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Introduction

In 1995 Bost and Connes [1] constructed a quantum statistical me-
chanical system with properties related to the Riemann ζ-function and
class field theory for Q. Indeed, the system constructed answers Prob-
lem 1.1 of [7] (which we reproduce here) for the case K = Q:

Problem 1. For a number fieldK, exhibit an explicit C∗-dynamical
system (A, σ) such that

(i) the partition function of the system is the Dedekind zeta function
of K;

(ii) the quotient of the idèle class group CK by the connected compo-
nent DK of the identity acts as symmetries of the system;

(iii) for each inverse temperature 0 < β ≤ 1 there is a unique KMSβ-
state;

(iv) for each β > 1 the action of the symmetry group CK/DK on the
extremal KMSβ-states is free and transitive;

(v) there is aK-subalgebra A0 of A such that the values of the extremal
KMS∞-states on elements of A0 are algebraic numbers that generate
the maximal abelian extension Kab of K;

(vi) the Galois action of Gal(Kab/K) on these values is realized by
the action of CK/DK on the extremal KMS∞-states via the class field
theory isomorphism s : CK/DK → Gal(Kab/K).

This problem was solved in [7] for K an imaginary quadratic field.
Furthermore, in [15, 24] a system satisfying (i)-(iv) has been con-
structed for arbitrary number fields. While the construction is not
entirely explicit, it is shown in [34] that there exists an arithmetic
subalgebra A0 ⊂ A satisfying (v) and (vi).

It is natural to ask whether the analogue of Problem 1 can be
solved for function fields. Since the basis for the full solutions in the
number fields case [1, 7] has been the knowledge of explicit class field
theory, the fact that one already has an explicit class-field theory for
function fields through the work of Drinfeld [10, 11] and Hayes [17] is
encouraging. This also indicates that the construction should involve
Drinfeld modules in some fashion.
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2 INTRODUCTION

Steps in this direction, albeit down different paths, have been taken
by Jacob [18] and Consani and Marcolli [9].

In his paper [18], Jacob considers the torsion points φ(C∞)tor of
a Drinfeld module φ. He constructs an equivalence relation whose
underlying space consists of characters on the set of torsion points of
Drinfeld modules φ, where φ ranges through the set of sign-normalized
rank one Drinfeld modules. This set of Drinfeld modules has been
shown [17] to be closely related to the class field theory of a function
field. The equivalence relation is induced by an ideal action on this
object space, and the C∗-algebra considered by Jacob is the C∗-algebra
of this equivalence relation with dynamics arising from the equivalence
relation.

The dynamical system constructed satisfies (i)–(iv) of the problem
given above, except that the symmetries of the system are given by
Gal(K/K), where K is an abelian extension of the function field K
which is somewhat smaller than the full maximal abelian extension.
On the other hand, it is not possible to find an arithmetic subalgebra
for this system. Indeed, the evaluation of elements of the algebra at
extremal KMS∞-states are complex numbers, while generators of Kab

over K live in a field of characteristic p.

Another approach to the problem is taken in [9], where Consani
and Marcolli take as their starting point a notion of “pointed Drin-
feld modules”, which may equivalently be considered as pairs (Λ, φ),
where Λ is a lattice in a certain field and φ is a homomorphism. The
construction is reminicent of that carried out for number fields in for
instance [6]. They then define an equivalence relation of commensu-
rability on this space, similarly to the number field case, and consider
the resulting groupoid up to scaling. With this groupoid as their basis
they construct a quantum statistical mechanical system with values
in a characteristic p field C∞, and construct some KMS-states of the
system.

The dynamical system satisfies appropriate analogues of (i), (ii) and
(iv), but here the symmetries of the system are given by Gal(Kab,∞/K),
whereKab,∞ is the maximal abelian extension ofK which is completely
split at the distinguished place ∞.

In the current thesis we will proceed along both these paths.

The structure of the thesis is the following. In Chapter 1 we review
briefly some background on characters from Tate’s thesis [30]. We then
give a very brief introduction to Drinfeld modules, before recalling the
main results from explicit class field theory for function fields, following
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[17]. We also state some results on KMS-states and type III factors
which we will refer to in Chapter 2.

Chapter 2 mainly consists of results previously published in [27],
and concerns complex-valued dynamical systems associated to function
fields. In Section 2.1 we construct, for an abelian extension L of a
function field K and a finite set of places S of K a dynamical system
(AL,S, σ). We show that it satisfies (i)–(iv) of the problem given above,
with the modification that the symmetries are given by Gal(L/K) as
should be expected. In Section 2.2 we furthermore calculate the type
of the unique KMSβ-state for 0 < β ≤ 1. This turns out to be IIIq−nβ

where qn is the number of elements in the constant field of L, correcting
a result of Jacob.

Section 2.3 shows how the system of Jacob fits into our framework,
being isomorphic to our system in the case L = K and S = {∞}.
We also show that the groupoid of Consani and Marcolli is canoni-
cally isomorphic to the quotien of Jacob’s groupoid by the action of
Gal(K/Kab,∞), and that a small modification of the construction of
Consani and Marcolli leads to a groupoid that is isomorphic to that of
Jacob. Finally, in Section 2.4 we show that the system of Jacob can
arise from a Hecke-algebra argument similar to that of [25].

In Chapter 3 we go down the other path, considering dynamical
systems over fields of characteristic p. In Section 3.1 we recall the defi-
nition of dynamical systems over C∞ given in [9], and construct such a
system (AL,S, σ) associated to an abelian extension L of a function field
K and a finite set S of places of K. The dynamical system considered
in [9] corresponds to ours in the case L = Kab,∞ and S = {∞}. In
Section 3.2 we consider KMS-functionals on our dynamical system. In
the complex-valued case there is a bijection between the set of KMS-
functionals on AL,S and the set of probability measures on the object
space of YL,S of the equivalence relation satisfying a certain scaling
condition. In the positive characteristic case a similar bijection exists,
although we phrase our result in terms of probability type functionals
in order to avoid having to introduce the language of characteristic p
measure theory. This allows us to give a partial classification of the
KMS-functionals of (AL,S, σ).

The rest of the chapter concerns the possibility of constructing an
arithmetic subalgebra associated to the system (AL,S, σ). In Section 3.3
we show that the existence results for arithmetic subalgebras for num-
ber fields given in [34, Section 9] also apply in the function field case.
This construction is, however, not entirely satisfying, since it is non-
explicit. We are able to remedy this in two specific cases. First, in
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Section 3.4 we explicitly construct an arithmetic subalgebra in the case
L = K, S = {∞} based on the explicit class field theory presented in
[17]. Finally, in Section 3.5 we restrict to the case K = Fq(T ), the
rational function field, and construct an arithmetic subalgebra for the
case L = Kab and S = {∞} based on the work in [16].

I would like to thank my advisor Sergey Neshveyev for his endless
patience, and for pointing me in the right direction the many times it
was needed. I would also like to thank my family and friends for their
support, and especially my lovely wife, but for whom this thesis would
probably never have been finished.



CHAPTER 1

Background

1.1. Function fields

Let p be a prime, and let K be a global function field of charac-
teristic p > 0, that is, a finite algebraic extension of Fp(T ). We let
q = pk be such that Fq is the algebraic closure of Fp in K. We fix a
distinguished place ∞ of K, and let O be the ring of functions in K
which have no pole away from ∞.

Let us once and for all fix some notation. For a place v of K, let Kv

be the completion ofK at the place v, and letOv = {x ∈ Kv : |x|v ≤ 1}.
Then Ov is the maximal compact subring of Kv. We write J for the
group of divisors of K, so J is the free abelian group generated by
the places of K. We also write AK for the adele ring of K, that is
the restricted product

∏′ Kv of the fields Kv with respect to Ov ⊂ Kv.
That is, an element of AK is an element (av)v ∈

∏
Kv such that av ∈ Ov

for all but finitely many places v of K. We also write OA =
∏

v Ov.
We will often want to ignore a finite set of places of K, and have

use for corresponding notation. If S is a finite set of places of K,
we will write JS ⊂ J for the subgroup of divisors with support in the
complement Sc of S, so JS is the free abelian group generated by places
in Sc. Furthermore, we let AK,S =

∏′
v∈Sc Kv and ÔS =

∏
v∈Sc Ov. In

the case where S = {∞}, we also write AK,f = AK,{∞}, Ô = Ô{∞} and
JK = J{∞}, which we identify with the fractional ideals of O.

If K∞ is the completion of K at ∞, the norm induced by ∞ extends
uniquely to a norm on K̄∞, the algebraic closure of K∞. If we write C∞
for the completion of K̄∞ with respect to this norm, C∞ is an extension
of K which is both algebraically and topologically complete. It does in
many ways correspond to the complex numbers.

In general, we will not be strict in distinguishing between a place
v �= ∞ of K and the corresponding prime ideal pv of O. Hence we may
occasionally let S consist of a finite set of primes, and the notation will
still be as above. We will also (as long as ∞ ∈ S) often consider JS as
the set of ideals of O which are relatively prime to the ideals in S.

5



6 1. BACKGROUND

1.1.1. Additive characters in characteristic p. We will need
certain results about additive characters of various objects associated
to function fields, mainly AK,f and its quotient AK,f/Ô. This theory
is developed in [30] in the characteristic zero case. The proofs go
through to the positive characteristic case without modification, but
can be somewhat simplified since any character of a torsion group of
exponent p can only take values in the discrete set of pth roots of unity
in C. We give proofs for completeness.

Let us start by determining the character group k̂ of a the additive
group of local field k of characteristic p. In the following arguments,
| · | is the norm on the local field k.

Lemma 1.1.1. If x �→ χ(x) is a nontrivial character of k then the
map

y �→ χ(·y)
is an isomorphism of k with k̂.

Proof. Since multiplication in k is continuous, the map x �→ χ(xy)
is a character of k. Furthermore χ(·(y+ y′)) = χ(·y)χ(·y′), so the map
respects the additive structure of k. To see that it is injective assume
χ(·y) is trivial. Since χ is nontrivial this is only the case if k · y �= k,
which is only the case if y = 0.

It remains to show that the map is a homeomorphism. On the
one hand, let B ⊂ k be compact. Then there is an M ≥ 0 such that
|x| ≤ M for x ∈ B, and we may assume B consists of all such B. Since
χ is continuous there is an N ≥ 0 such that χ(x) = 1 for all x with
|x| ≤ N . Let V = {y ∈ k : |y| ≤ N/M}. Then for any y ∈ V and
x ∈ B we have |xy| ≤ N , so χ(xy) = 1. Thus y �→ χ(·y) is continuous.

On the other hand, let x0 ∈ k be such that χ(x0) �= 1. Then if y
is such that χ(By) = 1 then x0 �∈ By, so we must have |y| < |x0|/M .
Thus the map is bicontinuous.

Finally note that the χ(·y) separate points of k, since if χ(xy) = 0
for all y ∈ k then x · k �= k, so x = 0. Hence the characters χ(·y)
are dense in k̂. Since the map is bicontinuous this implies that the
characters of the form χ(·y) form a closed and dense subgroup of k̂, so
our map is a homeomorphism. �

We need to fix a nontrivial character of k. To this end, let π ∈ k
be a uniformizer of k. Then every element of k can be written in the
form

x =
∑
n

anπ
n,
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where an are elements of the residue field of k. This residue field can be
identified with Fq for some prime power q = pn. Letting Tr : Fq → Fp

be the trace map we can define a character of k by

χ1(x) = λ(Tr(a−1)),

where λ : Fp → C× is an identification of the additive group of Fp with
the multiplicative group of pth roots of unity in C. This character is
then nontrivial.

For a set A ⊂ k, let A⊥ ⊂ k̂ consist of those χ ∈ k̂ such that
χ|A = 0. Then under the identification of k with k̂ given by χ1 we have
o⊥ = o.

We next want to analyze the characters of AK,f and relate them to

the result above. To this end, given a character χ ∈ ÂK,f let χv be the
character on Kv given by

χv(xv) = χ((0, . . . , 0, xv, 0, . . .)).

We will show that the characters χv determine χ uniquely.

Lemma 1.1.2. The character χv is trivial on Ov for almost all v,
and

χ(x) =
∏
v

χv(xv).

Proof. Let N be a neighborhood of 0 ∈ AK,f such that χ(N) = 1.
We may assume that N is of the form N =

∏
v Nv. Let S be a finite set

of places containing ∞ such that v ∈ S if Nv �= Ov. Then AK,S ⊂ N
so χ(AK,S) = 1. In particular χv(Ov) = 1 for v �∈ S as claimed.

If x ∈ AK,f , assume that S also contains all places v such that
xv �∈ Ov, and write x = ((av)v∈S, aS) where aS = (av)v �∈S ∈ AK,S. Then

χ(a) =
∏
v∈S

χ(av) · χ(aS) =
∏
v∈S

χv(av) =
∏
v

χ(av).

�

Lemma 1.1.3. Let χv ∈ K̂v be given for each v, and assume that
Ov ⊂ kerχv for almost all v. Then

χ(x) =
∏
v

χv(xv)

is a character of AK,f .

Proof. It is clear that χ is an algebraic character, and we only have
to show continuity. To this end, let S be a finite set of places containing
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∞ such that v ∈ S if Ov �⊂ kerχv. Now if Nv is a neighborhood 0 ∈ Kv

such that χv(Nv) = 1 for all v ∈ S and Nv = Ov for v �∈ S, we see that

χ(
∏
v

Nv) = 1,

so χ is continuous. �

Theorem 1.1.4. There is an isomorphism ÂK,f 
 AK,f such that

Ô⊥ = Ô.

Proof. Let y ∈ AK,f . If χv,1 are the characters identifying K̂v

with Kv we want to map y to the character

χ(·y) =
∏
v

χv,1(·yv).

Since y ∈ AK,f we have yv ∈ Ov for almost all v, so χv,1(Ovyv) = 1 for
almost all v (since O⊥

v = Ov). Thus by the preceding lemmas the map
is an algebraic isomorphism. It remains to check that the topologies
coincide.

To this end let B be a compact subset of AK,f . Since the V (B) =
{χ : χ(B) = 1} form a neighborhood basis of the trivial character in

ÂK,f , it suffices to show that this is carried to a neighborhood basis of
0 ∈ AK,f and vice versa.

Let χ ∈ V (B). We can write B =
∏

v Bv where Bv is compact
and Bv = Ov for almost all v. Let M ≥ 0 be such that |xv|v ≤ M
for xv ∈ Bv, and let S be a finite set of places containing ∞ such
that v ∈ S if Bv �= Ov. Then for v ∈ S we have χv(Bv) = 1, so
χv = χv,1(·yv) where |yv|v ≤ 1/M . For v �∈ S we have χv = χv,1(·yv)
for some yv ∈ O⊥

v = Ov, so

y = (yv) ∈
∏
v∈S

{xv ∈ Kv : |xv|v ≤ 1/M} × ÔS.

Letting B run over an increasing net of compacts this is a neighborhood
basis of 0 ∈ AK,f .

Conversely, if y is in the set above then χ1(·y) maps the compact
set

BM,S =
∏
v∈S

{xv ∈ Kv : |xv|v ≤ M} × ÔS

to 1 ∈ C, so the neighborhood basis of 0 ∈ AK,f maps to a neighbor-

hood basis of the trivial character in ÂK,f . �
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1.1.2. Sign functions. Whereas the real numbers have a canon-
ical sign function, in the function field case we must introduce one
artificially, and it does not have all the properties that we would like.
However, it is vital to several arguments that follow.

We will write F∞ for the constant field of K∞.

Definition 1.1.5. A sign function on K×
∞ is a homomorphism

sgn : K×
∞ → F×

∞
which is the identity on F×

∞. We extend sgn to K∞ by putting sgn(0) =
0.

Say x ∈ K∞ is positive if sgn(x) = 1, and write K+
∞ for the set of

positive elements of K∞. We furthermore write K+ = K+
∞ ∩K for the

set of positive elements of K.

It is obvious that any such function sgn is multiplicative, but (sadly)
not additive, in that we cannot say anything about the sign of a sum
of two positive elements.

Lemma 1.1.6. Any sign function sgn : K×
∞ → F×

∞ is trivial on the
one-units U1 = 1 + π∞O∞.

Proof. By definition, every element of U1 can be written in the

form 1 +
∑

v≥1 avπ
v
∞ for some av ∈ F∞. Let U

(n)
1 be the quotient of

U1 given by setting πn
∞ = 0. Then U1 = lim← U

(n)
1 and the U

(n)
1 are

finite groups in which every element has order a power of p. Hence in
particular U1 is a pro-p-group, in that any finite quotient of U1 consists
of elements of order a power of p.

Since F×
∞ has order prime to p this implies that the image of U1

under sgn must be trivial. �
Sign functions can be constructed by choosing a uniformizer π∞

and writing elements x ∈ K∞ as x = πa
∞ · ζ · u where a is an integer,

ζ ∈ F∞ and u is in U1. Then x �→ ζ is a sign-function.
There is no canonical choice of a sign function. However, we will

assume a sign function sgn to be fixed in any arguments given.

1.1.3. Exponentiation of ideals. One interesting feature which
differentiates function fields from number fields is that there is a well-
defined procedure of raising ideals to a non-integral exponent. While
at first surprising, this mirrors the situation in Q. Indeed, since Z is a
principal ideal domain, ideals in Z (which are nothing but integers up
to sign) can be raised to an arbitrary complex exponent. However, O
is not a principal ideal domain, so staying at the level of elements of O
is not sufficient.
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In the characteristic zero case the domain of the exponent is the
complex numbers C, which indicates that we should define ax for all
x ∈ C∞. However, it turns out [14, Section 8.1] that the “most natural”
choice is the group C×

∞ × Zp which we denote by S∞. We shall write
this group additively, so (x, y) + (x′, y′) = (xx′, y + y′).

We first define the exponentiation on K+, the set of positive el-
ements of K, which we identify with the set of positively generated
principal ideals of O, and then extend this exponentiation to all of JK .
Our exposition is based on [14, Sections 8.1–2].

Let π be a fixed positive uniformizer for K∞ so sgn(π) = 1, and
let U1 be the set of 1-units, that is the set of u ∈ O∞ such that u = 1
mod πO∞. Then any α ∈ K×

∞ can be written (uniquely) as

α = sgn(α)πj〈α〉,
where j = v∞(α) and 〈α〉 ∈ U1.

