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Abstract

We study the rotational properties of a two-component Bose gas trapped in a
rotating harmonic potential, effectively in two dimensions. We first consider a
completely homogeneous interaction between particles, and assume the bosons
to be in the lowest Landau level. We derive analytical expressions for some
wave functions and energies at low angular momenta, and use these results
together with exact numerical diagonalization results to test the applicability
of composite fermion (CF) trial wave functions to the system. We find that
a general procedure based on CF wave functions reproduces the exact ground
states and many of the excited states for sufficiently low angular momenta,
and give very good approximate results at angular momenta up to the two-
component analogy of a single vortex. Additionally, we produce very simple
CF states that have remarkably high overlaps with the lowest-lying states.
Finally, we briefly discuss the case of inhomogeneous interactions, pointing out
the difficulties arising from this generalization.
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Chapter 1

Introduction

In condensed matter physics, the classical objects of study are solids and liquids. The
advent of quantum physics together with the marvelous technological progress in the 20th
century has directed our attention to more exotic condensed states, such as superfluids,
superconductors, Bose-Einstein condensates and low-dimensional electronic systems, to
name a few. The building blocks of these systems are electrons, ions, atoms and “emergent
particles” such as phonons and Cooper pairs. Particles in three dimensions can always
be characterized by the fact that they are either fermions or bosons. Usually many-body
systems of fermions have dramatically different behaviors than their bosonic counterparts,
because of the Pauli principle. However, this is not always the case in low-dimensional
systems. Some emergent particles are anyons, whose statistics are in a sense in between
fermionic and bosonic statistics. Another fact of low-dimensional systems is that many-
body systems of bosons and fermions don’t necessarily behave so differently in all cases.
We will point out an interesting connection between bosons rotating in a harmonic trap,
and fermions moving in a magnetic field, when the two systems are confined to move
in two dimensions. This connection has received much interest in the last two decades
[1-4], both theoretically and experimentally. One of the main reasons why these are very
interesting systems to study is that they show many exotic and fascinating phenomena that
are inherently quantum-physical. Additionally, these phenomena are often either realizable
in current experiments or foreseen to be realized in the near future, and there exist both
approximate and even some exact analytical theoretical results.

One consequence of the quantum mechanical nature of rotating bosons in a trap is the
formation of quantized vortices in the fluid [4-6]. The first experimental observation of a
quantized vortex in a Bose-Einstein condensate occurred in 1999 at the JILA group [5], the
same place where the first gaseous Bose-Einstein condensate was realized experimentally,
in 1995 [7]. The vortex was produced in a system of 87Rb, where two different internal
spin states were manipulated to create the desired vortex wave function. In other words,
the first vortex was observed in a two-component system. Such systems will be the topic of
this thesis. The theoretical work treating rotating bosons has until now mostly dealt with
a single species of bosons for simplicity. This topic will be covered in Chapter 2. We will
then generalize some of these results, inspired by the recent paper [8], in Chapter 3.

In this thesis we will study the system of two-component rotating bosons by three means:
analytical calculations, exact numerical diagonalization and by using trial wave functions.
An emphasis will be put on the comparison of exact analytical results and the trial wave
functions: the reason is that we will employ a method of constructing trial wave functions
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that a priori was not designed to apply to bosons. Instead, the trial wave functions we
will use are composite fermion trial wave functions [9,10], developed by Jainendra Jain to
understand the (fractional) quantum Hall effect. We give an introduction to this topic in
Chapter 4. As mentioned above, it may seem strange to use trial wave functions tailored
for fermions when studying rotating bosons. Additionally, we will focus on rotation at
low angular momenta, whereas the fermions in the quantum Hall regime typically have
high angular momenta because of a strong external magnetic field. Recent work [11-
14] has shown that, despite the arguments just presented, the composite fermion wave
functions give faithful representations of the exact states for rotating one-component bosons
at both high and low angular momenta. We want to analyze their applicability to the two-
component case: this is done in Chapter 5 for a homogeneous interaction between bosons.
By homogeneous we mean that inter- and intra-species interactions are equal in strength.
Finally, we give a brief discussion on inhomogeneous interactions in Chapter 6.

While completing the work presented in this document we became aware of a very recent
manuscript [29] applying CF wave functions to two-component rotating bosons in the high
angular momenta (fractional quantum Hall) regime. To the best of our knowledge these are
the first two times that CF has ever been used to study two-component rotating bosons.



Chapter 2

Non-interacting Bose gas

The purpose of this thesis is as stated earlier to study two species of bosons interacting with
each other in a trap. However, much of the language, notation and concepts needed for a
fruitful study of such a system is most easily attained by first concentrating on a one-species
gas, where all the particles in the gas are of the same type. In this chapter we will study
such a one-species gas of particles. We will present some basics concerning the statistics of
bosons leading to the prediction of Bose-Einstein condensation. We will derive the many-
body wave functions for a non-interacting, rotating Bose-Einstein condensate confined in a
harmonic trap, where the motion becomes essentially two-dimensional. Finally we discuss
the yrast states of the condensate.

2.1 Bose-Einstein statistics

In quantum mechanics, the concept of truly identical particles appears when one tries to
construct many-body wave functions from single-particle ones. A two-body wave function
describing identical particles must have the property that

|Ψ(r1, χ1, r2, χ2)|2 = |Ψ(r2, χ2, r1, χ1)|2 (2.1.1)

i.e. the property that an exchange of the two particles (positions and spins) does not change
probability amplitudes. In three-dimensional space, this means that the wave function itself
must either be fully symmetric or fully anti-symmetric with respect to particle interchange
[15]. Particles of the first kind are bosons, and particles of the second kind are fermions.
In addition, the spin-statistics theorem of relativistic quantum field theory tells us that
bosons are particles with integer spins, while fermions have half-integer spins. Because
of the antisymmetry of wave functions describing fermions, we have the Pauli exclusion
principle: No two fermions can occupy the same single-particle state. However, there is
no such restriction for bosons: there can be any number n of bosons occupying a single-
particle state. Normally, this makes systems of bosons behave very differently from systems
of fermions under similar conditions.

From statistical mechanics, we know that a system of quantum particles in thermal equi-
librium can be described by the grand partition function Ξ of its available states. For a
system of bosons, each with single-particle states of energy εν available, the grand partition
function is [16]

Ξ =

∞∑
n=0

e−nβ(εν−µ) =
1

1− e−β(εν−µ)
(2.1.2)

9
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Here, β = 1/kT is the well-known factor containing the temperature dependence, µ is the
chemical potential, and we have used the fact that the series must converge in order to
have well-defined occupational probabilities. The average number of particles in the state
with energy εν is

n̄ =

∞∑
n=0

ne−nβ(εν−µ) =

∞∑
n=0

ne−nx = − 1

Ξ

∂Ξ

∂x
=

1

e−β(εν−µ) − 1
(2.1.3)

Now, let the lowest energy state have energy ε0. The convergence of the series in (2.1.2)
means that we must have ε0 > µ. Thus, an excited single-particle state at energy εν can
at most have mean occupation

n̄max =
1

eβ(εν−ε0) − 1
(2.1.4)

while the ground state can accommodate arbitrarily many bosons. Typically µ increases
as T decreases, so at a certain temperature Tc the temperature will be so low that µ is
very close to ε0, and only a few bosons occupy the excited states: the rest have condensed
to the lowest-lying state. In this case, we speak of a Bose-Einstein condensate.

It can be shown [17] that the critical temperature Tc at which the free non-interacting Bose
gas condenses is zero if the gas is two-dimensional. However, when the gas is trapped in
a harmonic oscillator potential, Tc is finite and non-zero, but usually very small. In the
next section I will discuss the behavior of a rotating Bose gas in such a potential. We will
not consider the effects of finite temperature in this thesis, but focus on the many-body
quantum eigenstates of the system themselves.

