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“To be, or not to be, that is the question” 

  From Shakespeare's play Hamlet, 1602 

 

 

 

                                                   

 

 

 

Precursor B cells must cross several checkpoints during development, being faced with 

choices between survival and death. Despite sustained production, the B cell output from the 

bone marrow decreases considerably with age – presently an enigma as to how and why…. 
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Abbreviations 

 
Aiolos (IKZ3)  IKAROS family zinc finger 3    

ALL   Acute lymphoblastic leukemia 

ANOVA  Analysis of variance 

BCR   B cell receptor 

BM   Bone marrow 

cDNA   Complementary deoxyribonucleic acid 

CLP   Common lymphoid progenitor 

CMP   Common myeloid progenitor 

Ct   Crossing threshold 

DNA   Deoxyribonucleic acid 

DNTT (TdT) Terminal deoxynucleotidyl transferase,         

alias Terminal deoxyribonucleotidyltransferase2 

EBF1   Early B cell factor 1 

ELP   Early lymphoid progenitor 

E2A (TCF3) E2A immunoglobulin enhancer binding factors E12/E47,       

alias Transcription factor 3 

Erag   RAG enhancer 

ELP   Early lymphoid progenitor 

ETP   Early T cell lineage progenitor 

FDR   False Discovery Rate 

FOXP1  Forkhead box P1 

IPA   Ingenuity Pathway Analysis 

HLH protein  Helix-loop-helix protein 

HSC   Hematopoietic stem cell 

H3K4me3  Trimethylation of lysine 4 in histone H3  

ID2   Inhibitor of DNA binding 2, dominant negative helix-loop-helix protein 

Ig   Immunoglobulin 



8 
 

IGF2   Insulin-like growth factor 2 

IGF2BP3  Insulin-like growth factor 2 mRNA binding protein 3 

IPA   Ingenuity Pathway Analysis 

IVT   In vitro transcription 

IRF4/8   Interferon-regulatory factor 4 or 8 

LEF1   Lymphoid-enhancer-binding factor 1 

LT-HSC  Long-term hematopoietic stem cell  

MCH II  Major histocompatibility complex II molecules  

mRNA   Messenger RNA 

miR   mature microRNA 

MPP   Multipotent progenitor 

NHEJ   Non-homologous end joining 

NK   Natural killer cell 

OBF1 (POU2AF1) B cell-specific coactivator OBF1, alias POU class 2 associating factor 1 

PAMP   Pathogenassociated molecular patterns 

PAX5   Paired box protein 5 

RAG1/2   Recombination activating gene 1 or 2 

RSS   Recombination signal sequence 

SOX4   Sex-determining region Y (SRY) box 4 

TCR   T cell receptor 

TLR   Toll-like receptor 

qRT-PCR  Quantitative reverse transcriptase–polymerase chain reaction 

V(D)J    Recombination of variable (V), diversity (D) and joining (J) antigen 
recombination  receptor gene segments 
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2 Introduction 
 

The immune system in humans is characterized by complex recognition and interaction at the 

cellular and molecular levels to protect the body against invasive pathogens. Broadly, the 

immune system can be divided into three levels of protection. The first level of defense is 

provided by the skin and mucous membranes, offering both mechanical and biochemical 

protection. The second level of defense is provided by the innate immune system consisting 

of cells (e.g. neutrophils and macrophages) and their proteins (e.g. cytokines and 

chemokines). The misnomer “unspecific immune system” has proven inappropriate as the 

elaborate network of Toll-like receptors (TLRs) and ligands has been uncovered. TLRs 

appear to be one of the most ancient, conserved components of the immune system and key 

players in early host defense recognizing conserved structural moieties in microorganisms, 

often called pathogen associated molecular patterns (PAMPs). Finally, the third level of 

defense is the adaptive immune system consisting of B and T lymphocytes, yielding highly 

specific humoral and cellular protection against foreign microorganisms. The immunological 

specificity is constituted by diverse, clone specific antigen receptors on the surface of B and 

T lymphocytes (Tonegawa, 1983). The B cell receptor (BCR) is a membrane bound 

immunoglobulin (Ig), which is secreted after activation of the B cell and can bind to soluble 

as well as cell-bound antigens. The T cell receptor (TCR) is not secreted, but binds to an 

antigen presenting cell carrying peptide fragments of foreign protein harbored in major 

histocompatibility complex II molecules (MHC II). The B lymphocytes adjust their 

specificity for the antigen during activation by switching their initial immunoglobulin M 

(IgM) to IgA or IgG antibodies, and by somatic hypermutation (alterations in the variable 

regions of the immunoglobulin genes) to enhance the antibody affinity. Together, this allows 

for adapted antibody defense and immunological memory where the individual is able to 

respond faster and stronger to subsequent exposure to the same antigen (Bevan, 2011).   

Current evidence suggests that changes in human B lymphopoiesis occur early in life (Rossi 

et al., 2003; Luning Prak et al., 2011), and also favors the notion that aging specifically 

targets B and T cell development without affecting non-lymphoid hematopoietic lineages 

(Linton and Dorshkind, 2004; Melamed and Scott, 2012). In peripheral blood, a lymphoid 

predominance is present until about two years of age (Comans-Bitter et al., 1997), and 

thereafter the absolute number of both B and T lymphocytes starts decreasing. The decrease 

is most pronounced between two and five years of age, but continues gradually until 
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adulthood. This early decline in lymphocyte number has today no recognized biological 

significance. Only decades later in elderly people, a restricted humoral and cellular 

lymphocyte repertoire may lead to reduced protection against microorganisms (Linton and 

Dorshkind, 2004) and weaker vaccine responses (Siegrist and Aspinall, 2009). Presently, 

there are no answers as to why and how aging selectively targets the lymphoid lineages in 

humans, but theories based on animal and cell experiments, are emerging to explain “how”. 

These theories need verification in humans, and studies are now focused on identifying the 

mechanisms responsible for changes in lymphocyte development and function during aging. 

This thesis focuses on B cell differentiation in BM from young children and adults to gain 

insight in molecular mechanisms involved in the alterations with age, and describes the 

global age-related transcriptional differences in select groups. 

  

2.1 B cell development 

2.1.1 Early B cell specification and commitment   

          
B cells, like all hematopoietic cells, are produced in a stepwise process from self-renewing 

hematopoietic stem cells (HSCs) in the fetal liver and postnatal BM. The earliest 

differentiated progeny of HSCs are multipotent progenitors (MPPs), which have lost the 

capacity for extensive self-renewal, but retain multilineage differentiation potential 

(Adolfsson et al., 2001), and can give rise to common myeloid progenitors (CMPs) or early 

lymphoid progenitors (ELPs) (Igarashi et al., 2002). ELPs can further differentiate into early 

T cell lineage progenitors (ETPs) (Allman et al., 2003) (Zlotoff and Bhandoola, 2011) or into 

common lymphoid progenitors (CLPs), which are lymphoid restricted and can generate B 

cells, T cells, dendritic cells (DCs) and natural killer (NK) cells, respectively (Matthias and 

Rolink, 2005) (Nutt and Kee, 2007) (Lin et al., 2010). The CLPs are reported to lack all 

myeloid potential in vivo, but still keep the potential when tested in vitro (Kondo et al., 1997) 

(Balciunaite et al., 2005). The exact nature of the early T cell differentiation pathway is still 

controversial, but it seems that the exit from the B cell pathway and release from the BM can 

take place at several differentiation steps (see Fig 1) before T lineage precursors travel from 

the BM via blood to differentiate within the thymic microenvironment  (Benz and Bleul, 

2005). Entry into the B cell differentiation pathway as Pro B cells from CLPs is marked by 

expression of the CD45 isoform B220 in mice (Matthias and Rolink, 2005) and CD10 in man 
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(Hystad et al., 2007a). The myeloid potential is then lost, but the B/T lineage plasticity 

persists until the CD19+ PreBI cell stage (Rumfelt et al., 2006) when full commitment is 

achieved and there is no way back. B cell precursors remain in the BM until they are fully 

differentiated with rearranged BCR genes (Bartholdy and Matthias, 2004) before leaving for 

the spleen as Immature IgM+ B cells.    

 

Figure 1. Adapted with permission from Nature Reviews Immunology 5, 497-508 (June 2005). The 
various developmental stages of precursor B cells, and established and less established (dashed 
arrows) divergence points of precursor T cells from the common pathways. HSC = hematopoietic 
stem cell; MPP = multipotent progenitor; ELP = early lymphoid progenitor; CLP = common 
lymphoid progenitor; ETP = early T cell lineage progenitor. 

 

2.1.2 Transcriptional networks in B cell differentiation 
 

Three transcription factors have been found essential for differentiation of CLPs into ProB 

cells: E2A immunoglobulin enhancer binding factors E12/E47 (E2A) which helps to activate 

transcription of  early B cell factor 1 (EBF1) (Kee and Murre, 1998; Beck et al., 2009) and 

paired box protein 5 (PAX5) (Boag et al., 2007). In the absence of E2A, B cells are blocked 

at the ProB cell stage, and their Ig heavy gene segments are not rearranged (Bain et al., 1994; 

Zhuang et al., 1994). These three factors seem to work in collaboration, and together they 

form a master control switch for engaging B cell differentiation (Santos and Borghesi, 2011).   
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Figure 2. Derived with permission from Nature Reviews Immunology 5, 497-508 (June 2005). 
Transcription factors essential in B cell commitment and differentiation and the negative 
transcriptional regulator ID2 (inhibitor of DNA binding 2). (For details see text).  

 

E2A is a transcription factor with a conserved basic DNA binding domain and an adjacent 

basic helix-loop-helix (HLH) motif, which mediates dimerization (Matthias and Rolink, 

2005). E2A encodes the broadly expressed splice variants E12 and E47, with E47 

homodimers being more predominant in B lineage cells (Murre, 2005). Because these 

proteins bind the E box – a DNA element with the conserved sequence CANNTG (N 

denoting any nucleotide) – they are known as E-box factors or E proteins. As the E2A 

molecule is not B cell specific (Rothenberg, 2010), its B cell specific function  is partly due 

to formation of E2A homodimers, in contrast to other cells which form E2A heterodimers 

with other E-box factors (Murre, 2005). This process is facilitated by the relatively high and 

increasing expression of E2A during differentiation, associated with hypophosphorylation, 

which is assumed to be of functional significance (Matthias and Rolink, 2005). It is also 

recently shown by genome-wide deep sequencing after chromatin immunoprecipitation 

(ChIPSeq) that E2A co-binds with both EBF1 and Foxo1 in enhancer sequences of B cell 

specific genes, (Lin et al., 2010), thus receiving help from at least one B cell specific 

transcription factor to start the cascade of B cell differentiation. More regulators of B cell 

specification are expected to join this network of transcription factors that yield site-specific 

help to the broadly expressed E2A molecule (Rothenberg, 2010). In fact, Lin et al found that 

about 20% of all identified enhancers in ProB cells contain binding sites for E2A (Lin et al., 

2010). 

The inhibitor of DNA binding 2 (ID2) is a physiological regulator of E2A during B 

lymphopoiesis (Ji et al., 2008a). ID2 is like E2A an (HLH) protein, but lacks the basic region 

required for DNA binding (Kee, 2009). Still ID2 is able to heterodimerize with E2A and 

hinder its binding to target sequences and thus differentiation of precursor B cells: 
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Figure 3. Adapted with permission from Nature Reviews Immunology 9, 175-184 (March 2009). 
E2A protein homodimers bind to CANNTG E box sequences in target genes and function as 
transcriptional activators through the recruitment of co-activators (CoA). E2A–ID2 protein 
heterodimers fail to bind DNA and do not activate gene transcription in target genes.  

 

The B-lineage specific transcription factor EBF1 binds as homodimers to conserved DNA 

sequences (CCCNNGGG) (Hagman et al., 1991; Hagman et al., 1993; Matthias and Rolink, 

2005). EBF1 further promotes the expression of PAX5 (Nutt et al., 1997), and together with 

E2A proteins, EBF1 and PAX5 activate many B cell associated genes leading to B cell 

lineage specification and commitment (Sigvardsson et al., 2002). A continuous PAX5 

expression is necessary for maintenance of the B precursor phenotype by repression of genes 

inappropriate for B lineage cells (Schebesta et al., 2002; Matthias and Rolink, 2005). 

The transcription factors SOX4 (sex-determining region Y (SRY) box 4) and LEF1 

(lymphoid-enhancer-binding factor 1) are members of the high-mobility group (HMG)-box 

family which bind to bent, kicked or unwound DNA structures with high affinity (Stros et al., 

2007), and have crucial roles at an early stage of B cell development. Other transcription 

factors important in early B cell development are IRF4 (Interferon-regulatory factor 4) and 

IRF8 (Matthias and Rolink, 2005). The zinc-finger transcription factor Aiolos (IKZF3) is 

expressed by precursor B and T cells, but its expression is maintained mainly by maturing B 

cells (Morgan et al., 1997). The transcription factor OBF1 (OCT (octamer-binding 

transcription factor)-binding factor 1) has mostly been identified in late stage B cell 

populations, but recent research points to a crucial role also in B cell commitment and 

differentiation (Bordon et al., 2008). 
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2.1.3 Generation of antibody diversity 
 

B cells have one task in life, and that is to produce immunoglobulins or antibodies. Each 

antibody is customized to attack one particular antigen (foreign protein or carbohydrate). The 

human genome has approximately 25.000 protein-coding genes 

(http://www.ncbi.nlm.nih.gov/genome/guide/human/), and yet it generates millions of 

different antibodies, which can respond to exposure to millions different antigens. The 

immune system generates this diversity of antibodies by recombination of variable (V), 

diversity (D) and joining (J) antigen receptor gene segments for the heavy chain (IgH), and V 

and J segments for the light chain (Igκ or Igλ) in a process called V(D)J recombination: 

 

Figure 4. Adapted with permission from Nature Reviews Immunology 11, 251-263 (April 2011). 
The variable region of the Ig heavy chain locus consists of segments from each of the V (variable), 
D (diversity) and J (joining) gene regions. By V(D)J recombination one exon (illustrated as a box) 
from each region of the germline locus randomly assembles, and the remaining DNA segments in 
this area are excised from the cells genome. (C = constant region). 

 

This assembly process is initiated by binding of recombination-activating gene 1 (RAG1) and 

RAG2 to recombination signal sequences (RSSs) that flank the V(D)J gene segments (Schatz 

et al., 1989; Akamatsu and Oettinger, 1998; Schatz and Swanson, 2010). RAG1 and RAG2 

can bind independently at these sites, and the formation of the recombination centres is 

tightly regulated during lymphocyte development (Ji et al., 2010). The RAG proteins are 

specific for and are co-expressed exclusively by lymphoid cells. They work as a complex to 

induce cleavage of double stranded DNA by introducing nicks in a two step process at RSSs 

during phase 1 of recombination (Fig 5).  
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Phase 1: 

 

Figure 5. Adapted with permission from Nature Reviews Immunology 11, 251-263 (April 2011). In 
the first phase of DNA cleavage, RAG1 introduces a single strand break next to the recombination 
signal sequence (RSS) liberating a free hydroxyl group, which attacks the other DNA strand 
resulting in a double strand break. The coding sequence is closed by a hairpin loop, unlike the 
other segment which is named a blunt signal end.  

 

In phase 2 (Fig 6), the RAG proteins cooperate with non-homologous end joining (NHEJ) 

DNA repair factors (DNA-PKcs, Ku70, Ku80, Artemis, XRCC4 and DNA Ligase IV) to 

rejoin the double stranded DNA ends. Gene segment ends of the coding joint undergo non-

templated nucleotide addition (light blue rectangle in Fig. 6) by terminal deoxynucleotidyl 

transferase (TdT also called DNTT) (Schatz and Ji, 2011), thus generating a vast antibody 

repertoire.  

Phase 2: 

 

Figure 6. Adapted with permission from Nature Reviews Immunology 11, 251-263 (April 2011). 
During the V(D)J recombination process, two types of DNA products are formed: coding joints 
which constitute the rearranged variable regions of antigen receptor genes, and signal joints 
which form excised extrachromosomal circles with presently unknown purpose. 
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The antibody gene recombination all take place at the DNA level and is established long 

before any contact with antigen in the periphery. Only after antigen encounter, the processes 

of class-switch recombination (isotype switching) and somatic hypermutation (affinity 

maturation) take place (Kinoshita and Honjo, ). Yet a phenomenally effective way of creating 

multiplicity, these chromosomal DNA double strand breaks, which occur during the genesis 

of each new lymphocyte, are among the most dangerous that can be imposed on the genome. 

Hence, elaborate mechanisms have been developed to regulate the generation of these DNA 

breaks and to ensure their efficient repair (Lieber et al., 2006). Unanswered questions have 

been: How often do RAG proteins create nicks and double strand breaks at ectopic sites in the 

genome, and what mechanisms do exist to avoid ectopic DNA damage? Recently, a study 

using full-length RAG1/2 complexes with enzyme activities from human T cell lymphomas 

(which also use the RAGs for rearrangement of their TCR), showed that most of the sequence 

discrimination between physiologic targets (optimal RSSs) and off-target sites by the RAG 

complex, occurs at the nicking step (Shimazaki et al., 2012).   

 

2.1.4 Post-transcriptional modifying mechanism 
 

a) Epigenetic regulation of immunoglobulin gene recombination  
 

B cell development is ultimately determined by a succession of gene expression programs 

and by stage-specific networks of classical transcription factors, which act as drivers in the 

progression to mature Ig producing B cells. The activity of such cell-fate determining 

transcription factors is intimately linked to dedicated chromatin modifiers that alter 

accessibility of lineage-specific gene loci via DNA methylation and/or histone modifications 

while not altering the primary sequence of DNA (Georgopoulos, 2002; Su and Tarakhovsky, 

2005). At the start of the recombination of Ig heavy (H) chain, histone H3 acetylation is 

abundant within a 120 Kb domain that encompasses the DH gene segments, and afterwards 

the hyperacetylated domain spreads into the distal VH gene region concomitant with 

progression of the recombination process (Su and Tarakhovsky, 2005). Conversely, 

methylation of histone H3 on different lysine residues, like H3-K9 is sufficient to establish 

repressed chromatin and is correlated inversely with the efficiency of V(D)J recombination 

(Su and Tarakhovsky, 2005). Access by the RAG protein complex requires removal of this 

repressive methylation mark, a process which is regulated by PAX5 (Johnson et al., 2004). 
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Furthermore, trimethylation of lysine 4 in histone H3 (H3K4me3) is shown to correlate well 

with V(D)J recombination (Ji et al., 2010; Schlissel, 2010). The RAG2 protein contains a 

plant homeodomain (PHD) finger that binds specifically to H3K4me3 (Matthews et al., 

2007), which enhances the catalytic activity of the RAG complex and guides RAG2 to 

regions of active chromatin. The RAG1 protein is responsible for binding to the RSSs and 

also contains the active site for DNA cleavage (Schatz and Ji, 2011). Furthermore, it has been 

found that RAG2 binds to innumerable sites outside the assumed recombination centres 

throughout the genome in a pattern that correlates closely with the distribution of H3K4me3. 

This seems to happen independently of RAG1 binding.  

The functional role of RAGs are crucial to development of a normal adaptive immune system 

and is illustrated with Omenn Syndrome – a rare condition characterized by a severe 

immunodeficiency. This disorder is strongly linked to failure in V(D)J recombination due to a 

mutation of a single critical residue within the RAG2 PHD finger (tryptophan 453) (Gomez et 

al., 2000).  

 

b)  MicroRNAs as modulators of B cell differentiation 
 

MicroRNAs (miRNAs or miRs) constitute a class of short (22 nucleotide) noncoding, 

transcribed RNAs that target and regulate the expression of complementary mRNAs 

(Ambros, 2004; Bartel, 2004) by binding primarily to their 3’UTR (untranslated region) 

(Grimson et al., 2007). The number of identified mature microRNAs in Homo sapiens is 

steadily increasing and counts at present 2042 (http://www.mirbase.org/cgi-

bin/browse.pl?org=hsa). MicroRNA transcripts are synthesized by RNA polymerase II (Pol 

II) to primary miRNAs (pri-mRNAs) sequences. The primary transcripts are cleaved by the 

enzyme Drosha into ~70-nucleotide hairpin structures called precursor miRNAs (pre-

mRNAs). Mature miRNAs and the complementary miRNA* are in turn excised from pre-

mRNA transcripts by the enzyme Dicer (Chen and Rajewsky, 2007). Previously, miRNA*s 

were supposed to be just decaying strands (Chen and Rajewsky, 2007), however, recent 

findings have demonstrated that miR*s may have important biological roles (Meister and 

Schmidt, 2010).  
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Figure 7. Adapted with permission from Nat Rev Genet. 2007 Feb;8(2):93-103. Generation of 
mature miRNA and miRNA* from common precursors as explained in the text above. 

 

An effector complex of miRNA and enzymes, RNA-induced silencing complex (RISC) can 

cleave complementary mRNA (mostly plants), or block the mRNA from being translated 

(mostly animals) (Chen and Rajewsky, 2007; Zhang and Su, 2009). It has recently been 

revealed that microRNAs might also up-regulate translation of target transcripts involved 

e.g. in cell cycle arrest by binding to the 3´UTR (Vasudevan et al., 2007), or even the 5´UTR 

of mRNA molecules (Orom et al., 2008). 

MicroRNAs have been shown to exert post-transcriptional regulation of hematopoietic 

stem/progenitor cells (Chen et al., 2004a; Shen et al., 2008; Parra, 2009; Rao et al., 2010a; 

Arnold et al., 2011) with miR-181 promoting B cell differentiation (Chen et al., 2004a). 

Overexpression of miR-34a, on the other hand, leads to a block at the ProB to PreB cell 

transition and reduction in mature B cells (Rao et al., 2010a). MiR-34a overexpression was 

shown to repress Forkhead Box Transcription Factor Foxp1, which otherwise binds to Erag 

(RAG enhancer) elements within the RAG gene loci and increase RAG expression and V(D)J 

recombination (Hsu et al., 2003; Hu et al., 2006; Savarese and Grosschedl, 2006). It is also 

shown that miR-150 blocks early B cell development between the ProB and PreB stages 

(Zhou et al., 2007) by controlling the expression of c-myb (Xiao et al., 2007). And finally, 
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there is strong evidence that the mir-17-92 cluster (Mendell, 2008) is essential for B cell 

development, as deficiency leads to reduced precursor B cell generation (Ventura et al., 

2008), while over-expression is associated with lymphoproliferative disease and 

autoimmunity (Xiao et al., 2008). 

 

2.2 Age-dependent changes related to B lymphopoiesis   

2.2.1 Comparative changes in the B cell pool 
 

In small children, most bone contain hematopoietic (red) BM, but with age red marrow is 

replaced by yellow marrow (fat) beginning in the distal bones and progressing proximally 

(Blebea et al., 2007; Fan et al., 2007). The hematopoietic red marrow decreases with 

advancing age from about 60% before 10 years of age to around 30% by the age of 80 years, 

with changes in the extremities accounting for the bulk part (Fan et al., 2007). In early life, 

the hematopoietic BM generates large numbers of precursor B cells. Peripheral blood 

contains naive B cells of diverse specificities and a small number of memory B cell clones. 

With age, the production of naive B cells declines and memory B cells and plasma cells of 

limited specificities accumulate (Siegrist and Aspinall, 2009).  

No systematic comparison of the cellular composition of human healthy BM from children 

and adults has been performed; our present knowledge is essentially based on studies in mice 

(Stephan et al., 1998; Kirman et al., 1998; Miller and Allman, 2003).  

 

2.2.2 RAG1 and RAG2 expression  
 

The question has been raised whether RAG expression or activity decline with age, and how 

this might influence precursor B cell production. An early paper comparing isolated 

CD34+CD19+ precursor B cells from fetal and adult human BM using RT-PCR, agarose gel 

electrophoresis and blotting, showed persistent transcription of RAG1, RAG2 and DNTT 

with age (Nunez et al., 1996). More recent studies with mice models show contrasting results, 

however. Using in vivo labeling, increased attrition during passage from the ProB to PreB 

cell pool was found (Labrie, III et al., 2004). Further, the percentage of ProB cells expressing 

RAG2 was reduced in aged mice and correlated with both loss of V(D)J recombinase activity 
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in ProB cells and reduced numbers of PreB cells. Reciprocal BM chimeras revealed that the 

aged microenvironment seemed to determine RAG2 expression and recombinase activity in 

ProB cells (Labrie, III et al., 2005). Taken together, these observations suggest that at least in 

mice, extrinsic BM factors declining with age seems to be involved in less efficient V(D)J 

recombination in ProB cells and diminished progression to the PreB cell stage.  

