
ASPERITY DYNAMICS: NUMERICAL
MODELING OF SINGLE ASPERITY

CONTACTS AT SOLID-SOLID
INTERFACES

by

Arnfinn Mihle Paulsrud

Thesis
for the degree of

Master of Science
(Master i Fysikk, studieretning Computational physics)

Faculty of Mathematics and Natural Sciences
University of Oslo

March 2014

Contents

I Introduction 5

1 Introduction 7
1.1 The History of Friction . 7
1.2 Goals with this thesis . 16
1.3 The structure of the thesis . 16

II Theory 17

2 Friction Theory 19
2.1 The Burridge-Knopoff model . 20
2.2 A simpler friction model . 21
2.3 Viscous damping . 22

III Experiments 23

3 Experiments 25
3.1 Experiments . 26
3.2 Unloading model . 29
3.3 Parameters of the model . 30

IV Numerical Methods and Ordinary Differential Equations 33

4 Numerical Methods 35
4.1 Ordinary differential equations . 35
4.2 The numerical methods . 37

4.2.1 The Euler method . 37
4.2.2 The Euler-Cromer method . 38

4.3 Truncation error of the Euler method . 38
4.3.1 Local truncation error . 38
4.3.2 Global truncation error . 39

iii

iv Contents

V The 1D-Model 41

5 Introduction 43
5.1 Side driven model . 43
5.2 Equations of motion . 45
5.3 The friction model . 46
5.4 Defining the precursor length . 48
5.5 Asymmetric normal loading . 48
5.6 Viscous damping . 49
5.7 Tangential force . 50
5.8 Initial Shear Force . 52
5.9 Top driven . 54
5.10 Validation . 55

5.10.1 The side driven model . 55
5.11 Results . 57

5.11.1 Variation of the static and dynamic friction coefficient in the side-
driven model . 57

5.11.2 Different ratios between kt and k 57
5.11.3 Variation of µk and µs and the affect of LP/L-FT/F 58

VI The 1D-Unloading-Model 69

6 The 1D-Unloading-Model 71
6.1 The model . 71
6.2 The numerical model . 72
6.3 The experimental data . 72
6.4 Results . 78

VII Discussion 87

7 Discussion 89
7.1 Side driven model . 89
7.2 Top driven model . 89
7.3 Unloading model . 89
7.4 Conclusion . 90
7.5 Future work . 90
7.6 Concluding words . 91

A Viscous Damping 93
A.1 Strange behavior of the viscous damping 93

B C Code 95

Contents v

B.1 Language . 95
B.2 Matlab code . 96

B.2.1 Initialisation code . 96
B.2.2 The time-loop code . 114

B.3 The C code for the side driven model . 123
B.4 The C code for the top driven model . 133
B.5 The C code for the unloading model . 143

List of Figures

1.1 Sketch of an Egyptian colossus . 8
1.2 Leonardo da Vinci’s friction experiments 9
1.3 Amonton’s sketch of his apparatus for friction experiments 10
1.4 Coulomb’s representation of rough surfaces 11
1.5 Surface force apparatus (SFA) . 14
1.6 Atomic force microscope (AFM) . 15

2.1 A sketch of a one block system . 20

3.1 Schematic view of the experimental setup of Fineberg et al. 26
3.2 Ben-David et. al experimental setup . 27
3.3 The change in contact area over time . 28
3.4 Detachment and evolution of frictional slip 28
3.5 Apparatus used in friction experiments at the University of California, Berke-

ley . 29
3.6 The block used in friction experiments at the University of California, Berkeley 31
3.7 The block used in friction experiments at the University of California, Berkeley 31
3.8 . 31

4.1 A one-block friction system with spring against a wall 36

5.1 A three dimensional sketch of the PMMA system 44
5.2 Side-driven one dimensional spring-block model 45
5.3 Friction model . 47
5.4 The contact area over time, precursor lenght 48
5.5 Example of different types of damping . 49
5.6 Shear force . 53
5.7 Initial shear force profiles . 54
5.8 Side-driven one dimensional spring-block model 55
5.9 Side driven system with asymmetric normal loading 59
5.10 The experimental results from Maegawa et al Lp/L− FT/FN 60
5.11 The numerical results from Maegawa et al Lp/L− FT/FN 60
5.12 Lp/L− FT/FN plot for β = 0, β = 0.225 and β = 0.45 61
5.13 Fx plot for N = 10 . 62

1

2 List of Figures Chapter 0

5.14 Fx plot for N = 10 Maegawa et al . 63
5.15 Side-driven FX and sliding (µs = 1.4 and µk = 0.9) 64
5.16 Side-driven FX and sliding (µs = 0.35 and µk = 0.225) 64
5.17 Side-driven FX and sliding (µs = 0.85 and µk = 0.6) 65
5.18 Side-driven FX and sliding (µs = 0.55 and µk = 0.3) 65
5.19 Shear force vs. number of blocks . 66
5.20 Shear force vs. number of blocks for different kt/k 66
5.21 Side-driven Lp − L and FT − FN (µs = 1.4 and µk = 0.9) 67
5.22 Side-driven Lp − L and FT − FN (µs = 0.35 and µk = 0.225) 67
5.23 Side-driven Lp − L and FT − FN (µs = 0.85 and µk = 0.6) 68
5.24 Side-driven Lp − L and FT − FN (µs = 0.55 and µk = 0.3) 68

6.1 A sketch of the 1D Unloading model . 72
6.2 1D Unloading, experimental FX(t) and FN 75
6.3 1D Unloading, numerical/experimental FX(t) and FN 75
6.4 1D Unloading, experimental FX(t)/FN . 76
6.5 1D Unloading, numerical/experimental FX(t)/FN 76
6.6 1D Unloading, experimental displacement 77
6.7 1D Unloading, numerical/experimental displacement 77
6.8 1D Unloading, numerical FX(t)/FN , F start

N = 400N 79
6.9 1D Unloading, numerical FX(t)/FN , F start

N = 600N 80
6.10 1D Unloading, numerical FX(t)/FN , F start

N = 800N 80
6.11 1D Unloading, numerical FX(t)/FN , F start

N = 400N and β = 0.45 81
6.12 1D Unloading, numerical FX(t)/FN , F start

N = 400N and β = 0.225 81
6.13 1D Unloading, numerical Lp/L− FT/FN , F start

N = 400N 82
6.14 1D Unloading, numerical FX(t) and FN , F start

N = 400N 82
6.15 1D Unloading, numerical Lp/L− FT/FN , F start

N = 600N 83
6.16 1D Unloading, numerical FX(t) and FN , F start

N = 600N 83
6.17 1D Unloading, numerical Lp/L− FT/FN , F start

N = 800N 84
6.18 1D Unloading, numerical FX(t) and FN , F start

N = 800N 84
6.19 1D Unloading, numerical Lp/L− FT/FN , F start

N = 400N and β = 0.45 . . . 85
6.20 1D Unloading, numerical FX(t) and FN , F start

N = 400N and β = 0.45 85
6.21 1D Unloading, numerical Lp/L− FT/FN , F start

N = 400N and β = 0.225 . . . 86
6.22 1D Unloading, numerical FX(t) and FN , F start

N = 400N and β = 0.225 . . . 86

A.1 Over-damped with η =
√

0.1 . 94
A.2 Under-damped with η =

√
0.01 . 94

List of Tables

1.1 Coefficient of friction recorded by Charles Augustin Coulomb 10

3.1 Parameters used in the 1D model . 30
3.2 Table of the parameters used in the thesis 30

3

Part I

Introduction

5

Chapter 1

Introduction

1.1 The History of Friction
Throughout human history friction has had a great impact on mankind, and according to
Dowson [14] one of the first encounters man had with friction was through the discovery
of fire in the Old Stone Age. Though little is known about this prehistoric period it is
believed that the early man controlled generation of fire by means of the percussion of flint
stones and the friction of wood on wood, frictional heating.

Around 4,000 years ago, the Egyptians used their knowledge about friction and lubrication
to move heavy objects. In Figure 1.1 we kan see a sketch of the statue of an Egyptian
colossus, with some estimates of a coefficient of friction needed to move this heavy object
with 172 men. As we can see the coefficient of friction is estimated to be 0.23, which
is very close to coefficient of friction for lubricated wood. One of the interesting parts of
this sketch is the coefficient of friction estimated in the lower right corner. As we can see the

The first recorded quantitative study of friction was conducted by Leonardo da Vinci. His
motivation for studying friction was his concern about the role of friction in the performance
of screw-jacks and gears. The difference between Leonardo and his predecessors was that
he used the scientific method when he conducted his experiments. Leonardo measured
the force of friction between objects on bouth horizontal and inclined surfaces. Some of
the experiments he conducted is essentially the same as students learn in physics class
today. In Figure 1.2 we can see some of his experimental setup. Through his experiments
Leonardo recognized the difference between rolling and solid friction and the beneficial
effect of lubricants. Perhaps two of his greatest observations during his experimentation
was (i) that the friction made by the same weight will be of equal resistance at the beginning
of its movement although the contact may be of different breadths. (ii) Friction produces
double the amount of effort if the weight be doubled. These two observations is consistent
with what we now know as the two first laws of friction, namely

1. The force of friction is directly proportional to the applied load.

7

8 Introduction Chapter 1

Figure 1.1: These are some of Leonardo da Vinci’s sketches of friction experiments. We
can see different types of sliders, with different contact area and pulley systems to create
experiments with constant velocities

2. The force of friction is independent of the apparent area of contact.

Leonardo also observed that the frictional resistance depended upon the nature of the sur-
face in contact, and that bodies with smoother surfaces have smaller friction. He was also
the first to introduce the consept of the coefficient of friction as the ratio of the force of
friction to the normal load. He concluded that the coefficient of friction had a value of
0.25 for all materials. This was probably a good estimate at that time, given the types of
materials and instruments of measurement.

At the end of the seventeenth century in France, Guillaume Amontons also tried to expand
his knowledge about the field of friction. Like Leonardo, he also used experiments to gain
a better knoowledge about friction. In figure 1.3 we can see Amontons experimental setup
for friction experiments. The specimens tested were of copper, iron,lead and wood in
various combinations. The test specimens like A-A and B-B were loaded together with
various springs depicted by C-C-C, and the force required to overcome the friction force
and initiate sliding was measured on the spring balance D.

1. That the resistance caused by rubbing only increases or diminishes in proportion to
greater or lesser pressure (load) and not according to the greater or lesser extent of
the surface.

2. That the resistance caused by rubbing is more or less the same for iron, lead and
copper and wood in any combination if the surface is coated with pork fat.

Section 1 The History of Friction 9

Figure 1.2: These are some of Leonardo da Vinci’s sketches of friction experiments. We
can see different types of sliders, with different contact area and pulley systems to create
experiments with constant velocities

3. That this resistance is more or less equal to one-third of the pressure (load).

We can see that the first observation embodies the first and second laws of friction. One
interesting thing about Guillaume Amontons experiments is that he actually used pork
fat as a lubricant between the specimens. This means that he was actually studying the
frictional characteristics of boundary lubrication.

The next very important step in the history of the study of friction, was the discoveries
done by Charles Augustin Coulomb. Charles Augustin Coulomb set out to investigate the
influence of four main factors upon friction:

1. The nature of the materials in contact and their surface coatings.

2. The extent of the surface area.

3. The normal pressure (load).

4. The length of time that the surfaces remained in contact (time of repose).

Later he also studied the influence of ambient conditions like temperature, humidity and
vacuum. He put in a great effort to explain that the to major hypotheses which had been
introduced by earlier workers to explain friction related to asperity interactions, introduced
by Amontons, and cohesion which was introduced by Desaguliers. He discovered that under
dry conditions the friction between unlubricated wooden surfaces reached a constant value
after periods of rest of one or two minutes and that the typical values where as follows:

10 Introduction Chapter 1

Figure 1.3: Amontons’ sketch of his apparatus for friction experiments. A-A is the base.
B-B is the slider. C-C-C is a spring that provides normal loading. D is a spring balance
with scale for friction measuremens.

Table 1.1: Coefficient of friction recorded by Charles Augustin Coulomb

Materials Weight/Friction
Oak sliding on oak 2.34
Elm sliding on elm 2.18
Pine sliding on pine 1.78
Oak sliding on pine 1.5

Section 1 The History of Friction 11

Figure 1.4: Here we can see how Coulomb imagined how rough surfaces interacted with
each other.

By presenting such data he exposed his essentially pragmatic approach and his desire to
provide usable data. The data in Table 1.1 was used by Coulomb to construct empirical
equations relating the force of friction to this variable. Coulomb found that in most cases
friction was almost proportional to load and independent of the size of the contacting
surfaces. The foundations of his theory was summarized by four principal features of his
experimental findings.

1. For wood sliding on wood under dry conditions the friction rises initially but soon
reaches a maximum. Thereafter the force of friction is essentially proportional to the
load.

2. For wood sliding on wood the force of friction is essentially proportional to the load
at any speed, but kinetic friction is much lower than the static friction related to
long periods of repose.

3. For metals sliding on metals without lubricant the force of friction is essentially
proportional to load and there is no difference between static and kinetic friction.

4. For metals on wood under dry conditions the static friction rises very slowly with time
of repose and might take four, five or even more days to reach its limit. With metal-
on-metal the limit is reached almost immediately and with wood-on-wood it takes
only one or two minutes. For wood-on-wood or metal-on-metal under dry conditions
seed has very litle effect on kinetic friction, but in the case of wood-on-metal the
kinetic friction increases with speed.

Coulomb concluded, based on these observations, that friction could come only from the
meshing of asperities. In Figure 1.4 see how Coulomb imagined how rough surfaces inter-
acted with each other.

12 Introduction Chapter 1

Between 1850 and 1925 some new questions arose due to the development of the railway.
During this period a good deal of discussion about the relationship between static and
kinetic friction were made. Some considered the two coefficients to be quite different, with
a sharp transition from one value to another as sliding commenced or ceased. The ex-
perimental evidence presented by several workers gradually confirmed that the friction of
motion and the friction of rest could be represented by a continuous function. Experiments
also revealed that the kinetic friction could be higher than the static friction given the right
circumstances.

In 1929 Tomlinson assumed that both the normal load and the tangential force of friction
where linearly related to the number of interacting atoms, but in the absence of more de-
tailed knowledge of surface deformation abd intermolecular force he was unable to quantify
the phenomenon.
Deryagin made a bold attempt to quantify some of the concepts outlined by Tomlinson in a
statistical approach involving detailed representations of intermolecular forces and crystal
structure. He derived a two-term expression for friction. (Details of the work have been
questioned and debated, but there is little doubt that it was a valuable step forward from
the tentative proposals put forward by Tomlinson).
Holm carried out a comprehensive study of the manner in which electricity was conducted
from one solid to another in such devices as terminals, relays and circuit-breakers and by
1938 he was convinced that clean metal surfaces would deform plastically at asperity con-
tacts and cold-weld. He concluded that one element of force of friction must be attributable
to the sum of the shearing strengths of the asperity contacts.
Bowden and Tabor’s approach was also based upon the recognition that surfaces in contact
touched only at points of asperity interaction and that the very high stresses induced in
such regions of small area would lead readily to local plastic deformation. The penetration
of an asperity into the opposing surface could be likened to a miniature hardness test and
the mean normal stress ,p, over the real areas of asperity contact, a, could be represented to
all intents and purposes by the hardness,H, of the softer material. Likewise, if s represented
the shear stress of the asperity junctions, the normal load, P , friction force, F , and the
coefficient of friction, µ, could express with appealing simplicity by the relationships

P = aH (1.1)

F = as (1.2)

Combining the above equations gave an expression for the coefficient of friction

µ = F/P = s/H (1.3)

This expression for the coefficient of friction in terms of established mechanical proper-
ties of materials represented a great step forward in the theory of friction, although it is
clearly incomplete. It neglects the detailed, more complex nature of asperity interactions

Section 1 The History of Friction 13

and deformation and, of course, accounts only for the adhesive element of friction. The
limitations are apparent when when it is recognized that, for metals,

s ≈ 0.5σy (1.4)

H ≈ 3σy (1.5)

Where σy is the yield stress in tension. All clean metals should thus exhibit a universal
coefficient of friction of 1/6, which is qualitatively and satisfyingly consistent with the
statements of Leonardo da Vinci and Amontons, but unfortunately unrepresentative of
more sensitive experimental findings.
Ernst and Merchant In their study of the metal-cutting process they attempted to take
account of surface roughness and the fact that the real area of contact between asperities
might be inclined at an angle (theta) to the direction of overall sliding. The resulting
expression for mu was similar to those of Bowden and Tabor, but involved additional
terms in tan(θ) on the right-hand side of the equation.
In the third approach to the nature of friction it was argued that a force would be required
to move hard asperities through or even over another surface and that this micro-cutting
motion represented the friction process. The idea had received its first serious recognition
from Gumbel and Everling (1925) and it is still the subject of detailed studies in the
field of plasticity theory. The idea was simple enough. If the sum of the projected areas
of the indenting asperities perpendicular to the direction of sliding is a0, and the mean
stress resisting plastic deformation of the sifter material which is being cut is equal to the
hardness ,H, the total force of friction F = a0H. Likewise, if the applied load, W , is
carried on the number of asperity contacts of real area ,a, W = aH. The coefficient of
friction thus becomes

µ = F/W = a0/a (1.6)

For conical asperities having sides sloping at a mean angle theta to the direction of sliding

µ = a0/a = 2/π tan(θ) (1.7)

While for hemispherical asperities of radii, R, and small penetration

µ = a0/a = 4/3θ/π (1.8)

Since theta is small, typically 5-10 deg, it can be seen from the above equations that
alternative specifications of asperity geometry have little effect upon the magnitude of the
friction force attributable to plastic deformation. If it is assumed that both molecular
(adhesive) and deformation (ploughing) actions are effective, then the resulting expression
for mu is simply a combination of Eq. 1.3 and either 1.7 or 1.8. Thus

µ = s/H + 2/π tan(θ) (1.9)

14 Introduction Chapter 1

Figure 1.5: Three-axial surface force apparatus (SFA) from the group of Georges in Lyon
for measuring forces between a sphere and a plane. Source: NanoScience, Meyer and
Overney et al., World Scientific

In a series of experiments carried out in Melbourne, Australia during the Second World
War, Bowden et al. used sliding contacts of differing geometries to ascertain the relative
importance of adhesion and ploughing. The sliders included a sphere, a circular section
spade and a cylinder with its axis parallel to the direction of sliding. The finding demon-
strated that adhesion played the major role in determining the friction between metals,
and although this conclusion has to be treated with some caution and related to specific
material combinations, it is still regarded as a valid observation.
Courthney-Pratt and Eisner (1957) drew attention to the mechanism of junction growth.
An assumption was that the area of real contact was determined by the normal force alone,
but when the combined normal and shear stresses are considered and a yield criterion
introduced, it becomes clear that the real area of contact can increase many times before
sliding occurs. The net result of this is that the force and hence the coefficient of friction
increases considerably above the predictions of Eq.1.3. The concept of junction growth is
one of the most exciting developments in the field of friction studies in the recent years.
However, it remains clear that the continued application of plasticity theory of the friction
problem will further enhance our understanding of the process.
On the experimental front, two forms of instrument have contributed enormously to recent
progress.
The surface force apparatus (SFA), Figure 1.6, works by having two very smooth solids,
such as cleaved mica, pressed together to enable atomic scale friction measurement. On the
nano-scale, the force of friction was seen to be directly related to the real area of contact,

Section 2 The History of Friction 15

Figure 1.6: Block diagram of atomic force microscope using beam deflection detection. As
the cantilever is displaced via its interaction with the surface, so too will the reflection of
the laser beam be displaced on the surface of the photodiode. Picture taken from wikipedia
[4]

but the concept that friction and wear were linked to adhesive junctions and the plucking
out of material from one of the solids was not sustained. Friction did not correlate well
with the cohesive strength of the solids and it was noted that wear-free friction could be
measured. It was the irreversibility associated with the process of bringing atoms together
and then separating them, rather than the force of cohesion itself, that correlated with
friction. Tomlinson had proposed a link between friction and interacting atoms which
was developed more fully in the 1970s. McClelland and Glosli (1992) then developed a
simple model of friction based upon vibrations of atomic lattices in which the work done
in overcoming friction was dissipated through vibrations (sound) and eventually as heat.
The atomic force microscope (AFM), Figure 1.6, has a very fine probe with a tip of radius
in the range 10-100 nano-metre, which enable measurements to be made on single asperity
contacts. The probe traverses over a surface and the inter-atomic forces between the
probe, and the test surface can be measured to determine force components with pico-
newton accuracy. At the atomic scale, the force of friction is no longer proportional to
load, since friction depends upon the true area of contact. This in turn is determined on
the atomic scale not only by the applied normal force, but also by adhesion. Even when
the external applied force is zero, the contacting solids will "flatten" under the action of
adhesive forces. The physics has been outlined by Israelachvili (1992), while the contact
mechanics has been analyzed by Johnson et al. (1997).

16 Introduction Chapter 1

1.2 Goals with this thesis
1. 1d model with Amontons-Coulomb with interfacial stiffness with side and uniform

driving: Find sequence of precursors and load curve, plot precursor length as a
function of driving force. Visualize stress curves (FN , FS, µs ∗ FN and µd ∗ FN).
Study, for example, the influence of the normal load tilt, the friction coefficients, the
internal-to-interfacial stiffness ratio and the system resolution (number of blocks).

2. Add preconditioned stress to 1d model. For the cases of initial Poisson-effect as
described in Amundsen et al, 2012 measure the precursor length as a function of
driving force for both side-driven and uniformly driven systems (with non-uniform
loading for uniform driving).

3. Start simulations from part 1 before the first precursor by instead unloading (chang-
ing FN). Visualize the stress curves. Find sequence of precursors. Plot precursors as
a function of FT/FN .

4. Apply method from part 3 to cases in part 2. Visualize the stress curves. Find the
sequence of precursors. Plot precursor as a function of FT/FN Study unloading with
double side driven model (driven from both sides, in opposite directions).

1.3 The structure of the thesis
In chapter two I’ll go trough some of the basic theory of friction, and then I’ll explain some
of the friction models used today.
In chapter three I’ll explain how a modern friction experiment is conducted and how the
setup of the apparatus of the group at the University of California, Berkeley that work
with unloading experiments is set up. In this chapter I’ll also explain some of the constants
that are used in this thesis and where they come from.
In chapter four I’ll go through the numerical method that has been used in this thesis.
In chapter five I’ll go through the one dimensional numerical friction model. Both side
driven and top driven.
In chapter six I’ll show the one dimensional unloading model, and some results from the
numerical simulations.
In chapter seven I’ll conclude the thesis, and take a look at what was accomplished and
what the next steps regarding the unloading model might be.

Part II

Theory

17

Chapter 2

Friction Theory

Friction is a part of the scientific field called Tribology, which incorporate the study of
lubricants, lubrication, friction, wear and bearings.
Like gravity, friction is one of the first consepts we learn about in physics. And like gravity,
friction is a force that affect our lives all the time. Every time we get out of bed, friction
is there to helps us to get grip between our feet and the floor. When we go for a drive,
friction is there to help the car to get traction. Without friction life as we know it would
be impossible.
When we first learn about friction, we are taught that friction is the force that tries to
resist motion of solid surfaces. The simplest equation of friction, which states that the
friction equals the normal force times some constant, is given as

Ff = µFN , (2.1)

where µ is the friction coefficient and FN is the normal force. As we can see from the above
equation, the friction force does not depend on the contact area. It is common to split
the friction force into two categories, static friction and dynamic friction. Static friction is
probably the form of first the friction force we learn about. This is the force that prevents
motion. If we have a system as in Figure 2.1, the force, Fx, whould have to be greater than
the friction force, Ff , for the box to move. The static friction force is given by the static
friction coefficient, µs, and the equation for static friction is given by the equation

Ffs = µsFN . (2.2)

As the driving force gets larger than the static friction force, the block begins to move. At
that moment, when the driving force gets larger than the static friction force, the static
friction force changes to a dynamic friction force. The dynamic friction force is given by
the dynamic friction coefficient, µd, which is lower than the static friction coefficient [5] .
Sice the dynamic friction coefficient is lower than the static friction coefficient, we need a
smaller force to keep the block moving after it has reached the static friction threshold.
The equation for dynamic friction is given by the equation

19

20 Friction Theory Chapter 2

Figure 2.1: A block on a surface which has a driving force, Fx, a normalforce, W , and a
friction force, Ff

Ffd = µdFN . (2.3)

This description of friction is called Amontons-Coulomb friction.

It has also been shown through experiments that µs is not a constant number, it is actu-
ally a value that is slowly increasing and it depends on the so-called waiting time, tw. The
waiting time is the time between static friction, when we start to apply the driving force,
and sliding, when we have dynamic friction. So the longer the waiting time, the larger the
static friction coefficient gets. This effect is often called aging.
As we saw in the last chapter Amontons and Coulomb was two of the pioneers in the devel-
opment of frictional framework we have today. From their experiments and research three
friction laws has emerged, these are known as the Amontons-Coulomb law’s of friction [5]:

1. No motion occurs as long as the driving force ,FX , is smaller than a finite threshold
µsFN .

2. The friction force is independent of the apparent area of contact.

3. When motion occurs, the friction force is also proportional to the normal load.

2.1 The Burridge-Knopoff model
In the late 1960s R. Burridge and L. Knopoff [11] was working on a mathematical one-
dimensional model for describing earthquake faults. In this model Burridge and Knopoff
uses a chain of connected masses (or particles)
Each mass is connected to its neighboring masses by coil springs and to a overlying rigid
support by a flat spring. This rigid support moves horizontally with a velocity, V. The coil
springs has a spring constant µ1, µ2, µ3, ..., µn and the flat springs has a spring constant
λ1, λ2, λ3, ..., λn. Burridge and Knopoff had also done some experiments with an actual
connected spring model, and by setting λ1 = µ1 = µ2 = ... = µn 6= 0 and λ2 = λ3 =
... = λn = 0 they obtained what we now call a side driven model. They now had a model
to describe the interaction between the masses. They now needed some description of
the interaction between the masses and the surface and some way to combine these two

Section 2 A simpler friction model 21

things. The model for friction that they chose included the effects of instability radiation
and viscosity. These properties was baked into a function F (vi), where vi is the the ith
mass. They now combined the above into the equation of motion

mi
∂2xi
∂t2

= Ti − Ti−1 + T ∗i + F ∗i fori = 1, 2, ..., N (2.4)

where Ti = µi(xi+1 − xi), T ∗i = −λi(xi − V t) and mi is the mass of each particle (mass).
By taking Eq.(2.4) a little bit further they came up with the energy equation

∂

∂t
{
N∑
1

1
2mi(

∂x

∂t
)2 +

N−1∑
1

1
2(xi+1 − xi)2 +

N∑
1

1
2λi(V t− xi)

2} (2.5)

=
N∑
1
V λi(V t− xi)−

N∑
1
Ei(

∂x

∂t
)2 +

N∑
1

∂x

∂t
F (xi) (2.6)

The terms in the equation above each describes a physical property of the system∑N
1

1
2mi(∂x∂t)

2 is the kinetic energy of the system. ∑N−1
1

1
2(xi+1 − xi)2 is the potential

energy in the connecting springs. ∑N
1

1
2λi(V t − xi)2 is the potential energy in the flat

springs connecting each particle to the moving support. ∑N
1 V λi(V t − xi) is the rate of

doing work in moving the support against the flat springs and is of order V which can
be made small. ∑N

1 Ei(∂x∂t)
2 is the power radiation along the semi-infinite strings and is

positive. −∑N
1

∂x
∂t
F (xi) is the rate at which the work is done against friction and viscosity.

It too is positive.

2.2 A simpler friction model
The friction model used by Burridge and Knopoff figure 2.1 is a very complicated friction
model. In [17] S. Meagawa, A. Suzuki and K. Nakano uses a similar block model as
Burridge and Knopoff, but with a friction model more similar with the static and dynamic
friction model introduced earlier in this chapter. The model consists of a number of masses
(or blocks) connected by coil springs. The system of connected masses are driven in a point
P connected through a coil spring to the first mass and is driven with a constant velocity,
V . This is quite similar to the Burridge-Knopoff model. The big difference comes when
the frictional force is introduced. The friction force which act on each mass is given as

fi =


f (i)
s , whendx

dt
= 0

−f (i)
k , whendx

dt
> 0

f
(i)
k , whendx

dt
< 0.

(2.7)

This description of the friction model gives us a quite simple model, and a pure Amonton-
sâĂŞCoulomb friction model, that does not make so many assumptions as the Burridge-
Knopoff model do. Meagawa et al. also introduces a non-uniform normal force to the
friction model given as

wi = FZ
N

(
1 + 2i−N − 1

N − 1 θ
)

(2.8)

22 Friction Theory Chapter 2

where the total normal load is given as FZ = ∑N
i=1 wi, the total number of masses is N and

the non-uniformity of the normal force is given by −1 ≤ θ ≤ 1. θ = 0 gives us uniform
normal force. The effect of this non-uniform normal force is

1. Higher load at the trailing edge relative to that at the leading edge (FZA > FZB)
results in a smaller number of precursor events than under uniform loading conditions
(FZA = FZB).

2. Non-uniform loading conditions with a higher load at the leading edge (FZA < FZB)
lead to a larger number of precursor events relative to that in uniform loading con-
ditions.

3. non-uniform loading additionally affects the increasing rate of the propagation length
of the precursors.

2.3 Viscous damping
A problem with the spring-block model is the coil springs between the block (or masses).
When a block goes from a state of static friction to a state of dynamic friction the block
gains a high velocity. The effect of this velocity gain is a constant switching of energy
between the coil spring to the right of the block and the coil spring to the left of the
block. If nothing is done with this, the block will constantly change between negative and
positive velocity In their master thesis, J. Trømborg [27], D.S Amundsen [2] introduces an
additional feature to the spring-block model. This addition is the viscous damping which
helps convert the some of the kinetic energy in the system into potential energy. This fixes
the oscillating behavior of the blocks. The equation for the viscous damping is given as

F η
i =


η(ẋ2 − ẋ1), i = 1
η(Ẋi+1 − 2ẋi + ẋi−1), 2 ≤ i ≤ N − 1
η(u̇i−1 − ẋN), i = N

(2.9)

where ẋi is the velocity of the block,and Ẋi+1 and Ẋi−1 is respectively the velocity of the
left and right block. F η

i is the force due to the velocity and η viscous damping.

Part III

Experiments

23

Chapter 3

Experiments

During the last decade there have been conducted experiments involving Poly(methyl
methacrylate) (PMMA) blocks rather than the usual materials we know from the his-
tory of friction research where the more common material like copper, iron,lead or wood
blocks that were used. At first glance this might seem a little bit strange because PMMA
is not a very commonly used construction material. It’s a very brittle material and is
therefor not very suitable for withstanding large forces.

The strength of PMMA in the field of experimental friction studies is its transparency.
With the development of sensors with high resolution, it is now possible to record what is
happening in the transition between the slider and the base in experiments. This technol-
ogy has made it possible to look at the asperities.

At the Reacah Institute of Physics in Jerusalem, J. Fineberg and his group have conducted
experiment [7, 8, 23, 22, 24, 25] with sliding PMMA blocks. At Yokohama University in
Japan, Maegawa, Suzuki and Nakano [17] has conducted some of the same experiments.

In this chapter we’ll first take a look at some experimental setups for modern friction
experiments and some of their results. And then we’ll look at an experiments done by one
of S.D. Glaser students at the University of California, Berkeley.