2.2 Rotating trapped Bose gas

Let’s first define the trap in which our bosons will be placed. A harmonic trap is a trap
subjecting the particles in it to a potential of the form

V (r) =
1

2
M(ω2

1x
2 + ω2

2y
2 + ω2

3z
2) (2.2.1)

where M is the mass of the particles and the ωi are the classical oscillator frequencies
in the three spatial directions defined by a Cartesian coordinate system. Imagine now N
spinless bosons of mass M in such a harmonic trap. Further, assume ω1 = ω2 = ω3 = ω.
Then, the Hamiltonian for the system would be

H =

N∑
i=1

(
p2
i

2M
+

1

2
Mω2r2

i

)
(2.2.2)

Now, we will rotate the trap around the z-axis at angular frequency Ω. In a rotating
reference frame following the trap, the Hamiltonian would now be

H =

N∑
i=1

(
p2
i

2M
+

1

2
Mω2r2

i − Ω(Lz)i

)
=

N∑
i=1

Hi (2.2.3)

Here
∑N

i=1(Lz)i =
∑N

i=1 xpy − ypx is the total angular momentum operator in the z
direction. Since the particles are (for now) non-interacting, we consider the single-particle
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Hamiltonian Hi in the following. It can be rewritten as follows:

Hi =

(
p2
i

2M
+

1

2
Mω2r2

i − ΩLz

)
=

1

2M

(
p2
x + (Mω)2x2 − 2Mωxpy + 2Mωxpy

+ p2
y + (Mω)2y2 − 2Mωypx + 2Mωypx + p2

z + (Mω)2z2 − 2MΩLz

)
=

1

2M

(
p2
x + 2Mωypx + (Mω)2y2 + p2

y − 2Mωxpy + (Mω)2x2

+ 2Mω(xpy − ypx) + p2
z + (Mω)2z2 − 2MΩLz

)
(2.2.4)

where x, y, z, px, py, pz, Lz all refer to particle i. Now let Ax = −Mωy, Ay = Mωx, so that

Hi =
1

2M

[
(px −Ax)2 + (py −Ay)2

]
+

[
p2
z

2M
+

1

2
Mω2z2

]
+ ωLz − ΩLz

= H‖ +Hz +HΩ

(2.2.5)

The first part of the Hamiltonian,

H‖ =
1

2M

[
(px −Ax)2 + (py −Ay)2

]
=

1

2M
(p−A)2

‖ (2.2.6)

should be familiar from classical mechanics; it resembles the Hamiltonian of a charged
particle moving in a magnetic field B = ∇×A = 2Mωz where z is a unit vector in the z
direction. Classically, B is the observable field and A is a handy mathematical quantity in
calculations. We know that the condition B = ∇×A does not uniquely determine A for a
given B; we can choose a gauge of our liking. Our choice of A = (−Mωy,Mωx) is known
as the symmetric gauge. However, note that H‖ contains only the coordinates x and y and
thus is equal to a Hamiltonian describing a charged particle in two dimensions. It is this
Hamiltonian, along with a term describing interactions, that lies at the core of the quantum
Hall effect. This similarity will be of high importance in the subsequent chapters. The
one-body energy spectrum of H‖ is well known [1,9]: the energies form so-called Landau
levels with energies

En = (n+
1

2
)2~ω (2.2.7)

where n ∈ {0, 1, 2, ...} is known as the Landau level index. The Hz part is on the other
hand just a one-dimensional harmonic oscillator Hamiltonian in the z direction, and the
last part is

HΩ = (ω − Ω)Lz (2.2.8)

Since the problem involves a harmonic oscillator potential, it is natural to define two
operators conjugate to each other, a, a†, that act as lowering and raising operators between
Landau levels. Let π = (p−A)‖ such that

H‖ =
π2

2M
(2.2.9)

is the one-particle Landau part of the Hamiltonian. Taking inspiration from the one-
dimensional harmonic oscillator, we want to arrive at the form

H‖ =

(
a†a+

1

2

)
~ω0 (2.2.10)
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and the operators
a = C(πx + iπy) a† = C(πx − iπy) (2.2.11)

can be seen to accomplish this for a certain value of C. It is easiest to calculate C from
the well known commutation relation [a, a†] = 1:

[a, a†] = C2[πx + iπy, πx − iπy]
= −2iC2[πx, πy]

= −2iC2[px +Mωy, py −Mωx]

= −2iC2(2Mωi~)

(2.2.12)

The last step follows the canonical commutation relations [x, px] = [y, py] = i~. We find

[a, a†] = 1 =⇒ C = (4Mω~)−1/2 (2.2.13)

Inserting this back into (2.2.10) gives

H =

(
C2(πx − iπy)(πx + iπy) +

1

2

)
~ω0

=

(
C2(π2

x + π2
y + i[πx, πy] +

1

2

)
~ω0

=

(
C2π2 +

−2Mω~
4Mω~

+
1

2

)
~ω0

=
π2~ω0

4Mω~

=
π2

2M

(2.2.14)

thus we must have ω0 = 2ω. The lowest energy state |n = 0〉 is found by the requirement
a |0〉 = 0. The energy is E0 = ~ω because

H‖ |0〉 = 2~ω
(
a†a |0〉+

1

2
|0〉
)

= 2~ω
(

0 +
1

2
|0〉
)

= ~ω |0〉 (2.2.15)

The other energies are found by applyingH‖ to states raised from |0〉 by the raising operator
a†. The energy spectrum one gets in this fashion confirms (2.2.7).

2.3 The lowest Landau level

Our goal will be to find the lowest-lying states for any given total angular momentum.
Another way of saying this is to find the states of maximum total angular momentum
for a given energy: these are termed the yrast states after the Swedish word meaning
“dizziest”. Thus, we will assume that the particles are in a state that minimizes the energy
contributions from both the oscillator in the z direction, and the Landau part of the
Hamiltonian. The harmonic oscillator term in the z direction reduces to an unimportant
constant which we will ignore, and the full Hamiltonian now only contains the x and y
coordinates: the problem has become two-dimensional. Experimentally, this can also be
achieved by increasing the oscillator frequency in the z direction, w3, to a much larger
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value, making excitations in the z direction prohibitively expensive. From now on we will
take the one-particle Hamiltonian to be

Hi = H‖ +HΩ =

(
a†a+

1

2

)
2~ω + (ω − Ω)Lz (2.3.1)

and we seek the eigenfunctions and eigenvalues of this operator.

