graphs, and improves efficiency.

As described in section 3.1.2 graphs in HyperBrowser are stored

in a data structure involving several ndarrays, so creating a matrix

representation of this graph requires merging data from all of these in

the correct way. The data structure for graph storage implemented in

HyperBrowser is very flexible and a generalized algorithm for extracting

a matrix representation from it is quite slow. One important reason for this

is the lack of assumptions that can be made about the number of edges in

the edges-array, and the ordering of the edges in it.

To make the resulting matrix as intuitive and predictable as possible for

developers, it should follow a common practice when representing graphs

as matrices where the order of rows and columns should be identical. This

has the advantage of having its diagonal consisting of loops only.

The following chapters will show how storing certain properties of a

graph as meta data can allow for optimizations, and the affect this will

have on running times and memory usage. In comparing the following

algorithms employing complexity analysis alone falls short to capture the

significant differences in performance between them. The performance of

the various algorithms is deeply dependent on which NumPy operations

can be applied, so showing anything other than an actual implementation

using Python and NumPy seems meaningless.

The most generic procedure for creating a matrix of weights from the

graph representation implemented in HyperBrowser involves the following

steps:

m ← empty matrix

for each i d in i d s do

for each ed g e in i d .ed g es do

mi d ,edg e ← ed g e.wei g ht

end for
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end for

This algorithm contains two nested for-loops, resulting in a worst-case

run-time of O(n2). When looking at the benchmarks of an implementation

of this algorithm it becomes apparent that in addition to scaling poorly the

inner-most statement is a costly operation. It involves writing a value to

a single cell in a NumPy ndarray, which is known to be an inefficient

operation.

5.1.1 If All Edge-Lists are Equal

By assuming that the edges appear at the same index in each edge-list the

inner for-loop can be omitted, and thus reducing the worst-case run-time of

the algorithm to O(n). To accomplish this a flag can be held together with

the graph indicating whether or not that assumption holds for the given

graph.

m ← empty matrix

for each i d in i d s do

mi d ← i d .wei g ht s

end for

Now the entire weight-list can be copied as-is, circumventing the

expensive object creation operations needed in the previous algorithm.

The resulting matrix may not have ids in the same order on the rows and

columns, but the matrix will be complete and correct.

To determine if the flag that allows for this optimization can be set for

a given graph, all the edge-lists must be compared to an arbitrary edge-list

for equality and all the comparisons must yield true.

The optimization can be taken even further if the order of the ids in the

new matrix m does not matter or if the order of the edges in edge-list is

equal to the order of the nodes in ids. In that case the weights-matrix is

already on the form we want, and can be directly copied tom.

5.1.2 If Nodes are Sorted by Position and Chromosome

Working with sorted data has a few advantages when developing algo-

rithms. In order to sort a composite data structure a prerequisite is hav-

ing an unambiguous definition of what constitutes a correct ordering. For

chromatin 3D data an appropriate sorting of nodes can be based on chro-

mosome and position. In this context position is defined as the start point

of the bin along the linear representation of the chromosome. Chromo-

some indicates which chromosome the bin is contained within, but could

be defined more generally to also include nonchromosomal elements such

as plasmids.

The cost of having sorted data is the sorting process that has to be

performed at some point. If several algorithms benefits from the data

being sorted, storing the data in a sorted order might be a good idea. The

cost of performing a sort operation once can easily be justified if multiple

algorithms can take advantage of the data being sorted.
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5.2 Mapping Linear Position to Nodes

Finding which node contains a given position is a common operation

in working with chromatin 3D data. If we consider the nodes to be

represented as intervals with a start position and an end position, the

problem can be defined as determining which of a collection of intervals

a given position is contained within. There are several ways to find which

interval a given position belongs to depending on how the data is stored

and whether the size of the intervals, referred to as bin size, is fixed.

The slowest algorithm involves doing a linear search. This means that

every interval can potentially be looked at and the running time is O(n)

where n is the number of intervals. The linear search will work regardless

of whether the intervals are sorted or the interval size is fixed. This is a good

example of a situation where a seemingly sufficiently efficient algorithm,

such as a linear search, can become a bottleneck because it is being used so

frequently.

If the nodes are sorted by their start position within the chromosome

this operation can be reduced to a O(log(n)) operation, by performing a

binary search.

Both the linear search and the binary search will work for graphs with

fixed bin sizes and for graphs with varying bin sizes. However, in many

cases the size of a bin is constant within a graph. If, in addition, the nodes

are ordered by start position, the node containing a given position can be

found by dividing the position by the (fixed) bin size. Rather than looping

through a collection of intervals, a single computation is performed, giving

a constant running time for this operation.

To determine which of the algorithms that can be used for a given graph,

meta data can be stored together with the graph indicating whether or not

the bin size is fixed and the nodes are sorted. By selecting the best algorithm

for the job the best-case performance can be increased.

And as a side note: as a result of the overhead associated with function

calls in Python, a simple way to reduce the running time is to let the

function that does the actual work get a list of all positions instead of calling

the function once for each position.
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Chapter 6

Expensive Initial
Processing Can Reduce The
Total Running Time Of
Monte Carlo Methods

Significance testing is an important tool in scientific research, and is briefly

covered in the background material in section 2.2 on page 9. A practical

approach to significance testing is through the use of Monte Carlo methods.

Monte Carlo methods denotes computations involving randomization.

Approximating statistical significance is one application of Monte Carlo

methods. By randomizing the input to a given algorithm the same method

used to calculate the observed result can be used to generate samples for

a probability distribution. Using Monte Carlo methods for hypothesis

testing has several advantages: By using the same code for computing the

result of a statistic and for performing hypothesis testing less code can be

written. Another benefit of code reuse is that the computations involved

in hypothesis testing will be as similar as possible to the computations

involved in computing the original statistic.

An important feature of HyperBrowser is its ability to perform hypoth-

esis testing. HyperBrowser is built around the assumption that calculating

the statistical significance of the results it produces is a common opera-

tion. To simplify development of hypothesis tests within HyperBrowser

developers are provided with a “framework” for calculating the statistical

significance in the form of P-values. In order to create a hypothesis test

in HyperBrowser all that is needed is a definition of the test statistic to be

employed.