25

26 Experiments Chapter 3

Figure 3.1: A schematic view of the experimental setup of Fineberg et al. [6]

3.1 Experiments
In the experiments that where conducted by Fineberg et al. the experimental setup con-
sisted of two blocks of PMMA. In Figure 3.1 we can see a sketch of the two PMMA blocks.
The upper block, called the slider, which in the experiments of Fineberg et al. [6] had
the dimensions 200 mm x 6 mm x 100 mm. The bottom block, which is called the base
had the dimensions 300 mm x 30 mm x 28 mm in the sliding (x), transverse (y) and
loading (z) directions respectively. The contact surface of base and the slider where both
treated to get a desired and consistent rough surface of approximately 1µm. During the
experiment the upper block exposed to a uniform normal loading, FN . This force was
monitored throughout the experiment via a load cell with a stiffness of 107 N/m. The
shear force (driving force) FS was applied to the bottom block. This block was mounted
on a low friction linear stage, and its motion in the x direction was only constrained by the
frictional force at the interface with the slider. At the trailing edge, x = 0, the slider was
constrained by a stopper to prohibit motion in the x-direction. The shear force, FS, was
applied to the base via a load cell with a stiffness of 106 N/m. To detect slip events, an
acoustic sensor was mounted on the trailing edge to detect slip events. When a slip event
was detected, FS was held for a pre-defined hold time. In Figure 3.2 we can see how the
slip at a single point, δ(X, t), where measured.
To measure this, a laser beam was focused on a metallic grid glued to the side of the slider
approximately 2 mm above the frictional interface, the faces in contact. The laser had a
good enough resolution to measure a slip of 0.2µm. The measured as shown in 3.1. Here
we can see a laser light that is being directed through the frictional interface. If there is
contact between the two blocks the laser light will be detected on the oposite site of the
laser light source. If there is no contact between the two blocks the laser light will be

Section 1 Experiments 27

Figure 3.2: A sketch of the experimental setup by Ben-David et. al [8]. The pink colored
block is the slider, and the cyan colored is the base. A laser is used to measure the
displacement of the slider.

deflected by the difference in the refractive index of the PMMA and the air, and no light
will be detected in that point.
In Figure 3.3 and Figure 3.4 we can see some of the results from the experiments done by
Ben-David et. al. in Figure 3.3 a) we can see the how the normalized contact area between
the slider and the base changes during the experiment. at t = 0 s, we see that the contact
area is uniform throughout the whole frictional interface. As the experiment goes on the
shear force increases, Figure 3.3 b) , and the contact area increases. At t ≈ 150s we can
see that there is a sudden change at the trailing edge, this indicates that there has been a
precursor, and each precursor is initiated at the trailing edge. In Figure 3.4 we can see the
slip, δ(X, t), as a function of time compared to the normalized contact area.
Here we can see four different phases of how the contact area, A(X, t), and the slip, δ(X, t),
is affected before, during and after front passage through location X. Phase I is the
detachment phase, this phase is followed by rapid slip (phase II) which sharply transitions
into slow slip (phase III). Although the contact area is reduced by ≈ 20% during the
detachment phase, it remains relatively constant during the ensuing slip phases.

28 Experiments Chapter 3

Figure 3.3: In a) we can see a measurement of the normalized contact area, A(x, t),
normalized by the value of A(x, t = 80). Red colors indicate increased A, while blue color
indicated reduction of A. In b) we can see how the shear force, FS, changes during the
experiment. From [6]

Figure 3.4: Here we can see the detachment and evolution of frictional slip

Section 3 Unloading model 29

Figure 3.5: A sketch of the friction apparatus used for friction PMMA experiments at the
University of California, Berkeley [26]

3.2 Unloading model
At the University of California, Berkeley P.A. Selvadurai [26] and S.D. Glaser [18] are
working with seismic stress and sliding friction. In Figure 3.5 we can see the apparatus
use by both Selvadurai and Glaser in their friction experiments.
Although the apparatus is used in different way in [26] and [18], Selvadurai is currently using
it for unloading experiments. In Figure 3.6 we can see the sample block from Selvadurai’s
experiment. The samples are 1x40 cm PMMA blocks. The sliding surface is sandblasted
to a given roughness, and the experiment is performed rough on rough with a base that
has had the same sandblasting treatment. The sample is glued to the top holder, this is
always at the same place, which is rigid compared to the sample. The holder has a grove
that the slider fits into and it has been machined by computer to give very good precision
for parallel top and bottom surface, straightness etc.
Normal load, Figure 3.7, is applied through the top holder. The PMMA is attached to
a fixed frame and this frame is attached to two hydraulic pressure cylinders. The two
hydraulic pressure cylinders is connected to a self-aligning joint (a ball) Through pressure
control in the hydraulic fluid they give a normal force control.
Shear load, Figure 3.8, is applied to the top holder The motor, that apply the shear load, is
attached after the normal force has been applied. Shear load can be displacement controlled
or force controlled, depending on the situation.

30 Experiments Chapter 3

3.3 Parameters of the model
In this thesis I am going to do some numerical simulations of some of the systems ex-
plained in the above experiments. To get the best possible results the parameters used in
the numerical model should be as close to the experimental values. As most of the fric-
tional sliding experiments are done with PMMA, I will also use PMMA in my simulations.
According to wikipedia [20] PMMA has a Young’s modulus in the range of 1.8− 3.1 GPa.
In [17] Maegawa et al. used the value 2.5 GPa. In this thesis I’ll also use this value.
The rest of the values i Table 3.1 have been taken from [27], [2] and [17].

Table 3.1: Parameters used in the 1D model

Physical quantity Symbol Value in simulation
Total slider mass M 0.012 kg
Young’s modulus E 2.5 GPa
Sample size in x-direction Lx 100 mm
Sample size in y-direction Ly 5 mm
Sample size in z-direction Lz 20 mm
Static friction coefficient µs 0.70
Dynamic friction coefficient µd 0.45
Relative viscous damping η

√
0.01
√
km

Applied normal load FZ 400 N
Driving point velocity V 0.1 mm/s
Driving spring constant, side driven model K 0.8 MN/m
Driving spring constant, top driven model Kn K/N

Table 3.2: This table shows the parameters that have been used in this thesis. The
parameters have been taken from [27], [2] and [17]

Some of the values will be changed to see how the change affects the behavior of the system.
The relative viscous damping is 1/10 of what was used in [27], the reason for this is some
strange behavior explained in Appendix A. The driving spring constant for the top driven
model is given as the driving spring constant for side driven model divided by the number
of blocks, N .

Section 3 Parameters of the model 31

Figure 3.6: A picture of how the block is attached to the apparatus. Photographed by
J.Trømborg

Figure 3.7: A picture of how the normal load is applied to the block. Photographed by
J.Trømborg

Figure 3.8: A picture of how the shear load is applied to the system. Photographed by
J.Trømborg

Part IV

Numerical Methods and Ordinary
Differential Equations

33

Chapter 4

Numerical Methods

Numerical methods has played a big part in modern physics and science, and in the com-
ming years it’ll probably play an even bigger role. One of the first courses we encounter
when we start studying physics is some kind of course in mechanics. In this course we learn
about Newton’s law’s and how to solve then analytically. One of the things the lecturer
often forget to mention, is the limited number of problems that actually have an analyt-
ical solution. Fortunately we have found a way around this problem by using numerical
methods.

Some of problems we use numerical methods to solve in physics and science is:

1. Ordinary differential equations (Euler method, Runge-Kutta method)

2. Integration (numerical integration, Monte Carlo [19])

3. Partial differential equations (finite difference, finite element)

4. Eigenvalue problems (finding eigenvalues and eigenvectors)

5. Simulating physical systems (molecular dynamics [1])

4.1 Ordinary differential equations
A great many applied problems involve rates, that is, derivatives. An equation containing
derivatives is called a differential equation. If it contains partial derivatives it is called a
partial differential equation, otherwise it is called an ordinary differential equation (ODE).

A good example of an ODE is Newton’s second law of motion
∑

F (t) = ma(t), (4.1)

where ∑F (t) is the total force involved in the system, m is the mass of the system and a(t)
is the acceleration. It is possible to write the acceleration as derivatives a(t) = dv(t)/dt =

35

36 Numerical Methods Chapter 4

Figure 4.1: A one-block friction system. V is the velocity of point P , m is the mass of the
system, K is the driving spring stiffness, f is the friction force and k is the spring stiffness
between the block and the wall. The full solution of this system can be found in [2]

d2x(t)/dt2. If we now insert this into Newton’s second law of motion we get a well known
ODEs

d2x(t)
dt2

=
∑
F (t)
m

(4.2)

Depending on the complexity of∑F (t) we can either solve this analytically or numerically.
The system shown in Figure 4.1 is one of the systems it is possible to solve analytically.
The forces arising from the two springs in Figure 4.1 follows Hook’s law, which is an elastic
spring law on the form

F (t) = kx(t), (4.3)
where k is the spring stiffness and x(t) is the position from equilibrium. If we use this
equation on the system in Figure 4.1 we get

d2x(t)
dt2

=
∑
F (t)
m

+ kx(t)
m

, (4.4)

which is a second-order differential equation. It is possible to rewrite this second-order
differential equation into two first-order equation

dx(t)
dt

= v(t) (4.5)

dv(t)
dt

=
∑
F (t)
m

+ kx(t)
m

(4.6)

The reason for dividing second-order differential equation into two first-order equation is
to make it easier to solve with numerical methods.

Section 2 The numerical methods 37

4.2 The numerical methods
When it comes to solving ordinary differential equations numerically, there are many dif-
ferent methods that we can use. The best known methods are probably the Euler method
and the Runge-Kutta methods.
The Euler method is a single-step method, this means that it only refer to one previous
point and its derivative to determine the current value. Methods such as Runge-Kutta take
some intermediate steps, for example, a half-step, to obtain a higher order method. Here
we’ll only take a look at the Euler method and a improved version of the Euler method,
namely the Euler-Cromer method

4.2.1 The Euler method
[9] The Euler method was first published by Leonhard Euler around 1770 [12]. This method
is explicit method, which means that it calculates the state of a system at a later time
from the state of the system at the current time.
The idea behind his method was based on a particle that was moving in such a way that
at time, t0, its position was equal to x0 and that, at this time, the velocity is a known
quantity, v0. By knowing t0, t1, x0 and v0 he could find the new position, x0, at the time,
t0. The new position was given as

x1 = x0 + (t1 − t0)v0 (4.7)

If the difference between the next time, ti+1, and the previous time, ti, where i = 0, 1, 2, . . .,
is constant, then this is also known as ∆t.
The Euler method that we use today based on a Taylor expansion

y(t+ ∆t) = y(t) + ∆tdy
dt

+ 1
2∆t2d

2y

dt2
+ 1

3!∆t
3d

3y

dt3
+ . . . , (4.8)

where we only use the first order

y(t+ ∆t) = y(t) + ∆tdy
dt

+O(∆t2), (4.9)

This method gives us an error of O(∆t2)

The final form of the Euler method is

x(ti+1) = x(ti) + ∆tf(ti, x(ti)) (4.10)

If we are going to solve coupled differential equations like the one in Eq.4.6, we usually
solve them like this

v(ti+1) = v(ti) + ∆tf(ti, x(ti)) (4.11)
x(ti+1) = x(ti) + ∆tv(ti) (4.12)

38 Numerical Methods Chapter 4

4.2.2 The Euler-Cromer method
The Euler-Cromer is an improvement of the Euler method where we instead of using the
velocity v(ti) in Eq. 4.12, we use the velocity for the new time step v(ti+1) to find the
position for the new time step x(ti+1)

v(ti+1) = v(ti) + ∆tf(ti, x(ti)) (4.13)
x(ti+1) = x(ti) + ∆tv(ti+1) (4.14)

This is the method that has been used in all the numerical simulations in this thesis.

The Euler or Euler-Cromer methods is probably

4.3 Truncation error of the Euler method
The truncation error [15] is divided into two different errors.

1. Local truncation errors, which tells us the error caused by one iteration

2. global truncation errors, which tells us the cumulative error caused by many itera-
tions.

4.3.1 Local truncation error
The local truncation error of the Euler method, is the error made in a single step. It is
the difference between the numerical solution after one step, y1, and the exact solution at
time t1 = t0 + h. The numerical solution is given by

y1 = y0 + hf(t0, y0) (4.15)

For the exact solution, we use the Taylor expansion mentioned above

y(t0 + h) = y(t0) + hy′(t0) + 1
2h

2y′′(t0) +O(h3). (4.16)

The local truncation error (LTE) introduced by the Euler method is given by the difference
between these equations

LTE = y(t0 + h)− y1 = 1
2h

2y′′(t0) +O(h3). (4.17)

This result is valid if y has a bounded third derivative
This shows that for small h, the local truncation error is approximately proportional to h2.
This makes the Euler method less accurate (for small h) than other higher-order techniques
such as Runge-Kutta methods for which the local truncation error is proportial to a higher
power of the step size.

Section 3 Truncation error of the Euler method 39

4.3.2 Global truncation error
The global truncation error is the error at a fixed time t, after however many steps the
methods needs to take to reach that time from the initial time. The global truncation error
is the cumulative effect of the local truncation errors committed in each step. The number
of steps is easily determined to be (t − t0)/h, which is proportional to 1/h, and the error
committed in each step is proportional to h2. Thus, it is to be expected that the global
truncation error will be proportional to h
This intuitive reasoning can be made precise. The global truncation error is then

|GTE| ≤ hM

2L (eL(t−t0) − 1) (4.18)

where M is an upper bound on the second derivative of y on the given interval and L is the
Lipschitz constant of f. The precise form of this bound of little practical importance, as in
most cases the bound vastly overestimates the actual error committed by the Euler method.
What is important is that it shows that the global truncation error is (approximately)
proportional to h. For this reason, the Euler method is said to be first order.

Part V

The 1D-Model

41

Chapter 5

Introduction

Spring-block models has been used to solve problems regarding friction and earthquakes
since the 1960s. In the late 1960s R. Burridge and L. Knopoff [11, 16] used a numerical
spring-block model to explore the role of friction along a fault as a factor in the earthquake
mechanism. In [13] J. M. Carlson, J. S. Langer and B. E. Shaw use what they call the
Burridge-Knopoff model to study the dynamics of earthquake faults. In [10] O. M. Braun,
I. Barel and M. Urbakh propose a model for a description of dynamics of crack-like pro-
cesses that occur at the interface between two blocks prior to the onset of frictional motion.
Their model allows them to explain experimental observations in [23, 24] and predicts the
effect of material properties on the dynamics of the transition to sliding. [17] This article
describes the mechanism of precursor events; the mechanism was determined through an
experiment and simulation by considering non-uniform normal loading

5.1 Side driven model
The 1D-model is a discretization of the the three dimensional PMMA system depicted i
Figure 5.1. The upper block, which we call the slider, has a height, Lz, in the z-direction. A
length, Lx, in the x-direction and a depth, Ly, in the y-direction. The length of the system
is larger than the height, and much larger than the depth. The height is also larger than
the depth. The slider is placed on top of another PMMA block, which we call the substrate.

The slider is divided into N equally sized blocks, that are connected to each other with
springs. Each connecting spring has a spring stiffness that depends on the Young’s modulus,
length, hight and depth of the slider, and the number of blocks we divite the slider into.
In this case the Young’s modulus is that of PMMA. The Young’s modulus is given as

E = σ

ε
= F/A0

∆L/Lx
= FLx

∆LA0
(5.1)

where σ is the tensile stress and ε is the tensile strain. F is the force that is exerted on the
object through the cross-section area A0. The cross-section area of the slider is, A0 = LyLz.
∆L is the blocks change in length. We now have to find some way to connect the spring

43

44 Introduction Chapter 5

Figure 5.1: A three dimensional sketch of the PMMA system. The upper block is the
slider, which moves, and the lower part is the substrate, which is at rest.

stiffness and the Young’s modulus. Because the block is only deformed elastically we can
use Hook’s law

F = k′x (5.2)

where F is the force, x is the distance from equilibrium, k′ is the total spring stiffness. The
spring stiffness for each spring connecting two blocks is given as k = k′/(N −1). If we now
combine the equation for the Young’s modulus and Hook’s law, we get an expression for
the spring stiffness

k′ = E∆LA0

xLx
(5.3)

If we now insert A0 = LyLz, and x = ∆L, we end up with the equation

k′ = ELyLz
Lx

(5.4)

This is the total spring stiffness for the slider. The spring stiffness for each connecting
spring is given as

k = E(N − 1)LyLz
Lx

(5.5)

This spring stiffness form the basis for the interaction between the blocks.

The total mass for the slider is given asM , so the mass for each block is given asm = M/N .

Section 2 Equations of motion 45

Figure 5.2: A side-driven one dimensional spring-block model. The point P is driven with
a constant velocity, V , in the positive x-direction. A driving spring with spring stiffness,
K, connects P and the first block. fi and wi, where i = 1, 2, ..., N , is respectively the
friction force between the substrate and block i and the normal force acting on block i. m
is the mass of each block.

5.2 Equations of motion
The equations of motion for a side driven system of N blocks is given by

mün =


k(u2 − u1) + FX + F η

1 + f1, n = 1
k(un+1 − 2un + un−1) + F η

n + fn, 2 ≤ n ≤ N − 1
k(un−1 − uN) + F η

N + fN , n = N
(5.6)

The origin of these equations are Newton’s second law of motion. The parts of the equations
involving the position, un, is the force due to the interaction between neighboring blocks
due to the connecting springs. Fη is the force due to the viscous damping and depends on
the velocity of the blocks

F η
n =


η(u̇2 − u̇1), n = 1
η(u̇n+1 − 2u̇n + u̇n−1), 2 ≤ n ≤ N − 1
η(u̇n−1 − u̇N), n = N

(5.7)

The force FX is the driving force that pushes the whole system, in the side-driven case, it
is connected to block number one. This driving force is produced by a spring with a spring
stiffness, K. The spring is connected to the first block and a point, P , Figure 5.2. This
point has a constant velocity V . The equation for the driving force is

FX = K(V t− u1) (5.8)

The normal force, pn, on each block is given by the total normal force on the slider, FN ,
divided by the total number of blocks

46 Introduction Chapter 5

pn = FN
N

(5.9)

This gives a uniformly distributed normal force. We have also used non-uniformly dis-
tributed normal force given by the equation

pn = FN
N

(
1 + 2n−N − 1

N − 1 θ
)
, (5.10)

where θ ∈ (−1, 1). For θ = 0, we get the uniformly distributed normal force.
fn is the friction force between block n and the substrate.

5.3 The friction model
If we look at the friction model from chapter 2

fi =


f (i)
s , whendx

dt
= 0

−f (i)
k , whendx

dt
> 0

f
(i)
k , whendx

dt
< 0.

(5.11)

we can see that because of f (i)
s each block is at rest until it reaches the static friction

threshold and suddenly starts moving. From experiments 3.3 a) we could see that the
colors was not constant until slip. There was some change in the contact between the
two blocks between slips. This indicates that the pure Amontons-Coulomb description is
lacking some functionality.
One of the important parts of the numerical friction model is how we model the interaction
between the base and the slider. The model we use here is the model depicted in Figure
5.3. In this thesis we’ll use a friction law that uses the dynamic friction coefficient, µd, and
the static friction coefficient, µs. µd will be used to model the friction force while a block
is moving. µs will only be used to define the static friction threshold. The static friction
threshold defines when the force pushing on a block is high enough to allow the block to
move. µs is larger than µd.
At the beginning of the simulation, when t0 = 0, all of the blocks will be at rest, and only
static friction will be exerted on the system. The static friction force, fn, follows a spring
law, and the force is exerted thought a spring of stiffness kt. This spring will have a length
un − ustick

n = 0 at t0, where un is the position of block n, and ustick
n is the position of the

spring that is connected to the base. As driving force is exerted on the system, un will
change, and the static friction force will follow the equation

fn = −kt(un − ustick
n) (5.12)

The static friction force will follow this equation until it reaches the static friction threshold,
fs, which follows the equation

fs = µspn (5.13)

Section 4 The friction model 47

Figure 5.3: (a) The friction spring is attached to the base and to the block. The friction
force acting on the block, is now given by the friction spring stiffness, kt. (b) The friction
spring force reaches the static friction threshold ,µspn. (c) The static friction spring has
broken, and the friction force on the block is now the dynamic friction force, µkpn. (d)
The block comes to a halt, and the static friction spring attaches to the point ustick

n .
The figure is from [3]

When fn > fs, we say that the spring breaks, and the block is subjected to a dynamic
friction force

fd = µdpn (5.14)

This force has a sign in the opposite direction as the velocity. When the blocks velocity
reaches zero, the static friction spring is reattached, and static friction is applied on the
block. The position, ustick

n , is chosen so that the total tangential force on the block is zero

ustick
n = un −

τn
kt

(5.15)

As the system is loaded tangentially, a finite region around the driving point is affected.
As we can see from Figure 5.19, it is not just the first block that is affected.
How many blocks that is affected depends on the ratio between the block spring stiffness,
k, and the friction spring stiffness, kt. In Figure 5.20 we can see different rations the block
spring stiffness and the friction spring stiffness. As we can see if kt > k more blocks are
affected by the displacement of the first block, and if kt < k fewer blocks is affected by the
displacement of the first block.

48 Introduction Chapter 5

Figure 5.4: Her we can see the area of contact from an experiment. From [6]

5.4 Defining the precursor length
The precursor is a slip event, and the length of this event is called the precursor length,
Lp. In experiments we can observe how long a slip event was by constantly measuring the
contact area between the slider and the block. In Figure 5.4 we can measure the precursor
event by looking at the sudden change in color along the x-axis for each time interval. In
the numerical model we measure the precursor length by looking at how many nodes where
affected by a slip event. If the node furthest from the beginning of the slip event is np and
the first node is n1, then the length of the precursor is

Lp = np − n1 (5.16)

If np < nN , where nN is the last node, then we say that we had a local slip event. If
np = nN , then the slip event has gone through all the nodes, and we have a global slip
event.
Later in the results we’ll use LP/L as a measure of how far the slip event has come. Here
L is the total length of the slider. If LP/L = 1 this indicates that there has been a global
slip.
An other way to discribe the precursor length is

Lp = (np/nN)L (5.17)

5.5 Asymmetric normal loading
The precursor length Lp is a measure on how many blocks, in the numerical model, that
has reached its static friction threshold.

pn = FN
N

(
1− 2n−N − 1

N − 1 θ
)

(5.18)

where pn is the normal load on the n-th block and θ ∈ [−1, 1]

FT = µk

np∑
n=1

pn = µk
FN
N

np∑
n=1

1− 2n−N − 1
N − 1 θ (5.19)

Section 6 Viscous damping 49

Figure 5.5: Here we can see a plot of different types of damping. The blue line is a system
without damping, the green line is a under-damped system, the red line is a critically
damped system and the cyan is an over-damped system.

FT ≈ µk
FN
N

N

L

∫ Lp

0

[
1− 2(xN/L)−N − 1

N − 1 θ

]
dx (5.20)

if we now use that N ± 1 ≈ N for large number of N , we get

FT ≈ µk
FN
L

∫ Lp

0

[
1−

(2x
L
− 1

)
θ
]
dx (5.21)

FT ≈ µkFN
Lp
L

[
1 + θ

(
1− Lp

L

)]
(5.22)

5.6 Viscous damping
When we are working with spring systems we have to make sure that the system is be-
having properly. By behaving properly, we mean that the system is neither under-damped
nor over-damped. In Figure 5.5 we can see examples of different types of damping. For
our system we would like to have a critically damped system.

If we ignore friction the equation of motion for our system is given as

mün = k(un+1 − 2un + un−1) + η(u̇n+1 − 2u̇n + u̇n−1) (5.23)

We now use the wave equation

un(t) = eζκteiκna, (5.24)

this is a method that is often used to find the stability for different numerical methods
[21]. In the above equation, ζκ is a complex number and κ is a real spatial wave number.
If we insert this into Eq.5.23, we get the equation

50 Introduction Chapter 5

mζ2
κ = k(eiκa − 2 + eiκa) + ηζκ(eiκa − 2 + eiκa) (5.25)

We recognize that eiκa − 2 + eiκa as version of the Euler’s formula [9]

eiκa − 2 + eiκa = −4 sin2
(
κa

2

)
(5.26)

By inserting this into Eq.5.25 we get

mζ2
κ + 4k sin2

(
κa

2

)
+ 4ηζκ sin2

(
κa

2

)
(5.27)

If we solve this with respect to ζκ, we get the quadratic equation

ζκ =
−4η sin2

(
κa
2

)
±
√

16η2 sin4
(
κa
2

)
− 16km sin2

(
κa
2

)
2m (5.28)

As mentioned earlier we are only interested in a system that is critically damped. The
system is critically damped when Eq.5.27 has one solution for ζκ. ζκ has one solution when
the square root in Eq.5.28 is zero

16η2 sin4
(
κa

2

)
− 16km sin2

(
κa

2

)
= 0 (5.29)

η2 sin2
(
κa

2

)
= km ⇒ η =

√
km

| sin
(
κa
2

)
|

(5.30)

The oscillations that are to be reduced have a wavelength λ = 2a or a wave number
κ = 2π/λ = π/a. Inserting this into Eq.5.30 lead to the critical damping coefficient

ηc =
√
km (5.31)

Since the absolute value of sin is always smaller than one, choosing η =
√
km will cause

all other waves to be under-damped.

5.7 Tangential force
If we have a side-driven system with a shear force on block i given as k(un+1− 2un +un−1)
which is the force from the two neighboring block i+ 1 and i−1. We also have the friction
spring force kt(un − ustick

n). Under static friction these two forces are balancing each other
out and we get this system of equations

k(un+1 − 2un + un−1)− kt(un − ustick
n) = 0, (5.32)

which is valid for all blocks except for the first and the last block. k is the stiffness of the
spring between two blocks, the block spring stiffness, and kt is the stiffness of the spring
between a block and the substrate, the friction spring stiffness. We then introduce a new
variable u′n defined by un = u′n + u0

n, where u0
n is the initial position of the n-th block. u′n

Section 7 Tangential force 51

is the displacement of each block. We also define τ 0
n, the initial shear force, which is given

by the initial positions of the blocks

τ 0
n = k(u0

n+1 − 2u0
n + u0

n−1) (5.33)
By inserting the expression for the displacement and the initial shear force into eq.(5.32)
we end up with the equation

k(u′n+1 − 2u′n + u′n−1)− ktu′n + τ 0
n − kt(u0

n − ustick
n) = 0 (5.34)

Because the initial system is at rest, the shear force for neighboring blocks,i + 1 and
i − 1, and the friction force from the substrate on block i has to cancel out each other.
τ 0
n = kt(u0

n−ustick
n). We then end up with system of equations described by the displacement

of each block

k(u′n+1 − 2u′n + u′n−1)− ktu′n = 0 (5.35)
By introducing a constant a = L/(N −1), where N � 1, and multiplying and dividing the
block-spring expression with it, we end up with en expression that looks very much like a
discretized differential equation.

ka2u
′
n+1 − 2u′n + u′n−1

a2 − ktu′n = 0 (5.36)

With differentials the the equation becomes

ka2∂u
′(x)
∂x2 − ktu

′(x) = 0 (5.37)

this differential equation has the general solution

u′(x) = Aex/l0 +Be−x/l0 (5.38)
where l0, which is the characteristic length, is given as

l0 =
√
k

kt
a (5.39)

When the slider is moving, the tangential force on each block is given by

τn = k(un+1 − 2un + un−1)
= k(u′n+1 − 2u′n + u′n−1) + τ 0

n

(5.40)

By using the same trick as we did in eq.(5.36), we end up with a equation for the tangential
force for the system

τ(x) = ka2∂u
′(x)
∂x2 + τ 0(x) (5.41)

which has the same analytical solution as eq.(5.37)

52 Introduction Chapter 5

τ(x) = ka2l20
L2

(
Aex/l0 +Be−x/l0

)
+ τ 0(x) (5.42)

We now have to find expressions for A and B by using our boundary conditions. We know
that at x = 0, this is the first block, τ(0) = µkp1, and that at x = L, this is the last block,
τ(L) = τ(L). We also use that l0/L� 1, we then get

τ(L) = ka2l20
L2

(
AeL/l0 +Be−L/l0

)
+ τ 0(L)

≈ ka2l20
L2 (AeL/l0) + τ 0(L)

= τ 0(L),

(5.43)

we see that for this to be true, A = 0. For x = 0 we get

τ(0) = ka2l20
L2 B + τ 0(0)

= µsp1

(5.44)

We then end up with the final expression for the tangential force

τ(x) =
(
µsp1 − τ 0(x)

)
e−x/l0 + τ 0(x) (5.45)

5.8 Initial Shear Force
In some cases we would like to do a simulation where the system is initialized with some
kind of initial shear force profile. If the slider is squeezed in the z-direction due to the
pressure from the normal force the slider will get an initial shear force profile due to the
expansion in the x and y-direction. In the case of the one-dimensional system, the system
will only get the expansion in the x-direction. In Figure ??
The total tangential load, FT , on our system is

FT =
N∑
n=1

τn (5.46)

If we go from the limit N →∞, we can rewrite the sum to an integral

N∑
n=1
→ N

L

∫ L

0
τ(x)dx, n→ xN/L (5.47)

We spilt the integral into two parts. One part up to the length up to the precursor length
Lp, and one for the length after the precursor length. In Figure 5.6 we can see that before
the Lp the normalized shear force for each block is fluctuating around µk. So the total
shear force up to Lp is

∫ Lp
0 µkp(x)dx. The tangential load is then

Section 8 Initial Shear Force 53

Figure 5.6: Here we can see the shear force τ normalized by the normal force. The precursor
length, Lp, is the length between block 1 and block 33

FT = N

L

[∫ Lp

0
τ(x)dx+

∫ L

Lp
τ(x)dx

]

= N

L

[∫ Lp

0
µkp(x)dx+

∫ L

Lp
αp(Lp)− τ 0(x)e−

x−Lp
l0 + τ 0(x)dx

]
,

(5.48)

α is the average between the static friction coefficient and the dynamic coefficient, α =
(µs + µk)/2. The normal load, p, on each block is constant and uniformly distributed

p(x) = p = FN/N = constant (5.49)

We use a simple distribution for the initial shear force profile given by

τ 0(x) = βp
2(x− L/2)

L
, (5.50)

in Figure 5.7 we can see the plot for β = 0.45, β = 0.225 and β = 0. When β = 0 there
is no initial shear force. By inserting eq.(5.49) and eq.(5.50) into eq.(5.48) we get the
expression

FT = N

L

[∫ Lp

0
µkpdx+

∫ L

Lp

(
αp− βp2(x− L/2)

L

)
e
−x−Lp

l0 dx

+
∫ L

Lp
βp

2(x− L/2)
L

dx

] (5.51)

By solving this equation we end up whit the final expression for a side driven system with
an initial shear force profile given by eq. (5.50)

54 Introduction Chapter 5

Figure 5.7: Here we have three different initial shear force profiles. The steepest one is for
β = 0.45, the flat one is for β = 0 and the one between is for β = 0.225

FT (Lp) = FN

[
µk
Lp
L

+ 2β l
2
0
L2

(
e
−L−Lp

l0 − 1
)

+ β
(L− Lp)Lp

L2

+ l0
L

(
β
(

1 + e
−L−Lp

l0 − 2Lp
L

)
+ α

(
1− e−

L−Lp
l0

))] (5.52)

If we now insert Lp = L, which means that the precursor has reached the rightmost block,
we end up with FT (L) = µkFN .

5.9 Top driven
The top driven model shares is quite similar to the side driven model. The only difference
is how the system is driven. In Figure 5.8 we can see that all the blocks are connected to
larger flat block. This larger flat block is then moved at a constant velocity V . To get the
same driving force, with the same driving velocity, as we get in the side driven system, the
driving spring constant K has to be divided by the number of blocks. The driving spring
constant for each block then becomes

Kn = K

N
, n = 1, 2, . . . , N (5.53)

With the new driving spring constant, the new equation of motion then becomes

mün =


k(u2 − u1) + FX

1 + F η
1 + f1, n = 1

k(un+1 − 2un + un−1) + FX
n + F η

n + fn, 2 ≤ n ≤ N − 1
k(un−1 − uN) + FX

N + F η
N + fN , n = N

(5.54)

where FX
n is the driving force on each block, which is given as

FX
n = Kn(V t− un), n = 1, 2, . . . , N (5.55)

Section 10 Validation 55

Figure 5.8: A top-driven one dimensional spring-block model. All the blocks are connected
to a "driving" block, which is driven with a constant velocity V .Kn, fn and wn, where
n = 1, 2, ..., N , is respectively the driving spring constant, the friction force between the
substrate and block i and the normal force acting on block i. m is the mass of each block.