Lemma 1.1.7. If u ∈ U1 then
∑∞

j=0

(
y
j

)
(u − 1)j converges for all

y ∈ Zp.

Remark 1.1.8. There are two things to note about the notation of
this lemma. First, when we write

(
y
j

)
for y ∈ Zp and j ∈ N, this should

be read as (
y

j

)
=

y(y − 1) · · · (y − j + 1)

j(j − 1) · · · 3 · 2 · 1
which is a well-defined element of Zp. Secondly, the action of a =∑

i≥0 aip
i ∈ Zp on x ∈ K is given simply by ax = a0x, where a0 ∈ Fp ⊂

K. This extends the natural action of N on K.

Proof of Lemma 1.1.7. Since u ∈ U1 we get u − 1 ∈ πO∞, so
|u − 1|j ≤ p−j. Thus |u − 1|j → 0, while |(y

j

)| = 1, so the series is
convergent. �

Definition 1.1.9. For α ∈ K+ and s = (x, y) ∈ S∞, let degα =
d∞v∞(α), where d∞ is the degree of the place ∞. This can for instance
be defined as the integer such that |F∞| = qd∞ , where F∞ are the
constants in K∞. Furthermore, set

αs = xdeg(α)〈α〉y = xd∞v∞(α)〈α〉y.
Note that 〈α〉y converges by the lemma. This exponential function

works as expected. Indeed, we have the following.

Lemma 1.1.10.

(i) Let α, β ∈ K+ and let s ∈ S∞. Then

(αβ)s = αsβs.
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(ii) Let s, t ∈ S∞ and α ∈ K+. Then

αs+t = αsαt.

Proof. Since 〈αβ〉 = 〈α〉〈β〉 and deg(αβ) = degα + deg β we get

(αβ)s = xdeg(αβ)〈αβ〉y = xdegα〈α〉yxdeg β〈β〉y = αsβs.

For part (ii) let s = (x, y) and t = (z, w) to get

αs+t = (xz)degα〈α〉y+w = xdegα〈α〉yzdegα〈α〉w = αsαt

as claimed. �

Next we want to extend the exponential to JK . To start down this
path, let Û1 ⊂ C∞ be the group of 1-units in C∞. That is, Û1 consists
of the units of the ring {x ∈ C∞ : v∞(x) ≥ 0}.

Lemma 1.1.11. The Zp-action on Û1 given by exponentiation ex-
tends uniquely to an action of Qp.

Proof. Let u = 1 + m with |m| < 1. If y =
∑

j>−∞ cjp
j with

0 ≤ cj < p we can set

uy =
∏

j>−∞
(1 +mpj)cj .

A slightly nasty computation shows that the two definitions of uy co-
incide for y ∈ Zp and u ∈ U1. Since we have ux+y = uxuy, the above
definition then is the unique extension of the map defined on Zp to
Qp. �

Recall that an abelian group G is divisible if for every positive
integer n and every g ∈ G there is an element h ∈ G such that hn = g.
This is equivalent to G being an injective object in the category of
abelian groups. The group G is uniquely divisible if this h is unique.

Corollary 1.1.12. The group Û1 is uniquely divisible.

Proof. Let g ∈ Û1 and n be a natural number. Then 1/n ∈ Qp,

so we can set h = g1/n. This h is unique since Û1 is torsion-free. �

Since thus Û1 is injective, if G is an abelian group with a subgroup
H any morphism φ : H → Û1 extends to a morphism φ̃ : G → Û1.
Furthermore, if G/H is finite then this extension is unique. Indeed, let
g ∈ G. Then gn ∈ H for some natural number n and we must have
φ(gn) = φ̃(g)n, which uniquely determines φ̃(g).
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In applying the above to our case we want to identify K+ with a
subset of the fractional ideals JK of O. We say that a fractional ideal
a of O is positively generated if a = (a) for some a ∈ K+.

Lemma 1.1.13. The map K+ → JK given by a �→ (a) is injective.
That is, every positively generated principal ideal of O has a unique
positive generator.

Proof. Let a ∈ K+ be a generator of a ∈ JK . Since O∗ = F×
q the

set of generators of a as a principal ideal is F×
q a, and the only positive

element here is a itself. �

If JK is the set of fractional ideals of K the quotient JK/K
+ is

finite, where we identify K+ with the set of positively generated frac-
tional ideals by the lemma above. Indeed, we can write down an exact
sequence

0 → K×/K+ → JK/K
+ → JK/K

× → 0.

Since both K×/K+, which isomorphic to the image of sgn : K× → F×
q ,

and JK/K
×, which is nothing but the ideal class group of K, are finite,

this implies that JK/K
+ is finite.

Hence 〈·〉 : K+ → Û1 extends uniquely to a map 〈·〉 : JK → Û1.

Definition 1.1.14. For a fractional ideal a of K and an element
s = (x, y) ∈ S∞ define

as = xdeg a〈a〉y.
We then have as1+s2 = as1as2 and (ab)s = asbs. Furthermore, if a

is generated by a positive element a ∈ K+ we have as = as.

Lemma 1.1.15. There is an isomorphism of groups between the
group A∗

K,f/Ô∗ and the fractional ideals of O given by

g �→ (gÔ) ∩K.

Proof. By [32, Theorem 2, p. 84] there is a bijection between

the set of fractional ideals of O and the set of Ô-modules Λ ⊂ AK,f

such that the v-component Λv = Ov for almost all finite places v of
K (the theorem is stated for number fields, but the proof is identical

in the function field case). Since Ô is a principal ideal domain, such

modules are given by gÔ for some g ∈ A∗
K,f . Hence the given map is

an isomorphism. �
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1.2. Drinfeld modules

Drinfeld modules were introduced in [10], generalizing a construc-
tion used by Carlitz [3] to almost construct the maximal abelian exten-
sion of Fq(t). This section summarizes the main properties of Drinfeld
modules needed in this thesis. For a more complete account of Drinfeld
modules see [14, 17], to which we also refer for some proofs.

1.2.1. Analytic construction. The most transparent way to dis-
cuss Drinfeld modules is probably by starting from the viewpoint of
O-lattices in C∞. Let us work with the following definition:

Definition 1.2.1. An O-lattice in C∞ is a discrete finitely gener-
ated O-submodule of C∞.

Recall that a subgroup Λ ⊂ C∞ is said to be discrete if there is a
neighborhood U of 0 ∈ C∞ such that U ∩ Λ = {0}. We will generally
denote such an object simply by “lattice” unless this is likely to cause
confusion.

Theorem 1.2.2. The set of rank one lattices is parametrized by
C×

∞ ×K× A∗
K,f/Ô∗ via

(ξ, r) �→ ξ(rÔ ∩K).

Proof. For each (ξ, r) ∈ C×
∞ ×K× A∗

K,f/Ô, the set ξ(rÔ ∩ K) is
clearly a lattice. We need to show that the representation is unique.

Assuming ξ(rÔ ∩K) = ξ′(r′Ô ∩K), if we multiply with K we get

ξK = ξ′K, so g = (ξ′)−1ξ ∈ K×. Then g(rÔ ∩ K) = r′Ô ∩ K, and

taking the completion in Ô we get grÔ = r′Ô. Thus r′ = gru for
some u ∈ Ô∗. Thus (ξ′, r′) = (ξg−1, gru), so they are representatives

of the same equivalence class in C×
∞ ×K× A∗

K,f/Ô∗. Hence the map is
injective.

For surjectivity, let Λ ⊂ C∞ be a lattice. Choose some x ∈ KΛ and
find an element ξ ∈ C∞ such that ξ−1x ∈ K. Then ξ−1Λ ⊂ K is an
O-submodule of K, so by Lemma 1.1.15 there is an r ∈ A∗

K,f such that

ξ−1Λ = rÔ ∩K. Thus Λ = ξ(rÔ ∩K). �
We associate to a lattice Λ ⊂ C∞ a function eΛ : C∞ → C∞ which

we call the exponential function of Λ by

eΛ(x) = x
∏

α∈Λ\{0}
(1− x/α).

This product converges for all x ∈ C∞. Indeed, since Λ is discrete,
for all r > 0 there are only finitely many α ∈ Λ such that |α| < r, so
1− x/α converges to 1 as α runs through Λ.



14 1. BACKGROUND

Lemma 1.2.3. The exponential map eλ is Fq-linear, and eΛ induces
an isomorphism of Abelian groups C∞/Λ → C∞.

Proof. See [14] Proposition 4.2.5 and Corollary 4.2.6. �

Definition 1.2.4. For a lattice Λ ⊂ C∞ and a ∈ O, let

φΛ
a (x) = x

∏
α∈a−1Λ/Λ

α �=0

(1− x/eΛ(α)).

Then a �→ φΛ
a is the Drinfeld module associated to Λ.

By [14, Corollary 1.2.2], the map x �→ φΛ
a (x) is Fq-linear since its

set of roots is an Fq-vector space. This implies that φΛ
a can be written

as a polynomial in τ = xq. (Note that τ i(x) = xqi and in particular
τ 0(x) = x.) We will in the following consider φΛ

a to be an element of
the ring C∞{xq} of polynomials in xq with coefficients in C∞, where
the multiplication is given by composition.

Remark 1.2.5. This is the basis for an alternative definition of a
Drinfeld module as a homomorphism φ : O → C∞{xq} such that

(i) D(φa) = a for all a ∈ O, where D(
∑

aix
qi) = a0;

(ii) there is some a ∈ O such that φa �= ax0.
It can be shown [14, Section 4.6][17, Section 8] that this definition

is equivalent to the one given in this section in terms of lattices.

If one accepts that the exponential function of a lattice is an inter-
esting object, then the motivation to study the Drinfeld module of the
lattice is obvious from the following proposition. If one does not accept
this, then the results summarized later in the current section should be
convincing that at least Drinfeld modules themselves are interesting.

Proposition 1.2.6. Given a lattice Λ and a ∈ O we have

eΛ(ax) = φΛ
a (eΛ(x)) ∀x ∈ C∞.

Proof. See [14] Theorem 4.3.1 �

Note that this result can be interpreted as saying that we have a
commutative diagram

C∞/Λ
a ��

eΛ
��

C∞/Λ

eΛ
��

C∞
φΛ
a �� C∞.
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1.2.2. Rank.

Lemma 1.2.7. Let Λ ⊂ C∞ be an O-module. Then there are ideals
a1, . . . , ar such that as O-modules

Λ 
 a1 ⊕ · · · ⊕ ar.

Proof. Since C∞ is a field and the O-module structure on C∞ is
given by the multiplication in the field, the O-module C∞ is torsion
free. Hence Λ is also torsion free as an O-module. Hence Λ is a torsion
free finitely generated O-module, and as O is a Dedekind ring Λ is
projective. Hence there is an integer r ≥ 1 and ideals a1, . . . , ar of O
such that

Λ 
 a1 ⊕ · · · ⊕ ar.

�
The integer r of the lemma is the rank of Λ. If φΛ is the Drinfeld

module associated with Λ, we say that the rank of φΛ is r as well.
This rank can also be read out of the Drinfeld module itself. Indeed,

let φ be a Drinfeld module and define νφ : O → Z by

νφ(a) = − deg φa(τ)

(where we consider the degree in τ = xq). Then one can show, see for
instance [14, Lemma 4.5.1, Proposition 4.5.3], that there is an integer
r such that

νφ(a) = −r deg(a).

One can furthermore show (see e.g. [17, Theorem 8.12]) that the rank
defined in this fashion coincides with the rank as defined in terms of
the underlying lattice.

If Λ1 and Λ2 are two lattices with the same rank, a morphism from
Λ1 to Λ2 is an element c ∈ C∞ with cΛ1 ⊆ Λ2.

Proposition 1.2.8. If c : Λ1 → Λ2 is a morphism and if φ and
ψ are the Drinfeld modules associated to Λ1 and Λ2 respectively, then
there is a polynomial P in xq with coefficients in C∞ such that

Pφa = ψaP

for all a ∈ O.

Proof. Consider the function eΛ2(cx). By definition it is zero on
c−1Λ2 ⊇ Λ1. Since Λ1 and c−1Λ2 have the same rank we see that
c−1Λ2/Λ1 is finite. Thus we can define

P (x) = cx
∏

α∈c−1Λ2/Λ1

α �=0

(1− x/eΛ1(α)).
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Then P (x) is Fq-linear and P (eΛ1(x)) has a simple zero at each point
of c−1Λ2 with derivative c. Hence

P (eΛ1(x)) = eΛ2(cx).

Now for a ∈ O we have

Pφa(eΛ1(x)) = P (eΛ1(ax)) = eΛ2(cax) = ψa(eΛ2(cx)) = ψa(P (eΛ1(x))),

so as eΛ1 is surjective we get Pφa = ψaP as claimed. �
By the proposition, we say a polynomial P in xq with coefficients

in C∞ is a morphism from φ to ψ if Pφa = ψaP for all a ∈ O. Note
that for P to be invertible we must have P ∈ C×

∞.

Remark 1.2.9. In the current thesis we will assume that all lattices
and Drinfeld modules considered are of rank one.

1.2.3. Sign-normalization. Let φ be a (rank one) Drinfeld mod-
ule and define μφ(a) ∈ C∞ to be the leading coefficient of φa. Then

μφ(ab) = μφ(a)μφ(b),

so we can extend μφ to a map μφ : K → C∞.

Definition 1.2.10. Say that φ is normalized if μφ(x) ∈ F∞ for
all x ∈ K. If for some sign-function sgn there is an element σ in
Gal(F∞/Fq) such that μφ = σ ◦ sgn we say that φ is sgn-normalized.

Sign-normalized rank one Drinfeld modules are occasionally called
Hayes modules [14, p. 199], but we will not use this terminology.

Theorem 1.2.11. Let φ be a Drinfeld module and sgn be a sign
function. Then φ is isomorphic over C∞ to a sgn-normalized Drinfeld
module.

Proof. ConsiderK∞, and let π∞ be a uniformizer which is positive
with respect to sgn. Then choose ξ ∈ C∞ in such a way that we have
ξq

deg∞−1 = 1/μφ(π
−1
∞ ). Then if ψ = ξφξ−1 we get μψ(π

−1
∞ ) = 1.

Write x ∈ O as x = ζπj
∞u with ζ ∈ F×

∞ and u ∈ U1. Then

μψ(x) = ζ = sgn(x)

so ψ is sgn-normalized. �
1.2.4. Group actions on Drinfeld modules. There are two

group actions on Drinfeld modules which will be relevant to our dis-
cussion: The action of the group of fractional ideals JK and the action
of certain Galois groups. Let us first consider the ideal action.

Lemma 1.2.12. Every left ideal in C∞{xq} is principal.
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Proof. See [17] Proposition 4.1. �

Let a ⊂ O be an integral ideal and φ a Drinfeld module. Let
C∞{xq}φa be the left ideal in C∞{xq} generated by the φa for a ∈ a.
By the lemma this is a principal left ideal. We write φa for its monic
generator in C∞{xq}.

For x ∈ O we see that C∞{xq}φaφx ⊂ C∞{xq}φa. Indeed, elements
of C∞{xq}φa can be written as∑

a∈a
φxaφa,

and multiplying by φx on the right preserves this representation since
a is an ideal. Hence there is some φ′

x ∈ C∞{xq} such that

φaφx = φ′
xφa.

Lemma 1.2.13. The map x �→ φ′
x is a Drinfeld module.

Proof. See [17] Section 4. �

We write a ∗ φ for the Drinfeld module φ′. We then have the fol-
lowing:

Lemma 1.2.14. The ideal action on Drinfeld modules has the fol-
lowing properties:

(i) If a = aO is a principal ideal and μ is the leading coefficient of φa,
then φa = μ−1φa and (a ∗ φ)x = μ−1φxμ for x ∈ O;

(ii) If a, b are ideals of O then

φab = (b ∗ φ)aφb, a ∗ (b ∗ φ) = (ab) ∗ φ.
Proof. For (i), note that C∞{xq}φa is generated by μ−1φa which

is a monic polynomial. For the second part we calculate

μ−1 · φx · μ · φa = μ−1 · φx · φa = μ−1φxa = μ−1φaφx = φa · φx,

proving the claim.
For (ii), since O is a Dedekind domain every integral ideal of O can

be generated by two elements (see e.g. [5, Corollary 10.6.4]). Assume
a and b have generating pairs (a, a′) and (b, b′) respectively. Then
ab is generated by ab, ab′, a′b, a′b′. Consider the left ideal in C∞{xq}
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generated by (b ∗ φ)aφb. We get

C∞{xq}(b ∗ φ)aφb = C∞{xq}(b ∗ φ)aφb + C∞{xq}(b ∗ φ)a′φb

= C∞{xq}φbφa + C∞{xq}φbφa′

= C∞{xq}φbφa + C∞{xq}φb′φa

+ C∞{xq}φbφa′ + C∞{xq}φb′φa′

= C∞{xq}φab + C∞{xq}φab′

+ C∞{xq}φa′b + C∞{xq}φa′b′

= C∞{xq}φab.

Since φab is the unique monic generator of this left ideal and (b ∗φ)aφb

is monic we get φab = (b ∗ φ)aφb.
The second equality follows, since

(a ∗ (b ∗ φ))a(b ∗ φ)aφb = (b ∗ φ)a(b ∗ φ)aφb

= (b ∗ φ)aφbφa = φabφa

= (ab ∗ φ)aφab

= (ab ∗ φ)a(b ∗ φ)aφb

for all a ∈ O. �
The action of integral ideals extends in the obvious way to an action

of JK on the set of Drinfeld modules.

In certain cases there is also a Galois action on Drinfeld modules.
Indeed, assume the Drinfeld module φ has coefficients contained in
some Galois extension L of K. Then there is an obvious action of
Gal(L/K) on φ given by (σφ)a = σ(φa), where σ acts on the coeffi-
cients. Since σ fixes K this σφ is again a Drinfeld module with coeffi-
cients in L. Furthermore, this action commutes with the ideal action
above since σ(φa) = (σφ)a.

1.3. Explicit class field theory for function fields

The problem of constructing explicit class fields originates in the
statement of Hilbert’s 12th problem asking for an extension of the
Kronecker-Weber theorem on abelian extensions of Q to arbitrary num-
ber fields. For function fields the problem was solved in the case of Fq(t)
by Carlitz [3], and in the general case by Drinfeld [10, 11]. A more
explicit (and probably more readable) account is found in [17], which
we follow here. We would like to point to that paper for proofs as well.