 

2.2.3 E2A expression  
 

E2A initiates a key transcriptional cascade involving EBF1 and PAX5 that leads to the 

expression of lineage-specific genes required for B cell development and survival (Matthias 

and Rolink, 2005). There is also evidence that the activity of E2A is required for expression 

of both RAG and V(D)J recombinase activity in multipotent hematopoietic progenitors and 

precursor B cells (Borghesi et al., 2005). The RAG enhancer element Erag, upstream of 

RAG2, is shown to have six binding sites for E2A, and in vivo binding of E2A to Erag in 

murine ProB cells is shown to regulate RAG expression (Hsu et al., 2003; Kee, 2009). Aged 

murine precursor B cells showed reduced E2A protein and DNA binding capacity both in 

vitro and in vivo, possibly due to enhanced proteasome-mediated turnover (Van der Put et al., 

2004; Riley et al., 2005). E2A mRNA levels and mRNA stability, however, seemed to be 

unaltered with age (Van der Put et al., 2004).   

 

2.2.4  ID2 expression  
 

The level of functional E2A is controlled by the ID family of transcriptional repressors (Kee, 

2009), which by interaction with E2A molecules prevent their association with DNA target 

sequences. Ji et al. (Ji et al., 2008b) demonstrated that ID2 knock-out mice showed enhanced 

B cell development, while lethally irradiated mice reconstituted with donor BM 

overexpressing ID2, showed blocked B-cell differentiation compared to control mice. Thus, 

the authors demonstrated that ID2 is an intrinsic negative regulator of B-cell development, 

possibly via regulation of E2A.   

Further efforts have been made to analyze whether increased ID2 expression is responsible 

for the decreased E2A protein levels and DNA binding capacity seen with age. Examining in 
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vitro expanded ProB/early PreB cells from young and aged mice, no changes were found in 

ID2 protein expression with age (Frasca et al., 2003b). In fact, ID2 expression was not 

measurable in any of the groups.   

 

2.2.5 Microenvironmental changes 
 

A supportive stem cell microenvironment is crucial for normal hematopoiesis in general, and 

there has been interest in examining possible age-related changes. Mayack et al. (Mayack et 

al., 2010) claimed that systemic signals regulated ageing of BM stem cell niches, and that 

age-dependent defects could be reversed by exposure to a young blood circulation.  However, 

the Mayack paper was retracted (2010), and at least the relevance of their conclusions is 

questionable 

Maijenenburg et al. demonstrated that the distribution of defined mesenchymal stem cell 

(MSC) subsets significantly correlated with donor age, and changed during development and 

aging (Maijenburg et al., 2012).  

Labrie et al. analyzed reciprocal BM chimeras from young and old mice by in vivo labeling, 

and found higher precursor B cell production in irradiated young recipients (young 

microenvironment) receiving aged BM cells, than vice versa (Labrie, III et al., 2004). 

Actually, when transferred to young recipients, both aged and young donor marrow produced 

newly formed B cell subpopulations of identical magnitude, turnover, and renewal rates. This 

was in contrast to the lower precursor B cell production seen in aged recipients reconstituted 

with young BM cells, pointing to a pivotal role for microenvironmental factors, however 

unknown, in murine B cell generation. 

   

2.2.6 Changes at the stem cell level 
 

Aging also seems to change the functional properties of the HSC pool (Woolthuis et al., 

2011) either by gradual alterations in all HSCs, or in the clonal composition of the pool. 

Rossi et al. showed that highly purified LT (long-term)-HSCs from aged mice systematically 

down-regulated lymphoid specific and up-regulated myeloid specific transcripts compared to 

young mice (Rossi et al., 2005). Cho et al. demonstrated that aging caused a marked shift in 
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the representation of the various HSC subsets with loss of lymphoid-biased HSCs and 

accumulation of long-lived myeloid-biased HSCs (Cho et al., 2008). A follow-up paper by 

Rossi´s group also revealed that myeloid-biased HSCs progressively increased and dominated 

the stem cell pool with age (Beerman et al., 2010). A recent publication on human BM HSCs 

(Pang et al., 2011) confirmed this finding. Taken together, it seems that BM aging may be 

initiated already upstream of the B-lineage commitment point.      

 

2.3 Human versus murine B cell generation 
 

The vast majority of studies characterizing B lymphocyte development and function have 

been performed on mice. The human genome has 22 numbered chromosomes in addition to 

the sex chromosomes, while the mouse genome has 19 plus two sex chromosomes. It has 

been shown that approximately 34% of the mouse genome maps to identical sequences in the 

human genome (http://www.cbse.ucsc.edu/research/comp_genomics/human_chimp_mouse); 

still, there seems to be on average 85% similarity between mouse and human genes with a lot 

of variation from gene to gene. A few essential differences should be kept in mind when 

extrapolating knowledge from murine to human B lymphopoiesis.   

 

2.3.1 IL-7 responsiveness 
 

Mouse and man differ for example in IL-7 dependency for normal B cell development. While 

the cytokine IL-7 is essential for lymphoid development in mice (Peschon et al., 1994; 

Nagasawa, 2006), human B lymphopoiesis has been suggested to be mostly or even entirely 

IL-7–independent, and no definite “counterpart” has been identified in man (LeBien, 2000). 

One major function of IL-7 in mice is to maintain EBF1 expression level above a certain 

threshold to secure transit from CLPs to ProB cells (Kikuchi et al., 2008) (Tsapogas et al., 

2011).   
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2.3.2 Peripheral B cell pool   
 

In mice, B1 cells expressing CD5 have long been considered the source of spontaneously 

secreted “natural” IgM, but their precise origin is unclear (Baumgarth, 2011). There has been 

much controversy regarding whether B1 cells exist at all in Homo sapiens, and if so, how 

human B1 cells might be characterized. A recent report, however, identified 

CD20+CD27+CD43+ memory B cells in umbilical cord and adult peripheral blood as a 

potential human B1 cell equivalent (Griffin et al., 2011). In contrast to conventional B2 cells, 

murine B1 cells are believed to be derived from CD19+B220- progenitors, and homing to 

peritoneal and pleural cavities were they form a pool of long-lived, self-renewing B cells 

(Baumgarth, 2011).   
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3 Aims  
 

Major questions regarding regulation of human precursor B cell homeostasis and how this 

process is perturbed with age are still unanswered. Two main issues of this study were to 

evaluate the precursor B cell compartment for possible age-related shifts, and to describe the 

molecular changes occurring at the cellular level by differentiation-stage dependent analysis 

and pair wise comparisons between children and adults.     

This was achieved by studying BM from healthy young children and adults according to the 

following strategy:  

 

 The first major aim was to study global transcriptional changes in human unsorted 

and minimally handled BM starting at one month of age continuing until adulthood. 

Furthermore, assess variations in relative size of the precursor B cell compartment. 

Then, we wanted to provide a complete age-related BM transcriptome portrait, and 

relate the results to changes in the precursor B cell pool. 

 

 

 The second major aim was to characterize and compare the global transcriptome 

profiles (mRNA and microRNA) of five precursor B cell subsets from healthy 

children and adults, respectively. 

 

 The third major aim was to further explore the gene expression data from the sorted 

precursor B cell subsets for significant age-related differences possibly involved in 

the reduced BM output of B cells with age, and link the results to functional features. 
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4 Methods 

4.1 BM samples 
 

All BM samples were obtained solely from hematologically healthy individuals after written 

informed consent. The study was approved by the Regional Medical Research Ethics 

Committee and performed according to Norwegian Health Regulations. 

For Paper I we obtained BM samples from 63 healthy individuals age 1 month to 41 years, 

and analyzed 37 of those with multiparameter flow cytometry (32 children, 5 adults) and 25 

with gene expression profiling (20 children, 5 adults). The children were eligible for minor 

surgery, and the adults were voluntary health care workers. BM used for gene expression 

analysis was immediately transferred to PAXgene® tubes (PreAnalytiX GmbH, Switzerland); 

for mRNA stabilization. Total RNA was isolated using the Trizol® Reagent (Invitrogen, 

Carlsbad, CA, USA), and RNeasy® (Qiagen, Hilden,Germany). For multiparameter flow 

cytometric immunophenotyping and the panel of monoclonal antibodies/fluorochromes used, 

please refer to Methods, Paper I.  

For Paper II and III we obtained BM samples from 4 healthy children age 18 ± 2 month 

(mean ± range) and 4 healthy adults age 50 ± 5 years (mean ± range). The children were 

eligible for minor surgery, the adults for elective orthopedic surgery. The BM samples were 

handled as outlined below. 

 

4.2 Isolation of CD10 positive cells   
 

The BM samples were subjected to Ficoll density gradient centrifugation (Ficoll-Paque™ 

PLUS). CD10+ precursor B cells were positively selected using streptavidin coated 

Dynabeads® FlowComp™ Flexi (Invitrogen Dynal AS, Oslo, Norway) and CD10 antibody 

(Cat. no. 34199-100, clone SN5c, Abcam Inc. Cambridge, MA, USA) labeled with DSB-X™ 

Biotin (Molecular Probes Europe BV, Netherlands). The amount of CD10 antibody used per 

100 x 106 MNC was 26 μg for the children and 15 μg for the adults. 
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4.3 Flow cytometry and sorting of precursor B cells 
 

Five precursor B cell subsets of increasing maturation were sorted on a BD FACSAria™ cell 

sorter and events analyzed with the BD FACSDiva™ software, version 5.0.2 (BD, San Jose, 

CA) after enrichment for CD10+ cells. The antibodies used were: CD19 APC-AF750 (clone 

HIB19), CD22 APC (clone IS7), CD10 PECy (clone HI10a), CD34-PerCP (clone 8G12), 

CD20 PE (clone 2H7), CD123 PE (clone 6H6) and IgM FITC (clone G20-127), (all 

eBioscience, Norway) (for details see Paper II p.5 “Immunolabelling, flow cytometry and 

sorting of precursor B cells”). Sorted cells were immediately lysed with QIAzol® Lysis 

Reagent (QIAGEN), and stored at –800C for further mRNA and microRNA isolation.  

 

4.4 RNA isolation 
 

Total RNA was extracted and purified from each precursor B cell subset using the miRNeasy 

Mini Kit® (Qiagen, Hilden, Germany) and 2ml Phase Lock Gel™ (5 PRIME GmbH, 

Hamburg, Germany) according to the manufacturer´s recommendation. Because of scarcity 

of material, each total RNA sample was further separated into high molecular weight 

(HMW) RNA (= mRNA) and low molecular weight (LMW) RNA (= microRNA) using 

Microcon® Centrifugal Filter columns with Ultracel YM-100 membranes (Millipore, 

Bedford, Massachusetts, USA). RNA was quantified by NanoDrop® ND-1000 (Paper I) and 

NanoDrop® ND-3300 (Paper II and II) Fluorospectrometers (Saveen Werner, Malmö, 

Sweden) using the RiboGreen® method (Molecular Probes® Invitrogen detection 

technologies, Eugene, OR, USA), and quality was assessed by Agilent 2100 Bioanalyzer® 

using either the Agilent RNA 6000 Nano Kit or Agilent RNA 6000 Pico Kit (Agilent 

Technologies, Palo Alto, CA, USA) depending on sample concentration. The samples 

achieved mean RNA integrity number (RIN) 8.4 (SD ± 0.89) (n = 39) indicating high RNA 

purity and integrity.   
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4.5 Microarray analysis of mRNA and data processing 
 

Microarray experiments were performed at the Oslo University Hospital´s core facility at the 

Department of Medical Biosciences. Two generations of Affymetrix microarrays 

(Affymetrix, Santa Clara, CA, USA) were used in this thesis: the GeneChip® Human 

Genome U133 Plus 2.0 Array covering the 3' regions of the transcripts (Paper I) and the 

GeneChip® Human Exon 1.0 ST microarrays covering the entire length of the transcripts 

(Paper II and III). Microarray signal intensities were detected by the Affymetrix GeneChip® 

Scanner 3000 and processed with the GCOS (Affymetrix GeneChip® Operating System v1.0) 

software (Paper I), and the Affymetrix GeneChip® Scanner 3000 7G and AGCC (Affymetrix 

Gene Chip Command Console) software (Paper II and II), respectively. CEL files were 

imported into the Partek® Genomics Suite™ software (Partek, Inc. MO, USA). The Robust 

Multichip Analysis (RMA) algorithm was applied for background correction, normalization 

(log2 transformation) and generation of signal values. The GeneChip® Human Genome U133 

Plus 2.0 arrays were analyzed with the Bioconductor project and the R program free software 

(http://www.bioconductor.org/) for correlation analysis at the DNA Array Core Facility, The 

Scripps Research Institute, La Jolla, California, USA. All other microarray analyses have 

been performed in-house.  

The GeneChip® Human Exon 1.0 arrays were analyzed in core mode (confidence level), and 

probe sets with maximal signal values of less than 22.6 across all arrays were removed to 

filter for low and non-expressed genes, reducing the number of transcripts to 15.830. In Paper 

II, profiles were compared using a one-way ANOVA model for differentiation stage 

comparisons and a two-way ANOVA model for age group comparisons. Gene lists were 

generated with the criteria of a 0.1% False Discovery Rate (FDR) (p-value ≤ 1.13 x 10-4) for 

stage comparisons and a 1% FDR (p ≤ 1.13 x 10-5) for age group comparisons. For Paper III, 

results were expressed as fold change, and gene lists were generated with the criteria of p-

value < 0.05 and fold change mainly > |2|. For selected transcripts involved in B cell 

commitment and differentiation, fold change lower than |2| was also shown and discussed. 
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4.6 MicroRNA analysis  
 

MicroRNA quantification was conducted using the TaqMan® Array Human MicroRNA Card 

Set v2.0 (Applied Biosystems), enabling accurate quantitation of 667 human microRNAs. 

Included on each array are 3 endogenous controls to aid in data normalization and one assay 

not related to human as a negative control. The arrays were run on the ViiA™ 7 Real-time 

PCR System (Applied Biosystems). The relative microRNA expression was calculated by the 

Comparative Ct method (fold change = 2-ΔΔCt) (Livak and Schmittgen, 2001), using U6 

snRNA (mammu6) as endogenous control. MicroRNAs with CT values of more than 10 

across all arrays were removed to filter for low expressed miRs. For expression comparisons 

of different subsets, profiles were compared using a one-way ANOVA model and microRNA 

lists generated using10 % FDR (p ≤ 0,004) as cut-off.  

 

4.7 Annotation tools 
 

Ingenuity Pathway Analysis 

The Ingenuity Pathway Analysis (IPA) software (www.ingenuity.com) was used for 

functional annotation of the differentially expressed genes and microRNAs. The software 

recognizes the Affymetrix target IDs and miRBase names, and the lists of differentially 

expressed genes and miRs could be loaded directly into the software. The microRNA Target 

Filter function in IPA is able to connect associated mRNA and microRNA lists, thus 

providing insight into the biological effects of microRNAs, using experimentally validated 

interactions from TarBase and miRecords, as well as predicted microRNA-mRNA 

interactions from TargetScan. Additionally, IPA includes a large number of microRNA-

related findings from peer-reviewed literature. The software uses the Fisher´s exact test to 

identify gene ontology (GO) terms significantly over-represented in the data. 
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4.8 Quantative PCR for key differentially expressed genes 
 

TaqMan® Gene Expression Assays (384-well plates) (Applied Biosystems) were used for 

quantitative RT-PCR for key differentially expressed genes. The arrays were run on the 

ViiA™ 7 Real-time PCR System (Applied Biosystems). Relative microRNA expression was 

calculated by the Comparative Ct method (fold change = 2-ΔΔCt) (Livak and Schmittgen, 

2001), using beta 2 microglobulin (B2M) as endogenous control.   
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5 Brief summary of included papers 
 

Paper I: “Striking decrease in the total precursor B cell compartment 
during early childhood as evidenced by flow cytometry and gene expression 
changes” 

This study aimed to analyze how global gene expression changed with age in unsorted, hence 

minimally handled BM in order to get an instant true picture of BM transcription. We used 

the mRNA stabilizing PAXgene® tubes for BM sampling to prevent in vitro mRNA 

alterations, and the GeneChip® Human Genome U133 Plus 2.0 Arrays for gene expression 

analysis. To monitor changes in gene expression profiles related to the precursor B cell 

compartment, we chose RAG1 as a marker, as the RAG genes are only expressed by 

precursor B cells in the BM (Oettinger et al., 1990). Next we looked for transcripts correlated 

to the same age-related profile as RAG1 to find known and potentially novel precursor B 

cell-linked transcripts. For comparison and elucidation of the gene expression data, we 

analyzed an age-matched cohort with immunophenotyping.      

First, we found that the decline in the precursor B-cell compartment is not only initiated in 

early childhood, but primarily takes place during the first two years of life. For both cohorts 

this early decline represented approximately 80% of the total reduction observed during 4 

decades. Both methods for monitoring fluctuations in the precursor B cell pool revealed a 

sharp temporal increase during the first months of life; at 6 months in the flow cytometry 

cohort and at 20 months measured by RAG1 in the gene expression cohort.           

Further, we found no significant age-related shifts in the composition of the total precursor B 

cell compartment by assessing linear regression in the 5 precursor B cell subsets (ProB, 

PreBI, PreBII large, PreBII small, or Immature B cells).          

By applying Tukey´s biweight correlation analysis, we identified 54 annotated genes that 

significantly correlated with the age-characteristic RAG1 profile (r ≥ 0.9 and p value < 1 × 

10−8). They comprised genes restricted to or preferentially expressed in B-lineage cells (n = 

15), genes with known B-lineage association (n = 16), and with a supposed broader tissue 

expression (n = 23).                   

Finally, we provide a platform for information regarding transcriptional changes in healthy 

human BM from infancy to young adult age. The complete age-related BM gene expression 

material is available online at Gene Expression Omnibus (GEO), GEO Series accession 

number GSE11504, (http://www.ncbi.nlm.nih.gov/geo/). 
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Paper II: “Transcriptional profiling of mRNAs and microRNAs in human 
bone marrow precursor B cells identifies subset- and age-specific 
variations”   

We studied the transcriptome of precursor B cell subsets in individual BM samples from 

healthy young children and adults. Five precursor B cell subsets (ProB, PreBI, PreBII large, 

PreBII small and Immature B) from single donors were flow sorted. Extracted mRNA from 

each subset was analyzed with GeneChip® Human Exon 1.0 ST Arrays (Affymetrix®), and 

microRNA  measured by use of TaqMan® Array MicroRNA Cards (Life Technologies ) for 

description of  global age- and differentiation-related  transcriptional changes.  

 

A total of 1796 mRNAs (11 %) (FDR 0.1%, p  1.13 x 10-4) and 17 microRNAs (2.5 %) 

(FDR 10%, p ≤ 3.68 x 10-3) were at least once differentially expressed comparing each subset 

to all the others. For mRNA expression, we found a distinct separation between the various 

differentiation stages, and a remarkably similar clustering between children and adults,  

suggesting a stronger variance between subsets than between age groups. In contrast to the 

mRNA profiles, the corresponding microRNAs were much more diversely scattered 

regarding both subset- and age-comparisons. 

Functional pathway analysis (IPA, Ingenuity® Systems) of differentially regulated mRNAs 

and microRNAs combined, showed overrepresentation of molecular functions like Cellular 

growth/proliferation, Cell cycle, Cellular development and Post-transcriptional modification. 

Further examination of each maturation step for functional interactions between differentially 

and inversely expressed mRNAs and microRNAs, revealed a particularly interesting network 

completely described by the present data and confined to adult PreBII large cells. This 

extensive network was related to hematopoietic development and function, and connected up-

regulation of the differentiation inhibitor ID2 to down-regulation of miR-125b-5p, miR-181a-

5p, miR-196a-5p, miR-24-3p, and miR-320d; several associated with hematopoiesis, 

regulation of proliferation and cell cycle. Several members of the growth promoting miR-17-

92 cluster showed a trend of inverse transcriptional activity in children and adults with a 

significantly and uniformly higher expression in pediatric PreBII small cells. The present 

study describes a hitherto unrecognized organization of mRNAs in five precursor B cell 

stages, and the accompanying microRNA changes identifying interactive networks of 

functional significance. 
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Paper III: “Increased ID2 levels in adult precursor B cells as compared to 

children is associated with decreased output from bone marrow with age” 
 

The aim of this paper was to scrutinize potential age-related differences in gene expression in 

the sorted precursor B cell subsets, seeking to increase our understanding how the B cell pool 

is down-regulated with age. Our hypothesis was that progenitor B cells might “switch” their 

transcriptional machinery towards diminished rate of growth and/or differentiation with age. 

This might be mirrored in altered mRNA expression in some or all precursor B cell subsets 

from adults compared to children.  

Notably, the composition of the precursor B cell compartment did not change with age. 

Marked differential expression was registered between all developmental stages, and with 2 

to 5 times more transcripts regulated in each transition in adults as compared to children. An 

exception was the PreBII small to Immature B traverse which showed the reverse.  

Of particular interest was the highly up-regulated expression of the differentiation inhibitor 

ID2 in PreBII large cells in adults, but not in children who showed low expression in all 

subsets. With ID2, a network of transcripts related to cell cycle checkpoint control was up-

regulated in adults like the cyclin-dependent kinases CDK1 and CDK2 and their cyclin 

partners CCNA1, CCNB1, CCNB2, CCNE1, and CCNE2. The ID2 protein binding partners, 

E12 and E47 (E2A splice variants), did not change their mRNA expression with age and 

showed stable expression during differentiation. 

Among transcripts involved in V(D)J rearrangement, RAG1 was 50% higher expressed (p= 

0.032) in ProB cells in children, while transcripts encoding non-homologous end joining 

factors: DNA-PKcs, Ku80 and XRCC4 were 50-70% higher expressed (p = 6.0 x 10-3 – 

0.031) in PreBI cells in children. The DNA polymerase TdT, which belongs to the type-X 

family adding N-nucleotides to the V,D, and J exons during antibody gene recombination, 

was 3-fold (p = 0.016) higher expressed in adult Immature B cells, along with the 

proliferation marker Ki67 (fold change 2.6-fold, p = 3.4 x 10-4).  

Altogether, these transcriptional changes might contribute to a lower precursor B cell output 

from adult BM, possibly via moderately reduced V(D)J recombination activity and inhibition 

of differentiation in adults. 

 



34 
 

6 Discussion  
6.1 Methodological considerations 

6.1.1 BM sampling procedure  
 

BM is a highly vascularized organ with a dense network of medullary vascular sinuses 

(Nagasawa, 2006), which in contrast to capillaries have fenestrated endothelium that greatly 

increases their permeability. Hematopoiesis occurs in the extravascular spaces between the 

sinuses (Fig 10). Hence, a BM aspirate will necessarily contain varying degrees of peripheral 

blood both from both overlying soft tissue and sinuses/central vessels. Only by ex vivo BM 

extraction from removed bone, there is a fair chance to avoid at least the bulk of the blood 

contamination. All our samples, but one, were obtained transcutaneously, with the exception 

of an adult having her BM obtained from exposed os ileum by the orthopedic surgeon. Even 

though this patient had on average a 3.6 times higher (range 2.6 – 4.6) MNC fraction than the 

other adults, the number of flow sorted precursor B cells was not higher (Supplementary table 

I, Paper II). Hence, because of the enrichment and sorting procedure we applied, 

contamination of blood was probably not such a confounder in our study. 

 

 

Figure 10. Adapted with permission from Nature Reviews Immunology, 6, 107-116 (February 
2006). Normal morphological structure of cortical bone and BM with afferent (medullary artery) 
and efferent (central sinus) blood vessels with medullary vascular sinuses traversing densely 
through the medullary cavity. Hematopoiesis takes place in the extravascular space between the 
sinuses.   
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6.1.2 Sex differences in the two age groups  
 

Our two age groups had an imbalance concerning gender, as the adult group consisted of 2 

men and 2 women, whereas the child group included only boys. This was a result of our 

consecutive recruitment of otherwise healthy children being operated for minor interventions 

like phimosis (tight foreskin) or undescended testicles. Very few girls were eligible for 

operation for corresponding small interventions. However, we have no reason to believe that 

gender influences precursor B cell number or global gene expression. Nevertheless , sex-

dependent gene expression probably occurs to some extent, as has been described for the 

potassium channel encoding genes KCNQ1 and HERG in patients with long QT syndrome 

(Moric-Janiszewska et al., 2011). In our material, eight Y-chromosome linked transcripts 

were found among genes differentially expressed between children and adults, and they were 

not included in further analysis (EIF1AY, DDX3Y, RPS4Y1, USP9Y, CYorf15B, UTY, 

RPS4Y2, and ZFY).  