The code for the top-driven one-dimensional model is attached in Appendix B.5

5.10 Validation
5.10.1 The side driven model
One of the difficult parts when it comes to numerical models is to know if the model is
correct. Different ways to validate the model might be to compare the results with experi-
ment, or with results from similar simulations. If one is really lucky, some of the problems
might have analytical solutions.
In our case some of the models have an analytical solution, and we’ll start with those.

The asymmetric normal loading
The asymmetric normal loading was introduced in chapter two, and an analytical solution
was given earlier in this chapter. If the implementation of the numerical model is correct,
the numerical solution should be close to the analytical solution when we change the way
we load the model. In this case we have used the same values as Maegawa et al. [17]. In
Figure 5.9 we can see how good the correspondence is between the analytical model and
the numerical model. We have used the values θ = 0.8333, θ = 0 and θ = −0.8333.
If we now compare the numerical results with the experimental results from Maegawa et
al. Figure. 5.10 we can see that the correspondence between the numerical solution and
the experimental results in quit bad. Maegawa et al. also conducted some numerical
simulations Figure. 5.11, and as we can see their numerical results was also quite different
from the experimental results. As they write in [17]: The reason for the difference is not
clear; it is possible that the mechanism underlying the propagation of precursors changes
at around Lp/L = 0.7, or the partial normal load around the leading edge may be smaller
than the expected one due to the unexpected curvature of the contact surfaces.

56 Introduction Chapter 5

The initial share force
As with the asymmetric normal loading we also have an analytical solution for the Initial
share force. By using the initial share force we can initiate our system with a desired
share force. In the case of the analytical model this is done by changing β, the higher
β is the greater becomes the initial share force. In Figure 5.12 both the analytical and
the numerical results has been plotted. We can see that there is a good correspondence
between the analytical solution and the numerical model.
Time evolution of the tangential load FX
In Figure 5.13 and 5.14 we can see how the tangential load evolves as a function of time.
As we can see the results from the model in this thesis corresponds quite well with the
results from the simulations of Maegawa et al.

Section 11 Results 57

5.11 Results
5.11.1 Variation of the static and dynamic friction coefficient in

the side-driven model
The results for the variation of µs and µk is plottet in Figure. 5.15, 5.16, 5.17 and 5.18.
Here we have used the values

1. µs = 1.4 and µk = 0.9

2. µs = 0.35 and µk = 0.225

3. µs = 0.85 and µk = 0.6

4. µs = 0.55 and µk = 0.3

In the first case we have doubled the values of µs and µk compared to what we normally
have used. In the second case we have halved the values of µs and µk compared to what
we normally have used. In the third case we have added 0.15 to each of the values of µs
and µk compared to what we normally have used. And in the last case we have subtracted
0.15 to each of the values of µs and µk compared to what we normally have used.
First let us analyze the first case. Her we have that µs/µk = 1.4/0.9 ≈ 1.56 and FX(t)/P
reach the value of µk after about 5.2s slope between the curve and the time axis is 0.9/5.2 ≈
0.17.
For the second case we get these results. Her we have that µs/µk = 0.35/0.225 ≈ 1.56 and
FX(t)/P reach the value of µk after about 1.3s slope between the curve and the time axis
is 0.225/1.3 ≈ 0.17.
If we compare the first case and the second case, we see that we got the same answers.
This indicates that as long as we keep the relationship between µs and µk constant, well
end up with the same slope.
Now lets take a look at the third case. Her we have that µs/µk = 0.85/0.6 ≈ 1.42 and
FX(t)/P reach the value of µk after about 3.55s slope between the curve and the time axis
is 0.6/3.55 ≈ 0.17.
Now lets take a look at the third case. Her we have that µs/µk = 0.55/0.3 ≈ 1.833 and
FX(t)/P reach the value of µk after about 1.75s slope between the curve and the time axis
is 0.3/1.75 ≈ 0.17.
An quite interesting observation of the above analysis of the data suggests that the relation
between µk and the time it takes to reach this value follows a linear law.

µk ≈ 0.17t ⇒ t = µk
0.17 (5.56)

where t is the time it takes to reach µk.
5.11.2 Different ratios between kt and k
Here we’ll look at the results from Figure 5.20. Here we have plotted four different relations
between the friction spring stiffness and the spring stiffness of the coil spring between the
blocks. We have used the ratios

58 Introduction Chapter 5

1. kt/k = 0.1

2. kt/k = 0.5

3. kt/k = 2

4. kt/k = 10

A relation of kt/k < 1 means that the friction spring is stiffer than the spring between the
blocks. A relation of kt/k > 1 means that the spring between the blocks is stiffer than the
friction spring.
We observe that when kt/k = 0.1 the number of affected blocks is approximately 17. For
kt/k = 0.5 the number of affected blocks is approximately 8. For kt/k = 2 the number
of affected blocks is approximately 5. For kt/k = 10 the number of affected blocks is
approximately 3.
From the above numbers, we can see that when kt/k → 0 the number of affected nodes
→ Nx. And when kt/k →∞ the number of affected nodes → 0.
5.11.3 Variation of µk and µs and the affect of LP/L-FT/F
In Figure 5.21, 5.22, 5.23 and 5.24, we have plotted the relationship between the precursor
length and the shear force. In each plot there is a circle and a line. The circle represents
the numerical results, and the black line represents the analytical solution.
we have also here used the values

1. µs = 1.4 and µk = 0.9

2. µs = 0.35 and µk = 0.225

3. µs = 0.85 and µk = 0.6

4. µs = 0.55 and µk = 0.3

In the first case, where µs = 1.4 and µk = 0.9, we see that when LP/L = 1, FT/FN =
µk = 0.9 In the second case, where µs = 0.35 and µk = 0.225, we see that when LP/L = 1,
FT/FN = µk = 0.225 In the first case, where µs = 0.85 and µk = 0.6, we see that when
LP/L = 1, FT/FN = µk = 0.6 In the first case, where µs = 0.55 and µk = 0.3, we see that
when LP/L = 1, FT/FN = µk = 0.3
We can see that the linear relationship between LP/L and FT/FN is

FT/FN = µkLP/L (5.57)

This indicates that relationship between LP/L and FT/FN is only dependent on µk
The code for the one-dimensional side-driven model is attached in Appendix B.4

Section 11 Results 59

Figure 5.9: Here we can see a side driven system with asymmetric normal loading. We
have used θ = 0.8333, θ = 0 and θ = −0.8333 for both the numerical and analytical curves.

60 Introduction Chapter 5

Figure 5.10: Experimental Lp/L− FT/FN results from Maegawa et al. [17]

Figure 5.11: Numerical Lp/L− FT/FN results from Maegawa et al. [17]

Section 11 Results 61

Figure 5.12: Lp/L − FT/FN plot for a system with an initial shear force profile. β = 0,
β = 0.225 and β = 0.45

62 Introduction Chapter 5

Figure 5.13: Fx plot for N = 10 from a numerical simulation

Section 11 Results 63

Figure 5.14: Fx plot for N = 10 from a numerical simulation Maegawa et al.

64 Introduction Chapter 5

Figure 5.15: Results from a side-driven simulation. Here µs = 1.4 and µk = 0.9. The
simulation time was T = 10s and the number of blocks was N = 100.

Figure 5.16: Results from a side-driven simulation. Here µs = 0.35 and µk = 0.225. The
simulation time was T = 5s and the number of blocks was N = 100.

Section 11 Results 65

Figure 5.17: Results from a side-driven simulation. Here µs = 0.85 and µk = 0.6. The
simulation time was T = 5s and the number of blocks was N = 100.

Figure 5.18: Results from a side-driven simulation. Here µs = 0.55 and µk = 0.3. The
simulation time was T = 5s and the number of blocks was N = 100.

66 Introduction Chapter 5

Figure 5.19: Here we can see the shear force Fshear plotted against the number of blocks,
Nx, at initiation of the first precursor. The pink line is the numerical solution of the
system, and the blue line is the analytical solution of the system as shown in eq.5.45 In
this case Nx = 100.

Figure 5.20: This figure shows the same as Figure 5.19, but here we have displayed more
ratios. (a) kt/k = 0.1. (b) kt/k = 0.5. (c) kt/k = 2. (d) kt/k = 10. Nx = 100 in each case

Section 11 Results 67

Figure 5.21: Side-driven Lp/L and FT/FN (µs = 1.4 and µk = 0.9). The red circles are
the numerical results, and the black line is the analytical solution.

Figure 5.22: Side-driven Lp/L and FT/FN (µs = 0.35 and µk = 0.225). The red circles are
the numerical results, and the black line is the analytical solution.

68 Introduction Chapter 5

Figure 5.23: Side-driven Lp/L and FT/FN (µs = 0.85 and µk = 0.6). The red circles are
the numerical results, and the black line is the analytical solution.

Figure 5.24: Side-driven Lp/L and FT/FN (µs = 0.55 and µk = 0.3). The red circles are
the numerical results, and the black line is the analytical solution.

Part VI

The 1D-Unloading-Model

69

Chapter 6

The 1D-Unloading-Model

6.1 The model
In this part of the thesis we’ll look at a 1D spring-block model where the normal force is
a function of time. The block dynamics of this system is the same as for the side-driven
model. In Figure 6.1 we can see how the system is set up. The normal force starts out at

FX(t) =
{
K(V t− u1), t < T start

U

K(V T start
U − u1), t > T start

U

(6.1)

where T start
U is the time we start to reduce the value of the normal force. The normal force

is given as

FN(t) =


F start
N , t < T start

U

F start
N − νt, T start

U ≤ t < T end
U

F end
N , t > T end

U

(6.2)

Where F start
N is the initial normal force, F end

N is the normal force we would like to end up
with at the end of the simulation, T end

U is the time when we stop reducing the normal force
ν is the reduction slope of the normal force and is given as

ν = F start
N − F end

N

T end
U T start

U

(6.3)

The dynamic friction force is now time dependent and is given as

fd = µdpn(t), (6.4)

where pn(t) = FN(t)/N . The static friction threshold is given as

fs = µspn(t) (6.5)

The equation of motion for this system is

71

72 The 1D-Unloading-Model Chapter 6

Figure 6.1: A sketch of the 1D Unloading model with time-dependent normal load

mün =


k(u2 − u1) + FX(t) + F η

1 + f1(t), n = 1
k(un+1 − 2un + un−1) + F η

n + fn(t), 2 ≤ n ≤ N − 1
k(un−1 − uN) + F η

N + fN(t), n = N
(6.6)

It is almost the same as the one we had for the side-driven model except we now have a
time-dependent friction force.
The connection between the surface and the slider is set up exactly the same as the one-
dimensional model in chapter five.

6.2 The numerical model
When we initialize the system we set the initial normal load to be F start

N . The initial shear
load is zero, so we need to change this. The first two seconds of the simulation is used to
do this. During this time F start

N is held constant, and the point, P in Figure 6.1, starts to
move with a constant velocity, V . Tension builds up in the spring connecting P and the
first block, there is now a increasing shear load on the system. In Figure 6.3 we can see
how the shear force builds up during the first 0.75s (In this case we have used 0.75s instead
of 2s to better correspond with the experimental data). When t = 0.75s the velocity of P
is set to zero, and the position of P is held constant throughout the whole simulation. Now
we start to reduce the normal load from F start

N to F end
N . We have used a linear relationship

between F start
N to F end

N . When the normal load reaches F end
N , the simulation is ended.

In Appendix B.6 the code for the unloading model is attached.

6.3 The experimental data
To get the model working we used some results given to us by the group of S.D. Glaser at the
University of California, Berkeley. In Figure 6.2, we can see the normal load and the shear
load plotted against time. As we can see there are some strange behavior in this figure.
First we can see that between 1000 and 1500s there is a sudden stopp in the reduction
process of the normal load. The explanation is, at t = 1000s there was some event and the

Section 3 The experimental data 73

observers wanted to examine the experiment. Just to make the numerical data and the
experimental data look alike, we have also put in this "break". In the experiment a sudden
slip will also cause the normal force to alter. This effect is not taken into the numerical
model, so if we compare Figure 6.2 and Figure 6.3, we see that the "wavy" behavior of the
experimental data is not in the numerical model.
Just around t = 3000s we can see some strange behavior in the experimental data. Here
the shear force becomes greater than the normal force. We’ll not try to explain why
this happens, because we do not know exactly how the experiment where conducted, and
therefore we do not have all the data required to do that. One way to achieve this effect
is to have a quite large µs, and to be able to recreate the experimental data we had to use
µs = 2.6.
To get a full working model, we also have to estimate µd. This was done by using the
experimental data in Figure 6.4. As we have seen from the results from the one-dimensional
model, the normalized share force oscillates around µd after the first globals slip LP/L = 1.
If we use this knowledge on the experimental data in Figure 6.4 we can see that around
t = 3250s we have a sudden drop in FX(t)/FN , this indicates that there has been a
global slip. If we now subtract (FX(t)/FN)min,t=3250 from (FX(t)/FN)max,t=3250, we get an
estimated µd = 1.2.
If we now compare Figure 6.4 and Figure 6.5, we can see that there are some similarities
and some differences. The most obvious differences is the difference between (FX(t)/FN)min
and (FX(t)/FN)max in the two cases. We do not have any good explanation of this, but
there is probably some factors we have not included in the numerical model that makes the
difference. If we look at the shape of the curve t = 2000s to t = 3250s in the experimental
results and the curve between t = 2s to t = 3.2s in the experimental results, we see that
both the experimental data and the numerical results has the same shape. If we compare
this to the one-dimensional model we see that the shape is non-linear.
The last data we got from the group was the displacement, Figure 6.6 of five measuring
points. We have been told that there probably is something wrong with some of the sensors,
which might explain the strange behavior of device four and five. We’ll not use to much
time on these data, but if we look at the total displacement, we can see, if we compare the
experimental data with the numerical data Figure 6.7, that there is a quite big difference
between the experimental data and the numerical data. The maximum displacement in
the experimental data is ∼ 0.0225mm. In the numerical data the number is close to 1.9mm
which is close to 85 times higher than the experimental displacement. The factor that affect
the displacement in the numerical model is the stiffness in the driving spring. With a small
spring stiffness we need to stretch the spring a longer distance to achieve the same spring
force as we would with a spring with a higher spring stiffness. By using this knowledge,
we can, by tweaking the value of the driving spring stiffness, probably achieve to get about
the same displacement in the numerical model as they did in the experiment. But because
of short time, we have not been able to investigate this further.
We have chosen not to use the values for µs and µd obtained here. The µs and µd we got
from comparing the experimental data and the numerical model is quite large compared
to what we used in chapter five, and the values that have been used in the experiments

74 The 1D-Unloading-Model Chapter 6

in chapter three. Therefore we’ll use the same values µs = 0.7 and µd = 0.45, the same
values we used in chapter five.

Section 3 The experimental data 75

Figure 6.2: Experimental data of the normal force and the shear force from a unloading
experiment. The red lower line is the shear force, and the blue upper line is the normal
force.

Figure 6.3: Numerical results of the normal force and the shear force from a unloading
experiment. The red lower line is the shear force, and the blue upper line is the normal
force. Here we have used µs = 2.6, µd = 1.2 and N = 181

76 The 1D-Unloading-Model Chapter 6

Figure 6.4: In this plot we have taken the data from Figure 6.2 and divided the shear force
FX(t) with the normal force, FN . The black curve is FX(t)/FN . The red dashed line is an
estimate for the dynamic friction coefficient

Figure 6.5: In this plot we have tried to make a plot similar to the plot in Figure 6.4. The
black curve is FX(t)/FN . The red dashed line is the dynamic friction coefficient which is
µd = 1.2 and N = 181

Section 3 The experimental data 77

Figure 6.6: The plot show the displacement of five different points on the experimental
slider.

Figure 6.7: The plot show the displacement of five different blocks from the numerical
simulation. N = 181

78 The 1D-Unloading-Model Chapter 6

6.4 Results
In these experiments we have used µs = 0.7 and µd = 0.45. First we’ll analyze the effect of
different F start

N . We have used the values F start
N = 400N, F start

N = 600N and F start
N = 800N.

If we first just look at the shape of the loading curves in Figure 6.8, 6.9, 6.10, 6.11 and
6.12 and compare them to the loading curves from the one-dimensional model, we can see
that the shape of the “sawtooth” if quite different. In the case of the one-dimensional
model there was a linear connection between the bottom of the sawtooth and the top of
the sawtooth. While in this case it seems to be some kind of curved line.
If we assume that for the one-dimensional model we had a connection on the linear form
y = ax+ b, we have in this case the integral of this, y =

∫
(ax+ b)dx.

We also see that when we get a slip and the sawtooth reaches a maximum and drops down
to a minimum the relationship between the max and min always seems to be µd±x, where
x is some number smaller than µs.
Before t = 2s, where t is the time the loading curve follows the same rules as the loading
curve for the one-dimensional model. The explanation of this is that before t = 2s the
normal load is kept constant.
If we now take a look at when the first global slip occurs

1. For F start
N = 400N t = 2.65s

2. For F start
N = 600N t = 3.8s

3. For F start
N = 800N t = 4.1s

4. For F start
N = 400N and β = 0.45 t = 2.8s

5. For F start
N = 400N and β = 0.225 t = 3.2s

From this we see that if we increase F start
N , the first global slip will come later. When it

comes to the change in β the results is not very conclusive. We get the highest time for
β = 0.225 which is the middle value of β. This might indicate that there is something
wrong with the model, or that there is something we have overseen.

Section 4 Results 79

Figure 6.8: FX(t)/FN for F start
N = 400N, F end

N = 100N, µs = 0.7, µd = 0.45. The pink
dashed line is µs, the red dashed line is µd and the blue line is FX(t)/FN . Under the
FX(t)/FN plot we also have a plot of the number of blocks that are sliding.

80 The 1D-Unloading-Model Chapter 6

Figure 6.9: FX(t)/FN for F start
N = 600N, F end

N = 100N, µs = 0.7, µd = 0.45. The pink
dashed line is µs, the red dashed line is µd and the blue line is FX(t)/FN . Under the
FX(t)/FN plot we also have a plot of the number of blocks that are sliding.

Figure 6.10: FX(t)/FN for F start
N = 800N, F end

N = 100N, µs = 0.7, µd = 0.45. The pink
dashed line is µs, the red dashed line is µd and the blue line is FX(t)/FN . Under the
FX(t)/FN plot we also have a plot of the number of blocks that are sliding.

Section 4 Results 81

Figure 6.11: FX(t)/FN for F start
N = 400N, F end

N = 100N, µs = 0.7, µd = 0.45 and β = 0.45.
The pink dashed line is µs, the red dashed line is µd and the blue line is FX(t)/FN . Under
the FX(t)/FN plot we also have a plot of the number of blocks that are sliding.

Figure 6.12: FX(t)/FN for F start
N = 400N, F end

N = 100N, µs = 0.7, µd = 0.45 and β = 0.225.
The pink dashed line is µs, the red dashed line is µd and the blue line is FX(t)/FN . Under
the FX(t)/FN plot we also have a plot of the number of blocks that are sliding.

82 The 1D-Unloading-Model Chapter 6

Figure 6.13: Lp/L − FT/FN for F start
N = 400N, F end

N = 100N, µs = 0.7, µd = 0.45. The
analytical solution is not valid for the data after T start

U = 2s

Figure 6.14: Numerical results of the normal force and the shear force from a unloading
experiment. The red lower line is the shear force, and the blue upper line is the normal
force. Here we have used µs = 0.7, µd = 0.45, F start

N = 400N, F end
N = 100N and N = 100

Section 4 Results 83

Figure 6.15: Lp/L − FT/FN for F start
N = 600N, F end

N = 100N, µs = 0.7, µd = 0.45. The
analytical solution is not valid for the data after T start

U = 2s

Figure 6.16: Numerical results of the normal force and the shear force from a unloading
experiment. The red lower line is the shear force, and the blue upper line is the normal
force. Here we have used µs = 0.7, µd = 0.45, F start

N = 600N, F end
N = 100N and N = 100

84 The 1D-Unloading-Model Chapter 6

Figure 6.17: Lp/L − FT/FN for F start
N = 800N, F end

N = 100N, µs = 0.7, µd = 0.45. The
analytical solution is not valid for the data after T start

U = 2s

Figure 6.18: Numerical results of the normal force and the shear force from a unloading
experiment. The red lower line is the shear force, and the blue upper line is the normal
force. Here we have used µs = 0.7, µd = 0.45, F start

N = 800N, F end
N = 100N and N = 100

Section 4 Results 85

Figure 6.19: Lp/L − FT/FN for F start
N = 400N, F end

N = 100N, µs = 0.7, µd = 0.45 and
β = 0.45. The analytical solution is not valid for the data after T start

U = 2s

Figure 6.20: Numerical results of the normal force and the shear force from a unloading
experiment. The red lower line is the shear force, and the blue upper line is the normal
force. Here we have used µs = 0.7, µd = 0.45, F start

N = 400N, F end
N = 100N, N = 100 and

β = 0.45

86 The 1D-Unloading-Model Chapter 6

Figure 6.21: Lp/L − FT/FN for F start
N = 400N, F end

N = 100N, µs = 0.7, µd = 0.45 and
β = 0.225. The analytical solution is not valid for the data after T start

U = 2s

Figure 6.22: Numerical results of the normal force and the shear force from a unloading
experiment. The red lower line is the shear force, and the blue upper line is the normal
force. Here we have used µs = 0.7, µd = 0.45, F start

N = 400N, F end
N = 100N, N = 100 and

β = 0.225

Part VII

Discussion

87

Chapter 7

Discussion

7.1 Side driven model
In chapter five we introduced the one-dimensional side-driven model. We derived some
analytical solution both for a skewed normal load, where we used the values θ = −0.8333,
θ = 0 and θ = 0.8333 to describe the skewness of the normal load. We also derived an
analytical solution for the initial shear force, where we used the values β = 0.45, β = 0.225
and β = 0 to describe the distribution of force between the nodes.
We used the above values to see how they affected the precursor length in the simulations.
In Figure 5.9 we could see that the precursor length would "grow" faster for low values of
FT/FN when the normal force was low at the driving side (negative values of θ). And that
it would grow slowe for low values of FT/FN when the normal force was high at the driving
side (positive values of θ).
In Figure 5.12 we could see the value of β affected the shape of the LP/L-FT/FN -curve.
With a β > 0 the first node gets larger initial spring force directed in the opposite direction
as the driving force, and as we can se from the figure, the "growth"-rate of the precursor
length is smaller for small FT/FN .
We also saw how the variation of µs and µd affected the system. We concluded that the
cases we looked at only depended on the dynamic friction coefficient.

7.2 Top driven model
We did not get enough time to explore this model. We only got time to write the code and
do some trial-runs of this code.

7.3 Unloading model
Here we used some of the experimental data given to us at the group at the University of
California, Berkeley, to test our model. We saw that the model had a very good behavior
compared to the experimantal data. We got time to do some test runs of the code, and
tried some different values for F start

N and got some result from that.
The numerical model is not working that well. A lot of the simulation-time is spent by
initiating the shear load (the first 2 seconds). This should probably be done in an other
and better way. Because it is a linear connection between the value of the shear load at

89

90 Discussion Chapter 7

t = 0s and t = 2s, we can probably calculate the behavior of the system analytical for this
time-interval. In the master thesis of J.Trømborg [27] they did this for the one-dimensional
model.

7.4 Conclusion
Compared to the experimental data from Maegawa et al. the one-dimensional model does
not behave that good. As we saw in chapter five, the gap between the experimental data
and the numerical model was quite large. To better represent the reality we need more
dimensions in our numerical model. J.Trømborg looked at a (1+1d) model in his thesis
[27]. This model gives an extra dimension normal to the plane. This leads to a better model
between the normal load and the surface because the normal load is connected through
springs all the way down to the surface. In the master thesis of D.S. Amundsen [2] he
conducted some numerical simulations involving two dimensions in the plane, a (2+0D)
model. This model gives us better insight into what happens in the contact area. In the
one-dimensional model we have to do many tricks to get the model to behave more like
the real world. One of the trick we have used is to include the initial shear force. In
the (1+1d) model we do not need this, because the connections between the nodes in the
extra dimension takes care of this effect. The one-dimensional model is a very good tool
to use if it is used correctly, and the user knows that it has some disadvantages. The one-
dimensional model is also very good to use as a “discovery“-model, a model we can use to
build up the knowledge about the problem we are working with. To get the full advantage
of the (1+1d)-model and the (2+0D)-model we need to make a three-dimensional model.
The big problem with the three-dimensional model is the number of nodes, N3, we have
to simulate. In the one-dimensional model we only have to calculate two springs for every
node. In the two-dimensional model we have to calculate 8, and in the three-dimensional
model we have to calculate 26 springs for each node.

7.5 Future work
The side-driven one-dimensional model has a weakness when it comes to the application
of the shear force. If the shear force is going to reach the last node in this model it has
to work trough all the other nodes. In chapter five we saw how we could manipulate the
relationship between the friction spring stiffness and the spring stiffness between the nodes
to make the shear fore affect more of the nodes. With a top-driven model we can transfer
the shear load to all the nodes in the system. If we divide the shear load uniformly on all
the noes all the node will reach the static friction threshold at the same time and we’ll get
one gigantic global slip. So in a future work top-driven model we should try to come up
with a model for the shear force distribution that mimic that of the (1+1d)-model.
When it comes to the unloading model a lot of work has to be done. When we load the
model with a high normal load it is probably important to include the fact that the block
will be pressed together in the direction of the normal load, and expand in the direction
normal on the normal load.

Section 0 Concluding words 91

7.6 Concluding words
When I now look back at the time spent doing this master thesis I realize that too much
of the time have been spent writing the code. What I have learned from this experience is
that, all time spent writing unused code is a waste of time.

Appendix A

Viscous Damping

A.1 Strange behavior of the viscous damping
In Figure A.1 and A.2 we can see two different plots of the velocity of the five first blocks.
The plots are from two differen simulations where only the value of η has been changed. We
can also see how many blocks that are actually sliding. In Figure A.1, where η =

√
0.1, we

can see that we have an over-damped system and the blocks continue sliding because they
always will have a positive velocity. This is not desirable. In Figure A.2 we have changed
the damping factor to η =

√
0.01. As we can see the system has become under-damped

and the velocity of the block will reach a value that is zero or lower, and the blocks will
go back to being under static friction.

93

94 Viscous Damping Chapter A

Figure A.1: This plot show the velocity for the five first blocks. When using η =
√

0.1 we
get an over-damped system

Figure A.2: This plot show the velocity for the five first blocks. When using η =
√

0.01
we get an under-damped system

Appendix B

C Code

B.1 Language
The code used in this thesis combines matlab and C. All the interface to set up a simulation
and writing results to file is done with Matlab. The heavy number crunching is done in C.
To combine these two languages an extension of Matlab, called MEX, has been used. By
doing this we have tried to combine Matlabs easy-to-implement filewriting and plotting of
results, and great number crunching properties of C’s

95

96 C Code Chapter B

B.2 Matlab code
B.2.1 Initialisation code
The following matlabcode creates a system of folders and creates the the files needed to
store the data from the simulations

c l e a r a l l ;
c l c
%−−

% The i n i t i a l c o n d i t i o n s
%−−

% T : The t o t a l t ime o f the s i m u l a t i o n [s]
% dt : Length o f a t ime s t ep
% N : Number o f nodes
% Lx : The l e n g t h o f the b l o ck i n the x−d i r e c t i o n [mm]
% Ly : The l e n g t h o f the b l o ck i n the y−d i r e c t i o n [mm]
% Lz : The h e i g h t o f the b l o ck i n the z−d i r e c t i o n [mm]
% M : Tota l b l o ck mass [kg]
% E : Young’s modulus [GPa]
% ny : Relative viscous damping [sqrt(km)]
% K : Total driving spring stiffness [MN/m]
% Kn : Driving spring stiffness per node [MN/m]
% Fz : Applied normal load [N]
% V : Driving point velocity [mm/s]
% mys : Static friction coefficient
% myd : Dynamic friction coefficient
% mysf: Static friction stiffness factor
%--

multiplier = 1;
run_time = 5;%3.6*multiplier;
dt = 1E-8;
number_of_blocks = 100;
Lx = 100;%181;%
Ly = 5;%17;%
Lz = 20;%60;%
total_system_mass = 0.012;
youngs_modulus = 2.5;
relative_viscous_damping = sqrt(0.01);%0;%sqrt(0.01);%
str_eta = ’eta−sq r t −0_01_’;
driving_spring_stiffness = 0.8;%8.0;%0.08;%
total_normal_force = 800;%200;400;%600;%
driving_velocity = 0.1/multiplier;
str_v = ’V−0_1_’;%’’;%
static_friction_coefficient = 0.7;%0.35;%1.4;%2.3;%
str_static_friction_coefficient = ’70’;
delta_static_friction_coefficient = 0;
dynamic_friction_coefficient =

0.45;%0.55;%0.65;%0.225;%0.9;%0.25;%0.35;%

Section 2 Matlab code 97

str_dynamic_friction_coefficient = ’45’;%’25_5’;%’90’;%’65’;%’
90’;%’25’;%’35’;%

delta_dynamic_friction_coefficient = 0;
theta =

0.0;%0.3333;%0.8333;%-0.1;%0.1333;%-0.1333;%-0.8333;%
static_friction_spring_stiffness_scaling = 1.0;%0.1;%0.5;%2.0;%10;%
str_sfsss = ’’;%’ s f s s s −10_0_’;%
beta =

0.45;%0;%0.225;%-0.45;%-0.225;%
str_beta = ’beta−0_45_’;%0.0;%’’;%
gamma = 0;
str_gamma = ’gamma−p r o f i l e _ ’;%’gamma−

neg−40_’;%’’;%
driving_first_node = 1;
driving_last_node = 0;

% print_node = floor(number_of_blocks/2);
% print_freq = ceil(10000*(1E-8/dt));
% print_counter_limit = ceil(10000*(1E8*dt));
% print_counter_2_limit = ceil(100*(1E8*dt));

print_node = floor(number_of_blocks/2);
print_freq = ceil(1000*(1E-8/dt))*multiplier;
print_counter_limit = ceil(1000*(1E8*dt))/multiplier;
print_counter_2_limit = ceil(10*(1E8*dt));
%--

% Choose type of system
%--

alternative = ’ a v l a s t n i n g ’;
% alternative = ’ av l a s t n i ng_w i t h_age i ng ’;
% alternative = ’ a v l a s t n i n g _ w i t h _ p o i s s o n ’;
% alternative = ’ a v l a s t n i n g _ d e s i r e d _ d r i v i n g _ f o r c e ’;
% alternative = ’ a v l a s t n i n g _ t o p _ d r i v e n ’;
% alternative = ’ av l a s t n i ng_top_d r i v en_w i th_po i s s on ’;
% alternative = ’ s i d e _ d r i v e n ’;
% alternative = ’ t op_dr i v en ’;
% alternative = ’ l e f t _ r i g h t _ d r i v e n ’;

%--

% profile off; profile on; run_script; profile report;
%--

now_ = clock;
year = now_(1);
month = now_(2);
if (month < 10)

month = sprintf(’0%d’,month);

98 C Code Chapter B

else
month = sprintf(’%d’,month);

end
day = now_(3);
if (day < 10)

day = sprintf(’0%d’,day);
else

day = sprintf(’%d’,day);
end
hour = now_(4);
if (hour < 10)

hour = sprintf(’0%d’,hour);
else

hour = sprintf(’%d’,hour);
end
minute = now_(5);
if (minute < 10)

minute = sprintf(’0%d’,minute);
else

minute = sprintf(’%d’,minute);
end
second = floor(now_(6));
if (second < 10)

second = sprintf(’0%d’,second);
else

second = sprintf(’%d’,second);
end

% Theta
if (theta > 0)

str_theta = sprintf(’pos−%d’,abs(10000*theta));
elseif (theta < 0)

str_theta = sprintf(’neg−%d’,abs(10000*theta));
else

str_theta = sprintf(’%d’,theta);
end

% Static Friction Spring Stiffness Scaling
if (static_friction_spring_stiffness_scaling == 1)

elseif (static_friction_spring_stiffness_scaling > 1)
str_sfsss = sprintf(’ s f s s s−%d_’,

static_friction_spring_stiffness_scaling);
elseif (static_friction_spring_stiffness_scaling < 1)

str_sfsss = sprintf(’ s f s s s −0_%d_’,10*
static_friction_spring_stiffness_scaling);

end

% dt
if (dt == 1E-8)