For this section let K be a function field with ∞ a distinguished
place, sgn a sign function on K∞, and let φ be a sgn-normalized rank
one Drinfeld module.
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For any a ∈ O, write

φa = a+

deg a∑
k=1

ck(φ, a)x
qk

where ck(φ, a) ∈ C∞. Then for ξ ∈ C×
∞ we have

ck(ξφξ
−1, a) = ξ1−rkck(φ, a).

Now let k1, . . . , ks be the indices (depending on a) such that cki(φ, a)
is non-zero, and let g be the greatest common divisor of the numbers
rki − 1. We can then write

g =
s∑

i=1

ei(r
ki − 1)

for some integers ei. Let

Iki(φ, a) = cki(φ, a) ·
(

s∏
j=1

ckj(φ, a)
ej

)(1−rki )/g

.

Then a straightforward calculation shows that Iki(φ, a) depends only
on a and the isomorphism class of φ, since Iki(φ, a) = Iki(ξφξ

−1, a) for
all ξ ∈ C×

∞.

Definition 1.3.1. Let φ be a sgn-normalized rank one Drinfeld
module and let a ∈ K \ Fq. Then let H be the field extension of K
generated by the Iki(φ, a) doe all ki.

It can be shown [17, Theorem 15.4] that this extension is indepen-
dent of the choices of φ and a. Furthermore, there is the following:

Theorem 1.3.2. The extension H/K is completely split over ∞
and unramified at every finite place of K. We have

Gal(H/K) 
 Pic(O),

and if φ is a Drinfeld module with coefficients in H then

σaφ 
 a ∗ φ
for every non-zero ideal a of O, where a �→ σa is the Artin map.

The field H is known as the Hilbert class field [28] of O.

Definition 1.3.3. Let φ be a sgn-normalized rank one Drinfeld
module over O and let a ∈ K \Fq. Let H

+ be the field extension of K
generated by the coefficients of φa.
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Again this extension is independent of the choice of φ and a. We
clearly have H ⊂ H+.

Let P+ = {(a) ∈ JK : sgn(a) = 1} be the set of positively generated
principal fractional ideals of K. The quotient Pic+(O) = JK/P+ is
called the narrow class group ofO relative to sgn. We have the following
result:

Theorem 1.3.4. The extension H+/K is unramified at every finite
place of K, and is Galois with Galois group isomorphic to Pic+(O). For
every non-zero ideal a of O we have

σaφ = a ∗ φ
for every sgn-normalized rank one Drinfeld module φ, where a �→ σa is
the Artin map.

Given a non-zero element a ∈ O we consider φa as a map φa :
C∞ → C∞, and we write Λφ(a) = {ζ ∈ C∞ : φa(ζ) = 0} for the kernel
of this map. Similarily, if m is a non-zero proper ideal of O we write

Λφ(m) = {ζ ∈ C∞ : φa(ζ) = 0 ∀a ∈ m}
for the set of torsion points with respect to the action of m.

Definition 1.3.5. Let Km, the narrow ray class extension modulo
m, be the extension of H+ generated by Λφ(m).

This extension is independent of the choice of φ. If we write Im for
the semigroup of ideals of O which are relatively prime to m and let

Pm = {(a) : a ∈ O×, a ≡ 1 mod m},
we have the following:

Theorem 1.3.6. Km is a finite abelian extension of K, unramified
away from ∞ and the prime ideals dividing m. It is independent of
the choice of φ. The Artin map σ : Im → Gal(Km/K) defines an
isomorphism Pic+m(O) 
 Gal(Km/K), and for any a ∈ Im and λ ∈ φ[m]
we have

σa(λ) = φa(λ).

The subfield K+
m of Km of elements fixed by the semigroup Pm is con-

tained in K∞, so the extension K+
m /K is completely split at infinity. If

we continue to denote by ∞ the extension of the place ∞ of K to K+
m

defined by the inclusion K+
m ⊂ K∞, then Km/K

+
m is totally ramified at

∞.
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Since Gal(Km/K) 
 Pic+m(O) we have

Gal(K+
m /K) 
 Picm(O) = Im/Pm.

Let K ⊂ C∞ be the union of the fields Km over non-zero proper
ideals m of O and let Kab,∞ ⊂ K∞ be the union of the fields K+

m . The
field Kab,∞ is the maximal abelian etension of K in which ∞ splits
completely.

Proposition 1.3.7. The Artin map A∗
K,f → Gal(Kab/K) induces

isomorphisms K+\A∗
K,f 
 Gal(K/K) and K×\A∗

K,f 
 Gal(Kab,∞/K).

Proof. Let us start with the first isomorphism. Recall that

K =
⋃
m

Km,

so we start by computing the Artin map rm : A∗
K → Gal(Km/K).

Let K+
m,1 = {x ∈ K+ : x ≡ 1 mod m}, where we write x ≡ 1

mod m if there are a, b ∈ O relatively prime to m such that x = a/b
with a ≡ b mod m. Then put P+

m = {(x) ∈ JK : x ∈ K+
m,1}. We

furthermore write S(m) for the set of places v such that pv|m together
with ∞. Then S(m) is finite, so it makes sense to consider AS(m) and

ÔS(m).
We then have a commutative diagram

A∗
S(m)

��

��

A∗
K

��

rm

��

A∗
K/K

×

��
A∗

S(m)/Ô∗
S(m)K

+
m,1


 �� Pic+m(O)

 �� Gal(Km/K)

If m =
∏

r∈S(m) p
nv
v , put Um = Ô∗

S(m)×
∏

v∈S(m)(1+ p̂nv
v ) ⊂ Ô∗, where

p̂v is the closure of pv in Ov. Then by the diagram ker rm contains
Ô∗

S(m)(K
+
m,1)S(m)K

×, where

(K+
m,1)S(m) = {(x, 1) : x ∈ K+

m,1} ⊂ A∗
S(m) ×

⎛⎝ ∏
v∈S(m)

Kv

⎞⎠ .

Now, by weak approximation, K+
m,1 is dense in

∏
v∈S(m)(1+ p̂nv

v )×K+
∞,

whence
ker rm ⊃ (Um ×K+

∞)K×.
Furthermore, the subgroup (Um × K+

∞)K× is closed, and the map
A∗

S(m) → A∗
K induces an isomorphism

A∗
S(m)/Ô∗

S(m)K
+
m,1 
 A∗

K/(Um ×K+
∞)K×,
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whence ker rm = (Um ×K+
∞)K×, so the Artin map induces an isomor-

phism
A∗

K/(Um ×K+
∞)K× 
 Gal(Km/K).

Since
⋂

m ker rm = K+
∞K× it follows that the Artin map

rK/K : A∗
K → Gal(K/K)

induces an isomorphism

A∗
K/K

+
∞K× 
 Gal(K/K),

or equivalently A∗
K,f/K

+ 
 Gal(K/K).

The proof of the second isomorphism is identical except that we
show that ker rm,+ = (Um×K×

∞)K×, whence the Artin map induces an
isomorphism

A∗
K/K

×
∞K× 
 Gal(Kab,∞/K),

or equivalently the desired isomorphism A∗
K,f/K

× 
 Gal(Kab,∞/K).
�

Lemma 1.3.8. The Artin map induces an isomorphism

Gal(K/H+) 
 Ô∗.

Proof. Recall that the Artin map induces an isomorphism

Gal(Km/H
+) 
 (Im ∩ P+)/P+

m .

By Lemma 1.1.13 there is a well-defined map Im∩P+ → (O/m)∗ given
by (a) �→ a mod m for positive a. The kernel of this map is exactly
P+, so since |Gal(Km/H

+)| = |(O/m)∗| this map is surjective. Hence
the Artin map induces an isomorphism Gal(Km/H

+) 
 (O/m)∗, and
we get

Gal(K/H+) 
 lim
m

Gal(Km/H
+) = lim

m
(O/m)∗ = Ô∗.

�
Lemma 1.3.9. The constant fields of Km and K+

m are both equal to
Fqd∞ .

Proof. Let us first considerK+
m . On the one hand, the residue field

of K+
m at infinity is Fqd∞ , since K+

m is completely split at infinity. On
the other hand, K+

m contains the Hilbert class field H. Since Fqd∞K/K
is unramified at every prime and completely split at infinity we have
Fqd∞K ⊂ H ⊂ K+

m . Hence Fqd∞ is both the constant field of K+
m and

the residue field of K+
m at infinity. Since Km/K

+
m is totally ramified at

infinity the residue field of Km at infinity is Fqd∞ . Hence the constant
field of Km is also Fqd∞ . �
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Corollary 1.3.10. The algebraic closures of Fq in K and Kab,∞

are both equal to Fqd∞ .

1.4. KMS-states for dynamical systems arising from partial
group actions

In [24] the authors present a framework for analysing the KMS
states of C∗-algebras associated to a certain class of groupoids. This
class contains, amongst others, the groupoids we will consider in this
thesis. We include the statement of the main result here for conve-
nience.

Let X be a second countable locally compact Hausdorff space and
Y be a clopen subset ofX. Assume that G is a countable discrete group
acting on X such that GY = X. This gives rise to the transformation
groupoid G×X whose elements are (g, x) with source map (g, x) �→ x
and range map (g, x) �→ gx.

Consider the subgroupoid

G� Y = {(g, x) : x ∈ Y, gx ∈ Y }
and let C∗

r (G � Y ) be the reduced C∗-algebra of this groupoid. Then
C∗

r (G� Y ) 
 1Y (C0(X)�r G)1Y .
Let N : G → (0,+∞) be a homomorphism, and equip C∗

r (G � Y )
with the dynamics σ given by

σt(f)(g, x) = N(g)itf(g, x)

for t ∈ R and f ∈ Cc(G� Y ) ⊂ C∗
r (G� Y ).

For a state φ on C∗
r (G�Y ) the restriction of φ to C0(Y ) gives rise to

a Borel probability measure μ on Y . Conversely, if we write E for the
conditional expectation from C0(X)×rG to C0(X), a Borel probability
measure μ on Y gives rise to a state μ∗ ◦ E on C∗

r (G � Y ) since the
restriction of E to C∗

r (G� Y ) has image C0(Y ).
Recall that for β ∈ R, a KMS state at inverse temperature β is a

state φ such that φ(ab) = φ(bσiβ(a)) for a and b in a set of σ-analytic
elements with dense linear span.

Theorem 1.4.1. Let G, X, Y and N be as above, and suppose
there exists a sequence {Yn}∞n=1 of Borel subsets of Y and a sequence
{gn}∞n=1 of elements of G such that

(i)
⋃∞

n=1 Yn contains the set of points in Y with nontrivial isotropy with
respect to the action of G on X;

(ii) N(gn) �= 1 for all n;

(iii) gnYn = Yn for all n.
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Then for each β �= 0 the map μ �→ φ = (μ∗ ◦E)|C∗
r (G�Y ) is an affine

isomorphism between Radon measures μ on X satisfying μ(Y ) = 1 and
the scaling condition μ(gZ) = N(g)−βμ(Z) for Borel sets Z ⊂ X and
g ∈ G, and KMSβ-states φ on C∗

r (G� Y ).

If furthermore S is a subset of G and Y0 ⊂ Y is a nonempty Borel
set such that

(iv) gY0 ∩ Y0 = ∅ for g ∈ G \ {e};
(v) SY0 ⊂ Y ;

(vi) if gY0 ∩ Y �= ∅ then g ∈ S;

(vii) Y \ SU ⊂ ⋃
n Yn for every open set U containing Y0;

(viii) ζS(β) :=
∑

s∈S N(s)−β < +∞;

then

(1) the map φ : μ∗ ◦ E �→ ζS(β)μ|Y0 is an affine isomorphism between
the KMSβ-states on C∗

r (G� Y ) and the Borel probability measures on
Y0; the inverse map is given by ν �→ μ∗ ◦E, where μ is the measure on
Y defined by

μ(Z) = ζS(β)
−1

∑
s∈S

N(s)−βν(s−1Z ∩ Y0);

(2) if μ is a measure on Y defined by a probability measure ν on Y0

as above, and HS is the subspace of L2(Y, μ) consisting of functions f
with f(sy) = f(y) for y ∈ Y0 and s ∈ S, then for f ∈ HS we have

‖f‖22 = ζS(β)

∫
Y0

|f(y)|2dμ(y)

and the orthogonal projection P : L2(Y, μ) → HS is given by

Pf(Sy) = ζS(β)
−1

∑
s∈S

N(s)−βf(sy)

for y ∈ Y0.

1.5. Type III factors

We will need some results on the classification of factors of type
III, which we assemble here for convenience. The following results are
proved in the Appendix of [27].

Let (X,μ) be a standard measure space with σ-finite positive mea-
sure μ, and let R ⊂ X × X be a non-singular countable measurable
equivalence relation on (X,μ). That is, for each A ⊂ X of measure
zero, the minimal R-invariant subset of X containing A also has mea-
sure zero, and each equivalence class is countable.
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Since X is nonsingular there exists a Radon-Nikodym cocycle for
R defined as follows: Let T : A → B be a measurable bijective map
with graph in R. Then for x ∈ A put

cμ(x, Tx) =
dT−1μ

dμ
(x).

The map cμ : R → R×
+ can be shown to be measurable (with re-

spect to a measure class on R whose projection onto X coincides with
the measure class of μ) and to satisfy cμ(x, z) = cμ(x, y)cμ(y, z) for
(x, y), (y, z) ∈ R.

Definition 1.5.1. The ratio set r(R, μ) is the intersection of the
essential ranges of the restrictions of cμ toR∩(Z×Z) for all measurable
subsets Z ⊂ X of poitive measure. That is, for Z ⊂ X of positive
measure and ε > 0, let rZ,ε(R, μ) be the set of λ ≥ 0 such that there
are measurable subsets A,B ⊂ Z of positive measure and a measurable
bijection T : A → B with graph in R such that |cμ(x, Tx)− λ| < ε for
all x ∈ A. Then

r(R, μ) =
⋂

rZ,ε(R, μ),

with the intersection taken over all Z of positive measure and all ε > 0.

It follows from the definition that r(R, μ) is a subgroup of R×
+.

Proposition 1.5.2. Let R be a non-singular countable measurable
equivalence relation on a standard measure space (X,μ). Assume (Y, ν)
is another standard measure space, and define an equivalence relation
R× id on X × Y such that (x, y) ∼R×id (x′, y′) if and only if x ∼R x′

and y = y′. Then

r(R× id) \ {0} = r(R, μ) \ {0}.
Proposition 1.5.3. Let R be the orbit equivalence relation de-

fined by an action of a countable group Γ on a standard measure space
(X,μ) by non-singular transformations. Assume {ξn}∞n=1 is an increas-
ing sequence of Γ-invariant measurable partitions such that ∨nξn is the
partition into points. Also assume that the measure μn induced by μ
on Xn = X/ξn is σ-finite and the Radon-Nikodym cocycle cμ is ξn-
measurable. Let Rn be the orbit equivalence relation defined by the
action of Γ on Xn. Then

r(R, μ) \ {0} =
⋂

r(Rn, μn) \ {0}.
Assume that we have an ergodic countable measurable equivalence

relation R on (X,μ). Since r(R, μ) \ {0} is a closed subgroup of R×
+,

the ratio set must be one of {1}, {0, 1}, {0} ∪ {λn : n ∈ Z} for some
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λ ∈ (0, 1), and [0,+∞). In the last three cases the relation is said to
be of type III0, IIIλ and III1, respectively.

Let R0 be the kernel of cμ, that is the set of (x, y) ∈ R such that
cμ(x, y) = 1. Then R0 is a measurable equivalence relation, and μ is
R0-invariant.

Proposition 1.5.4. Let R be an ergodic non-singular countable
measurable equivalence relation on a standard measure space (X,μ).
Assume R0 is ergodic. Then r(R, μ) coincides with the essential range
cμ.

Conversely, assume r(R, μ) coincides with the essential range of
cμ. Also assume that r(R, μ) \ {0} is discrete, so R is not of type III1.
Then R0 is ergodic.

Now consider a class of equivalence relations. Let (Xn, μn) for n =
1, 2, . . . be a sequence of at most countable probability spaces. Put
(X,μ) =

∏
n(Xn, μn), and define an equivalence relation R on X by

x ∼ y if xn = yn for all sufficiently large n.

This equivalence relation is non-singular and ergodic.
For a finite set I ⊂ N and a ∈ ∏

n∈I Xn, let

Z(a) = {x ∈ X : xn = an ∀n ∈ I}.
Definition 1.5.5. The asymptotic ratio set r∞(R, μ) consists of

all λ ≥ 0 such that for ε > 0 there exists a sequence In of mutually
disjoint finite subsets of N, disjoint subsets Kn, Ln ⊂ ∏

k∈In Xk and
bijections φn : Kn → Ln such that∣∣∣∣μ(Z(φn(a)))

μ(Z(a))
− λ

∣∣∣∣ < ε

for all a ∈ Kn and n ≥ 1, and furthermore
∞∑
n=1

∑
a∈Kn

μ(Z(a)) = +∞.

It is known (see e.g. [20, Proposition 2.6]) that

r∞(R, μ) \ {0} = r(R, μ) \ {0},
so for calculating the type of an equivalence relation it very nearly
suffices to calculate r∞(R, μ).



CHAPTER 2

Complex-valued Bost-Connes systems associated
with function fields

An analogue of the Bost-Connes system for function fields was pro-
posed by Jacob [18]. The system constructed there is associated to
the extension K of a function field K. In the current chapter, we con-
struct Bost-Connes systems for arbitrary abelian extensions L/K in
the first section, while the second section analyzes their KMS states in
the critical region β ∈ [0, 1]. The third section is devoted to showing
that Jacob’s system indeed is a special case of our construction, and
to show the relation between that system and the one arising from
the groupoid considered in [9] by Consani and Marcolli. In the fourth
and final section we show that both these systems can arise from a
Hecke-algebra construction similar to that of [25].

2.1. Systems associated to a function field

Let L/K be an abelian extension, finite or infinite, of the global
function field K, and let S be a finite set of primes in K. Consider the
space

XL,S = Gal(L/K)×Ô∗
S
AK,S.

Here the action of Ô∗
S on Gal(L/K) is defined using the Artin map

rL/K : A∗
K → Gal(L/K).