 

6.1.3 Choice of CD10 for enrichment of precursor B cells    
 

CD10 (MME) is a cell membrane metallo-endopeptidase expressed by precursor B cells in 

the BM, and characterized by a stepwise loss of expression during differentiation (van 

Lochem et al., 2004; Hystad et al., 2007b). In peripheral blood, mature B cells do not express 

CD10. A common approach for enrichment of very early precursor B cells like CLPs and 

ProB cells has been by CD34+ immunomagnetic beads (van Zelm et al., 2005; Hystad et al., 

2007a) as their CD10 expression is considered weaker than in more mature subsets (Hystad et 

al., 2007a). More mature precursor B cells subsets (PreBI, PreBII large/small and Immature 

B) have been successfully isolated using either CD19+ (van Zelm et al., 2005) or CD10+ 

(Hystad et al., 2007a) immunomagnetic beads. 

We opted to explore CD10 as a uniform precursor B cell selection marker for all subsets to 

avoid unnecessary loss of limited material, and to minimize handling time of samples. In fact, 

in our material CD10 was highly expressed in all isolated subsets as shown in the table below 

(Table I), thus justifying using CD10 as an enrichment marker also for ProB cells. 
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 ProB PreBI PreBII large PreBII small Immature B 

CD10 children 621 684 471 604 210 

CD10 adults 474 520 392 501 259 

 

Table I. CD10 mRNA expression in isolated precursor B cell subsets using equal amounts of input 

total RNA from each subset 

 

6.1.4 Flow cytometry and cell sorting  
 

Flow cytometry-based cell sorting, as immunophenotyping, is dependent on several variables 

involving choice of cell-surface markers and antibody clones/fluorochromes used in the 

antibody cocktails, sample handling, instrument setup and data analysis (Maecker et al., 

2012). Our choice of antibody (CD = cluster of differentiation) markers was based on 

literature search and discussions with experienced colleagues. It is important to notice that the 

nomenclature of precursor B cell markers is not completely uniform. Some would name a 

CD34+CD10+CD19- cell an early B cell and CD34+CD10+CD19+ a ProB cell (Hystad et al., 

2007a), while others would describe the same two cells as ProB (CD34+CD10+CD19-) and 

PreBI (CD34+CD10+CD19+) (van Zelm et al., 2005), respectively. We chose to follow the 

latter nomenclature. 

Concerning choice of antibody clones, we succeeded to find clones yielding fair to good 

separation of positive and negative cells, well knowing that the staining patterns of two or 

more clones of the same human CD specific antibody may be very different (Maecker et al., 

2012). Notably, the CD10 clone (SN5c) used in the enrichment procedure did not interfere 

with the CD10 clone (HI10a) used for flow cytometry.    

For instrument setup, compensations were carried out using antibody labeled Anti-Mouse Ig, 

κ coated beads (BD CompBeads, BD Biosciences, Norway) in order to minimize the loss of 

valuable cell suspension. The samples were kept at 4oC and cells were sorted into 

polypropylene tubes (352063, VWR, Norway) to prevent adherence.  

The samples were processed and data acquired (20 000 events) on a BD FACSAria™ cell 

sorter, and further analyzed with the BD FACSDiva™ software, version 5.0.2 (BD, San Jose, 

CA). 
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6.1.5 Isolation of HMW and LMW RNA 
 

RNA was isolated from each precursor B cell subset by size fractionation (Kruhoffer et al., 

2007; Viprey et al., 2012). After total RNA extraction, mRNA and microRNA fractions were 

further separated using Microcon® Centrifugal Filter columns with Ultracel YM-100 

membranes (Millipore, Bedford, Massachusetts, USA) having a cut-off for single stranded 

RNA of 300 nucleotides. Thus, mRNA was retained in the filter, but small RNAs including 

microRNA, typically consisting of 22 nucleotides, passed through.  

RNA concentration in the LMW fraction was estimated by dividing the measured HMW 

amount on the total input volume before the separation. For microRNA analyses, an amount 

equivalent to 3 ng RNA was used for reverse transcription with stem-looped RT primers. 

This approach was chosen as we at present have no satisfactory way to quantify microRNAs 

because the optical density of small RNAs does not distinguish between microRNAs and 

small ribosomal and transfer RNAs.   

   

6.1.6 Amplification of mRNAs for analysis on GeneChip® Human Exon 1.0 ST 
microarrays 
 

The Ovation®Pico WTA System protocol (NuGEN®) was used for cDNA synthesis from 

mRNA. This method utilizes a linear, isothermal amplification of only original transcripts 

unlike the exponential amplification used by in vitro transcription (IVT). For first strand 

cDNA synthesis, 5 ng RNA was used with a heteroduplex (cDNA/RNA) primer mix 

containing both poly T and random sequences for whole transcriptome coverage. Following 

second strand synthesis, the second cDNA strand (sense strand) was used as template for 

amplification of single-stranded antisense cDNA products homologous to the first strand 

cDNA utilizing the SPIA™ technology 

(http://www.nugeninc.com/nugen/index.cfm/support/user-guides/).  

SPIA™ is an amplification method that uses DNA/RNA chimeric primers (SPIA primers), 

DNA polymerase and RNase H in a single tube at constant temperature. Initially RNase H 

unmasks the priming site by digesting RNA in the heteroduplex tags, revealing a single-

stranded DNA sequence that is complementary to the SPIA primer. The SPIA primer binds to 

this site and is extended by a strand-displacing DNA polymerase to copy the complementary 
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strand. The resulting amplified anti-sense cDNA has to be further purified and converted to 

sense strand cDNA when using microarrays designed for sense strand targets like the 

GeneChip® Human Exon 1.0 ST microarrays we applied with this module. We then used the 

QIAGEN® MinElute Reaction Cleanup Kit (cat no 28204) specifically adapted NuGEN® 

products. For sense strand synthesis we used the WT-Ovation™ Exon module applying 3 μg 

cDNA as input, and a combination of random primers and DNA polymerase. Sense strand 

cDNA was further purified with QIAGEN® MinElute Spin Columns, fragmented and 

biotinylated using the Encore™ Biotin Module (NuGEN®).           

 

6.1.7 Microarray analysis and bioinformatics   
 

Gene expression microarrays are designed to measure relative concentrations of transcripts 

through the specific hybridization of an immobilized DNA probe to its complementary target. 

Hence, the expression level of thousands of genes are simultaneously monitored to study 

potential differences in gene expression profiles in e.g. one condition compared to another, 

different stages of cellular development, different tissues, before and after treatment etc. The 

microarray or gene chip is a collection of microscopic DNA spots attached to a solid surface. 

Each DNA spot contains picomoles (10−12 moles) of a specific DNA sequence, known as 

probes. These can be a short section of a gene or other DNA element that are used to 

hybridize for example biotin-labeled cRNA or cDNA targets under high-stringency 

conditions.  

After hybridization, the chip is stained with a fluorescent molecule (streptavidin-

phycoerythrin) that binds to biotin. When the chip is scanned with a confocal laser, bound 

target molecules emit light, and the distribution pattern of signals in the array is recorded. 

Of the two generations of gene chips used in this thesis – GeneChip® Human Genome U133 

Plus 2.0 (3') arrays and GeneChip® Human Exon 1.0 ST (whole transcript) arrays – the latter 

offers improved sensitivity. On the whole transcript array, 1 million exons can be analyzed 

simultaneously compared to the 3' array covering some 47,000 transcripts. Furthermore, the 

specificity is also reported to be improved as the GeneChip® Human Exon 1.0 ST arrays use 

cDNA targets while GeneChip® Human Genome U133 Plus 2.0 arrays use cRNA, which is 

known to bind stronger to DNA, hence causing a higher non-specific background 

hybridization (false positive changes) (Eklund et al., 2006). 
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For statistical analysis in Paper I, the Bioconductor project and the R program free software 

(http://www.bioconductor.org/) were applied to calculate statistical correlations while in 

Paper II and III, Partek® Genomics Suite™ (www.partek.com/partekgs) was used, 

representing a comprehensive collection of advanced statistics and interactive data 

visualization programs. In Papers II and III, gene expression profiles from sorted precursor B 

cell subsets were compared using the ANOVA (analysis of variance) model (Ip, 2007) which 

takes into account the observed variation between the groups (i.e. between their means) with 

that expected from the observed variability between subjects.  

When comparing each maturation stage to all the others in either age group, here exemplified 

by ProB cells in children, we used a one-way ANOVA model: 

 

 

 

When comparing either (a) one differentiation stage to the next or (b) equal differentiation 

stages in children and adults, we also used a one-way ANOVA model:  
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When searching for age-dependent differences in gene expression common to all subset 

comparisons, we used a modified two-way ANOVA model: 

 

 

 

In a two-way ANOVA model, 2 factors (independent variables) are studied in conjunction 

with the response (dependent) variable. In this case, age is one factor with two levels and 

differentiation stage is the other factor with five levels. The response variable is gene 

expression. Including a second factor thought to influence the response variable, helps to 

reduce the residual variation in the data and hence increase statistical power. Another 

advantage of using a two-way ANOVA is the ability to analyze the interaction of the two 

independent variables. The mixed-model ANOVA (modified two-way ANOVA), offered in 

The Partek® Genomics Suite™  additionally allows for more freedom regarding balanced or 

unbalanced design, numeric covariates, and random and fixed effects (for details see 

http://www.partek.com/software). 

The analysis of microarray data requires that one statistical test is performed for each 

transcript, comparing mean expression of the transcript across experimental groups. Each 

statistical test has a certain probability of suggesting an erroneous inference, and when this 

adds up, the number of false positive results may increase sharply. To control it, techniques 

for correction of multiple testing have been developed; generally requiring a stronger level of 

evidence to be observed in order for an individual comparison to be deemed "significant".  

False discovery rate (FDR) (Benjamini and Hochberg, 1995) is one approach to correct for 

multiple testing by calculating the expected proportion of “false positives” among significant 

findings. This filter option was applied in the Partek® Genomics Suite™ for Paper II when 
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exploring global differences between subsets. For various analyses with mRNA, FDR of 

0.1% and 1% were chosen, respectively, and for microRNA analysis 10 %.  

In Paper III and partly in Paper II, where the aim was to search more specifically for 

differences between children and adults, fold-change was calculated, which is the ratio of 

mean observations in two groups. We defined fold change  2  at uncorrected p-levels better 

than 0.05 for mRNAs to be differentially expressed, hence reporting relatively robust changes 

in gene expression. We also reported fold change values < 2  for especially relevant 

transcripts, as the chosen limit is arbitrary and smaller variations in several interacting 

transcripts might also be important to notice. 

One limitation in our study design is the low sample size, which may limit the general 

validity of our findings. Keeping the cost down was the main reason for our low sample 

number. However, by employing a rather stringent statistical threshold and by validation of 

key transcripts by quantitative PCR, we claim to have reduced the likelihood of “falsely 

rejected null hypotheses”, hence false positive results (type I error). By using this approach 

we may have lost possibly important biological information pertaining to transcripts not 

reaching the threshold.  

 

We did not perform a statistical power analysis apriori (Altman, 1991) to estimate sufficient 

number of samples needed to detect an effect (differential gene expression) of a given size 

(fold change). Statistical power is dependent on 1) statistical significance, 2) magnitude of 

effect measured and 3) sample size. Sample size is the only adjustable factor, as statistical 

significance/p-values are usually set at 0.05 or lower, and effect/fold change are often, but not 

always over set at 2  or higher in microarray studies. So given our small sample size, the 

probability of making so called type II errors or failing to see biologically relevant 

differences (false negative results) cannot be ignored. By lowering the threshold (fold 

change), more differentially expressed transcripts (true positives) would be included, though 

at the expense of more false positive results.  

We believe that higher expressional differences are related to biological relevance in the 

functional hierarchy. However, the nature of microarray analysis is explorative and 

hypothesis generating. Identified differences need to be subsequently validated in vivo (gene 

manipulated animals) and/or in vitro (cell culture experiments).  
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6.1.8  Quantitative real-time PCR for validation of selected genes 
 

PCR is regarded as the ”gold standard” in the quantitative analysis of nucleic acid, because of 

its high sensitivity, good reproducibility, and broad dynamic quantification range (Pfaffl, ). 

Briefly, the method is based on the 5'-3' exonuclease activity of the Taq DNA polymerase, 

which results in cleavage of fluorescent dye-labeled probes during PCR; the intensity of 

fluorescence is then measured by a Sequence Detection System (SDS) Software. The 

TaqMan probe is located between the two PCR primers and has a melting temperature 10°C 

higher than that of the primers. Binding of the TaqMan probe prior to the primers is crucial 

because without it, PCR products would be formed without generation of fluorescence 

intensity and thus without being detected. The TaqMan probe has two fluorescent tags 

attached to it. One is a Reporter dye, such as 6-carboxyfluorescein (FAM), which has its 

emission spectra quenched due to the spatial proximity of a second fluorescent dye, 6-

carboxy-tetramethyl-rhodamine (TAMRA) (Quencher). Degradation of the TaqMan probe, 

by the Taq DNA polymerase, frees the reporter dye from the quenching activity of TAMRA 

and thus the fluorescent activity increases with an increase in cleavage of the probe, which is 

proportional to the amount of PCR product formed. 

Due to limiting amounts of RNA, we were forced to validate only four key transcripts 

involved in precursor B cell differentiation. Notably, the custom ID2 assay (Cat.no. 4331182, 

Applied Biosystems), spanning the exon 2 and 3 boundary, surprisingly resulted in low 

expression values in all samples, and was found to partially target a non-protein coding area 

of the gene.   

 

Figure 12. The primer/probe set from the commersial ID2 assay, Hs04187239_m1 (green) targets 

exon II and III out of 3 constituting the ID2 gene. 
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This encouraged us to study in detail the Affymetrix probe sets. They showed a much higher 

expression in exon I compared to exon III in both children and adults: 

 

Figure 13. Exon level data on ID2 from the Affymetrix analysis showing relatively higher 

expression in the 5´end compared to the 3´end of the transcript. Black arrays indicate PreBII 

large cells in adults and green arrays PreBII large cells in children. 

We then designed primer/probe sets covering exon I (assay 1 and 2) and exon II (assay 3). 

The difference in gene expression was striking comparing the results from the commercial 

and the specifically designed primer/probe sets targeting the 5´ end of mRNA. The latter 

clearly verified the Affymetrix results (Supplementary fig 1, Paper III).  

  

6.1.9  MicroRNA profiling 
 

Due to limiting amounts of total RNA, we chose to use the TaqMan® Array Human 

MicroRNA A+B Cards Set quantitating 667 human mature microRNAs. An alternative to 

qPCR when having sufficient amounts of RNA, could have been the Affymetrix GeneChip® 

miRNA Arrays requiring a minimum input of 100 ng total RNA. These arrays also measure 

the expression of other small non-coding RNAs like snoRNA (small nucleolar RNAs), 

scaRNA (small Cajal body-specific RNAs) and pre-miRNA in addition to mature microRNA.   
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6.2 Discussion of main findings 

Paper I 
 

Unsorted, hence minimally manipulated BM probably provides the most truthful instant 

picture of mRNA in vivo expression. To immediately arrest mRNA degradation, we used 

collection tubes (PAXgene®) containing an additive that stabilizes in vivo gene transcription 

and minimize secondary transcriptional changes.  

An obvious weakness with gene expression analyses from whole BM is the challenge of 

assigning mRNA signatures to particular cell populations. It is well known that the two 

groups show different cellular composition in peripheral blood (Comans-Bitter et al., 1997). 

In our initial analysis of the gene expression data, we found 7 clusters showing different 

temporal gene expression as a function of age (not shown). One cluster showed a marked 

decline in expression with increasing age, and among the transcripts were RAG1. As RAG1 

is expressed almost exclusively in developing lymphocytes (Oettinger et al., 1990), we made 

a new correlation analysis to RAG1 searching for transcripts showing the same temporal 

profile with age. The resulting genes included both known B cell associated transcripts and 

potentially novel ones. 

Our next step was to compare the temporal expression of RAG1 and its correlated transcripts 

to temporal changes in the total precursor B cell pool. The samples were obtained from the 

same population, and age-matched to the best of our ability, but unfortunately drawn from 

two different cohorts. A main finding was the marked peak in the total precursor B cell pool 

in both cohorts using either approach. The peak was seen at 0.5 years according to the flow 

cytometry data and at 1.5 years according to the gene expression profiling (Paper I, Fig 1). 

Both peaks were followed by a prominent decrease within 2 years of age. As each point in 

either graph represents only one sample, the exact window of the peak is uncertain. Attempts 

to find other publications confirming this early temporal peak have been hampered by the fact 

that few studies cover this topic, and secondly that figures tend to show results from wide age 

groups without individual age assignments (Nunez et al., 1996). However, several papers 

confirm the relative decrease in the precursor B cell pool with age, though with a large 

variation related to suggested start (Nunez et al., 1996; Rego et al., 1998; Lucio et al., 1999; 

Miller and Allman, 2003; Labrie, III et al., 2004). Nunez et al. (Nunez et al., 1996) showed a 

gradual decrease in relative frequency of precursor B cells in normal human BM during the 
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first decade of life, but with a large spread in the data both for the fetal and the 1-10 year 

group.  

Rego et al. (Rego et al., 1998) studied the distribution of BM subsets in biopsies obtained 

during cardiovascular surgery in children and adults and revealed a progressive decrease in 

CD19+ cells after 4 years of age, with equal percentages of CD19+ cells in the group < 1 year 

and the subsequent group 1-4 years. Lucio et al. (Lucio et al., 1999) found a decrease in the 

most immature CD19+ subsets only after 15 years of age in BM obtained from donors for 

transplantation or healthy individuals undergoing orthopedic surgery.  

Analyses in mice have also shown reduced number of precursor B cells with age; reflected 

either at the ProB (Miller and Allman, 2003) or the subsequent PreB cell stage (Labrie, III et 

al., 2004).  

Hence, compared to the literature, we verified that the large decrease in the precursor B cell 

pool by age occurred earlier than previously reported, and was preceded by an initial peak 

previously not recognized. This finding was consistent in two individual cohorts and revealed 

by two independent methods. 

 

Paper II 
 

Paper I showed a considerable decrease in the total precursor B cell compartment with age; 

still with apparently preserved ratios between the subpopulations. In this paper we analyzed 

the transcriptome (mRNA and microRNA) of sorted precursor B cell subsets searching for 

global similarities and differences. Characterization of the mRNA profiles in precursor B cell 

subsets have been published previously in children (van Zelm et al., 2005) and adults (Hystad 

et al., 2007a) separately, but not together in the same study, and not including microRNAs. 

van Zelm et al. applied Affymetrix 3' IVT Human Genome U133 Set arrays with about 

39,000 transcripts, and Hystad et al. utilized the Lymphochip cDNA microarrays (Alizadeh 

AA et al., ) enriched for genes related to immune function and representing 17,856 cDNA 

clones. While Hystad et al. focused on differential gene expression in early stages of B cell 

development, van Zelm et al. combined gene expression results (transcription factor 

expression) with the rearrangement status of Ig genes. A novel aspect in our approach was the 

use of only one enrichment procedure (CD10+) before cell sorting, combined isolation of 



46 
 

mRNA and microRNA species followed by high resolution microarrays containing about 1 

million exons.  

Similar to the two papers discussed above, we found that global mRNA signatures clearly 

distinguished subsets of increasing differentiation. Additionally, our work showed that 

subset-related profiles were much more prominent than age-related differences.  

The transcript showing most markedly differential expression between children and adults 

was IGF2BP3 (alias IMP3) (7.2 fold up in children, p = 1 x 10-21) (Supplementary table III). 

IGF2BP3 is a member of the IMP family that includes IMP1, IMP2, and IMP3. These 

proteins are assumed to play a role in mRNA trafficking and stabilization, in cell growth and 

migration during embryogenesis (King et al., 2009), and in malignant transformation 

(Hammer et al., 2005; Kobel et al., 2009; Schaeffer et al., 2010; Suvasini et al., 2011). In B 

lineage acute lymphoblastic leukemia (ALL) in children, a characteristic expression pattern 

of IGF2BPs was found in different subgroups, with the majority overexpressing IGF2BP3 

compared to normal adult BM (Stoskus et al., 2011).  

It was hardly surprising that the microRNA profiles did not show the same clear stage-

dependent pattern as the mRNAs, since the number of known mature miRs is much smaller in 

general - 1921 distinct human miRNAs in the miRBase 18 database 

(http://www.mirbase.org/), and only a third of these were represented on the TaqMan® 

Arrays. Additionally, smaller, but biologically relevant variations may have passed 

undetected; a caveat further accentuated by the low sample number we had.  

Despite several publications on miR expression in hematopoietic tissue (Chen et al., 2004b; 

Monticelli et al., 2005; Zhou et al., 2007; Xiao et al., 2007; Rao et al., 2010b; Petriv et al., 

2010; Kong et al., 2010; Arnold et al., 2011; Fernando et al., 2012), we are only aware of one 

showing detailed profiles from sorted precursor B cell subsets in mice (Spierings et al., 

2011). The authors had obtained BM from ten mice, but chose to pool the samples into one 

single sort representing three stem cell/early progenitor stages and five precursor B cell 

stages. This was probably done to achieve sufficient material for the deep sequencing 

procedure, and is a significant drawback as also mentioned by the authors. We compared our 

data to theirs and found only partly corresponding profiles for miRNAs that are known to be 

involved in B lymphocyte development. The discrepancies we found between children and 

adults for the six miRs were only statistically significant for miR-181a at the PreBII small 

comparison (up 3.3 fold in children, p = 0.0367). The miR-34a comparison did not reach 
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statistical significance at the PreBII small stage comparison (fold change = 5.1, p = 0.0587), 

however, miR-34a* was 248 fold higher expressed (p = 1.85 x 10-5) in children at this stage 

(Supplementary table V). Hence, this illustrates that both our results and those of Spierings et 

al. should be regarded more as trend observations needing verification in larger studies.  

The same arguments can be applied to our analysis of the miR-17-92 cluster, where we also 

used the results of Spierings et al. (Spierings et al., 2011) for comparison (Paper II, Fig 6). 

Despite apparent age-related differences at the ProB cell stage, statistical significance was not 

reached; the differences were only significant at the PreBII small cell stage. Ventura et al. 

(Ventura et al., 2008) studied the effect of targeted deletions in the miR-17-92 cluster on B 

cell development, and measured miR-20a and miR-93 during normal differentiation in ProB, 

PreB, Immature and Mature B cell subsets. The expression peaked at the PreB stage for both 

transcripts, however, no further subset information was given. Hence, the main message from 

our analysis of the miR-17-92 cluster is the striking similarity in temporal expression for all 

members in the pediatric and adults groups, respectively, and the significant differences at the 

PreBII small stage. This particular stage comparison showed highest number of differentially 

expressed miRs in general between children and adults with 92 miRs up-regulated in children 

and only 2 up in adults (not shown). Altogether, this indicates age-related differences in miR 

expression during precursor B cell development, and should be explored further.   

From the combined analysis of differentially regulated mRNAs and microRNAs, the most 

interesting functional interaction was found in adults at the transit to PreBII large cells; a 

crucial checkpoint before the proliferative burst following successful assembly of IgH. The 

functional relationship between e.g. the differentiation inhibitor ID2 and four miRs with 

known involvement in proliferation and cell cycle control, has not been described before. Of 

note, the diagram also showed a remarkably strong representation of the data generated in the 

present study, further strengthening its relevance.    