In dealing with two-dimensional quantum systems it is often useful to work with a pair
of complex conjugate coordinates instead of Cartesian ones. Since we don’t need the
Cartesian z component any longer, we redefine z to mean

z = x+ iy (2.3.2)

and work with this and its complex conjugate z̄ = x − iy in place of x and y. We will
continue to use Lz for the angular momentum in the direction of the rotational axis of the
trap, since we don’t foresee any confusion arising from this. We thus need the replacements

x =
1

2
(z + z̄) y =

1

2i
(z − z̄) (2.3.3)

px = −i~ ∂
∂x

= −i~
(
∂z

∂x

∂

∂z
+
∂z̄

∂x

∂

∂z̄

)
= −i~

(
∂

∂z
+

∂

∂z̄

)
(2.3.4)

py = −i~ ∂
∂y

= −i~
(
∂z

∂y

∂

∂z
+
∂z̄

∂y

∂

∂z̄

)
= ~

(
∂

∂z
− ∂

∂z̄

)
(2.3.5)

We can now work out the operators a and Lz as follows:

a = C(πx + iπy)

= C (px +Mωy + i(py −Mωx))

= −iC
(

2~
∂

∂z̄
+Mωz

) (2.3.6)

Lz = xpy − ypx

=
1

2
(z + z̄)~

(
∂

∂z
− ∂

∂z̄

)
+

1

2i
(z − z̄)(−i~)

(
∂

∂z
+

∂

∂z̄

)
= ~

(
z
∂

∂z
− z̄ ∂

∂z̄

) (2.3.7)

To study the yrast states, we now impose the restriction that the particle wave functions
live in the lowest Landau level, hereby denoted the LLL. This means that, for a wave
function in coordinate basis:

aψ(z, z̄) = 0

−iC
(

2~
∂

∂z̄
+Mωz

)
ψ(z, z̄) = 0

(2.3.8)

If we make the ansatz
ψ(z, z̄) = φ(z, z̄) exp(−Mω

2~
zz̄) (2.3.9)

then we see that the LLL requirement reduces to(
2~
∂φ

∂z̄
exp(−Mω

2~
zz̄)−Mωzφ(z, z̄) exp(−Mω

2~
zz̄)

)
+Mωzφ(z, z̄) exp(−Mω

2~
zz̄) = 0

(2.3.10)
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or simply put
∂

∂z̄
φ(z, z̄) = 0 (2.3.11)

This is the condition of analyticity of complex functions, equivalent to the Cauchy-Riemann
equations. It means that we can think of φ as a function of only one variable z, instead of
two variables x and y or z and z̄.

Now that we have found the condition ψ must satisfy in order to live in the LLL, we turn
to the other part of (2.3.1): the angular momentum part. The important fact is that the
first and second parts of the Hamiltonian (2.3.1) commute. To see this, remember that

H‖ =
π2

2M
=

1

2M
(π2
x + π2

y) (2.3.12)

From this and the replacement rules (2.3.3-2.3.7) we get

[πx, Lz] = −i~πy [πy, Lz] = i~πx (2.3.13)

[π2
x, Lz] = πx[πx, Lz] + [πx, Lz]πx

=
1

i~
[πy, Lz](−i~πy) + (−i~πy)

1

i~
[πy, Lz]

= −[π2
y , Lz]

(2.3.14)

[H‖, HΩ] =
ω − Ω

2M
[π2
x + π2

y , Lz]

∝ [π2
x, Lz] + [π2

y , Lz]

= 0

(2.3.15)

We can therefore conclude that there exist simultaneous eigenstates of the two parts of
the Hamiltonian! Now we can simply look for the eigenstates of Lz within the LLL. We
combine (2.3.7) and (2.3.9) to get

Lzφ(z) exp(−Mω

2~
zz̄) = ~

(
z
∂

∂z
− z̄ ∂

∂z̄

)
φ(z) exp(−Mω

2~
zz̄)

= ~
(
z
∂φ

∂z
− Mω

2~
zz̄φ

)
exp(−Mω

2~
zz̄)

− ~
(
z̄
∂φ

∂z̄
− Mω

2~
zz̄φ

)
exp(−Mω

2~
zz̄)

= ~
(
z
∂φ

∂z
− z̄ ∂φ

∂z̄

)
exp(−Mω

2~
zz̄)

= exp(−Mω

2~
zz̄)Lzφ(z)

(2.3.16)

An important observation to make here is the fact that Lz does not “see” the exponential
part of ψ. The LLL requirement was that

∂

∂z̄
φ(z, z̄) = 0 (2.3.17)

The two last lines of (2.3.16) then leave us with

Lzφ = ~z
∂

∂z
φ (2.3.18)
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The unnormalized eigenfunctions in this equation are clearly powers of z:

φm(z) = zm (2.3.19)

and we get
Lzφm = Lzz

m = ~zmzm−1 = ~mzm (2.3.20)

where we from now on use the conventional notation m as the quantum number for Lz.

In summary, we have found that the single-particle eigenstates of the Hamiltonian (2.3.1)
with good angular momentum ~m in the LLL are

ψm(z, z̄) = Nmz
m exp(−Mω

2~
zz̄) (2.3.21)

where Nm is a normalization factor that we will give minimal attention in this thesis:
we will mostly be working with unnormalized wave functions throughout. By applying
the raising operator a† to such a state, one can see that the power m is shifted by 1:
evidently m ∈ Z. Since negative m would give a non-normalizable wave function, the
possible values for m are m = 0, 1, 2, . . . The many-body wave function of N bosons at
total angular momentum

∑
i(Lz)i = ~

∑
imi ≡ ~L is then a homogeneous, symmetric

polynomial of total degree L in the particle coordinates zi times the exponential factor
exp(−Mω

2~
∑N

i=1 ziz̄i). These are the kind of wave functions we will be studying for the
majority of this thesis. We will normally drop the factor ~ in the eigenvalues of

∑
i(Lz)i

and simply talk of angular momentum as the dimensionless number L.

There exist analytical expressions for the states in higher Landau levels as well; we will see
in Chapter 4 that we need them in order to construct trial wave functions with the correct
angular momentum. These can be found either by using the ladder operators (2.2.11), or
by solving the Schrödinger equation directly. We will only quote the result [1,9] here:

ψn,m(z, z̄) = Nn,mz
mLmn

(
Mω

~
zz̄

)
exp(−Mω

2~
zz̄) (2.3.22)

where Lmn is the associated Laguerre polynomial

Lmn (x) =
n∑
k=0

(−1)k
(
n+m

n− k

)
xk

k!
(2.3.23)

and n = 0, 1, . . . is the Landau level index. The possible values of the quantum number m
are m = −n,−n + 1, . . . in the n’th Landau level. The possible single particle states can
be visualized using the following diagram

3 − − − − − −
2 − − − − −

n 1 − − − −
0 − − −
−3 −2 −1 0 1 2

m

(2.3.24)

The dashes signify possible single particle states. For instance, the state ψ2,−1(z, z̄) corre-
sponds to the diagram

3 − − − − − −
2 − � − − −

n 1 − − − −
0 − − −
−3 −2 −1 0 1 2

m

(2.3.25)
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2.4 The filling factor

How many single-particle states are there in a given area of the plane? If we write

|ψm(z, z̄)|2 = ψmψm = |Nm|2(zz̄)m exp(−2Mω

2~
zz̄) = |Nm|2r2m exp(−Mω

~
r2) (2.4.1)

then we can take the value of r that maximizes this distribution as a crude estimate for
the radius of the circular area in which the LLL states live. We find

∂

∂r

(
|ψm(r)|2

)
= 0

∂

∂r

(
N2
mr

2m exp(−Mω

~
r2)

)
= 0(

2mr2m−1 − r2m2
Mω

~
r

)
exp(−Mω

~
r2) = 0

mr2m−1 =
Mω

~
r2m+1

~m
Mω

= r2

r =

√
~m
Mω

Using this estimate, the increase in area going from the state ψm to the state ψm+1 is

∆A = π

(
~(m+ 1)

Mω
− ~m
Mω

)
=

2π~
2Mω

=
h

2Mω
(2.4.2)

Equivalently, we say that the density of states per area is

ns =
2Mω

h
(2.4.3)

A related quantity, which will be crucial in the discussions of the Chapter 4, is known
as the filling factor. It is defined as the number density n of the particles of the sample,
divided by the density of states per area:

ν =
n

ns
=

nh

2Mω
(2.4.4)

2.5 The road ahead

So far we have treated a single species of bosons that rotate while trapped in a harmonic
oscillator potential. We have completely neglected interactions between the bosons, and
found that their kinetic energy is quantized into Landau levels. This is the case also for
fermions in two dimensions when they are subjected to an external magnetic field, which
is one of the main things we will exploit in this thesis. Our task now will be to address
two issues: the first is the fact that N bosons in a trap are rarely non-interacting. The
second issue is that the goal of this thesis is to study how two types of bosons behave
when trapped and rotated. In the next chapter, we will follow the work of Papenbrock,
Reimann & Kavoulakis [8,18] to derive analytical expressions for some of the low-lying
wave functions and energies when a two-species Bose gas is weakly interacting.



