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Chapter 1

Introduction

The deregulation of energy industry since the beginning of 1990s has resulted in an enormous
impact to the financial markets worldwide. Norway, New Zealand and United Kingdom are
among the earliest countries having the liberalised electricity sector. A 24 out of 50 states in
United States have deregulated electricity and 19 states with deregulated gas*. The deregulated
market opens for competitiveness, resulting of revenue uncertainty to the energy producers, and
on the other hand consumers are affected with volatile energy prices. As a consequence, the
market for derivatives products emerges which provides possible hedging tools for both parties.
The aim of this thesis is twofold. Firstly, we investigate some relevant stochastic models and
secondly, we focus on pricing derivatives for commodities traded in energy related markets.

We will concentrate on weather and shipping, both are energy related markets. They are
different in nature but share some similarities from a modelling point of view. Weather is
obviously nonstorable and similarly, it is impossible to store shipping commodity because its
underlying asset is a service. Furthermore, there is a close relation between these two com-
modities and electricity. Electricity and some other industries like agriculture and tourism are
weather sensitive. For instance, electricity is needed in summer time to operate air-conditioning
if the temperature is too hot and normally there is an extensive use of electricity in winter for
heating if the temperature is too cold. The agricultural sector is totally dependent on weather.
Bad weather will probably damage the crops. Ski resorts will lose money if weather conditions
cannot attract the skiers. We refer to Benth and Saltyté Benth [17] for the discussion on the im-
pact of weather to industry. Shipping on the other hand can be linked to electricity in one way.
The coal used to operate power plants for example are essentially transported from a country or
continent using freight service, and the cost of hiring vessels becomes one of the important fac-
tors in electricity generation. All of these linkages pointing towards the importance of weather
and shipping markets which received great attention nowadays.

Weather contracts are settled against an objectively measurable index such as cooling degree-
day (CDD), heating degree-day (HDD) or cumulative average temperature (CAT) for the prod-
ucts traded at Chicago Mercantile Exchange (CME). The idea of binding the price to a certain
index can be alternatively applied to insurance, where the way claims are made is not justified
by real losses anymore but based on the index. Weather index insurance has gradually become
an interesting hedging tool and designed for households in developing countries (see Barnett et

*Refer to www.quantumgas.com for a complete list of energy deregulated states in US.
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al. [10, 11] and Skees [77]). In this thesis, we will concentrate on weather or more precisely
temperature index insurance. For example, a farmer wants to insure the crops against unusual
hot temperature in harvest season, say, can buy such a temperature index insurance contract.
This contract pays the farmer some amount of money according to, for example the CDD-type
index if temperature moves beyond a certain predefined threshold which will probably harm the
crops. The advantages of using index based insurance are to avoid the difficulty of assessing
the actual damages and preventing from moral hazard problem.

Since temperature is not tradedable on spot, the issue on modelling the futures arises. This
thesis study the continuous time autoregressive moving average (CARMA) model for temper-
ature futures and we base our study on the general class of Lévy-driven CARMA processes
with stochastic volatility (see Brockwell [26]). Such CARMA models have been successfully
applied in modelling electricity (see Garcia et al. [40] and Benth et al. [15]), temperature (see
Benth, galtyté Benth and Koekebakker [22]) and interest rate (see Andresen et al. [6]). As
CARMA processes are stationary, the mean reversion plays a major role to measure how fast
the processes are reverting. We investigate the speed of mean reversion through the half life
concept which was introduced by Clewlow and Strickland [34]. The half life is defined as the
time (on average) it takes for a process to revert back to half of its distance away from the av-
erage level. Our findings can be regarded as an extended version of Clewlow and Strickland
where the half life is not a deterministic number anymore, but is dependent on the state of the
process and also the stochastic volatility (see Benth and Taib [24]). We study the implication of
half life to temperature futures, particularly for contracts written on the CAT index.