By Lemma 1.1.15 we can identify JS with A∗
K,S/Ô∗

S. Then the
diagonal action of A∗

K,S on Gal(L/K)× AK,S given by

g(x, y) = (xrL/K(g)
−1, gy)

defines an action of JS on XL,S. Put YL,S = Gal(L/K)×Ô∗
S
ÔS ⊂ XK,S,

and consider the C∗-algebra

AL,S = 1YL,S
(C0(XL,S)� JS)1YL,S

.

We can also write AL,S as the semigroup crossed product C(YL,S)�J+
S ,

where J+
S ⊂ JS is the subsemigroup of effective divisors.

The action of Gal(L/K) by translations on itself defines an action
of Gal(L/K) on XL,S, which in turn defines an action on AL,S.

27
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We now want to define a dynamics σ on AL,S. It is easier to explain
its extension to the multiplier algebra of the whole crossed product
C0(XL,S)�JS, which we continue to denote by σ. We put σt(f) = f for
f ∈ C0(XL,S) and σt(ua) = N(a)itua for a ∈ JS, where N(a) = qdeg a is
the norm of a. The subalgebra AL,S is clearly preserved by this action,
and so it defines a dynamics on AL,S.

Recall that a KMS-state for σ at inverse temperature β ∈ R, or
a KMSβ-state, is a σ-invariant state ϕ such that ϕ(ab) = ϕ(bσiβ(a))
for a and b in a set of σ-analytic elements with dense linear span. A
σ-invariant state ϕ is called a ground state if the holomorphic function
z �→ ϕ(aσz(b)) is bounded on the upper half-plane for a and b in a
set of σ-analytic elements spanning a dense subspace. If a state ϕ is
a weak∗ limit point of a sequence of states {ϕn}n such that ϕn is a
KMSβn-state and βn → +∞ as n → ∞, then ϕ is a ground state. Such
ground states are called KMS∞-states.

Theorem 2.1.1. For the system (AL,S, σ) we have:

(i) for β < 0 there are no KMSβ-states;

(ii) for every 0 < β ≤ 1 there is a unique KMSβ-state;

(iii) for every 1 < β < ∞ the extremal KMSβ-states are indexed by the
points of the subset

Y 0
L,S = Gal(L/K)×Ô∗

S
Ô∗

S
∼= Gal(L/K)

of YL,S, with the state corresponding to w ∈ Y 0
L,S given by

(2.1.2) ϕβ,w(1YL,S
fua1YL,S

) =
δa,0

ζK,S(β)

∑
b∈J+

S

N(b)−βf(bw),

where ζK,S(β) =
∑

a∈J+
S
N(a)−β, δa,0 is the Kronecker delta, and bw is

given by the ideal action on XL,S; furthermore, every extremal KMSβ-
state ϕβ,w is of type I∞ and its partition function is ζK,S(β);

(iv) the extremal ground states are indexed by Y 0
L,S, with the state cor-

responding to w ∈ Y 0
L,S given by ϕ∞,w(1YL,S

fua1YL,S
) = δa,0f(w), and

all ground states are KMS∞-states.

Proof. We would like to apply Theorem 1.4.1 to the case X =
XL,S, Y = YL,S and G = JS, with N as above. For the Yn we let {vn}
be some enumeration of the places v of Sc and let Yn be the image
in XL,S of the pairs (r, ρ) ∈ Gal(L/K) × ÔS with ρv = 0. For the
gn take the corresponding pvn in our enumeration. Then the union of
the Yn contains every point of X of nontrivial isotropy, N(pvn) �= 1 by
definition, and pvn clearly fixes Yn. Hence by the proposition there is a
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bijection between KMSβ-states φ of AL,S and Radon measures μ on X
with μ(Y ) = 1 satisfying the scaling condition μ(aZ) = N(a)−βμ(Z).

For β < 0 there are no such measures. Indeed, let v ∈ Sc. Then
pvYL,S ⊂ YL,S and by the scaling condition

μ(YL,S) ≥ μ(pvYL,S) = N(pv)
−βμ(YL,S),

while we know that N(pv) > 1 which is a contradiction.

For 0 < β ≤ 1 define μβ as the image of the measure

λL/K ×
∏
v∈Sc

μβ,v

on Gal(L/K)×AK,S under the quotient map Gal(L/K)×AK,S → XL,S,
where λL/K is the normalized Haar measure on Gal(L/K) and μβ,v is
the measure on Kv defined by letting μ1,v being the Haar measure on
Kv normalized by μ1,v(Ov) = 1 and requiring μβ,v to be absolutely
continuous with respect to μ1,v with

dμβ,v

dμ1,v

(a) =
1−N(pv)

−β

1−N(pv)−1
‖a‖β−1

v ,

where ‖ · ‖v is the norm on Kv. Then one can see that μβ is a measure
on XL,S with μβ(YL,S) = 1 satisfying the scaling condition.

Assume μ is a measure defining a KMSβ-state for some β ∈ (0, 1].
We want to see that μ = μβ.

If E is a finite extension of K contained in L we can identify XE,S

with XL,S/Gal(L/E). Since a continuous function with support in YL,S

can be approximated by a Gal(L/E)-invariant function with support
in YL,S for sufficiently large E, it suffices to show that μ = μβ when
restricted to XE,S for all finite extensions E/K.

Secondly, let S ′ be a finite set of primes of K with S ⊂ S ′. The
subset

XL,S,S′ = Gal(L/K)×Ô∗
S

⎛⎝ ∏
v∈S′\S

O∗
v × AS′

⎞⎠
of XL,S is JS′-invariant by definition. Furthermore, if JS,S′ is the group
generated by the primes in S ′ \ S then

XL,S \ JS,S′XL,S,S′ = {(r, ρ) : ρv = 0 for some v ∈ S ′ \ S},
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and this difference has measure zero with respect to μβ since we have
μβ,v({0}) = 0. That is, XL,S,S′ is a fundamental domain for the JS,S′-
action modulo a set of measure zero. Furthermore, the measure of

YL,S,S′ = Gal(L/K)×Ô∗
S

⎛⎝ ∏
v∈S′\S

O∗
v × AS′

⎞⎠
is

∏
v∈S′\S(1 − N(pv)

−β), since clearly YL,S,S′ = YL,S \ ⋃
v∈S′\S pvYL,S.

Hence classifying measures μ on XL,S defining KMSβ-states is the same
as classifying measures ν on XL,S,S′ satisfying

ν(YL,S,S′) =
∏

v∈S′\S
(1−N(pv)

−β)

and ν(aZ) = N(a)−βν(Z) for any Borel set Z ⊂ XL,S,S′ and any
a ∈ JS′ . However, we can identify XL,S,S′ with XL,S′ , so if we have
uniqueness of KMSβ-states for S

′ we also have it for S.
By these reductions we may assume that the extension L/K is finite,

and that S is arbitrarily large. In particular we may assume that S
contains all primes in K that ramify in L. In this case the kernel of the
Artin map A∗

S → Gal(L/K) contains Ô∗
S, so this map factors through

JS, and

XL,S = Gal(L/K)× AS/Ô∗
S

with the action of JS on XL,S being diagonal.

To prove that μ = μβ we compute the projection P of L2(YL,S, dμ)
onto the subspace of J+

S -invariant functions. It will turn out that this
subspace consists only of constants, whence μ is ergodic with respect
to the J+

S -action. Since a nontrivial convex combination of measures is
never ergodic this implies that μ is unique, so μ = μβ.

To this end, let us calculate Pf for some functions f on YL,S. As

noted above, we may assume that YL,S = Gal(L/K)×ÔS/Ô∗
S. Suppose

A ⊂ Sc is some finite set of primes. We may assume f factors through
Gal(L/K)×∏

v∈A Ov/O∗
v, since such functions are dense in the set of

functions on YL,S. Let J+
S,A be the subsemigroup of J+

S generated by
the primes in A. Then

(
Gal(L/K)×

∏
v∈A

Ov/O∗
v

)
\

⎛⎜⎝ ⋃
a∈J+

S,A

a(Gal(L/K)× {1})

⎞⎟⎠
= {(r, ρ) : ρv = 0 for some v ∈ A},
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so the difference has measure zero. Hence, modulo a set of measure
zero, f has support on

⋃
a∈J+

S,A
a(Gal(L/K)× {1}). It follows that we

may assume that f is of the form

f(a) =

{
χ(a−1a) if a ∈ a(Gal(L/K)× {1})
0 otherwise,

where χ is a character of Gal(L/K).
For B a finite subset of Sc let PB be the projection onto the subspace

HB of J+
S,B-invariant functions in L2(Y, dμ). Then if we apply (2) of

Theorem 1.4.1 with G = JS,B = (J+
S,B)

−1J+
S,B, S = J+

S,B and Y0 =
YL,S∪B we get that

PBf |J+
S,By = ζJ+

S,B
(β)−1

∑
b∈J+

S,B

N(b)−βf(by).

Now, for b ∈ J+
S,B we get that

bYL,S∪B = Gal(L/K)× bÔS∪B/Ô∗
S∪B,

so its intersection with supp(f) = a(Gal(L/K)× {1}) is nonzero only
if a|b, so a ∈ J+

S,B and furthermore b ∈ aJ+
S,B\A. Since we may assume

A ⊂ B we get

PBf |J+
S,By = ζJ+

S,B
(β)−1

∑
c∈J+

S,B\A

N(ac)−βχ(ca)

= ζJ+
S,B

(β)−1N(a)−βχ(a)
∑

c∈JS,B\A

N(c)−βχ(c)

= N(a)−βχ(a)ζJ+
S,B

(β)−1
∏

v∈B\A

1

1− χ(pv)N(pv)−β

for any a ∈ YL,S∪B.
Now if χ is trivial PBf is constant, so the same holds for Pf . For

a nontrivial χ we see that

‖Pf‖2 = lim
B

‖PBf‖2

= N(a)−β lim
B

|ζJ+
S,B

(β)|−1
∏

v∈B\A

1

|1− χ(pv)N(pv)−β| .

Divided by N(a)−β the right-hand side is a nondecreasing function in
β on (0,+∞), since N(pv) > 1 for all but finitely many pv. For β > 1
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we have

‖Pf‖2 ≤ N(a)−β|ζSc(β)|−1 · |L(χ, β)| ·
∏

v∈A∪S
|1− χ(pv)N(pv)

−β|

≤ N(a)−β|ζSc(β)|−1|L(χ, β)|.
Since ζSc(β) has a pole at β = 1 while L(χ, β) does not, we see that
‖Pf‖2 = 0 if β = 1. Since the right-hand side (again ignoring N(a)−β)
is increasing in β we see that ‖Pf‖2 = 0 for all β ∈ (0, 1]. Hence
Pf = 0, and in particular Pf is a constant. Thus the measure μ is
ergodic, and hence μ = μβ.

The statement for β > 1 is direct from Theorem 1.4.1 (1). �

The case β = 0 is special, as then there are KMS-states which
do not factor through the conditional expectation AL,S → C(YL,S).
In order to classify them, consider the subfield Lun

S ⊂ L such that

Gal(L/Lun
S ) = rL/K(Ô∗

S). This is the maximal subextension of L/K
unramified at all primes in Sc. Let JL,S be the kernel of the Artin
homomorphism JS → Gal(Lun

S /K), and J0
L,S ⊂ JL,S be the subgroup

of degree zero divisors. Denote by μ0 the unique Gal(L/K)-invariant
probability measure on YL,S concentrated on the image of

Gal(L/K)× {0} ⊂ Gal(L/K)× ÔS

in YL,S.

Proposition 2.1.3. There is a one-to-one correspondence between
the set of extremal KMS0-states on AL,S and the set of characters of
J0
L,S, where the state τχ corresponding to a character χ is given by

τχ(1YL,S
fua1YL,S

) =

{
χ(a)

∫
fdμ0 if a ∈ J0

L,S

0 otherwise.

Proof. Note that AL,S is the C∗-algebra of the groupoid JS �
YL,S. Then by [26, Theorem 1.3] there is a one-to-one correspondence
between the set of KMS0-states on AL,S and the set of pairs (μ, {τx}x),
where x runs through Y , such that

(1) μ is a JS-invariant measure on XL,S with μ(YL,S);

(2) τx is a μ-measurable field of states τx on C∗((JS)x), where (JS)x is
the stabilizer of x;

(3) x �→ τx satisfies τax = τx for μ-almost every x ∈ XL,S;

(4) τx factors through the canonical conditional expectation

C∗((JS)x) → C∗((J0
S)x),
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where (J0
S)x ⊂ (JS)x is the subgroup consisting of those ideals of (JS)x

which are of degree zero.

Assume (μ, {τx}x) is such a pair. Since the intersection of the sets
aYL,S for a ∈ JS coincides with the image Z of Gal(L/K) × {0} in
YL,S, the measure μ is concentrated on Z. The set Z can be iden-

tified with Gal(L/K)/rL/K(Ô∗
S) = Gal(Lun

S /K). Since the image of
JS in Gal(Lun

S /K) is dense, the Haar measure on Gal(Lun
S /K) is the

unique JS-invariant measure. Therefore μ = μ0, and the action of JS
on (XL,S, μ) is ergodic. It follows that the field {τx}x is essentially
constant. The stabilizer of every point in Z is JL,S. Therefore we con-
clude that there is a one-to-one correspondence between KMS0-states
on AL,S and states on C∗(J0

L,S). Hence extremal KMS0-states corre-

spond to characters on J0
L,S. �

2.2. The type of the KMS states in the critical region

We continue to use the notation of the previous section, so L is an
abelian extension of a global function field K and S is a finite set of
primes in K. Take 0 < β ≤ 1 and denote by φβ the unique KSMβ-state
on AL,S. We want to prove the following result:

Theorem 2.2.1. Let Fqn, n ∈ N ∪ {+∞}, be the algebraic closure
of the constant field Fq ⊂ K in L. Then the von Neumann algebra
πσβ

(AL,S)
′′ is an injective factor of type IIIq−nβ .

Since ϕβ is extremal, the von Neumann algebra πϕβ
(AL,S)

′′ is a
factor. It is the reduction of the von Neumann algebra

L∞(XL,S, μβ)� JS

by the projection 1YL,S
, where μβ is the measure on XL,S defined in

the previous section. Since 1YL,S
is a full projection the von Neumann

algebra L∞(XL,S, μβ) � JS is also a factor. Hence the action of JS
on (XL,S, μβ) is ergodic. The equivalent formulation of the above the-
orem is therefore that this action (more precisely, the corresponding
orbit equivalence relation) is of type IIIq−βn , as defined in Section 1.5.
Recall from for instance [2, Corollary IV.2.2.16] that the factor is injec-
tive since L∞(XL,S, μβ)� JS is the crossed product of an injective von
Neumann algebra with an amenable (in our case an abelian) group.

Our computation of the ratio set will rely on the following version
of the Chebotarev density theorem for function fields. For a proof see
[12, Proposition 6.4.8].

Theorem 2.2.2. Let K be a function field with constant field Fq, L
a finite Galois extension of K with constant field Fqn, and C a conjugacy



34 2. COMPLEX-VALUED BC SYSTEMS

class in Gal(L/K) consisting of c elements. Let 0 ≤ a < n be such
that the restriction of every element in C to Fqn is the a-th power of
the Frobenius automorphism of Fqn/Fq. Then every prime p such that
(p, L/K) = C has the property deg p ≡ a mod n, and

#{p | (p, L/K) = C and deg p = kn+ a}
=

cn

(kn+ a)[L : K]
qkn+a +O(qkn/2) as k → +∞.

We are interested in the case when the extension L/K is abelian.
Denote by Spl(L/K) the set of primes in K that are completely split
in L.

Corollary 2.2.3. Assume L/K is a finite abelian extension and
S contains the set of primes in K that ramify in L. Then the degree
of every element in the kernel of the Artin map JS → Gal(L/K) is
divisible by n, and

#{p | p ∈ Spl(L/K) and deg p = kn}
=

1

k[L : K]
qkn +O(qkn/2) as k → +∞.

Proof. If p is in the kernel of the Artin map, then the restriction of
rL/K(p) to Fqn is the zeroth power of the Frobenius, so by the theorem
deg p = 0 mod n.

As for the asymptotics, we are counting primes such that the re-
striction of rL/K(p) to Fqn is trivial. Hence every prime is completely
split unless it is one of the finitely many primes that ramify, so the
asymptotics do not change by restricting to the set of completely split
primes. The formula given is then that of the theorem. �

Under the assumptions of the previous corollary consider the re-
stricted product X ′

L,S of the spaces Kv/O∗
v with respect to Ov/O∗

v over
all v ∈ Sc ∩ Spl(L/K), and consider the measure

μ′
β =

∏
v∈Sc∩Spl(L/K)

μβ,v

on X ′
L,S, where μβ,v is as defined in the proof of Theorem 1.4.1. Denote

by J ′
S the subgroup of JS generated by places in Sc ∩ Spl(L/K).

Lemma 2.2.4. The action of J ′
S on (X ′

L,S, μ
′
β) is of type IIIq−βn.

Proof. The degree of every prime pv such that v ∈ Sc∩Spl(L/K)
is divisible by n. Since the measure μ′

β satisfies μ′
β(a ·) = N(a)−βμ′

β,
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the ratio set r(R, μ) is contained in the set {0} ∪ {q−βnk : k ∈ Z}.
Therefore it suffices to show that q−βn lies in the ratio set.

Instead of the orbit equivalence relation on X ′
L,S we may consider

the relation induced on the subset Y ′
L,S =

∏
v∈Sc∩Spl(L/K) O×

v /O∗
v, since

this is a subset of positive measure.
But this is exactly the relation discussed in Section 1.5: Two points

are equivalent if and only if their coordinates coincide outside a finite
set of primes. The measure μβ,v on O×

v /O∗
v is given by

μβ,v(π
k
vO∗

v) = N(pv)
−βk(1−N(pv)

−β),

where πv is a uniformizer in Ov.
Let mk be the number of places in Sc ∩ Spl(L/K) of degree kn.

By Corollary 2.2.3 we have mk ∼ [L : K]−1qkn/k. In particular, for
sufficiently large k we have m2k < m2k+1. Hence for every prime pv of
degree 2kn we can choose a prime pv′ of degree (2k+1)n in such a way
that the map pv �→ pv′ is injective.

For the sets Ij from the definition of the asymptotic ratio set we
take all the pairs {pv, pv′}, and as the sets Kj and Lj we take the
one-point sets {(πvO∗

v,O∗
v′)} and {(O∗

v, πv′O∗
v′)} respectively.