Section 2 Matlab code 99

str_dt = ’’;
else

str_dt = sprintf(’_dt−%g’,dt);
end

% Run Time
if (run_time > 1)

str_run_time = sprintf(’T−%d−%d_’,floor(run_time), floor(10*(
run_time - floor(run_time))));

else
str_run_time = sprintf(’T−0_%d_’,10*run_time);

end

started = datestr(now,’dd mmm yyyy , HH :MM: SS’);
folder_root = ’~/Dropbox/ Master /Amonton−Coulomb/1D_model’;
switch alternative

case ’ s i d e _ d r i v e n ’
src_driven = sprintf(’%s / s i d e _ d r i v e n ’,folder_root);
src_analyze = sprintf(’%s / a n a l y z e ’,src_driven);
folder_driven = sprintf(’%s / r e s u l t s / runs / s i d e _ d r i v e n ’,

folder_root);
project_name = sprintf(’run_%d−%s−%s_%s−%s−%s_%sLx−%d_Ly−%

d_Lz−%d_%sFN−%d_mu_s−%s_mu_d−%s_%s%s the ta−%s_%s%sN−%d%s ’
,...

year, month , day, hour, minute , second ,...
str_run_time ,Lx,Ly,Lz,...
str_v ,total_normal_force ,

str_static_friction_coefficient ,
str_dynamic_friction_coefficient ,...

str_sfsss ,str_beta ,str_theta ,str_eta ,
str_gamma ,number_of_blocks ,str_dt);

alternative_short = ’SD’;
folder_project = sprintf(’%s/%s ’,folder_driven , project_name)

;
case ’ t op_dr i v en ’

src_driven = sprintf(’%s / t op_dr i v en ’,folder_root);
src_analyze = sprintf(’%s / a n a l y z e ’,src_driven);
folder_driven = sprintf(’%s / r e s u l t s / runs / t op_dr i v en ’,

folder_root);
project_name = sprintf(’run_%d−%s−%s_%s−%s−%s_%sLx−%d_Ly−%

d_Lz−%d_%sFN−%d_mu_s−%s_mu_d−%s_%s%s_theta−%s_%s%sN−%d%s ’
,...

year, month , day, hour, minute , second ,...
str_run_time ,Lx,Ly,Lz,...
str_v ,total_normal_force ,

str_static_friction_coefficient ,
str_dynamic_friction_coefficient ,...

str_sfsss ,str_beta ,str_theta ,str_eta ,
str_gamma ,number_of_blocks ,str_dt);

alternative_short = ’TD’;

100 C Code Chapter B

folder_project = sprintf(’%s/%s ’,folder_driven , project_name)
;

case ’ l e f t _ r i g h t _ d r i v e n ’
src_driven = sprintf(’%s / l e f t _ r i g h t _ d r i v e n ’,folder_root);
src_analyze = sprintf(’%s / a n a l y z e ’,src_driven);
folder_driven = sprintf(’%s / r e s u l t s / runs / l e f t _ r i g h t _ d r i v e n ’,

folder_root);
project_name = sprintf(’run_%d−%s−%s_%s−%s−%s_%sLx−%d_Ly−%

d_Lz−%d_%sFN−%d_mu_s−%s_mu_d−%s_%s%s_theta−%s_%s%sN−%d%s ’
,...

year, month , day, hour, minute , second ,...
str_run_time ,Lx,Ly,Lz,...
str_v ,total_normal_force ,

str_static_friction_coefficient ,
str_dynamic_friction_coefficient ,...

str_sfsss ,str_beta ,str_theta ,str_eta ,
str_gamma ,number_of_blocks ,str_dt);

folder_project = sprintf(’%s/%s ’,folder_driven , project_name)
;

alternative_short = ’LRD’;
case ’ a v l a s t n i n g ’

src_driven = sprintf(’%s / a v l a s t n i n g ’,folder_root);
src_analyze = sprintf(’%s / a n a l y z e ’,src_driven);
folder_driven = sprintf(’%s / r e s u l t s / runs / a v l a s t n i n g ’,

folder_root);
project_name = sprintf(’run_%d−%s−%s_%s−%s−%s_%sLx−%d_Ly−%

d_Lz−%d_%sFN−%d_mu_s−%s_mu_d−%s_%s%s the ta−%s_%s%sN−%d%s ’
,...

year, month , day, hour, minute , second ,...
str_run_time ,Lx,Ly,Lz,...
str_v ,total_normal_force ,

str_static_friction_coefficient ,
str_dynamic_friction_coefficient ,...

str_sfsss ,str_beta ,str_theta ,str_eta ,
str_gamma ,number_of_blocks ,str_dt);

folder_project = sprintf(’%s/%s ’,folder_driven , project_name)
;

alternative_short = ’AL’;
case ’ a v l a s t n i n g _ d e s i r e d _ d r i v i n g _ f o r c e ’

src_driven = sprintf(’%s / a v l a s t n i n g _ d e s i r e d _ d r i v i n g _ f o r c e
’,folder_root);

src_analyze = sprintf(’%s / a n a l y z e ’,src_driven);
folder_driven = sprintf(’%s / r e s u l t s / runs /

a v l a s t n i n g _ d e s i r e d _ d r i v i n g _ f o r c e ’,folder_root);
project_name = sprintf(’run_%d−%s−%s_%s−%s−%s_%sLx−%d_Ly−%

d_Lz−%d_%sFN−%d_mu_s−%s_mu_d−%s_%s%s_theta−%s_%s%sN−%d%s ’
,...

year, month , day, hour, minute , second ,...
str_run_time ,Lx,Ly,Lz,...
str_v ,total_normal_force ,

str_static_friction_coefficient ,

Section 2 Matlab code 101

str_dynamic_friction_coefficient ,...
str_sfsss ,str_beta ,str_theta ,str_eta ,

str_gamma ,number_of_blocks ,str_dt);
folder_project = sprintf(’%s/%s ’,folder_driven , project_name)

;
alternative_short = ’ALDDF’;

case ’ a v l a s t n i n g _ t o p _ d r i v e n ’
src_driven = sprintf(’%s / a v l a s t n i n g _ t o p _ d r i v e n ’,

folder_root);
src_analyze = sprintf(’%s / a n a l y z e ’,src_driven);
folder_driven = sprintf(’%s / r e s u l t s / runs /

a v l a s t n i n g _ t o p _ d r i v e n ’,folder_root);
project_name = sprintf(’run_%d−%s−%s_%s−%s−%s_%sLx−%d_Ly−%

d_Lz−%d_%sFN−%d_mu_s−%s_mu_d−%s_%s%s_theta−%s_%s%sN−%d%s ’
,...

year, month , day, hour, minute , second ,...
str_run_time ,Lx,Ly,Lz,...
str_v ,total_normal_force ,

str_static_friction_coefficient ,
str_dynamic_friction_coefficient ,...

str_sfsss ,str_beta ,str_theta ,str_eta ,
str_gamma ,number_of_blocks ,str_dt);

folder_project = sprintf(’%s/%s ’,folder_driven , project_name)
;

alternative_short = ’ALTD’;
case ’ av l a s t n i ng_top_d r i v en_w i th_po i s s on ’

src_driven = sprintf(’%s /
av l a s t n i ng_top_d r i v en_w i th_po i s s on ’,folder_root);

src_analyze = sprintf(’%s / a n a l y z e ’,src_driven);
folder_driven = sprintf(’%s / r e s u l t s / runs /

av l a s t n i ng_top_d r i v en_w i th_po i s s on ’,folder_root);
project_name = sprintf(’run_%d−%s−%s_%s−%s−%s_%sLx−%d_Ly−%

d_Lz−%d_%sFN−%d_mu_s−%s_mu_d−%s_%s%s_theta−%s_%s%sN−%d%s ’
,...

year, month , day, hour, minute , second ,...
str_run_time ,Lx,Ly,Lz,...
str_v ,total_normal_force ,

str_static_friction_coefficient ,
str_dynamic_friction_coefficient ,...

str_sfsss ,str_beta ,str_theta ,str_eta ,
str_gamma ,number_of_blocks ,str_dt);

folder_project = sprintf(’%s/%s ’,folder_driven , project_name)
;

alternative_short = ’ALTDWP’;
case ’ a v l a s t n i n g _ w i t h _ p o i s s o n ’

src_driven = sprintf(’%s / a v l a s t n i n g _ w i t h _ p o i s s o n ’,
folder_root);

src_analyze = sprintf(’%s / a n a l y z e ’,src_driven);
folder_driven = sprintf(’%s / r e s u l t s / runs /

a v l a s t n i n g _ w i t h _ p o i s s o n ’,folder_root);
project_name = sprintf(’run_%d−%s−%s_%s−%s−%s_%sLx−%d_Ly−%

102 C Code Chapter B

d_Lz−%d_%sFN−%d_mu_s−%s_mu_d−%s_%s%s_theta−%s_%s%sN−%d%s ’
,...

year, month , day, hour, minute , second ,...
str_run_time ,Lx,Ly,Lz,...
str_v ,total_normal_force ,

str_static_friction_coefficient ,
str_dynamic_friction_coefficient ,...

str_sfsss ,str_beta ,str_theta ,str_eta ,
str_gamma ,number_of_blocks ,str_dt);

folder_project = sprintf(’%s/%s ’,folder_driven , project_name)
;

alternative_short = ’ALWP’;
case ’ av l a s t n i ng_w i t h_age i ng ’

src_driven = sprintf(’%s / av l a s t n i ng_w i t h_age i ng ’,
folder_root);

src_analyze = sprintf(’%s / a n a l y z e ’,src_driven);
folder_driven = sprintf(’%s / r e s u l t s / runs /

av l a s t n i ng_w i t h_age i ng ’,folder_root);
project_name = sprintf(’run_%d−%s−%s_%s−%s−%s_%sLx−%d_Ly−%

d_Lz−%d_%sFN−%d_mu_s−%s_mu_d−%s_%s%s_theta−%s_%s%sN−%d%s ’
,...

year, month , day, hour, minute , second ,...
str_run_time ,Lx,Ly,Lz,...
str_v ,total_normal_force ,

str_static_friction_coefficient ,
str_dynamic_friction_coefficient ,...

str_sfsss ,str_beta ,str_theta ,str_eta ,
str_gamma ,number_of_blocks ,str_dt);

folder_project = sprintf(’%s/%s ’,folder_driven , project_name)
;

alternative_short = ’ALWA’;
end

folder_code = sprintf(’%s / code ’,folder_project);
folder_data = sprintf(’%s / data ’,folder_project);
folder_info = sprintf(’%s / i n f o ’,folder_project);
folder_log = sprintf(’%s / l o g ’,folder_project);
folder_analyze = sprintf(’%s / a n a l y z e ’,folder_project);
folder_figure = sprintf(’%s / f i g u r e ’,folder_project);
fprintf(datestr(now,’dd mmm yyyy , HH :MM: SS\n’));
%--

% Creates a number of output files with the correct name and date
%--

% Creates the project folder
[status ,message ,messageid] = mkdir(folder_project);
fprintf(’ Created d i r e c t o r y %s \n’,folder_project);
if status == 0

Section 2 Matlab code 103

fprintf(’Something went wrong when c r e a t i n g p r o j e c t f o l d e r ’);
break

end

% Creates the folder "code"
[status ,message ,messageid] = mkdir(folder_code);
fprintf(’ Created d i r e c t o r y %s \n’,folder_code);
if status == 0

fprintf(’Something went wrong when c r e a t i n g the f o l d e r Code’);
break

end

% Creates the folder "data"
[status ,message ,messageid] = mkdir(folder_data);
fprintf(’ Created d i r e c t o r y %s \n’,folder_data);
if status == 0

fprintf(’Something went wrong when c r e a t i n g the f o l d e r Data’);
break

end

% Unsync "data" from dropbox
cmd = sprintf(’dropbox e x c l u d e add %s ’,folder_data);
system(cmd)
% pause(5)

% Creates the folder "data"
[status ,message ,messageid] = mkdir(folder_data);
fprintf(’ Created d i r e c t o r y %s \n’,folder_data);
if status == 0

fprintf(’Something went wrong when c r e a t i n g the f o l d e r Data’);
break

end

% Creates the folder "data/mat"
folder_data_mat = sprintf(’%s /mat’,folder_data);
[status ,message ,messageid] = mkdir(folder_data_mat);
fprintf(’ Created d i r e c t o r y %s \n’,folder_data_mat);
if status == 0

fprintf(’Something went wrong when c r e a t i n g the f o l d e r Data/mat’);
break

end

% Creates the folder "info"
[status ,message ,messageid] = mkdir(folder_info);
fprintf(’ Created d i r e c t o r y %s \n’,folder_info);
if status == 0

fprintf(’Something went wrong when c r e a t i n g the f o l d e r Data’);
break

end

% Creates the folder "type"

104 C Code Chapter B

[status ,message ,messageid] = mkdir(folder_driven);
fprintf(’ Created d i r e c t o r y %s \n’,folder_driven);
if status == 0

fprintf(’Something went wrong when c r e a t i n g the f o l d e r Data’);
break

end

% Creates the folder "log"
[status ,message ,messageid] = mkdir(folder_log);
fprintf(’ Created d i r e c t o r y %s \n’,folder_log);
if status == 0

fprintf(’Something went wrong when c r e a t i n g the f o l d e r Log’);
break

end

% Unsync "log" from dropbox
cmd = sprintf(’dropbox e x c l u d e add %s ’,folder_log);
system(cmd)
% pause(5)

% Creates the folder "log"
[status ,message ,messageid] = mkdir(folder_log);
fprintf(’ Created d i r e c t o r y %s \n’,folder_log);
if status == 0

fprintf(’Something went wrong when c r e a t i n g the f o l d e r Log’);
break

end

% Creates the folder "analyze"
[status ,message ,messageid] = mkdir(folder_analyze);
fprintf(’ Created d i r e c t o r y %s \n’,folder_analyze);
if status == 0

fprintf(’Something went wrong when c r e a t i n g the f o l d e r Ana lyze ’);
break

end

% Creates the folder "figure"
[status ,message ,messageid] = mkdir(folder_figure);
fprintf(’ Created d i r e c t o r y %s \n’,folder_figure);
if status == 0

fprintf(’Something went wrong when c r e a t i n g the f o l d e r F i g u r e ’);
break

end

% Creates the folder "figure/All_forces"
folder_figure_all_forces = sprintf(’%s / A l l _ f o r c e s ’,folder_figure);
[status ,message ,messageid] = mkdir(folder_figure_all_forces);
fprintf(’ Created d i r e c t o r y %s \n’,folder_figure_all_forces);
if status == 0

fprintf(’Something went wrong when c r e a t i n g the f o l d e r F i g u r e /
A l l _ f o r c e s ’);

Section 2 Matlab code 105

break
end

% Creates the folder "figure/All_forces"
folder_figure_all_forces_fig = sprintf(’%s / A l l _ f o r c e s / f i g ’,

folder_figure);
[status ,message ,messageid] = mkdir(folder_figure_all_forces_fig);
fprintf(’ Created d i r e c t o r y %s \n’,folder_figure_all_forces_fig);
if status == 0

fprintf(’Something went wrong when c r e a t i n g the f o l d e r F i g u r e /
A l l _ f o r c e s / f i g ’);

break
end

% Creates the folder "figure/Damping_force"
folder_figure_damping_force = sprintf(’%s / Damping_force ’,folder_figure

);
[status ,message ,messageid] = mkdir(folder_figure_damping_force);
fprintf(’ Created d i r e c t o r y %s \n’,folder_figure_damping_force);
if status == 0

fprintf(’Something went wrong when c r e a t i n g the f o l d e r F i g u r e /
Damping_force ’);

break
end

% Creates the folder "figure/Damping_force/fig"
folder_figure_damping_force_fig = sprintf(’%s / Damping_force / f i g ’,

folder_figure);
[status ,message ,messageid] = mkdir(folder_figure_damping_force_fig);
fprintf(’ Created d i r e c t o r y %s \n’,folder_figure_damping_force_fig);
if status == 0

fprintf(’Something went wrong when c r e a t i n g the f o l d e r F i g u r e /
Damping_force / f i g ’);

break
end

% Creates the folder "figure/Friction_force"
folder_figure_friction_force = sprintf(’%s / F r i c t i o n _ f o r c e ’,

folder_figure);
[status ,message ,messageid] = mkdir(folder_figure_friction_force);
fprintf(’ Created d i r e c t o r y %s \n’,folder_figure_friction_force);
if status == 0

fprintf(’Something went wrong when c r e a t i n g the f o l d e r F i g u r e /
F r i c t i o n _ f o r c e ’);

break
end

% Creates the folder "figure/Friction_force/fig"
folder_figure_friction_force_fig = sprintf(’%s / F r i c t i o n _ f o r c e / f i g ’,

folder_figure);
[status ,message ,messageid] = mkdir(folder_figure_friction_force_fig);

106 C Code Chapter B

fprintf(’ Created d i r e c t o r y %s \n’,folder_figure_friction_force_fig);
if status == 0

fprintf(’Something went wrong when c r e a t i n g the f o l d e r F i g u r e /
F r i c t i o n _ f o r c e / f i g ’);

break
end

% Creates the folder "figure/Fx"
folder_figure_fx = sprintf(’%s /Fx’,folder_figure);
[status ,message ,messageid] = mkdir(folder_figure_fx);
fprintf(’ Created d i r e c t o r y %s \n’,folder_figure_fx);
if status == 0

fprintf(’Something went wrong when c r e a t i n g the f o l d e r F i g u r e /Fx’)
;

break
end

% Creates the folder "figure/Fx/fig"
folder_figure_fx_fig = sprintf(’%s /Fx/ f i g ’,folder_figure);
[status ,message ,messageid] = mkdir(folder_figure_fx_fig);
fprintf(’ Created d i r e c t o r y %s \n’,folder_figure_fx_fig);
if status == 0

fprintf(’Something went wrong when c r e a t i n g the f o l d e r F i g u r e /Fx/
f i g ’);

break
end

% Creates the folder "figure/Lp_L-FT_FN"
folder_figure_Lp_L_FT_FN = sprintf(’%s /Lp_L−FT_FN’,folder_figure);
[status ,message ,messageid] = mkdir(folder_figure_Lp_L_FT_FN);
fprintf(’ Created d i r e c t o r y %s \n’,folder_figure_Lp_L_FT_FN);
if status == 0

fprintf(’Something went wrong when c r e a t i n g the f o l d e r F i g u r e /Fx’)
;

break
end

% Creates the folder "figure/Lp_L-FT_FN/fig"
folder_figure_Lp_L_FT_FN_fig = sprintf(’%s /Lp_L−FT_FN/ f i g ’,

folder_figure);
[status ,message ,messageid] = mkdir(folder_figure_Lp_L_FT_FN_fig);
fprintf(’ Created d i r e c t o r y %s \n’,folder_figure_Lp_L_FT_FN_fig);
if status == 0

fprintf(’Something went wrong when c r e a t i n g the f o l d e r F i g u r e /Fx/
f i g ’);

break
end

% Creates the folder "figure/Position"
folder_figure_position = sprintf(’%s / P o s i t i o n ’,folder_figure);
[status ,message ,messageid] = mkdir(folder_figure_position);

Section 2 Matlab code 107

fprintf(’ Created d i r e c t o r y %s \n’,folder_figure_position);
if status == 0

fprintf(’Something went wrong when c r e a t i n g the f o l d e r F i g u r e /
P o s i t i o n ’);

break
end

% Creates the folder "figure/Position/fig"
folder_figure_position_fig = sprintf(’%s / P o s i t i o n / f i g ’,folder_figure);
[status ,message ,messageid] = mkdir(folder_figure_position_fig);
fprintf(’ Created d i r e c t o r y %s \n’,folder_figure_position_fig);
if status == 0

fprintf(’Something went wrong when c r e a t i n g the f o l d e r F i g u r e /
P o s i t i o n / f i g ’);

break
end

% Creates the folder "figure/Shear_force"
folder_figure_shear_force = sprintf(’%s / Shea r_ fo r ce ’,folder_figure);
[status ,message ,messageid] = mkdir(folder_figure_shear_force);
fprintf(’ Created d i r e c t o r y %s \n’,folder_figure_shear_force);
if status == 0

fprintf(’Something went wrong when c r e a t i n g the f o l d e r F i g u r e /
Shea r_ fo r ce ’);

break
end

% Creates the folder "figure/Shear_force/fig"
folder_figure_shear_force_fig = sprintf(’%s / Shea r_ fo r ce / f i g ’,

folder_figure);
[status ,message ,messageid] = mkdir(folder_figure_shear_force_fig);
fprintf(’ Created d i r e c t o r y %s \n’,folder_figure_shear_force_fig);
if status == 0

fprintf(’Something went wrong when c r e a t i n g the f o l d e r F i g u r e /
Shea r_ fo r ce / f i g ’);

old
end

% Creates the folder "figure/Velocity"
folder_figure_velocity = sprintf(’%s / V e l o c i t y ’,folder_figure);
[status ,message ,messageid] = mkdir(folder_figure_velocity);
fprintf(’ Created d i r e c t o r y %s \n’,folder_figure_velocity);
if status == 0

fprintf(’Something went wrong when c r e a t i n g the f o l d e r F i g u r e /
V e l o c i t y ’);

break
end

% Creates the folder "figure/Velocity/fig"
folder_figure_velocity_fig = sprintf(’%s / V e l o c i t y / f i g ’,folder_figure);
[status ,message ,messageid] = mkdir(folder_figure_velocity_fig);

108 C Code Chapter B

fprintf(’ Created d i r e c t o r y %s \n’,folder_figure_velocity_fig);
if status == 0

fprintf(’Something went wrong when c r e a t i n g the f o l d e r F i g u r e /
V e l o c i t y / f i g ’);

old
end

% Creates the folder "figure/Normal_force"
folder_figure_normal_force = sprintf(’%s / Normal_force ’,folder_figure);
[status ,message ,messageid] = mkdir(folder_figure_normal_force);
fprintf(’ Created d i r e c t o r y %s \n’,folder_figure_normal_force);
if status == 0

fprintf(’Something went wrong when c r e a t i n g the f o l d e r F i g u r e /
Normal_force ’);

break
end

% Creates the folder "figure/Normal_force/fig"
folder_figure_normal_force_fig = sprintf(’%s / Normal_force / f i g ’,

folder_figure);
[status ,message ,messageid] = mkdir(folder_figure_normal_force_fig);
fprintf(’ Created d i r e c t o r y %s \n’,folder_figure_normal_force_fig);
if status == 0

fprintf(’Something went wrong when c r e a t i n g the f o l d e r F i g u r e /
Normal_force / f i g ’);

old
end

switch alternative
case ’ s i d e _ d r i v e n ’

cd (src_driven);
mex side_driven_mex.c
copyfile(’ ∗ .m’,folder_code);
copyfile(’ ∗ . mexa64’,folder_code);
copyfile(’ ∗ . c’,folder_code);
cd (src_analyze)
copyfile(’ ∗ .m’,folder_analyze);
cd (src_driven);

case ’ t op_dr i v en ’
cd (src_driven);
mex top_driven_mex.c
copyfile(’ ∗ .m’,folder_code);
copyfile(’ ∗ . mexa64’,folder_code);
copyfile(’ ∗ . c’,folder_code);
cd (src_analyze)
copyfile(’ ∗ .m’,folder_analyze);
cd (src_driven);

case ’ l e f t _ r i g h t _ d r i v e n ’
cd (src_driven);
mex left_right_driven_mex.c
copyfile(’ ∗ .m’,folder_code);

Section 2 Matlab code 109

copyfile(’ ∗ . mexa64’,folder_code);
copyfile(’ ∗ . c’,folder_code);
cd (src_analyze)
copyfile(’ ∗ .m’,folder_analyze);
cd (src_driven);

case ’ a v l a s t n i n g ’
cd (src_driven);
mex avlastning_mex.c
copyfile(’ ∗ . mat’,folder_code);
copyfile(’ ∗ .m’,folder_code);
copyfile(’ ∗ . mexa64’,folder_code);
copyfile(’ ∗ . c’,folder_code);
cd (src_analyze)
copyfile(’ ∗ .m’,folder_analyze);
cd (src_driven);

case ’ a v l a s t n i n g _ d e s i r e d _ d r i v i n g _ f o r c e ’
cd (src_driven);
mex avlastning_desired_driving_force_mex.c
copyfile(’ ∗ .m’,folder_code);
copyfile(’ ∗ . mexa64’,folder_code);
copyfile(’ ∗ . c’,folder_code);
cd (src_analyze)
copyfile(’ ∗ .m’,folder_analyze);
cd (src_driven);

case ’ a v l a s t n i n g _ t o p _ d r i v e n ’
cd (src_driven);
mex avlastning_top_driven_mex.c
copyfile(’ ∗ .m’,folder_code);
copyfile(’ ∗ . mexa64’,folder_code);
copyfile(’ ∗ . c’,folder_code);
cd (src_analyze)
copyfile(’ ∗ .m’,folder_analyze);
cd (src_driven);

case ’ av l a s t n i ng_top_d r i v en_w i th_po i s s on ’
cd (src_driven);
mex avlastning_top_driven_with_poisson_mex.c
copyfile(’ ∗ .m’,folder_code);
copyfile(’ ∗ . mexa64’,folder_code);
copyfile(’ ∗ . c’,folder_code);
cd (src_analyze)
copyfile(’ ∗ .m’,folder_analyze);
cd (src_driven);

case ’ a v l a s t n i n g _ w i t h _ p o i s s o n ’
cd (src_driven);
mex avlastning_with_poisson_mex.c
copyfile(’ ∗ .m’,folder_code);
copyfile(’ ∗ . mexa64’,folder_code);
copyfile(’ ∗ . c’,folder_code);
cd (src_analyze)
copyfile(’ ∗ .m’,folder_analyze);
cd (src_driven);

110 C Code Chapter B

case ’ av l a s t n i ng_w i t h_age i ng ’
cd (src_driven);
mex avlastning_with_ageing_mex.c
copyfile(’ ∗ .m’,folder_code);
copyfile(’ ∗ . mexa64’,folder_code);
copyfile(’ ∗ . c’,folder_code);
cd (src_analyze)
copyfile(’ ∗ .m’,folder_analyze);
cd (src_driven);

end

% Create the output files
str_position = sprintf(’%s / p o s i t i o n . b in ’,

folder_data);
str_velocity = sprintf(’%s / v e l o c i t y . b in ’,

folder_data);
str_total_force = sprintf(’%s / t o t a l _ f o r c e . b in ’,

folder_data);
str_driving_force = sprintf(’%s / d r i v i n g _ f o r c e . b in ’,

folder_data);
str_friction_force = sprintf(’%s / f r i c t i o n _ f o r c e . b in ’,

folder_data);
str_block_spring_force = sprintf(’%s / b l o c k _ s p r i n g _ f o r c e . b in

’,folder_data);
str_damping_force = sprintf(’%s / damping_force . b in ’,

folder_data);
str_static_friction = sprintf(’%s / s t a t i c _ f r i c t i o n . b in ’,

folder_data);
str_sliding = sprintf(’%s / s l i d i n g . b in ’,

folder_data);
str_length_static_friction_spring = sprintf(’%s /

l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g . b in ’,folder_data);
str_log = sprintf(’%s / l o g . t x t ’,folder_log);
str_initial = sprintf(’%s / i n i t i a l _ c o n d i t i o n s . t x t

’,folder_info);
str_folders = sprintf(’%s / f o l d e r s . t x t ’,

folder_info);
str_files = sprintf(’%s / f i l e s . t x t ’,folder_info

);
str_plot_options = sprintf(’%s / p l o t _ o p t i o n s . t x t ’,

folder_info);
str_time = sprintf(’%s / t ime . b in ’,folder_data)

;
str_normal_force = sprintf(’%s / norma l_fo rce . b in ’,

folder_data);

file_initial = fopen(str_initial ,’w’);
file_folders = fopen(str_folders ,’w’);
file_files = fopen(str_files ,’w’);

Section 2 Matlab code 111

file_plot_options = fopen(str_plot_options ,’w’);
file_position = fopen(str_position ,’w’);
file_velocity = fopen(str_velocity ,’w’);
file_total_force = fopen(str_total_force ,’w’);
file_driving_force = fopen(str_driving_force ,’w’);
file_friction_force = fopen(str_friction_force ,’w’);
file_spring_force = fopen(str_block_spring_force ,’w’)

;
file_damping_force = fopen(str_damping_force ,’w’);
file_static_friction = fopen(str_static_friction ,’w’);
file_sliding = fopen(str_sliding ,’w’);
file_length_static_friction_spring = fopen(

str_length_static_friction_spring ,’w’);
file_log = fopen(str_log ,’w’);
file_time = fopen(str_time ,’w’);
file_normal_force = fopen(str_normal_force ,’w’);

%--

% Output initial conditions to file
%--

fprintf(file_initial ,’ run_time = %.5 f \n’, run_time);
fprintf(file_initial ,’dt = %.10 f \n’, dt);
fprintf(file_initial ,’number_of_blocks = %d\n’, number_of_blocks);
fprintf(file_initial ,’Lx = %d\n’, Lx);
fprintf(file_initial ,’Ly = %d\n’, Ly);
fprintf(file_initial ,’Lz = %d\n’, Lz);
fprintf(file_initial ,’ tota l_system_mass = %.5 f \n’, total_system_mass)

;
fprintf(file_initial ,’youngs_modulus = %.5 f \n’, youngs_modulus);
fprintf(file_initial ,’ r e l a t i v e _ v i s c o u s _ d a m p i n g = %.10 f \n’,

relative_viscous_damping);
fprintf(file_initial ,’ d r i v i n g _ s p r i n g _ s t i f f n e s s = %.5 f \n’,

driving_spring_stiffness);
fprintf(file_initial ,’ t o t a l_no rma l_ f o r c e = %.5 f \n’, total_normal_force

);
fprintf(file_initial ,’ d r i v i n g _ v e l o c i t y = %.5 f \n’, driving_velocity);
fprintf(file_initial ,’ s t a t i c _ f r i c t i o n _ c o e f f i c i e n t = %.5 f \n’,

static_friction_coefficient);
fprintf(file_initial ,’ d e l t a _ s t a t i c _ f r i c t i o n _ c o e f f i c i e n t = %.5 f \n’,

delta_static_friction_coefficient);
fprintf(file_initial ,’ d y n a m i c _ f r i c t i o n _ c o e f f i c i e n t = %.5 f \n’,

dynamic_friction_coefficient);
fprintf(file_initial ,’ d e l t a _ d y n a m i c _ f r i c t i o n _ c o e f f i c i e n t = %.5 f \n’,

delta_dynamic_friction_coefficient);
fprintf(file_initial ,’ t h e t a = %.5 f \n’, theta);
fprintf(file_initial ,’ s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s _ s c a l i n g = %.5 f \

n’, static_friction_spring_stiffness_scaling);
fprintf(file_initial ,’ beta = %.5 f \n’, beta);

112 C Code Chapter B

fprintf(file_initial ,’gamma = %.5 f \n’, gamma);
fprintf(file_initial ,’ d r i v i n g _ f i r s t _ n o d e = %.5 f \n’, driving_first_node