Chapter 3

Interacting two-species Bose gas

This chapter will be devoted to deriving exact, analytical expressions for wave functions
and energies of some of the low-lying states of a two-species Bose gas. The two species
of the gas could be different kinds of atoms, different isotopes of the same atom, or they
could be different internal states of the condensate, like particles of different spin. We
will incorporate weak, repulsive two-body interactions into the Hamiltonian describing the
system, and end up with the ground states and some of the excited states of the gas.
This chapter is mainly a presentation of the results that T. Papenbrock, S. M. Reimann
and G. M. Kavoulakis published in the 2012 paper Condensates of p-wave pairs are exact
solutions for rotating two-component Bose gases [8]. However, I will more closely follow
the presentation as it appeared in the first version of the paper [18].

3.1 Model for the interaction

Let us clarify at once the assumptions that we will make and the restrictions they will
place on the states that we will discuss in this chapter. We will study a harmonically
trapped two-component Bose gas. There will be N bosons of a first species and M bosons
of a second species, where N ≤ M . Their positions will be described by the complex
numbers z = x + iy for the first species and w = u + iv for the second. We will assume
that the gas is sufficiently dilute to be confined to the lowest Landau level at all total
angular momenta L =

∑
imi = 0, . . . , N +M even in the presence of interactions; in other

words, the bosons will be weakly interacting. This range of low angular momenta has been
quite extensively studied for one species, see for instance [12,13,19]. In this literature,
the ground state for L = N is called the single vortex state. We will be studying angular
momentum up to the two-species analogue of the “single vortex” L = N+M . Note that the
assumption that all particles are in the LLL might not be valid in present day experiments
at the low angular momenta discussed here: for the gas to become dilute enough for the
assumption to hold, the rotational frequency of the trap Ω must be extremely close to the
deconfinement limit of the trap. [1] cites that the entrance to the LLL regime typically
occurs at Ω ' 0.98ω. If we think of Ω as fixed instead of L, which is a more natural
view to take in an experimental setting, then the total angular momentum will typically
be higher than the range considered here. However, recent experimental work [20] claims
to achieve LLL for as few as 4 particles in our angular momentum range, giving hope
to the realizability of the theory presented here. For simplicity, we will simply take the
LLL-assumption as a prerequisite in this thesis.

17
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When the bosons satisfy the above criteria, the many-body wave functions will be of the
form found in the last chapter:

Ψ = F (z, w) exp

−Mω

2~

 N∑
i=1

|zi|2 +
M∑
j=1

|wj |2
 (3.1.1)

where F (z, w) = F (z1, z2, . . . , zN , w1, w2, . . . , wM ) is a homogeneous symmetric polynomial
in all the coordinates z and w. To be sure that we can indeed talk about a sharp total
angular momentum L, we need to check that the interaction energy operator commutes
with the angular momentum. In this thesis we will mostly be interested in the contact
interaction between pairs of bosons, modeled by a delta-function potential. In [19], the
authors show that interactions of the form

V = g

∞∑
m=0

vmVm = g

∞∑
m=0

vm(zi − zj)m(∂zi − ∂zj )m (3.1.2)

represent a quite large class of two-body interactions for one-species gases, with different
interactions having different vm. The energy scale of the interaction is g, and ∂zi = ∂

∂zi
.

By comparing matrix elements with the usual representation of delta-function interaction

V = 2πgδ(ri − rj) (3.1.3)

they find

vm =
(−1/2)m

m!
(3.1.4)

It can be shown that Coloumb interaction and repulsive dipole interaction are also of the
form (3.1.2).

Generalizing the interaction (3.1.2) to the two-component gas is straightforward: we will
use

V =
L∑

m=0

vmVm =
L∑

m=0

vm(Am +Bm + Cm) (3.1.5)

with
Am =

∑
1≤i<j≤N

(zi − zj)m(∂zi − ∂zj )m

Bm =
∑

1≤i<j≤M
(wi − wj)m(∂wi − ∂wj )m

Cm =
∑

1≤i≤N

∑
1≤j≤M

(zi − wj)m(∂zi − ∂wj )m

(3.1.6)

being the interactions between pairs of the first species, second species, and inter-species
respectively. Notice that we have set the unit of energy equal to the interaction energy
scale, g = 1, and also assumed equal interaction strength between all particle pairs, inter-
and intra-species. We will use the term homogeneous interaction for the case of equal
interaction strength in this thesis. We only need m ≤ L in the sum, because we will
only be acting on homogeneous polynomials F of degree L: the operators (3.1.6) act on
pairs of particles xi, xj , and the highest powers a pair of coordinates in a term in F can
have are xλi x

L−λ
j . The operators (3.1.6) clearly annihilate such terms and terms of lower

single-particle angular momenta when m > L.
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The reasons for writing the interaction on the form (3.1.5-3.1.6) can now be seen. Firstly,
the interaction indeed commutes with the total angular momentum. This is because the
parts (3.1.6) preserve the angular momentum (total degree) of whatever polynomial it
acts on, meaning that a polynomial eigenfunction of L turns into another polynomial
with the same eigenvalue of L. Thus we can conclude that the degree of F still gives
the total angular momentum L, just like in the last chapter. Secondly, the interaction
is translationally invariant, because only differences between coordinates and derivatives
appear. This will give us a simplifying condition for the trial wave functions in the next
chapter. Thirdly, we can discard the exponential part of (3.1.1) in the following discussion
and only consider the polynomial part F (z, w). This follows from the observation we made
in Section 2.3, that the angular momentum operators do not act on the exponentials on the
wave functions in the LLL. In other words, the exponentials are fixed solely by the Landau
level quantization. The chapter will thus be devoted to finding homogeneous polynomials
F (z, w) that are eigenfunctions of (3.1.5).

3.2 A basis for F (z, w)

To proceed, we want a basis in which we can express the solutions F (z, w). A naive choice
is the set of all monomials {

∏N
i=1

∏M
j=1 z

pi
i w

qj
j } one could use to construct a polynomial

of the correct total degree
∑

i,j pi + qj = L. However, a much more clever choice would
incorporate the fact that we are dealing with bosons: F (z, w) needs to be totally symmetric
when two particles of type z or two particles of type w are interchanged. One such type of
function that is symmetric with respect to any interchange of its arguments is known as
elementary symmetric polynomials [8,11,21]. They are given by

eλ(x) ≡ eλ(x1, x2, . . . , xn) =
∑

1≤i1<...<iλ≤n
xi1xi2 · · ·xiλ (3.2.1)

for 1 ≤ λ ≤ n. We define e0(x) = 1. For example, the symmetric polynomial of degree
three in {z} = z1, z2, z3, z4 is

e3(z) = z1z2z3 + z1z2z4 + z1z3z4 + z2z3z4 (3.2.2)

It obviously has the desired symmetry, is homogeneous and only contains evenly distributed
powers of variables. There is also a very powerful theorem [21] that states that any homo-
geneous symmetric polynomial can be written as a polynomial in elementary symmetric
polynomials. It is in this sense that the elementary symmetric polynomials can be seen as
a basis for all symmetric polynomials. An important example is the center of mass for the
two-component gas:

R =
1

N +M
(z1 + . . .+ zN + w1 + . . .+ wM ) =

1

A
(e1(z) + e1(w)) (3.2.3)

where A = N +M is the total number of bosons in the trap.