  

Paper III 
 

The underlying theme of our study has been to improve our understanding of how the B cell 

pool declines with age. We have shown that the relative size of the precursor B cell pool in 

the BM decreases early in life (Paper I, Fig 1), and that sorted precursor B cell subsets from 

children and adults have quite similar global mRNA profiles (Paper II, Fig 2). However, by 



48 
 

searching explicitly for age-related differences in gene expression during transitions from one 

maturation stage to another, and for specific transcripts associated with e.g. precursor B cell 

commitment and differentiation, we found several noteworthy distinctions. The main finding 

was the transient increase of ID2 mRNA expression in adult PreBII large cells only (Paper 

III, Fig 4a), along with only slight changes in E2A mRNA (Paper III, Fig. 4a). The balance 

between E2A and ID2 mRNA expression was clearly shifted in PreBII large cells in adults 

compared to children, with an E2A/ID2 ratio of 0.7 in adults compared to 4.9 in children. It is 

tempting to speculate if this 7-fold difference might indicate a differentiation bottle neck in 

adults or a stricter differentiation control as E2A promotes differentiation while ID2 is an 

antagonist.  

E2A protein has been measured in precursor B cells in mice, and reduced expression was 

found in the presence of maintained E2A mRNA levels in aged, but not in young animals 

(Frasca et al., 2003a; Van der Put et al., 2004; Riley et al., 2005). Furthermore, changes in 

E2A protein levels appeared to be regulated, at least in part, via posttranslational mechanisms 

(e.g., phosphorylation; ubiquitination) and protein degradation (Van der Put et al., 2004). It 

has also been investigated whether the age-related reduction in E2A DNA-binding and 

protein expression could be attributed to increased levels of ID2 protein, but no increase was 

found in nuclear extracts of IL7-expanded IgM- CD43- B220low precursor B cells from old 

mice as compared to young (Frasca et al., 2003b). It is worth noting that while the CD20 

marker has been used to discriminate between PreBII large (CD20dim) and small (CD20-) 

cells in humans, the CD43 marker has been used similarly in mice (PreBII large cells being 

CD43+ and PreBII small cells CD43-) (Miosge and Goodnow, 2005). Hence, the IgM- CD43- 

B220low precursor B cell fraction analyzed by Frasca et al.(Frasca et al., 2003b) would 

accordingly represent PreBII small cells or at the least the most mature part of the continuum 

(Petriv et al., 2010) of PreBII large cells having down-regulated this marker (personal 

communication with Menno van Zelm). This is of importance compared to our study, as we 

also found no age-related difference in ID2 mRNA expression at the level of PreBII small 

cells as opposed to the PreBII large cell fraction. 

Concordant with our results, Bordon et al. (Bordon et al., 2008) also found increased ID2 

mRNA levels in CD43+ PreBII large cells in mice compared to CD43- PreBII large and 

PreBII small cells both in wild type (WT) and transgenic mice (B6CF1 x C57BL/6) 

overexpressing the B lymphocyte-specific transcription factor OBF1. Bordon et al. (Bordon 

et al., 2008) found that B cell differentiation was impaired at early stages in transgenic mice 
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overexpressing OBF1; both during B cell commitment and at the PreBII large cell stage. 

Transcriptome analysis identified genes differentially regulated in these mice, e.g. up-

regulation of ID2 and ID3. Furthermore, they showed that ID2 and ID3 promoters contained 

octamer-like sites, to which OBF1 could bind. Unfortunately, no information about the age of 

these mice was given; and attempts to obtain this information have not succeeded. We can 

only speculate that these were adult mice. 

Another interesting finding in Paper III was co-expression in adult PreBII large cells of ID2 

and transcripts having key roles in cell cycle control. This observation is compliant with 

previous publications on ID2s role in cell cycle control in Drosophila and mice (Norton, 

2000). Functional analysis showed co-localization in an interacting network including the 

cyclin dependent kinases CDK1 and CDK2 and cyclins with which they are known to 

interact: cyclin E (CCNE1) regulating the G1/S phase transition, cyclin A the S/G2 phase 

traverse, and cyclin B (CCNB1 and CCNB2) the G2/M (mitosis) transition according to the 

classical model of cell cycle control (Hochegger et al., 2008). 

 

 A possible interpretation is that our data reflect a tighter regulation of the transit PreBI to 

PreBII large cells in adults as compared to children. Alternatively, but not mutually 

exclusive, a greater proportion of cycling/proliferating PreBII large cells exist in adults than 

in children as supported by the fact that while preventing differentiation, expression of ID2 

proteins is also responsible for keeping the cell in an actively proliferative state (Lasorella et 

al., 1996). ID proteins, in general, have a highly complex pattern of temporal and tissue-

specific expression with several interaction partners other than the E-proteins, hence making 

definite conclusions difficult (Norton, 2000; Ji et al., 2008b).   

It appears that the combined contributions of genetic and transcriptional changes pushing 

precursor B cells into proliferation versus differentiation are both subset and age-specific. 

Our data provide a testable working hypothesis describing several differences at the 

molecular level in precursor B cell subsets in children and adults as possible contributing 

factors to an overall diminishing B cell compartment with age. 
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7 Concluding remarks  
 

This thesis describes transcriptional events associated with precursor B cell differentiation in 

small children and adults in normal BM aspirates. By comparing global gene expression and 

microRNA profiles across various differentiation stages and age groups, with have tried to 

pinpoint important differences that may reflect major aspects of precursor B cell variations 

with age. Our main conclusions are: 

 

1. The relative size of the precursor B cell pool had a marked, but transient peak at 0.5 

years to1.5 years of age, followed by a rapid decrease during the subsequent two 

years, and a continued slower reduction until adulthood. The relative subset 

composition of the total precursor B cell pool did not change significantly with age.  

 

2. The global mRNA signature of five precursor B cell subsets clearly distinguished 

between the various maturation stages regardless of age, with 1796 mRNAs (11%) 

differentially expressed (FDR 0.1%, p ≤ 1.13 x 10-4). Functionally, the transcripts 

were associated with cell cycle, cell proliferation, development and cell death.  

  

3. In adults, 2-5 times more transcripts were totally differentially expressed at each stage 

traverse, except in the last differentiation step where more transcripts changed 

expression in children. The number of up-regulated transcripts was quite similar in 

children and adults at each traverse, except for the transition PreBI to PreBII large 

which involved about five times more transcripts in adults. The number of down-

regulated transcripts, in contrast, showed less variation in adults than in children at all 

stages. 

 
4. In the transition PreBI to PreBII large cells, 529 transcripts were up-regulated in the 

adults compared to111 in the children. Only in adults we found up-regulation of the 

cell differentiation inhibitor ID2 (inhibitor of DNA binding) together with a network 

of transcripts involved in cell cycle regulation. We found no significant age-related 

differential expression of E2A mRNA, which is concordant with previous results in 

mice. The transient increase of ID2 mRNA in PreBII large cells in adults has not been 
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shown previously in humans, and may possibly point to a stricter control of the cell 

cycle at the PreBII large stage in adults.  

 
 

5. Searching for mRNA differentially expressed in all subsets in the children versus 

adults, we discovered that IGF2BP3 was 7.2 times higher expressed in the pediatric 

group (p = 1 x 10-21). This age-related difference has not been shown earlier in normal 

precursor B cells.  

 
6. In contrast to the mRNA gene expression patterns, the microRNA profiles showed 

weaker subset association. However, of 667 microRNA, 17 (2.5%) were differentially 

expressed (FDR 10%, p ≤ 0.004). Among them were e.g. the co-expressed miR-

126/miR-126 * pair, which decreased with increasing cell differentiation.  

 

7. The most interesting and unexpected finding in the microRNA analysis was the 

almost inverse expression of the growth promoting miR-17-92 cluster during 

differentiation in children and adults. Only at the PreBII small stage, expression was 

significantly higher in children. However, the consistent age-related trend was 

remarkable, and should be analyzed further.  

 
8. Finally, in the transit to PreBII large cells in adults, combined analysis of 

differentially regulated mRNAs and microRNAs rendered a complete network 

connecting proliferation and cell cycle associated microRNAs to the differentiation 

inhibitor ID2.  
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8 Future perspectives 
 

The use of young versus old mice, and various knock-in and knock-out models have revealed 

several important aspects of age-related molecular changes, still, many of the basic 

mechanisms behind need to be clarified (Frasca and Blomberg, 2011). It is intriguing that the 

avenue of ID2 and its postulated hampering of B cell generation in aged BM, has been 

scrutinized in mice, but not been proven. In murine spleen, however, increased ID2 in adult 

mature B cells seems to be involved in reduced B cell maturation. Our finding of differential 

ID2 expression in children and adults, suggests reinvestigating ID2´s potential role in 

precursor B cell generation with age. To investigate effects of increased ID2 at the PreBII 

large cell stage in adults compared to children, IgH rearrangement should be examined, as 

ID2 was first known for its modulating role in this process. Detailed sequencing of the IgH 

gene in adult versus pediatric PreBII large cells and real-time PCR allowing the detection of 

K-deleting recombination excision circles (KRECs) resulting from the rearrangement 

process, are currently in progress in collaboration with researchers at Erasmus University 

Medical Center, Rotterdam. Addional sampling of BM to secure viable precursor B cells 

would allow IGH locus measurements by 3D FISH. All three approaches would clarify at the 

mechanistic level potential effects of altered ID2 expression. 

MicroRNA involvement in E2A mRNA stability in aged B cell functions versus young has 

hardly been investigated previously, but is part of an ongoing NIH project (2009 – 2014) 

(http://www.experts.scival.com/miami/grantDetail.asp?t=ep1&id=9172075&o_id=&n=Bonni

e+B%2E+Blomberg&u_id=494) by Professor Bloomberg’s groups in Miami.  

MicroRNAs and other small non-coding RNAs offer a promising avenue to understand better 

mRNA levels and gene regulation in precursor B cells.    
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Abstract 

 

We studied the transcriptome of five precursor B cell subsets in individual bone marrow (BM) 

samples from healthy young children and adults employing GeneChip® Human Exon 1.0 ST 

Arrays (Affymetrix®) and TaqMan® Array MicroRNA Cards (Life Technologies ). A total 

of 1796 mRNAs (11 %) were at least once differentially expressed between the various 

precursor B cell subsets in either age group (FDR 0.1%, p  1.13 x 10-4) with cell stage 

specific variations much more pronounced than age-related differences. In contrast, 

microRNA profiles of the various precursor B cell subsets showed less hierarchical clustering 

as compared to the corresponding mRNA profiles. However, 17 of the 667 microRNA assays 

(2.5 %) were at least once differentially expressed between the sub 004). 

From target analysis (Ingenuity® Systems), functional assignment between postulated 

interacting mRNAs and microRNAs was especially associated with cellular growth, 

proliferation and cell cycle regulation. One functional network connected up-regulation of the 

differentiation inhibitor ID2 mRNA to down-regulation of the hematopoiesis or cell cycle 

regulating miR-125b-5p, miR-181a-5p, miR-196a-5p, miR-24-3p and miR-320d in adult 

PreBII large cells. Noteworthy was also the stage-dependent expression of the growth 

promoting miR-17-92 cluster, showing an almost inverse trend in children and adults, but 

reaching statistical significance only at the PreBII small stage (up 3.1 – 12.9 fold in children, 

p = 0.0084 – 0.0270). The discrepancy between the age groups may be of importance, as the 

miR-17-92 cluster has been shown to play a pivotal role in promoting survival of early 

precursor B cells.   
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Introduction 
 

Access to BM from healthy children is generally a limiting factor for studies of changes 

within the human B cell compartment during aging. In contrast to red blood cells, platelets 

and the myeloid lineage cells, production of the lymphoid lineage is considerably diminished 

with age both in humans and mice (1), but answers to why and how this happens are still 

lacking. Almost all present knowledge of age-related transcriptional changes in precursor B 

cells has been derived from mice, and points to alterations both in key proteins driving the 

differentiation (2-7), and to modification in the supporting microenvironment (8;9). So far, 

only two studies in humans have analyzed global gene expression employing developing 

precursor B cells from children (10) and adults (11), respectively; neither of the publications 

includes both age groups. Of increasing interest is also the role of microRNAs (miRs) in 

hematopoiesis (12), in the immune system in particular (13), and its relation to hematologic 

malignancy (14-16). However, most reports so far focus on lineage differentiation in murine 

hematopoietic stem and early progenitor cells (17-22), studying the effects of absence or over-

expression of specific miRs on B-lineage development. At present, studies of highly purified 

human precursor B cell subpopulations are still lacking. We have studied both mRNA and 

microRNA profiles in sorted precursor B cells subsets from healthy young children and 

adults, to gain insight into global transcriptional events and miR profiles characteristic for 

each stage transition. We explored B-lineage enrichment procedures applicable for both 

children and adults, to achieve sufficient precursor B cell numbers for analyses from 

individual donors. As the precursor B cell pool is decreasing with age (23;24), and markedly 

from about 20 months (24), we chose to compare children of average 18 month to adults of 

average 50 years in order to capture two windows with very different precursor B cell pool 

composition, and of clinical relevance.  
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Material and Methods  
 

Bone marrow samples 

We obtained BM samples from 4 healthy children age 18 ± 2 month (mean ± range) and 4 

healthy adults age 50 ± 5 years (mean ± range). The children were eligible for minor surgery, 

the adults for elective orthopaedic surgery. Both groups were haematologically healthy. 

Written informed consent was obtained using protocols approved by the Regional Medical 

Research Ethics Committee of Eastern Norway (REK Øst, Accession no. 473-02132). The 

study was performed according to the Norwegian Health Regulations. BM was aspirated from 

the anterior iliac crest/anterior superior iliac spine using syringes containing 1ml of 

5000IE/ml heparin (2 x 10ml syringes children, 6 x 20ml syringes adults).  

 

Isolation of CD10 positive cells   

The BM samples were diluted in PBS pH 7,4 (Gibco by Life Technologies) with 2% Fetal 

Bovine Serum (Life Technologies, USA) filtered at 70 m (BD Biosciences Falcon Cell 

Strainer 70 um Nylon Cat. no. 352350) and subjected to Ficoll-Paque™ PREMIUM (GE 

Healthcare, USA) density-gradient centrifugation. CD10+ precursor B cells were positively 

selected using streptavidin coated Dynabeads® FlowComp™ Flexi (Invitrogen Dynal AS, 

Oslo, Norway) and CD10 antibody (Cat. no. 34199-100, clone SN5c, Abcam Inc. Cambridge, 

MA, USA) labeled with DSB-X™ Biotin (Molecular Probes Europe BV, Netherlands). The 

optimal amount of CD10 antibody used per 100 x 106 mononuclear cells (MNCs) was titrated 

individually, and mean amount was for the children 26 μg and for the adults 10 μg.  
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Immunolabelling, flow cytometry and sorting of precursor B cells 

CD10 isolated cells were centrifuged, washed and resuspended in 100 ul Staining Buffer 

Cat.no. 00-4222-57, eBioscience). Cells were immediately stained with 10 μl each of the 

following antibodies: CD19 APC-AF750 (Cat. no. 27-0199-73, clone HIB19), CD22 APC 

(Cat. no. 1A-506-T100, clone IS7), CD10 PECy7 (Cat. no. 341112, clone HI10a), CD34-

PerCP (Cat. no. 340430, clone 8G12), CD20 PE (Cat. no. 12-0209-73, clone 2H7), CD123 PE 

(Cat. no. 12-1239-73, clone 6H6), and IgM FITC (Cat. no. 555782, clone G20-127),  all from 

eBioscience, Norway. After incubation on ice for 30 min, 1 ml cold Staining Buffer was 

added and samples centrifuged at 300 x G, 4oC for 10 min. Cell pellets were resuspended in 

700 μl Staining Buffer and filtered through a 70μm filter (BD Falcon 5ml polystyrene round-

bottom tube with cell-strainer cap, VWR, Norway) prior to flow cytometric analysis and 

sorting. In order to avoid loss of valuable cell suspension, instrument compensations were 

carried out using antibody labeled Anti-Mouse Ig,  coated beads (BD CompBeads, BD 

Biosciences, Norway). Five different precursor B cell subsets were isolated on a BD 

FACSAria™ cell sorter, and events (20.000) further analyzed with the BD FACSDiva™ 

software, version 5.0.2 (BD, San Jose, CA) (Fig 1). Cell were displayed in a side and forward 

scatter dotplot A (linear scale) where the lymphocytes were selected in one gate (black font), 

followed by identification of CD19 and CD22 positive precursor B cells in dotplot B. These 

cells were further selected in a CD10 versus CD22 plot (C) to discriminate between 

contaminating mature blood derived B cells (CD10 negative) and BM precursor B cells 

(CD10 positive). The cells that expressed CD34 (D) were forwarded into a dotplot CD20-

CD123 PE versus CD19. The membrane marker CD123 is positive for potential interference 

of CD34 positive early basophilic progenitor cells which might be included in the CD22 

positive gate (25). However, these are CD19 negative and were excluded from the ProB sort 

(E). The presence of CD19 on PreBI cells were used to discriminate them from ProB. The 
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CD34 negative (D) and CD19 positive cells (F) were forwarded into a CD20 versus IgM 

dotplot. In panel G, Immature B cells were sorted on the basis of CD20high and IgM 

expression. The remaining two populations, PreB II large and PreB II small were separated 

based on their CD20 expression. The samples were kept at 4oC and cells were sorted into cold 

polypropylene tubes (Cat. no. 352063, VWR, Norway) to prevent adherence. The tubes were 

centrifuged at 300 x G, 4oC for 10 min, and pellets with 100 l supernatant lysed with 700μl 

QIAzol® Lysis Reagent (www.qiagen.com/handbooks), thoroughly vortexed and stored at – 

80oC for further mRNA and microRNA isolation. Supplementary table I shows demographics, 

number of isolated MNCs and sorted precursor B cell subpopulations from the various 

donors.  

 

RNA isolation 

Total RNA was extracted and purified from each precursor B cell subset using the 

miRNeasyMini Kit® (Qiagen, Hilden, Germany) and Phase Lock Gel™ Heavy (Cat. no 

2302830, 5 PRIME GmbH, Hamburg, Germany) according to the manufacturer´s 

recommendation. Because of scarcity of material, each total RNA sample was further 

separated into low molecular weight (LMW) RNA (= microRNA) and high molecular weight 

(HMW) RNA (= mRNA) using Microcon® Centrifugal Filter columns with Ultracel YM-100 

membranes (Cat. no. 42413, Millipore, Bedford, Massachusetts, USA) which has a cut-off for 

single stranded RNA of 300 nucleotides (Supplementary fig 1). The HMW RNA fraction was 

quantified by NanoDrop® ND-1000 Spectrophotometer, or if too low concentration, by 

NanoDrop® ND-3300 Fluorospectrometer (Saveen Werner, Malmø, Sweden) using the 

RiboGreen® method (Molecular Probes®, Invitrogen detection technologies, Eugene, OR, 

USA). Sample concentration (A260/A280 ratio) ranged from 3.9 to149.5 ng/ l. Quality was 
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assessed with Agilent 2100 Bioanalyzer® using either the Agilent RNA 6000 Nano Kit or 

Agilent RNA 6000 Pico Kit (Agilent Technologies, Palo Alto, CA, USA) depending on 

sample concentration. The RNA integrity number (RIN) had mean value 8.4 ± SD 0.89 (n = 

39) indicating high RNA purity and integrity.   

 

Amplification of mRNAs for gene expression analysis 

The Ovation®Pico WTA System protocol (NuGEN®) was chosen for cDNA synthesis and 

amplification. This robust and sensitive method utilizes a linear, isothermal amplification of 

only original transcripts unlike the exponential amplification used by in vitro transcription 

(IVT). For first strand cDNA synthesis 5 ng HMW RNA was utilized with a primer mix 

containing both poly T sequences and random sequences for whole transcriptome coverage. 

Following second strand synthesis, the second cDNA strand (sense strand) was used as 

template for amplification of single-stranded antisense cDNA products homologous to the 

first strand cDNA utilizing the Ribo-SPIA™ technology (http://nugeninc.virtual.vps-

host.net/tasks/sites/nugen/assets/Flash/techanim_ribo_spia.swf). For detailed methods, please 

see the manufactory protocols (http://www.nugeninc.com/nugen/index.cfm/support/user-

guides/). The amplified SPIA cDNA was further purified with the use of QIAGEN MinElute 

Reaction Cleanup Kit (cat no 28204) which is specifically adapted for use with NuGEN®. The 

amplified and purified cDNA samples had mean concentration 334 ng/μl (SD 24.6 ng/μl, CV 

7.4%) and mean cDNA yield 9.3 g (SD 0.68 g). To convert cDNA into sense transcript 

cDNA (ST-cDNA), the WT-Ovation™ Exon module was applied using 3 μg cDNA as input, 

with a combination of random primers and DNA polymerase. The resulting dsDNA products 

were purified with the QIAGEN MinElute Reaction Cleanup Kit (Cat. no. 28204) (Qiagen, 
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Hilden, Germany). The resulting sense strand cDNA was further fragmented and biotinylated 

using the Encore™ Biotin Module (NuGEN®) and 5 μg input cDNA. 

 

Microarray analyses and statistical analysis of data 

Amplified, fragmented and biotin-labeled cDNA targets were prepared for analysis on 

microarrays according to the Affymetrix GeneChip® Expression Analysis Technical Manual 

(P/N 702232 Rev.2). The solutions were hybridized to GeneChip® Human Exon 1.0 ST 

Arrays (Affymetrix®, Santa Clara, CA) covering 1 million exons, then washed and stained. 

The arrays were scanned using the Affymetrix Gene Chip Scanner 3000 7C. The scanned 

images were processed using the AGCC (Affymetrix GeneChip Command Console) software, 

and CEL files were imported into Partek® Genomics Suite™ software (Partek, Inc. MO, 

USA). The Robust Multichip Analysis (RMA) algorithm was applied for generation of signal 

values and normalization. On each array 21.989 transcripts could be detected. Gene 

expression was analyzed in core mode (see www.affymetrix.com) using signal values above 

22.6 across arrays to filter out low and non-expressed genes, reducing the number to 15.830 

transcripts. For expression comparisons of different maturation stages, a one-way ANOVA 

model was used, and for age group comparisons a modified two-way ANOVA model. Gene 

lists for mRNA were generated with the criteria of a 0.1 % False Discovery Rate (FDR) (p-

-4) for the various maturation stage comparisons, and 1 % FDR (p 

10-5) for the age group comparisons. For direct comparison of successive maturation stages or 

pairwise comparisons children versus adults, results were expressed as fold change, and gene 

lists generated with the criteria of fold change |2| and p-values < 0.05. 
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Quantification of microRNAs 

The Megaplex™ Pools for microRNA Expression Analysis were applied for quantification of 

microRNAs (Applied Biosystems). First, 3 ng starting material (LMW RNA) was used for 

reverse transcription (RT) with stem-looped RT primers enabling synthesis of cDNA for 

mature miRNAs. Next, unbiased pre-amplification was performed using gene-specific 

forward and reverse primers prior to loading onto TaqMan® Array Human MicroRNA A+B 

Cards Set v3.0 (Cat. no. 4444913, Life Technologies ) for PCR amplification and real time 

analysis. The arrays were run on a ViiA Real Time PCR system thermocycler (Applied 

Biosystems®) for accurate quantitation of 667 human microRNAs and three endogenous 

controls to aid in data normalization + one negative non-human control. U6 snRNA 

(mammu6) was chosen as endogenous control in our experiments due to least variation. 

Relative quantitation was then applied using the comparative CT method ( CT) (26). For 

expression comparisons of different subsets, profiles were compared using (a) a one-way 

ANOVA model with 10 % FDR (p 004) or (b) fold change with cut-off 2| and p-values 

< 0.05. 

 

Ingenuity Pathway Analysis (IPA) 

Gene networks and canonical pathways representing key genes were identified through the 

use of Ingenuity Pathway Analysis, IPA (Ingenuity® Systems, www.ingenuity.com). Briefly, 

the data sets containing gene identifiers and corresponding fold change and p-values were 

uploaded into the web-delivered application and each gene identifier was mapped to its 

corresponding gene object in the Ingenuity Pathway Analysis (IPA) software. Fisher’s exact 

test was performed to calculate a p-value assigning probability of enrichment to each 

biological function and canonical pathway within the IPA library.   
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 Results 
 

Global gene expression profiling of precursor B cell populations 

Gene expression profiles of the five precursor B cell subsets from BM (Fig 1) were 

determined using the GeneChip® Human Exon 1.0 ST Arrays (Affymetrix®), containing 

15.830 detectable transcripts after core mode analysis and filtering (see materials and 

methods). The five subsets were distinguished by the significant differential expression of 

1796 genes (11%) that were at least once differentially expressed between the various stages 

of maturation in either age group (one-way ANOVA, FDR 0.1%, p-value -4) 

(Supplementary Table II). Hierarchic clustering was performed to group the expression 

patterns of the five cell subsets. Fig 2 illustrates the clustering as principle component analysis 

(PCA) representing the overall expression pattern of each sample. There is a compellingly 

distinct separation between the cell subsets, and a remarkably similar clustering between 

children and adults. Moreover, there seems to be a gradual change as the cells progress 

through the various maturation stages. Therefore, the analysis revealed a stronger variance 

between subsets than between age groups (see also Supplementary fig 2 for heatmap of 

differentially expressed genes).   