);
fprintf(file_initial ,’ d r i v i n g _ l a s t _ n o d e = %.5 f ’, driving_last_node);
fprintf(file_initial ,’ m u l t i p l i e r = %.5 f ’, multiplier);

fprintf(file_plot_options ,’ pr in t_node = %d\n’, print_node);
fprintf(file_plot_options ,’ p r i n t _ f r e q = %d\n’, print_freq);
fprintf(file_plot_options ,’ p r i n t _ c o u n t e r _ l i m i t = %d\n’,

print_counter_limit);
fprintf(file_plot_options ,’ p r i n t _ c o u n t e r _ 2 _ l i m i t = %d\n’,

print_counter_2_limit);

fprintf(file_folders ,’%s \n’, folder_root);
fprintf(file_folders ,’%s \n’, src_driven);
fprintf(file_folders ,’%s \n’, src_analyze);
fprintf(file_folders ,’%s \n’, folder_driven);
fprintf(file_folders ,’%s \n’, folder_project);
fprintf(file_folders ,’%s \n’, folder_code);
fprintf(file_folders ,’%s \n’, folder_data);
fprintf(file_folders ,’%s \n’, folder_log);
fprintf(file_folders ,’%s \n’, folder_analyze);
fprintf(file_folders ,’%s \n’, folder_figure);
fprintf(file_folders ,’%s \n’, folder_info);
fprintf(file_folders ,’%s \n’, project_name);
fprintf(file_folders ,’%s \n’, alternative_short);

fprintf(file_files ,’%s \n’, str_position);
fprintf(file_files ,’%s \n’, str_velocity);
fprintf(file_files ,’%s \n’, str_total_force);
fprintf(file_files ,’%s \n’, str_driving_force);
fprintf(file_files ,’%s \n’, str_friction_force);
fprintf(file_files ,’%s \n’, str_block_spring_force);
fprintf(file_files ,’%s \n’, str_damping_force);
fprintf(file_files ,’%s \n’, str_static_friction);
fprintf(file_files ,’%s \n’, str_sliding);
fprintf(file_files ,’%s \n’, str_length_static_friction_spring);
fprintf(file_files ,’%s \n’, str_log);
fprintf(file_files ,’%s \n’, str_initial);
fprintf(file_files ,’%s \n’, str_folders);
fprintf(file_files ,’%s \n’, str_files);
fprintf(file_files ,’%s \n’, str_plot_options);
fprintf(file_files ,’%s \n’, str_time);
fprintf(file_files ,’%s \n’, str_normal_force);
fclose all;

%--

% Run scripts
%--

Section 2 Matlab code 113

switch alternative
case ’ s i d e _ d r i v e n ’

cd (folder_code)
run side_driven

case ’ t op_dr i v en ’
cd (folder_code)
run top_driven

case ’ l e f t _ r i g h t _ d r i v e n ’
cd (folder_code)
run left_right_driven

case ’ a v l a s t n i n g ’
cd (folder_code)
run avlastning

case ’ a v l a s t n i n g _ d e s i r e d _ d r i v i n g _ f o r c e ’
cd (folder_code)
run avlastning_desired_driving_force

case ’ a v l a s t n i n g _ t o p _ d r i v e n ’
cd (folder_code)
run avlastning_top_driven

case ’ av l a s t n i ng_top_d r i v en_w i th_po i s s on ’
cd (folder_code)
run avlastning_top_driven_with_poisson

case ’ a v l a s t n i n g _ w i t h _ p o i s s o n ’
cd (folder_code)
run avlastning_with_poisson

case ’ av l a s t n i ng_w i t h_age i ng ’
cd (folder_code)
run avlastning_with_ageing

end

114 C Code Chapter B

B.2.2 The time-loop code
The time-loop code is the second stage of the process of doing a simulation. There are one
Matlab for each simulation we would like to run. We’ll only show one of the because they
are quite similar

c l c
cd . .
cd i n f o
i m p o r t _ i n i t i a l = impo r tda ta (’initial_conditions.txt’ , ’ ’ , 0) ;
i m p o r t _ f o l d e r s = impo r tda ta (’folders.txt’) ;
i m p o r t _ f i l e s = impo r tda ta (’files.txt’) ;
impo r t_p lo t = impo r tda ta (’plot_options.txt’) ;
cd . .
cd code
%−−

% INITIAL CONDITIONS
%−−

run_time = i m p o r t _ i n i t i a l . data (1) ;
dt = i m p o r t _ i n i t i a l . data (2) ;
number_of_blocks = i m p o r t _ i n i t i a l . data (3) ;
Lx = i m p o r t _ i n i t i a l . data (4) ;
Ly = i m p o r t _ i n i t i a l . data (5) ;
Lz = i m p o r t _ i n i t i a l . data (6) ;
tota l_system_mass = i m p o r t _ i n i t i a l . data (7) ;
youngs_modulus = i m p o r t _ i n i t i a l . data (8) ;
r e l a t i v e _ v i s c o u s _ d a m p i n g _ f a c t o r = i m p o r t _ i n i t i a l . data (9) ;
d r i v i n g _ s p r i n g _ s t i f f n e s s = i m p o r t _ i n i t i a l . data (10) ;
t o t a l_no rma l_ f o r c e = i m p o r t _ i n i t i a l . data (11) ;
d r i v i n g _ v e l o c i t y = i m p o r t _ i n i t i a l . data (12) ;
s t a t i c _ f r i c t i o n _ c o e f f i c i e n t = i m p o r t _ i n i t i a l . data (13) ;
d e l t a _ s t a t i c _ f r i c t i o n _ c o e f f i c i e n t = i m p o r t _ i n i t i a l . data (14) ;
d y n a m i c _ f r i c t i o n _ c o e f f i c i e n t = i m p o r t _ i n i t i a l . data (15) ;
d e l t a _ d y n a m i c _ f r i c t i o n _ c o e f f i c i e n t = i m p o r t _ i n i t i a l . data (16) ;
t h e t a = i m p o r t _ i n i t i a l . data (17) ;
s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s _ s c a l i n g = i m p o r t _ i n i t i a l . data (18) ;
beta = i m p o r t _ i n i t i a l . data (19) ;

pr in t_node = impo r t_p lo t . data (1) ;
p r i n t _ f r e q = impo r t_p lo t . data (2) ;
p r i n t _ c o u n t e r _ l i m i t = impo r t_p lo t . data (3) ;
p r i n t _ c o u n t e r _ 2 _ l i m i t = impo r t_p lo t . data (4) ;

f o l d e r _ r o o t = char (i m p o r t _ f o l d e r s (1)) ;
s r c_top_dr i v en = char (i m p o r t _ f o l d e r s (2)) ;
s r c _ a n a l y z e = char (i m p o r t _ f o l d e r s (3)) ;
f o l d e r _ t y p e = char (i m p o r t _ f o l d e r s (4)) ;
f o l d e r _ p r o j e c t = char (i m p o r t _ f o l d e r s (5)) ;
f o l d e r_code = char (i m p o r t _ f o l d e r s (6)) ;
f o l d e r _ d a t a = char (i m p o r t _ f o l d e r s (7)) ;

Section 2 Matlab code 115

f o l d e r _ l o g = char (i m p o r t _ f o l d e r s (8)) ;
f o l d e r _ a n a l y z e = char (i m p o r t _ f o l d e r s (9)) ;
f o l d e r _ f i g u r e = char (i m p o r t _ f o l d e r s (10)) ;
f o l d e r _ i n f o = char (i m p o r t _ f o l d e r s (11)) ;

s t r _ p o s i t i o n = char (i m p o r t _ f i l e s (1)) ;
s t r _ v e l o c i t y = char (i m p o r t _ f i l e s (2)) ;
s t r _ t o t a l _ f o r c e = char (i m p o r t _ f i l e s (3)) ;
s t r _ d r i v i n g _ f o r c e = char (i m p o r t _ f i l e s (4)) ;
s t r _ f r i c t i o n _ f o r c e = char (i m p o r t _ f i l e s (5)) ;
s t r _ b l o c k _ s p r i n g _ f o r c e = char (i m p o r t _ f i l e s (6)) ;
s t r_damping_force = char (i m p o r t _ f i l e s (7)) ;
s t r _ s t a t i c _ f r i c t i o n = char (i m p o r t _ f i l e s (8)) ;
s t r _ s l i d i n g = char (i m p o r t _ f i l e s (9)) ;
s t r _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g = char (i m p o r t _ f i l e s (10)) ;
s t r _ l o g = char (i m p o r t _ f i l e s (11)) ;
s t r _ i n i t i a l = char (i m p o r t _ f i l e s (12)) ;
s t r _ f o l d e r s = char (i m p o r t _ f i l e s (13)) ;
s t r _ f i l e s = char (i m p o r t _ f i l e s (14)) ;
s t r _ p l o t _ o p t i o n s = char (i m p o r t _ f i l e s (15)) ;
s t r_ t ime = char (i m p o r t _ f i l e s (16)) ;

f i l e _ p o s i t i o n = fopen (s t r _ p o s i t i o n , ’w’) ;
f i l e _ v e l o c i t y = fopen (s t r _ v e l o c i t y , ’w’) ;
f i l e _ t o t a l _ f o r c e = fopen (s t r _ t o t a l _ f o r c e , ’w’) ;
f i l e _ d r i v i n g _ f o r c e = fopen (s t r _ d r i v i n g _ f o r c e , ’w’) ;
f i l e _ f r i c t i o n _ f o r c e = fopen (s t r _ f r i c t i o n _ f o r c e , ’w’) ;
f i l e _ b l o c k _ s p r i n g _ f o r c e = fopen (s t r _ b l o c k _ s p r i n g _ f o r c e , ’w’)

;
f i l e_damp ing_ fo r c e = fopen (s t r_damping_force , ’w’) ;
f i l e _ s t a t i c _ f r i c t i o n = fopen (s t r _ s t a t i c _ f r i c t i o n , ’w’) ;
f i l e _ s l i d i n g = fopen (s t r _ s l i d i n g , ’w’) ;
f i l e _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g = fopen (

s t r _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g , ’w’) ;
f i l e _ t i m e = fopen (s t r_t ime , ’w’) ;
d i a r y (s t r _ l o g) ;

%−−

% BLOCK GEOMETRY
%−−

area_of_b lock = Ly∗Lz ;
l a s t _ b l o c k = number_of_blocks ;
f i r s t _ b l o c k = 1 ;

%−−

% FORCES
%−−

116 C Code Chapter B

d r i v i n g _ f o r c e = z e r o s (1 , number_of_blocks) ;
s h e a r _ f o r c e = z e r o s (1 , number_of_blocks) ;
b l o c k _ s p r i n g _ f o r c e = z e r o s (1 , number_of_blocks) ;
damping_force = z e r o s (1 , number_of_blocks) ;

%−−

% SLIDER SPRING
%−−

b l o c k _ s p r i n g _ s t i f f n e s s = (youngs_modulus ∗(number_of_blocks − 1) ∗
area_of_b lock) /Lx ; % [kN/mm]

norma l_fo rce_per_b lock = z e r o s (1 , number_of_blocks) ;
for i = 1 : number_of_blocks

norma l_fo rce_per_b lock (i) = (t o t a l_no rma l_ f o r c e / number_of_blocks)
∗(1 − ((2∗ i − number_of_blocks − 1) /(number_of_blocks − 1)) ∗
t h e t a) ;

end

%−−

% SI CONVERSION
%−−

b l o c k _ s p r i n g _ s t i f f n e s s = b l o c k _ s p r i n g _ s t i f f n e s s ∗1000 ;
% [kN/

mm]−−>[N/mm]
d r i v i n g _ s p r i n g _ s t i f f n e s s = d r i v i n g _ s p r i n g _ s t i f f n e s s ∗1000 ;

% [MN/m]
−−>[N/mm]

mass_per_block = tota l_system_mass / number_of_blocks ;
% [

kg]
r e l a t i v e _ v i s c o u s _ d a m p i n g = s q r t (1000) ∗ r e l a t i v e _ v i s c o u s _ d a m p i n g _ f a c t o r ∗

s q r t (b l o c k _ s p r i n g _ s t i f f n e s s ∗mass_per_block) ; % [kg/ s]

%−−

% FRICTION FORCE
%−−

s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s = b l o c k _ s p r i n g _ s t i f f n e s s ∗
s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s _ s c a l i n g ;

s t a t i c _ f r i c t i o n _ f o r c e = (s t a t i c _ f r i c t i o n _ c o e f f i c i e n t +
d e l t a _ s t a t i c _ f r i c t i o n _ c o e f f i c i e n t) ∗ norma l_fo rce_per_b lock ;

d y n a m i c _ f r i c t i o n _ f o r c e = (d y n a m i c _ f r i c t i o n _ c o e f f i c i e n t +
d e l t a _ d y n a m i c _ f r i c t i o n _ c o e f f i c i e n t) ∗ norma l_fo rce_per_b lock ;

i s _ s l i d i n g = z e r o s (1 , number_of_blocks) ;
o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g = z e r o s (1 , number_of_blocks) ;
n e w _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g = z e r o s (1 , number_of_blocks) ;

Section 2 Matlab code 117

f r i c t i o n _ f o r c e = z e r o s (1 , number_of_blocks) ;

%−−

% TIME SETUP
%−−

dt_div ided_by_mass = double (dt / mass_per_block) ;
t ime_s teps = double (run_time / dt) ;
t ime_s t ep_s t a r t = 1 ;

%−−

% POSITION/VELOCITY/ACCELERATION
%−−

i n i t i a l _ b l o c k _ p o s i t i o n s = l i n s p a c e (0 , Lx , number_of_blocks) ;
i n i t i a l _ b l o c k _ d i s t a n c e s = i n i t i a l _ b l o c k _ p o s i t i o n s (2) −

i n i t i a l _ b l o c k _ p o s i t i o n s (1) ;
i n i t i a l _ v e l o c i t y = z e r o s (1 , number_of_blocks) ;
i n i t i a l _ a c c e l e r a t i o n = z e r o s (1 , number_of_blocks) ;
o l d _ p o s i t i o n = i n i t i a l _ b l o c k _ p o s i t i o n s ;
o l d _ v e l o c i t y = i n i t i a l _ v e l o c i t y ;
o l d _ a c c e l e r a t i o n = i n i t i a l _ a c c e l e r a t i o n ;
new_pos i t i on = z e r o s (1 , number_of_blocks) ;
new_ve l o c i t y = z e r o s (1 , number_of_blocks) ;
new_acc e l e r a t i o n = z e r o s (1 , number_of_blocks) ;
s l i d i n g = z e r o s (1 , number_of_blocks) ;
save_data = true ;

STATIC_FRICTION = ones (1 , number_of_blocks) ;
p r i n t _ c o u n t e r = 0 ;
p r i n t_counte r_2 = 0 ;
cpu_time = cput ime ;

%−−

% INITIAL SHEAR FORCE PROFILE
%−−

i f fa l se
% Set the i n i t i a l s h e a r f o r c e p r o f i l e
i n i t i a l _ s h e a r _ f o r c e = z e r o s (number_of_blocks , 1) ;
for j = 1 : number_of_blocks

i n i t i a l _ s h e a r _ f o r c e (j) = beta ∗ norma l_fo rce_per_b lock (j) ∗ ((2∗ (
o l d _ p o s i t i o n (j)−Lx /2)) /Lx) ;

end

% Find the new p o s i t i o n o f the b l o c k s
new_change_in_pos i t ion = z e r o s (1 , number_of_blocks) ;
new_change_in_pos i t ion (1) = 0 ;

118 C Code Chapter B

new_change_in_pos i t ion (2) = new_change_in_pos i t ion (1) +
i n i t i a l _ s h e a r _ f o r c e (1) / b l o c k _ s p r i n g _ s t i f f n e s s ;

for i = 3 : number_of_blocks
new_change_in_pos i t ion (i) = 2∗ new_change_in_pos i t ion (i −1) −

new_change_in_pos i t ion (i −2) + i n i t i a l _ s h e a r _ f o r c e (i −1)/
b l o c k _ s p r i n g _ s t i f f n e s s ;

end
new_pos i t i on = o l d _ p o s i t i o n + new_change_in_pos i t ion ;

%Check i f the b l o ck s p r i n g f o r c e i s c o r e c t
b l o c k _ s p r i n g _ f o r c e (f i r s t _ b l o c k) = b l o c k _ s p r i n g _ s t i f f n e s s ∗ ((

new_pos i t i on (f i r s t _ b l o c k + 1) − new_pos i t i on (f i r s t _ b l o c k)) −
i n i t i a l _ b l o c k _ d i s t a n c e s) ;

b l o c k _ s p r i n g _ f o r c e (l a s t _ b l o c k) = b l o c k _ s p r i n g _ s t i f f n e s s ∗(
i n i t i a l _ b l o c k _ d i s t a n c e s − (new_pos i t i on (l a s t _ b l o c k) −
new_pos i t i on (l a s t_b l o c k −1))) ;

for i = 2 : number_of_blocks−1
b l o c k _ s p r i n g _ f o r c e (i) = b l o c k _ s p r i n g _ s t i f f n e s s ∗(new_pos i t i on (i

+1) − 2∗ new_pos i t i on (i) + new_pos i t i on (i −1)) ;
end

% Find the new l e n g t h o f the stat ic f r i c t i o n s p r i n g
for i = f i r s t _ b l o c k : 1 : l a s t _ b l o c k

n e w _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g (i) = b l o c k _ s p r i n g _ f o r c e (i) /
s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s ;

f r i c t i o n _ f o r c e (i) = −
s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s ∗
n e w _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g (i) ;

end
o l d _ p o s i t i o n = new_pos i t i on ;
o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g =

n e w _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g ;
end

t = 0 ;

f w r i t e (f i l e _ p o s i t i o n , new_pos i t ion , ’float64’) ;
f w r i t e (f i l e _ v e l o c i t y , new_ve loc i t y , ’float64’) ;
f w r i t e (f i l e _ t o t a l _ f o r c e , shea r_ fo r c e , ’float64’) ;
f w r i t e (f i l e _ d r i v i n g _ f o r c e , d r i v i n g _ f o r c e , ’float64’) ;
f w r i t e (f i l e _ f r i c t i o n _ f o r c e , f r i c t i o n _ f o r c e , ’float64’) ;
f w r i t e (f i l e _ b l o c k _ s p r i n g _ f o r c e , b l o ck_sp r i ng_ fo r c e , ’float64’) ;
f w r i t e (f i l e_damp ing_ fo r c e , damping_force , ’float64’) ;
f w r i t e (f i l e _ s t a t i c _ f r i c t i o n , STATIC_FRICTION , ’float64’) ;
f w r i t e (f i l e _ s l i d i n g , s l i d i n g , ’float64’) ;
f w r i t e (f i l e _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g ,

n e w _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g , ’float64’) ;
f w r i t e (f i l e _ t i m e , t , ’float64’) ;

t = 0 ;
t_ in = t ;

Section 2 Matlab code 119

t_in_end = t + p r i n t _ f r e q ;
sum_s l i d i ng_ in = 0 ;
e r r o r (1) = 0 ;
t i c
while (t <= t ime_s teps && e r r o r (1) == 0)

[new_pos i t ion , new_ve loc i t y , shea r_ fo r c e , f r i c t i o n _ f o r c e ,
b l o ck_sp r i ng_ fo r c e , damping_force , . . .

STATIC_FRICTION , s l i d i n g , n e w _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g ,
d r i v i n g _ f o r c e , e r r o r (1) , t_out , sum_s l id ing_out] . . .

= s ide_dr iven_mex (. . .
o l d _ p o s i t i o n , o l d _ v e l o c i t y ,

o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g
, . . .

s t a t i c _ f r i c t i o n _ f o r c e ,
d y n a m i c _ f r i c t i o n _ f o r c e ,
STATIC_FRICTION , . . .

r e l a t i v e_v i s c ou s_damp ing ,
b l o c k _ s p r i n g _ s t i f f n e s s ,
s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s
, . . .

dt_divided_by_mass ,
i n i t i a l _ b l o c k _ d i s t a n c e s ,
d r i v i n g _ s p r i n g _ s t i f f n e s s ,

d r i v i n g _ v e l o c i t y ,
number_of_blocks , . . .

t_in_end , t_in , dt ,
sum_s l i d i ng_ in) ;

t = t_out ;
t_ in = t_out ;
sum_s l i d i ng_ in = sum_s l id ing_out ;
%−−

% Write the data b i n a r y to f i l e
%−−

f w r i t e (f i l e _ p o s i t i o n , new_pos i t ion , ’float64’) ;
f w r i t e (f i l e _ v e l o c i t y , new_ve loc i t y , ’float64’) ;
f w r i t e (f i l e _ t o t a l _ f o r c e , shea r_ fo r c e , ’float64’) ;
f w r i t e (f i l e _ d r i v i n g _ f o r c e , d r i v i n g _ f o r c e , ’float64’) ;
f w r i t e (f i l e _ f r i c t i o n _ f o r c e , f r i c t i o n _ f o r c e , ’float64’) ;
f w r i t e (f i l e _ b l o c k _ s p r i n g _ f o r c e , b l o ck_sp r i ng_ fo r c e , ’float64’) ;
f w r i t e (f i l e_damp ing_ fo r c e , damping_force , ’float64’) ;
f w r i t e (f i l e _ s t a t i c _ f r i c t i o n , STATIC_FRICTION , ’float64’) ;
f w r i t e (f i l e _ s l i d i n g , s l i d i n g , ’float64’) ;
f w r i t e (f i l e _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g ,

n e w _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g , ’float64’) ;
f w r i t e (f i l e _ t i m e , t , ’float64’) ;

t ime_used = cputime−cpu_time ;
to ta l_ run_t ime = (t ime_used / t) ∗ t ime_s teps ;
h = f l o o r ((to ta l_ run_t ime − t ime_used) /(60∗60)) ;

120 C Code Chapter B

min = f l o o r (((to ta l_ run_t ime − t ime_used) /(60∗60) − h) ∗60) ;
s e c = f l o o r (((((to ta l_ run_t ime − t ime_used) /(60∗60) − h) ∗60) − min

) ∗60) ;

i f (t == t_in_end)
t_in_end = t_in_end + p r i n t _ f r e q ;
p r i n t _ c o u n t e r = p r i n t _ c o u n t e r + 1 ;

else
p r i n t_counte r_2 = p r i n t_counte r_2 + 1 ;

end
i f ((p r i n t _ c o u n t e r == p r i n t _ c o u n t e r _ l i m i t | | p r i n t_counte r_2 ==

p r i n t _ c o u n t e r _ 2 _ l i m i t))
i f (p r i n t_counte r_2 == p r i n t _ c o u n t e r _ 2 _ l i m i t)

p r i n t_counte r_2 = 0 ;
e l s e i f (p r i n t _ c o u n t e r == p r i n t _ c o u n t e r _ l i m i t)

p r i n t _ c o u n t e r = 0 ;
end
d i s t a n c e _ r i g h t _ b l o c k = new_pos i t i on (pr in t_node +1) −

new_pos i t i on (pr in t_node) ;
d i s t a n c e _ l e f t _ b l o c k = new_pos i t i on (pr in t_node) − new_pos i t i on

(pr int_node −1) ;
t o t a l _ b l o c k _ l e n g t h = new_pos i t i on (l a s t _ b l o c k) − new_pos i t i on

(f i r s t _ b l o c k) ;
t o t a l _ d r i v i n g _ f o r c e = sum (d r i v i n g _ f o r c e) ;
c l c

f p r i n t f (’Run time: %d [s]\n’ ,
run_time)

f p r i n t f (’Time step: %d\n’ , t)
f p r i n t f (’Real time: %.10f [s]\n’ ,

t ∗ dt)
f p r i n t f (’Sum sliding: %d\n’ ,

sum_s l i d i ng_ in)
f p r i n t f (’Block spring stiffness: %.3f [N/mm]\n

’ , b l o c k _ s p r i n g _ s t i f f n e s s)
f p r i n t f (’Static friction spring stiffness: %.3f [N/mm]\n

’ , s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s)
f p r i n t f (’Driving spring stiffness: %.3f [N/mm]\n

’ , d r i v i n g _ s p r i n g _ s t i f f n e s s)
f p r i n t f (’Relative viscous damping: %.3f [kg/s]\n

’ , r e l a t i v e _ v i s c o u s _ d a m p i n g)
f p r i n t f (’Fx(t)/P: %.7f\n’ ,

t o t a l _ d r i v i n g _ f o r c e /sum (norma l_fo rce_per_b lock))
f p r i n t f (’Total driving force: %.3f [N]\n’ ,

t o t a l _ d r i v i n g _ f o r c e)
f p r i n t f (’Normal force (P): %.7f [N]\n’ ,

sum (norma l_fo rce_per_b lock))
f p r i n t f (’

--\
n’)

f p r i n t f (’Driving force on node (%d): %.3f [N]\n’ ,

Section 2 Matlab code 121

f i r s t _ b l o c k , d r i v i n g _ f o r c e (f i r s t _ b l o c k))
f p r i n t f (’Damping force on node (%d): %.10f [N]\n’ ,

f i r s t _ b l o c k , damping_force (f i r s t _ b l o c k))
f p r i n t f (’Spring force on node (%d): %.7f [N]\n’ ,

f i r s t _ b l o c k , b l o c k _ s p r i n g _ f o r c e (f i r s t _ b l o c k))
f p r i n t f (’Total foce on node (%d): %.7f [N]\n’ ,

f i r s t _ b l o c k , s h e a r _ f o r c e (f i r s t _ b l o c k))
f p r i n t f (’Friction force on node (%d): %.7f [N]\n’ ,

f i r s t _ b l o c k , f r i c t i o n _ f o r c e (f i r s t _ b l o c k))
f p r i n t f (’New velocity(%d): %.7f [mm/s]\n

’ , f i r s t _ b l o c k , new_ve l o c i t y (f i r s t _ b l o c k))
f p r i n t f (’New position(%d): %.7f [mm]\n’ ,

f i r s t _ b l o c k , new_pos i t i on (f i r s t _ b l o c k))
f p r i n t f (’Initial position(%d): %.7f [mm]\n’ ,

f i r s t _ b l o c k , i n i t i a l _ b l o c k _ p o s i t i o n s (f i r s t _ b l o c k))
f p r i n t f (’Length of friction spring (%d): %.7f [mm]\n’ ,

f i r s t _ b l o c k , n e w _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g (f i r s t _ b l o c k))
f p r i n t f (’Change in block position (%d): %.7f [mm]\n’ ,

f i r s t _ b l o c k , new_pos i t i on (f i r s t _ b l o c k) −
i n i t i a l _ b l o c k _ p o s i t i o n s (f i r s t _ b l o c k))

f p r i n t f (’
--\
n’)

f p r i n t f (’Damping force on node (%d): %.10f [N]\n’ ,
pr int_node , damping_force (pr in t_node))

f p r i n t f (’Spring force on node (%d): %.7f [N]\n’ ,
pr int_node , b l o c k _ s p r i n g _ f o r c e (pr in t_node))

f p r i n t f (’Total foce on node (%d): %.7f [N]\n’ ,
pr int_node , s h e a r _ f o r c e (pr in t_node))

f p r i n t f (’Friction force on node (%d): %.7f [N]\n’ ,
pr int_node , f r i c t i o n _ f o r c e (pr in t_node))

f p r i n t f (’New velocity (%d): %.7f [mm/s]\n
’ , pr int_node , new_ve l o c i t y (pr in t_node))

f p r i n t f (’New position (%d): %.7f [mm]\n’ ,
pr int_node , new_pos i t i on (pr in t_node))

f p r i n t f (’Initial position (%d): %.7f [mm]\n’ ,
pr int_node , i n i t i a l _ b l o c k _ p o s i t i o n s (pr in t_node))

f p r i n t f (’Length of friction spring (%d): %.7f [mm]\n’ ,
pr int_node , n e w _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g (pr in t_node))

f p r i n t f (’Change in block position (%d): %.7f [mm]\n’ ,
pr int_node , new_pos i t i on (pr in t_node) −
i n i t i a l _ b l o c k _ p o s i t i o n s (pr in t_node))

f p r i n t f (’
--\
n’)

f p r i n t f (’Driving force on node (%d): %.3f [N]\n’ ,
l a s t_b l o c k , d r i v i n g _ f o r c e (l a s t _ b l o c k))

f p r i n t f (’Damping force on node (%d): %.10f [N]\n’ ,
l a s t_b l o c k , damping_force (l a s t _ b l o c k))

f p r i n t f (’Spring force on node (%d): %.7f [N]\n’ ,
l a s t_b l o c k , b l o c k _ s p r i n g _ f o r c e (l a s t _ b l o c k))

122 C Code Chapter B

f p r i n t f (’Total foce on node (%d): %.7f [N]\n’ ,
l a s t_b l o c k , s h e a r _ f o r c e (l a s t _ b l o c k))

f p r i n t f (’Friction force on node (%d): %.7f [N]\n’ ,
l a s t_b l o c k , f r i c t i o n _ f o r c e (l a s t _ b l o c k))

f p r i n t f (’New velocity (%d): %.7f [mm/s]\n
’ , l a s t_b l o c k , new_ve l o c i t y (l a s t _ b l o c k))

f p r i n t f (’New position (%d): %.7f [mm]\n’ ,
l a s t_b l o c k , new_pos i t i on (l a s t _ b l o c k))

f p r i n t f (’Initial position (%d): %.7f [mm]\n’ ,
l a s t_b l o c k , i n i t i a l _ b l o c k _ p o s i t i o n s (l a s t _ b l o c k))

f p r i n t f (’Change in block position (%d): %.7f [mm]\n’ ,
l a s t_b l o c k , new_pos i t i on (l a s t _ b l o c k) −
i n i t i a l _ b l o c k _ p o s i t i o n s (l a s t _ b l o c k))

f p r i n t f (’
--\
n’)

f p r i n t f (’Distance to left node: %.7f [mm]\n’ ,
d i s t a n c e _ l e f t _ b l o c k)

f p r i n t f (’Distance to right node: %.7f [mm]\n’ ,
d i s t a n c e _ r i g h t _ b l o c k)

f p r i n t f (’Initial distance between nodes: %.7f [mm]\n’ ,
i n i t i a l _ b l o c k _ d i s t a n c e s)

f p r i n t f (’Total legnth of the block: %.7f [mm]\n’ ,
t o t a l _ b l o c k _ l e n g t h)

f p r i n t f (’Change in block length: %.7f [mm]\n’ ,
t o t a l _ b l o c k _ l e n g t h − i n i t i a l _ b l o c k _ p o s i t i o n s (l a s t _ b l o c k))

f p r i n t f (’
--\
n’)

f p r i n t f (’Time used on %g out of %g iterations : %d h %d m %d
s\n’ , t , t ime_steps , h , min , s e c) ;

f p r i n t f (’
--\
n’)

end
%−−

% UPDATE OLD TO NEW
%−−

o l d _ p o s i t i o n = new_pos i t i on ;
o l d _ v e l o c i t y = new_ve l o c i t y ;
o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g =

n e w _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g ;
end
toc
f c l o s e a l l ;

Section 3 The C code for the side driven model 123

B.3 The C code for the side driven model

#include <math . h>
#include "mex.h"

/∗ Input Arguments ∗/
#define IN_POSITION prhs [0]
#define IN_VELOCITY prhs [1]
#define IN_LENGTH_STATIC_FRICTION_SPRING prhs [2]
#define IN_STATIC_FRICTION_FORCE prhs [3]
#define IN_DYNAMIC_FRICTION_FORCE prhs [4]
#define IN_STATIC_FRICTION prhs [5]

#define IN_RELATIVE_VISCOUS_DAMPING prhs [6]
#define IN_BLOCK_SPRING_STIFFNESS prhs [7]
#define IN_STATIC_FRICTION_SPRING_STIFFNESS prhs [8]
#define IN_DT_DIVIDED_BY_MASS prhs [9]
#define IN_INITIAL_BLOCK_DISTANCES prhs [1 0]
#define IN_DRIVING_SPRING_STIFFNESS prhs [1 1]
#define IN_DRIVING_VELOCITY prhs [1 2]
#define IN_NUMBER_OF_BLOCKS prhs [1 3]
#define IN_T_END prhs [1 4]
#define IN_T prhs [1 5]
#define IN_DT prhs [1 6]
#define IN_SUM_SLIDING prhs [1 7]

/∗ Output Arguments ∗/
#define OUT_POSITION plhs [0]
#define OUT_VELOCITY plhs [1]
#define OUT_SHEAR_FORCE plhs [2]
#define OUT_FRICTION_FORCE plhs [3]
#define OUT_BLOCK_SPRING_FORCE plhs [4]
#define OUT_DAMPING_FORCE plhs [5]
#define OUT_STATIC_FRICTION plhs [6]
#define OUT_SLIDING plhs [7]
#define OUT_LENGTH_STATIC_FRICTION_SPRING plhs [8]
#define OUT_DRIVING_FORCE plhs [9]
#define OUT_ERROR plhs [1 0]
#define OUT_T plhs [1 1]
#define OUT_SUM_SLIDING plhs [1 2]

void mexFunct ion (int n lhs , mxArray ∗ p l h s [] , int nrhs , const mxArray∗
prhs []) {
/∗ Input ∗/
double ∗ i n _ v e l o c i t y , ∗ i n _ p o s i t i o n , ∗

i n _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g ;
double ∗ i n _ s t a t i c _ f r i c t i o n _ f o r c e , ∗ i n _ d y n a m i c _ f r i c t i o n _ f o r c e , ∗

i n _ s t a t i c _ f r i c t i o n ;
double i n _ r e l a t i v e_ v i s c o u s _d a m p i n g ;
double i n _ b l o c k _ s p r i n g _ s t i f f n e s s ,

i n _ s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s ;