Based on this test statistic a series of Monte Carlo simulations will

be performed with randomized data. By comparing the results from

computations on randomized data with the result of the same computation

on “real” data a P-value is determined. A method for randomizing the data

has to be defined for each hypothesis test, to tailor its domain specific needs.

Some of the more common methods for randomization are predefined in

HyperBrowser, but additional methods can be implemented as well.

43



6.1 Performance of Monte Carlo Methods

EmployingMonte Carlo methods for hypothesis testing can have important

implications for the overall performance of the computation. It is not

uncommon to perform thousands, or even tens of thousands, of simulations

in a single hypothesis test. A significant portion of the total running time for

the computation can be related to these simulations. The reliability of the

P-value increases with the number of Monte Carlo simulations, so the more

simulations one can afford to perform the better. The cost (running time)

of eachMonte Carlo simulation should therefore be as small as possible. To

achieve this all the operations that do not rely on randomized data should

be done outside the simulations and its results shared between simulations.

If, for instance, one of the data structures needed for a computation can be

identical for all simulations it should be computed once, stored and reused

across the simulations, rather than recreated for each simulation.

Within HyperBrowser adhering to the principle of reusing intermediate

results and randomizing as few parameters as possible is manageable. By

following the convention of encapsulating all independent computations

within “Stat”-objects their results will automatically be reused and shared

between all Monte Carlo simulations. HyperBrowser silently takes care of

re-processing the computations that are based on randomized data, while

keeping and reusing the results from the computations that are based on

non-randomized data. Refer to section 2.5 on page 14 for a more elaborate

explanation of the HyperBrowser architecture and design.

By using this technique the way the running time is reduced is essen-

tially by keeping more data in memory throughout the whole hypothesis

testing computation. This requires increased memory usage and can be

quite memory intensive. When considering the possibility of larger data

sets the extensive memory usage can prohibit the use of this technique.
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Chapter 7

The Relationship Between
Memory Usage and
Running Time

As stated in the problem description (see section 1.1 on page 3) the memory

usage is being treated as less important than the running time in this thesis.

This is a pragmatic choice based on the assumption that the CPU speed

will be the limiting factor for analyses of chromatin 3D data. Keeping

up with the increasing demand for fast storage can be tackled simply by

adding more main memory. For computational speed however this is not

as simple: the clock speed of the CPUs have stagnated and so increasing

the capacity of a computer system means adding more processors or more

cores. In order to achieve lower running times when more processors are

being added the computations must be constructed in a way that supports

at least some degree of parallelization.

So while the computer systems dealing with chromatin 3D data will

most likely run on hardware where the size of the main memory increases

at a sufficient rate, the speed of the individual CPUs will remain the same.

Memory usage is therefore not a case of dealing with limited resources, but

the impact it can have on the running time can be an issue.

This chapter examines the relationship between memory usage and

running time. It is written from a more generalized perspective than

previous chapters, and addresses some of the fundamental challenges for

any performance critical application dealing with big data. But the topics

of this chapter are important for the future of chromatin 3D data analyses,

as the data sets might outgrow the current capacity of the computational

methods.

7.1 CPU caches, RAM and HDD: Speed and Size

In software development it is common practice to abstract away the actual

hardware. The location and storage medium of the data being used in a

program can easily be abstracted away in modern programming languages.
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Device Cycles Time

CPU register 0 cycles a few nanoseconds

CPU cache 1 to 30 cycles a few nanoseconds

main memory 50 to 200 cycles 10-100 nanoseconds

disk tens of millions of cycles 3-12 milliseconds

Table 7.1: The approximate time and number of CPU cycles spent when

accessing different storage devices. (Sources: “Computer Systems: A

Programmer’s Perspective” [2, chapter 6] and “Database Systems: The

Complete Book” [7, chapter 13])

CPU 
Registers
& Caches
(L1, L2, L3)

Main Memory
(RAM)

Secondary Storage 
(Local Hard disk drives)

SpeedSpace

Figure 7.1: The relationship between the storage devices in the memory

hierarchy. The access speed increases towards the top of the pyramid, while

the space they provide increases towards the bottom of the pyramid.

There are good reason for this, but abstractions comes at a cost. In high

performance computing this cost can become unbearable, and knowing and

exploiting the different properties of the hardware is important.

Much in the same way the laws of physics applies even for the

abstract plans of an architect, the performance of a computer program is

constrained by the hardware it runs on. Analyzing the characteristics of the

hardware gives valuable information about the constraints and challenges

that must be addressed. The performance of storage devices are highly

relevant to data intensive application.

7.1.1 The Memory Hierarchy

Modern computer systems have amemory hierarchy consisting of different

components capable of storing data. Besides the CPU caches there are

usually two types of storage devices available in a computer system. The

main memory, often referred to as primary storage, and the hard drive,

often referred to as secondary storage. In both categories there are vendors

andmodels with different performance characteristics, but the difference in

time for reading and writing to the CPU caches, main memory (RAM) and

Hard disk drive (HDD) is significant for all.
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Even with the recent progress of solid state drives (SSD) the perfor-

mance gap between secondary storage and primary storage is a big concern

in high performance computing. Like many problems in scientific com-

puting (and in many other areas for that matter), the problems concerning

chromatin 3D data are closely related to the size of the data sets involved

in the computations. This makes the time it takes to access the data highly

relevant, because each access operation has to be performed frequently to

process the entire data set. Where the data resides, whether it is in the CPU

cache, RAM or on a hard disk drive, can be what determines the execution

speed of a program.

An approximate presentation of the access times for the different

devices is provided in table 7.1. Since accessing the CPU caches is clearly

the fastest of the three, using them actively seems like a good idea. The

limited storage space provided by the CPU caches makes it impossible

to store a large data structure in it. Besides, while effective usage of

CPU caches can improve the overall performance of a program, this is

not something developers of higher level languages like Python deal with

directly. Programs can be designed to take advantage of the CPU cache, but

in general CPU caching is performed “behind the scenes”.

The next best thing performance wise is the main memory. The

difference in access times between main memory and disk is substantial,

so whenever a program needs to read from or write to disk the chances

are it will introduce a significant latency. As a rule of thumb the more you

can fit in memory, the faster the computations. This is true up to a certain

threshold where memory access is no longer the bottleneck.

The most important characteristics to consider when evaluating the

performance of a storage medium is its latency and throughput. While

latency is the time it takes to receive a reply from a request, the throughput

denotes how much data can be transfered per time unit. When accessing

small segments of data in a random order the latency will be the limiting

factor, while reading a larger portion of data sequentially will be limited by

the throughput.