 

Functional analysis of stage-dependent differential gene expression in precursor B cells  

We further analyzed the 1796 differentially expressed genes through IPA (Ingenuity® 

Systems). Of these, 1605 genes were associated with bio-functional groups and networks. The 

gene sets were especially associated with cell cycle, cellular growth and proliferation, cellular 

development, cell death, and cellular assembly and organization (Table I). The table also 

shows the canonical pathways most represented. Notably, the strongest association was with 
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BRCA1 and DNA damage response and cell cycle checkpoint regulation, including 

phosphatidylinositol 3 kinase (PI3K) signaling cascade – a pathway central in regulation of 

cell proliferation, growth, differentiation, and survival (27).  

              

Age-related alterations in mRNA expression common to all subset comparisons   

We then identified differentially expressed genes common to all five pairwise comparisons 

(ProB children versus adults and PreBI children versus adults etc.) in the two age groups 

resulting in 16 differentially expressed mRNAs (two-way ANOVA, FDR 1%, p -5) 

(Fig 3). Of these, six transcripts were higher expression in all subsets in children, among them 

the insulin-like growth factor 2 mRNA binding protein 3, IGF2BP3 which was 7.2 fold up (p 

= 1 x 10-21). The other transcripts had fold change less than 2  (Supplementary table III). Ten 

transcripts were higher expressed in the adult subsets: three of them with fold change more 

than 2 : the two hypothetical proteins FLJ42200 (2.8 fold up, p = 1.35 x 10-10) and FLJ38379 

(2.3 fold up, p = 2.64 x 10-6), and the spliceosome associated transcript PRPF8 (2.2 fold up, p 

= 1.35 x 10-6). 

 

Global microRNA profiles of precursor B cell subsets 

In contrast to the mRNA profiles (Fig 2), showing distinct subset characteristics, the 

corresponding microRNA profiles were much more diversely scattered regarding both subset- 

and age- comparisons (Fig 4). The results show 17 microRNAs  that were at least once 

differentially expressed between the various stages of maturation (one-way ANOVA, FDR 10 

%, p 3.6 x 10-3) (Supplementary table IV). Two microRNAs were accompanied by the 

corresponding star form (Supplementary fig 3); miR-200c/miR-200c* and miR-126/miR-
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126*; the first pair with opposite and the second pair with similar expression during precursor 

B cell differentiation.  

When comparing each differentiation stage to the successive one, using fold change  2  and 

p < 0.05 as cut-off, the number of microRNAs changing in each traverse could be compared 

between children and adults (Fig 5) (Supplementary table V). For both age groups, few 

microRNAs increased in the transit ProB to PreBI and PreBI to PreBII large, respectively (Fig 

5A), and the microRNAs were not the same. During differentiation to PreBII small cells, 39 

microRNAs increased in children as compared to 3 in adults (none in common). In the last 

traverse to Immature B cells, the picture was opposite with 58 microRNAs increasing in 

adults as opposed to 2 in children (miR-126 in common). Down-regulation of microRNAs 

were more prominent than up-regulation in the first two transits ProB to PreBI and PreBI to 

PreBII large (Fig 5B) in both age groups. In the first transit to PreBI cells, 13 microRNAs 

were down-regulated in children as compared to 2 in adults (miR-133b in common). In the 

successive step to PreBII large cells, 36 microRNAs decreased in children and 26 in adults, 

respectively. Of these were 13 microRNAs in common and included miR-146a and miR-155, 

both associated with B-lineage development (16). The last traverse to Immature B cells 

involved down-regulation of 40 microRNAs in children as compared to only 2 in adults (miR-

126 in common). Thus, the last stage transitions showed marked and opposite differences 

between children and adults, with a dominant down-regulation of microRNA in pediatric 

Immature B cells as compared to a prominent up-regulation in adults (Fig 5 A, B). 

 

Inverse trend in expression of the miR-17-92 cluster in children and adults   

The miR-17-92 cluster and its paralogs (28) are multifunctional clusters of microRNAs 

known to promote proliferation in hematopoietic tissue in general (29) and in precursor B 
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cells in particular (30). Comparing mean expression for each cluster member in children and 

adults, we found a suggestive inverse pattern between the age groups during differentiation 

(Fig 6). Notably, the graphs only show trends, as there was high standard deviation within the 

age groups. At the PreBII small stage, significant age-related differences were found for all 

miRs (up 3.1 – 12.9 fold in children, p = 0.0084 – 0.0270) except miR-92a. Interestingly, five 

star-form partners were similarly significantly higher expressed in pediatric PreBII small cells 

as compared to adults (miR-17a*/miR-18a*/miR-19b*/miR-20b*/miR-93*) (up 3 – 29 fold, p 

= 0.0018 – 0.042). Additionally, miR-20b* was higher expressed in pediatric PreBII large 

cells (up 14.1 fold, p = 0.0106), and miR-18b*/miR-19a*/miR-19b-1*/miR-20b*/miR-25* 

were higher expressed in adult Immature B cells (up 4.6 – 17.3 fold, p = 0.0465 – 0.0093). 

The expression profiles of known miR-17-92 targets, however, did not show age-related 

differences (Supplementary fig 4). The mRNAs (E2F1, E2F2, E2F3, PTEN, BCL2L11 and 

CDKN1A) are all involved in regulation of apoptosis, cell cycle and proliferation. 

 

Combined analysis of mRNA and microRNA expression during precursor B cell development 

Finally, we searched our database for functional interactions between the differentially 

expressed mRNAs and microRNAs related to increasing maturation using IPA (Ingenuity® 

Systems), and selecting only experimentally observed/highly predicted relationships. Not 

unexpectedly, more or less the same molecular and cellular functional categories were 

detected for this joint analysis as for the analysis represented by the mRNAs alone such as: 

cellular growth/proliferation and cell cycle regulation.   

When each maturation step was analyzed for functional interactions between differentially 

and inversely expressed mRNAs and microRNAs, the resulting networks, but one, yielded 

informative value. In adults only, a striking network related to hematopoietic development 
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and function (Fig 7), connected down-regulation of miR-125b-5p to up-regulation of the 

differentiation inhibitor ID2 and other mRNAs (31). Notably, the network also included the 

hematopoiesis associated miR-181a-5p (17) and miR-196a-5p (32), and the cell cycle 

associated miR-24-3p (33) and finally miR-320d. The diagram shows a very strong 

representation of the data generated in the present study.    

 

Discussion 
 

The ability to isolate and sort small and limited amounts of human precursor B cell subsets 

from healthy children and adults gives the advantage of studying and comparing physiological 

changes at the molecular level in regular BM. From young children and adults we were able 

to obtain sufficient RNA to perform global mRNA and microRNA profiling in five sorted 

subsets of precursor B cells without pooling the samples.   

Somewhat surprisingly, global subset-related mRNA profiles in children and adults were 

remarkably similar as shown in the PCA plot (Fig 2), and demonstrated a gradual change 

along an axis of cell progression towards maturation. Immature B cells had the highest 

geometric distance to any other subset in agreement with completion of both heavy and light 

immunoglobulin chain rearrangements (34).  

A striking finding was IGF2BP3, expressed 7.2 fold higher (p = 1 x 10-21) overall in children 

as compared to adults. IGF2BP3 (alias IMP3), represses translation of IGF-2 during late 

embryonic development in mice and humans (35), and has been shown to promote the 

translation of IGF-2 leader 3 mRNA in a cell model of leukemia (36). It has also been 

suggested that the age-related decline in expression of IGF2BP3 is part of widespread genetic 

reprogramming occurring in many organs simultaneously during postnatal growth (37). In 
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contrast to peripheral lymphoid tissue and lymphomas (38), IGF2BP3 expression has not been 

studied previously in precursor B cells from normal pediatric BM, and its physiological role 

in this tissue remains mainly unknown .   

The global microRNA expression profiles, unlike the mRNA signatures, did not distinguish 

between the five precursor B cell subsets (Fig 4). However, 17 microRNAs were differentially 

expressed between the various maturation stages. Among them was the pair miR-126/miR-

126*, shown to regulate the transcription factor HOXA9 (39);  playing a role in normal and 

malignant hematopoiesis (22;39-41). In our samples, HOXA9 was gradually down-regulated 

in parallel with miR-126/miR-126* during differentiation in both age groups in agreement 

with observations in murine hematopoietic stem cells (HSCs) (39). The functional implication 

for differentiation of B-lineage cells is, however, presently unknown. 

We could only partly confirm the stage-specific profiles of six B cell associated microRNAs 

as recently reported from murine B2 B-lineage cells (30), which are regarded as equivalent to 

human B-lineage cells. The authors (30) applied deep sequencing of small RNA libraries 

generated from pooled murine BM or spleen cells, sorted into ten stages of B2-lineage cells 

and B1 B cells. Notably, the material used for the generation of the sequence libraries was 

obtained during a single sort, which is a caveat as pointed out by the authors (30). Also we 

found several stage-specific trends; not all of them statistically significant, pointing to the 

need for verification in larger studies. 

Interesting were also our analyses of the miR-17-92 cluster and its paralogs (Fig 6), showing a 

very different profile for children and adults. Behind the graphs in Fig 6, showing mean 

expression for each miR, there was considerable individual variation, except at the PreBII 

small stage were the expression was significantly higher in children. Still, the consistent 

expression pattern for all miR-17-92 cluster members in children and adults, respectively, is 
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intriguing. Moreover, several star-form species (miRs*), representing the less abundant strand 

of the hairpin pre-miR structure (42), were co-expressed with the dominant strand and 

differentially expressed at the PreBII large, PreBII small and Immature B cell stage. Ventura 

et al (43) has shown that absence of miR-17-92 inhibits B cell development at the ProB to 

PreB cell transition in mice, and causes increased apoptosis at this transit. Xiao et al (44) 

studied miR-17-92 gain-of-function and found that modest over-expression resulted in 

premature death of transgenic animals associated with lymphoproliferative disease and 

autoimmunity. The implications of our findings in humans clearly remain to be explored 

further. Functional analysis of this cluster combined with mRNAs changing inversely, did not 

yield any more information, and expression of known miR-17-92 targets did not change with 

age. 

Finally, functional analysis of the combined lists of mRNAs and microRNAs changing during 

precursor B cell differentiation, revealed enrichment for cellular growth, proliferation and 

cell cycle. Cell cycle regulation was among top canonical pathways indicating that this 

function differed significantly among the various maturation stages and/or age groups. Indeed, 

a detailed analysis of the differentiation step from PreBI to PreBII large cells, revealed that 

only in adults, there was enrichment for cell cycle, DNA replication, recombination and 

repair, indicating activation of different transcriptional programs in children and adults. 

Interestingly, this analysis generated in adult PreBII large cells, an extensive network 

connecting up-regulation of the differentiation inhibitor, ID2 and other mRNAs to decreased 

expression of several miRs known to be involved in hematopoiesis and cell cycle checkpoint 

control.  

Recently, e.g. a causal relationship has been described (15) linking down-regulation of the 

DLEU2/miR-15a/16-1 cluster to chronic lymphocytic leukemia, the most common B cell-

derived malignancy of adults. Of interest, miR-15a and miR-16-1* were 5.1 fold (p = 0.0070) 
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and 4.0 fold (p < 0.05) higher expressed, respectively, in pediatric PreBII small cells as 

compared to adults. Likewise, up-regulation of miR-210 has been associated with acute 

lymphocytic leukemia (14), the most common malignancy in children, and was 563 fold up (p 

= 0.0016) in pediatric PreBII small cells as compared to the adult counterpart.           

 In conclusion, mRNAs and microRNAs in five human precursor B cell subsets, show major 

differences in age- and stage-dependent profiles. They connect in functional molecular 

networks, involving apoptosis, cell cycle regulation and proliferation, with a major 

representation of molecular partners detected in this study. 
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Supplementary table II

Expression profiles of 1796 genes that were at least once differentially 
expressed between the various stages of maturation in

-4) 

Transcript Cluster ID Gene Symbol p-value

2883440 ADAM19 1,14E-20
3755862 IKZF3 1,61E-20
2524653 ADAM23 1,17E-19
3329983 PTPRJ 2,34E-19
2531233 SP140 5,22E-18
3041409 IGF2BP3 6,86E-18
2689286 KIAA1407 3,38E-17
3578152 TCL1A 2,03E-16
3926271 TMPRSS15 2,28E-16
3060117 ABCB4 3,61E-16
2439052 FCRL2 4,03E-16
3403092 PTPN6 4,65E-16
2445982 ANGPTL1 5,00E-16
3173673 PIP5K1B 6,95E-16
2388085 KMO 1,35E-15
2991395 HDAC9 2,27E-15
3516639 PCDH9 2,51E-15
2369339 RALGPS2 2,93E-15
2377283 CR2 3,95E-15
3982560 P2RY10 4,30E-15
2362201 CD1C 4,53E-15
3384321 RAB30 5,46E-15
2375706 ATP2B4 6,88E-15
3881651 HCK 7,15E-15
3151970 MTSS1 1,28E-14
2734421 ARHGAP24 1,57E-14
3968512 CLCN4 2,04E-14
2563785 IGK@ 2,06E-14
3921068 ETS2 2,10E-14
2688717 BTLA 2,67E-14
2444283 TNFSF4 3,48E-14
3924041 ADARB1 5,42E-14
3374934 MS4A6A 5,53E-14
3375307 CYBASC3 5,87E-14
3346548 BIRC3 5,98E-14
2667809 OSBPL10 6,19E-14
2860178 CD180 6,46E-14
3624513 MYO5C 6,85E-14
3268274 PLEKHA1 7,46E-14
2476671 RASGRP3 7,85E-14



3182984 NIPSNAP3B 8,84E-14
2982076 TAGAP 1,16E-13
2766492 C4orf34 1,21E-13
3581637 ADAM6 1,23E-13
3994846 MTMR1 1,25E-13
3449760 DENND5B 1,32E-13
2913694 CD109 1,80E-13
3824427 FAM129C 1,91E-13
3379452 C11orf24 1,94E-13
3332403 MS4A1 2,12E-13
3538893 PRKCH 2,30E-13
2363852 FCRLA 2,30E-13
2733483 BMP3 2,42E-13
2955282 SUPT3H 2,47E-13
3013255 PEG10 2,51E-13
3420442 IRAK3 2,54E-13
3685183 GGA2 2,70E-13
3331487 CTNND1 2,73E-13
3098977 LYN 2,76E-13
2748830 GUCY1A3 2,78E-13
3672489 IRF8 2,95E-13
3886704 STK4 3,67E-13
3887635 NCOA3 3,84E-13
2744734 MGST2 7,96E-13
3407096 PLEKHA5 9,42E-13
3985534 NGFRAP1 9,62E-13
3336486 C11orf80 1,05E-12
2453307 CD34 1,19E-12
3670918 PLCG2 1,23E-12
3517251 DACH1 1,32E-12
2461999 LYST 1,35E-12
3542847 SIPA1L1 1,89E-12
2722377 STIM2 2,13E-12
3239584 MYO3A 2,26E-12
3441849 TNFRSF1A 2,52E-12
2737596 BANK1 2,53E-12
2782545 CAMK2D 2,97E-12
3350775 SIDT2 2,98E-12
2389789 SCCPDH 3,17E-12
2841699 CPEB4 3,44E-12
2566848 AFF3 3,73E-12
2421995 GBP4 3,77E-12
3264621 TCF7L2 3,77E-12
3655109 CD19 3,98E-12
3907011 ADA 4,19E-12
2849992 FAM134B 4,25E-12
3319997 SWAP70 4,38E-12
3229797 QSOX2 4,44E-12
3685610 ARHGAP17 5,15E-12
3654175 IL4R 6,21E-12



2597867 IKZF2 6,26E-12
2735759 MMRN1 6,53E-12
2742224 SPRY1 6,80E-12
3040967 RAPGEF5 7,47E-12
3740201 MYO1C 7,56E-12
3918635 IFNGR2 7,79E-12
2373842 PTPRC 8,67E-12
2405250 FNDC5 9,13E-12
2902444 AIF1 9,71E-12
3178952 SYK 9,89E-12
3502710 TFDP1 1,00E-11
2764192 SEL1L3 1,05E-11
2973376 PTPRK 1,25E-11
3958399 1,27E-11
3397589 ETS1 1,31E-11
2635741 CD96 1,32E-11
3837731 EMP3 1,36E-11
2891341 IRF4 1,36E-11
3925639 NRIP1 1,41E-11
3802602 CDH2 1,43E-11
2664209 SH3BP5 1,45E-11
2792166 01.mar 1,46E-11
3035990 CARD11 1,48E-11
3874438 CDC25B 1,62E-11
3471327 HVCN1 1,72E-11
3301218 PDLIM1 1,78E-11
2475678 LBH 1,87E-11
2777487 FAM13A 1,91E-11
3204648 CD72 1,97E-11
2523620 2,04E-11
2438892 FCRL5 2,08E-11
2515627 ITGA6 2,14E-11
2727587 KIT 2,14E-11
3875642 PLCB1 2,16E-11
3839360 MYBPC2 2,29E-11
3876084 C20orf103 2,30E-11
2886595 LCP2 2,35E-11
2589868 CCDC141 2,65E-11
2593464 ANKRD44 2,70E-11
2912649 COL19A1 2,83E-11
3955815 HPS4 3,12E-11
3824874 IFI30 3,18E-11
2431112 NOTCH2 3,26E-11
2439101 FCRL1 3,31E-11
2687255 CBLB 3,49E-11
3621623 ELL3 3,70E-11
3210808 GNAQ 3,75E-11
2349129 S1PR1 3,81E-11
3474104 CIT 4,12E-11
2536531 FARP2 4,64E-11



2969406 SLC22A16 4,78E-11
2613293 KCNH8 4,85E-11
3775842 TYMS 5,00E-11
2665199 SATB1 5,06E-11
3352948 SORL1 5,11E-11
3931765 ERG 5,21E-11
2877028 KLHL3 5,24E-11
3442854 SLC2A3 5,37E-11
3244622 ALOX5 5,96E-11
3405032 ETV6 6,05E-11
2766893 APBB2 6,21E-11
3301782 OPALIN 6,27E-11
2939069 SERPINB6 6,51E-11
3253683 ZMIZ1 6,70E-11
3464983 ATP2B1 6,83E-11
3662387 HERPUD1 7,27E-11
3037344 DAGLB 7,33E-11
3245783 WDFY4 7,43E-11
2339872 ROR1 7,62E-11
3403595 CLEC4A 7,82E-11
2950145 HLA-DOB 8,58E-11
3381817 UCP2 1,02E-10
2692447 MYLK 1,05E-10
3457523 RNF41 1,06E-10
3766796 PECAM1 1,08E-10
2945741 FAM65B 1,14E-10
3973839 CYBB 1,16E-10
2531377 SP100 1,18E-10
3454223 RACGAP1 1,22E-10
3980560 KIF4A 1,28E-10
3509719 SPG20 1,30E-10
2363808 FCGR2B 1,36E-10
3803418 KLHL14 1,43E-10
3944690 CYTH4 1,63E-10
2734784 AFF1 1,63E-10
3765580 BRIP1 1,64E-10
3904691 SAMHD1 1,64E-10
3303165 DNMBP 1,67E-10
3556816 SLC7A7 1,74E-10
3772187 EPR1 1,77E-10
3683740 ACSM1 1,86E-10
3426502 PLXNC1 1,92E-10
3737874 BAHCC1 1,93E-10
3061805 SGCE 1,94E-10
3473083 MED13L 2,00E-10
2521278 CCDC150 2,02E-10
3829638 KIAA0355 2,06E-10
3340697 UVRAG 2,10E-10
3082531 FBXO25 2,13E-10
3821908 RNASEH2A 2,21E-10



2326463 CD52 2,28E-10
3744965 GAS7 2,31E-10
3377474 SYVN1 2,54E-10
2905327 FGD2 2,60E-10
3983154 ZNF711 2,66E-10
2638988 PARP15 2,69E-10
2676671 TKT 2,81E-10
3426257 SOCS2 2,86E-10
3141857 TPD52 3,20E-10
3615985 MTMR10 3,24E-10
2766192 TLR10 3,26E-10
2793137 SH3RF1 3,29E-10
3736290 BIRC5 3,30E-10
2897172 RNF144B 3,41E-10
2603051 SP110 3,62E-10
3431620 TCTN1 3,65E-10
2511820 PKP4 3,83E-10
3589697 BUB1B 4,01E-10
3414739 METTL7A 4,01E-10
3085990 BLK 4,20E-10
3815399 CNN2 4,29E-10
3286286 HNRNPF 4,43E-10
4001369 SCML2 4,61E-10
3978943 KLF8 5,03E-10
3228884 VAV2 5,95E-10
3773312 EIF4A3 6,22E-10
3231389 ZMYND11 6,42E-10
3556966 HAUS4 6,45E-10
2636695 ZDHHC23 6,47E-10
3744263 AURKB 6,58E-10
3669552 VAT1L 6,64E-10
2452405 NUAK2 6,72E-10
2825629 TNFAIP8 6,79E-10
2377229 CD55 6,84E-10
3303392 BLOC1S2 7,02E-10
3938792 VPREB1 7,49E-10
2920962 FIG4 7,60E-10
3512294 TSC22D1 7,65E-10
3919860 DOPEY2 7,68E-10
3811459 KDSR 7,77E-10
3401828 DYRK4 7,85E-10
3753568 SLFN13 8,08E-10
3202316 MOBKL2B 8,51E-10
3507282 FLT1 8,68E-10
3590341 CHP 8,99E-10
2944491 MBOAT1 9,15E-10
2715634 ADD1 9,30E-10
3811000 RNF152 9,34E-10
2514122 LASS6 9,52E-10
3278813 FAM107B 9,52E-10



3373845 SLC43A3 1,03E-09
3569814 ACTN1 1,04E-09
3651478 ACSM3 1,08E-09
3329343 MDK 1,09E-09
2366884 C1orf129 1,10E-09
2554975 BCL11A 1,15E-09
3178583 CKS2 1,18E-09
2822215 PAM 1,19E-09
2353988 FAM46C 1,23E-09
3315231 ECHS1 1,28E-09
3115008 TRIB1 1,28E-09
3786471 SETBP1 1,32E-09
3433747 RFC5 1,38E-09
3182957 NIPSNAP3A 1,39E-09
3994231 AFF2 1,39E-09
2876479 H2AFY 1,44E-09
2600689 EPHA4 1,46E-09
2452069 PIK3C2B 1,50E-09
2388794 ZNF238 1,59E-09
3333595 GNG3 1,63E-09
2737318 DAPP1 1,63E-09
3312490 MKI67 1,68E-09
3381377 FCHSD2 1,78E-09
3822849 CLEC17A 1,79E-09
3866898 LIG1 1,80E-09
3703112 GINS2 1,83E-09
3440598 FOXM1 1,85E-09
2520225 NAB1 1,86E-09
3648391 TNFRSF17 1,87E-09
2974413 MOXD1 1,87E-09
2486178 MEIS1 1,90E-09
3837132 SAE1 2,02E-09
2365210 UCK2 2,20E-09
3690154 NETO2 2,21E-09
3451375 PRICKLE1 2,23E-09
3401804 RAD51AP1 2,26E-09
2701033 P2RY14 2,28E-09
3974019 TSPAN7 2,30E-09
3838385 CD37 2,37E-09
3258444 CEP55 2,45E-09
2698565 TFDP2 2,45E-09
2957126 MCM3 2,55E-09
2823880 CAMK4 2,57E-09
3345222 AMOTL1 2,58E-09
3607537 FANCI 2,62E-09
3465409 BTG1 2,63E-09
3622436 SLC30A4 2,65E-09
2866225 MEF2C 2,70E-09
3726934 NME1 2,70E-09
3448152 ITPR2 2,73E-09