According to Adland [2], the mean reversion is also one of the stylized facts for freight rate.
This could be impetus to model the freight rate using the continuous time autoregressive (CAR)
process, a subclass of CARMA. However, the best procedure to determine a well-structured
stochastic model is to study the weaknesses of the traditional model used for financial asset
dynamics which is based on stochastic process driving by Brownian motion; the so-called ge-
ometric Brownian motion (GBM). From empirical investigations (see Benth, Koekebakker and
Taib [16]) of spot freight rates, it turns out that GBM is not appropriate. The GBM does not only
fail to capture the peaky behaviour of the logreturns distribution, it even fails to model the heavy
tails. A more reliable model can be obtained by relaxing the Brownian motion assumption, and
allow for more general Lévy processes. Thus, we use an exponential Lévy process to model the
price dynamics. We also consider a model with stochastic volatility since the shipping freight
rates are observed to exhibit stochastic volatility.

Stochastic volatility is a common property in modelling the energy markets. We utilize the
stochastic volatility model of Barndorff-Nielsen and Shephard [8] (BNS for short) in this thesis.
The BNS stochastic volatility process is defined as the sum of Ornstein-Uhlenbeck process
driven by a subordinator, the Lévy process with only positive increments. Even though the
structure is simple, the BNS model provide a very flexible framework to deal with leptokurtic
distributional and dependency structure properties (see Benth [13]). In addition, it gives room
for analytic pricing of forwards.

The nonstorability property of weather and shipping markets eventually makes the cost of
carry relationship between spot and forward/futures prices not applicable. From the arbitrage
pricing theory in mathematical finance, one can have the price of the forward using spot-forward
relationship framework as long as the forward prices are martingales under equivalent martin-
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gale measure. This thesis follows the aforementioned framework in pricing forward/futures
for temperature and freight markets. Our starting point is the CARMA model introduced for
temperature dynamics and various stochastic models for spot freight rates where we will infer
the forward/futures thereof. Another popular way to model the forward is using Heath-Jarrow-
Morton [46] (HIM) approach which is not to be considered in this thesis. We will mention some
papers contributed to the literature in modelling the temperature futures and freight forwards in
the relevant chapter.

1.1 The financial market for energy related commodity

Great attention in modelling the energy markets goes to electricity. Many theoretical and em-
pirical studies have been done to clearly understand the evolution of electricity prices. For
example, Lucia and Schwartz [63] have investigated regular patterns in the price dynamics.
The analysis and modelling of electricity prices were studied by Cartea and Figueroa [31].
Further, Benth, Kallsen and Meyer-Brandis [14] and also a paper by Kiesel, Schindlmayr and
Borger [60] have focused on the pricing of electricity futures/forward. An article by Hambly,
Howison and Kluge [44] has contributed to the study related to options pricing of electricity
market. We refer to Benth, Saltyté Benth and Koekebakker [22] for a discussion on specific
issues and challenging modelling problems in electricity markets.

The articles contributed to the markets related to electricity like natural gas and temperature
are almost equally increasing, but the freight markets still get little attention. The nonstorability
property makes these markets similar to electricity. Natural gas is more special since it can be
stored but quite costly and limited. In this section, we will describe the financial market for the
last two exotic markets: temperature and freight which shall be studied throughout the thesis.
Our aim is to give a better understanding on the features of these energy related markets where
we may include some parts on discussing the problems with the commodities from a modelling
point of view.

1.1.1 The temperature market

The close relation between temperature and electricity is undoubtedly. For electricity producers
in Norway, say, very low electricity price in summer period will affect their earnings and on the
contrary, unexpected high electricity price in the winter is costly to the consumers. Both are
concerned with uncertain electricity prices in the future and may be seeking for any available
financial contract to hedge against temperature risk. The temperature derivatives market is a
platform that provides for some possible solutions. It started informally in 1996 and began to
trade over-the-counter (OTC) in 1997. Nowadays, the only market offering the temperature
derivatives contracts is Chicago Mercantile Exchange (see Benth and Saltyté Benth [17]) which
will be the main topic of this Subsection.