Then for a ∈ Kn, that is for a = (πvO∗
v,O∗

v′), we have

Z(a) =
∏

w �=v,v′
O×

w/O∗
w × {πvO∗

v} × {O∗
v′},

while

Z(φ(a)) =
∏

w �=v,v′
O×

w/O∗
w × {O∗

v} × {πv′Ov′},

so we can see that μ(Z(a)) = N(pv)
−β(1−N(pv)

−β)(1−N(pv′)
−β) and

μ(Z(φ(a))) = N(pv′)
−β(1−N(pv)

−β). Hence

μ(Z(φ(a)))

μ(Z(a))
=

N(pv′)
−β

N(pv)−β
=

q−(2n+1)kβ

q−2nkβ
= q−kβ.

To conclude that q−kβ ∈ r∞(R, μ) it remains to show that

∞∑
j=1

∑
a∈Kj

μ(Z(a)) = +∞.

For each j such that Ij = {pv, pv′} with deg pv = nk we have

μ(Z(a)) = q−2nkβ(1− q−2nkβ)(1− q−(2n+1)kβ) >
1

2
q−2nkβ,
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so adding up the terms corresponding to primes of degree nk first we
get that the sum is no smaller than

∞∑
k=1

q−2nkβm2k.

Since m2k ∼ 1
k[L:K]

q2nk this sum diverges to +∞. Hence we see that

q−kβ ∈ r∞(R, μ), so r∞(R, μ) = {q−kβ : k ∈ Z}. �

Proof of Theorem 2.2.1. Assume first that the extension L/K
is finite. Since the action of JS on (XL,S, μβ) is ergodic, in computing
the ratio set of the orbit equivalence relation on XL,S we may in its
place consider the relation induced on any subset of positive measure.
In particular, for every S ′ ⊃ S we may consider the subset XL,S,S′

introduced in the proof of Theorem 2.1.1. As we discussed there, it can
be identified with XL,S′ , and the equivalence relation we get on XL,S′

is exactly the one defined by the action of the group JS′ . Therefore the
type of the action of JS on (XL,S, μβ) does not depend on S. Hence
we may assume that S includes all primes that ramify in L. Then
XL,S = Gal(L/K)× AK,S/Ô∗

S.

Consider the subset {e} × AK,S/Ô∗
S of XL,S. The equivalence re-

lation induced on it is the one given by the action of the kernel G
of the Artin map JS → Gal(L/K) on AK,S/Ô∗

S. By the first part
of Corollary 2.2.3 the degree of every element in G is divisible by n.
Hence the ratio set of the action of G on (AK,S/Ô∗

S, μβ) is contained
in {0} ∪ {q−βnk | k ∈ Z}. On the other hand, by Lemma 2.2.4 the
number q−βn is contained in the ratio set of the action of J ′

S ⊂ G on
(X ′

L,S, μ
′
β). Hence, by Proposition 1.5.2, it is contained in the ratio set

of the action of J ′
S on (AK,S/Ô∗

S, μβ). This proves the theorem when
L/K is finite.

Now consider an arbitrary abelian extension L/K. It follows from
Proposition 1.5.3 that the nonzero part of the ratio set of the ac-
tion of JS on (XL,S, μβ) is equal to the intersection of the nonzero
parts of the ratio sets of the actions of JS on the measure spaces
(XL,S/Gal(L/E), μβ) for all finite intermediate extensions E/K. Since
XL,S/Gal(L/E) = XE,S, from the first part of the proof we conclude
that if n < +∞ then the nonzero part of the ratio set of the action
of JS on (XL,S, μβ) equals {q−βnk | k ∈ Z}. Hence the action is of type
IIIq−βn .

In the case n = +∞ we can only conclude that the ratio set is either
{1} or {0, 1}, so the factor ML = πϕβ

(AL,S)
′′ is either semifinite or of
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type III0. Since MK = M
Gal(L/K)
L there exists a normal conditional ex-

pectation ML → MK . As MK is of type III, by [29, Proposition 10.21]
it follows that ML is also of type III, hence it is of type III0. �

For every λ ∈ (0, 1] there exists a unique injective factor of type
IIIλ with separable predual. Therefore for n < +∞ the above result
completely describes the von Neumann algebra πϕβ

(AL,S)
′′. For type

III0 factors a complete invariant is the flow of weights [21, Theorem
8.4], which we will now briefly introduce.

Let Γ be a countable group acting ergodically by non-singular trans-
formations on a standard measure space (X,μ). Letting λ be the
Lebesgue measure on R, define a new action of Γ on (R×X, λ×μ) by

(2.2.5) g(s, x) =

(
s− log

dgμ

dμ
(gx), gx

)
.

Let X̃ be the measure theoretic quotient of (R × X, λ × μ) by this
action. That is, X̃ is a standard Borel space with measure class [μ̃]
such that L∞(X̃, μ̃) = L∞(R × X, λ × μ)Γ. The R-action on R × X
given by t(s, x) = (s+t, x) induces a flow {Ft}t∈R given on (X̃, μ̃). This
flow depends up to isomorphism only on the measure class of μ and
the orbit equivalence relation R on X defined by the Γ-action. This
flow {Ft}t∈R is the flow of weights of the factor W ∗(R) [13, Section 8].

Returning to the Bost-Connes systems, consider an abelian exten-
sion L/K. As before, let Fqn , n ∈ N ∪ {+∞}, be the algebraic closure
of Fq in L.

Define a continuous map XL,S → Gal(Fqn/Fq) as the composition
of the quotient map

XL,S → XL,S/Gal(L/FqnK) = XFqnK,S = Gal(FqnK/K)× AK,S/Ô∗
S,

(where we have used that any finite constant field extension of K is
unramified at every prime) with the projection

Gal(FqnK/K)× AK,S/Ô∗
S → Gal(FqnK/K) = Gal(Fqn/Fq).

Taking the direct product with the identity map on R we get a contin-
uous map

R×XL,S → R×Gal(Fqn/Fq).

We equip R ×XL,S with the action of JS given in Equation 2.2.5 and
R×Gal(Fqn/Fq) with the action given by

a(s, g) = (s− β logN(a), g resFqn
(rFqnK/K(a))

−1).

Note that resFqn
(rFqnK/K(a)) is simply the Frobenius automorphism

raised to the power deg a.
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Denote by λn the normalized Haar measure on Gal(Fqn/Fq). Then
the map R × XL,S → R × Gal(Fqn/Fq) gives us a JS-equivariant em-
bedding

L∞(R×Gal(Fqn/Fq), λ× λn) ↪→ L∞(R×XL,S, λ× μβ).

Lemma 2.2.6. We have

L∞(R×XL,S, λ× μβ)
JS = L∞(R×Gal(Fqn/Fq), λ× λn)

JS .

Proof. It suffices to check that the subalgebras of Gal(L/E)-
invariant elements on both sides coincide for all intermediate finite
extensions E of K. Since XL,S/Gal(L/E) = XE,S, this means that it
is enough to prove the lemma for finite extensions.

Choose a finite set S ′ which contains S and all primes that ramify in
L, and consider the setXL,S,S′ introduced in the proof of Theorem 2.1.1.

It can be identified with XL,S′ = Gal(L/K) × AS′/Ô∗
S′ . Consider the

subset {e} × AS′/Ô∗
S′ of XL,S′ . We claim that if f is an element of

L∞(R×XL,S, λ×μβ)
JS then the restriction of f to R×{e}×AS′/Ô∗

S′

depends only on the first coordinate, and hence defines a function f1
in L∞(R, λ), and that the function f1 is βn log q-periodic.

Indeed, let G be the kernel of the Artin map JS′ → Gal(L/K).
By the proof of Theorem 2.2.1 the nonzero part of the ratio set of
the action of G on {e} × AS′/Ô∗

S′ coincides with the set of values of
the Radon-Nikodym derivatives. By Proposition 1.5.4 it follows that
the subgroup G0 ⊂ G of divisors of degree zero acts ergodically on
{e} × AS′/Ô∗

S′ . But the group G0 acts trivially on R, hence the G0-

invariant function f on R × {e} × AS′/Ô∗
S′ depends only on the first

coordinate, and therefore defines a function f1 ∈ L∞(R, λ). Since f
is G-invariant and the homomorphism deg : G → nZ is surjective, the
function f1 is βn log q-periodic.

The function f1 defines, in turn, a JS-invariant function f2 on

R×Gal(Fqn/Fq) ∼= R× Z/nZ

such that f2(s, 0) = f1(s). Namely, f2(s,m) = f1(s− βm log q). Since
the JS-orbit of almost every point in R×XL,S intersects the set

R× {e} × AS′/Ô∗
S′

every JS-invariant function is completely determined by its values on
this set. Hence

f = f2 ∈ L∞(R×Gal(Fqn/Fq), λ× λn)
JS .

�
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Assume now that n = +∞, so that Fqn = F̄q. We can identify the

Galois group Gal(F̄q/Fq) with the group lim
←

Z/kZ = Ẑ. The action of

JS on R× Ẑ that we get is given by

a(s, a) = (s− β deg a log q, a− deg a).

Rescaling the first coordinate, we can instead consider the action given
by a(s, a) = (s− deg a, a− deg a). We can now formulate a refinement
of Theorem 2.2.1 for n = +∞.

Theorem 2.2.7. Assume the algebraic closure of Fq in L is infinite.
Then πϕβ

(AL,S)
′′ is an ITPFI (infinite tensor product of finite type I

factors) factor of type III0. Its flow of weights is the flow on the compact

group (R× Ẑ)/Z defined by

Ft(s, a) =

(
s+

t

β log q
, a

)
.

Proof. As follows from Lemma 2.2.6 and the subsequent discus-
sion, the flow of weights of the factor L∞(XL,S, μβ)� JS has the form
given in the formulation of the theorem. We already know that this
factor is of type III0. The flow is approximately transitive [8], hence the
factor is ITPFI. Since πϕβ

(AL,S)
′′ is a reduction of L∞(XL,S, μβ) � JS

and the flow of weights is preserved under reduction, the same asser-
tions hold for πϕβ

(AL,S)
′′. Moreover, this in turn implies that the two

factors are isomorphic. �

We next want to determine the center of the centralizer of the state
ϕβ on πϕβ

(AL,S)
′′. This centralizer can be expressed as the reduction of

the von Neumann algebra L∞(XL,S, μβ) � J0
S by the projection 1YL,S

.

The center of L∞(XL,S, μβ) � J0
S is L∞(XL,S, μβ)

J0
S . If the field Fq is

not algebraically closed in L, then the ratio set of the action of JS
on (XL,S, μβ) is strictly smaller than the essential range of the Radon-
Nikodym cocycle, so by Proposition 1.5.4 the action of J0

S on (XL,S, μβ)
cannot be ergodic.

Consider the map XL,S → Gal(Fqn/Fq) which was constructed be-
fore Lemma 2.2.6. It gives us an embedding of L∞(Gal(Fqn/Fq), λn)
into L∞(XL,S, μβ).

Proposition 2.2.8. If L/K is an abelian extension and Fqn, n ∈
N ∪ {+∞}, is the algebraic closure of Fq in L, then L∞(XL,S, μβ)

J0
S =

L∞(Gal(Fqn/Fq), λn).
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Proof. As in the proof of Lemma 2.2.6, we may assume that L/K
is finite. Consider the open subset

Z = Gal(L/FqnK)×Ô∗
S
AK,S ⊂ XL,S.

The equivalence relation on Z induced by the action of JS on XL,S

is the orbit equivalence relation defined by the action of the kernel
H of the map JS → Gal(FqnK/K) = Gal(Fqn/Fq). The group H is
simply the subgroup of divisors in JS of degree divisible by n. Since
the action of JS on (XL,S, μβ) is of type IIIq−βn , by Proposition 1.5.4
we conclude that the action of J0

S ⊂ H on (Z, μβ) is ergodic. It follows
that any J0

S-invariant measurable subset of XL,S coincides, modulo a
set of measure zero, with the union of translations of Z by elements of
Gal(L/K). But the set Z is nothing else than the pre-image of the unit
element e ∈ Gal(Fqn/Fq) under the map XL,S → Gal(Fqn/Fq). Hence
any J0

S-invariant measurable subset of XL,S is the pre-image of a subset
of Gal(Fqn/Fq). �

2.3. Comparision with other systems

Inspired by the work of Drinfeld [10, 11] and Hayes [17] on explicit
class field theory for function fields, Jacob [18] defined a dynamical
system associated to a function field K. The main goal of this section
is to show that Jacob’s system fits into our framework.

Fix as before a distinguished prime ∞ of K. In this section we will
consider the case S = {∞}, L = K, where K is as defined in Section
1.3.

Given a sgn-normalized rank-one Drinfeld module φ, we write

φ(C∞)tor = ∪mφ[m]

for the set of torsion points of the O-action on C∞ which is given
by aξ = φa(ξ). If φ = φΛ then eΛ defines an O-module isomorphism
KΛ/Λ ∼= φ(C∞)tor. Let Xφ be the group of characters of φ(C∞)tor. Put
X =

⊔
φ Xφ, where the union is taken over the set of sgn-normalized

rank-one Drinfeld modules. Since the set of such modules is finite and
each Xφ is a profinite group, X is compact.

Define an action of J+
K on X by letting an ideal a map the character

χ ∈ Xφ to the character χa = χ ◦ (a−1 ∗ φ)a ∈ Xa−1∗φ, where by
a−1 ∗ φ we mean the unique sgn-normalized Drinfeld module such that
a ∗ (a−1 ∗ φ) = φ. This is a semigroup action. There is also an action
of Gal(K/K) on X given by gχ = χ ◦ g ∈ Xg−1(φ), where g−1(φ) is the
Drinfeld module defined by g−1(φ)a = g−1(φa). This action commutes
with the ideal action.
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The action of JK onX defines a partially defined action of the group
of fractional ideals of O on X, which gives rise to a transformation
groupoid GJacob. The C∗-algebra CK,∞ underlying Jacob’s system is
the C∗-algebra of this groupoid. Alternatively, one can say that CK,∞
is the semigroup crossed product C(X)�JK with respect to the action

(af)(χ) =

{
f(χ′) if χ′a = χ

0 if no such χ′ exists.

The one-parameter family a �→ N(a)it of characters of JK defines a
one-parameter group of automorphisms σt of CK,∞.

We want to show that the system (CK,∞, σ) is isomorphic to the
system (AK,{∞}, σ) introduced in Section 2.1. The latter system was

defined using the action of J+
K on YK,{∞} = Gal(K/K) ×Ô∗ Ô. Define

an action of Gal(K/K) on YK,{∞} by g(x, y) = (g−1x, y).

Theorem 2.3.1. There is a Gal(K/K)- and JK-equivariant home-
omorphism

π : X → YK,{∞}.
In particular, the C∗-dynamical systems (CK,∞, σ) and (AK,{∞}, σ) are
isomorphic.

Proof. Fix a sgn-normalized rank-one Drinfeld module φ0. Recall
that the semigroup P+ of principal ideals with positive generators acts
trivially on φ0, so we have an action of P+ on Xφ0 . The semigroup P+

can be identified with O×
+. The latter semigroup acts on Ô by multipli-

cation. Let us show first that there exists a P+-equivariant continuous
isomorphism π0 : Xφ0 → Ô.

The O-module φ0(C∞)tor is isomorphic to K/O. Indeed, if φ0 is
defined by a lattice Λ then φ0(C∞)tor ∼= KΛ/Λ. The lattice Λ has the
form ξa for some ξ ∈ C×

∞ and a ⊂ O. Then KΛ/Λ ∼= K/a. Next, the

closure of a in Ô has the form gÔ for some g ∈ A∗
K,f ∩ Ô. Therefore

K/a = AK,f/gÔ ∼= AK,f/Ô = K/O,

and hence φ0(C∞)tor ∼= K/O.
As discussed in Section 1.1.1, the additive group is self-dual via a

pairing AK,f×AK,f → C given by (a, b) �→ ω(ab) where ω is a character
of AK,f . Furthermore, we can choose ω such that the annihilator of

Ô ⊂ AK,f is Ô. It follows that there exists an O-module isomorphism

K̂/O = ÂK,f/Ô ∼= Ô,

where the O-module structure on K̂/O is defined by aχ = χ(a ·).
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We therefore get an O-module isomorphism

Xφ0 = ̂φ0(C∞)tor ∼= Ô,

where the O-module structure on ̂φ0(C∞)tor is defined by aχ = χ ◦ φ0
a.

Since φ0
(a) = φ0

a for positive a this isomorphism is P+-equivariant.

Consider now the extension H+/K defined in Section 1.3. As we
observed there, the Artin map A∗

K,f → Gal(K/K) gives an isomorphism

of Ô∗ onto Gal(K/H+), so the open subset

Y 0 = Gal(K/H+)×Ô∗ Ô ⊂ YK,{∞}

can be identified with Ô. Hence the map π0 can be considered to be a
homeomorphism of Xφ0 onto Y 0.

We want to extend π0 to a map π : X → YK,{∞}. Let φ be a
sgn-normalized rank-one Drinfeld module and χ ∈ Xφ be a character.
There exists an ideal a such that φ = a ∗ φ0. Then χa = χ ◦ φ0

a ∈ Xφ0 .
By definition of φ0

a, the kernel of φ0
a : φ

0(C∞)tor → φ(C∞)tor is exactly
φ0[a]. Therefore the kernel of χa contains φ0[a]. Hence, under our
isomorphism of φ0(C∞)tor with K/O the kernel of χa contains a−1O/O.

Since the annihilator of a−1Ô in AK,f is aÔ we conclude that π0(χa) is

an element of aÔ. In particular π0(χa) is an element of aYK,{∞}, so we
can define

π(χ) = a−1π0(χa) ∈ YK,{∞}.

Since π0 is P+-equivariant this definition does not depend on the choice
of a (such that φ = a ∗ φ0).

We have therefore extended π0 to a continuous map π : X → YK,{∞}.
By construction this map is equivariant with respect to the ideal action.

Next let us show that π is Gal(K/K)-equivariant. For every nonzero
proper ideal m ⊂ O consider the finite sets

Xm =
⊔
φ

φ̂[m]

and

Ym = Gal(Km/K)×Ô∗ (Ô/mÔ) = Gal(Km/K)×(O/m)∗ (O/m).