3442785 CLEC4C 2,74E-09
2999755 AEBP1 2,78E-09
2943874 KIF13A 2,83E-09
3861413 MAP4K1 2,84E-09
3383227 GAB2 2,85E-09
2371547 C1orf21 2,86E-09
2735221 PKD2 2,88E-09
2470165 TRIB2 2,89E-09

� ILF2 2,90E-09
3275922 PRKCQ 3,00E-09
3327143 RAG1 3,07E-09
2447148 RGS16 3,18E-09
3832978 ZFP36 3,22E-09
3057370 HIP1 3,25E-09
2378662 TRAF5 3,59E-09
3608113 IQGAP1 3,74E-09
3956589 XBP1 3,77E-09
3750785 SPAG5 3,89E-09
3712098 SNORD49A 3,93E-09
3968397 WWC3 3,98E-09
3507199 FLT3 4,02E-09
2570616 BUB1 4,02E-09
2868265 LIX1 4,06E-09
2395564 SLC2A5 4,09E-09
2523689 ABI2 4,11E-09
4013460 CYSLTR1 4,13E-09
2624291 PRKCD 4,25E-09
3463112 E2F7 4,36E-09
2463482 OPN3 4,38E-09
3417435 MYL6B 4,42E-09
3333226 FEN1 4,45E-09
3318009 RRM1 4,79E-09
3845647 MKNK2 4,81E-09
3666779 NFAT5 4,90E-09
2647458 RNF13 4,92E-09
2958325 DST 5,07E-09
3362795 RNF141 5,20E-09
3881443 TPX2 5,21E-09
3936913 CDC45 5,24E-09
2715076 WHSC1 5,25E-09
3235789 MCM10 5,33E-09
3599811 KIF23 5,56E-09
2838201 PTTG1 5,56E-09
3402571 NCAPD2 5,81E-09
2346934 MTF2 6,29E-09
3354799 CHEK1 6,32E-09
2750527 KLHL2 6,60E-09
3565663 DLGAP5 6,62E-09
3607510 FANCI 6,62E-09
3634071 TSPAN3 6,71E-09



3944147 MCM5 6,73E-09
3992408 FHL1 6,78E-09
3307939 ABLIM1 6,81E-09
3163728 CNTLN 7,05E-09
2664452 ANKRD28 7,06E-09
3972093 POLA1 7,11E-09
2345929 LRRC8C 7,30E-09
3515965 DIAPH3 7,45E-09
3227159 FNBP1 7,72E-09
2431886 PDE4DIP 7,80E-09
3427014 SNRPF 7,88E-09
3368707 CD59 8,16E-09
3373724 SSRP1 8,38E-09
2604254 HJURP 8,40E-09
3205293 PAX5 8,53E-09
3542145 KIAA0247 8,77E-09
3917851 SOD1 8,82E-09
3817698 UHRF1 8,92E-09
2991233 AHR 8,99E-09
2451200 UBE2T 9,09E-09
3555492 TMEM55B 9,12E-09
3577940 CLMN 9,12E-09
3639031 PRC1 9,21E-09
3131881 PPAPDC1B 9,41E-09
3653123 PRKCB 9,48E-09
3259503 DNTT 9,54E-09
2454444 NEK2 9,68E-09
2941784 NEDD9 9,76E-09
2774971 ANTXR2 9,78E-09
2408499 SCMH1 9,87E-09
4005392 BCOR 9,88E-09
3061319 CDK6 1,02E-08
3439178 PXMP2 1,02E-08
2478748 EML4 1,03E-08
3852880 EMR2 1,05E-08
3371719 CKAP5 1,06E-08
3220513 KIAA0368 1,06E-08
2320472 CLCN6 1,10E-08
3888721 PTPN1 1,10E-08
2964350 MDN1 1,12E-08
2933536 TULP4 1,13E-08
3975893 PHF16 1,16E-08
2656837 ST6GAL1 1,20E-08
3447694 BCAT1 1,21E-08
3319937 WEE1 1,23E-08
3728964 PRR11 1,23E-08
2974671 C6orf192 1,23E-08
3097152 MCM4 1,27E-08
3154263 SLA 1,27E-08
3010082 PHTF2 1,28E-08



3265432 FAM160B1 1,30E-08
2938972 SERPINB1 1,31E-08
3529908 NFATC4 1,37E-08
2378937 DTL 1,38E-08
2641667 IFT122 1,38E-08
3712041 UBB 1,38E-08
3082248 ESYT2 1,44E-08
3684039 CRYM 1,45E-08
3512948 C13orf18 1,45E-08
3427098 ELK3 1,46E-08
3625539 NEDD4 1,48E-08
3544678 TTLL5 1,51E-08
3043264 JAZF1 1,54E-08
3446868 LDHB 1,55E-08
2816459 F2R 1,56E-08
3629811 DENND4A 1,56E-08
3985615 TCEAL4 1,57E-08
2369325 C1orf220 1,60E-08
3795866 ENOSF1 1,60E-08
2947889 GABBR1 1,62E-08
3920003 CHAF1B 1,63E-08
3665116 CBFB 1,64E-08
3610804 IGF1R 1,67E-08
2796553 ACSL1 1,67E-08
3536336 CDKN3 1,68E-08
3817501 CHAF1A 1,69E-08
3689880 SHCBP1 1,69E-08
3341440 RN28S1 1,69E-08
3375545 FADS1 1,70E-08
3329904 NDUFS3 1,72E-08
2974469 STX7 1,73E-08
3624145 DMXL2 1,74E-08
4027585 MPP1 1,88E-08
3764738 SKA2 1,88E-08
2649824 SCHIP1 1,89E-08
2936657 CCR6 1,90E-08
3395416 HSPA8 1,92E-08
2475407 CLIP4 1,96E-08
2682088 EIF4E3 2,09E-08
2568630 TGFBRAP1 2,13E-08
2638676 EAF2 2,14E-08
3783529 DSG2 2,14E-08
3399545 NCAPD3 2,23E-08
3683806 ERI2 2,28E-08
3703665 ZCCHC14 2,28E-08
2971801 MAN1A1 2,29E-08
3980914 2,32E-08
3321512 PDE3B 2,41E-08
3863435 POU2F2 2,42E-08
3850069 DNMT1 2,44E-08



3751323 MYO18A 2,47E-08
3456630 CBX5 2,50E-08
2895945 2,50E-08
2882098 SPARC 2,51E-08
3960685 DMC1 2,51E-08
2450345 KIF14 2,57E-08
2939014 MGC39372 2,60E-08
3728037 SCPEP1 2,63E-08
3290210 ZWINT 2,64E-08
3683783 THUMPD1 2,66E-08
2954527 ZNF318 2,67E-08
3604147 KIAA1199 2,78E-08
3869030 SIGLEC10 2,80E-08
2775259 RASGEF1B 2,83E-08
3365776 E2F8 2,84E-08
2434129 HIST2H2AB 2,94E-08
2777564 FAM13A 2,94E-08
2484841 B3GNT2 2,94E-08
3916290 FLJ42200 3,01E-08
2788366 ZNF827 3,03E-08
2515933 ZAK 3,05E-08
2360700 RAG1AP1 3,08E-08
3176209 TLE4 3,22E-08
2486811 PLEK 3,24E-08
3046197 ELMO1 3,28E-08
3756193 TOP2A 3,32E-08
3435362 KNTC1 3,36E-08
3479181 POLE 3,36E-08
4015709 BTK 3,36E-08
3828112 CCNE1 3,45E-08
2827185 LMNB1 3,49E-08
3258910 HELLS 3,53E-08
3268669 BUB3 3,53E-08
3061997 PON2 3,57E-08
2508016 SPOPL 3,60E-08
3174816 ANXA1 3,61E-08
2790062 TMEM154 3,71E-08
3352503 ARHGEF12 3,73E-08
3980907 3,74E-08
2421121 ODF2L 3,81E-08
3896034 RASSF2 3,85E-08
2900372 ZNF193 3,89E-08
2964231 RRAGD 3,91E-08
2723997 KLF3 3,92E-08
4006841 SLC9A7 4,00E-08
3598959 SMAD3 4,06E-08
2443450 SELL 4,11E-08
3593147 DUT 4,16E-08
3142217 PAG1 4,25E-08

� HNRNPD 4,28E-08



3244539 ZNF22 4,33E-08
2813414 CCNB1 4,35E-08
2786732 MAML3 4,42E-08
3593575 SLC27A2 4,49E-08
2351854 C1orf162 4,57E-08
3852691 DDX39 4,59E-08
3074640 LUZP6 4,68E-08
3356115 APLP2 4,72E-08
2791197 PDGFC 4,72E-08
3168508 MELK 4,75E-08
3940631 ADRBK2 4,76E-08
3932131 PSMG1 4,79E-08
2319802 PGD 5,05E-08
3706753 GSG2 5,11E-08
3555340 TEP1 5,16E-08
4011743 SLC7A3 5,42E-08
3852565 ASF1B 5,56E-08
2376894 DYRK3 5,63E-08
3803120 B4GALT6 5,80E-08
3290746 SLC16A9 5,84E-08
2633256 ST3GAL6 5,84E-08

� HNRNPM 6,04E-08
3219621 CTNNAL1 6,08E-08
3367036 CCDC34 6,09E-08
2720251 NCAPG 6,16E-08
3801621 OSBPL1A 6,25E-08
3322775 LDHA 6,33E-08
3468103 GNPTAB 6,55E-08
2840626 6,56E-08
2775909 PLAC8 6,56E-08
3151534 ATAD2 6,65E-08
3109201 SPAG1 6,69E-08
2871717 CCDC112 6,70E-08
2601287 AP1S3 6,81E-08
3182781 SMC2 6,86E-08
2654967 B3GNT5 6,87E-08
3417309 PA2G4 6,93E-08
2784113 CCNA2 6,97E-08
3590014 CASC5 6,98E-08
2532894 DGKD 7,01E-08
3884324 CTNNBL1 7,03E-08
4052881 FAM72D 7,03E-08
3428268 GAS2L3 7,14E-08
3591704 WDR76 7,17E-08
2352743 DCLRE1B 7,26E-08
2536965 FLJ38379 7,30E-08
3301857 TM9SF3 7,31E-08
3417371 ESYT1 7,47E-08
2636125 CD200 7,54E-08
3340269 POLD3 7,55E-08



3488985 ITM2B 7,71E-08
3096575 HGSNAT 7,75E-08

� PARK7 7,77E-08
2418078 NEGR1 7,82E-08
2902178 TCF19 7,86E-08
3322251 NUCB2 7,88E-08
2824872 AP3S1 7,94E-08
2984884 RNASET2 8,14E-08
2688605 GCET2 8,24E-08
3204721 TPM2 8,38E-08
3839346 SPIB 8,48E-08
2608469 ITPR1 8,48E-08
3850660 SPC24 8,54E-08
3610958 IGF1R 8,64E-08
3630668 CALML4 8,75E-08
2358117 C1orf54 8,91E-08
3692895 NUDT21 8,92E-08
2867836 GLRX 8,94E-08
3724505 MYL4 8,97E-08
3385307 ME3 9,05E-08
3391816 USP28 9,07E-08
3742627 C17orf87 9,14E-08
2960399 C6orf155 9,26E-08
3417146 CDK2 9,30E-08
3751830 BLMH 9,36E-08
3209497 FAM108B1 9,43E-08
3927226 APP 9,45E-08
2516023 CDCA7 9,47E-08
3376976 RASGRP2 9,63E-08
3384270 PRCP 9,82E-08
3658925 ORC6L 9,89E-08
3989089 ZBTB33 9,99E-08
2724671 RHOH 1,00E-07
3664785 CKLF 1,02E-07
3565571 WDHD1 1,02E-07
2679014 NPCDR1 1,02E-07
3944046 HMGXB4 1,04E-07
2459042 CDC42BPA 1,04E-07
3023384 AHCYL2 1,05E-07
2640855 MCM2 1,06E-07
3131741 RAB11FIP1 1,06E-07
2777333 PPM1K 1,07E-07
3594031 TMOD2 1,11E-07
2494484 NCAPH 1,11E-07
3233049 AKR1C3 1,12E-07

� ILF2 1,14E-07
2612813 PLCL2 1,16E-07
3129149 PBK 1,17E-07
2619120 TRAK1 1,18E-07
3620590 ZFP106 1,19E-07



2950629 TAPBP 1,23E-07
2830638 KIF20A 1,23E-07
2610241 FANCD2 1,23E-07
3655628 KIF22 1,24E-07
3779950 C18orf1 1,25E-07
3553337 TRAF3 1,25E-07
3019981 MDFIC 1,27E-07
3197955 GLDC 1,29E-07
3583638 CYFIP1 1,30E-07
3178416 SPIN1 1,33E-07
2991150 TSPAN13 1,34E-07
3269939 DOCK1 1,37E-07
2858592 DEPDC1B 1,37E-07
2974635 VNN2 1,40E-07
3415857 ESPL1 1,41E-07
2460368 TTC13 1,43E-07
2826343 SNX24 1,44E-07
2678714 FHIT 1,44E-07
3590388 NUSAP1 1,44E-07
3597914 SNX22 1,45E-07
2968652 SESN1 1,46E-07
3333899 RARRES3 1,46E-07
3985523 WBP5 1,46E-07
2691575 POLQ 1,48E-07
2926969 PDE7B 1,48E-07
2699726 PLSCR1 1,49E-07
3225003 PSMB7 1,51E-07
3432556 DTX1 1,53E-07
2518583 DNAJC10 1,54E-07
3117384 KHDRBS3 1,56E-07
3952718 UFD1L 1,57E-07
3042919 HOXA9 1,58E-07
2780999 PAPSS1 1,59E-07
3382861 PAK1 1,60E-07
3699044 RFWD3 1,63E-07
3911217 PMEPA1 1,65E-07
3929931 ATP5O 1,66E-07
2412799 ORC1L 1,66E-07
3779579 TUBB6 1,68E-07
2615360 TGFBR2 1,68E-07
3203482 BAG1 1,69E-07
3203753 UBAP2 1,71E-07
3638760 IDH2 1,72E-07
2881860 CCDC69 1,75E-07
3147508 KLF10 1,76E-07
3078348 EZH2 1,78E-07
3790259 MALT1 1,78E-07
2449559 ASPM 1,83E-07

� HNRNPM 1,84E-07
3408505 LRMP 1,85E-07



4011844 IL2RG 1,87E-07
2895841 CD83 1,90E-07
3550139 TCL1B 1,90E-07
3454006 FMNL3 1,90E-07
3980904 1,91E-07
3632037 PARP6 1,93E-07
3911767 CTSZ 1,93E-07
4000944 RBBP7 1,96E-07
2539869 YWHAQ 1,97E-07
3703129 C16orf74 1,99E-07
3854218 HAUS8 2,00E-07
3226097 ENG 2,02E-07
3834502 CD79A 2,05E-07
3608220 CRTC3 2,05E-07
2395490 ENO1 2,06E-07
2939593 PECI 2,07E-07
3861948 GMFG 2,08E-07
3401704 CCND2 2,10E-07
2830861 EGR1 2,11E-07
2331213 MACF1 2,11E-07
2531310 SP140L 2,14E-07
2838598 CCNG1 2,16E-07
3738901 NARF 2,16E-07
3484641 BRCA2 2,16E-07
2872047 SEMA6A 2,16E-07
3590086 RAD51 2,20E-07
4044363 CNR2 2,23E-07
2899756 HIST1H2AG 2,28E-07
2770469 IGFBP7 2,39E-07
2428501 SLC16A1 2,40E-07
3747717 COPS3 2,44E-07
3762149 PPP1R9B 2,46E-07
3432438 OAS1 2,47E-07
3629103 KIAA0101 2,50E-07
2620256 KIF15 2,53E-07
3473750 VSIG10 2,54E-07
2925510 L3MBTL3 2,57E-07
3203855 DCAF12 2,58E-07
2577896 MCM6 2,61E-07
2444842 KIAA0040 2,61E-07

� CANX 2,63E-07
2545811 PPM1G 2,64E-07
3529609 PSME1 2,65E-07
2657981 CCDC50 2,70E-07
3494137 LMO7 2,74E-07
2742985 PLK4 2,76E-07
2566414 MGAT4A 2,76E-07

� PSMB2 2,83E-07
2652675 ECT2 2,84E-07
3513096 ESD 2,88E-07



2334646 RAD54L 2,90E-07
3758317 BRCA1 2,90E-07
3865568 SNRPD2 2,91E-07
3291435 RTKN2 2,91E-07
3150715 DSCC1 2,97E-07
3548050 PRO1768 3,05E-07
3882012 DNMT3B 3,06E-07
2625907 FLNB 3,15E-07
2663396 IQSEC1 3,20E-07
3747657 FLCN 3,24E-07
3555300 CCNB1IP1 3,27E-07
3607698 C15orf42 3,28E-07
2997376 ANLN 3,28E-07
2964553 BACH2 3,34E-07
3340410 NEU3 3,40E-07
3868681 KLK1 3,41E-07
2401448 E2F2 3,42E-07
3428845 C12orf48 3,55E-07
3783723 RNF125 3,62E-07
3607927 SEMA4B 3,64E-07
3176999 RMI1 3,65E-07
3080283 XRCC2 3,66E-07
4022032 RAP2C 3,69E-07
2806517 SKP2 3,71E-07
3291601 EGR2 3,79E-07
3587457 ARHGAP11A 3,81E-07
3861272 PPP1R14A 3,87E-07
2949118 LTB 3,90E-07
3137875 GGH 3,96E-07
3505937 CENPJ 3,97E-07
2726072 ATP10D 4,01E-07
2902707 HSPA1A 4,18E-07
3075932 PARP12 4,22E-07
2754538 SLC25A4 4,25E-07
2421883 GBP1 4,28E-07
3896200 PCNA 4,38E-07
2864449 SERINC5 4,40E-07
2908762 RUNX2 4,49E-07
2502821 DBI 4,55E-07
3367338 KIF18A 4,56E-07
2921086 CDC40 4,61E-07
3382216 ARRB1 4,63E-07
3887302 CD40 4,66E-07
2810764 GAPT 4,66E-07
3139722 NCOA2 4,67E-07
3609138 CHD2 4,70E-07
3806253 ATP5A1 4,71E-07
3311269 FAM53B 4,76E-07
3147985 LRP12 4,77E-07
3144973 RAD54B 4,82E-07



3720896 CDC6 4,85E-07
2352758 HIPK1 4,93E-07
3880827 GINS1 4,94E-07
3458133 PRIM1 4,94E-07
3527418 PARP2 5,00E-07
2423175 FAM69A 5,03E-07
3919952 MORC3 5,04E-07
2365958 MPZL1 5,04E-07
2537109 SH3YL1 5,08E-07
3946615 EP300 5,08E-07
3189617 RALGPS1 5,14E-07
3441955 MRPL51 5,16E-07
3938384 MIR650 5,20E-07
2842101 SFXN1 5,23E-07
3885464 TOP1 5,24E-07
2458701 ACBD3 5,25E-07
2748198 KIAA0922 5,26E-07
2747190 DCLK2 5,27E-07
3201277 KLHL9 5,27E-07
3183604 ZNF462 5,31E-07
3984655 CENPI 5,31E-07
3333942 RTN3 5,40E-07
3686080 NSMCE1 5,42E-07
2388219 EXO1 5,47E-07
3642572 SNRNP25 5,51E-07
3457315 WIBG 5,55E-07
3968122 TBL1X 5,64E-07
2571457 CKAP2L 5,65E-07
3199790 PSIP1 5,78E-07
3809826 ATP8B1 5,84E-07
2714955 TACC3 5,88E-07
3091077 DPYSL2 5,94E-07
2491661 VAMP8 5,97E-07
3216319 ZNF367 6,00E-07
3203962 KIF24 6,03E-07
3258221 HHEX 6,05E-07
3904747 RBL1 6,08E-07
3881874 ASXL1 6,12E-07
2500919 SLC20A1 6,24E-07
3369931 RAG2 6,30E-07

� PSMB2 6,36E-07
� NDUFA2 6,36E-07

3848689 ELAVL1 6,42E-07
3046708 TRGV3 6,44E-07
3473331 C12orf49 6,48E-07
3735752 SEC14L1 6,57E-07
2853388 C5orf33 6,61E-07
2461891 B3GALNT2 6,61E-07
2474161 AGBL5 6,75E-07
2898597 GMNN 6,75E-07



3457824 TIMELESS 6,82E-07
2469252 RRM2 6,82E-07
3557947 CHMP4A 6,93E-07
2833623 HMHB1 6,95E-07
3331926 FAM111A 6,97E-07
3929775 DONSON 7,05E-07
2517408 AGPS 7,18E-07
3145107 CCNE2 7,48E-07

� HNRNPM 7,50E-07
3461341 CPM 7,55E-07
2730673 MOBKL1A 7,69E-07
2436145 7,74E-07
2900059 HIST1H2BM 7,78E-07
3234140 ATP5C1 7,85E-07
3331822 GLYATL1 7,86E-07
3390180 KDELC2 8,11E-07
3304475 ARL3 8,12E-07
2522693 CASP10 8,12E-07
2604390 ARL4C 8,17E-07
2999544 BLVRA 8,17E-07
2653932 MFN1 8,19E-07
3770743 GRB2 8,36E-07
2411228 STIL 8,41E-07

� HNRNPM 8,42E-07
4007617 PIM2 8,49E-07
3618736 RASGRP1 8,51E-07
2696252 RYK 8,54E-07
3010439 GNAI1 8,55E-07
3008164 LAT2 8,58E-07
2458513 TMEM63A 8,62E-07
2523354 FAM117B 8,62E-07
2890413 RNF130 8,70E-07
2769063 USP46 8,82E-07
3518496 MYCBP2 8,83E-07

� CANX 8,87E-07
3532393 KIAA0391 8,95E-07
3075550 ZC3HAV1L 8,99E-07
3090697 CDCA2 9,01E-07
3094778 TACC1 9,22E-07
2379863 CENPF 9,24E-07
2434575 CTSS 9,25E-07
3309383 PRDX3 9,34E-07
2914777 TTK 9,37E-07

� PSMB2 9,40E-07
3204463 FANCG 9,55E-07
2523213 BMPR2 9,68E-07
3967689 STS 9,76E-07
3339423 INPPL1 9,77E-07
3923436 TRAPPC10 9,82E-07
3254488 C10orf58 9,83E-07



2950263 HLA-DMB 9,98E-07
2354634 PHGDH 1,01E-06
2934308 IGF2R 1,01E-06
3140478 C8orf84 1,02E-06
3815165 PTBP1 1,02E-06
2463515 CHML 1,04E-06
3687342 HIRIP3 1,04E-06
2708922 IGF2BP2 1,04E-06
3563861 CDKL1 1,05E-06
2384788 GALNT2 1,05E-06
3203935 KIF24 1,07E-06
3031533 GIMAP4 1,07E-06
3075136 CREB3L2 1,07E-06
3258168 KIF11 1,08E-06
3799542 CEP76 1,08E-06
3110217 BAALC 1,09E-06
3772719 LGALS3BP 1,12E-06
3063685 MCM7 1,13E-06
2364438 NUF2 1,14E-06
2343025 AK5 1,15E-06
2713555 KIAA0226 1,16E-06
3910785 AURKA 1,16E-06
3204202 DCTN3 1,17E-06
3555906 1,17E-06
2473991 CENPA 1,20E-06
2648677 MME 1,21E-06
3755903 GSDMB 1,25E-06
3537164 PELI2 1,25E-06
4021341 ZDHHC9 1,25E-06
2738723 HADH 1,28E-06
3555896 1,28E-06
2353773 TTF2 1,30E-06
3294280 DNAJC9 1,30E-06
3818732 ARHGEF18 1,30E-06
3136888 TOX 1,31E-06
2378369 HHAT 1,31E-06
3413950 SPATS2 1,31E-06
3737338 RNF213 1,31E-06
3779684 PSMG2 1,33E-06
3717452 SH3GL1P1 1,33E-06
2318746 1,34E-06
3741547 P2RX5 1,35E-06
2899768 HIST1H4I 1,36E-06
3875908 PLCB4 1,37E-06
3458033 ATP5B 1,37E-06
2708610 MAGEF1 1,37E-06
3094980 HTRA4 1,38E-06
3198346 PTPRD 1,39E-06
2798915 TRIP13 1,39E-06
2585701 STK39 1,42E-06