As noted, the temperature futures contracts traded at CME are basically based on three dif-
ferent indices: the cooling degree-day, heating degree-day and cumulative average temperature.
The two former indices are calculated against some threshold T = 65°F ~ 18°C (we use
different notation in Chapter 2). The CDD is defined as the difference between the average tem-
perature on particular day ¢ and the threshold as long as this is positive. Otherwise, the index
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gives value zero. Mathematically, it can be expressed as

CDD(t) = max(7'(t) — T',0). (1.1.1)

The threshold temperature is the starting point to compute the index. When the temperature
goes above T, then the CDD starts to calculate the amount of degrees exceeding that value.
This is simply a measurement of electricity required for cooling.

The HDD index is almost similar to CDD, but it computes the amount of degrees below f
being a measure of electricity demand due to for heating. If there is a day where temperature
drop below 18 °C, meaning that the heating system should be switched on (which require the
use of electricity), then HDD gives a positive value. The mathematical expression for the HDD
index is

HDD(t) = max(T — T(t),0). (1.1.2)

?

The CAT index accumulates the average temperature for a certain predefined period 71, 72,
given as

T2
CAT(t) = > T(t), (1.1.3)
t=71

where the futures contracts based on this index are considered in monthly or seasonal basis. The
more important thing here is how the index-based futures contract is converted into money. For
US cities, the CDD futures are settled for $20 per unit; or simply Z?:ﬁ CDD(t) x $20, while
the HDD and CAT indices for European countries are settled at £20 for one unit (refer to Benth,
Saltyté Benth and Koekebakker [22]).

Temperature index insurance

There is a close resemblance between weather derivatives and weather index insurance since
both are tied to a certain index measured at a specific weather station over a defined period of
time. For weather insurance, the claims are made according to an objective measurable index
of specific weather variable like rainfall or temperature. The latter variable will be discussed
in this thesis, and one can refer to Barnett [11], Turvey [82] or Skees [77] for the use of other
weather variables in designing the weather index insurance.

Weather index insurance is still a young field, but is slowly growing. It has been discussed in
academic papers since early 1999 as the potential solution for agricultural economies in devel-
oping countries. The pilot study was conducted by World Bank’s Commodity Risk Management
Group (CRMG) between 2003 to 2006 and the first transaction of weather index insurance was
in India in June 2003. There have been several other pilot projects afterwards, for instance
the completed pilot projects in Ukraine, Ethiopia and Malawi (see Shynkarenko [73]). Until
October 2012, there are 3 million farms in India’ and nearly 100,000 farmers in nine countries
in Sub-Saharan Africa as well as in Sri Lanka and South Asia (see Global Index Insurance
Facility [43]) covered by weather index insurance. These indicate the increasing demand for
weather-based insurance worldwide.

We will now illustrate how weather (precisely temperature) index insurance works. Con-

TThe report was retrieved from http://www.cgap.org/blog/lessons-india-weather-insurance-small-farmers.
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sider a farmer that lives in the area where drought is one of the serious threats in growing crops.
This may be a result of extremely high temperatures. To hedge against the temperature risk, the
farmer engages in a temperature-based insurance by signing a contract and paying an amount
of premium, P. The payoff of the temperature index insurance is calculated using, for instance
the CDD-type index, mathematically given by

X(r1,m2) =k x y_max(T(s) — T,0), (1.1.4)

5=T1

for a certain coverage period [71, T2]. The daily average temperature at a specific location are
recorded along the period, and the threshold is assumed to be equal T = 45°C (just for illus-
tration). If for any particular day where the observed temperature is more than 45°C, then the
deviation is computed. At 75, all the deviations are summed up and then converted into money
by a factor k. Setting & = $20 and assume 7> CDD(s) = 15, then the indemnity being
paid to the farmer is X (71, 72) = $300. Equation (1.1.4) represents the loss for the temperature
index insurance. In Chapter 2, we will focus on the issue of how much premium should be paid
by the farmer. This is important since they are expected to be poor.