124 C Code Chapter B

double dt_divided_by_mass , i n i t i a l _ b l o c k _ d i s t a n c e s ;
double d r i v i n g _ s p r i n g _ s t i f f n e s s , d r i v i n g _ v e l o c i t y ,

number_of_blocks ;
double dt ;
double t , t_end ;
double i n_sum_s l i d i ng ;

/∗ Output ∗/
double ∗ ou t_po s i t i on , ∗ o u t _ v e l o c i t y ;
double ∗ out_shea r_fo rce , ∗ o u t _ f r i c t i o n _ f o r c e , ∗

out_b lock_sp r i ng_fo r ce , ∗ out_damping_force ;
double ∗ o u t _ s t a t i c _ f r i c t i o n , ∗ o u t _ s l i d i n g , ∗

o u t _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g ;
double ∗ o u t _ d r i v i n g _ f o r c e ;
double ∗ ou t_e r r o r ;
double ∗out_t ;
double ∗ out_sum_s l id ing ;

/∗ In use i n s i d e c−s c r i p t ∗/
int i , j , k ;
int f i r s t _ b l o c k , l a s t _ b l o c k ;
double end_loop ;
double sum_s l i d i ng ;
double sum_s l i d i ng_counte r ;
double∗ tmp_o ld_pos i t i on ;
double∗ tmp_o ld_ve l oc i t y ;
double∗ t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g ;
double∗ tmp_new_posit ion ;
double∗ tmp_new_veloc i ty ;
double∗ tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng ;
double∗ t m p _ s t a t i c _ f r i c t i o n ;
double∗ tmp_dr i v i ng_fo r c e ;
double∗ tmp_damping_force ;
double∗ tmp_b lock_spr ing_fo rce ;
double∗ tmp_shear_force ;
double∗ t m p _ f r i c t i o n _ f o r c e ;
double∗ tmp_s l i d i ng ;

/∗ Input ∗/
i n _ v e l o c i t y = mxGetPr (IN_VELOCITY) ;
i n _ p o s i t i o n = mxGetPr (IN_POSITION) ;
i n _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g = mxGetPr (

IN_LENGTH_STATIC_FRICTION_SPRING) ;
i n _ s t a t i c _ f r i c t i o n _ f o r c e = mxGetPr (

IN_STATIC_FRICTION_FORCE) ;
i n _ d y n a m i c _ f r i c t i o n _ f o r c e = mxGetPr (

IN_DYNAMIC_FRICTION_FORCE) ;
i n _ s t a t i c _ f r i c t i o n = mxGetPr (IN_STATIC_FRICTION

) ;

Section 3 The C code for the side driven model 125

i n _ r e l a t i v e_ v i s c o u s_ d a mp i n g = mxGetSca lar (
IN_RELATIVE_VISCOUS_DAMPING) ;

i n _ b l o c k _ s p r i n g _ s t i f f n e s s = mxGetSca lar (
IN_BLOCK_SPRING_STIFFNESS) ;

i n _ s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s = mxGetSca lar (
IN_STATIC_FRICTION_SPRING_STIFFNESS) ;

dt_div ided_by_mass = mxGetSca lar (
IN_DT_DIVIDED_BY_MASS) ;

i n i t i a l _ b l o c k _ d i s t a n c e s = mxGetSca lar (
IN_INITIAL_BLOCK_DISTANCES) ;

d r i v i n g _ s p r i n g _ s t i f f n e s s = mxGetSca lar (
IN_DRIVING_SPRING_STIFFNESS) ;

d r i v i n g _ v e l o c i t y = mxGetSca lar (
IN_DRIVING_VELOCITY) ;

number_of_blocks = mxGetSca lar (
IN_NUMBER_OF_BLOCKS) ;

t_end = mxGetSca lar (IN_T_END) ;
t = mxGetSca lar (IN_T) ;
dt = mxGetSca lar (IN_DT) ;
i n_sum_s l i d i ng = mxGetSca lar (IN_SUM_SLIDING

) ;

/∗ Output ∗/
OUT_POSITION = mxCreateDoubleMatr ix (1 ,

number_of_blocks , mxREAL) ;
OUT_VELOCITY = mxCreateDoubleMatr ix (1 ,

number_of_blocks , mxREAL) ;
OUT_SHEAR_FORCE = mxCreateDoubleMatr ix (1 ,

number_of_blocks , mxREAL) ;
OUT_FRICTION_FORCE = mxCreateDoubleMatr ix (1 ,

number_of_blocks , mxREAL) ;
OUT_BLOCK_SPRING_FORCE = mxCreateDoubleMatr ix (1 ,

number_of_blocks , mxREAL) ;
OUT_DAMPING_FORCE = mxCreateDoubleMatr ix (1 ,

number_of_blocks , mxREAL) ;
OUT_STATIC_FRICTION = mxCreateDoubleMatr ix (1 ,

number_of_blocks , mxREAL) ;
OUT_SLIDING = mxCreateDoubleMatr ix (1 ,

number_of_blocks , mxREAL) ;
OUT_LENGTH_STATIC_FRICTION_SPRING = mxCreateDoubleMatr ix (1 ,

number_of_blocks , mxREAL) ;
OUT_DRIVING_FORCE = mxCreateDoubleMatr ix (1 ,

number_of_blocks , mxREAL) ;
OUT_ERROR = mxCreateDoubleMatr ix (1 , 1 ,

mxREAL) ;
OUT_T = mxCreateDoubleMatr ix (1 , 1 ,

mxREAL) ;
OUT_SUM_SLIDING = mxCreateDoubleMatr ix (1 , 1 ,

mxREAL) ;

o u t _ v e l o c i t y = mxGetPr (OUT_VELOCITY) ;

126 C Code Chapter B

o u t _ p o s i t i o n = mxGetPr (OUT_POSITION) ;
ou t_shea r_ fo r ce = mxGetPr (OUT_SHEAR_FORCE) ;
o u t _ f r i c t i o n _ f o r c e = mxGetPr (OUT_FRICTION_FORCE

) ;
ou t_b l o ck_sp r i ng_ fo r c e = mxGetPr (

OUT_BLOCK_SPRING_FORCE) ;
out_damping_force = mxGetPr (OUT_DAMPING_FORCE)

;
o u t _ s t a t i c _ f r i c t i o n = mxGetPr (

OUT_STATIC_FRICTION) ;
o u t _ s l i d i n g = mxGetPr (OUT_SLIDING) ;
o u t _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g = mxGetPr (

OUT_LENGTH_STATIC_FRICTION_SPRING) ;
o u t _ d r i v i n g _ f o r c e = mxGetPr (OUT_DRIVING_FORCE)

;
ou t_e r r o r = mxGetPr (OUT_ERROR) ;
out_t = mxGetPr (OUT_T) ;
out_sum_s l id ing = mxGetPr (OUT_SUM_SLIDING) ;

/∗ In use i n s i d e c−s c r i p t ∗/
end_loop = 0 ;
ou t_e r r o r [0] = 0 ;
sum_s l i d i ng_counte r = 0 ;
f i r s t _ b l o c k = 0 ;
l a s t _ b l o c k = number_of_blocks −1;

tmp_o ld_ve l oc i t y = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

tmp_o ld_pos i t i on = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

tmp_new_veloc i ty = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

tmp_new_posit ion = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

t m p _ s t a t i c _ f r i c t i o n = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

tmp_dr i v i ng_fo r c e = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

tmp_damping_force = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

tmp_b lock_spr ing_fo rce = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

tmp_shear_force = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

t m p _ f r i c t i o n _ f o r c e = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

Section 3 The C code for the side driven model 127

tmp_s l i d i ng = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

for (j = 0 ; j < number_of_blocks ; j++){
tmp_o ld_ve l oc i t y [j] = i n _ v e l o c i t y [j] ;
tmp_o ld_pos i t i on [j] = i n _ p o s i t i o n [j] ;
t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g [j] =

i n _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g [j] ;
t m p _ s t a t i c _ f r i c t i o n [j] = i n _ s t a t i c _ f r i c t i o n [

j] ;
tmp_dr i v i ng_fo r c e [j] = 0 ;

}

while (t < t_end && end_loop == 0 && ou t_e r r o r [0] == 0) {
t = t + 1 ;
sum_s l i d i ng = 0 ;
/∗ Ca l cu l a t e the f i r s t b l o c k ∗/
tmp_dr i v i ng_fo r c e [f i r s t _ b l o c k] = d r i v i n g _ s p r i n g _ s t i f f n e s s
∗(d r i v i n g _ v e l o c i t y ∗(dt ∗ t) − tmp_o ld_pos i t i on [f i r s t _ b l o c k]) ;

tmp_damping_force [f i r s t _ b l o c k] =
i n_ r e l a t i v e_ v i s c o u s_ d a mp i n g ∗(tmp_o ld_ve l oc i t y [f i r s t _ b l o c k +

1] − tmp_o ld_ve l oc i t y [f i r s t _ b l o c k]) ;
tmp_b lock_spr ing_fo rce [f i r s t _ b l o c k] =

i n _ b l o c k _ s p r i n g _ s t i f f n e s s ∗ ((tmp_o ld_pos i t i on [f i r s t _ b l o c k +
1] − tmp_o ld_pos i t i on [f i r s t _ b l o c k]) −
i n i t i a l _ b l o c k _ d i s t a n c e s) ;

tmp_shear_force [f i r s t _ b l o c k] = tmp_damping_force [
f i r s t _ b l o c k] + tmp_b lock_spr ing_fo rce [f i r s t _ b l o c k] +
tmp_dr i v i ng_fo r c e [f i r s t _ b l o c k] ;

i f (t m p _ s t a t i c _ f r i c t i o n [f i r s t _ b l o c k] == 1) {
/∗ S t a t i c f r i c t i o n ∗/
t m p _ f r i c t i o n _ f o r c e [f i r s t _ b l o c k] = −

i n _ s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s ∗
t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g [f i r s t _ b l o c k] ;

tmp_new_veloc i ty [f i r s t _ b l o c k] = tmp_o ld_ve l oc i t y [
f i r s t _ b l o c k] + (tmp_shear_force [f i r s t _ b l o c k] +
t m p _ f r i c t i o n _ f o r c e [f i r s t _ b l o c k]) ∗dt_div ided_by_mass ;

tmp_new_posit ion [f i r s t _ b l o c k] = tmp_o ld_pos i t i on [
f i r s t _ b l o c k] + tmp_new_veloc i ty [f i r s t _ b l o c k]∗ dt ;

tmp_s l i d i ng [f i r s t _ b l o c k] = 0 ;
t m p _ s t a t i c _ f r i c t i o n [f i r s t _ b l o c k] = 1 ;
tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [f i r s t _ b l o c k] =

t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g [f i r s t _ b l o c k] +
tmp_new_posit ion [f i r s t _ b l o c k] − tmp_o ld_pos i t i on [
f i r s t _ b l o c k] ;

i f (f a b s (tmp_shear_force [f i r s t _ b l o c k]) >=
i n _ s t a t i c _ f r i c t i o n _ f o r c e [f i r s t _ b l o c k]) {
/∗ tmp_sl id ing [f i r s t _ b l o c k] = 1 ; ∗/
/∗ sum_sl iding += 1; ∗/
t m p _ s t a t i c _ f r i c t i o n [f i r s t _ b l o c k] = 0 ;

}

128 C Code Chapter B

}
else i f (t m p _ s t a t i c _ f r i c t i o n [f i r s t _ b l o c k] == 0) {

/∗ Dynamic f r i c t i o n ∗/
t m p _ f r i c t i o n _ f o r c e [f i r s t _ b l o c k] = −

i n _ d y n a m i c _ f r i c t i o n _ f o r c e [f i r s t _ b l o c k] ∗ (
tmp_o ld_ve l oc i t y [f i r s t _ b l o c k] / f a b s (tmp_o ld_ve l oc i t y [
f i r s t _ b l o c k])) ;

tmp_new_veloc i ty [f i r s t _ b l o c k] = tmp_o ld_ve l oc i t y [
f i r s t _ b l o c k] + (tmp_shear_force [f i r s t _ b l o c k] +
t m p _ f r i c t i o n _ f o r c e [f i r s t _ b l o c k]) ∗dt_div ided_by_mass ;

tmp_new_posit ion [f i r s t _ b l o c k] = tmp_o ld_pos i t i on [
f i r s t _ b l o c k] + tmp_new_veloc i ty [f i r s t _ b l o c k]∗ dt ;

tmp_s l i d i ng [f i r s t _ b l o c k] = 1 ;
sum_s l i d i ng += 1 ;
t m p _ s t a t i c _ f r i c t i o n [f i r s t _ b l o c k] = 0 ;
tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [f i r s t _ b l o c k] = 0 ;
i f (tmp_new_veloc i ty [f i r s t _ b l o c k] <= 0) {

/∗ tmp_sl id ing [f i r s t _ b l o c k] =
0; ∗/

/∗ sum_sl iding −=
1; ∗/

t m p _ s t a t i c _ f r i c t i o n [f i r s t _ b l o c k] =
1 ;

tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [f i r s t _ b l o c k] =
tmp_shear_force [f i r s t _ b l o c k] /
i n _ s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s ;

}
}
else {

ou t_e r r o r [0] = 1 ;
mexPr in t f ("ERROR at t = %d [s] for block %d static

friction = %.1f\n" , t , f i r s t _ b l o c k , t m p _ s t a t i c _ f r i c t i o n [
f i r s t _ b l o c k]) ;

}
/∗ Ca l cu l a t e the l a s t b l o c k ∗/
tmp_b lock_spr ing_fo rce [l a s t _ b l o c k] = i n _ b l o c k _ s p r i n g _ s t i f f n e s s
∗(i n i t i a l _ b l o c k _ d i s t a n c e s − (tmp_o ld_pos i t i on [l a s t _ b l o c k] −

tmp_o ld_pos i t i on [l a s t_b l o c k −1])) ;
tmp_damping_force [l a s t _ b l o c k] =

i n_ r e l a t i v e_ v i s c o u s_ d a mp i n g ∗(tmp_o ld_ve l oc i t y [l a s t_b l o c k −1]
− tmp_o ld_ve l oc i t y [l a s t _ b l o c k]) ;

tmp_shear_force [l a s t _ b l o c k] = tmp_damping_force [
l a s t _ b l o c k] + tmp_b lock_spr ing_fo rce [l a s t _ b l o c k] ;

i f (t m p _ s t a t i c _ f r i c t i o n [l a s t _ b l o c k] == 1) {
/∗ S t a t i c f r i c t i o n ∗/
t m p _ f r i c t i o n _ f o r c e [l a s t _ b l o c k] = −

i n _ s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s ∗
t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g [l a s t _ b l o c k] ;

tmp_new_veloc i ty [l a s t _ b l o c k] = tmp_o ld_ve l oc i t y [
l a s t _ b l o c k] + (tmp_shear_force [l a s t _ b l o c k] +
t m p _ f r i c t i o n _ f o r c e [l a s t _ b l o c k]) ∗dt_div ided_by_mass ;

Section 3 The C code for the side driven model 129

tmp_new_posit ion [l a s t _ b l o c k] = tmp_o ld_pos i t i on [
l a s t _ b l o c k] + tmp_new_veloc i ty [l a s t _ b l o c k]∗ dt ;

tmp_s l i d i ng [l a s t _ b l o c k] = 0 ;
t m p _ s t a t i c _ f r i c t i o n [l a s t _ b l o c k] = 1 ;
tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [l a s t _ b l o c k] =

t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g [l a s t _ b l o c k] +
tmp_new_posit ion [l a s t _ b l o c k] − tmp_o ld_pos i t i on [
l a s t _ b l o c k] ;

i f (f a b s (tmp_shear_force [l a s t _ b l o c k]) >=
i n _ s t a t i c _ f r i c t i o n _ f o r c e [l a s t _ b l o c k]) {
/∗ tmp_sl id ing [l a s t _ b l o c k] = 1; ∗/
/∗ sum_sl iding += 1; ∗/
t m p _ s t a t i c _ f r i c t i o n [l a s t _ b l o c k] = 0 ;

}
}
else i f (t m p _ s t a t i c _ f r i c t i o n [l a s t _ b l o c k] == 0) {

/∗ Dynamic f r i c t i o n ∗/
t m p _ f r i c t i o n _ f o r c e [l a s t _ b l o c k] = −

i n _ d y n a m i c _ f r i c t i o n _ f o r c e [l a s t _ b l o c k] ∗ (tmp_o ld_ve l oc i t y
[l a s t _ b l o c k] / f a b s (tmp_o ld_ve l oc i t y [l a s t _ b l o c k])) ;

tmp_new_veloc i ty [l a s t _ b l o c k] = tmp_o ld_ve l oc i t y [
l a s t _ b l o c k] + (tmp_shear_force [l a s t _ b l o c k] +
t m p _ f r i c t i o n _ f o r c e [l a s t _ b l o c k]) ∗dt_div ided_by_mass ;

tmp_new_posit ion [l a s t _ b l o c k] = tmp_o ld_pos i t i on [
l a s t _ b l o c k] + tmp_new_veloc i ty [l a s t _ b l o c k]∗ dt ;

tmp_s l i d i ng [l a s t _ b l o c k] = 1 ;
sum_s l i d i ng += 1 ;
t m p _ s t a t i c _ f r i c t i o n [l a s t _ b l o c k] = 0 ;
tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [l a s t _ b l o c k] = 0 ;
i f (tmp_new_veloc i ty [l a s t _ b l o c k] <= 0) {

/∗ tmp_sl id ing [l a s t _ b l o c k] =
0; ∗/

/∗ sum_sl iding −=
1; ∗/

t m p _ s t a t i c _ f r i c t i o n [l a s t _ b l o c k] = 1 ;
tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [l a s t _ b l o c k] =

tmp_shear_force [l a s t _ b l o c k] /
i n _ s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s ;

}
}
else {

ou t_e r r o r [0] = 1 ;
mexPr in t f ("ERROR at t = %d [s] for block %d static

friction = %.1f\n" , t , l a s t_b l o c k , t m p _ s t a t i c _ f r i c t i o n [
l a s t _ b l o c k]) ;

}
for (i = f i r s t _ b l o c k + 1 ; i < l a s t _ b l o c k ; i ++){

/∗ Ca l cu l a t e the midle b l o c k s ∗/
tmp_damping_force [i] = i n _ r e l a t i v e_ v i s c o u s _d a mp i n g ∗(

tmp_o ld_ve l oc i t y [i +1] − 2∗ tmp_o ld_ve l oc i t y [i] +
tmp_o ld_ve l oc i t y [i −1]) ;

130 C Code Chapter B

tmp_b lock_spr ing_fo rce [i] = i n _ b l o c k _ s p r i n g _ s t i f f n e s s ∗(
tmp_o ld_pos i t i on [i +1] − 2∗ tmp_o ld_pos i t i on [i] +
tmp_o ld_pos i t i on [i −1]) ;

tmp_shear_force [i] = tmp_damping_force [i] +
tmp_b lock_spr ing_fo rce [i] ;

i f (t m p _ s t a t i c _ f r i c t i o n [i] == 1) {
/∗ S t a t i c f r i c t i o n ∗/
t m p _ f r i c t i o n _ f o r c e [i] = −

i n _ s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s ∗
t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g [i] ;

tmp_new_veloc i ty [i] = tmp_o ld_ve l oc i t y [i] + (
tmp_shear_force [i] + t m p _ f r i c t i o n _ f o r c e [i]) ∗
dt_div ided_by_mass ;

tmp_new_posit ion [i] = tmp_o ld_pos i t i on [i] +
tmp_new_veloc i ty [i]∗ dt ;

tmp_s l i d i ng [i] = 0 ;
t m p _ s t a t i c _ f r i c t i o n [i] = 1 ;
tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [i] =

t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g [i] +
tmp_new_posit ion [i] − tmp_o ld_pos i t i on [i] ;

i f (f a b s (tmp_shear_force [i]) >=
i n _ s t a t i c _ f r i c t i o n _ f o r c e [i]) {
/∗ tmp_sl id ing [i] = 1 ; ∗/
/∗ sum_sl iding += 1; ∗/
t m p _ s t a t i c _ f r i c t i o n [i] = 0 ;

}
}
else i f (t m p _ s t a t i c _ f r i c t i o n [i] == 0) {

/∗ Dynamic f r i c t i o n ∗/
t m p _ f r i c t i o n _ f o r c e [i] = − i n _ d y n a m i c _ f r i c t i o n _ f o r c e [i

] ∗ (tmp_o ld_ve l oc i t y [i] / f a b s (tmp_o ld_ve l oc i t y [i])) ;
tmp_new_veloc i ty [i] = tmp_o ld_ve l oc i t y [i] + (

tmp_shear_force [i] + t m p _ f r i c t i o n _ f o r c e [i]) ∗
dt_div ided_by_mass ;

tmp_new_posit ion [i] = tmp_o ld_pos i t i on [i] +
tmp_new_veloc i ty [i]∗ dt ;

tmp_s l i d i ng [i] = 1 ;
sum_s l i d i ng += 1 ;
t m p _ s t a t i c _ f r i c t i o n [i] = 0 ;
tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [i] = 0 ;
i f (tmp_new_veloc i ty [i] <= 0) {

/∗ tmp_sl id ing [i] = 0 ; ∗/
/∗ sum_sl iding −= 1; ∗/
t m p _ s t a t i c _ f r i c t i o n [i] = 1 ;
tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [i] =

tmp_shear_force [i] /
i n _ s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s ;

}
}
else {

ou t_e r r o r [0] = 1 ;

Section 3 The C code for the side driven model 131

mexPr in t f ("ERROR at t = %d [s] for block %d static
friction = %.1f\n" , t , i , t m p _ s t a t i c _ f r i c t i o n [i]) ;

}
}
for (j = 0 ; j < number_of_blocks ; j++){

tmp_o ld_pos i t i on [j] =
tmp_new_posit ion [j] ;

tmp_o ld_ve l oc i t y [j] =
tmp_new_veloc i ty [j] ;

t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g [j] =
tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [j] ;

}

i f (((sum_s l i d i ng > 0) && (sum_s l i d i ng != i n_sum_s l i d i ng)) | |
((sum_s l i d i ng == 0) && (i n_sum_s l i d i ng > 0))) {
end_loop = 1 ;

}
}

∗ out_sum_s l id ing = sum_s l i d i ng ;
∗out_t = t ;
for (k = 0 ; k < number_of_blocks ; k++){

o u t _ s t a t i c _ f r i c t i o n [k] = t m p _ s t a t i c _ f r i c t i o n [k] ;
o u t _ p o s i t i o n [k] = tmp_new_posit ion [k] ;
o u t _ v e l o c i t y [k] = tmp_new_veloc i ty [k] ;
o u t _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g [k] =

tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [k] ;
o u t _ d r i v i n g _ f o r c e [k] = tmp_dr i v i ng_fo r c e [k] ;
out_damping_force [k] = tmp_damping_force [k] ;
ou t_b l o ck_sp r i ng_ fo r c e [k] = tmp_b lock_spr ing_fo rce [

k] ;
ou t_shea r_ fo r ce [k] = tmp_shear_force [k] ;
o u t _ f r i c t i o n _ f o r c e [k] = t m p _ f r i c t i o n _ f o r c e [k] ;
o u t _ s l i d i n g [k] = tmp_s l i d i ng [k] ;

}

f r e e (tmp_o ld_ve l oc i t y) ;
f r e e (tmp_o ld_pos i t i on) ;
f r e e (t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g) ;
f r e e (tmp_new_veloc i ty) ;
f r e e (tmp_new_posit ion) ;
f r e e (tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng) ;
f r e e (t m p _ s t a t i c _ f r i c t i o n) ;
f r e e (tmp_dr i v i ng_fo r ce) ;
f r e e (tmp_damping_force) ;
f r e e (tmp_b lock_spr ing_fo rce) ;
f r e e (tmp_shear_force) ;
f r e e (t m p _ f r i c t i o n _ f o r c e) ;
f r e e (tmp_s l i d i ng) ;
return ;

}

132 C Code Chapter B

Section 4 The C code for the top driven model 133

B.4 The C code for the top driven model

#include <math . h>
#include "mex.h"

/∗ Input Arguments ∗/
#define IN_POSITION prhs [0]
#define IN_VELOCITY prhs [1]
#define IN_LENGTH_STATIC_FRICTION_SPRING prhs [2]
#define IN_STATIC_FRICTION_FORCE prhs [3]
#define IN_DYNAMIC_FRICTION_FORCE prhs [4]
#define IN_STATIC_FRICTION prhs [5]
#define IN_INITIAL_POSITIONS prhs [6]

#define IN_RELATIVE_VISCOUS_DAMPING prhs [7]
#define IN_BLOCK_SPRING_STIFFNESS prhs [8]
#define IN_STATIC_FRICTION_SPRING_STIFFNESS prhs [9]
#define IN_DT_DIVIDED_BY_MASS prhs [1 0]
#define IN_INITIAL_BLOCK_DISTANCES prhs [1 1]
#define IN_DRIVING_SPRING_STIFFNESS prhs [1 2]
#define IN_DRIVING_VELOCITY prhs [1 3]
#define IN_NUMBER_OF_BLOCKS prhs [1 4]
#define IN_T_END prhs [1 5]
#define IN_T prhs [1 6]
#define IN_DT prhs [1 7]
#define IN_SUM_SLIDING prhs [1 8]

/∗ Output Arguments ∗/
#define OUT_NEW_POSITION plhs [0]
#define OUT_NEW_VELOCITY plhs [1]
#define OUT_SHEAR_FORCE plhs [2]
#define OUT_FRICTION_FORCE plhs [3]
#define OUT_BLOCK_SPRING_FORCE plhs [4]
#define OUT_DAMPING_FORCE plhs [5]
#define OUT_STATIC_FRICTION plhs [6]
#define OUT_SLIDING plhs [7]
#define OUT_NEW_LENGTH_STATIC_FRICTION_SPRING plhs [8]
#define OUT_DRIVING_FORCE plhs [9]
#define OUT_ERROR plhs [1 0]
#define OUT_T plhs [1 1]
#define OUT_SUM_SLIDING plhs [1 2]

void mexFunct ion (int n lhs , mxArray ∗ p l h s [] , int nrhs , const mxArray∗
prhs []) {
/∗ Input ∗/
double ∗ i n _ v e l o c i t y , ∗ i n _ p o s i t i o n , ∗

i n _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g ;
double ∗ i n _ s t a t i c _ f r i c t i o n _ f o r c e , ∗ i n _ d y n a m i c _ f r i c t i o n _ f o r c e , ∗

i n _ s t a t i c _ f r i c t i o n , ∗ i n _ i n i t i a l _ b l o c k _ p o s i t i o n s ;
double i n _ r e l a t i v e_ v i s c o u s _d a m p i n g ;

134 C Code Chapter B

double i n _ b l o c k _ s p r i n g _ s t i f f n e s s ,
i n _ s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s ;

double dt_divided_by_mass , i n i t i a l _ b l o c k _ d i s t a n c e s ;
double d r i v i n g _ s p r i n g _ s t i f f n e s s , d r i v i n g _ v e l o c i t y ,

number_of_blocks ;
double dt ;
double t , t_end ;
double i n_sum_s l i d i ng ;

/∗ Output ∗/
double ∗ ou t_po s i t i on , ∗ o u t _ v e l o c i t y ;
double ∗ out_shea r_fo rce , ∗ o u t _ f r i c t i o n _ f o r c e , ∗

out_b lock_sp r i ng_fo r ce , ∗ out_damping_force ;
double ∗ o u t _ s t a t i c _ f r i c t i o n , ∗ o u t _ s l i d i n g , ∗

o u t _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g ;
double ∗ o u t _ d r i v i n g _ f o r c e ;
double ∗ ou t_e r r o r ;
double ∗out_t ;
double ∗ out_sum_s l id ing ;

/∗ In use i n s i d e c−s c r i p t ∗/
int i , j , k ;
int f i r s t _ b l o c k , l a s t _ b l o c k ;
double end_loop ;
double sum_s l i d i ng ;
double sum_s l i d i ng_counte r ;
double∗ tmp_o ld_pos i t i on ;
double∗ tmp_o ld_ve l oc i t y ;
double∗ t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g ;
double∗ tmp_new_posit ion ;
double∗ tmp_new_veloc i ty ;
double∗ tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng ;
double∗ t m p _ s t a t i c _ f r i c t i o n ;
double∗ tmp_dr i v i ng_fo r c e ;
double∗ tmp_damping_force ;
double∗ tmp_b lock_spr ing_fo rce ;
double∗ tmp_shear_force ;
double∗ t m p _ f r i c t i o n _ f o r c e ;
double∗ tmp_s l i d i ng ;

/∗ Input ∗/
i n _ v e l o c i t y = mxGetPr (IN_VELOCITY) ;
i n _ p o s i t i o n = mxGetPr (IN_POSITION) ;
i n _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g = mxGetPr (

IN_LENGTH_STATIC_FRICTION_SPRING) ;
i n _ s t a t i c _ f r i c t i o n _ f o r c e = mxGetPr (

IN_STATIC_FRICTION_FORCE) ;
i n _ d y n a m i c _ f r i c t i o n _ f o r c e = mxGetPr (

IN_DYNAMIC_FRICTION_FORCE) ;
i n _ s t a t i c _ f r i c t i o n = mxGetPr (IN_STATIC_FRICTION

) ;

Section 4 The C code for the top driven model 135

i n _ i n i t i a l _ b l o c k _ p o s i t i o n s = mxGetPr (
IN_INITIAL_POSITIONS) ;

i n _ r e l a t i v e_ v i s c o u s_ d a mp i n g = mxGetSca lar (
IN_RELATIVE_VISCOUS_DAMPING) ;

i n _ b l o c k _ s p r i n g _ s t i f f n e s s = mxGetSca lar (
IN_BLOCK_SPRING_STIFFNESS) ;

i n _ s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s = mxGetSca lar (
IN_STATIC_FRICTION_SPRING_STIFFNESS) ;

dt_div ided_by_mass = mxGetSca lar (
IN_DT_DIVIDED_BY_MASS) ;

i n i t i a l _ b l o c k _ d i s t a n c e s = mxGetSca lar (
IN_INITIAL_BLOCK_DISTANCES) ;

d r i v i n g _ s p r i n g _ s t i f f n e s s = mxGetSca lar (
IN_DRIVING_SPRING_STIFFNESS) ;

d r i v i n g _ v e l o c i t y = mxGetSca lar (
IN_DRIVING_VELOCITY) ;

number_of_blocks = mxGetSca lar (
IN_NUMBER_OF_BLOCKS) ;

t_end = mxGetSca lar (IN_T_END) ;
t = mxGetSca lar (IN_T) ;
dt = mxGetSca lar (IN_DT) ;
i n_sum_s l i d i ng = mxGetSca lar (IN_SUM_SLIDING

) ;

/∗ Output ∗/
OUT_NEW_POSITION = mxCreateDoubleMatr ix (1 ,

number_of_blocks , mxREAL) ;
OUT_NEW_VELOCITY = mxCreateDoubleMatr ix (1 ,

number_of_blocks , mxREAL) ;
OUT_SHEAR_FORCE = mxCreateDoubleMatr ix (1 ,

number_of_blocks , mxREAL) ;
OUT_FRICTION_FORCE = mxCreateDoubleMatr ix (1 ,

number_of_blocks , mxREAL) ;
OUT_BLOCK_SPRING_FORCE = mxCreateDoubleMatr ix (1 ,

number_of_blocks , mxREAL) ;
OUT_DAMPING_FORCE = mxCreateDoubleMatr ix (1 ,

number_of_blocks , mxREAL) ;
OUT_STATIC_FRICTION = mxCreateDoubleMatr ix (1 ,

number_of_blocks , mxREAL) ;
OUT_SLIDING = mxCreateDoubleMatr ix (1 ,

number_of_blocks , mxREAL) ;
OUT_NEW_LENGTH_STATIC_FRICTION_SPRING = mxCreateDoubleMatr ix (1 ,

number_of_blocks , mxREAL) ;
OUT_DRIVING_FORCE = mxCreateDoubleMatr ix (1 ,

number_of_blocks , mxREAL) ;
OUT_ERROR = mxCreateDoubleMatr ix (1 , 1 ,

mxREAL) ;
OUT_T = mxCreateDoubleMatr ix (1 , 1 ,

mxREAL) ;