In the memory hierarchy pyramid in figure 7.1 the latency increases and

the throughput decreases towards the bottom.

The operations involved when reading from main memory is quite

different from the operations required to read from a disk. While accessing

CPU caches and main memory is measured in clock cycles, accessing data

on disk is measured in time. In other words the time it takes to read from

main memory is relative to the frequency the CPU operates at. For disk

access this is not the case. Accessing the disk is an asynchronous operation

carried out by a disk controller. This means that a CPU running at a higher

frequency can not automatically perform disk access operations any faster.

7.2 Virtual Memory and Swapping

An example of how abstractions can come at the cost of performance is

the virtual memory abstraction and swapping as implemented by most
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modern operating systems. Virtual memory has many benefits, The

advantages of using swapping to increase the capacity of the virtualmemory

in general purpose computer systems are many, but for high performance

programming swapping is “deadly”. A page fault occurs whenever the

processor wants to access data that no longer resides in the physical

memory because it has been swapped out.

7.3 Storing Additional Data Structures to Im-

prove Performance

By adding additional data structures such as indexes the efficiency of

certain operations can be improved. This is different from caching in that

the data being stored in these data structures are not exact copies of the

data that resides on disk. Instead the additional data structures can hold

the results of precomputed calculations or other information, augmenting

the original data.

The profitability of adding an additional data structure is highly

dependent on the access patterns for the data: If the data is read frequently

and rarely modified maintaining additional data structures can be cheap.

On the other hand, if the data is frequently modified the cost of keeping

additional data structures updated can diminish their positive effect on

performance. This stems from the fact that each additional data structure

must be updated to be consistent with the contents of the primary data

structure. Additional data structures require additional space, and ideally

they should reside in memory. For certain applications keeping only an

additional data structure inmemory and the primary data structure on disk

can be profitable.

In the case of chromatin 3D data the primary data structure is the graph

used to represent the interactions captured by Hi-C and other methods,

while an additional data structure could be an index of all edge-weights.

The chromatin 3D data is written once and read frequently, meaning that it

is cheap to keep additional data structures updated.

Various forms of indexes can be found in a lot of software (such as

database systems and search engines). An index can be seen as any

redundant data structure aimed at improving performance. The data in

an additional data structure is redundant in the sense that if it was deleted

the information it held would still be present in the main data structure,

although the organization of the data would be different. Indexes and

other data structures aimed at improving the running time for frequent

operations highlights the trade-off between running time and memory

usage. Simply put adding an index will in most cases increase performance

drastically, but at the cost of increased space. For optimal performance the

index should be stored in memory. In some cases, when a relatively small

subset of the data set is being used, it is more important to keep the index in

memory than keeping the primary data structure in memory. Keeping the

index in memory allows for fast lookup while avoiding to read the entire

data set into memory.
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7.4 Memory Mapping Reduces the Memory Re-

quirement at the Cost of Speed

A memory mapping is a virtual memory space where each byte has a

corresponding position on disk. Unix based operating systems provide a

function for creating memory mappings called mmap. NumPy provides

a convenient interface to mmap though numpy.memmap to facilitate

memory mapping of ndarrays. There are mainly two reasons for using

memory mapping: providing faster random access to a file or creating a

“private” virtual memory space. When a file has been memory mapped

it works like virtual memory by swapping pages in and out on demand.

This makes it possible to write programs that require more memory than

what is physically available on the hardware it runs on. The operating

system already employs virtual memory to (among other reasons) increase

the total memory capacity of the system, but creating a “private” memory

mapping for a process and thereby giving the process its own virtual

memory can still be useful. For instance in situations where even the virtual

memory provided by the operating system is insufficient, or to provide

greater control over what to swap and what too keep in memory. The

cost of using memory mapping is running time: pages will be swapped

in and out and each swap is expensive as it involves reading and writing

to secondary storage. Reading and writing to a memory mapped file does

not happen until the corresponding memory area is touched, and for this

reason memory mapping can reduce running times when only parts of a

memory mapped file is being accessed. Memory mapping makes it easier

to work with data sets that are too big to fit in memory, by swapping

pages transparently. Memory mapping can be a tool for speeding up

computations, but its greatest benefit is that it makes it possible to perform

computations that require more memory than what is physically available.

[2, Chapter 9.8.4]

7.5 Efficient Employment of MapReduce

MapReduce can be a powerful technique for increasing throughput within

limited memory constraints. MapReduce works by dividing a problem into

subproblems, or tasks, where each task can be performed separately and

its results combined to produce the total solution. The performance of an

algorithm using MapReduce highly depends on the number of tasks the

problem is divided into.

7.5.1 MapReduce for Reducing Running Time

If the tasks are performed in parallel the optimal number of tasks is

dependent on the overhead associated with creating and maintaining

each parallel process. There are many ways to achieve parallelism, from

distributed computing to threads or GPU programming. Common to

all parallel computing technologies is that each parallel process has some
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overhead associated with it. This means that splitting a serial computation

into two tasks does not reduce the running time by half, because the

overhead of running a process is now doubled. The actual overhead varies

in both time and space for the different parallel computing technologies.

As a result the optimal number of subproblems depends on the technology

used to achieve parallel computing.

7.5.2 MapReduce for Reducing Memory Usage

Even if the tasks in a MapReduce computation does not run in parallel

there are some benefits compared to a serial computation. The amount of

memory required to perform a computation can be reduced by dividing the

data that needs to reside in memory. Each task will only have access to the

data it needs in order to perform its computation. For serial computations

the optimal number of tasks to divide the computation into depends on the

amount of available memory. Currently this is the case for HyperBrowser.

It does not use parallelism, but limits the memory usage by performing

computations on smaller parts of the data sets.

There is also a special case where the running time is reduced as a

result of reducedmemory usage: if the computation requires more memory

than what is available, and thereby forces swapping to occur, the running

time will suffer drastically. In this case dividing the computation into

smaller tasks and thereby reducing the memory requirement will reduce

the running time, even if the tasks are not performed in parallel.