1.1.2 The shipping freight markets

Shipping industry contributes to approximately more than 75% of the volume of the world trade
in commodities and manufactured products (see Alizadeh and Nomikos [5]). This indicates
that the demand for the shipping transportation is considerably high with a huge number of
shipowners, operators and charterers involved in the industry. The price of shipping services are
very volatile. Remarkably, the annualised volatility of shipping freight rates varies between 59%
to 79% in the years 2008 to 2011%. This is relatively high compared to the other commodities
such as crude oil and agricultural with the average of 50%. The implication of high volatility
of freight rates to the shipowner is the risk of loosing in terms of revenues and it contributes
to some additional costs to the charterer. Thus, understanding the features of the market is
important to the market’s participants.

There are five major categories of seaborne trade: namely, oil tanker, gas tanker, container,
dry bulk and other. About 38% of seaborne trading are contributed from dry-bulk commodi-
ties which makes the dry bulk market a major segment of the entire shipping category (see
Prokopczuk [67]). Depending on the size of vessel, dry bulk is classified into four major in-
dices: the Handysize, Handymax, Capesize and Panamax. The major dry bulk commodities
such as iron ore, coal and grains are transported using larger vessel and are in Capesize and
Panamax categories. Meanwhile, the minor dry bulk commodities which consist of steel prod-
ucts, fertilizer, sugar, cement and other are transferred by smaller vessel and are in Handysize
and Handymax classes.

There are three optional ways to charter a vessel which include bareboat, time-charter and
voyage-charter. The flexibility is given to the charterer either to fully (bareboat) or semi (time-
charter) rental or otherwise (voyage-charter). The bareboat charter method allows charterer to
operate a vessel using their own capacity including crew. The charterer bears all costs and pays

iSee http://www.bbk.ac.uk/cfc/papers/nomikos.pdf for detailed report of commodities annualised volatility.
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a monthly fee to the shipowner for leasing the vessel. For time-charter or semi rental method,
the charterer can instruct the shipowner in the vessel operation but commercial management
is still under the charterer’s responsibility. The per-day fee plus costs such as fuel, port fees,
food and others are covered by the charterer. Lastly, the voyage-charter provides freight service
where the charterer pays the shipowner a per ton fee based on point-to-point basis. By using
this method, all costs for vessel operation are at the expense of the shipowner.

The information about freight rates were initially provided by the Baltic Exchange in 1985
using Baltic Freight Index (BFI). The index covers 13 voyage routes ranging from 14,000 metric
tons (mt) of fertiliser up to 120,000 mt of coal, with no time-charter routes. Until January 2013,
there are 50 daily single routes being monitored by the Baltic Exchange encapsulated in six
indices: the Baltic Capesize Index, Baltic Panamax Index, Baltic Dry Index, Baltic Supramax
Index, Baltic Handysize Index and Baltic International Tanker Routes . We will concentrate in
this thesis on the two former indices. The empirical data of the Baltic Capesize Index and Baltic
Panamax Index are analysed in Chapter 4 and a study on pricing shipping freight forward will
be presented in Chapter 5. There are detail information of shipping freight markets in Alizadeh
and Nomikos [5] and Kavussanov and Visvikis [59]. We refer to the textbook by Alizadeh and
Nomikos [5] in the following explanation of the freight markets.

Baltic Capesize Index

The Baltic Capesize Index is the index based on 10 daily Capesize vessel assessments including
voyage and time-charter rates. Table 1.1 describes the different BCI routes with 6 voyage-
charter routes (C2 to C7 and C12) and 4 time-charter routes (C8_03 to C11_03). They are
classified according to their cargo type and size. The voyage-charter routes are quoted in terms
of US$/mt of cargo transported, while the time-charter routes are calculated in terms of US$/day
(see Alizadeh and Nomikos [5]).