3845868 LSM7 1,46E-06
3776193 SMCHD1 1,47E-06
3228007 SETX 1,47E-06
3274361 KLF6 1,47E-06
3976670 EBP 1,48E-06
3781082 SNRPD1 1,49E-06
3804358 C18orf10 1,49E-06
3677175 1,51E-06
3134034 PRKDC 1,52E-06
2340186 RAVER2 1,53E-06
3183111 SLC44A1 1,53E-06
2835960 G3BP1 1,54E-06
3545525 C14orf156 1,55E-06
3776139 NDC80 1,55E-06
2330773 CDCA8 1,56E-06
2946208 HIST1H4B 1,57E-06
3902489 BCL2L1 1,58E-06
3653072 PLK1 1,58E-06
3904566 DSN1 1,60E-06
3351385 MLL 1,60E-06
2480992 MSH2 1,60E-06
3590853 CAPN3 1,62E-06
3810472 LMAN1 1,62E-06
3945545 APOBEC3B 1,64E-06
2870889 C5orf13 1,67E-06
3580498 CDC42BPB 1,70E-06
3874900 CDS2 1,70E-06
3430926 UNG 1,71E-06
2706791 ZMAT3 1,72E-06
3651509 ERI2 1,73E-06
2751936 GALNT7 1,76E-06
3435853 TMED2 1,76E-06
3458783 CDK4 1,77E-06
2987441 EIF3B 1,81E-06
3048869 H2AFV 1,82E-06
3427767 TMPO 1,82E-06
3751524 ABHD15 1,85E-06
3374402 LPXN 1,85E-06
2763278 GPR125 1,85E-06
2567583 RNF149 1,87E-06
2519229 ITGAV 1,87E-06
3556323 SUPT16H 1,88E-06
2761842 PROM1 1,89E-06
3175119 OSTF1 1,90E-06
3422144 LGR5 1,91E-06
3714177 CYTSB 1,94E-06
3683037 ARL6IP1 1,95E-06
3240987 MAP3K8 1,95E-06
2717165 TBC1D14 1,95E-06
2421000 COL24A1 1,97E-06



3359469 NAP1L4 1,97E-06
3882069 MAPRE1 1,98E-06
2522212 SGOL2 1,99E-06
2780172 CENPE 2,00E-06
3679959 EMP2 2,00E-06
2686023 DCBLD2 2,00E-06
3903146 E2F1 2,00E-06
3409211 PPFIBP1 2,04E-06
2361342 SEMA4A 2,04E-06
3939125 GNAZ 2,05E-06
2319832 APITD1 2,07E-06

� SLC25A3 2,07E-06
3470037 PRDM4 2,08E-06
3236448 SUV39H2 2,08E-06
3316208 TALDO1 2,08E-06
3598430 SLC24A1 2,09E-06
2598099 BARD1 2,10E-06
2372858 RGS2 2,13E-06
3619945 OIP5 2,14E-06
3293762 PSAP 2,14E-06
3941793 KREMEN1 2,14E-06
3490655 CKAP2 2,14E-06
2544662 DNMT3A 2,18E-06
2899206 HIST1H2BF 2,21E-06

� ERH 2,22E-06
3041875 OSBPL3 2,22E-06

� ILF2 2,23E-06
3469319 APPL2 2,25E-06
2520138 MFSD6 2,29E-06
2599371 TMBIM1 2,31E-06
2686787 2,31E-06
3245881 WDFY4 2,32E-06
2959039 KHDRBS2 2,36E-06
2654023 ACTL6A 2,37E-06
3442322 CDCA3 2,41E-06
3587015 KLF13 2,41E-06
2340961 IL12RB2 2,42E-06
3959918 TST 2,44E-06
3146103 STK3 2,45E-06
3372209 PSMC3 2,46E-06
3528895 LRP10 2,47E-06

� SLC25A3 2,48E-06
3504617 SKA3 2,49E-06
3433796 PEBP1 2,50E-06
2571510 IL1B 2,52E-06
2505529 PTPN18 2,53E-06
3377423 CDCA5 2,53E-06
2842429 C5orf25 2,53E-06
3949055 GTSE1 2,54E-06
3223928 STOM 2,56E-06



2840640 2,57E-06
3968664 HCCS 2,58E-06
2436160 2,60E-06
3921391 WRB 2,60E-06
2843619 HNRNPAB 2,63E-06
2436132 ILF2 2,64E-06
2402459 STMN1 2,64E-06
2361154 SYT11 2,67E-06
2687979 KIAA1524 2,69E-06
3757329 JUP 2,70E-06
3278234 SEPHS1 2,71E-06
2549260 MAP4K3 2,73E-06
3204928 HINT2 2,74E-06
3707990 TXNDC17 2,77E-06
3076340 BRAF 2,78E-06
2489228 WDR54 2,84E-06
3433466 NCRNA00173 2,85E-06
3807569 ACAA2 2,88E-06
3778252 ANKRD12 2,89E-06

� CANX 2,95E-06
� SLC25A3 2,96E-06

3626826 MYO1E 2,97E-06
2838656 HMMR 2,97E-06
3970833 PDHA1 3,01E-06
3066496 ATXN7L1 3,01E-06
3450655 CPNE8 3,01E-06
3153428 ASAP1 3,02E-06
3487095 DGKH 3,02E-06
2334098 KIF2C 3,03E-06
2413519 HSPB11 3,08E-06
3818547 VAV1 3,09E-06
3980916 3,12E-06
2406420 CLSPN 3,16E-06
3808600 MBD2 3,19E-06
3693837 GOT2 3,19E-06
3452818 VDR 3,20E-06
3043165 HIBADH 3,24E-06
3404436 CLEC2D 3,29E-06
3535674 C14orf166 3,30E-06
3334224 STIP1 3,32E-06
3531479 ARHGAP5 3,36E-06
3523855 C13orf27 3,39E-06
2466141 ACP1 3,41E-06
2907173 HCRP1 3,42E-06
2772566 IGJ 3,44E-06
3884892 FAM83D 3,45E-06
3441941 VAMP1 3,45E-06
3337168 GSTP1 3,46E-06
3457752 STAT2 3,46E-06

� ILF2 3,49E-06



2904563 DEF6 3,57E-06
2452977 FAIM3 3,58E-06
2818035 CKMT2 3,59E-06
3334125 COX8A 3,60E-06
2616166 CRTAP 3,62E-06
3945133 POLR2F 3,63E-06
2377035 IL24 3,65E-06
3781734 C18orf8 3,67E-06
2752725 NEIL3 3,69E-06
3318443 TRIM22 3,70E-06
3591281 TMEM62 3,71E-06
3326183 CAPRIN1 3,72E-06
3248289 CDK1 3,75E-06
3302187 ARHGAP19 3,76E-06
2481142 MSH6 3,77E-06
2553771 CCDC88A 3,80E-06
3954206 YPEL1 3,81E-06
2364677 PBX1 3,84E-06
2968295 3,86E-06
3362468 SBF2 3,89E-06
3986230 CXorf57 3,91E-06
3379644 CPT1A 3,91E-06
2748163 MND1 3,95E-06
3826542 ZNF738 3,97E-06
3757970 PSMC3IP 3,98E-06
3716893 ATAD5 4,01E-06
3859915 U2AF1L4 4,01E-06
2893392 LY86 4,01E-06
3066297 SRPK2 4,02E-06
2436338 CRTC2 4,07E-06
3593339 GALK2 4,07E-06
2371065 LAMC1 4,13E-06
3850261 ICAM3 4,17E-06
3619326 PLCB2 4,18E-06
3377895 4,22E-06
4026902 NAA10 4,22E-06
2583014 BAZ2B 4,24E-06
2585933 SPC25 4,26E-06
3836760 PPP5C 4,26E-06
3489350 CDADC1 4,30E-06
3250146 SRGN 4,31E-06
3660213 CYLD 4,32E-06
2634091 NFKBIZ 4,43E-06
3422231 TMEM19 4,50E-06
2784687 ANKRD50 4,51E-06
3845365 TCF3 4,52E-06
3943207 YWHAH 4,55E-06
3378790 PPP1CA 4,56E-06
3137530 ASPH 4,56E-06
3082181 NCAPG2 4,58E-06



2673873 IMPDH2 4,64E-06
3624607 MYO5A 4,65E-06
3707642 RABEP1 4,67E-06
2859667 CENPK 4,67E-06
3886223 MYBL2 4,67E-06
3377044 SF1 4,69E-06
2367743 PRDX6 4,72E-06
3149528 TRPS1 4,79E-06
3648247 C16orf75 4,80E-06
3410384 C12orf35 4,81E-06
2396781 MAD2L2 4,85E-06
2901913 TUBB 4,89E-06
3864445 XRCC1 4,91E-06
2440258 SLAMF6 4,94E-06
3285926 ZNF37B 4,95E-06
2440549 ARHGAP30 4,96E-06
2743315 PHF17 4,99E-06
3548152 TDP1 5,00E-06
3409605 FAR2 5,01E-06
2777276 ABCG2 5,02E-06
3799615 PTPN2 5,02E-06
3380996 C11orf51 5,05E-06
3597603 USP3 5,05E-06
3695268 NAE1 5,05E-06
2509557 ACVR2A 5,08E-06
2993654 5,08E-06
2954022 TRERF1 5,10E-06
3534785 PPIL5 5,11E-06
3881824 KIF3B 5,14E-06
2950167 TAP2 5,16E-06
4016396 TCEAL8 5,21E-06
3824471 GLT25D1 5,24E-06
2335922 CDKN2C 5,25E-06
2808748 PARP8 5,25E-06
2345617 PKN2 5,26E-06
2836518 GALNT10 5,26E-06
2588127 ATP5G3 5,30E-06
3390542 RDX 5,35E-06
2427720 DRAM2 5,44E-06
3362124 TMEM9B 5,45E-06
3413875 TROAP 5,54E-06
3107606 DPY19L4 5,56E-06
3651018 CP110 5,60E-06
3536706 LGALS3 5,67E-06
3133479 RNF170 5,67E-06
2436143 5,68E-06
3929038 C21orf45 5,73E-06
3625761 MNS1 5,80E-06
3386737 C11orf75 5,81E-06
2608725 BHLHE40 5,83E-06



� SLC25A3 5,90E-06
2776372 WDFY3 5,91E-06
3748798 MFAP4 5,96E-06
3419849 TBK1 5,99E-06
3662265 NUP93 5,99E-06
3383138 NDUFC2 6,06E-06
2553282 PSME4 6,07E-06
2669888 GORASP1 6,09E-06
3571553 C14orf43 6,16E-06
3237788 PLXDC2 6,23E-06
3377892 6,27E-06
3114064 WDR67 6,29E-06
3413278 TMEM106C 6,31E-06
2674762 UBA7 6,34E-06
2400373 EIF4G3 6,34E-06
3216931 C9orf156 6,37E-06
3180957 HABP4 6,39E-06
2766122 FLJ13197 6,40E-06
2715820 HTT 6,43E-06
3134922 PCMTD1 6,44E-06
3667281 SF3B3 6,53E-06
3663228 GINS3 6,58E-06
2754582 SNX25 6,60E-06
3918447 IFNAR2 6,68E-06
3606304 AKAP13 6,72E-06
3239891 PDSS1 6,75E-06
2332144 CTPS 6,86E-06
3181976 NR4A3 6,96E-06
2903588 PFDN6 6,97E-06
3096092 IKBKB 6,97E-06
4013828 HMGN5 7,00E-06
2975655 FAM54A 7,17E-06
3429676 7,18E-06
2398894 RCC2 7,23E-06
3564790 ERO1L 7,33E-06
2540157 ODC1 7,39E-06
3066751 SYPL1 7,41E-06
2334404 NASP 7,55E-06
2353477 ATP1A1 7,60E-06
2766262 TLR6 7,65E-06
3758148 CCDC56 7,65E-06
3624448 GNB5 7,70E-06
3595979 CCNB2 7,71E-06
2953866 CCND3 7,74E-06
3373946 TIMM10 7,75E-06
2946364 HIST1H3F 7,86E-06
2591421 TFPI 7,92E-06
3315217 C10orf125 7,97E-06
3955327 C22orf13 7,99E-06
3752258 EVI2B 8,07E-06



2440295 CD84 8,07E-06
3608298 BLM 8,09E-06
2875348 IRF1 8,11E-06
3821603 ZNF844 8,18E-06
2947081 HIST1H4L 8,19E-06
3429754 KIAA1033 8,19E-06
3507710 SLC7A1 8,24E-06
3056044 BAZ1B 8,30E-06
3728776 RAD51C 8,32E-06
2503109 EPB41L5 8,33E-06
3346584 BIRC2 8,34E-06
3619178 8,35E-06
3335907 SF3B2 8,38E-06
3469865 CRY1 8,45E-06
2949971 C6orf10 8,48E-06
3485074 RFC3 8,48E-06
3129948 TMEM66 8,54E-06
3581515 BRF1 8,54E-06
2681753 FOXP1 8,69E-06
2508520 KYNU 8,71E-06
2730714 DCK 8,72E-06
2923359 ASF1A 8,74E-06
2574646 BIN1 8,77E-06
3513549 RCBTB2 8,80E-06
3706700 CTNS 8,80E-06
3936167 CECR2 8,83E-06
3763270 MMD 8,97E-06
3654227 IL21R 9,20E-06
2820925 RHOBTB3 9,21E-06
3458551 ARHGAP9 9,31E-06
3597476 RAB8B 9,31E-06
3478333 RIMBP2 9,34E-06
3222144 TNFSF8 9,37E-06
2987410 NUDT1 9,42E-06
2436283 DENND4B 9,51E-06
2970532 HDAC2 9,59E-06
3183012 LOC286367 9,62E-06
3168700 ZCCHC7 9,66E-06
3674559 DEF8 9,68E-06
3589141 SPRED1 9,79E-06
2716713 STK32B 9,79E-06
3920385 TTC3 9,89E-06
3819585 1,00E-05
3737274 RNF213 1,00E-05
3061456 SAMD9L 1,02E-05
3563395 POLE2 1,02E-05
2664760 DAZL 1,02E-05
3571059 DPF3 1,02E-05
2585129 GALNT3 1,02E-05
3927392 CYYR1 1,03E-05



3376560 ATL3 1,03E-05
2997907 EPDR1 1,04E-05
3435681 ARL6IP4 1,04E-05
2799184 NDUFS6 1,04E-05
3444820 LRP6 1,05E-05
3414561 DIP2B 1,05E-05
2380055 KCTD3 1,06E-05
2766289 TMEM156 1,06E-05
3311775 DHX32 1,07E-05
2733748 1,07E-05
3449910 AMN1 1,07E-05
3403841 RIMKLB 1,08E-05
3980892 1,09E-05
3476097 CDK2AP1 1,09E-05
2461473 TARBP1 1,09E-05
3335029 POLA2 1,09E-05
2434776 CDC42SE1 1,09E-05
3576284 RPS6KA5 1,10E-05
3770606 HN1 1,11E-05
2724853 NSUN7 1,11E-05
2709606 RPL39L 1,11E-05
2835792 GM2A 1,11E-05
3224591 STRBP 1,12E-05
3175494 GCNT1 1,12E-05
2969886 FYN 1,12E-05
2464909 SMYD3 1,13E-05
2346399 CDC7 1,13E-05
3456732 ITGA5 1,14E-05
3304746 USMG5 1,15E-05
2352106 CTTNBP2NL 1,16E-05
2406722 LSM10 1,16E-05
3782069 1,18E-05
3679533 CARHSP1 1,20E-05
3781429 RBBP8 1,20E-05
3429857 C12orf75 1,21E-05
2827388 PRRC1 1,22E-05
2853325 UGT3A2 1,22E-05
2674258 1,22E-05
3301713 BLNK 1,23E-05
3621140 LCMT2 1,24E-05
3087501 ZDHHC2 1,24E-05
3724591 C17orf57 1,25E-05
2831350 CXXC5 1,25E-05
2366581 SCYL3 1,27E-05
2376849 RASSF5 1,28E-05
2704143 WDR49 1,28E-05
3568667 MAX 1,28E-05
2735598 TIGD2 1,28E-05
2968377 1,28E-05
3633522 SNUPN 1,29E-05



3416485 1,29E-05
2458921 ITPKB 1,29E-05
3550077 GLRX5 1,29E-05
2461717 TOMM20 1,30E-05
3642390 TARSL2 1,33E-05
3581221 AHNAK2 1,34E-05
2957596 ELOVL5 1,34E-05
3631964 PKM2 1,34E-05
2575196 SAP130 1,34E-05
3752271 EVI2A 1,35E-05
3390860 POU2AF1 1,35E-05
3743962 LSMD1 1,35E-05
2680819 SUCLG2 1,36E-05
2991103 BZW2 1,36E-05
3744463 MYH10 1,36E-05
3431892 SH2B3 1,36E-05
3984907 ARMCX1 1,37E-05
2798538 SDHA 1,38E-05
3275274 1,39E-05
2927967 C6orf115 1,39E-05
2438482 ISG20L2 1,39E-05
3008108 LIMK1 1,41E-05
2635349 TRAT1 1,41E-05
3934407 ICOSLG 1,42E-05
2325002 KDM1A 1,42E-05
3725392 CALCOCO2 1,43E-05
2829337 PHF15 1,45E-05
3190035 CDK9 1,46E-05
3845899 TIMM13 1,46E-05
3888133 CSE1L 1,47E-05
2924253 RNF217 1,47E-05
3214451 NFIL3 1,52E-05
3240012 MASTL 1,53E-05
3991109 MST4 1,53E-05
2326410 CCDC21 1,53E-05
2588889 LOC100130691 1,55E-05
2436157 1,56E-05
3105430 LRRCC1 1,57E-05
2709486 RFC4 1,58E-05
2676518 SFMBT1 1,58E-05
2650199 SMC4 1,59E-05
2625606 APPL1 1,59E-05
2688180 DPPA4 1,61E-05
3384718 DLG2 1,61E-05
3497790 IPO5 1,62E-05
3580947 C14orf2 1,63E-05
2719656 CD38 1,64E-05
3293280 PPA1 1,65E-05
3150844 SNTB1 1,65E-05
2558150 AAK1 1,67E-05



3934111 SIK1 1,69E-05
2495446 INPP4A 1,71E-05
3706000 RPA1 1,72E-05
2947077 HIST1H3I 1,73E-05
2417528 DEPDC1 1,74E-05
3556322 1,76E-05
2946369 HIST1H3G 1,77E-05

� PARK7 1,77E-05
3028977 GSTK1 1,78E-05
3421523 YEATS4 1,81E-05
2833286 ARHGAP26 1,82E-05
3870824 LAIR1 1,82E-05
3960478 CSNK1E 1,84E-05
2998404 RALA 1,84E-05
3948047 PARVG 1,85E-05
2705266 TNIK 1,85E-05
3617312 SLC12A6 1,85E-05
3246372 NCOA4 1,85E-05
3154398 ST3GAL1 1,87E-05
4026263 CETN2 1,88E-05
3030285 CUL1 1,88E-05
3430331 RIC8B 1,89E-05
3623865 SPPL2A 1,90E-05
2780099 NHEDC2 1,92E-05
2920906 SMPD2 1,93E-05
2867443 MCTP1 1,94E-05
3591838 CASC4 1,95E-05
3555898 1,95E-05
2933331 SNX9 1,96E-05
2440354 CD48 1,96E-05
2601648 DOCK10 1,96E-05
3555885 1,96E-05
3329649 DDB2 1,97E-05
3858794 CCDC123 1,97E-05
3788833 POLI 1,98E-05
2549565 SLC8A1 2,01E-05
3980912 2,02E-05
3628650 HERC1 2,04E-05
2902427 LST1 2,06E-05
3428671 CHPT1 2,07E-05
3944243 APOL6 2,08E-05
2796847 LRP2BP 2,09E-05
3782166 IMPACT 2,09E-05
2709778 BCL6 2,09E-05
2560254 AUP1 2,09E-05

� ILF2 2,10E-05
3311715 UROS 2,12E-05
3988987 NDUFA1 2,13E-05
2518272 ITGA4 2,14E-05
3971219 CNKSR2 2,15E-05



2833078 NDFIP1 2,15E-05
3374856 MRPL16 2,16E-05
2825514 DMXL1 2,17E-05
3527662 RNASE6 2,20E-05
2639874 UMPS 2,21E-05
3829751 PDCD2L 2,23E-05
3227696 RAPGEF1 2,25E-05
2635263 DZIP3 2,28E-05
3250699 EIF4EBP2 2,28E-05
3959350 APOL3 2,29E-05
2910364 TMEM14A 2,29E-05
3555088 KIAA0125 2,30E-05
3279108 NMT2 2,31E-05
3860277 POLR2I 2,31E-05
2452667 RAB7L1 2,34E-05
3666601 SNTB2 2,35E-05
3031556 GIMAP2 2,36E-05
4009238 SMC1A 2,36E-05
3894047 PCMTD2 2,37E-05
3882720 RALY 2,38E-05
3175971 PSAT1 2,40E-05
2534354 LRRFIP1 2,41E-05
3082590 LOC286161 2,43E-05
2741768 EXOSC9 2,43E-05
3718930 CCL4 2,43E-05
2449693 DENND1B 2,47E-05
3091699 PNOC 2,49E-05
3224556 C9orf45 2,52E-05
2654394 FXR1 2,54E-05
2423017 EVI5 2,55E-05
3890154 CSTF1 2,55E-05
3994915 HMGB3 2,56E-05
3508330 HSPH1 2,59E-05
2320762 VPS13D 2,61E-05
3603408 PSMA4 2,61E-05
3221646 POLE3 2,62E-05
3204680 SIT1 2,64E-05
3050609 COBL 2,64E-05
3887049 UBE2C 2,70E-05
2904270 UHRF1BP1 2,70E-05
3751002 RAB34 2,70E-05
3406493 DERA 2,70E-05
3257670 PCGF5 2,71E-05
3946563 RBX1 2,71E-05
2675998 TLR9 2,72E-05
3623320 SECISBP2L 2,72E-05
3470549 CORO1C 2,73E-05
2807886 FBXO4 2,74E-05
3751121 FLOT2 2,75E-05
3538213 DAAM1 2,76E-05



2857416 IL6ST 2,80E-05
2428313 ST7L 2,84E-05
3771513 PRPSAP1 2,85E-05
3820921 SMARCA4 2,86E-05
3697015 AARS 2,88E-05
3764399 RNF43 2,89E-05
3302177 ARHGAP19 2,91E-05
3518940 POU4F1 2,92E-05
3570475 SYNJ2BP 2,95E-05
3778772 APCDD1 2,96E-05
2427791 DENND2D 2,97E-05
3704980 FANCA 2,97E-05
2704894 PHC3 2,99E-05
3378818 PTPRCAP 3,00E-05
3921992 FAM3B 3,00E-05
2500275 BCL2L11 3,01E-05
2665572 SGOL1 3,02E-05

� CFL1 3,02E-05
2343289 DNAJB4 3,02E-05
2694123 RUVBL1 3,04E-05
4000839 CTPS2 3,05E-05
4013434 TAF9B 3,05E-05
2405192 YARS 3,06E-05
3421300 MDM2 3,06E-05
3484060 ALOX5AP 3,07E-05
3115504 MYC 3,07E-05
3619479 C15orf57 3,08E-05
3302990 GOT1 3,09E-05
2673085 CDC25A 3,09E-05
2898746 LRRC16A 3,14E-05
3555067 KIAA0125 3,14E-05
3509885 ALG5 3,18E-05
2347132 FNBP1L 3,21E-05
3539724 SYNE2 3,21E-05
2362180 CD1A 3,26E-05
2351572 CD53 3,26E-05
2512601 TANK 3,27E-05
3168385 GLIPR2 3,28E-05
2975741 MAP7 3,28E-05
3291151 RHOBTB1 3,29E-05
3946192 TNRC6B 3,29E-05
2903673 PHF1 3,29E-05
3214668 IARS 3,30E-05
3630099 TIPIN 3,34E-05
3204534 STOML2 3,35E-05
2426791 CLCC1 3,35E-05
2951567 FKBP5 3,36E-05
3595096 TCF12 3,36E-05
2900091 HIST1H2AL 3,36E-05

� CANX 3,40E-05



3289235 SGMS1 3,45E-05
2899372 BTN3A1 3,46E-05
2965739 C6orf167 3,48E-05
2618702 ZNF620 3,50E-05
2926802 MYB 3,51E-05
3830359 CD22 3,54E-05
3648412 RUNDC2A 3,55E-05
2908491 3,56E-05
3009299 MDH2 3,61E-05
2434438 MCL1 3,61E-05
2351632 CEPT1 3,62E-05
2770242 PPAT 3,62E-05
3185063 UGCG 3,63E-05
3560403 EGLN3 3,63E-05
3991698 HPRT1 3,63E-05
3560527 C14orf147 3,64E-05