Similarly to X and YK,{∞} these sets carry actions of Gal(K/K) and
JK ; note, however, that if a is not prime to m then the actions by a

are defined by non-injective maps. Our isomorphism ̂φ0(C∞)tor 
 Ô
induces an isomorphism φ̂0[m] 
 Ô/mÔ = O/m. Since we know that
Gal(Km/H

+) 
 (O/m)∗ we can identify

Y 0
m = Gal(Km/H

+)×(O/m)∗ (O/m) ⊂ Ym
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with O/m. Hence, similarly to the construction of π, by choosing for
every φ an ideal aφ ∈ Im(O) such that φ = aφ ∗ φ0 we can extend the

isomorphism φ̂0[m] ∼= O/m to a map πm : Xm → Ym.
Clearly the diagram

X
π ��

��

Y

��
Xm πm

�� Ym

is commutative, where the vertical arrows are the obvious quotient
maps. It follows that πm is independent of the choice of aφ and is
I-equivariant.

Take a sgn-normalized rank-one Drinfeld module φ, a character

χ ∈ φ̂[m], and a ∈ Im(O). For λ ∈ (a−1 ∗ φ)[m] = σ−1
a (φ)[m] we have

σa(λ) = (a−1 ∗ φ)a(λ),
so σaχ = χ ◦ σa = χ ◦ (a−1 ∗ φ)a = χa. Hence the Galois action of
Gal(Km/K) on Xm corresponds to the ideal action of Im(O) via the
Artin map.

Under the map πm above, this Galois action is then transported to
Ym by

πm(σaχ) = πm(χ
a) = aπm(χ).

Recall now that the action of a on Ym is defined using the ac-
tion a(x, y) = (xrKm/K(g)

−1, gy) on Gal(Km/K) × (Ô/mÔ), where

g ∈ A∗
K,f ∩ Ô is any element such that a = gÔ ∩ O. Since a is prime

to m, we can take g such that gp = 1 for all primes p dividing m.

Then the action of g on Ô/mÔ is trivial and rKm/K(g) = σa. Therefore
aπm(χ) = σaπm(χ), so that

πm(σaχ) = σaπm(χ).

Since the Artin map Im(O) → Gal(Km/K) is surjective we conclude
that πm is Gal(Km/K)-equivariant.

Now note that X = lim
←

Xm and Y = lim
←

Ym. Hence the Gal(K/K)-

equivariance of π : X → Y follows from the Gal(Km/K)-equivariance
of πm.

It remains to show that π is a homeomorphism. The space X is the
disjoint union of the open sets gXφ0 , where g runs over representatives
of

Gal(K/K)/Gal(K/H+) ∼= Gal(H+/K) ∼= Pic+(O).
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Similarly, YK,{∞} is the disjoint union of the sets gY 0. Since π is
Gal(K/K)-equivariant and defines a homeomorphism of Xφ0 onto Y 0,
we conclude that π is a homeomorphism. �

Remark 2.3.2. The map π depends on the choice of a rank-one sgn-
normalized Drinfeld module φ0, the choice of anO-module isomorphism
φ0(C∞)tor ∼= K/O, and the choice of a character ω of AK,f defining

a pairing on AK,f × AK,f such that Ô⊥ = Ô. It is not difficult to
see that if π′ : X → YK,{∞} is another Gal(K/K)- and JK-equivariant
homeomorphism, e.g. one constructed using a different choice of the
above three ingredients, then π′(χ) = gπ(χ) for a uniquely defined
g ∈ Gal(K/K).

Applied to the system (AK,{∞}, σ), our Theorem 2.1.1 summarizes
[18, Theorems 4.3.10, 4.4.15]. Furthermore, by Theorem 2.2.1 and
Corollary 1.3.10 the type of the unique KMSβ-state of Jacob’s system
for β ∈ (0, 1] is IIIq−βd∞ . This corrects a mistake in [18, Theorem 4.5.8],
which asserts that the type is IIIq−β , a mistake partially caused by a
wrong formulation of the Chebotarev density theorem.1

Another approach to defining a Bost-Connes system for function
fields is that of Consani and Marcolli [9]. Their setting is different, as
they develop a theory of dynamical systems for algebras of C∞-valued
functions. However, these algebras arise from groupoids, which makes
it natural to consider the relationship between these groupoids and the
ones we consider in this thesis.

Recall that a one-dimensional K-lattice in K∞ is a pair (Λ, ϕ),
where Λ ⊂ K∞ is a rank-one lattice and ϕ : K/O → KΛ/Λ is an O-
module map. Two one-dimensional K-lattices (Λ1, ϕ1) and (Λ2, ϕ2) are
called commensurable if Λ1 and Λ2 are commensurable (or equivalently,
if KΛ1 = KΛ2) and the maps K/O → KΛi/(Λ1 + Λ2) defined by ϕ1

and ϕ2 coincide.
By an argument identical to that of Theorem 1.2.2, the rank one

K-lattices in K∞ can be parametrized by the set

K×
∞ ×K× A∗

K,f ×Ô∗ Ô.

1The computation in [18] relies on this theorem, but in a way that is different
from ours. Unfortunately, the strategy in [18] does not work even for d∞ = 1, when
the formulation of the Chebotarev density theorem becomes correct. The mistake is
in the proof of crucial Lemma 4.5.5, the same lemma where the Chebotarev density
theorem is used, which does not take into account that the elements μp and μq do
not belong to M [d]. In fact, the assertion of that lemma is not correct, as it can
be shown that already the center of M [d] has elements that are not Gal(Kd/k)-
invariant.
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There is a partial action of A∗
K,f on this space given by

g(ξ, x, y) = (ξ, xg−1, gy)

as long as gy ∈ Ô, and which is undefined if this is not the case.
This action descends to a partial action of fractional ideals of O, and
the corresponding orbit equivalence relation is exactly the relation of
commensurability. The action defines a groupoid G̃ with the set of
one-dimensional K-lattices in K∞ as its object space.

Let GCM be the quotient groupoid obtained by identifying elements
(ξ, x, y) and (ζξ, x, y) in the object space for ζ ∈ K×

∞. This is the main
groupoid considered in [9].

It has the object space

G0
CM = K×\A∗

K,f ×Ô∗ Ô 
 Gal(Kab,∞/K)×Ô∗ Ô = YKab,∞,{∞}.

This identification respects the actions of the semigroup J+
K of ideals,

so the groupoid considered in [9] gives rise to the dynamical system
(AKab,∞,{∞}, σ). By the same reasoning as for Jacob’s system above,
the type of the unique KMSβ-state for this system for β ∈ (0, 1] is
IIIq−βd∞ .

Theorem 2.3.1 clarifies the relation between the groupoids GCM

and GJacob of Consani-Marcolli and Jacob: GCM is isomorphic to the
quotient of GJacob by the action of Gal(K/Kab,∞) ∼= K×/K×

+
∼= F×

∞.
Also note that in the case of the Bost-Connes system for Q we only
divide out by scaling by positive reals. The natural analogue of the
positive reals in our setting is the subgroup K+

∞ ⊂ K×
∞ of positive

elements. The groupoid K+
∞\G̃ has the object space

K+
∞\K×

∞ ×K× A∗
K,f ×Ô∗ Ô 
 F×

∞ ×K× A∗
K,f ×Ô∗ Ô 
 Gal(K/K)×Ô∗ Ô,

and the ideal action is identical to the one on YK,{∞}. Therefore, the
modification of the construction of Consani-Marcolli obtained by con-
sidering K-lattices in K∞ up to scaling by positive elements gives rise
to a groupoid isomorphic to Jacob’s groupoid GJacob.

2.4. Systems arising from Hecke algebras

Given a number field K, the authors of [25] consider the pair of
groups

P+
O =

(
1 O
0 O+

)
⊂ P+

K =

(
1 K
0 K+

)
where O+ and K+ are the totally positive elements of O∗ and K∗

respectively, that is the elements which are positive in every real em-
bedding of K. They show that the pair (P+

K , P+
O ) is a Hecke pair, and
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that the associated Hecke C∗-algebra can be identified with a full corner
of the Bost-Connes system of the number field K.

The situation in the function field case is very similar, although a
bit simpler since every positively generated principal ideal has a unique
positive generator. We will follow the presentation of [25] closely in
this section.

In the function field case, the natural analogue of the totally positive
elements are the positive elements K+ with respect to our chosen sign-
function sgn. Since O∗ ⊂ F×

∞ we see that O∗∩K+ = {1}, so the groups
we should consider are

P+
O =

(
1 O
0 1

)
⊂ P+

K =

(
1 K
0 K+

)
.

Lemma 2.4.1. The pair (P+
K , P+

O ) is a Hecke pair with

Δ

(
1 y
0 x

)
=

|O/(O ∩ xO)|
|O/(O ∩ x−1O)| .

To prove this, let us recall the following result, which is Proposition
1.3 of [23]:

Proposition 2.4.2. Let G be a group acting by automorphisms on
a group V , and let G0 be a subgroup of G leaving a subgroup V0 of V
invariant. Then (V � G, V0 � G0) is a Hecke pair if an only if the
following conditions are satisfied:

(i) (V, V0) is a Hecke pair such that the action of G0 on V0\V/V0 has
finite orbits and

(ii) (G,G0) is a Hecke pair such that V0 and g(V0) are commensurable
subgroups of V for every g ∈ G.

Furthermore, if this is the case then

ΔV0�G0(vg) = ΔV0(v)ΔG0(g)
|V0/(V0 ∩ g(V0)|

|V0/(V0 ∩ g−1(V0))| .

Proof of the lemma. We apply the proposition to (V, V0) =
(K,O) and (G,G0) = (K+, 1), with the G-action given by multipli-
cation. Then condition (i) is trivially satisfied since K is abelian and
G0 = {1} is trivial.

We claim that for b ∈ O the ring O/bO is finite. Indeed, let v be a
prime of K such that b �∈ O∗

v. Then the map O → Ov/bOv has kernel
O ∩ bOv = bO, so it suffices to show that Ov/bOv is finite. But this
ring has |Fv|v(b) elements.

Now, to see that (ii) holds note that (K+, 1) is (trivially) a Hecke
pair, and that for a ∈ K+ with a = b/c in lowest terms we have
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aO∩O = bO. Hence O/bO is finite by the claim above, while we have
aO/bO 
 O/cO which again is finite.

Finally, the formula of the proposition gives

ΔP+
O

(
1 y
0 x

)
=

|O/(O ∩ xO)|
|O/(O ∩ x−1O)|

without any work. �
Recall that if (G,G0) is a Hecke pair, we say that the pair is reduced

if ⋂
g∈G

g−1G0g = {e}.

The following is Proposition 4.1 of [31].

Proposition 2.4.3. (G,G0) is a Hecke pair if and only if there is
a reduced pair (G′, G′

0) such that

(i) G′ is a totally disconnected locally compact topological group;

(ii) G′
0 is a compact-open subgroup of G′;

(iii)There exists a group homomorphism φ : G → G′ such that φ(G) =
G′ and φ−1(φ(G) ∩G′

0) = G0.
The pair (G′, G′

0) is unique.

The pair (G′, G′
0) of the proposition is called the Schlichting com-

pletion of (G,G0). (See [19].)

Lemma 2.4.4. The Schlichting completion of (P+
K , P+

O ) is given by
(P̄+

K , P̄+
O ), where

P̄+
O =

(
1 Ô
0 1

)
⊂ P̄+

K =

(
1 AK,f

0 K+

)
.

Proof. Note that for g =

(
1 b
0 a

)
we have

g−1P̄+
O g =

(
1 aÔ
0 1

)
,

so since
⋂

a∈K+ aÔ = {0} we get
⋂

g∈G g−1P̄+
O g = {e}. Thus (P̄+

K , P̄+
O )

is reduced.
The other conditions are immediate from the definitions. �
Proposition 2.4.5. The C∗-algebra C∗

r (P
+
K , P+

O ) is isomorphic to

1Ô(C0(AK,f )�α K+)1Ô,

where the action α is given by αx(f) = f(x−1·).
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Proof. By Proposition 4.2 of [31]

C∗
r (P

+
K , P+

O ) 
 pC∗(P̄+
K )p,

where p is the characteristic function of P̄+
O ⊂ P̄+

K .
Since P̄+

K 
 AK,f �K+ we have an isomorphism

C∗
r (P̄

+
K ) 
 C∗

r (AK,f )�K+.

Furthermore, since ÂK,f 
 AK,f by the arguments of Section 1.1.1
we furthermore have an isomorphism C∗

r (AK,f ) 
 C0(AK,f ). Thus
C∗

r (P̄
+
K ) 
 C0(AK,f ) � K+. The action of K+ on C0(AK,f ) is here

given by αx(f) = f(x−1·). We claim that the projection p is carried to
1Ô.

Indeed, under the isomorphism C∗
r (P̄

+
K ) 
 C∗

r (AK,f )�K+ the pro-

jection p is mapped to a projection p′ ∈ C∗
r (AK,f ) corresponding to Ô.

Since our self-duality of AK,f is chosen in such a way that Ô⊥ = Ô,
the Fourier transform carries p′ to 1Ô as claimed. �

Thus C∗
r (P

+
K , P+

O ) is a full corner in C0(AK,f )�K+. The K+-action
can be induced to an action of the group JK of fractional ideals of O by
considering the inclusion of the group of positively generated principal
ideals P+ 
 K+ into JK .

We will need the following result, which is Proposition 1.2 of [25]:

Lemma 2.4.6. Let G be a discrete group, and H ⊂ G a subgroup.
Let X be a locally compact space with an H-action. Let i : X → G×HX
given by i(x) = (e, x). Then i(X) is a clopen subset of G ×H X, the
corresponding projection in the multiplier algebra of C0(G×H X)�r G
is full, and

C0(X)�r H 
 1i(X)(C0(G×H X)�r G)1i(X).

Let X+
K = JK ×K+ AK,f and consider the subset Y +

K ⊂ X+
K given

by

Y +
K = {(g, ρ) ∈ X+

K : gρ ∈ Ô/Ô∗},
where we consider g as an element of A∗

K,f/Ô∗ when taking the product

gρ. Since Ô is compact open in AK,f and K+ has finite index in JK
the set Y +

K is compact open in X+
K . Let

A+
K = 1Y +

K
(C0(X

+
K)� JK)1Y +

K
.

Lemma 2.4.7. The map φ : A∗
K,f × AK,f → A∗

K,f × AK,f given by

φ(x, y) = (x−1, xy) induces a JK-equivariant homeomorphism

XK,{∞} 
 X+
K .
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Under this homeomorphism YK,{∞} is mapped onto Y +
K , and the set

ZH+ = Gal(K/H+)×Ô∗ Ô ⊂ YK

is mapped onto i(Ô) where i : AK,f → X+
K is the embedding.

Proof. Let A∗
K,f × A∗

K,f act on A∗
K,f × AK,f by (g, h)(x, y) =

(gxh−1, hy). Then φ((g, h)(x, y)) = (h, g)φ(x, y). If we restrict the

action to the subgroup K+ × Ô∗, the isomorphism φ thus induces a
homeomorphism

(A∗
K,f × AK,f )/(K

+ × Ô∗) 
 (A∗
K,f × AK,f )/(Ô∗ ×K+).

The right-hand quotient is then (A∗
K,f/Ô∗) ×K+ AK,f , which we rec-

ognize as X+
K after recalling the isomorphism JK 
 A∗

K,f/Ô∗. The
left-hand quotient is

K+\A∗
K,f ×Ô∗ AK,f ,

which is indeed XK,{∞}, since K+\A∗
K,f 
 Gal(K/K).

Now φ is A∗
K,f -equivariant with respect to the actions given by

g(x, y) = (xg−1, gy) on the domain and g(x, y) = (gx, y) on the image.
Hence the induced homeomorphism XK,{∞} → X+

K is JK-equivariant.

Furthermore, YK,{∞} is the image of A∗
K,f × Ô, which maps to the

set {(x, y) ∈ A∗
K,f × AK,f : xy ∈ Ô} under φ. The image of this set

under the quotient map is nothing by the set Y +
K , proving our second

assertion.
Finally, recall from Lemma 1.3.8 that Gal(K/H+) 
 Ô∗ under the

Artin map, so Gal(K/H+) ×Ô∗ Ô is the image of Ô∗ × Ô. This maps

to Ô∗ × Ô by φ, which is again maps to {O} × Ô = i(Ô) ⊂ X+
K . �

Theorem 2.4.8. The homeomorphism of the lemma gives rise to a
canonical isomorphism of C∗-dynamical systems (AK,{∞}, σ) 
 (A+

K , σ).
This induces an isomorphism

C∗
r (P

+
K , P+

O ) 
 pKAKpK

of the Hecke algebra to the full corner of AK defined by the projection
pK corresponding to the compact open subset ZH+ ⊂ YK.

Proof. By the lemma, the homeomorphism of XK to X+
K induces

an isomorphism (AK , σ) 
 (A+
K , σ) mapping pKAKpK to

1i(Ô)A
+
K1i(Ô) = 1i(Ô)(C0(X

+
K)� J+

K)1i(Ô).

This algebra in turn is isomorphic to 1Ô(C0(AK,f )�K+)1Ô by Lemma
2.4.6, which finally is isomorphic to C∗

r (P
+
K , P+

O ) by Proposition 2.4.5.
�
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Remark 2.4.9. The system we get here corresponds to the exten-
sion K/K which depends on the choices of both ∞ and sgn. If we
instead consider the Hecke pair

PO =

(
1 O
0 1

)
⊂ PK =

(
1 K
0 K×

)
an identical argument would show that C∗

r (PK , PO) is a full corner
in AKab,∞,{∞}, which is the algebra arising from the considerations in
[9]. In this case we have also removed the sgn-dependence from our
construction.



CHAPTER 3

Function field-valued Bost-Connes systems
associated with function fields

While Bost-Connes systems for function fields can be studied as
in the previous chapter, one cannot hope to construct an arithmetic
subalgebra as long as the algebras considered are complex-valued. For
this one needs algebras with values in a field of positive characteristic.

Steps in this direction were taken by Consani and Marcolli [9],
who defined the concept of a dynamical system over a field of positive
characteristic and constructed a system associated to a function field
K.