It turns out [8,21] that the set of all products

eλ1(z)eλ2(z) · · · eλk(z)eµ1(w)eµ2(w) · · · eµl(w) (3.2.4)

of elementary symmetric polynomials with
∑k

i λi +
∑l

j µj = L forms a non-orthogonal
basis for the Hilbert space of N + M bosons at angular momentum L ≤ M . For the rest
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of this chapter, we will limit ourselves to this range of angular momenta. The functions in
(3.2.4) will be very convenient both for the analytical derivations in this chapter, and also
as a basis for exact numerical diagonalization of the interaction in a later discussion. Note
that the possible sets of values of the λi and µj are equal to the possible ways of dividing
L into sums of integers. We call this the integer partitions of L. For example, the integer
partitions of 4 are {4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}.

3.3 An invariant subspace of Hilbert space

Numerical studies of the two-species system that we are describing here have previously
shown [6,22] that, for L ≤ N , the ground states only contains single-particle angular
momenta l = 0 or l = 1. Candidates for such functions can be written in terms of some
of the simplest functions in our basis (3.2.4), namely the ones where only one symmetric
polynomial in each set of variables are multiplied together:

eλ(z)eL−λ(w) (3.3.1)

for some 0 ≤ λ ≤ min(N,L). The degree of the two polynomials secure that the total
angular momentum is L. Because of this discovery, we would like to see how the interaction
we are studying (3.1.5) acts on such a function. But first, notice a few very simplifying
facts. Since each term in eλ(z) only contains at most one power of any variable in the set
{z} = z1, . . . , zN , any attempt to differentiate eλ(z) twice or more with respect to any of
its variables must vanish. That is:

∂mzi eλ(z) = 0 m ≥ 2 (3.3.2)

This means that
Ameλ(z) = Bmeµ(w) = 0 m ≥ 3

Cmeλ(z)eµ(w) = 0 m ≥ 3
(3.3.3)

because the lowest power of a differential operator equals or exceeds 2 for these m. We
also see that

AmR = BmR = CmR = 0 m ≥ 1 (3.3.4)

because pairs of variables of power one in the e1 get differentiated to 1’s that cancel because
of the minus in the operators (for m = 1), or they vanish directly (m > 1). We are now
ready to let the interaction (3.1.5) act on (3.3.1). The simplifying conditions tells us that
we only need to consider m = 0, 1, 2. We get [18]

V0eλ(z)eL−λ(w) =

((
N

2

)
+

(
M

2

)
+NM

)
eλ(z)eL−λ(w)

=

(
1

2
N(N − 1) +

1

2
M(M − 1) +NM

)
eλ(z)eL−λ(w)

=
1

2
A(A− 1)eλ(z)eL−λ(w)

(3.3.5)

V1eλ(z)eL−λ(w) = ALeλ(z)eL−λ(w)−A(N − λ+ 1)eλ−1(z)eL−λ(w)R

−A(M − L+ λ+ 1)eλ(z)eL−λ−1(w)R
(3.3.6)
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V2eλ(z)eL−λ(w) = 2 (Nλ+M(L− λ) + 2λ(L− λ)) eλ(z)eL−λ(w)

+ 2(N − λ+ 1)(L− λ+ 1)eλ−1(z)eL−λ+1(w)

+ 2(M − L+ λ+ 1)(λ+ 1)eλ+1(z)eL−λ−1(w)

− 2A(N − λ+ 1)eλ−1(z)eL−λ(w)R

− 2A(M − L+ λ+ 1)eλ(z)eL−λ−1(w)R

(3.3.7)

These three expressions show that the subspace

M = {Rneλ(z)eL−λ−n(w)} (3.3.8)

where 0 ≤ λ ≤ min(N,L) and 0 ≤ n ≤ L−λ, is invariant under the action of the interaction
operator (3.1.5). We can thus start looking for eigenfunctions of the interaction within this
subspace, and hope that we find the lowest-lying states.

3.4 Eigenfunctions of the interaction within M

We will now solve the eigenstate equation

V F (z, w) = EF (z, w) (3.4.1)

in the subspaceM. To do this, we want to write an ansatz to F (z, w) that is manifestly
in this subspace. Since we are mainly looking for the ground states of the system, the
appearance of Rn in the spanning functions for M may trouble us, because it suggests
that the interaction induces center-of-mass excitations: that is, if ψL is a wave function
with angular momentum L, then RlψL is a wave function with angular momentum L+ l, l
of it in the center of mass. However, we see that there are min(N,L)+1 spanning functions
that have n = 0, i.e. no power of R. We therefore model our ansatz wave function as such
a state, and explicitly translate the ansatz to the center of mass so that center-of-mass
excitations are avoided. The ansatz is therefore

F (z, w) = P0ΨL,n(z, w) (3.4.2)

with

ΨL,n =

min(N,L)∑
λ=0

c
(n)
λ eL(z)eL−λ(w) (3.4.3)

and P0 : P0Ψ(z, w) = Ψ(z−R,w−R) is the operator that translates to the center of mass.
The label n distinguishes between the min(N,L) + 1 wave functions with zero angular
momentum in the center of mass. The neat expansion

eλ(z1 −R, . . . , zN −R) =
λ∑
ν=0

(
N − ν
λ− ν

)
(−R)λ−νeν(z1, . . . , zN ) (3.4.4)

(and similarly for eL−λ(w−R)) taken from [19] shows explicitly that the ansatz (3.4.2) is
in the subspaceM.

The next step should now be to insert the ansatz wave function (3.4.2) with (3.4.3) into the
eigenvalue equation (3.4.1), utilize (3.3.5-3.3.7) to expand the left hand side, and solve for
the coefficients c(n)

λ . The full equation one would arrive at in this manner is a rather lengthy
expression and thus difficult to display here. The important feature of the expression



CHAPTER 3. INTERACTING TWO-SPECIES BOSE GAS 22

is that the products of elementary symmetric polynomials that appear in (3.3.5-3.3.7)
were part of the basis for the Hilbert space, so they must be linearly independent. This
means that we can compare coefficients for different combinations ei(z)ej(w) independently,
without tackling the full expression in one step. If we look for every occurrence of the form
ei(z)eL−i(w) in (3.3.5-3.3.7), we get five contributions: one from each of the first terms in
the three right hand sides for i = λ, and two from the second and third line in (3.3.7) for
i = λ+1 and i = λ−1 respectively. Since our ansatz contains a sum over λ, all five of these
will appear in the eigenvalue equation. Equating the coefficients of eλ(z −R)eL−λ(w−R)
on the left and right hand sides of the eigenvalue equation gives us:

1

2
v0A(A− 1)c

(n)
λ + v1ALc

(n)
λ

+ 2v2 (Nλ+M(L− λ) + 2λ(L− λ)) c
(n)
λ

+ 2v2(N − (λ+ 1) + 1)(L− (λ+ 1) + 1)c
(n)
λ+1

+ 2v2(M − L+ (λ− 1) + 1)((λ− 1) + 1)c
(n)
λ−1 = Enc

(n)
λ

(3.4.5)

With no loss of generality we now rewrite the energy as

En =
1

2
v0A(A− 1) + v1AL+ 2v2εn (3.4.6)

where εn is to be determined by the equation above. This simplifies the equation above
to:

2v2 (Nλ+M(L− λ) + 2λ(L− λ)) c
(n)
λ

+ 2v2(N − λ)(L− λ)c
(n)
λ+1

+ 2v2(M − L+ λ)λc
(n)
λ−1 = 2v2εnc

(n)
λ

(3.4.7)

(Nλ+M(L− λ) + 2λ(L− λ)− εn) c
(n)
λ

+(N − λ)(L− λ)c
(n)
λ+1 + λ(M − L+ λ)c

(n)
λ−1 = 0

(3.4.8)

This recurrence relation must now be solved for the coefficients c(n)
λ . The authors of [18]

make an interesting note at this point, namely the fact that the equation determining the
coefficients is independent of the matrix elements of the interaction, as long as it is of the
form (3.1.5). This is a consequence of the homogeneous interaction, and it would not be
the case if, for instance, the inter-species interaction was weaker than the intra-species.
We will return to such inhomogeneous interaction in Chapter 6.