The voyage routes mainly cover transportation of iron ore and coal. The routes C3 and
C5 are the most important where each represents 15% of the entire BCI routes. The C3 route
transport cargo which contains iron ore from Tubardo in Brazil to Beilun and Baoshun in China,
while C5 route operates from Western Australia to the same destinations as C3. The time-charter
routes reflect the freight rates of four major trading routes: the Atlantic Trade (C8_03), Pacific
Trade (C10_03), Continent to the Far East trip (C9_03) and trip back from the Far East to the
Continent (C11_03). The most important time-charter route is C10_03 which represents 20%
from the whole BCI routes. This route is operating between China and Japan for a Pacific round
voyage.

Baltic Panamax Index

The Baltic Panamax Index is the index based on four Panamax vessel assessments with equal
vessel size of 74,000 mt deadweight (dwt). The specification of the BPI are given in Table 1.2
covering the four time-charter routes namely the: PIA_03, P2A_03, P3A_03 and P4_03. The
routes are of equal importance. The P1A_03 is designed for trans-Atlantic route, where the
delivery and redelivery of the vessel are in the continent between Skaw in Denmark to Gibraltar.

$Detailed description of the index is provided at www.balticexchange.com.
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Table 1.1: Description of the Baltic Capesize Index route (see Alizadeh and Nomikos [5])

Route Cargo type and size Route description Weighting
C2 160,000 mt iron ore Tubardo to Rotterdam 10%
C3 150,000 mt iron ore Tubardo to Beilun-Baoshun 15%
C4 150,000 mt coal Richards Bay to Rotterdam 5%
C5 150,000 mt iron ore Western Australia to Beilun-Baoshun 15%
Cc7 150,000 mt coal Bolivar to Rotterdam 5%
C8_03 172,000 mt deadweight ~ Delivery Gibraltar-Hamburg for a 10%
time charter trans-Atlantic round voyage,

redelivery Gibraltar-Hamburg range.
Duration: 30-45 days

C9_03 172,000 mt deadweight  Delivery ARA-Mediterranean for a 5%
time charter trip to the Far East, redelivery
China-Japan range. Duration: 65 days
C10_03 172,000 mt deadweight Delivery China-Japan for a Pacific 20%
time charter round voyage, redelivery China-Japan
range. Duration: 30-40 days
C11_03 172,000 mt deadweight  Delivery China-Japan for a trip to 5%
time charter ARA or the Mediterranean.
Duration: 65 days
C12 150,000 mt coal Gladstone to Rotterdam 10%

The route P2A_03 is a trip to the Far East and cover the redelivery between Taiwan and Japan.
Further, the other two routes, P3A_03 and P4A_03 encompass the vessel delivery between
Japan and South Korea, but with a trans-Pacific round voyage and a trip to continental Europe
respectively.

Table 1.2: Description of the Baltic Panamax Index route (see Alizadeh and Nomikos [5])

Route Route description Weighting

P1A_03 Delivery Skaw-Gibraltar range for a trans-Atlantic 25%
round voyage (including ECSA), redelivery
Skaw-Gibraltar range. Duration: 45-60 days

P2A_03 Delivery Skaw-Gibraltar range for a trip to the Far East, 25%
redelivery Taiwan-Japan range. Duration: 60—65 days

P3A_03 Delivery Japan-South Korea for a trans-Pacific round 25%
voyage, either via Australia or NOPAC, redelivery
Japan-South Korea range. Duration: 35-50 days

P4_03 Delivery Japan-South Korea for a trip to continental 25%
Europe (via US West Coast-British Columbia range),
redelivery Skaw-Gibraltar range. Duration: 50-60 days

1.2 Stochastic modelling of energy related markets

From the modelling point of view, temperature and freight markets share two identical stylized
facts: stochastic volatility and mean reversion. The heavy-tailed logreturns distribution is one
of the main features for freight rates, while seasonality is the property for temperature which
may be not so significant for the freight dynamics. To the best of our knowledge, the findings of
seasonality behaviour in freight markets are mixed and varies according to the market segments.
We will address this issue later, on our way in discussing the stylized facts of the temperature
and freight markets.
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1.2.1 Stylized facts