7.6 Using Compression to Reduce IO

Various data compression schemes can be applied to reduce the size the

data structures occupies on disk, and thereby reduce the amount of data

that needs to be transfered between disk and main memory. This is

beneficial if the time it takes to read the compressed data into memory and

decompress it is lower than the time it would take to read the uncompressed

data into memory. Even if there is no difference in running times one could

argue for using compression anyway because lowering the size the data

occupies on disk is a benefit in itself. This is one of the techniques used

by the PyTables package [23] to improve performance. The basis for this

optimization is that CPUs have “outperformed” memory access speeds.
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Chapter 8

Neo4j is not a Quick Fix

With the recent developments in graph database technology, mainly driven

by Neo4j [17], the interest for graph databases has increased. This

increased interest can perhaps be seen in light of the new possibilities

opening up for analyzing social networks. Also, the interest for big data

and alternatives to relational databases (often referred to as NoSQL) has

increased recently. Storing biological data poses a serious challenge with its

large data sets, but technologies such as Neo4j can not be ruled out without

proper investigation. The licensing policy for Neo4j [16] permits its use

in Open Source software free of charge, but requires a commercial license

if it is included in a closed source product. Together, this makes Neo4j a

possible candidate for use in HyperBrowser, at least in theory.

In this chapter different aspects of Neo4j will be discussed, but the most

important issues are performance and scalability both in terms of running

times, memory usage and disk usage.

8.1 Graphs in Neo4j

In Neo4j terminology a graph consists of nodes and relationships, where

a relationship is the equivalent of an edge. Both nodes and relationships

can have properties associated with them. Properties are stored in key-

value pairs, and their values can be one of many data types such as

integers, floating point numbers and strings. All meta-data must be

stored as properties, such as the name of the node and the weight of the

edge/relationship. The use of properties makes Neo4j flexible in terms of

what the graphs can represent. It also makes achieving high performance

easier, because the internal representation of nodes and relationships can

be limited to integers rather than various data types.

8.2 Client-Server Communication with Neo4j

Neo4j can be run as a stand-alone program, or embedded as a part of a

program running on the Java Virtual Machine (JVM). Either way Neo4j

can be perceived as a server, and the programs that are using its services
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can be called clients, and in the rest of this chapter they will be referred to

as such.

To interact with the Neo4j server from a Python program there are

currently two alternatives: communicating with a REST API or using

Neo4js Java interface through JPype [13]. There are multiple third-party

Python libraries built on the REST API, and one library [24] (developed by

the creators of Neo4j) that calls Java methods directly through JPype.

Regardless of which interface is being used for communicating with

Neo4j, a decision has to be made between using Neo4j as a “thin” back-

end for storing nodes and edges, or as a “thicker” back-end performing

computations as well as storing the contents of the graph. Determining

which operations should be performed by the database system and which

should be performed by the client is a familiar and ongoing discussion

among software developers. Many relational databases have procedural

languages embedded within them, allowing the development of functions

and complex logic as a part of the database system. Neo4j has a similar

capability through its query languages, and so the question of where to

implement different parts of the logic is relevant when using Neo4j as well.

A discussion of the two most distinct ways of using Neo4j takes place in

section 8.3 and section 8.4.

1 for r e l a t i on sh i p in db . r e l a t i on sh i p s :

2 a_funct ion ( r e l a t i on sh i p [ ’ proper ty_stored_in_re la t ionship ’ ] )

3

4 for node in db . node :

5 a_funct ion ( node [ ’ property_stored_in_node ’ ] )

Listing 8.1: A typical pattern when using Neo4j as a thin server for storing

and retrieving data. In the first part of this example all relationships in a

database are fetched anda_function() is applied to a property stored

on each of the relationships. In the second part the same technique is used

on nodes. The interface is provided by Neo4js Java API through JPype.

8.3 Neo4j for Storage and Retrieval

One way of using a database system is as a simple persistence layer

providing storage for more or less structured data without dealing with

the file system directly. The benefits of using a database system instead

of operating on a file system are many, even if the use of the database is

limited to storage and retrieval. Neo4j can be used in such a way, hereafter

referred to as a thin server (based on the notion of a thin client).

If Neo4j is used as a thin server all computations would be performed

by the client after fetching the requested data from Neo4j. In other

words Neo4j is used as a simple facility for storage and retrieval of

nodes and relationships with their associated properties. For the case

of HyperBrowser the client would be a Python program, and so all the

processing of the data from Neo4j would be performed in Python. There

are especially two performance related issues with using Neo4j as a thin
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server communicating with a Python client:

First, every “entity” fetched fromNeo4j such as nodes, relationships and

properties would have to be encapsulated in Python objects in order to be

accessible for the Python program. For instance, applying a function to

all the edge weights of a graph would require all the edges to be fetched

from Neo4j and represented as Python objects before the function could

be applied. Creating objects is expensive (both in terms of running time

and memory usage) in Python, and based on the typical size of the graphs

involved in chromatin 3D data analyses this could result in a serious

performance issue.

Secondly, depending on the the communication protocol used, over-

head from client-server communication could be significant. If communi-

cation with Neo4j is performed over its REST API this would undoubtedly

suffer from poor performance as a result of the overhead involved in com-

municating over HTTP.

An informal experiment (shown in listing 8.2) performed by fetching all

62500 relationships from a graph through a REST API and computing the

sum of the “weight”-property stored on each relationship showed that the

running time could be estimated to about 2 milliseconds per edge. Under

the optimistic assumption that the running time of this operation will scale

linearly with the number of edges this would still result in a running time

of 5 hours for fetching all edges in a graph storing chromatin 3D data at a

1mb resolution. This obviously flawed experiment is not of much use, but

does give an indication of how inefficient communicating through a REST

API can be.

1 from py2neo import neo4j , cypher

2

3 db = neo4j . GraphDatabaseService ( " http :// l o c a lho s t :7474/db/data / " )

4

5 query = "START n = node ( * ) MATCH n−[ r]−>m return r "

6 re la t i onsh ips , metadata = cypher . execute (db , query )

7

8 sum_of_weights = sum( r e l a t i on sh i p [0 ] [ ’ weight ’ ] for r e l a t i on sh i p in

r e l a t i on sh i p s )

Listing 8.2: Running a query using the py2neo REST interface to return

all relationships for further processing in Python, where the sum of all the

edge weights is computed.