To solve (3.4.8), we assume that the coefficients can be written as power series in the
summation index λ:

c
(n)
λ =

n∑
k=0

βkλ
k (3.4.9)

Inserting this into (3.4.8) allows us to compare coefficients for each power of λ. The largest
power is λn+2, and the coefficients must fulfill

−2βn + βn + βn = 0 (3.4.10)

i.e. βn is undetermined by the equation. The second largest power is λn+1, and the
coefficients must satisfy

(N −M + 2L)βn − 2βn−1

+ (n− (N + L))βn + βn−1

+ ((M − L)− n)βn + βn−1 = 0

(3.4.11)
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which also reduces to 0 = 0, i.e. both βn and βn−1 are still undetermined. The next step
resolves the problem: comparing coefficients of λn gives

(LM − εn)βn + (N −M + 2L)βn−1 − 2βn−2

+

(
NL− (N + L)n+

1

2
n(n− 1)

)
βn + (n− 1− (N + L))βn−1

+ βn−2 + (
1

2
n(n− 1)− n(M − L))βn + (M − L− (n− 1)βn−1

+ βn−2 = 0

(3.4.12)

This reduces beautifully: both βn−1 and βn−2 vanish, and we are left with

βn(n(n− 1) + (N +M)L− (N +M)n− εn) = 0 (3.4.13)

The solutions are βn = 0 and

εn = n(n− 1) +AL−An (3.4.14)

If we continue in this fashion, comparing coefficients of different powers of λ, we will see
that the βi, i < n are determined recursively in terms of βn. The choice βn = 0 can be
seen to give βi = 0 ∀i, which gives us a vanishing wave function. We reject βn = 0 for this
reason, and by accepting the solution (3.4.14), have solved the eigenvalue problem. The
eigenenergies of the interactions are

En =
1

2
v0A(A− 1) + v1AL+ 2v2(n(n− 1) +A(L− n)) (3.4.15)

The lowest energy is obtained for n = min(N,L), with lower n producing monotonically
higher energy. What about the undetermined βn? It simply shows up as an overall factor
in the wave function (3.4.3), and should be determined by normalization. This completes
the derivations of eigenfunctions inM.

3.5 Properties of the eigenstates

We start the discussion of the acquired results by showing a typical interaction energy plot
for the system in question. A plot of the eigenenergies for N = 3, M = 5 particles is
shown for 0 ≤ L ≤ 8 in Fig. (3.5.1). The spectrum was produced by exact diagonalization
of the contact interaction given by (3.1.4); the method that was used will be discussed in
Appendix A. We have also removed center-of-mass excitations from the plot, that is, states
ΨL of a given angular momentum L which equal a state Ψl of a lower angular momentum
l times a center-of-mass factor RL−l. The energies (3.4.15) have been highlighted in the
plot. Note that, since we have been working in the subspaceM, we have not found all the
eigenstates and -energies. But as is visible in the plot, we have indeed found the ground
states for all L ≤M , which was the primary goal.

We also see certain excited states in this plot, and they all lie on lines En(L) for the
different n. We notice the lack of an excited state at L = 1 though, and this is the only
case where the formula (3.4.15) might fool us: the state corresponding to this missing
energy in the spectrum is P0Ψ1,0 = P0(e1(z) + e1(w)) = P0AR = 0, because P0 projects
away the center of mass R. Therefore the energy E0(L = 1) is in fact not an eigenvalue of
the interaction.
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Figure 3.5.1: Interaction energy vs. angular momentum. Blue dots are energies from exact
diagonalization, red circles are eigenenergies in the subspaceM.

We will now comment on some of the more interesting features of the states and energies
that we have found. For example, we have found that the ground state energies are very
simple functions of L. Another very interesting fact is that, if we compute the ground
state wave functions for L ≤ N by first calculating the β-coefficients, from them the c(L)

λ

and insert into (3.4.3), we find that applying the operator P0 does not change the result
at all, i.e. P0ΨL,L = ΨL,L for L ≤ N . Since the wave function ΨL,L is just a sum of two
elementary symmetric polynomials multiplied together, this means that the wave function
only contains single particle angular momenta l = 0, l = 1. This agrees with the numerical
work mentioned earlier, [6,22]. This very simple form of the ground state wave function
will be a motivation for the use of trial wave functions in Chapter 5. In this lowest angular
momentum regime, one can even find the coefficients c(L)

λ without first computing the
β-coefficients: the result is [18]

c
(L)
λ = (−1)λ

(M −N + λ)!(N − λ)!

(M − L)!N !
c

(L)
0 (3.5.1)

where c
(L)
0 = β0 is still an overall, unimportant factor that should be determined (if

necessary) by normalizing the wave function. Finally, the ground state energies at a given
particle number A = N + M with M − N > 1 reappear as excited states at all other
system configurations 0 ≤ M ′ − N ′ < M − N with the same total number of particles,
N ′ + M ′ = A. This is because the energies (3.4.15) depend only on A and the quantum
number n, not independently on N or M . We will later see how to utilize this fact to
generate excited states from ground states.
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3.6 Pseudospin formulation

Since we are studying a gas of two species of bosons, a suitable language to describe them is
the familiar spin 1/2 language: in this case we will call it pseudospin, because our treatment
allows the two species to be for instance two different kinds of spin 0-atoms, with no real
spin. This is the view taken in the final version of the paper, [8]. If we associate the species
of coordinates zi with pseudospin down, and the species of coordinates wk with pseudospin
up, we can choose a number representation basis instead of the coordinate basis-projected
states we have been using until now. We will keep naming the two species z’s and w’s. Let
the state ∣∣∣∣∣∣∣∣∣

nL
nL−1
...
n0

mL

mL−1
...
m0

〉
(3.6.1)

be a state with n0 pseudospin-down bosons at single-particle angular momentum l = 0, n1

pseudospin-down bosons at l = 1 and so on, and similarly for the other species. Since we
always consider a definite L, we only need i, k ≤ L. The sums

∑
i ni,

∑
kmk must of course

give the total number of each species, N,M , and we must have
∑

i nii +
∑

kmkk = L.
The many-particle state composed of such kets are always symmetrized with respect to all
zi and all wk when projected onto a coordinate basis. This means for instance that∣∣∣∣∣∣

2 1
0 1
1 2

〉
⇔ z2

1z
2
2z

0
3 · w2

1w
1
2w

0
3w

0
4 + · · · (3.6.2)

where the dots mean all such terms where indices on z’s and on w’s are permuted. On the
other hand, projection onto the basis of products of elementary symmetric polynomials
(3.2.4) also yields a non-trivial result, namely∣∣∣∣∣∣

2 1
0 1
1 2

〉
⇔− 2e1(z)e3(z)e1(w)e2(w) + 6e1(z)e3(z)e3(w)

+ e2(z)2e1(w)e2(w)− 3e2(z)2e3(w)

(3.6.3)

This result suggests that a general conversion matrix between the two bases is not straight-
forwardly attainable. But this is not a problem for us, as we are mainly interested in the
insights offered by the pseudospin formalism, namely the meaning of the associated spin
quantum numbers.
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We define single-particle creation and annihilation operators in the usual way:

bz,l

∣∣∣∣∣∣∣∣
...
nl
...