First, we discuss the stochastic volatility property. The price of a commodity is observed to
have volatility which is changing stochastically over time. The study done by Hikspoors and
Jaimungal [48] for NYMEX crude oil prices and Benth [13] for UK gas spot prices have found
a stochastic volatility structure in the price dynamics. Our observation using the time series of
Malaysian temperature data shows the sign of stochastic volatility (see Benth and Taib [24]).
This finding is included in Chapter 3 and in line with the study by Benth and Saltyté Benth [20]
using Stockholm temperature data. In the freight markets, the stochastic volatility property can
be explained by resorting to the supply and demand curve. The limitation of supply and demand
inelasticity which determines the freight rates may drive the volatility to different levels over
time. For example, in the situation when the supply of tonnage is extremely high, any shock
in the market resulting from changes in demand for a very short time will not give significant
impact to the freight rates since the effect of such shocks can be absorbed by the market. The
volatility in this period stays at a relatively low level. On the contrary, when the supply is
tight for the reason of tonnage shortage or excessive demand, any shock in the market due to
the changes in demand may drive the price sharply and ultimately the volatility is high in this
period. By simply checking the volatility clustering in the time series of the logreturns of freight
rates, we conclude that stochastic volatility is significant for freight markets.

The second stylized fact is mean reversion, meaning that the temperature and freight rates
tend to revert to the average level in the long run. This is common for temperatures since
conservation of energy plays the role and for the freight rates, this reflects the marginal cost of
providing the freight service. We concentrate the discussion here to the freight rates since this
feature is rather natural for temperature. Mean reversion can be directly linked to the supply and
demand of the freight service where any adjustment on the supply side will increase (decrease)
the extremely low (high) freight rates. For example, when the freight rate is high, the supply
will naturally be high. The number of vessels being demolished will decrease and may cease
at certain time and there are new vessels brought into the market as new order takes place. To
some extent, the oversupply of vessels will gradually bring the freight rates down to the average
level. On the other hand, the supply will decrease when the freight rate is low. More vessels are
carried out from the market and being demolished. There will be the time when the supply is
very tight which consequently push the freight rate up to the mean level.

The next property is heavy-tailed logreturns which is normally observed for many energy
commodities. This may results from extreme volatility and price spike. The electricity prices
for instance show heavy tails in return distribution (see Weron [85]). This is parallel with
our empirical investigation on the dry-bulk market segments where the tails of the logreturns
distribution are far more heavy than normal (see Benth, Koekebakker and Taib [16]). Just
to mention that our inspection on the temperatures’ residuals (after removing seasonality and
continuous autoregressive effect) also show heavy tails in its distribution. This means that the
increments of the stochastic process come from a non-Gaussian distribution class and the model
based on Brownian motion may not be satisfactory.

Finally, we discuss the possible seasonal behaviour. The temperature dynamics is highly
dependent on the (deterministic) seasonality with low temperature in the winter period and high
temperature in summer. In a country close to Equator like Malaysia (our case study in Chapter 2
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and 3) with no summer and winter cycle, the seasonality is still significant. We come back to the
issue of seasonality in freight rates. There are mixed results of seasonality test for freight rate
time series. A study by Kavussanos and Alizadeh [55] has rejected the stochastic seasonality
and found that the dry bulk freight rates exhibit deterministic seasonality at very low level. Their
investigation for seasonality in tanker markets is also rejecting the stochastic seasonality but the
deterministic seasonality is found to be varying across market segments (see Kavussanos and
Alizadeh [56]). However, our simple graphical check using deterministic seasonal functions to
two dry bulk freight rates (as reported in Chapter 4) shows that the deterministic seasonality
in freight rate dynamics is insignificant. Hence, we do not consider seasonality as a stylized
feature of freight markets in this thesis.