136 C Code Chapter B

OUT_SUM_SLIDING = mxCreateDoubleMatr ix (1 , 1 ,
mxREAL) ;

o u t _ v e l o c i t y = mxGetPr (OUT_NEW_VELOCITY) ;
o u t _ p o s i t i o n = mxGetPr (OUT_NEW_POSITION) ;
ou t_shea r_ fo r ce = mxGetPr (OUT_SHEAR_FORCE) ;
o u t _ f r i c t i o n _ f o r c e = mxGetPr (OUT_FRICTION_FORCE

) ;
ou t_b l o ck_sp r i ng_ fo r c e = mxGetPr (

OUT_BLOCK_SPRING_FORCE) ;
out_damping_force = mxGetPr (OUT_DAMPING_FORCE)

;
o u t _ s t a t i c _ f r i c t i o n = mxGetPr (

OUT_STATIC_FRICTION) ;
o u t _ s l i d i n g = mxGetPr (OUT_SLIDING) ;
o u t _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g = mxGetPr (

OUT_NEW_LENGTH_STATIC_FRICTION_SPRING) ;
o u t _ d r i v i n g _ f o r c e = mxGetPr (OUT_DRIVING_FORCE)

;
ou t_e r r o r = mxGetPr (OUT_ERROR) ;
out_t = mxGetPr (OUT_T) ;
out_sum_s l id ing = mxGetPr (OUT_SUM_SLIDING) ;

/∗ In use i n s i d e c−s c r i p t ∗/
end_loop = 0 ;
ou t_e r r o r [0] = 0 ;
f i r s t _ b l o c k = 0 ;
sum_s l i d i ng_counte r = 0 ;
l a s t _ b l o c k = number_of_blocks −1;

tmp_o ld_ve l oc i t y = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

tmp_o ld_pos i t i on = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

tmp_new_veloc i ty = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

tmp_new_posit ion = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

t m p _ s t a t i c _ f r i c t i o n = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

tmp_dr i v i ng_fo r c e = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

tmp_damping_force = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

tmp_b lock_spr ing_fo rce = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

Section 4 The C code for the top driven model 137

tmp_shear_force = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

t m p _ f r i c t i o n _ f o r c e = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

tmp_s l i d i ng = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

for (i = 0 ; i < number_of_blocks ; i ++){
tmp_o ld_ve l oc i t y [i] = i n _ v e l o c i t y [i] ;
tmp_o ld_pos i t i on [i] = i n _ p o s i t i o n [i] ;
t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g [i] =

i n _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g [i] ;
t m p _ s t a t i c _ f r i c t i o n [i] = i n _ s t a t i c _ f r i c t i o n [

i] ;
tmp_dr i v i ng_fo r c e [i] = 0 ;

}

while (t < t_end && end_loop == 0 && ou t_e r r o r [0] == 0) {
t = t + 1 ;
sum_s l i d i ng = 0 ;
/∗ Ca l cu l a t e the f i r s t b l o c k ∗/
tmp_dr i v i ng_fo r c e [f i r s t _ b l o c k] = d r i v i n g _ s p r i n g _ s t i f f n e s s
∗(i n _ i n i t i a l _ b l o c k _ p o s i t i o n s [f i r s t _ b l o c k] +
d r i v i n g _ v e l o c i t y ∗(dt ∗ t) − tmp_o ld_pos i t i on [f i r s t _ b l o c k]) ;

tmp_damping_force [f i r s t _ b l o c k] =
i n_ r e l a t i v e_ v i s c o u s_ d a mp i n g ∗(tmp_o ld_ve l oc i t y [f i r s t _ b l o c k +

1] − tmp_o ld_ve l oc i t y [f i r s t _ b l o c k]) ;
tmp_b lock_spr ing_fo rce [f i r s t _ b l o c k] =

i n _ b l o c k _ s p r i n g _ s t i f f n e s s ∗((tmp_o ld_pos i t i on [f i r s t _ b l o c k +
1] − tmp_o ld_pos i t i on [f i r s t _ b l o c k]) −

i n i t i a l _ b l o c k _ d i s t a n c e s) ;
tmp_shear_force [f i r s t _ b l o c k] = tmp_damping_force [

f i r s t _ b l o c k] + tmp_b lock_spr ing_fo rce [f i r s t _ b l o c k] +
tmp_dr i v i ng_fo r c e [f i r s t _ b l o c k] ;

i f (t m p _ s t a t i c _ f r i c t i o n [f i r s t _ b l o c k] == 1) {
/∗ S t a t i c f r i c t i o n ∗/
t m p _ f r i c t i o n _ f o r c e [f i r s t _ b l o c k] = −

i n _ s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s ∗
t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g [f i r s t _ b l o c k] ;

tmp_new_veloc i ty [f i r s t _ b l o c k] =
tmp_o ld_ve l oc i t y [f i r s t _ b l o c k] + (tmp_shear_force [
f i r s t _ b l o c k] + t m p _ f r i c t i o n _ f o r c e [f i r s t _ b l o c k]) ∗
dt_div ided_by_mass ;

tmp_new_posit ion [f i r s t _ b l o c k] =
tmp_o ld_pos i t i on [f i r s t _ b l o c k] + tmp_new_veloc i ty [
f i r s t _ b l o c k]∗ dt ;

tmp_s l i d i ng [f i r s t _ b l o c k] = 0 ;
t m p _ s t a t i c _ f r i c t i o n [f i r s t _ b l o c k] = 1 ;
tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [f i r s t _ b l o c k] =

t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g [f i r s t _ b l o c k] +
tmp_new_posit ion [f i r s t _ b l o c k] − tmp_o ld_pos i t i on [

138 C Code Chapter B

f i r s t _ b l o c k] ;
i f (f a b s (tmp_shear_force [f i r s t _ b l o c k]) >

i n _ s t a t i c _ f r i c t i o n _ f o r c e [f i r s t _ b l o c k]) {
tmp_s l i d i ng [f i r s t _ b l o c k] = 1 ;
sum_s l i d i ng += 1 ;
t m p _ s t a t i c _ f r i c t i o n [f i r s t _ b l o c k] = 0 ;

}
}
else i f (t m p _ s t a t i c _ f r i c t i o n [f i r s t _ b l o c k] == 0) {

/∗ Dynamic f r i c t i o n ∗/
t m p _ f r i c t i o n _ f o r c e [f i r s t _ b l o c k] = −

i n _ d y n a m i c _ f r i c t i o n _ f o r c e [f i r s t _ b l o c k] ∗ (
tmp_o ld_ve l oc i t y [f i r s t _ b l o c k] / f a b s (tmp_o ld_ve l oc i t y [
f i r s t _ b l o c k])) ;

tmp_new_veloc i ty [f i r s t _ b l o c k] =
tmp_o ld_ve l oc i t y [f i r s t _ b l o c k] + (tmp_shear_force [
f i r s t _ b l o c k] + t m p _ f r i c t i o n _ f o r c e [f i r s t _ b l o c k]) ∗
dt_div ided_by_mass ;

tmp_new_posit ion [f i r s t _ b l o c k] =
tmp_o ld_pos i t i on [f i r s t _ b l o c k] + tmp_new_veloc i ty [
f i r s t _ b l o c k]∗ dt ;

tmp_s l i d i ng [f i r s t _ b l o c k] = 1 ;
sum_s l i d i ng += 1 ;
t m p _ s t a t i c _ f r i c t i o n [f i r s t _ b l o c k] = 0 ;
tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [f i r s t _ b l o c k] = 0 ;
i f (tmp_new_veloc i ty [f i r s t _ b l o c k] < 0) {

tmp_s l i d i ng [f i r s t _ b l o c k] =
0 ;

sum_s l i d i ng −=
1 ;

t m p _ s t a t i c _ f r i c t i o n [f i r s t _ b l o c k] =
1 ;

tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [f i r s t _ b l o c k] =
tmp_shear_force [f i r s t _ b l o c k] /
i n _ s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s ;

}
}
else {

ou t_e r r o r [0] = 1 ;
mexPr in t f ("ERROR at t = %d [s] for block %d static

friction = %.1f\n" , t , f i r s t _ b l o c k , t m p _ s t a t i c _ f r i c t i o n [
f i r s t _ b l o c k]) ;

}

/∗ Ca l cu l a t e the l a s t b l o c k ∗/
tmp_dr i v i ng_fo r c e [l a s t _ b l o c k] = d r i v i n g _ s p r i n g _ s t i f f n e s s
∗(i n _ i n i t i a l _ b l o c k _ p o s i t i o n s [l a s t _ b l o c k] + d r i v i n g _ v e l o c i t y
∗(dt ∗ t) − tmp_o ld_pos i t i on [l a s t _ b l o c k]) ;

tmp_b lock_spr ing_fo rce [l a s t _ b l o c k] = i n _ b l o c k _ s p r i n g _ s t i f f n e s s
∗(i n i t i a l _ b l o c k _ d i s t a n c e s − (tmp_o ld_pos i t i on [l a s t _ b l o c k] −

tmp_o ld_pos i t i on [l a s t_b l o c k −1])) ;

Section 4 The C code for the top driven model 139

tmp_damping_force [l a s t _ b l o c k] =
i n_ r e l a t i v e_ v i s c o u s_ d a mp i n g ∗(tmp_o ld_ve l oc i t y [l a s t_b l o c k −1]
− tmp_o ld_ve l oc i t y [l a s t _ b l o c k]) ;

tmp_shear_force [l a s t _ b l o c k] = tmp_damping_force [
l a s t _ b l o c k] + tmp_b lock_spr ing_fo rce [l a s t _ b l o c k] +
tmp_dr i v i ng_fo r c e [l a s t _ b l o c k] ;

i f (t m p _ s t a t i c _ f r i c t i o n [l a s t _ b l o c k] == 1) {
/∗ S t a t i c f r i c t i o n ∗/
t m p _ f r i c t i o n _ f o r c e [l a s t _ b l o c k] = −

i n _ s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s ∗
t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g [l a s t _ b l o c k] ;

tmp_new_veloc i ty [l a s t _ b l o c k] =
tmp_o ld_ve l oc i t y [l a s t _ b l o c k] + (tmp_shear_force [
l a s t _ b l o c k] + t m p _ f r i c t i o n _ f o r c e [l a s t _ b l o c k]) ∗
dt_div ided_by_mass ;

tmp_new_posit ion [l a s t _ b l o c k] =
tmp_o ld_pos i t i on [l a s t _ b l o c k] + tmp_new_veloc i ty [
l a s t _ b l o c k]∗ dt ;

tmp_s l i d i ng [l a s t _ b l o c k] = 0 ;
t m p _ s t a t i c _ f r i c t i o n [l a s t _ b l o c k] = 1 ;
tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [l a s t _ b l o c k] =

t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g [l a s t _ b l o c k] +
tmp_new_posit ion [l a s t _ b l o c k] − tmp_o ld_pos i t i on [
l a s t _ b l o c k] ;

i f (f a b s (tmp_shear_force [l a s t _ b l o c k]) >
i n _ s t a t i c _ f r i c t i o n _ f o r c e [l a s t _ b l o c k]) {
tmp_s l i d i ng [l a s t _ b l o c k] = 1 ;
sum_s l i d i ng += 1 ;
t m p _ s t a t i c _ f r i c t i o n [l a s t _ b l o c k] = 0 ;

}
}
else i f (t m p _ s t a t i c _ f r i c t i o n [l a s t _ b l o c k] == 0) {

/∗ Dynamic f r i c t i o n ∗/
t m p _ f r i c t i o n _ f o r c e [l a s t _ b l o c k] = −

i n _ d y n a m i c _ f r i c t i o n _ f o r c e [l a s t _ b l o c k] ∗ (tmp_o ld_ve l oc i t y
[l a s t _ b l o c k] / f a b s (tmp_o ld_ve l oc i t y [l a s t _ b l o c k])) ;

tmp_new_veloc i ty [l a s t _ b l o c k] =
tmp_o ld_ve l oc i t y [l a s t _ b l o c k] + (tmp_shear_force [
l a s t _ b l o c k] + t m p _ f r i c t i o n _ f o r c e [l a s t _ b l o c k]) ∗
dt_div ided_by_mass ;

tmp_new_posit ion [l a s t _ b l o c k] =
tmp_o ld_pos i t i on [l a s t _ b l o c k] + tmp_new_veloc i ty [
l a s t _ b l o c k]∗ dt ;

tmp_s l i d i ng [l a s t _ b l o c k] = 1 ;
sum_s l i d i ng += 1 ;
t m p _ s t a t i c _ f r i c t i o n [l a s t _ b l o c k] = 0 ;
tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [l a s t _ b l o c k] = 0 ;
i f (tmp_new_veloc i ty [l a s t _ b l o c k] < 0) {

tmp_s l i d i ng [l a s t _ b l o c k] = 0 ;
sum_s l i d i ng −= 1 ;
t m p _ s t a t i c _ f r i c t i o n [l a s t _ b l o c k] = 1 ;

140 C Code Chapter B

tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [l a s t _ b l o c k] =
tmp_shear_force [l a s t _ b l o c k] /
i n _ s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s ;

}
}
else {

ou t_e r r o r [0] = 1 ;
mexPr in t f ("ERROR at t = %d [s] for block %d static

friction = %.1f\n" , t , l a s t_b l o c k , t m p _ s t a t i c _ f r i c t i o n [
l a s t _ b l o c k]) ;

}

for (i = 1 ; i < number_of_blocks − 1 ; i ++){
/∗ Ca l cu l a t e the midle b l o c k s ∗/
tmp_dr i v i ng_fo r c e [i] = d r i v i n g _ s p r i n g _ s t i f f n e s s ∗(

i n _ i n i t i a l _ b l o c k _ p o s i t i o n s [i] + d r i v i n g _ v e l o c i t y ∗(dt ∗ t)
− tmp_o ld_pos i t i on [i]) ;

tmp_damping_force [i] = i n _ r e l a t i v e_ v i s c o u s _d a mp i n g ∗(
tmp_o ld_ve l oc i t y [i −1] − 2∗ tmp_o ld_ve l oc i t y [i] +
tmp_o ld_ve l oc i t y [i +1]) ;

tmp_b lock_spr ing_fo rce [i] = i n _ b l o c k _ s p r i n g _ s t i f f n e s s ∗(
tmp_o ld_pos i t i on [i +1] − 2∗ tmp_o ld_pos i t i on [i] +
tmp_o ld_pos i t i on [i −1]) ;

tmp_shear_force [i] = tmp_damping_force [i] +
tmp_b lock_spr ing_fo rce [i] + tmp_dr i v i ng_fo r ce [i] ;

i f (t m p _ s t a t i c _ f r i c t i o n [i] == 1) {
/∗ S t a t i c f r i c t i o n ∗/
t m p _ f r i c t i o n _ f o r c e [i] = −

i n _ s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s ∗
t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g [i] ;

tmp_new_veloc i ty [i] =
tmp_o ld_ve l oc i t y [i] + (tmp_shear_force [i] +
t m p _ f r i c t i o n _ f o r c e [i]) ∗dt_div ided_by_mass ;

tmp_new_posit ion [i] =
tmp_o ld_pos i t i on [i] + tmp_new_veloc i ty [i]∗ dt ;

tmp_s l i d i ng [i] = 0 ;
t m p _ s t a t i c _ f r i c t i o n [i] = 1 ;
tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [i] =

t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g [i] +
tmp_new_posit ion [i] − tmp_o ld_pos i t i on [i] ;

i f (f a b s (tmp_shear_force [i]) >
i n _ s t a t i c _ f r i c t i o n _ f o r c e [i]) {
tmp_s l i d i ng [i] = 1 ;
sum_s l i d i ng += 1 ;
t m p _ s t a t i c _ f r i c t i o n [i] = 0 ;

}
}
else i f (t m p _ s t a t i c _ f r i c t i o n [i] == 0) {

/∗ Dynamic f r i c t i o n ∗/
t m p _ f r i c t i o n _ f o r c e [i] = −

i n _ d y n a m i c _ f r i c t i o n _ f o r c e [i] ∗ (tmp_o ld_ve l oc i t y [i] /

Section 4 The C code for the top driven model 141

f a b s (tmp_o ld_ve l oc i t y [i])) ;
tmp_new_veloc i ty [i] =

tmp_o ld_ve l oc i t y [i] + (tmp_shear_force [i] +
t m p _ f r i c t i o n _ f o r c e [i]) ∗dt_div ided_by_mass ;

tmp_new_posit ion [i] =
tmp_o ld_pos i t i on [i] + tmp_new_veloc i ty [i]∗ dt ;

tmp_s l i d i ng [i] = 1 ;
sum_s l i d i ng += 1 ;
t m p _ s t a t i c _ f r i c t i o n [i] = 0 ;
tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [i] = 0 ;
i f (tmp_new_veloc i ty [i] < 0) {

tmp_s l i d i ng [i] = 0 ;
sum_s l i d i ng −= 1 ;
t m p _ s t a t i c _ f r i c t i o n [i] = 1 ;
tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [i] =

tmp_shear_force [i] /
i n _ s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s ;

}
}
else {

ou t_e r r o r [0] = 1 ;
mexPr in t f ("ERROR at t = %d [s] for block %d static

friction = %.1f\n" , t , i , t m p _ s t a t i c _ f r i c t i o n [i]) ;
}

}
for (j = 0 ; j < number_of_blocks ; j++){

tmp_o ld_pos i t i on [j] = tmp_new_posit ion [j] ;
tmp_o ld_ve l oc i t y [j] = tmp_new_veloc i ty [j] ;
t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g [j] =

tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [j] ;
}
i f (((sum_s l i d i ng > 0) && (sum_s l i d i ng != i n_sum_s l i d i ng)) | |

((sum_s l i d i ng == 0) && (i n_sum_s l i d i ng > 0))) {
end_loop = 1 ;

}
}

∗ out_sum_s l id ing = sum_s l i d i ng ;
∗out_t = t ;
for (k = 0 ; k < number_of_blocks ; k++){

o u t _ s t a t i c _ f r i c t i o n [k] = t m p _ s t a t i c _ f r i c t i o n [k] ;
o u t _ p o s i t i o n [k] = tmp_new_posit ion [k] ;
o u t _ v e l o c i t y [k] = tmp_new_veloc i ty [k] ;
o u t _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g [k] =

tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [k] ;
o u t _ d r i v i n g _ f o r c e [k] = tmp_dr i v i ng_fo r c e [k] ;
out_damping_force [k] = tmp_damping_force [k] ;
ou t_b l o ck_sp r i ng_ fo r c e [k] = tmp_b lock_spr ing_fo rce [

k] ;
ou t_shea r_ fo r ce [k] = tmp_shear_force [k] ;
o u t _ f r i c t i o n _ f o r c e [k] = t m p _ f r i c t i o n _ f o r c e [k] ;

142 C Code Chapter B

o u t _ s l i d i n g [k] = tmp_s l i d i ng [k] ;
}

f r e e (tmp_o ld_ve l oc i t y) ;
f r e e (tmp_o ld_pos i t i on) ;
f r e e (t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g) ;
f r e e (tmp_new_veloc i ty) ;
f r e e (tmp_new_posit ion) ;
f r e e (tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng) ;
f r e e (t m p _ s t a t i c _ f r i c t i o n) ;
f r e e (tmp_dr i v i ng_fo r ce) ;
f r e e (tmp_damping_force) ;
f r e e (tmp_b lock_spr ing_fo rce) ;
f r e e (tmp_shear_force) ;
f r e e (t m p _ f r i c t i o n _ f o r c e) ;
f r e e (tmp_s l i d i ng) ;
return ;

}

Section 5 The C code for the unloading model 143

B.5 The C code for the unloading model

#include <math . h>
#include "mex.h"

/∗ Input Arguments ∗/
#define IN_POSITION prhs [0]
#define IN_VELOCITY prhs [1]
#define IN_LENGTH_STATIC_FRICTION_SPRING prhs [2]

#define IN_STATIC_FRICTION prhs [3]
#define IN_INITIAL_POSITIONS prhs [4]
#define IN_NORMAL_FORCE_PER_BLOCK prhs [5]

#define IN_DRIVING_MATRIX prhs [6]

#define IN_RELATIVE_VISCOUS_DAMPING prhs [7]
#define IN_BLOCK_SPRING_STIFFNESS prhs [8]
#define IN_STATIC_FRICTION_SPRING_STIFFNESS prhs [9]

#define IN_DT_DIVIDED_BY_MASS prhs [1 0]
#define IN_INITIAL_BLOCK_DISTANCES prhs [1 1]
#define IN_DRIVING_SPRING_STIFFNESS prhs [1 2]
#define IN_DRIVING_VELOCITY prhs [1 3]
#define IN_NUMBER_OF_BLOCKS prhs [1 4]

#define IN_T_NORMAL_FORCE prhs [1 5]
#define IN_T_END prhs [1 6]
#define IN_T prhs [1 7]
#define IN_DT prhs [1 8]

#define IN_SUM_SLIDING prhs [1 9]
#define IN_STATIC_FRICTION_COEFFICIENT prhs [2 0]
#define IN_DYNAMIC_FRICTION_COEFFICIENT prhs [2 1]

#define IN_GAMMA prhs [2 2]
#define IN_GAMMA_PROFILE_SLOPE prhs [2 3]
#define IN_GAMMA_PROFILE_TIME prhs [2 4]
#define IN_GAMMA_COUNTER prhs [2 5]

#define IN_POSITION_DRIVING_SPRING prhs [2 6]
#define IN_CONST_DRIVING_FORCE_TIME prhs [2 7]

/∗ Output Arguments ∗/
#define OUT_NEW_POSITION plhs [0]
#define OUT_NEW_VELOCITY plhs [1]
#define OUT_SHEAR_FORCE plhs [2]
#define OUT_FRICTION_FORCE plhs [3]
#define OUT_BLOCK_SPRING_FORCE plhs [4]
#define OUT_DAMPING_FORCE plhs [5]

144 C Code Chapter B

#define OUT_STATIC_FRICTION plhs [6]
#define OUT_SLIDING plhs [7]
#define OUT_NEW_LENGTH_STATIC_FRICTION_SPRING plhs [8]
#define OUT_DRIVING_FORCE plhs [9]
#define OUT_ERROR plhs [1 0]
#define OUT_T plhs [1 1]
#define OUT_T_NORMAL_FORCE plhs [1 2]
#define OUT_SUM_SLIDING plhs [1 3]

#define OUT_STATIC_FRICTION_FORCE plhs [1 4]
#define OUT_DYNAMIC_FRICTION_FORCE plhs [1 5]
#define OUT_NORMAL_FORCE_PER_BLOCK plhs [1 6]
#define OUT_GAMMA_COUNTER plhs [1 7]
#define OUT_GAMMA plhs [1 8]

#define OUT_POSITION_DRIVING_SPRING plhs [1 9]

void mexFunct ion (int n lhs , mxArray ∗ p l h s [] , int nrhs , const mxArray∗
prhs []) {
/∗ Input ∗/
double ∗ i n _ v e l o c i t y , ∗ i n _ p o s i t i o n , ∗

i n _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g ;
double ∗ i n _ s t a t i c _ f r i c t i o n , ∗ i n _ i n i t i a l _ b l o c k _ p o s i t i o n s ;
double ∗ i n_norma l_fo rce_per_b lock ;
double ∗ i n _ d r i v i n g _ m a t r i x ;
double i n _ r e l a t i v e_ v i s c o u s _d a m p i n g ;
double i n _ b l o c k _ s p r i n g _ s t i f f n e s s ,

i n _ s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s ;
double dt_divided_by_mass , i n i t i a l _ b l o c k _ d i s t a n c e s ;
double d r i v i n g _ s p r i n g _ s t i f f n e s s , d r i v i n g _ v e l o c i t y ,

number_of_blocks ;
double dt ;
double t , t_end , t_norma l_force ;
double i n_sum_s l i d i ng ;
double i n _ s t a t i c _ f r i c t i o n _ c o e f f i c i e n t ,

i n _ d y n a m i c _ f r i c t i o n _ c o e f f i c i e n t ;
double in_gamma ;
double ∗ i n_gamma_prof i l e_s lope , ∗ in_gamma_prof i le_t ime ;
double in_gamma_counter ;
double ∗ i n _ p o s i t i o n _ d r i v i n g _ s p r i n g ;
double i n_con s t_d r i v i n g_ fo r c e_ t ime ;

/∗ Output ∗/
double ∗ ou t_po s i t i on , ∗ o u t _ v e l o c i t y ;
double ∗ out_shea r_fo rce , ∗ o u t _ f r i c t i o n _ f o r c e , ∗

out_b lock_sp r i ng_fo r ce , ∗ out_damping_force ;
double ∗ o u t _ s t a t i c _ f r i c t i o n , ∗ o u t _ s l i d i n g , ∗

o u t _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g ;
double ∗ o u t _ d r i v i n g _ f o r c e ;
double ∗ ou t_e r r o r ;
double ∗out_t ;

Section 5 The C code for the unloading model 145

double ∗ out_t_normal_force ;
double ∗ out_sum_s l id ing ;
double ∗ o u t _ s t a t i c _ f r i c t i o n _ f o r c e ;
double ∗ ou t _dyna m i c_ f r i c t i o n_ f o r c e ;
double ∗ out_normal_force_per_b lock ;
double ∗out_gamma_counter ;
double ∗out_gamma ;
double ∗ o u t _ p o s i t i o n _ d r i v i n g _ s p r i n g ;

/∗ In use i n s i d e c−s c r i p t ∗/
int i , j , k ;
int f i r s t _ b l o c k , l a s t _ b l o c k ;
double tmp_gamma_counter ;
double gamma_from_gamma_profile ;
double end_loop ;
double sum_s l i d i ng ;
double sum_s l i d i ng_counte r ;
double tmp_t_normal_force ;
double∗ tmp_o ld_pos i t i on ;
double∗ tmp_o ld_ve l oc i t y ;
double∗ t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g ;
double∗ tmp_new_posit ion ;
double∗ tmp_new_veloc i ty ;
double∗ tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng ;
double∗ t m p _ s t a t i c _ f r i c t i o n ;
double∗ tmp_dr i v i ng_fo r c e ;
double∗ tmp_damping_force ;
double∗ tmp_b lock_spr ing_fo rce ;
double∗ tmp_shear_force ;
double∗ t m p _ f r i c t i o n _ f o r c e ;
double∗ tmp_s l i d i ng ;
double∗ t m p _ s t a t i c _ f r i c t i o n _ f o r c e ;
double∗ tmp_dynamic_ f r i c t i on_fo r ce ;
double∗ tmp_normal_force_per_block ;
double∗ t m p _ p o s i t i o n _ d r i v i n g _ s p r i n g ;

/∗ Input ∗/
i n _ v e l o c i t y = mxGetPr (IN_VELOCITY) ;
i n _ p o s i t i o n = mxGetPr (IN_POSITION) ;
i n _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g = mxGetPr (

IN_LENGTH_STATIC_FRICTION_SPRING) ;
i n _ s t a t i c _ f r i c t i o n = mxGetPr (IN_STATIC_FRICTION

) ;
i n _ i n i t i a l _ b l o c k _ p o s i t i o n s = mxGetPr (

IN_INITIAL_POSITIONS) ;
i n_norma l_fo rce_per_b lock = mxGetPr (

IN_NORMAL_FORCE_PER_BLOCK) ;
i n _ d r i v i n g _ m a t r i x = mxGetPr (IN_DRIVING_MATRIX)

;

146 C Code Chapter B

i n_gamma_pro f i l e_s lope = mxGetPr (
IN_GAMMA_PROFILE_SLOPE) ;

in_gamma_prof i le_t ime = mxGetPr (
IN_GAMMA_PROFILE_TIME) ;

i n _ p o s i t i o n _ d r i v i n g _ s p r i n g = mxGetPr (
IN_POSITION_DRIVING_SPRING) ;

i n _ r e l a t i v e_ v i s c o u s_ d a mp i n g = mxGetSca lar (
IN_RELATIVE_VISCOUS_DAMPING) ;

i n _ b l o c k _ s p r i n g _ s t i f f n e s s = mxGetSca lar (
IN_BLOCK_SPRING_STIFFNESS) ;

i n _ s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s = mxGetSca lar (
IN_STATIC_FRICTION_SPRING_STIFFNESS) ;

dt_div ided_by_mass = mxGetSca lar (
IN_DT_DIVIDED_BY_MASS) ;

i n i t i a l _ b l o c k _ d i s t a n c e s = mxGetSca lar (
IN_INITIAL_BLOCK_DISTANCES) ;

d r i v i n g _ s p r i n g _ s t i f f n e s s = mxGetSca lar (
IN_DRIVING_SPRING_STIFFNESS) ;

d r i v i n g _ v e l o c i t y = mxGetSca lar (
IN_DRIVING_VELOCITY) ;

number_of_blocks = mxGetSca lar (
IN_NUMBER_OF_BLOCKS) ;

t_norma l_force = mxGetSca lar (
IN_T_NORMAL_FORCE) ;

t_end = mxGetSca lar (IN_T_END) ;
t = mxGetSca lar (IN_T) ;
dt = mxGetSca lar (IN_DT) ;
i n_sum_s l i d i ng = mxGetSca lar (IN_SUM_SLIDING

) ;
i n _ s t a t i c _ f r i c t i o n _ c o e f f i c i e n t = mxGetSca lar (

IN_STATIC_FRICTION_COEFFICIENT) ;
i n _ d y n a m i c _ f r i c t i o n _ c o e f f i c i e n t = mxGetSca lar (

IN_DYNAMIC_FRICTION_COEFFICIENT) ;
in_gamma = mxGetSca lar (IN_GAMMA) ;
in_gamma_counter = mxGetSca lar (

IN_GAMMA_COUNTER) ;
i n_con s t_d r i v i n g_ fo r c e_ t ime = mxGetSca lar (

IN_CONST_DRIVING_FORCE_TIME) ;

/∗ Output ∗/
OUT_NEW_POSITION = mxCreateDoubleMatr ix (1 ,

number_of_blocks , mxREAL) ;
OUT_NEW_VELOCITY = mxCreateDoubleMatr ix (1 ,

number_of_blocks , mxREAL) ;
OUT_SHEAR_FORCE = mxCreateDoubleMatr ix (1 ,

number_of_blocks , mxREAL) ;
OUT_FRICTION_FORCE = mxCreateDoubleMatr ix (1 ,

number_of_blocks , mxREAL) ;
OUT_BLOCK_SPRING_FORCE = mxCreateDoubleMatr ix (1 ,

number_of_blocks , mxREAL) ;

Section 5 The C code for the unloading model 147

OUT_DAMPING_FORCE = mxCreateDoubleMatr ix (1 ,
number_of_blocks , mxREAL) ;

OUT_STATIC_FRICTION = mxCreateDoubleMatr ix (1 ,
number_of_blocks , mxREAL) ;

OUT_SLIDING = mxCreateDoubleMatr ix (1 ,
number_of_blocks , mxREAL) ;

OUT_NEW_LENGTH_STATIC_FRICTION_SPRING = mxCreateDoubleMatr ix (1 ,
number_of_blocks , mxREAL) ;

OUT_DRIVING_FORCE = mxCreateDoubleMatr ix (1 ,
number_of_blocks , mxREAL) ;

OUT_STATIC_FRICTION_FORCE = mxCreateDoubleMatr ix (1 ,
number_of_blocks , mxREAL) ;

OUT_DYNAMIC_FRICTION_FORCE = mxCreateDoubleMatr ix (1 ,
number_of_blocks , mxREAL) ;

OUT_NORMAL_FORCE_PER_BLOCK = mxCreateDoubleMatr ix (1 ,
number_of_blocks , mxREAL) ;