In the first section of this chapter we construct a dynamical sys-
tem (AL,S, σ) associated with an arbitrary abelian extension L of K,
while the second section is dedicated to a (partial) classification of the
KMS states of this system. The final three sections are devoted to the
problem of constructing an arithmetic subalgebra. In section three we
show that such subalgebras exist in the general setting, although the
construction is not explicit. The fourth and fifth sections include ex-
plicit constructions of such subalgebras for the cases L = K, S = {∞}
and K = Fq(T ), L = (Fq(T ))

ab, S = {∞}, respectively.
3.1. Dynamical systems

As in the previous chapter consider the space

XL,S = Gal(L/K)×Ô∗
S
AK,S,

where the Ô∗
S-action on Gal(L/K) is defined using the Artin map

rL/K : A∗
K → Gal(L/K).

Consider the algebra Cc(XL,S,C∞) of C∞-valued functions on XL,S

with compact support. The natural norm to consider on Cc(XL,S,C∞)
is the supremum norm ‖f‖ = supx∈XL,S

|f(x)|. Let C0(XL,S) be the

completion of Cc(XL,S,C∞) with respect to this norm, where we sup-
press the C∞ from the notation for simplicity.

The action of JS on XL,S given by

a(x, y) = (xrL/K(g)
−1, gy),

51
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where g ∈ A∗
K,S is such that a = gÔS ∩K, induces an action of JS on

C0(XL,S) by αa(f) = f(a−1·). This action is clearly norm-preserving.

Definition 3.1.1. Let C0(XL,S)�alg JS be the C∞-algebra whose
underlying vector space is ⊕

a∈JS
C0(XL,S)ua

with multiplication given by f1ua1f2ua2 = f1αa1(f2)ua1a2 and norm de-
fined by ‖∑a∈JS faua‖ = supa ‖fa‖. Let C0(XL,S)� JS be the comple-
tion of C0(XL,S)�alg JS with respect to this norm.

It will be convenient to consider C0(XL,S) to be embedded into
C0(XL,S)� JS via the map f �→ fue.

As in the complex-valued case we put

YL,S = Gal(L/K)×Ô∗
S
ÔS ⊂ XL,S,

and write

AL,S = 1YL,S
(C0(XL,S)� JS)1YL,S

,

where 1YL,S
is the characteristic function of YL,S. This is the C∞-

algebra of our dynamical system.

Definition 3.1.2. Let A be a Banach algebra over C∞. A (contin-
uous) time evolution on A is a group homomorphism σ : Zp → Aut(A)
such that y �→ ‖σy(a)‖ is continuous for all a ∈ A. Say that σ extends
to S∞ if there is an extension σ̃ : S∞ → Aut(A) of σ which still is
continuous.

Recall from Section 1.1.3 that we have a map JS×S∞ → C×
∞, given

for z = (x, y) ∈ S∞ by

az = xdeg a〈a〉y.
Proposition 3.1.3. The map σ : Zp → Aut(C0(XL,S)� JS) given

on a dense subset by

σy(fua) = a(1,−y)fua

defines a continuous time evolution which extends to S∞ by

σz(fua) = a−zfua.

The σz preserve the corner AL,S for each z ∈ S∞, so σ induces a
continuous time evolution on AL,S.
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Proof. It is clear that z �→ σz is a homomorphism. To see conti-
nuity, let fug ∈ C0(XL,S)� JS. Then if z = (x, y) ∈ S∞ we have

‖σz(fug)‖ = ‖x− deg g〈g〉−yfug‖ = |x|− deg g‖fug‖,
so z �→ ‖σz(fug)‖ is continuous.

Furthermore, σz preserves 1YL,S
for all z ∈ S∞, so the corner AL,S is

preserved, whence σ induces a continuous time evolution on AL,S. �
Remark 3.1.4. The system constructed above generalises that of

AC∞(LK,n) in [9]. To see this, recall from Section 2.3 that the groupoid
considered there is that of the equivalence relation with object space
G0
CM = K×\A∗

K,f ×Ô∗ Ô and equivalence given by (r, ρ) 
 (rg−1, gρ)

for g ∈ A∗
K,f/Ô∗ is such that gρ ∈ Ô. The algebra considered is the

the completion of the C∞-valued groupoid algebra of this equivalence
relation.

If we consider the case L = Kab,∞ and S = {∞}, we clearly see
that GCM 
 YL,S and that the equivalence relation arises from the JS-
action on YL,S. Hence the algebra considered in [9] is nothing else that
AL,S. Furthermore, in this case our time evolution mirrors exactly that
defined there.

3.2. KMS functionals

Definition 3.2.1. Let A be a Banach algebra over C∞ with a
continuous time evolution σ which extends to S∞. A continuous linear
functional ω : A → C∞ is a KMS functional at inverse temperature x
(or a KMSx-functional) for x ∈ C×

∞ if ‖ω‖ ≤ 1 and

ω(f1σx(f2)) = ω(f2f1)

for all f1, f2 ∈ A. If A is unital we also require ω(1) = 1.

Let us consider our algebra AL,S. The algebra C(YL,S) is embedded
as a diagonal, and we have a natural linear map Φ : AL,S → C(YL,S)
given on an element 1YL,S

fug1YL,S
of the spanning subset by

Φ(1YL,S
fug1YL,S

) =

{
f |YL,S

if g = e

0 otherwise.

Lemma 3.2.2. The map Φ is a conditional expectation. That is, Φ
is a continuous linear map such that

(i) Φ is idempotent;

(ii) Φ(1) = 1;

(iii)Φ(f1xf2) = f1Φ(x)f2 for x ∈ AL,S, f1, f2 ∈ C(YL,S).
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Proof. The only thing that is not immediate is part (iii). For this,
let

∑
1YL,S

fgug1YL,S
be a finite sum. Then

Φ(f1(
∑

1YL,S
fgug1YL,S

)f2) = f1fe|YL,S
f2 = f1Φ(

∑
1YL,S

fgug1YL,S
)f2,

and by continuity this holds for all x ∈ AL,S. �
In the complex-valued case all KMS states arise from probability

measures on YL,S, as shown in Theorem 2.1.1. A similar result holds
in our current setting if |x| > 1. The proof of the upcoming theorem
is essentialy that of [22, Theorem 12].

If X is a topological space, we say that a functional φ : C(X) → C∞
is probability type if φ(1) = 1 and |φ(1E)| ≤ 1 for all E ⊂ X.

Theorem 3.2.3. Let (AL,S, σ) be as above and let x ∈ C×
∞ with

|x| > 1. Then φ �→ φ ◦ Φ is an affine isomorphism between the set of
probability type functionals φ on C(YL,S) satisfying the scaling condition

(3.2.4) φ ◦ αa = a−xφ

for all a ∈ JS, and the set of KMSx-functionals on AL,S.

Proof. Since Φ is linear it suffices to prove that φ �→ φ ◦ Φ is a
bijection.

If φ is a probability type functional on C(YL,S) satisfying 3.2.4 then
clearly φ ◦ Φ is a KMSx-functional on AL,S.

Conversely, assume ω : AL,S → C∞ is a KMSx-functional. It suffices
to show that ω(1YL,S

fua1YL,S
) = 0 whenever a �= O.

Let a ∈ JS \O. Then we can write a = bc−1 for b, c ∈ J+
S relatively

prime. Note that we then have b−1YL,S ∩ c−1YL,S = YL,S.
Assume first that b �= O. Then

ω(1YL,S
fua1YL,S

) = ω(1YL,S
fubuc−1)

= ω(1YL,S
ubαb−1(f)1b−1YL,S

1c−1YL,S
uc−11YL,S

)

= ω
(
(1YL,S

ub1YL,S
)(1YL,S

αb−1(f)uc−11YL,S
)
)

= b−xω
(
(1YL,S

αb−1(f)uc−11YL,S
)(1YL,S

ub1YL,S
)
)

= b−xω(1YL,S
α−1
b )(f)uc−1ub1YL,S

)

= b−xω(1YL,S
αb−1(f)ua)1YL,S

),

and iterating this we get

ω(1YL,S
fua1YL,S

) = (b−x)nω(1YL,S
αb−n(f)ua1YL,S

).

Note that ‖αb−n(f)‖ = ‖f‖, so the norm of the right-hand side is equal
to

|(b−x)n|‖f‖ = |x|−n deg b‖f‖.
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As b �= O we see that deg b > 0, and since |x| > 1 this converges to
zero as n → ∞. Since the left-hand side is constant this implies that
we must have ω(1YL,S

fua1YL,S
) = 0.

On the other hand, if b = O we have

ω(1YL,S
fua1YL,S

) = ω(1YL,S
fuc−11YL,S

)

= ω
(
(1YL,S

fuO1YL,S
)(1YL,S

uc−11YL,S
)
)

= c−xω(1YL,S
u−1
c )1YL,S

1YL,S
fuO1YL,S

)

= c−xω(1YL,S
αc−1(f)uc−11YL,S

),

and as above we can iterate to get

ω(1YL,S
fua1YL,S

) = (c−x)nω(1YL,S
αc−n(f)ua1YL,S

),

so by the same argument ω(1YL,S
fua1YL,S

) = 0. Hence ω is concen-
trated on the diagonal, so ω = ω ◦ Φ. �

Theorem 3.2.5. Let (AL,S, σ) be as above. Then, for x ∈ C×
∞,

(i) for |x| < 1 there are no KMSx-functional on (AL,S, σ);

(ii) for |x| > 1 all KMSx-functionals are concentrated on the diagonal
and correspond to functionals φ : C(YL,S) → C∞ satisfying

φ(f(a−1·)) = a−xφ(f).

Proof. The theorem proves part (ii). For part (i), assume that ω
is a KMSx-functional with |x| < 1 and let a ∈ J+

S be any element with
deg a > 0. Then by the scaling property we have

ω(1YL,S
) = a−xω(1aYL,S

),

but looking at norms this would require |ω(1aYL,S
)| > 1 which con-

tradicts the assumption that ‖ω‖ = 1. Hence there can be no such
ω. �

For s ∈ S∞, define the Goss zeta function relative to S by

ZS(s) =
∑
a∈JS

a−s.

Lemma 3.2.6. The Goss zeta function converges in the “half-plane”

{s = (x, y) ∈ S∞ : |x| > 1}.
Proof. Since |a−s| = |x|− deg a converges to zero as deg a → ∞, the

sum is convergent on the given set. �
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Proposition 3.2.7. Let Y 0
L,S = Gal(L/K) ×Ô∗

S
Ô∗

S. For x ∈ C×
∞

with |x| > 1 and z ∈ Y 0
L,S the functional on AL,S given by

ωx,z(f) = ZS(x)
−1

∑
a∈J+

S

f(az)a−x

is a KMSx-state on AL,S.

Proof. Let ω0 = ωx,z|C(YL,S) be the restriction of ωx,z to the subset
C(YL,S) of AL,S. By the above theorem it suffices to show that there
is a functional φ on XL,S with φ|YL,S

satisfying 3.2.4 such that we have
φ|C(YL,S) = ω0.

We claim that φ given by φ(f) = ZS(x)
−1

∑
a∈JS f(az)a

−x satisfies
our conditions.

It is clear that φ satisfies φ(1YL,S
) = 1 and that φ|C(YL,S) = ω0.

Hence we have to show that φ satisfies the scaling condition. To this
end, let b ∈ JS and calculate

ZS(x)φ(f(b
−1·)) =

∑
a∈JS

f(b−1az)a−x

= b−x
∑
a∈JS

f(b−1az)a−xbx

= b−x
∑

b−1a∈b−1JS=JS

f(b−1az)(b−1a)−x

= b−x
∑
c∈JS

f(cz)c−x

= b−xZS(x)φ(f),

so φ satisfies the scaling condition. Hence ωx,z is a KMSx-functional.
�

Definition 3.2.8. Let ω be a functional on AL,S. Assume that
there is a sequence ωn of functionals on AL,S such that ωn is a KMSxn-
functional with |xn| → ∞ as n → ∞. If ωn(f) → ω(f) for all f ∈ AL,S

as n → ∞ we say that ω is a KMS∞-functional on AL,S.

Corollary 3.2.9. Let z ∈ Y 0
L,S. Then the functional ωz on AL,S

given by

ω∞,z(f) = f(z)

is a KMS∞-functional.
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Proof. Let xn be any sequence in C×
∞ with |xn| → ∞ and consider

the states ωn = ωxn,z. Then for f ∈ AL,S we have

ω∞,z(f)− ωxn,z(f) = f(z)− ZS(xn)
−1

∑
a∈J+

S

f(az)a−xn

= ZS(xn)
−1

∑
a∈J+

S

(f(az)− f(z))a−xn .

Since the a = O term vanishes, |a−xn | < 1 for all nonzero terms. Hence
|ω∞,z(f) − ωxn,z(f)| ≤ |xn|−1, so as |xn| → ∞ we get that ωxn,z(f)
converges to ω∞,z(f). Hence ω∞,z is a KMS∞ functional on AL,S. �

Remark 3.2.10.

(i) Our definition of KMS functionals differs from that of [9] in that
we require ‖ω‖ ≤ 1 also in the unital case. In the complex-valued case
this follows from ω(1) = 1, but this is not the case here.

This assumption implies that the if we would consider the measure
induced by ω on the diagonal subalgebra we would get a probability
type measure, which is the case in the complex-valued case. It is also
critical in proving the non-existence of KMS states of our system for
|x| < 1.

(ii) The functionals constructed in the above proposition were con-
structed in [9, Theorem 4.10], and their parametrizing space Y 0

L,S cor-
responds to the space parametrizing the extremal KMSβ-states in the
number fields case. See for instance [24, Theorem 2.1].

(iii) We have not been able to show that the KMS functionals con-
structed in this section are all KMS functionals. In the complex-valued
case this is done by considering extremal points of the simplex of KMSx-
functionals. In the present case it does not make sense to speak of
extremal KMSx-functionals, since there is no notion of positivity, and
hence no way to define convex combinations.

3.3. Arithmetic subalgebras

The main (and rather elusive) goal in the theory of Bost-Connes
systems is the construction of a dynamical system (AK , σt) with an
arithmetic subalgebra AK . Given a number field K with maximal
abelian extension Kab this would have the following properties:

(i) The group Gal(Kab/K) acts on AK as symmetries compatible with
σt.

(ii) The extremal KMS∞-states evaluated on the arithmetic subalgebra
AK satisfy φ(a) ∈ K̄, and the elements φ(a), where a runs through
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AK , generate Kab over K.

(iii) The Galois actions on AK and Kab are compatible, in that for all
elements α ∈ Gal(Kab/K), a ∈ AK and all extremal KMS∞-states φ
of (AK , σt) we have

α(φ(a)) = φ(α(a)).

(iv)The C-algebra generated by AK is dense in AK .

The explicit construction of such a system has been successful only
in the case of the rational numbers Q [1] and in the imaginary qua-
dratic case K = Q(

√−d) [7]. However, the existence of an arithmetic
subalgebra for arbitrary number fields is proven in [34]. The results of
[34, Section 9] can be mirrored in the function field setting, which we
will do in this section.

Continuing with the notation of the previous sections, consider the
algebra of locally constant L-valued functions on XL,S. There is an
action of Gal(L/K) on this algebra induced by that on XL,S. Let A0

be the algebra of Gal(L/K)-equivariant functions on XL,S with values
in L. Then let AL,S = 1YL,S

(A0 � JS)1YL,S
.

Theorem 3.3.1. Let (AL,S, σ) and AL,S be as above. Then

(i) the group Gal(L/K) acts on AL,S as symmetries compatible with
the time evolution σt;

(ii) there is a set E∞ of KMS∞ states parametrized by Gal(L/K) such
that when φ ∈ E∞ is evaluated on a ∈ AL,S we have φ(a) ∈ L, and the
elements φ(a), where a runs through AL,S, generates L over K;

(iii) the actions of Gal(L/K) on AL,S and L are compatible, in that for
all α ∈ Gal(L/K), a ∈ AL,S and all φ ∈ E∞ we have

α(φ(a)) = φ(α(a));

(iv) the C∞-algebra generated by AL,S is dense in AL,S.

That is, AL,S is an arithmetic subalgebra for the extension L/K.

Proof. The action of Gal(L/K) on AL,S is induced by the action
of Gal(L/K) on XL,S. Since the time evolution is trivial on the subset
C(YL,S) of AL,S, the actions commute, and hence are compatible.

Let us now show density. It is clearly enough to show that the C∞-
algebra generated by A0 is dense in C(XL,S). By the Stone-Weierstrass
theorem (for a proof of the postive characteristic case see for instance
[4, Corollary p. 239]) it suffices to show that the C∞-algebra generated
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by A0 separates points and does not vanish identically at any point of
XL,S.

To show that A0 separates points, recall that if E/K is an inter-
mediate finite extension we can identify XE,S with XL,S/Gal(L/E).
Since any two points of XL,S are in a different Gal(L/E)-orbit if E is
large enough we may assume that L/K is finite. Next recall that YL,S

is a projective limit of finite Gal(L/K)-sets, for instance as exhibited
in Section 2.3. By these reductions it suffices to prove that if L/K is
a finite Galois extension and Y is a finite Gal(L/K)-set then the K-
algebra of Gal(L/K)-equivariant functions separates points of Y . But
this is straightforward to prove.

Indeed, let x, y ∈ Y . If there is an α0 ∈ Gal(L/K) such that
α0(x) = y then we may find a ξ ∈ LGx such that α0(ξ) �= ξ, where Gx

is the stabilizer of x. We may then define f : Y → L on Gal(L/K)x
by f(α(x)) = α(ξ), and f(z) = 0 for z �∈ Gal(L/K)x. On the other
hand, if there is no such α0 we may let f be the characteristic function
of Gal(L/K)x. Hence A0 separates points of XL,S. Since A0 clearly is
nowhere vanishing we have proved (iv).

For part (ii), let E∞ = {φ∞,z : z ∈ Y 0
L,S} where φ∞,z is as defined in

Corollary 3.2.9. Then for a =
∑

a∈JS aa ∈ AL,S and z ∈ Y 0
L,S we have

φ∞,z(a) = aO. To see that these elements generate L, let z ∈ Y 0
L,S, and

let E be the image of A0 under the map a �→ φ∞,z(a). Then E ⊆ L. If
E �= L there is a nontrivial element α ∈ Gal(L/E) ⊂ Gal(L/K). But
then αz �= z since Gal(L/K) acts freely on Y 0

L,S, while on the other
hand for every a ∈ A0 we have a(αz) = α(a(z)) = a(z). But this
contradicts A0 separating points of YL,S. Hence we must have E = L,
and the φ∞,z(a) generate L over K.