8.4 Neo4j as a Computational Engine

Another way of using Neo4j is to utilize its capabilities as a computational

engine. This is in contrast to the thin back-end approach described previ-

ously, where the database is only used for its storage and retrieval capabili-

ties. To perform computations in Neo4j the computational procedure must

be expressed in one of the supported languages for graph querying, or by

using the provided Javamethods in the Core API and the “Traversal Frame-

work”. Currently the supported graph querying languages are Cypher [29]
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Nodes Edges
Running time

(milliseconds)

Time per edge

(milliseconds)

250 62,500 157 0.00251

500 250,000 672 0.00269

750 562,500 2,040 0.00363

1,000 1,000,000 4,294 0.00429

Table 8.1: The time it took (best of 3) to run the Cypher query in listing 8.3

on graphs of different sizes.

and Gremlin [9].

8.4.1 Cypher

Cypher is one of the “graph query languages” supported by Neo4j. It has

been developed as a part of the Neo4j package, and is a core part of Neo4js

functionality. Cypher bears resemblance with other query languages such

as SQL [34] and SPARQL [33] both in that it is a declarative language

and in its choice of syntax and keywords. Cypher can be used both for

creating, updating and deleting data as well as reading and performing

computations. In the case of chromatin 3D data the most important

requirements are fast read operations and efficient computations. Rather

complex computations can be expressed in Cypher and performed in its

entirety by Neo4j. This requires the computation to be expressed in terms

of the operators and functions provided by Cypher, and it is hard to

determine how far this can be stretched. However, by using a combination

of Cypher queries for fetching data and Python programming for further

processing, any computation should be theoretically possible to perform.

The consequences of Cypher being a declarative language is the source

of both its strengths and weaknesses. Not having to deal with how a query

is performed, but simply definingwhat it should return can makes queries

easier to write and read. However, estimating the performance of a query

can be difficult due to the declarative nature of the language: Neo4j will

do its best to transform the declarative query to an efficient procedure, but

this process is not apparent to the author of the query and is not always

guaranteed to produce the most efficient procedure.

START n=node ( * ) // s e l e c t a l l nodes

MATCH n−[ r]−>m // for each node n , s e l e c t a l l

// outgoing r e l a t i on sh i p s

RETURN sum( r . weight ) //sum the value of the property

// ‘ ‘ weight ’ ’ on each remaining

// r e l a t i on sh i p

Listing 8.3: Calculating the sum of all weights in a graph using Cypher.

From the running times listed in table 8.1 from running the Cypher

query in listing 8.3 it is apparent that the time it takes to run the query

does not relate linearly to the number of edges in the graph.

Another observation (although not included in the table) is that the first
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time a query is performed and the caches are cold, the query takes a long

time to complete, but as soon as they become “warm” the running time

decreases significantly.

These two observations can be related, and the fact that the running

time does not increase linearly in accordance with the number of edges can

be due to insufficient amounts of available memory. If the graph can not

be kept in memory it will increase disk access and thereby slow down the

computation. No definite conclusion can be drawn from these results, but

it can be used as an indication that Neo4j does not scale greatly “out of the

box” and needs configuration. A further discussion on the memory usage

of Neo4j is discussed in section 8.6.

START n=node ( * ) // s e l e c t a l l nodes

MATCH n−[ r]−>m // for each node n ,

// s e l e c t a l l

// outgoing r e l a t i on sh i p s

WHERE r . weight > 0.9 // f i l t e r out a l l

// r e l a t i on sh i p s with

// weight l e s s than 0.9

RETURN avg ( r . weight ) // c a l cu l a t e the average value of

// the property ‘ ‘ weight ’ ’ on each

// remaining r e l a t i on sh i p

Listing 8.4: Additonal example of a Cypher query: getting the average of all

the edge weights above 0.9 in a graph.

8.4.2 Gremlin

Gremlin is a graph traversal language based on the Groovy [11] program-

ming language. Neo4j supports the use of Gremlin through a plugin, and

is capable of running arbitrary Groovy scripts. This means that Gremlin

code can be seamlessly blended with Groovy code and computations can be

performed efficiently without overhead from communication protocols.

For the purpose of HyperBrowser some of the same challenges as for

Cypher also applies to Gremlin: writing computations for chromatin 3D

data will require the use of a third-party language.

The only communication between the client and the server will be a

request from the client containing the Groovy/Gremlin code, followed by

the results of the computation from the server. This way the time spent

communicating between Neo4j and the Python program that initiates the

computation is very limited, and the costly operation of creating objects in

Python for each entity fetched from Neo4j can be avoided entirely. This

means that the performance bottleneck will be in Neo4js computational

engine rather than in the Python code. Whether communication with the

database is performed through the REST API or by calling Java methods

through JPype becomes far less important in this case because the number

ofmessages between the Python program and the database isminimal. This

means that deciding between running Neo4j as an embedded component of

the program or as a standalone server becomes a question of which is more

efficient.
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8.4.3 Summary

By expressing computations in one of the query languages supported by

Neo4j the entire computation can be performed by the Neo4j server.

This reduces the communication between the client and the server to a

minimum and the entire computation can be performed fairly efficiently.

The major drawbacks of expressing computations in a query language

is that it can be challenging for developers unfamiliar with it and requires

snippets of Cypher or Gremlin code to be a part of the HyperBrowser code

base.

Cypher is constructed as a language for describing graph traversals: it

defines starting points (nodes or relationship) and rules for how traversal

from those starting points can be performed. This way of thinking about

computations on chromatin 3D data is quite different from the matrix

operations currently in use. Another drawback is that introducing Neo4j as

a dependency for the HyperBrowser system increases the need for system

administration.

8.5 Graph Serialization and Disk Usage

Neo4j, like most database systems, stores the contents of a database in a

number of files, as can be seen in listing 8.5. In Neo4j most of the files that

make up a database has a revealing name that indicates what it contains.