OUT_POSITION_DRIVING_SPRING = mxCreateDoubleMatr ix (1 ,
number_of_blocks , mxREAL) ;

OUT_ERROR = mxCreateDoubleMatr ix (1 , 1 ,
mxREAL) ;

OUT_T_NORMAL_FORCE = mxCreateDoubleMatr ix (1 , 1 ,
mxREAL) ;

OUT_T = mxCreateDoubleMatr ix (1 , 1 ,
mxREAL) ;

OUT_SUM_SLIDING = mxCreateDoubleMatr ix (1 , 1 ,
mxREAL) ;

OUT_GAMMA_COUNTER = mxCreateDoubleMatr ix (1 , 1 ,
mxREAL) ;

OUT_GAMMA = mxCreateDoubleMatr ix (1 , 1 ,
mxREAL) ;

o u t _ v e l o c i t y = mxGetPr (OUT_NEW_VELOCITY) ;
o u t _ p o s i t i o n = mxGetPr (OUT_NEW_POSITION) ;
ou t_shea r_ fo r ce = mxGetPr (OUT_SHEAR_FORCE) ;
o u t _ f r i c t i o n _ f o r c e = mxGetPr (OUT_FRICTION_FORCE

) ;
ou t_b l o ck_sp r i ng_ fo r c e = mxGetPr (

OUT_BLOCK_SPRING_FORCE) ;
out_damping_force = mxGetPr (OUT_DAMPING_FORCE)

;
o u t _ s t a t i c _ f r i c t i o n = mxGetPr (

OUT_STATIC_FRICTION) ;
o u t _ s l i d i n g = mxGetPr (OUT_SLIDING) ;
o u t _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g = mxGetPr (

OUT_NEW_LENGTH_STATIC_FRICTION_SPRING) ;
o u t _ d r i v i n g _ f o r c e = mxGetPr (OUT_DRIVING_FORCE)

;
o u t _ s t a t i c _ f r i c t i o n _ f o r c e = mxGetPr (

OUT_STATIC_FRICTION_FORCE) ;
ou t _dyn am i c_ f r i c t i o n_ f o r c e = mxGetPr (

OUT_DYNAMIC_FRICTION_FORCE) ;

148 C Code Chapter B

out_normal_force_per_b lock = mxGetPr (
OUT_NORMAL_FORCE_PER_BLOCK) ;

o u t _ p o s i t i o n _ d r i v i n g _ s p r i n g = mxGetPr (
OUT_POSITION_DRIVING_SPRING) ;

ou t_e r r o r = mxGetPr (OUT_ERROR) ;
out_t_normal_force = mxGetPr (OUT_T_NORMAL_FORCE

) ;
out_t = mxGetPr (OUT_T) ;
out_sum_s l id ing = mxGetPr (OUT_SUM_SLIDING) ;
out_gamma_counter = mxGetPr (OUT_GAMMA_COUNTER)

;
out_gamma = mxGetPr (OUT_GAMMA) ;

/∗ In use i n s i d e c−s c r i p t ∗/
end_loop = 0 ;
ou t_e r r o r [0] = 0 ;
f i r s t _ b l o c k = 0 ;
sum_s l i d i ng_counte r = 0 ;
tmp_gamma_counter = in_gamma_counter ;
gamma_from_gamma_profile = in_gamma ;
l a s t _ b l o c k = number_of_blocks −1;

tmp_o ld_ve l oc i t y = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

tmp_o ld_pos i t i on = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

tmp_new_veloc i ty = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

tmp_new_posit ion = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

t m p _ s t a t i c _ f r i c t i o n = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

tmp_dr i v i ng_fo r c e = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

tmp_damping_force = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

tmp_b lock_spr ing_fo rce = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

tmp_shear_force = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

t m p _ f r i c t i o n _ f o r c e = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

tmp_s l i d i ng = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

t m p _ s t a t i c _ f r i c t i o n _ f o r c e = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

Section 5 The C code for the unloading model 149

tmp_dynamic_ f r i c t i on_fo r ce = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

tmp_normal_force_per_block = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

t m p _ p o s i t i o n _ d r i v i n g _ s p r i n g = (double ∗) mal l oc (
number_of_blocks ∗ s izeof (double)) ;

for (i = 0 ; i < number_of_blocks ; i ++){
tmp_o ld_ve l oc i t y [i] = i n _ v e l o c i t y [i] ;
tmp_o ld_pos i t i on [i] = i n _ p o s i t i o n [i] ;
t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g [i] =

i n _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g [i] ;
t m p _ s t a t i c _ f r i c t i o n [i] = i n _ s t a t i c _ f r i c t i o n [

i] ;
tmp_normal_force_per_block [i] =

i n_norma l_fo rce_per_b lock [i] ;
tmp_dr i v i ng_fo r c e [i] = 0 ;
t m p _ p o s i t i o n _ d r i v i n g _ s p r i n g [i] =

i n _ p o s i t i o n _ d r i v i n g _ s p r i n g [i] ;
}

while (t < t_end && end_loop == 0 && ou t_e r r o r [0] == 0) {
t = t + 1 ;
sum_s l i d i ng = 0 ;
i f (t == (long int) in_gamma_prof i le_t ime [(int)

tmp_gamma_counter]) {
gamma_from_gamma_profile = i n_gamma_pro f i l e_s lope [(int)

tmp_gamma_counter] ;
tmp_gamma_counter += 1 ;

}

for (i = 0 ; i < number_of_blocks ; i ++){
tmp_normal_force_per_block [i] += (gamma_from_gamma_profile
∗ dt) / number_of_blocks ;

t m p _ s t a t i c _ f r i c t i o n _ f o r c e [i] =
i n _ s t a t i c _ f r i c t i o n _ c o e f f i c i e n t ∗
tmp_normal_force_per_block [i] ;

tmp_dynamic_ f r i c t i on_fo r ce [i] =
i n _ d y n a m i c _ f r i c t i o n _ c o e f f i c i e n t ∗
tmp_normal_force_per_block [i] ;

}
i f (t < (long int) i n_con s t_d r i v i n g_ fo r c e_ t ime) {

t m p _ p o s i t i o n _ d r i v i n g _ s p r i n g [f i r s t _ b l o c k] =
i n _ i n i t i a l _ b l o c k _ p o s i t i o n s [f i r s t _ b l o c k] +
d r i v i n g _ v e l o c i t y ∗(dt ∗ t) ;

t m p _ p o s i t i o n _ d r i v i n g _ s p r i n g [l a s t _ b l o c k] =
i n _ i n i t i a l _ b l o c k _ p o s i t i o n s [l a s t _ b l o c k] +
d r i v i n g _ v e l o c i t y ∗(dt ∗ t) ;

tmp_dr i v i ng_fo r c e [f i r s t _ b l o c k] = i n _ d r i v i n g _ m a t r i x [0] ∗
d r i v i n g _ s p r i n g _ s t i f f n e s s ∗(t m p _ p o s i t i o n _ d r i v i n g _ s p r i n g [
f i r s t _ b l o c k] − tmp_o ld_pos i t i on [f i r s t _ b l o c k]) ;

150 C Code Chapter B

tmp_dr i v i ng_fo r c e [l a s t _ b l o c k] = i n _ d r i v i n g _ m a t r i x [1] ∗
d r i v i n g _ s p r i n g _ s t i f f n e s s ∗(t m p _ p o s i t i o n _ d r i v i n g _ s p r i n g [
l a s t _ b l o c k] − tmp_o ld_pos i t i on [l a s t _ b l o c k]) ;

} else i f (t >= (long int) i n_con s t_d r i v i n g_ fo r c e_ t ime) {
t m p _ p o s i t i o n _ d r i v i n g _ s p r i n g [f i r s t _ b l o c k] =

i n _ i n i t i a l _ b l o c k _ p o s i t i o n s [f i r s t _ b l o c k] +
d r i v i n g _ v e l o c i t y ∗(dt ∗ i n_con s t_d r i v i n g_ fo r c e_ t ime) ;

t m p _ p o s i t i o n _ d r i v i n g _ s p r i n g [l a s t _ b l o c k] =
i n _ i n i t i a l _ b l o c k _ p o s i t i o n s [l a s t _ b l o c k] +
d r i v i n g _ v e l o c i t y ∗(dt ∗ i n_con s t_d r i v i n g_ fo r c e_ t ime) ;

tmp_dr i v i ng_fo r c e [f i r s t _ b l o c k] = i n _ d r i v i n g _ m a t r i x [0] ∗
d r i v i n g _ s p r i n g _ s t i f f n e s s ∗(t m p _ p o s i t i o n _ d r i v i n g _ s p r i n g [
f i r s t _ b l o c k] − tmp_o ld_pos i t i on [f i r s t _ b l o c k]) ;

tmp_dr i v i ng_fo r c e [l a s t _ b l o c k] = i n _ d r i v i n g _ m a t r i x [1] ∗
d r i v i n g _ s p r i n g _ s t i f f n e s s ∗(t m p _ p o s i t i o n _ d r i v i n g _ s p r i n g [
l a s t _ b l o c k] − tmp_o ld_pos i t i on [l a s t _ b l o c k]) ;

}

/∗ Ca l cu l a t e the f i r s t b l o c k ∗/
tmp_damping_force [f i r s t _ b l o c k] =

i n_ r e l a t i v e_ v i s c o u s_ d a mp i n g ∗(tmp_o ld_ve l oc i t y [f i r s t _ b l o c k +
1] − tmp_o ld_ve l oc i t y [f i r s t _ b l o c k]) ;

tmp_b lock_spr ing_fo rce [f i r s t _ b l o c k] =
i n _ b l o c k _ s p r i n g _ s t i f f n e s s ∗((tmp_o ld_pos i t i on [f i r s t _ b l o c k +

1] − tmp_o ld_pos i t i on [f i r s t _ b l o c k]) −
i n i t i a l _ b l o c k _ d i s t a n c e s) ;

tmp_shear_force [f i r s t _ b l o c k] = tmp_damping_force [
f i r s t _ b l o c k] + tmp_b lock_spr ing_fo rce [f i r s t _ b l o c k] +
tmp_dr i v i ng_fo r c e [f i r s t _ b l o c k] ;

i f (t m p _ s t a t i c _ f r i c t i o n [f i r s t _ b l o c k] == 1) {
/∗ S t a t i c f r i c t i o n ∗/
t m p _ f r i c t i o n _ f o r c e [f i r s t _ b l o c k] = −

i n _ s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s ∗
t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g [f i r s t _ b l o c k] ;

tmp_new_veloc i ty [f i r s t _ b l o c k] =
tmp_o ld_ve l oc i t y [f i r s t _ b l o c k] + (tmp_shear_force [
f i r s t _ b l o c k] + t m p _ f r i c t i o n _ f o r c e [f i r s t _ b l o c k]) ∗
dt_div ided_by_mass ;

tmp_new_posit ion [f i r s t _ b l o c k] =
tmp_o ld_pos i t i on [f i r s t _ b l o c k] + tmp_new_veloc i ty [
f i r s t _ b l o c k]∗ dt ;

tmp_s l i d i ng [f i r s t _ b l o c k] = 0 ;
t m p _ s t a t i c _ f r i c t i o n [f i r s t _ b l o c k] = 1 ;
tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [f i r s t _ b l o c k] =

t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g [f i r s t _ b l o c k] +
tmp_new_posit ion [f i r s t _ b l o c k] − tmp_o ld_pos i t i on [
f i r s t _ b l o c k] ;

i f (f a b s (tmp_shear_force [f i r s t _ b l o c k]) >
t m p _ s t a t i c _ f r i c t i o n _ f o r c e [f i r s t _ b l o c k]) {
/∗ tmp_sl id ing [f i r s t _ b l o c k] = 1 ; ∗/
/∗ sum_sl iding += 1; ∗/

Section 5 The C code for the unloading model 151

t m p _ s t a t i c _ f r i c t i o n [f i r s t _ b l o c k] = 0 ;
}

} else i f (t m p _ s t a t i c _ f r i c t i o n [f i r s t _ b l o c k] == 0) {
/∗ Dynamic f r i c t i o n ∗/
t m p _ f r i c t i o n _ f o r c e [f i r s t _ b l o c k] = −

tmp_dynamic_ f r i c t i on_fo r ce [f i r s t _ b l o c k] ∗ (
tmp_o ld_ve l oc i t y [f i r s t _ b l o c k] / f a b s (tmp_o ld_ve l oc i t y [
f i r s t _ b l o c k])) ;

tmp_new_veloc i ty [f i r s t _ b l o c k] =
tmp_o ld_ve l oc i t y [f i r s t _ b l o c k] + (tmp_shear_force [
f i r s t _ b l o c k] + t m p _ f r i c t i o n _ f o r c e [f i r s t _ b l o c k]) ∗
dt_div ided_by_mass ;

tmp_new_posit ion [f i r s t _ b l o c k] =
tmp_o ld_pos i t i on [f i r s t _ b l o c k] + tmp_new_veloc i ty [
f i r s t _ b l o c k]∗ dt ;

tmp_s l i d i ng [f i r s t _ b l o c k] = 1 ;
sum_s l i d i ng += 1 ;
t m p _ s t a t i c _ f r i c t i o n [f i r s t _ b l o c k] = 0 ;
tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [f i r s t _ b l o c k] = 0 ;
i f (tmp_new_veloc i ty [f i r s t _ b l o c k] < 0) {

/∗ tmp_sl id ing [f i r s t _ b l o c k] =
0; ∗/

/∗ sum_sl iding −=
1; ∗/

t m p _ s t a t i c _ f r i c t i o n [f i r s t _ b l o c k] =
1 ;

tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [f i r s t _ b l o c k] =
tmp_shear_force [f i r s t _ b l o c k] /
i n _ s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s ;

}
} else {

ou t_e r r o r [0] = 1 ;
mexPr in t f ("ERROR at t = %d [s] for block %d static

friction = %.1f\n" , t , f i r s t _ b l o c k , t m p _ s t a t i c _ f r i c t i o n [
f i r s t _ b l o c k]) ;

}

/∗ Ca l cu l a t e the l a s t b l o c k ∗/
tmp_b lock_spr ing_fo rce [l a s t _ b l o c k] = i n _ b l o c k _ s p r i n g _ s t i f f n e s s
∗(i n i t i a l _ b l o c k _ d i s t a n c e s − (tmp_o ld_pos i t i on [l a s t _ b l o c k] −

tmp_o ld_pos i t i on [l a s t_b l o c k −1])) ;
tmp_damping_force [l a s t _ b l o c k] =

i n_ r e l a t i v e_ v i s c o u s_ d a mp i n g ∗(tmp_o ld_ve l oc i t y [l a s t_b l o c k −1]
− tmp_o ld_ve l oc i t y [l a s t _ b l o c k]) ;

tmp_shear_force [l a s t _ b l o c k] = tmp_damping_force [
l a s t _ b l o c k] + tmp_b lock_spr ing_fo rce [l a s t _ b l o c k] +
tmp_dr i v i ng_fo r c e [l a s t _ b l o c k] ;

i f (t m p _ s t a t i c _ f r i c t i o n [l a s t _ b l o c k] == 1) {
/∗ S t a t i c f r i c t i o n ∗/
t m p _ f r i c t i o n _ f o r c e [l a s t _ b l o c k] = −

i n _ s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s ∗

152 C Code Chapter B

t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g [l a s t _ b l o c k] ;
tmp_new_veloc i ty [l a s t _ b l o c k] =

tmp_o ld_ve l oc i t y [l a s t _ b l o c k] + (tmp_shear_force [
l a s t _ b l o c k] + t m p _ f r i c t i o n _ f o r c e [l a s t _ b l o c k]) ∗
dt_div ided_by_mass ;

tmp_new_posit ion [l a s t _ b l o c k] =
tmp_o ld_pos i t i on [l a s t _ b l o c k] + tmp_new_veloc i ty [
l a s t _ b l o c k]∗ dt ;

tmp_s l i d i ng [l a s t _ b l o c k] = 0 ;
t m p _ s t a t i c _ f r i c t i o n [l a s t _ b l o c k] = 1 ;
tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [l a s t _ b l o c k] =

t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g [l a s t _ b l o c k] +
tmp_new_posit ion [l a s t _ b l o c k] − tmp_o ld_pos i t i on [
l a s t _ b l o c k] ;

i f (f a b s (tmp_shear_force [l a s t _ b l o c k]) >
t m p _ s t a t i c _ f r i c t i o n _ f o r c e [l a s t _ b l o c k]) {
/∗ tmp_sl id ing [l a s t _ b l o c k] = 1; ∗/
/∗ sum_sl iding += 1; ∗/
t m p _ s t a t i c _ f r i c t i o n [l a s t _ b l o c k] = 0 ;

}
} else i f (t m p _ s t a t i c _ f r i c t i o n [l a s t _ b l o c k] == 0) {

/∗ Dynamic f r i c t i o n ∗/
t m p _ f r i c t i o n _ f o r c e [l a s t _ b l o c k] = −

tmp_dynamic_ f r i c t i on_fo r ce [l a s t _ b l o c k] ∗ (
tmp_o ld_ve l oc i t y [l a s t _ b l o c k] / f a b s (tmp_o ld_ve l oc i t y [
l a s t _ b l o c k])) ;

tmp_new_veloc i ty [l a s t _ b l o c k] =
tmp_o ld_ve l oc i t y [l a s t _ b l o c k] + (tmp_shear_force [
l a s t _ b l o c k] + t m p _ f r i c t i o n _ f o r c e [l a s t _ b l o c k]) ∗
dt_div ided_by_mass ;

tmp_new_posit ion [l a s t _ b l o c k] =
tmp_o ld_pos i t i on [l a s t _ b l o c k] + tmp_new_veloc i ty [
l a s t _ b l o c k]∗ dt ;

tmp_s l i d i ng [l a s t _ b l o c k] = 1 ;
sum_s l i d i ng += 1 ;
t m p _ s t a t i c _ f r i c t i o n [l a s t _ b l o c k] = 0 ;
tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [l a s t _ b l o c k] = 0 ;
i f (tmp_new_veloc i ty [l a s t _ b l o c k] < 0) {

/∗ tmp_sl id ing [l a s t _ b l o c k] =
0; ∗/

/∗ sum_sl iding −=
1; ∗/

t m p _ s t a t i c _ f r i c t i o n [l a s t _ b l o c k] = 1 ;
tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [l a s t _ b l o c k] =

tmp_shear_force [l a s t _ b l o c k] /
i n _ s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s ;

}
} else {

ou t_e r r o r [0] = 1 ;
mexPr in t f ("ERROR at t = %d [s] for block %d static

friction = %.1f\n" , t , l a s t_b l o c k , t m p _ s t a t i c _ f r i c t i o n [

Section 5 The C code for the unloading model 153

l a s t _ b l o c k]) ;
}

for (i = 1 ; i < number_of_blocks − 1 ; i ++){
/∗ Ca l cu l a t e the midle b l o c k s ∗/
tmp_damping_force [i] = i n _ r e l a t i v e_ v i s c o u s _d a mp i n g ∗(

tmp_o ld_ve l oc i t y [i −1] − 2∗ tmp_o ld_ve l oc i t y [i] +
tmp_o ld_ve l oc i t y [i +1]) ;

tmp_b lock_spr ing_fo rce [i] = i n _ b l o c k _ s p r i n g _ s t i f f n e s s ∗(
tmp_o ld_pos i t i on [i +1] − 2∗ tmp_o ld_pos i t i on [i] +
tmp_o ld_pos i t i on [i −1]) ;

tmp_shear_force [i] = tmp_damping_force [i] +
tmp_b lock_spr ing_fo rce [i] ;

i f (t m p _ s t a t i c _ f r i c t i o n [i] == 1) {
/∗ S t a t i c f r i c t i o n ∗/
t m p _ f r i c t i o n _ f o r c e [i] = −

i n _ s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s ∗
t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g [i] ;

tmp_new_veloc i ty [i] =
tmp_o ld_ve l oc i t y [i] + (tmp_shear_force [i] +
t m p _ f r i c t i o n _ f o r c e [i]) ∗dt_div ided_by_mass ;

tmp_new_posit ion [i] =
tmp_o ld_pos i t i on [i] + tmp_new_veloc i ty [i]∗ dt ;

tmp_s l i d i ng [i] = 0 ;
t m p _ s t a t i c _ f r i c t i o n [i] = 1 ;
tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [i] =

t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g [i] +
tmp_new_posit ion [i] − tmp_o ld_pos i t i on [i] ;

i f (f a b s (tmp_shear_force [i]) >
t m p _ s t a t i c _ f r i c t i o n _ f o r c e [i]) {
/∗ tmp_sl id ing [i] = 1 ; ∗/
/∗ sum_sl iding += 1; ∗/
t m p _ s t a t i c _ f r i c t i o n [i] = 0 ;

}
} else i f (t m p _ s t a t i c _ f r i c t i o n [i] == 0) {

/∗ Dynamic f r i c t i o n ∗/
t m p _ f r i c t i o n _ f o r c e [i] = −

tmp_dynamic_ f r i c t i on_fo r ce [i] ∗ (tmp_o ld_ve l oc i t y [i] /
f a b s (tmp_o ld_ve l oc i t y [i])) ;

tmp_new_veloc i ty [i] =
tmp_o ld_ve l oc i t y [i] + (tmp_shear_force [i] +
t m p _ f r i c t i o n _ f o r c e [i]) ∗dt_div ided_by_mass ;

tmp_new_posit ion [i] =
tmp_o ld_pos i t i on [i] + tmp_new_veloc i ty [i]∗ dt ;

tmp_s l i d i ng [i] = 1 ;
sum_s l i d i ng += 1 ;
t m p _ s t a t i c _ f r i c t i o n [i] = 0 ;
tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [i] = 0 ;
i f (tmp_new_veloc i ty [i] < 0) {

/∗ tmp_sl id ing [i] = 0 ; ∗/
/∗ sum_sl iding −= 1; ∗/

154 C Code Chapter B

t m p _ s t a t i c _ f r i c t i o n [i] = 1 ;
tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [i] =

tmp_shear_force [i] /
i n _ s t a t i c _ f r i c t i o n _ s p r i n g _ s t i f f n e s s ;

}
} else {

ou t_e r r o r [0] = 1 ;
mexPr in t f ("ERROR at t = %d [s] for block %d static

friction = %.1f\n" , t , i , t m p _ s t a t i c _ f r i c t i o n [i]) ;
}

}
for (j = 0 ; j < number_of_blocks ; j++){

tmp_o ld_pos i t i on [j] = tmp_new_posit ion [j] ;
tmp_o ld_ve l oc i t y [j] = tmp_new_veloc i ty [j] ;
t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g [j] =

tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [j] ;
}
i f (((sum_s l i d i ng > 0) && (sum_s l i d i ng != i n_sum_s l i d i ng)) | |

((sum_s l i d i ng == 0) && (i n_sum_s l i d i ng > 0))) {
end_loop = 1 ;

}
}

∗ out_sum_s l id ing = sum_s l i d i ng ;
∗out_t = t ;
∗out_gamma_counter = tmp_gamma_counter ;
∗out_gamma = gamma_from_gamma_profile ;

for (k = 0 ; k < number_of_blocks ; k++){
o u t _ s t a t i c _ f r i c t i o n [k] = t m p _ s t a t i c _ f r i c t i o n [k] ;
o u t _ p o s i t i o n [k] = tmp_new_posit ion [k] ;
o u t _ v e l o c i t y [k] = tmp_new_veloc i ty [k] ;
o u t _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g [k] =

tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng [k] ;
o u t _ d r i v i n g _ f o r c e [k] = tmp_dr i v i ng_fo r c e [k] ;
out_damping_force [k] = tmp_damping_force [k] ;
ou t_b l o ck_sp r i ng_ fo r c e [k] = tmp_b lock_spr ing_fo rce [

k] ;
ou t_shea r_ fo r ce [k] = tmp_shear_force [k] ;
o u t _ f r i c t i o n _ f o r c e [k] = t m p _ f r i c t i o n _ f o r c e [k] ;
o u t _ s l i d i n g [k] = tmp_s l i d i ng [k] ;
o u t _ s t a t i c _ f r i c t i o n _ f o r c e [k] =

t m p _ s t a t i c _ f r i c t i o n _ f o r c e [k] ;
ou t _dyn am i c_ f r i c t i o n_ f o r c e [k] =

tmp_dynamic_ f r i c t i on_fo r ce [k] ;
out_normal_force_per_b lock [k] =

tmp_normal_force_per_block [k] ;
o u t _ p o s i t i o n _ d r i v i n g _ s p r i n g [k] =

t m p _ p o s i t i o n _ d r i v i n g _ s p r i n g [k] ;
}

Section 5 The C code for the unloading model 155

f r e e (tmp_o ld_ve l oc i t y) ;
f r e e (tmp_o ld_pos i t i on) ;
f r e e (t m p _ o l d _ l e n g t h _ s t a t i c _ f r i c t i o n _ s p r i n g) ;
f r e e (tmp_new_veloc i ty) ;
f r e e (tmp_new_posit ion) ;
f r e e (tmp_new_ l eng th_s t a t i c_ f r i c t i o n_sp r i ng) ;
f r e e (t m p _ s t a t i c _ f r i c t i o n) ;
f r e e (tmp_dr i v i ng_fo r ce) ;
f r e e (tmp_damping_force) ;
f r e e (tmp_b lock_spr ing_fo rce) ;
f r e e (tmp_shear_force) ;
f r e e (t m p _ f r i c t i o n _ f o r c e) ;
f r e e (tmp_s l i d i ng) ;
f r e e (t m p _ s t a t i c _ f r i c t i o n _ f o r c e) ;
f r e e (tmp_dynamic_ f r i c t i on_fo r ce) ;
f r e e (tmp_normal_force_per_block) ;
f r e e (t m p _ p o s i t i o n _ d r i v i n g _ s p r i n g) ;
return ;

}

Bibliography

[1] Berni J Alder and TE Wainwright. “Studies in molecular dynamics. I. General
method”. In: The Journal of Chemical Physics 31 (1959), p. 459.

[2] D.S. Amundsen. “Modelling the onset of dynamic friction: A study of rupture veloc-
ities”. MA thesis. Oslo: Univeristy of Oslo, 2011.

[3] D.S. Amundsen et al. “1D model of precursors to frictional stick-slip motion allowing
for robust comparison with experiments”. In: Tribology Letters (2012), pp. 1–13.

[4] Atomic force microscopy Block diagram. http://en.wikipedia.org/wiki/Atomic_
force_microscopy. Accessed: 02.03.2014.

[5] T. Baumberger and C. Caroli. “Solid friction from stick–slip down to pinning and
aging”. In: Advances in Physics 55.3-4 (2006), pp. 279–348.

[6] O Ben-David, G Cohen, and J Fineberg. “Short-time dynamics of frictional strength
in dry friction”. In: Tribology letters 39.3 (2010), pp. 235–245.

[7] O. Ben-David, G. Cohen, and J. Fineberg. “The dynamics of the onset of frictional
slip”. In: Science 330.6001 (2010), pp. 211–214.

[8] O. Ben-David, S.M. Rubinstein, and J. Fineberg. “Slip-stick and the evolution of
frictional strength”. In: Nature 463.7277 (2010), pp. 76–79.

[9] M. L. Boas. Mathematical Methods in the Physical Sciences. third edition. Hoboken,
NJ: John Wiley & Sons Inc., 2006.

[10] OM Braun, I. Barel, and M. Urbakh. “Dynamics of transition from static to kinetic
friction”. In: Physical Review Letters 103.19 (2009), p. 194301.

[11] R Burridge and Leon Knopoff. “Model and theoretical seismicity”. In: Bulletin of the
Seismological Society of America 57.3 (1967), pp. 341–371.

[12] J. C. Butcher. Numerical Methods for Ordinary Differential equations. second edition.
John Wiley & Sons, Ltd, 2008.

[13] Jean M Carlson, James S Langer, and Bruce E Shaw. “Dynamics of earthquake
faults”. In: Reviews of Modern Physics 66.2 (1994), p. 657.

[14] Duncan Dowson. History of tribology. second edition. London and Bury St Edmunds,
UK: Professional Engineering Publishing Limited, 1998.

[15] Euler method Truncation error. en.wikipedia.org/wiki/Euler’s_method. Accessed:
03.03.2014.

[16] L Knopoff, JO Mouton, and R Burridge. “The Dynamics of a one-dimensional Fault
in the Presence of FrictiontâĂă”. In: Geophysical Journal of the Royal Astronomical
Society 35.1-3 (1973), pp. 169–184.

157

http://en.wikipedia.org/wiki/Atomic_force_microscopy
http://en.wikipedia.org/wiki/Atomic_force_microscopy
en.wikipedia.org/wiki/Euler's_method

158 Bibliography Chapter 7

[17] S. Maegawa, A. Suzuki, and K. Nakano. “Precursors of global slip in a longitudinal
line contact under non-uniform normal loading”. In: Tribology Letters 38.3 (2010),
pp. 313–323.

[18] Gregory C McLaskey et al. “Fault healing promotes high-frequency earthquakes in
laboratory experiments and on natural faults”. In: Nature 491.7422 (2012), pp. 101–
104.

[19] Nicholas Metropolis and Stanislaw Ulam. “The monte carlo method”. In: Journal of
the American statistical association 44.247 (1949), pp. 335–341.

[20] Poly(methyl methacrylate) Young’s modulus. http://en.wikipedia.org/wiki/Poly%
28methyl_methacrylate%29. Accessed: 02.03.2014.

[21] H. W. Press et al. Numerical Recipes. third edition. New York: Cambridge Pniversity
press, 2007.

[22] Shmuel M Rubinstein et al. “Crack-like processes governing the onset of frictional
slip”. In: International journal of fracture 140.1-4 (2006), pp. 201–212.

[23] S.M. Rubinstein, G. Cohen, and J. Fineberg. “Detachment fronts and the onset of
dynamic friction”. In: Nature 430.7003 (2004), pp. 1005–1009.

[24] SM Rubinstein, G Cohen, and J Fineberg. “Dynamics of precursors to frictional
sliding”. In: Physical review letters 98.22 (2007), p. 226103.

[25] SM Rubinstein, G Cohen, and J Fineberg. “Visualizing stick–slip: experimental ob-
servations of processes governing the nucleation of frictional sliding”. In: Journal of
Physics D: Applied Physics 42.21 (2009), p. 214016.

[26] PA Selvadurai, SD Glaser, et al. “Direct measurement of contact area and seismic
stress along a sliding interface”. In: 46th US Rock Mechanics/Geomechanics Sympo-
sium. American Rock Mechanics Association. 2012.

[27] J. Trømborg. “Modelling the onset of dynamic friction: Importace of the vertical
dimension”. MA thesis. Oslo: Univeristy of Oslo, 2011.

http://en.wikipedia.org/wiki/Poly%28methyl_methacrylate%29
http://en.wikipedia.org/wiki/Poly%28methyl_methacrylate%29

	I Introduction
	Introduction
	The History of Friction
	Goals with this thesis
	The structure of the thesis

	II Theory
	Friction Theory
	The Burridge-Knopoff model
	A simpler friction model
	Viscous damping

	III Experiments
	Experiments
	Experiments
	Unloading model
	Parameters of the model

	IV Numerical Methods and Ordinary Differential Equations
	Numerical Methods
	Ordinary differential equations
	The numerical methods
	The Euler method
	The Euler-Cromer method

	Truncation error of the Euler method
	Local truncation error
	Global truncation error

	V The 1D-Model
	Introduction
	Side driven model
	Equations of motion
	The friction model
	Defining the precursor length
	Asymmetric normal loading
	Viscous damping
	Tangential force
	Initial Shear Force
	Top driven
	Validation
	The side driven model

	Results
	Variation of the static and dynamic friction coefficient in the side-driven model
	Different ratios between kt and k
	Variation of k and s and the affect of LP/L-FT/F

	VI The 1D-Unloading-Model
	The 1D-Unloading-Model
	The model
	The numerical model
	The experimental data
	Results

	VII Discussion
	Discussion
	Side driven model
	Top driven model
	Unloading model
	Conclusion
	Future work
	Concluding words

	Viscous Damping
	Strange behavior of the viscous damping

	C Code
	Language
	Matlab code
	Initialisation code
	The time-loop code

	The C code for the side driven model
	The C code for the top driven model
	The C code for the unloading model