...
ml
...

〉
=
√
nl

∣∣∣∣∣∣∣∣
...

nl − 1
...

...
ml
...

〉

bw,l

∣∣∣∣∣∣∣∣
...
nl
...

...
ml
...

〉
=
√
ml

∣∣∣∣∣∣∣∣
...
nl
...

...
ml − 1

...

〉

b†z,l

∣∣∣∣∣∣∣∣
...
nl
...

...
ml
...

〉
=
√
nl + 1

∣∣∣∣∣∣∣∣
...

nl + 1
...

...
ml
...

〉

b†w,l

∣∣∣∣∣∣∣∣
...
nl
...

...
ml
...

〉
=
√
ml + 1

∣∣∣∣∣∣∣∣
...
nl
...

...
ml + 1

...

〉

(3.6.4)

They obey the standard commutation relations for bosons, the only non-commuting ones
being

[bz,l, b
†
z,l′ ] = [bw,l, b

†
w,l′ ] = δl,l′ (3.6.5)

The interaction operator (3.1.5) is certainly pseudospin independent: any particle inter-
change zi ↔ zj , wk ↔ wl, zi ↔ wk leaves the interaction invariant. Since the interaction
is independent of species, the interaction commutes with the total pseudospin operators
S2 and Sz. We express S2 in terms of Sz and the pseudospin lowering operator S−, given
by

Sz =
1

2

∞∑
l=0

b†w,lbw,l − b
†
z,lbz,l

S− =
∞∑
l=0

b†z,lbw,l

(3.6.6)

such that
S2 = S−S

†
− + Sz(Sz + 1) (3.6.7)

We see that Sz is composed of single-particle number operators only, so Sz basically counts
how many bosons we have of each species. That is, the eigenvalues of Sz are simply

Sz =
1

2
(M −N) (3.6.8)

We write the eigenvalues of S2 in the customary way

S2 |Ψ〉 = S(S + 1) |Ψ〉 (3.6.9)

We know that the eigenstates we have derived in this chapter are sums of products of
elementary symmetric polynomials, eλ(z)eL−λ(w), before projection. These represent λ
pseudospin-down bosons with single-particle angular momentum l = 1 and min(N,L)− λ
with l = 0, and equivalently for the spin-up bosons. These can be seen to be linear
combinations of states |χτ 〉that have a certain form. The states |χτ 〉 are generated from
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pseudospin singlet pairs with L = 1 in the following way: one defines the singlet creation
operator

B† =
1√
2

(
b†z,1b

†
w,0 − b

†
z,0b
†
w,1

)
(3.6.10)

Let us say we make τ ≤ min(N,L) of these pairs, by acting τ times with B† on the
vacuum state |0〉. Then, we create the remaining A − τ bosons along with the correct
angular momentum by applying b†w,1 and b†w,0 the appropriate amount of times. This
generally leaves us with too many w’s, so finally we ensure the correct number of bosons
of each species by applying the pseudospin lowering operator. The result is summed up in
[18]:

|χτ 〉 = (S−)N−τ (b†z,0)A−L−τ (b†w,1)L−τ (B†)τ |0〉 (3.6.11)

This state has pseudospin quantum number S = A/2−τ . The conclusion is that projecting
linear combinations of these kets onto the subspace of states with zero angular momentum
in the center of mass gives the eigenstates we have derived in this chapter. The number of
singlets τ is the same as the quantum number n used in the eigenfunctions (3.4.3).

We can use the pseudospin lowering operator to get from a state of the form (3.6.11) at a
given N,M to a state at N +1,M −1 and the same energy. This is useful because we have
seen that ground states for some N,M are excited states for other N ′,M ′. For example,
the first excited state (among those covered in this chapter) at N ′ = 3,M ′ = 5, L = 4 has
the same energy as the second excited state at N = M = L = 4. The former can be found
from the latter as follows: the latter is

|χn〉 = (S−)4−2(b†z,0)8−4−2(b†w,1)4−2(B†)2 |0〉 (3.6.12)

because the second excited state has n = min(N,L)− 2 = 4− 2 = 2. The former state has
n′ = min(N ′, L)− 1 = 3− 1 = 2 and looks like

|χn′〉 = (S−)3−2(b†z,0)8−4−2(b†w,1)4−2(B†)2 |0〉 (3.6.13)

giving

|χn〉 = (S−)4−2(b†z,0)8−4−2(b†w,1)4−2(B†)2 |0〉

= (S−)(S−)3−2(b†z,0)8−4−2(b†w,1)4−2(B†)2 |0〉
= S− |χn′〉

(3.6.14)

Note however that the coefficients in the linear combinations that give the eigenstates for
the interaction still need to be determined, similarly to how we found c(n)

λ . We can further
appreciate the non-triviality of the results in this chapter by computing the action of the
operators in (3.6.11) on the vacuum, and expressing the answer in the number basis of
states (3.6.1). A little combinatorics along with the operator identities (3.6.4) yields

|χτ 〉 =
τ !√
2τ

(S−)N−τ
τ∑
k=0

Ck(−1)k
∣∣∣∣[ τ − kk

] [
k + L− τ
A− L− k

]〉
(3.6.15)

where the parentheses around the spin-down and spin-up parts have been added for read-
ability, and

Ck =

√
(k + L− τ)!

k!

(A− L− k)!

(τ − k)!
(3.6.16)
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Notice that we have neither applied the spin lowering operator nor projected out the center
of mass, because the form would become even more complicated. Because of this, we prefer
working in the coordinate basis used in the other sections of this chapter, keeping in mind
the essentials from this pseudospin perspective, namely the facts that Sz = (M − N)/2
and S = A/2 − τ = A/2 − n. The ground states with τ = n = N (that is, N ≤ L ≤ M)
will be especially interesting later, because these are states with S = (M+N)/2−N = Sz,
called highest weight states.

3.7 Beyond the subspace M

The results that we have arrived at in this chapter thanks to Papenbrock, Reimann and
Kavoulakis gives us a good deal of insight into the behavior of the two-component rotating
system of bosons. However, there are certain pieces missing. Firstly, while we would
like to know the states and energies for all L in the range 0 ≤ L ≤ N + M = A, we
have only found expressions for energies and wave functions up to L ≤ M . Moreover,
we have assumed a completely homogeneous interaction. As mentioned,M would not be
an invariant subspace if the interaction was inhomogeneous, and this is often the case for
real mixtures of gases. The ultimate goal of this thesis is to investigate whether or not a
systematic use of certain trial wave functions can overcome these limitations, and/or add
to the understanding of the physics that these wave functions and energies represent. The
next chapter will therefore be a presentation of these trial wave functions.



Chapter 4

Composite Fermion approach

We saw in the last chapter how one can find certain eigenstates for the two-species rotating
Bose gas in a trap. We restricted ourselves to angular momenta 0 ≤ L ≤ M and found
the ground states and some excited states, which were polynomial wave functions with
algebraic coefficients, multiplied with an exponential function determined by the Landau
level quantization. What we would like to do in this chapter, is present another way
of approaching a description of our system. To this end we will introduce the idea of
composite fermions. First, we will give some very basic background information about the
classical and quantum Hall phenomena, the latter being what the composite fermion (CF)
model was invented to understand. Then, we explain how trial wave functions for bosons
are generated in the composite fermion formalism, and we also discuss how to incorporate
the two-component nature of our bosonic system in a natural way.