All stylized facts discussed above are particularly used to find the best model which can
explain very well the dynamics of the prices. In the next section, we will discuss the possible
models for spot price based on one factor model.

1.2.2 Spot price modelling

It is not an easy task to propose a simple but efficient model for temperature or freight rate dy-
namics while taking into account all stylized features as discussed above. The proposed model
usually has a complex structure and may not be analytically tractable for the purpose of deriva-
tives pricing. In this thesis, we avoid from proposing a too complicated model by adopting a
stepwise procedure. This approach will provide us with precise causality of the model rejec-
tion or vice versa. Firstly, we introduce a simple but quite famous process used in modelling
the stock price called the geometric Brownian motion (see Osborne [65] or Samuelson [70]).
Suppose that (2, F, {F: }+>0, P) is a given filtered probability space. Denote S(t) as the price
attime ¢ > 0, evolving as

S(t) = S(0) exp(ut + o B(t)), (1.2.1H

where i and o > 0 are constants and B(t) is Brownian motion. The price has a continuous
trajectory, exponentially increasing or decreasing governed by a stochastic process with nor-
mally distributed increments. Moreover, the logarithmic returns (or simply logreturns) will be
independent, stationary and normally distributed. In Chapter 4, we will prove empirically our
previous claim that the GBM is not satisfactory to model the freight rate dynamics.

We can naturally generalize Brownian motion to the Lévy process, the process with inde-
pendent and stationary increments to allow for jumps and leptokurtic behaviour of the price
dynamics. The model simply takes the form

S(t) = S(0)exp(L(t)), (1.2.2)

where L(t) is a Lévy process. Equation (1.2.2) is referred as an exponential Lévy model. We
can choose L(t) from various classes of non-Gaussian Lévy processes where the path of the
price process is allowed to have jumps at any arbitrary time. A special class of hyperbolic dis-
tributions namely the normal inverse Gaussian (NIG), which is connected to a pure jump Lévy
process may possibly explain the evolution of prices. With the assumption that the increments
of L(t) are distributed according to NIG, the price process will show discontinuity in its path.
We will consider such Lévy process in Chapter 3 for the temperature dynamics, and also in
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Chapter 4 and 5 for the dry bulk freight rates.

The term S(0) in (1.2.2) can be substituted with a seasonal mean function A(¢) while mod-
elling the dynamics of the seasonal dependent commodity. The process is typically taking the
following geometric representation

S(t) = A(t) exp(X (1)), (1.2.3)
where X () is the stationary process of Ornstein-Uhlenbeck type defined as
dX(t) = —aX(t)dt + o dB(t).

The model allows for mean reversion, at a speed given by the constant o > 0. There is also a
possibility to have a two-factor model by adding a factor Y'(¢) usual to model the spikes (see
e.g. Benth, Saltyte Benth and Koekebakker [22] for the energy spot price model). However, the
two-factor or more general multi-factor model is not in the scope of this thesis.

Due to the absence of seasonality feature in freight rates, the A(¢) in this setting is equal
to one. This implies that (1.2.3) becomes S(t) = exp(X (¢)) or in terms of logarithmic price
representation, In S(t) = X (¢). We let X (¢) be equipped with stochastic volatility process. As
noted, we will consider the BNS stochastic volatility model in Chapter 4 where X (¢) follows
the dynamics

dX(t) = {u+ Bo*(t)} dt + o(t) dB(t).

The volatility process is defined in terms of a superposition of independent OU processes with
different mean reversion rates. The process is moving up entirely by jumps and decreasing
exponentially over time. The log price X () is still a continuous process although the volatility
process o2(t) shows jumps on the path.