>> du −a −hm
1 . / ac t i ve_tx_log
1 . / index/ lucene−s to re . db
1 . / index/ lucene . log . a c t i v e
1 . / index
1 . / messages . log
1 . / neostore
1 . / neostore . id
1 . / neostore . nodestore . db
1 . / neostore . nodestore . db . id
40 . / neostore . propertys tore . db
1 . / neostore . propertys tore . db . arrays
1 . / neostore . propertys tore . db . arrays . id
1 . / neostore . propertys tore . db . id
1 . / neostore . propertys tore . db . index
1 . / neostore . propertys tore . db . index . id
1 . / neostore . propertys tore . db . index . keys
1 . / neostore . propertys tore . db . index . keys . id
1 . / neostore . propertys tore . db . s t r i ngs
1 . / neostore . propertys tore . db . s t r i ngs . id
32 . / neostore . r e l a t i onsh i ps to r e . db
1 . / neostore . r e l a t i onsh i ps to r e . db . id
1 . / neostore . r e l a t i onsh i p t ypes to re . db
1 . / neostore . r e l a t i onsh i p t ypes to re . db . id
1 . / neostore . r e l a t i onsh i p t ypes to re . db . names
1 . / neostore . r e l a t i onsh i p t ypes to re . db . names . id
1 . / nioneo_logi ca l . log . a c t i v e
1 . / tm_tx_log . 1
1 . / tm_tx_log.2
71 .

Listing 8.5: The ouput from du showing the size of each file in the database

in megabytes. The database in this example has one thousand nodes and

one million edges.

Table 8.2 shows the disk usage per edge for graphs of different sizes,

and the size of the two most significant files storing relationships and

properties. Drawing from the observed sizes, the total disk usage of a

database can be estimated to be about 74 bytes per edge with one property
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Number of edges
Size of database

per edge

Size of

relationshipstore

per edge

Size of

propertystore

per edge

10,000 109 kB <1 bytes 95 bytes

62,500 77 kB 33 bytes 42 bytes

250,000 75 kB 33 bytes 41 bytes

562,500 75 kB 33 bytes 41 bytes

1,000,000 74 kB 33 bytes 41 bytes

Table 8.2: The measured disk usage per edge for graphs of different sizes

using Neo4j.

stored on each edge, and one property stored on each node. The size of the

properties will most likely vary greatly according to data type and value, but

this is a realistic implementation for storing chromatin 3D data where each

edge has a weight and each node has a name. According to these results

storing chromatin 3D data for the entire humane genome at a resolution of

100kb would require approximately 9 ·108 edges ·74 bytes≈ 62 gigabyte

This can be considered large, as the property stored on each edge only

carries 8 bytes of information in the form of a 64-bit float representing the

edge weight. But this alone might not be large enough to rule out Neo4j

entirely as a storage facility for chromatin 3D data. Other aspects are more

important such as memory usage and running time. Also, this might not

be the most efficient usage of Neo4j and it can not be ruled out that the

serialized graph could be smaller with a different implementation.

Another observation from the same experiment is that the disk usage

in a Neo4j database seems to scale with the number of nodes, edges

and properties. When the size of the graph gets above a threshold of

approximately 60 000 edges the size of the database is determined with

great accuracy by the number of nodes, relationships and properties. This

is a positive sign for the scalability of Neo4j as a storage facility, even though

the absolute size can be seen as quite large.

8.6 The Performance of Neo4J is Constrained

by Memory

Although the way Neo4j stores graphs may be sufficiently compact it does

not escape the fact that main memory is a limited resource and disk access

is relatively slow. To perform an operation with acceptable performance

a big part of the data that is required for the operation (for instance a

graph) must reside in memory. In large part the performance of Neo4j is

constrained by the amount of memory available. This is supported by the

official Neo4j documentation, stating that “Neo4j tries to memory-map as

much of the underlying store files as possible. If the available RAM is not

sufficient to keep all data in RAM, Neo4j will use buffers in some cases,

reallocating the memory-mapped high-performance I/O windows to the
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regions with the most I/O activity dynamically. Thus, ACID speed degrades

gracefully as RAM becomes the limiting factor.” [28].

Neo4j supports some of the techniques mentioned in chapter 7 to

improve performance, such as memory mapping and indexing. Memory

mapping makes operating with limited memory resources possible, at the

cost of speed. Indexing on the other hand can improve the speed of lookup

operations (finding a node or edge given an attribute it possess), but at

the cost of memory. Generally, when discussing indexing, the question

of which properties should be indexed depends on the queries that will be

performed. The size of the resulting index is difficult to estimate, but it will

at least have some impact on the memory usage.

A common approach among modern database systems to tackle the

memory requirements posed by large data sets is to facilitate interconnec-

tion of multiple computer systems into computer clusters. Neo4j supports

clustering of instances, coined asHigh Availability, but is only available in

the Enterprise Edition of Neo4j [15].

8.7 Performing Read Operations Outside of

Transactions can Increase Performance

Neo4j is aimed at storing, modifying and querying graphs while having

some of the properties expected from a modern database system. An

important feature for many database systems, including Neo4j, is being

ACID compliant. ACID is a set of requirements regarding the integrity

of the data being stored in the database. The mechanisms implemented

to enforce ACID compliance are mostly related to the operations that

modifies the database, and are therefore not overly important in the context

of analyzing chromatin 3D data which only involves read operations.

However, there is one ACID related mechanism that can effect read

performance: transactions.

A transaction is an atomic unit of work that can contain many

operations, but will be performed as one operation without interference

from other operations. The concept of a transaction is vital to the

ACID principles, and handling transactions makes up a substantial part

of a database systems workload. Disabling the transaction handling

mechanisms, or performing operations “outside” of a transaction, can

thus increase the overall performance of most database systems, including

Neo4j. However, the biggest increase in performance is related to write

operations, and this is likely a rare operation for chromatin 3D data.

Chromatin 3D data is typically written once and read often, and the

performance increase on read operations from disabling transactions is

limited. Neo4j allows read operations to be performed outside transactions

by default.

The use cases Neo4j andmost other database systems are developed for

differs quite a bit from the use case presented in this thesis. The emphasis

on data integrity, data security and concurrent write operations common

to database systems is irrelevant for chromatin 3D data in HyperBrowser.
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It is likely that enforcing these unnecessary constraints comes at the price

of performance, and therefore configuring the Neo4j server instance to

employ only a minimum of them can potentially improve its performance.

8.8 Architectural Challenges when StoringMul-

tiple graphs

Neo4j works with the concept of databases as a collection of graphs. This

leaves two alternatives for storing chromatin 3D data in Neo4j: storing

all graphs in one database, or storing graphs in multiple databases with

possibly as little as one graph per database.

Each genome is represented as a graph, and often there are multiple

versions of the same genome at different resolutions. If all the genome

graphs are stored in the same database this database will quickly become

very large, and possibly outgrow the current limit of approximately 34

billion relationships (meaning less than 40 genomes at a 100kb resolution).