� HNRNPD 3,65E-05
3577078 LGMN 3,65E-05
2449711 DENND1B 3,67E-05
3743393 DLG4 3,70E-05
3748731 GRAPL 3,74E-05
3726375 EME1 3,75E-05
3528944 REM2 3,76E-05
2521239 CCDC150 3,78E-05
3299585 LIPA 3,81E-05
3644764 CCNF 3,81E-05
3388914 DCUN1D5 3,81E-05
3621948 SPG11 3,85E-05
2950590 RGL2 3,85E-05
3331903 FAM111B 3,85E-05
3159946 SMARCA2 3,87E-05
2439944 PIGM 3,88E-05
3074260 WDR91 3,91E-05
2782292 C4orf21 3,91E-05
3841357 LILRA2 3,92E-05
2832963 KIAA0141 3,94E-05
2544238 ITSN2 3,94E-05
3601840 CSK 3,97E-05
2496727 MAP4K4 3,97E-05
3402736 PTMS 4,01E-05
2879312 NR3C1 4,04E-05
2584957 SCN3A 4,04E-05
3683018 RPS15A 4,06E-05
2473284 CENPO 4,08E-05
3591327 CCNDBP1 4,08E-05
3183364 TMEM38B 4,10E-05
2321911 DDI2 4,12E-05
3429460 TXNRD1 4,14E-05
3833757 SNRPA 4,18E-05
3996430 FAM50A 4,22E-05



2881747 ANXA6 4,23E-05
2723752 TBC1D1 4,26E-05
3918574 IFNAR1 4,27E-05
3431426 IFT81 4,33E-05
2634494 ALCAM 4,36E-05
3418007 SHMT2 4,37E-05
3947604 BIK 4,56E-05
2363689 FCGR2A 4,58E-05
2704267 GOLIM4 4,61E-05
3295032 AP3M1 4,63E-05
2883878 EBF1 4,64E-05
3674960 LUC7L 4,66E-05
2929168 UTRN 4,70E-05
3613300 NIPA2 4,76E-05
3699767 4,76E-05
2360206 ATP8B2 4,77E-05
3949162 GRAMD4 4,77E-05
2468622 ID2 4,82E-05
3219682 C9orf5 4,82E-05
3399623 THYN1 4,83E-05
3015769 POP7 4,86E-05
3717395 SUZ12 4,88E-05
2519860 ASNSD1 4,90E-05
3471374 PPP1CC 4,91E-05
3504392 N6AMT2 5,00E-05
2697490 CEP70 5,02E-05
3286895 OR13A1 5,03E-05
3677176 5,03E-05
3468301 PMCH 5,06E-05
2754937 TLR3 5,06E-05
3164221 DENND4C 5,12E-05
4018080 CHRDL1 5,17E-05
2331505 MACF1 5,19E-05
3233686 LOC142937 5,19E-05
3822657 CD97 5,19E-05
2779823 SLC39A8 5,28E-05
2841468 5,29E-05

� KHDRBS1 5,29E-05
3555907 5,29E-05
2390180 TRIM58 5,30E-05
4016001 ZMAT1 5,32E-05
3617403 NOP10 5,33E-05
2915491 CYB5R4 5,35E-05
3695107 TK2 5,36E-05
2899102 HIST1H3C 5,36E-05
2747893 ARFIP1 5,38E-05
3159330 DOCK8 5,40E-05
2420808 BCL10 5,54E-05
3757487 DNAJC7 5,56E-05
3136782 NSMAF 5,56E-05



3421630 CCT2 5,57E-05
3896976 TMX4 5,70E-05
2982381 TCP1 5,72E-05
2946353 HIST1H1D 5,73E-05
2947073 HIST1H1B 5,79E-05

� ILF2 5,81E-05
2759404 GRPEL1 5,83E-05
3715489 TMEM97 5,83E-05

� CAPNS1 5,86E-05
2409104 SLC2A1 5,86E-05
2905404 PIM1 5,86E-05
2451309 KDM5B 5,88E-05
2689516 ZBTB20 5,89E-05
3365360 HPS5 5,90E-05
3354210 SPA17 5,97E-05
2777412 PIGY 5,97E-05
3638204 MFGE8 5,98E-05
2840002 CCDC99 5,99E-05
3456260 ATF7 6,00E-05
3229529 CAMSAP1 6,08E-05
2434319 ANP32E 6,10E-05
4005859 CASK 6,19E-05
2903435 HLA-DPB2 6,22E-05
3051655 VOPP1 6,33E-05
2613441 KAT2B 6,36E-05
2728189 PAICS 6,37E-05
3275250 6,38E-05
3252071 VCL 6,41E-05
3448428 C12orf11 6,43E-05
3629761 C15orf44 6,46E-05
3475082 6,46E-05
3961496 MKL1 6,47E-05
2638728 SLC15A2 6,56E-05
2700197 HLTF 6,58E-05
2328808 EIF3I 6,62E-05
3540007 MTHFD1 6,64E-05
3555889 6,67E-05
3744039 TRAPPC1 6,69E-05
3924573 PCNT 6,70E-05
3929325 SYNJ1 6,70E-05
3535628 GNG2 6,75E-05
3822805 TECR 6,76E-05
3468261 NUP37 6,77E-05
3836841 CALM3 6,78E-05
2689208 NAA50 6,78E-05
3636522 HDGFRP3 6,79E-05
3263624 MXI1 6,83E-05
3414632 DIP2B 6,84E-05
3338968 NADSYN1 6,84E-05
3766415 SMARCD2 6,85E-05



� PSMB2 6,87E-05
2753880 CDKN2AIP 6,87E-05
2484970 EHBP1 7,00E-05
3575906 C14orf143 7,02E-05
4001850 SH3KBP1 7,03E-05
4008427 NUDT11 7,10E-05
3619116 GPR176 7,11E-05
2777714 SNCA 7,11E-05
3682445 XYLT1 7,12E-05
3872380 ZNF154 7,16E-05
3980917 7,18E-05
3351359 ATP5L 7,22E-05
3754677 SYNRG 7,30E-05
3505449 MIPEP 7,33E-05

� CAPNS1 7,36E-05
3235516 CAMK1D 7,36E-05
3598613 DIS3L 7,43E-05
2963407 SYNCRIP 7,50E-05
3589570 EIF2AK4 7,55E-05
2426676 C1orf59 7,57E-05
3666686 NIP7 7,60E-05
3150060 EXT1 7,65E-05
3261165 BTRC 7,65E-05
2500803 TTL 7,66E-05
3771642 CYGB 7,67E-05
3647993 CIITA 7,68E-05
2562529 ST3GAL5 7,70E-05
3218528 ABCA1 7,71E-05
3496366 MIR17HG 7,73E-05
3632492 NPTN 7,85E-05
3096214 VDAC3 7,85E-05
3949229 TBC1D22A 7,85E-05
2403740 SFRS4 7,90E-05
3459716 7,92E-05
3720695 THRA 7,93E-05
3750939 SDF2 7,93E-05
3311157 OAT 7,98E-05
3458337 STAT6 7,98E-05
3830649 COX6B1 7,98E-05
3355114 DCPS 7,99E-05
3247712 CISD1 7,99E-05
2469910 LPIN1 7,99E-05
4010860 LAS1L 8,01E-05
3217077 HEMGN 8,03E-05
2434139 SV2A 8,13E-05
3466369 FGD6 8,16E-05
3598721 ZWILCH 8,22E-05
3664836 CMTM2 8,26E-05
3801411 NPC1 8,26E-05
2501238 PSD4 8,28E-05



2951674 SRPK1 8,28E-05
2602997 SLC16A14 8,28E-05
3816815 GNA15 8,30E-05
3651588 LYRM1 8,33E-05
3181728 TGFBR1 8,39E-05
3089401 PPP3CC 8,39E-05
2485176 MDH1 8,41E-05
3453405 FKBP11 8,41E-05
3438027 RAN 8,42E-05
3996667 DKC1 8,43E-05
3832383 PSMD8 8,48E-05
3854454 BST2 8,51E-05
3988435 DOCK11 8,56E-05
2868523 CHD1 8,63E-05
3199431 ZDHHC21 8,65E-05
2814855 PTCD2 8,65E-05
2855058 OXCT1 8,66E-05
3588658 C15orf41 8,67E-05
2613880 UBE2E2 8,68E-05
3901696 ACSS1 8,70E-05
3928040 RWDD2B 8,71E-05
3771215 ACOX1 8,73E-05
3912861 PSMA7 8,79E-05
2452637 NUCKS1 8,79E-05

� TMED2 8,80E-05
3026599 TRIM24 8,80E-05
2616596 ARPP21 8,90E-05
3875195 MCM8 8,92E-05
2426385 VAV3 8,93E-05
3528994 ACIN1 9,04E-05
2323559 MRTO4 9,05E-05
2594773 ALS2CR12 9,06E-05
3751625 SSH2 9,06E-05
2874689 9,12E-05
3798291 PPP4R1 9,12E-05
2967151 HACE1 9,15E-05
2491676 VAMP5 9,17E-05
2813442 CENPH 9,19E-05
3281068 PIP4K2A 9,19E-05
2491615 MAT2A 9,20E-05
3335814 9,23E-05
2447877 FAM129A 9,27E-05
3552729 PPP2R5C 9,30E-05
3188111 PTGS1 9,33E-05
2853642 C5orf42 9,34E-05
3482219 NUPL1 9,36E-05
3391029 PPP2R1B 9,36E-05
3570057 9,38E-05
2651916 PRKCI 9,39E-05
2701018 GPR171 9,41E-05



3260001 MARVELD1 9,43E-05
2816298 IQGAP2 9,50E-05
3475926 PITPNM2 9,51E-05
3561868 CLEC14A 9,52E-05
3573933 C14orf145 9,58E-05
2781693 CASP6 9,58E-05
3091000 BNIP3L 9,59E-05
3339261 IL18BP 9,68E-05
2844213 9,71E-05
3665603 CTCF 9,75E-05
3086573 9,78E-05
2444451 CENPL 9,79E-05
2802398 TRIO 9,84E-05
3781980 TTC39C 9,85E-05
3439356 ZNF140 9,85E-05
3425108 C12orf29 9,90E-05
3696697 NOB1 9,96E-05
2356115 TXNIP 9,97E-05
3354174 TBRG1 9,98E-05
3674840 POLR3K 0,000100528
3363979 PSMA1 0,000101095
2686786 0,000101118
3870054 ZNF160 0,000101206
3163200 C9orf93 0,00010135
3980889 0,000101481
2899171 HIST1H1E 0,000102127
3534923 KLHDC2 0,000102355
2796510 MLF1IP 0,000102399
2925590 TMEM200A 0,000102651
2536959 FLJ40712 0,000102793
2782230 TIFA 0,000103651
2671101 ANO10 0,000103724
3354731 EI24 0,000104005
3897431 MKKS 0,00010403
3179359 CENPP 0,000104224
2760869 HS3ST1 0,000104237
2512701 PSMD14 0,000104426
3452323 SLC38A2 0,000105119
2878662 DIAPH1 0,000105232
3333443 ASRGL1 0,000106058
3035892 GNA12 0,000106097
3342983 TMEM126B 0,000106122
2757319 SLBP 0,000108299
2931569 AKAP12 0,000108729
2662356 TADA3 0,000108861
3593261 EID1 0,000109706
3027204 TBXAS1 0,000109998
3062868 BAIAP2L1 0,000110579
3620515 TMEM87A 0,000110805
2783715 MAD2L1 0,000111435



4035833 CD24 0,000111479
2609960 TTLL3 0,00011223
3510450 LHFP 0,000112733
3666566 CIRH1A 0,000112826
3970214 REPS2 0,000113034
3130823 C8orf41 0,000113165



Supplementary table III

Transcripts up- or down-regulated in all subsets in children versus adults
 (2 way ANOVA, FDR 1%)

Transcript Cluster Gene Symbol p-value Fold change
3041409 IGF2BP3 9,99E-22 7,18 Higher in children
3876084 C20orf103 1,13E-05 1,91
3508330 HSPH1 2,11E-06 1,69
2998333 C7orf36 6,65E-06 1,54
3321512 PDE3B 4,17E-06 1,42
3395416 HSPA8 3,88E-06 1,23
3377044 SF1 2,64E-06 -1,11 Higher in adults
3442205 ZNF384 6,35E-06 -1,17
3216931 C9orf156 1,59E-07 -1,39
3737874 BAHCC1 6,73E-08 -1,57
2635741 CD96 4,23E-06 -1,62
3986230 CXorf57 4,94E-08 -1,85
3802602 CDH2 6,50E-10 -1,95
3740479�3740523 PRPF8 1,35E-06 -2,17
2536965 FLJ38379 2,64E-06 -2,28
3916290 FLJ42200 1,35E-10 -2,81



Supplementary table IV

A number of 17 microRNAs being at least once differentially expressed 
between the various maturation stages (FDR 10 %, p ≤ 3.6 x 10-3)

Column ID p-value

hsa-miR-520g 0,00201
hsa-miR-137 0,00393
hsa-miR-511 0,00015
hsa-miR-657 0,00302
hsa-miR-145 0,00310
hsa-miR-149 0,00035
hsa-miR-200c 0,00016
hsa-miR-200c* 0,00223
hsa-miR-126 0,00005
hsa-miR-339-5p 0,00004
hsa-miR-642 0,00024
hsa-miR-483-5p 0,00131
hsa-miR-141 0,00259
hsa-miR-126* 0,00124
hsa-miR-30a* 0,00196
hsa-miR-25* 0,00093
hsa-miR-451 0,00368



Supplementary table V

Differentially expressed microRNAs comparing children and adults at 
each differentiation step

ProB comparisons:

miR p-value fold change

hsa-miR-657 0,0315 58,44 higher in children
hsa-miR-579 0,0326 56,10
hsa-miR-454* 0,0356 49,06
hsa-let-7a* 0,0453 13,54
hsa-miR-100* 0,0300 7,50

PreBI comparisons:

miR p-value fold change

hsa-miR-589* 0,0007 149,59 higher in children
hsa-miR-149 0,0019 57,79
hsa-miR-505 0,0454 41,94
hsa-miR-361-3p 0,0262 21,19
hsa-miR-339-5p 0,0421 17,79
hsa-miR-501-3p 0,0102 17,76
hsa-miR-500 0,0403 9,11
hsa-let-7c 0,0217 0,43 -2,31 lower in children
hsa-miR-623 0,0476 0,23 -4,34
hsa-miR-145 0,0184 0,13 -7,54
hsa-miR-410 0,0278 0,10 -10,16
hsa-miR-411 0,0307 0,09 -10,94
hsa-miR-184 0,0313 0,09 -11,12
hsa-miR-626 0,0150 0,08 -13,32
hsa-miR-641 0,0161 0,07 -13,91
hsa-miR-409-3p 0,0437 0,06 -15,42
hsa-miR-194* 0,0288 0,05 -20,50
hsa-miR-200c* 0,0374 0,04 -25,36
hsa-miR-641 0,0409 0,04 -27,51
hsa-miR-638 0,0417 0,02 -47,42
hsa-miR-518d-3p 0,0183 0,02 -52,68
hsa-miR-628-3p 0,0173 0,02 -55,01
hsa-miR-133a 0,0075 0,01 -131,29



PreBII large comparisons:

miR p-value fold change

hsa-miR-33a* 0,0282 22,60 higher in children
hsa-miR-129-3p 0,0046 19,16
hsa-miR-551a 0,0024 17,67
hsa-miR-589 0,0007 17,57
hsa-miR-20b* 0,0106 14,09
hsa-miR-148b* 0,0150 6,22
hsa-miR-190b 0,0249 6,20
hsa-miR-628-3p 0,0428 0,31 -3,27 lower in children
hsa-miR-151-3p 0,0290 0,30 -3,36
hsa-miR-768-3p 0,0097 0,30 -3,36
hsa-miR-768-3p 0,0023 0,27 -3,74
hsa-miR-584 0,0082 0,25 -3,98
hsa-miR-485-3p 0,0057 0,18 -5,59
hsa-miR-145 0,0493 0,13 -7,61
hsa-miR-875-5p 0,0089 0,12 -8,15
hsa-miR-638 0,0368 0,06 -16,95
hsa-miR-545 0,0418 0,03 -28,78

PreBII small comparisons:

miR p-value fold change

hsa-miR-210 0,0016 563,34 higher in children
hsa-miR-34a* 0,0000 248,78
hsa-miR-149 0,0032 169,84
hsa-miR-27b 0,0075 112,76
hsa-miR-7-2* 0,0015 85,84
hsa-miR-455-3p 0,0289 84,17
hsa-miR-744* 0,0294 36,15
hsa-miR-148b* 0,0002 34,74
hsa-miR-455-5p 0,0010 32,63
hsa-let-7i* 0,0002 30,53
hsa-miR-17* 0,0417 28,64
hsa-miR-331-5p 0,0373 28,32
hsa-miR-642 0,0250 27,39
hsa-miR-380* 0,0142 27,15
hsa-miR-107 0,0241 24,92



hsa-miR-629* 0,0364 24,72
hsa-miR-31 0,0451 23,91
hsa-miR-129-3p 0,0456 20,79
hsa-miR-19a* 0,0164 14,19
hsa-miR-20b* 0,0206 14,12
hsa-let-7g* 0,0255 13,90
hsa-miR-18b 0,0114 12,92
hsa-miR-339-5p 0,0046 10,28
hsa-miR-215 0,0238 9,26
hsa-miR-15a* 0,0112 8,71
hsa-miR-362-3p 0,0332 7,97
hsa-miR-425* 0,0046 7,92
hsa-miR-296-5p 0,0033 7,21
hsa-let-7f 0,0246 7,02
hsa-miR-301a 0,0146 6,84
hsa-miR-30a* 0,0089 6,59
hsa-miR-590-5p 0,0127 6,12
hsa-miR-142-5p 0,0100 5,68
hsa-miR-18a* 0,0021 5,41
hsa-miR-324-5p 0,0043 5,30
hsa-miR-301b 0,0227 5,24
hsa-miR-181a* 0,0188 5,15
hsa-miR-15a 0,0070 5,08
hsa-miR-19a 0,0099 5,06
hsa-miR-106b 0,0270 5,01
hsa-miR-30e* 0,0040 4,99
hsa-miR-652 0,0024 4,94
hsa-miR-363 0,0376 4,75
hsa-miR-7-1* 0,0165 4,73
hsa-miR-142-3p 0,0200 4,68
hsa-miR-95 0,0047 4,53
hsa-miR-18a 0,0254 4,53
hsa-miR-339-3p 0,0010 4,41
hsa-miR-345 0,0073 4,29
hsa-miR-200c 0,0073 4,14
hsa-miR-625 0,0051 4,10
hsa-miR-20a 0,0128 4,04
hsa-miR-30e 0,0492 4,01
hsa-miR-671-3p 0,0341 3,99
hsa-miR-21 0,0262 3,99
hsa-miR-16-1* 0,0444 3,97
hsa-miR-19b 0,0151 3,93
hsa-miR-378 0,0225 3,81
hsa-miR-93 0,0084 3,79



hsa-miR-140-5p 0,0171 3,78
hsa-miR-181c 0,0093 3,71
hsa-miR-93* 0,0018 3,71
hsa-miR-103 0,0025 3,71
hsa-miR-532-3p 0,0157 3,69
hsa-miR-744 0,0166 3,47
hsa-miR-766 0,0072 3,45
hsa-miR-17 0,0167 3,35
hsa-miR-25 0,0154 3,34
hsa-miR-181a 0,0367 3,31
hsa-miR-106a 0,0191 3,25
hsa-miR-130b 0,0266 3,21
hsa-miR-769-5p 0,0483 3,13
hsa-miR-766 0,0066 3,13
hsa-miR-331-3p 0,0220 3,05
hsa-miR-20b 0,0164 3,03
hsa-miR-15b 0,0111 3,01
hsa-miR-195 0,0181 3,00
hsa-miR-16 0,0120 2,98
hsa-miR-192 0,0089 2,92
hsa-miR-28-5p 0,0112 2,89
hsa-miR-128 0,0458 2,83
hsa-miR-186 0,0329 2,76
hsa-miR-140-3p 0,0297 2,76
hsa-miR-30c 0,0190 2,74
hsa-miR-30b 0,0405 2,63
hsa-miR-362-5p 0,0331 2,63
hsa-miR-625* 0,0081 2,56
hsa-miR-374b 0,0436 2,51
hsa-let-7g 0,0327 2,50
hsa-miR-425 0,0175 2,39
hsa-let-7d 0,0432 2,38
hsa-miR-223 0,0435 2,30
hsa-miR-191 0,0481 2,23
hsa-miR-484 0,0442 2,05
hsa-miR-125b 0,0049 0,21 -4,86 lower in children
hsa-miR-125a-5p 0,0359 0,04 -27,48

Immature B comparisons:

miR p-value fold change

hsa-miR-629* 0,0235 33,35 higher in children



hsa-miR-455-3p 0,0360 21,19
hsa-miR-571 0,0315 0,39 -2,54 lower in children
hsa-miR-485-3p 0,0468 0,38 -2,65
hsa-miR-135a* 0,0369 0,36 -2,81
hsa-miR-346 0,0077 0,34 -2,93
hsa-miR-630 0,0480 0,34 -2,97
hsa-miR-610 0,0146 0,33 -3,07
hsa-miR-597 0,0042 0,32 -3,11
hsa-miR-138-1* 0,0105 0,31 -3,23
hsa-miR-509-3p 0,0019 0,30 -3,31
hsa-miR-323-3p 0,0003 0,30 -3,31
hsa-miR-188-5p 0,0025 0,29 -3,42
hsa-miR-513-3p 0,0361 0,29 -3,47
hsa-miR-877 0,0004 0,28 -3,52
hsa-miR-571 0,0003 0,28 -3,56
hsa-miR-760 0,0016 0,28 -3,62
hsa-miR-519a 0,0198 0,27 -3,64
hsa-miR-645 0,0029 0,27 -3,74
hsa-miR-520a-5p 0,0338 0,26 -3,82
hsa-miR-147 0,0044 0,24 -4,12
hsa-miR-632 0,0014 0,23 -4,37
hsa-miR-19b-1* 0,0413 0,22 -4,56
hsa-miR-645 0,0134 0,21 -4,70
hsa-miR-99b* 0,0013 0,21 -4,74
hsa-miR-646 0,0290 0,17 -6,02
hsa-miR-549 0,0355 0,13 -7,49
hsa-miR-18b* 0,0357 0,13 -7,51
hsa-let-7f-2* 0,0371 0,13 -7,62
hsa-miR-520a-3p 0,0328 0,13 -7,96
hsa-miR-20b* 0,0465 0,12 -8,39
hsa-miR-25* 0,0093 0,11 -9,04
hsa-miR-580 0,0405 0,11 -9,46
hsa-miR-656 0,0292 0,06 -15,84
hsa-let-7b* 0,0170 0,06 -16,69
hsa-miR-19a* 0,0167 0,06 -17,35
hsa-miR-374b* 0,0297 0,04 -24,95
hsa-miR-659 0,0113 0,04 -27,11
hsa-miR-127-3p 0,0467 0,03 -34,24
hsa-miR-214 0,0130 0,03 -35,05
hsa-miR-520d-5p 0,0110 0,03 -36,99
hsa-miR-145 0,0221 0,02 -40,31
hsa-miR-489 0,0056 0,02 -45,78
hsa-miR-511 0,0141 0,02 -48,62
hsa-miR-636 0,0303 0,01 -136,66





III





Erratum: 

 

Page 23:  
 
The human genome has 22 numbered chromosomes pairs in addition to the two sex 
chromosomes, while the mouse genome has 19 18 chromosome pairs plus two sex 
chromosomes. 
 
 
Page 41: 
 
Sample size is the only adjustable factor, as statistical significance/p-values are usually set at 
0.05 or lower, and effect/fold change are often, but not always over set at 2  or higher in 
microarray studies. 
 
 
Page 42: 

Figure 12. The primer/probe set from the commersial commercial ID2 assay, 
Hs04187239_m1 (green) targets exon II and III out of 3 constituting the ID2 gene. 
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