The more recent stationary process called CARMA is within the class of multi-dimensional
OU process. Instead of using X (¢), we denote the process as Y'(¢) where Y (¢t) = b’X(¢) and
X(t) is the solution of the following vector-valued stochastic differential equation

dX(t) = AX(t) dt + e,0dB(t) . (1.2.4)

The matrix A contains the different speeds of mean reversion, covering the slow and fast revert-
ing factors in the dynamics. The interesting part of this model is the stochastic process driving
the dynamics, B(t). Depending on the property of the process, we can make a generalization
from Brownian motion in (1.2.4) to the Lévy process L(t), similarly to the case of exponential
Lévy model (1.2.2). This opens up the possibility of capturing the jumps in the process which
lead us to a non-Gaussian OU model. Another possibility is using the stochastic volatility dy-
namics in the model explained by BNS stochastic volatility which is also an OU process. We
will explain the CARMA model in Chapter 3, and in Chapter 4 and 5 we go to its subclass
called CAR model.

1.2.3 Forward and futures pricing

The price of forward/futures determines the direction of underlying spot in the future. There
are two special terminologies used in the commodity markets, namely contango and backwar-
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dation. The former represents the market condition where the price of forward/futures is traded
above the expected spot price at maturity, while the latter represents the vice versa. The deriva-
tion of forward/futures price for a tradeable asset is simple since the cost-of-carry relationship
does hold. We can define the cost of carry as the cost of holding the underlying asset (being
purchased in the spot market) until the forward contract matures. This relationship however
breaks down for the temperature and freight markets, where the buy and hold hedging strategy
obviously cannot be implemented.

We denote S(t) as the spot price at time ¢, and the forward price with delivery time 7 is
represented as f(¢, 7). Entering the forward contract is equivalent to locking in the position
where payoff function equals S(7) — f(t, 7). We refer to the arbitrage pricing theory (see e.g.
Duffie [37]) where the value of derivative is defined under risk neutral pricing measure () as the
present value of its expected payoff. We pay nothing to enter the contract, which implies that
the discounted value of the expected payoff,

e " TUEQ[S(r) — f(t,7) | F] =0,

where  is the constant risk-free interest rate. The operator [ is the expectation defined under
risk neutral measure and F; is the filtration encapsulating the revealed market information up to
time ¢.

Since f(t,7) is adapted to the filtration F, the following spot-forward relationship
f(th) =Eq [S(T) | ft}?

holds. This relationship resulting of the arbitrage-free dynamics of forward price since the
process is martingale under (). In a similar way, we define the futures price as the expectation of
accumulated spot price over the delivery period [71, 72] measured under risk neutral probability.
Mathematically, this can be represented as

f(t,m,7) =Eq {/w S(u)du | }}] .

T1

Esscher transform for Lévy processes

The martingale property of the process X (we consider such processes as in Subsection 1.2.2)
can be obtained by constructing a new probability measure () which is equivalent to the measure
P. The term () in our context is coined as risk-neutral probability measure, such that the price
process becomes martingales after discounting. This applies to all tradeable commodities where
the product can be traded in a normal sense. However, since temperature and freight service are
nonstorable, the price process may not necessarily be a martingale after discounting. But, the
forward prices are martingales under the probability (). We will use an Esscher transformation,
a well-known procedure to construct a density process D (also refer to notation 7 in Chapter 5),
which can be used for construction of the risk neutral measure (). This is one of the main
steps in deriving the forward pricing formula, to be briefly discussed herein. We refer to Benth,
Saltyté Benth and Koekebakker [22] for detailed explanation of the Esscher transform.
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Define for a given #;, € R and 0 < ¢ < 7, the stochastic process

Dy (t) = exp (/ 0, dL(u / or(01) du) .

The terms ¢, and 6, are respectively the cumulant function of the Lévy process and the market
price of risk. The latter is the price charged for the risk of not being able to hedge (see Benth,
§altyté Benth and Koekebakker [22]). From now on, we assume that the process Dy (t) is a

martingale, and hence E[Dy(7)] = 1. We can construct a risk neutral measure () from the
density process Dy, (t) of the Radon-Nikodym derivative as follows
dQ
Dy(t