It is possible to increase the number of relationships that can be stored,

but to increase this limit the size of the data type used for relationship

identifiers must be increased. This would result in an overall increase in

the size of the database both on disk and in memory.

The genome graphs could alternatively be stored in different databases.

This could make it problematic to run queries involving multiple graphs,

spanning multiple databases. If Neo4j is used as a computational engine

(as described in section 8.4) querying multiple databases might not even

be possible.

8.9 Implications for HyperBrowser as a Soft-

ware Project

If Neo4j was to be included as a part of the HyperBrowser project, there

would also be some implications unrelated to performance and strictly

technical aspects.

It is impossible to know what the future might hold, and tomorrows

requirements to the storage facility of chromatin 3D data might be different

than todays requirements. This means that being able to extend or modify

the implementation is crucial. Although Neo4j is open source and can

thus be modified, doing so would possibly require a lot of work. Unlike

open source software projects created in a truly collaborative way, Neo4j

has been created by a commercial vendor by a relatively small team of

developers. This means that the importance of making the source code easy

to understand and thereby contribute to is possibly lower for a project like

Neo4j, and thus making it difficult for third-parties to extend or modify.
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Chapter 9

Conclusions

To add support for analysis of chromatin 3D data to the HyperBrowser

framework, a number of implementations were developed and assessed.

The assessments were based on a practical use case from developing the

computational methods needed to support a hypothesis test for assessing

the spatial co-localization of regions within a genome. Although drawing

conclusions from a single use case can be misleading, several shortcomings

of the implementations were successfully identified. After several iterations

an implementation with satisfying performance was reached.

Throughout the process of improving the implementations several

observations were made and examined further:

The performance of Python programs can be improved with

NumPy.

Python is a high-level interpreted programming language with dynamic

typing. It offers great expressibility, at the cost of performance. In

particular, there is significant performance cost associated with object

creation and function calls. Developing efficient Python programs can thus

become incompatible with developing well structured and modularized

code. And even if the concern for readability is completely ignored, objects

are such an integral part of Python that limiting their usage sufficiently

is almost impossible. Several tools for improving the performance of

Python programs are available, among them NumPy. Parts of the NumPy

library proved to be well suited for managing and processing chromatin 3D

data. Compared to pure Python operations, employingNumPy significantly

improved the performance of the computational methods.

Meta data can increase best case performance while sustaining

flexibility.

The data structures responsible for storing chromatin 3D data in Hyper-

Browser are flexible. Some properties were found to potentially improve

the performance of certain operations. In particular, information about

whether or not nodes and edges are sorted, if the graph contains loops and

if the graph is complete. The cost of determining (or even enforcing) these

properties are one-off costs that occur when a new data set is being con-
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structed. Associating meta data with each installed data set would be a

pragmatic way of improving the best-case performance of some important

operations. This meta data would contain enough information for each op-

eration to decide whether optimizations can be made or not.

Monte Carlo simulations can easily become a bottleneck.

When a large number of Monte Carlo simulations are performed, limiting

the operations that are necessary for each simulation is crucial. This can

be achieved by reusing results and caching data that are common for the

simulations.

The Neo4j graph database is not a solution as-is.

The Neo4j graph database is a promising tool for storing and querying

graph data. It is capable of storing graphs in the most flexible way

and supports complex queries to be expressed with specialized graph

query languages. Several challenges were discovered from experiments

with storing and retrieving chromatin 3D data using Neo4j. To achieve

acceptable performance the graph operations must be expressed in a

graph query language. Although this language is flexible and capable of

performing a number of different operations, expressing computations

involving chromatin 3D data does not seem like a good fit. Even

if computations were expressed in the graph querying language, the

performance of the queries were not convincing and the high memory and

disk usage were unsettling. Neo4j should not be dismissed entirely in the

context of chromatin 3D data, but there is great uncertainty surrounding

both its performance potential and the appropriateness of its interface.

From this master’s thesis project a tangible result has been produced:

analyses of chromatin 3D data can now be developed in HyperBrowser.

But the findings presented in this thesis are relevant beyond this. Several

other computational tools will face the same challenges that motivated this

work. There is already a desire for computational tools to integrate and

analyze chromatin 3D data, and this desire will likely increase with the

growing interest in this type of data. The size of the data sets requires

the implementations to be carefully designed. Storing and representing the

data in an efficient way that encourages high performance is an absolute

requirement, as it lays the foundation for all further use.

9.1 Future Work

The challenges that come with supporting chromatin 3D data analyses are

not solved for good. Although HyperBrowser is capable of performing

analyses on the currently available data sets, higher resolution data sets

may pose new challenges to the current representation of chromatin 3D

data.
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Improve Implementation # 4

A concrete improvement that could be made in the near future is the im-

plementation referred to as implementation # 4 (described in section 3.2.4

on page 22). This implementation is the first step towards parallelism for

chromatin 3D data analyses in HyperBrowser, and could potentially im-

prove the efficiency of certain operations significantly.

Support for Graph Operations

To provide a complete programming interface for chromatin 3D data

the necessary components to support graph specific operations such as

traversal or path finding should be developed. Implementing operations

like these in an efficient manner may require the use of Cython or

other similar tools for integrating high-performing low-level programming

languages (such as C, FORTRAN or GO) with a Python code base.

Using Compression to Increase Performance

An interesting idea is the use of compression to improve running time. This

was briefly mentioned in section 7.6 on page 50. A thorough investigation

of how this technique could benefit the performance of chromatin 3D

data analyses (or HyperBrowser in general for that matter) could reveal

interesting results.

63



64



Bibliography

Journal papers

[5] G. Fudenberg, G. Getz, M. Meyerson, and L. A. Mirny. “High order

chromatin architecture shapes the landscape of chromosomal alter-

ations in cancer.” In: Nature biotechnology 29.12 (2011), pp. 1109–

1113 (cit. on p. 7).

[6] M. J. Fullwood, M. H. Liu, Y. F. Pan, J. Liu, H. Xu, Y. B. Mohamed,

Y. L. Orlov, S. Velkov, A. Ho, P. H.Mei, et al. “An oestrogen-receptor-

bound human chromatin interactome.” In:Nature 462.7269 (2009),

pp. 58–64 (cit. on p. 7).