Finally, if α ∈ Gal(L/K), z ∈ Y 0
L,S and a ∈ AL,S, we have

α(φ∞,z(a)) = α(φ∞,z(aO)) = α(aO(z)) = aO(α(z)) = φ∞,α(z)(a),

so the Galois actions are compatible. �
The following useful characterisation of the algebra of locally con-

stant functions Y → L which are equivariant with respect to the
Gal(L/K)-action is stated for number fields in [34, Section 9]. The
proof is identical in the function field case, but we include it for con-
venience.

Theorem 3.3.2. Let E be a K-subalgebra of C(YL,S) satisfying

(i) every function in E is locally constant;

(ii) E separates points of YL,S;

(iii)E contains 1aYL,S
for all ideals a ⊂ O;
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(iv) for every f ∈ E we have f(YL,S) ⊂ L, and the map f : YL,S → L is
Gal(L/K)-equivariant.
Then E is the K-algebra of locally constant L-valued Gal(L/K)-equi-
variant functions on YL,S.

Proof. Let f : YL,S → K be a locally constant Gal(L/K)-equi-
variant function. We must show that f ∈ E.

Fix a point y ∈ YL,S and let L′ ⊂ L be the subfield fixed by the
stabilizer Gy of y in Gal(L/K). Then f(y) ∈ L′ by equivariance. We
claim that the map h �→ h(y) from E to L′ is surjective.

Indeed, let L′′ be the image of E under the map h �→ h(y). Since
E is a K-algebra, L′′ is a subfield of L′. Assume L′′ �= L′. Then
Gal(L′′/L′) ⊂ Gal(L′/K) = Gal(L/K)/Gy contains a nontrivial ele-
ment, which can be lifted to an element g ∈ Gal(L/K). Then on the
one hand we have gy �= y, while on the other hand for every h ∈ E we
have h(gy) = gh(y) = h(y). Since E separates points of YL,S this is
impossible, so we must have L′′ = L′, which proves our claim.

By the claim, there exists h ∈ E such that h(y) = f(y). Since f
and h are locally constant, there is some neighbourhood W of y such
that f and h coincide on W . We may assume that W is the image in
YL,S of an open set in Gal(L/K)× Ô of the form

W ′ ×
(∏

v∈F
Wv ×

∏
v �∈F

Ov

)
for some finite set F of places of K. Furthermore, we may split F into
F ′ and F ′′ in such a way that F ′ contains those v with 0v �∈ Wv. Then
we may assume that F ′′ consists of those v ∈ F such that Wv = pnv

v Ov,
while for v ∈ F ′ we have an inclusion Wv ⊂ pnv

v O×
v .

Since both f and h are Gal(L/K)-equivariant, they coincide on the
open set U = Gal(L/K)W . However,

Gal(L/K)W = Gal(L/K)×Ô∗

(∏
v∈F ′

pnv
v O×

v ×
∏
v∈F ′′

pnv
v Ov ×

∏
v �∈F

Ov

)
,

so the characteristic function p of U is in E. Indeed, this characteristic
function is the product of ρpnv − ρpnv+1

v
for v ∈ F ′ and ρpnv

v
for v ∈ F ′′.

Hence fp = hp is an element of E.
Thus for every y ∈ YL,S there is a neighbourhood U of y such that

the characteristic function p of U belongs to E, and fp ∈ E. Since YL,S

is compact we can find a finite number of such neighborhoods covering
YL,S, so as E is an algebra we have f ∈ E. �
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Remark 3.3.3. If we let L = Kab and S be some set of primes the
construction in Theorem 3.3.1 would give us a Bost-Connes system for
the function field K. However, the above construction can hardly be
called explicit, and hence is not entirely satisfactory.

It turns out, however, that in certain specific cases we can do better.
This is the content of the following sections.

3.4. An arithmetic subalgebra for L = K

In the previous section we showed that for any L and S there is an
arithmetic subalgebra AL,S ⊂ AL,S. The current section concentrates
on the case L = K (where K is as given in Section 1.3) and S = {∞},
and we will show that in this case the work of Hayes [17] gives us
an explicit construction of generators of this subalgebra. It is worth
recalling that the system (AL,S, σ) has as underlying groupoid that
studied by Jacob [18].

For the purposes of this argument it will be convenient to use the
point of view of Jacob given in Section 2.3 instead of the adelic picture.
We furthermore write X and Y for XK,{∞} and YK,{∞} respectively, and
write

Y 0 = Y 0
L,S = Gal(K/K)×Ô∗ Ô∗ ⊂ Y.

Fix a sgn-normalized Drinfeld module φ0, and recall that we in
Section 2.3 defined for each integral ideal m of O a Galois-equivariant

isomorphism φ̂0[m] → O/m. Clearly φ0[m] is equivariantly isomorphic
to O/m. Here the actions of a ∈ (O/m)∗ 
 Gal(Km/H

+) are given by

σa(χ) = χ ◦ φ0
a, σa(λ) = φ0

a(λ)

for χ ∈ φ̂0[m] and λ ∈ φ0[m], and that on O/m is given by multi-
plication. Composing these maps we get a Gal(Km/H

+)-equivariant

bijection Ψ : φ̂0[m] → φ0[m].
Let us now use this map to create generators of AK,{∞}.

Proposition 3.4.1. For each proper ideal m of O there is a map
fm : Y → C∞ such that

(i) fm takes values in Km;

(ii) the values of fm generate Km over K;

(iii) fm is equivariant with respect to the Gal(K/K)-actions on Y and
Km, where the action of Gal(K/K) on Km is defined through the quo-
tient map Gal(K/K) → Gal(Km/K).

Proof. Fix m and consider the map f : φ̂0[m] → C∞ given by

f(χ) = Ψ(χ). We want to extend f to a map defined on Ym =
⊔

φ φ̂[m].
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To this end, for χ ∈ φ̂[m] find σ ∈ Gal(Km/K) such that φ = σφ0.

Then σχ ∈ φ̂0[m], so we can define f(χ) = σ−1Ψ(σχ). The choice
of σ is unique up to an element of Gal(Km/H

+), so this definition is
independent of the choice of σ since Ψ is Gal(Km/H

+)-equivariant.
Then the range of f : Ym → C∞ is exactly

⋃
φ φ[m] where φ runs

through the sgn-normalized Drinfeld modules of K. Hence these val-
ues generate Km over K. Note that f is Gal(Km/K)-equivariant by
construction.

Let fm be the lifting of f to Y through the quotient map Y → Ym.
Then fm is Gal(K/K)-equivariant since both the quotient map and f
are equivariant. Hence fm satisfies the conditions of the proposition.

�
If we consider the K-algebra generated by the fm, then it forms a

subalgebra of AK,{∞} such that when its functions are evaluated at the
KMS∞-functionals which correspond to elements of Y 0, the values we
get generate K over K. However, the C∞-algebra it generates is not
dense in AK,{∞}. In fact it is not even dense in C(Y ) ⊂ AK,{∞}. Indeed,
if χ and χ′ are the trivial characters on φ[m] and φ′[m] respectively, then
fm(χ) = 0 = fm(χ

′) for all m, and the algebra does not separate points.
To remedy this, we add additional functions. Let y be a fixed non-

constant element of O, that is y ∈ O \ Fq. Recall from Section 1.3
that for any sgn-normalized rank one Drinfeld module φ the field H+

is generated over K by the coefficients of φy, and has Galois group
isomorphic to Pic+(O) with an ideal a acting on φ by σaφ = a ∗ φ.

Define functions gy,i : XK,{∞} → C∞ for i = 0, 1, . . . by letting
gy,i(χ) equal the coefficient of τ i in φy(τ), where φ is such that χ is
a character of φ(C∞). Since φy(τ) is a polynomial of fixed degree
there are only finitely many such functions gy,i. Furthermore, each
function gy,i is continuous and locally constant (since it is constant on
the components of Y ), takes values in H+ ⊂ K by definition, and is
Gal(K/K)-equivariant.

Let furthermore 1aY : Y → C∞ be the characteristic functions of
aY ⊂ Y , for a running through the proper ideals of O.

Let EK,{∞} be the algebra generated by the fm, the gy,i and the 1aY .

Proposition 3.4.2. EK,{∞} is the algebra of locally constant K-
valued Gal(K/K)-equivariant functions on YK,{∞}. Furthermore, the
C∞-algebra 1Y (EK,{∞} � JS)1Y is an arithmetic subalgebra for the ex-
tension K/K.

Proof. The first part follows immediately from Theorem 3.3.2.
The second then follows from Theorem 3.3.1. �
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Remark 3.4.3.

(i) The construction is not canonical, since the bijection Ψ is only
determined up to a choice of an element of Gal(Km/H

+) 
 (O/m)∗.
However, the resulting arithmetic subalgebra is independent of this
choice since it is characterised as in the previous section.

(ii) The system of the theorem is somewhat in between a Bost-Connes
system proper and the partial Bost-Connes systems considered in [33]
in that while it does not construct the full maximal abelian extension,
the smaller field used is coupled by a reduced size of the symmetry
group and algebra.

(iii) As in [17], if we would like to get the maximal abelian extension,
we can take two different distinguished places ∞ and ∞′, do the above
construction, and compose the generated fields to get the maximal
abelian extension Kab. Indeed, by the calculation of the Galois group
K is fixed by exactly the ideles K+

∞K×, and the corresponding field for
∞′ is fixed by K+

∞′K×. Since the intersection of these two groups of
ideles is exactly K× and the Artin map has dense image, this implies
that the composition of the fields is the maximal abelian extension.

3.5. A Bost-Connes system for the rational function field

In this section we specialize to the case K = Fq(T ), and let ∞ be
the place corresponding to 1/T ∈ K. Then O = Fq[T ]. The goal of this
section is to show that the construction of Section 3.3 can be carried
out explicitly in the case L = Kab, the maximal abelian extension of
K, and S = {∞}.

The maximal abelian extension Kab is constructed in [16] as the
composition of three pairwise linearly disjoint extensions E/K, F/K
and L∞/K. Let us consider them in turn:

First, let En be the extension of K generated by all roots of uqn −u
for n = 1, 2, . . ., and let E =

⋃
En (so E = F̄q). Then Gal(En/K) 


Z/nZ so Gal(E/K) 
 Ẑ, generated by the Frobenius, that is by the
unique automorphism of E fixing K such that its restriction to F̄q ∩E
is given by u �→ uq.

Secondly, let Fx = K(φ[x]) be the extension of K generated by the
roots of φx for each x ∈ O and let F =

⋃
x∈O Fx. Then we know that

Gal(Fx/K) 
 (O/xO)∗, so recalling that O is a principal ideal domain

we see that Gal(F/K) 
 Ô∗.
Finally we want to construct L∞. To this end, write K as Fq(1/T ),

and let ∞′ be the place corresponding to T . We can then consider the
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Drinfeld module which is uniquely defined by

φ′
1/T (x) = xq + (1/T )x.

For x ∈ Fq[1/T ], let φ
′[x] be the roots of the polynomial φ′

x, and con-

sider the field L̃v = K(φ′[(1/T )v+1]). Then F×
q acts on L̃v by multipli-

cation. We let Lv = (L̃v)
F×
q be the fixed field of this action. Then

Gal(Lv/K) 
 (1 + (1/T )Fq[1/T ])/(1/T )
v+1,

and when we set L =
⋃

v Lv we get

Gal(L/K) 
 (1 + (1/T )Fq[[1/T ]]).

Then Gal(L/K) is identified with a subgroup of K×
∞ which we will

denote by K
(1)
∞ .

Theorem 3.5.1 (Hayes). Let K = Fq(t). Then the maximal abelian
extension Kab of K decomposes into three linearly disjoing extensions
Kab = E · F · L∞ where E, F and L∞ are as above. Correspondingly,
we have Gal(Kab/K) 
 Gal(E/K)×Gal(F/K)×Gal(L∞/K).

Next we want to consider the Artin map rK : A∗
K → Gal(Kab/K).

Since Gal(Kab/K) 
 Ẑ × Ô∗ × K
(1)
∞ we seek to decompose A∗

K in a
similar manner.

Let v be a place of K different from ∞ and let pv be the corre-
sponding prime ideal of O. Since O is a principal ideal domain there
is a unique monic irreducible Pv ∈ O which generates pv. Hence we
can make a canonical choice of uniformizer πv ∈ Ov by for v �= ∞
setting πv = Pv and setting P∞ = 1/T . Then any element x ∈ K∗

v

can be written in the form x = uπk
v with u ∈ O∗

v and k ∈ Z uniquely
determined. Write mv for the maximal idal of Ov and let sgnv(x) = ū,
where ū is the image of u in Ov/mv. We can identify Ov/mv with Fv,
the constants of Kv, and consider sgnv as a map sgnv : Kv → Kv.

Lemma 3.5.2. Put Vv = ker(sgnv) and K
(1)
v = Vv ∩ O∗

v. Then

Vv 
 K
(1)
v × Z as topological groups.

Proof. Let x ∈ K×
v . Then x can be written uniquely as x = uπk

v

for some u ∈ O×
v and k ∈ Z. If x ∈ Vv then u ∈ K

(1)
v since sgnv(πv) = 1

by construction. Hence Vv = K
(1)
v ×Z as groups since the decomposition

is unique.

Next note that K
(1)
v is open in Vv since O∗

v is open in Ov. Hence
the map above is a map of topological groups. �
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Note that the notation of the lemma coincides with the definition
given before for K

(1)
∞ 
 Gal(L∞/K).

Next, given an idèle a = (av) ∈ A∗
K define

d(a) = sgn∞(a∞) ·
∏
v �=∞

πordv(av)
v .

This is an element of K×, since πv ∈ O for all v and ∞ is of degree one
so F×

∞ = F×
q ⊂ K×. The map d is a surjection since any element of K×

can be written as a product of monic irreducibles times an element of
F×
q .
We will want to consider the following embeddings of groups into

A∗
K :

(i) K× → A∗
K sitting on the diagonal;

(ii) V∞ = K
(1)
∞ × Z ⊂ K×

∞ → K×
∞ × A∗

K,f 
 A∗
K , which maps to idèles

with value 1 at every coordinate except for the ∞-coordinate;

(iii) Ô∗ ⊂ A∗
K,f → K×

∞ × A∗
K,f 
 A∗

K .
Since the intersection of any two of these embeddings is the unit

element of A∗
K , we see that K× × K

(1)
∞ × Z × Ô∗ sits as a subgroup

inside A∗
K .

Now any idèle a = (av) can be written as a = d(a) · a′ for some

a′ ∈ Ô∗×V∞, where d(a) ∈ K×. Indeed, we by definition have that av ∈
π
ordv(av)
v O∗

v and a∞ ∈ sgn∞(a∞)K
(1)
∞ πZ

∞. Hence A∗
K 
 K××Ô∗×V∞ as

a group, and as Ô∗×V∞ is an open subgroup of A∗
K this decomposition

is also a decomposition of A∗
K as a topological group. Hence, since we

have V∞ = K
(1)
∞ × Z, we get

A∗
K 
 K× × Ô∗ ×K(1)

∞ × Z

as topological groups.

Theorem 3.5.3 (Hayes). The map A∗
K → Gal(Kab/K) given by

mapping the components of A∗
K as above into the the respective Galois

groups of the sub-extensions (with K× as the kernel) is the Artin map
rK.

Let us now construct several functions which will be the generators
of the arithmetic subalgebra AKab,{∞} ⊂ AKab,{∞}. For brevity we will
write Y for YKab,{∞}.

Let λ be a generator of En over K. Since Y is a direct product of
topological spaces, the quotient map Y → Ẑ → Z/nZ is equivariant
with respect to the Galois action. Hence we can define a function
fλ : Y → C×

∞ by
fλ(a, b, c) = ψE

b̄ (λ),
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where b̄ �→ ψE
b̄
is the isomorphism Z/nZ 
 Gal(En/K). Then the val-

ues of fλ on Y generate En as an extension of K, and fλ is Gal(En/K)-
equivariant. Furthermore, fλ is locally constant.

Next, let η be a generator of Lv over K. The quotient map

Y �→ K(1)
∞ → (1 + (1/T )Fq[1/T ])/(1/T )

v+1

is again equivariant, so we can define a function gη : Y → C×
∞ by

gη(a, b, c) = ψL
ā (η)

where ā �→ ψL
ā is the isomorphism

(1 + (1/T )Fq[1/T ])/(1/T )
v+1 
 Gal(Lv/K).

As above, gη takes values which generate Lv, and gη is Gal(Lv/K)-
equivariant and locally constant.

For the extension F of K, the quotient map Y → Ô is again equi-
variant, but the action of the Galois group Ô∗ is not transitive. Still,
the Ô∗-action can be extended to one of Ô.

Indeed, recall that φ[x] is an O/xO-module via φ. We can use this

to let the action of Ô on φ[x] be given by c · γ = φc̄(γ) for γ ∈ φ[x],

where c̄ is the image of c in O/x under the map Ô → Ô/xÔ 
 O/xO.
This is well defined, so we can define h : Y → C×

∞ for γ ∈ φ[x] by

hγ(a, b, c) = ψF
c̄ (γ)

where ψF is the module action described above. Then hγ takes values
which generate Fx over K, is Gal(Fx/K)-equivariant and is locally
constant.

Let EKab,{∞} be the K-algebra generated by the fλ, gη and hγ as
λ, η and γ run through the sets of generators for their respective
field extensions together with the 1aY for integral ideals a ⊂ O. Let
AKab,{∞} = 1Y (EKab,{∞} � JS)1Y .

Theorem 3.5.4. The algebra AKab,{∞} is that of Theorem 3.3.1.
That is, AKab,{∞} is an arithmetic subalgebra for the dynamical system
(AKab,{∞}, σ).

Proof. By Theorems 3.3.1 and 3.3.2 it suffices to show that ele-
ments of EKab,{∞} separate points of Y and are nowhere vanishing. For

the first, write Y as K
(1)
∞ × Ẑ×Ô∗ and let (a, b, c), (a′, b′, c′) ∈ Y . Then

at least one coordinate differs, say a �= a′. Since we can interprent K
(1)
∞

as the Galois group of E/K, we can find a generator λ ∈ E such that
a and a′ act differently on λ. Then

fλ(a, b, c) = φE
a (λ) �= φE

a′(λ) = fλ(a
′, b′, c′).
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An identical argument applies if b �= b′ or c �= c′. Hence EKab,{∞}
separates points. For any λ ∈ E, λ �= 0, we have that fλ is nowhere
zero, so EKab,{∞} is nowhere vanishing. �
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