[8] J. Goecks, A. Nekrutenko, J. Taylor, and T. G. Team. “Galaxy: a

comprehensive approach for supporting accessible, reproducible,

and transparent computational research in the life sciences.” In:

Genome Biology 11.8 (2010), R86 (cit. on p. 14).

[10] I. Gribkovskaia, O. Halskau, and G. Laporte. “The bridge of Konigs-

berg - A historical perspective.” In: Networks 49.3 (2007), pp. 199–

203 (cit. on p. 9).

[14] E. Lieberman-Aiden, N. L. van Berkum, L. Williams, M. Imakaev,

T. Ragoczy, A. Telling, I. Amit, B. R. Lajoie, P. J. Sabo, M. O.

Dorschner, R. Sandstrom, B. Bernstein, M. A. Bender, M. Groudine,

A. Gnirke, J. Stamatoyannopoulos, L. A. Mirny, E. S. Lander, and

J. Dekker. “Comprehensive Mapping of Long-Range Interactions

Reveals Folding Principles of the Human Genome.” In: Science

326.5950 (2009), pp. 289–293 (cit. on p. 7).

[21] J. Paulsen, T. G. Lien, G. K. Sandve, L. Holden, Ø. Borgan, I. K.

Glad, and E. Hovig. “Handling realistic assumptions in hypothesis

testing of 3D co-localization of genomic elements.” In: Nucleic Acids

Research (2013) (cit. on p. 18).

[25] G. Sandve, S. Gundersen, H. Rydbeck, I. Glad, L. Holden,M. Holden,

K. Liestol, T. Clancy, E. Ferkingstad, M. Johansen, V. Nygaard, E.

Tostesen, A. Frigessi, and E. Hovig. “The Genomic HyperBrowser:

inferential genomics at the sequence level.” In: Genome Biology

11.12 (2010), R121 (cit. on p. 14).

[32] S. van der Walt, S. Colbert, and G. Varoquaux. “The NumPy Array:

A Structure for Efficient Numerical Computation.” In: Computing in

Science Engineering 13.2 (Mar. 2011), pp. 22–30 (cit. on p. 16).

65



Other written references

[1] K. A. Berman and J. L. Paul. Algorithms: Sequential, Parallel and

Distributed. Thomson Course Technology, 2005. Chap. 11. ISBN: 0-

534-42057-5 (cit. on p. 11).

[2] R. Bryant, R. Bryant, and D. O’Hallaron. Computer Systems: A

Programmer’s Perspective. Pearson, 2010. ISBN: 0-13-713336-7 (cit.

on pp. 46, 49).

[3] T. H. Cormen, C. E. Leiserson, and C. S. Ronald L. Rivest. Introduc-

tion to Algorithms. third. The MIT Press, 2009. ISBN: 978-0-262-

03384-8 (cit. on p. 11).

[4] R. Diestel. Graph Theory. Springer, 1997. ISBN: 0-387-98210-8 (cit.

on p. 10).

[7] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems:

the complete book. second. Pearson Education International, 2009.

ISBN: 0-13-135428-0 (cit. on p. 46).

Online references

[9] Gremlin: a Graph Traversal Language. Apr. 2013. URL: https : / /

github.com/tinkerpop/gremlin/wiki (cit. on p. 54).

[11] Groovy: a Dynamic Language for the Java Platform. Apr. 2013.

URL: http://groovy.codehaus.org/ (cit. on p. 55).

[12] GTrack - a practical unification of tabular file formats. Apr. 2013.

URL: http://www.gtrack.no (cit. on p. 8).

[13] JPype: Bridging the Worlds of Java and Python. Apr. 2013. URL:

http://jpype.sourceforge.net/ (cit. on p. 52).

[15] Neo4j: High Availability. Apr. 2013. URL: http : / / docs .neo4j .org /

chunked/stable/ha.html (cit. on p. 58).

[16] Neo4j: Pragmatic Licensing Guide. Apr. 2013. URL: http : / / www.

neo4j.org/learn/licensing (cit. on p. 51).

[17] Neo4j: The World’s Leading Graph Database. Apr. 2013. URL: http:

//www.neo4j.org/ (cit. on p. 51).

[18] NumPy Online Reference: Arrays. Apr. 2013. URL: http://docs.scipy.

org/doc/numpy/reference/arrays.html (cit. on p. 33).

[19] NumPy Online Reference: numpy.memmap. Apr. 2013. URL: http:

//docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.

html (cit. on p. 18).

[20] NumPy Online Reference: numpy.ndarray. Apr. 2013. URL: http :

/ /docs.scipy.org /doc/numpy- 1.7 .0 / reference/generated/numpy.

ndarray.html (cit. on p. 36).

[22] PEP20: The Zen of Python. Apr. 2013. URL: http://www.python.org/

dev/peps/pep-0020/ (cit. on p. 36).

66



[23] PyTables: Getting the Most out of Your Data. Apr. 2013. URL: http:

//www.pytables.org/ (cit. on p. 50).

[24] Python bindings for the embedded version of the Neo4j graph

database. Apr. 2013. URL: https : / / pypi . python . org / pypi / neo4j -

embedded (cit. on p. 52).

[26] The Galaxy Project. Apr. 2013. URL: http://galaxyproject.org/ (cit. on

p. 14).

[27] The Genomic HyperBrowser. Apr. 2013. URL: http://hyperbrowser.

uio.no/hb/ (cit. on p. 14).

[28] The Neo4j Manual: Chapter 11.5, Capacity. Apr. 2013. URL: http :

//docs.neo4j.org/chunked/stable/capabilities-capacity.html (cit. on

p. 58).

[29] The Neo4j Manual: Part III, Cypher Query Language. Apr. 2013.

URL: http://docs.neo4j.org/chunked/milestone/cypher-query- lang.

html (cit. on p. 53).

[30] The Python Programming Language. Apr. 2013. URL: http://www.

python.org/ (cit. on p. 4).

[31] The SciPy Library. Apr. 2013. URL: http : / /www.scipy.org/ (cit. on

p. 4).

[33] Wikipedia: SPARQL. Apr. 2013. URL: http://en.wikipedia.org/wiki/

SPARQL (cit. on p. 54).

[34] Wikipedia: SQL. Apr. 2013. URL: http://en.wikipedia.org/wiki/SQL

(cit. on p. 54).

67