4.1 Why composite fermions?

It might seem strange that we plan to use the composite fermion wave functions in our
study of a many-body system of bosons. Firstly, we are studying bosons and not fermions.
Secondly, the CF formalism was designed to deal with electrons in high magnetic fields,
classically corresponding to high angular momentum. On the other hand, we are studying
the lowest angular momenta up to the “single vortex” L = N+M . However, two arguments
make the use of CF wave functions more plausible. As we have already seen, the Hamilto-
nians of the two systems are basically equal under the circumstances detailed in Chapter
2. This suggests that the many-particle wave functions might be similar. Moreover, quite
recent studies [12,13] of single-species rotating bosons at low angular momenta L ∼ N
show that the CF formalism gives surprisingly good overlaps with the known eigenstates.
It is our hope that something similar will happen for two species of bosons. The CF wave
functions might enable us to better understand the yrast spectra because many results are
already available for two-species composite fermions. Also, we would like to know whether
or not it is possible to find relatively simple approximate wave functions for the states
at higher angular momenta, M < L ≤ N + M . The first goal will be to determine the
suitability and accuracy of the CF wave functions in describing the states we obtained in
Chapter 3. The second goal will be to extend the angular momenta we consider all the way
up to L = N + M . In Chapter 5 we will do this by calculating overlaps with the known
exact states obtained in Chapter 3, and with exact diagonalization results. In Chapter 6

29
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Figure 4.2.1: Illustration of the classical Hall effect. The figure was downloaded from
http://www.ndt-ed.org/.

we will consider inhomogeneous interaction, where no analytical results are known except
in two limits.

4.2 The classical Hall effect

The classical Hall effect was discovered by Edwin H. Hall in 1879 [9]. In essence, the Hall
effect is the appearance of an electric potential transverse to an applied electric current
across a piece of conductor, when the conductor is placed in a magnetic field. The phe-
nomenon can be understood by considering the following idealized situation: Let’s assume
for simplicity that a conductor, shaped as a rectangular parallelepiped, is placed in a uni-
form magnetic field that points in the positive z direction. If a constant electric current
is passed through the conductor along the positive x direction, the charge carriers (which
are normally electrons) will be affected by a force, given by Lorentz’ law (in SI units):

F = q v ×B (4.2.1)

Here q is the charge of the carriers, v = vxx is the drift velocity of the carriers and B = Bz
is the magnetic field. From the right hand rule of vector multiplication, we immediately see
that this force will push the charge carriers to one side of the conductor. Thus, there will
be a net charge difference between the two sides of the conductor, which sets up a voltage
Vy. In other words, the external magnetic field will cause the charge carriers to diverge
from the straight path they would have taken if there were no magnetic field. This voltage
Vy will continue to increase as more and more charge carriers accumulate at the side(s) of
the conductor. At some point, however, the Coulomb force exerted on the incoming charge
carriers of the current by the charges on the sides will balance the Lorentz force, and the
voltage Vy will attain a fixed value VH , known as the Hall voltage. Since the sum of the
forces in the y direction now equal zero, the carriers of the applied current will attain a
drift velocity purely in the x direction. Figure 4.2.1 illustrates the situation.

The ratio of the electric field Ey associated with the Hall voltage VH to the applied current
density jx is known as the Hall resistivity,

ρH =
Ey
jx

=
|F/q|
nqvx

=
vxB

nqvx
=
B

nq
(4.2.2)
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where n is the charge carrier density of the current. Note that, in two dimensions under
disorder-free conditions, this would equal the resistance RH simply because resistance
and resistivity have the same units in two dimensions. Since we will be discussing two-
dimensional systems in the following, we write

RH =
B

nq
(4.2.3)

4.3 The quantum Hall effect

When treating electrons confined to two dimension moving in an external magnetic field in
quantum mechanics, the simplest situation is to image the electrons to be non-interacting.
The Hamiltonian for such a system of N electrons is

H =
N∑
i=1

1

2Me
(pi − qA)2 (4.3.1)

We recognize this form of H from Section 2.2, reminding us of the mathematical connection
between the electrons in a magnetic field an the bosons in a rotating trap. The electron
eigenenergies form Landau levels, and the eigenstates have the same form as those found
in Chapter 2.

In the 1970’s, a group of Japanese physicists studied the theoretical quantization of conduc-
tivity in two-dimensional electronic systems. In 1975, Ando, Matsumoto and Uemura [23]
predicted a quantization of the Hall resistance RH when the charge carriers were subjected
to strong magnetic fields at low temperatures. However, their analysis was based on Born
approximations, and it was uncertain how or if the quantization would be observable in the
laboratory. In 1980, Klaus von Klitzing and collaborators discovered this quantization in
experiments [24], and the astonishing fact was that the resistance was exactly quantized!
The Hall resistance took values

RH =
h

iq2
(4.3.2)

where i ∈ Z and h is Planck’s constant, and the results were in good agreement with
the theoretical predictions. The appearance of h leaves little doubt as to the quantum
mechanical origin of the phenomenon. Figure 4.3.1 shows the quantization of the Hall
resistance as a function of the external magnetic field.

This phenomenon is known as the integer quantum Hall effect, or IQHE. It is a very special
result, because it is universal, in the sense that it is largely independent of sample geometry
and material parameters. Also, the quantization is insensitive to variation in parameters
such as temperature and sample disorder, as long as the variations are small.

This exact quantization was relatively quickly understood. If one calculates the filling
factor for the electrons in the same manner as we did for bosons in Section 2.4, one finds

ν =
nh

qB
(4.3.3)

that is, the role of qB in the quantum Hall system is equivalent to the role of 2Mω for
rotating bosons. We see that if the filling factor is an integer i, then

ν =
nh

qB
= i ⇒ n

qB
=
i

h
(4.3.4)
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Figure 4.3.1: Quantization of Hall resistance in the IQHE. Figure retrieved from the home-
page of David Leadley, University of Warwick.

gives

RH =
B

nq
=

h

iq2
(4.3.5)

directly from the classical expression for the Hall resistance. This is the reason why the
filling factor is such an important parameter in quantum Hall physics. The expression for
RH is not the whole story though: we need to explain how the plateaus in Figure 4.3.1
emerge.

The IQHE stems directly from the known single-particle Landau level quantization that
we saw in Chapter 2, combined with the effect of interactions and material impurities
[9]. We will give a short qualitative explanation here. When interactions and impurities
are present, the Landau levels cease to be sharp lines in the energy spectrum, and in
general the energy gaps disappear. However, it can be shown that the states with energy
close to the unperturbed Landau level energies, and the states with energy in between
two unperturbed levels are different: they are called extended states and localized states
respectively [9] and an important distinction between the two is that localized states do not
contribute to electric transport. If the Fermi energy lies inside a range of localized states,
then a hypothetical addition of one fermion would not change the resistance because the
new electron would not contribute to the transport. Another way of saying this is that the
resistance will remain a constant function of the filling factor as long as the Fermi energy
lies within the localized states. This explains the formation of plateaus. Note that the
IQHE can be understood, at least qualitatively, in terms of single-particle states. We now
move on to another, perhaps more mysterious side to the quantum Hall effect.
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The next step on the way to a thorough understanding of quantum Hall physics came in
1982. Experiments by Tsui, Stormer and Gossard [25] showed that the quantized Hall
resistance could, in addition to the values (4.3.2) also take on values

RH =
h

fq2
(4.3.6)

with f taking on certain fractional values. That is, one observed plateaus in the Hall
resistance also for the fractional filling factor ν = 1

3 . In later experiments, other fractions
were observed as well, such as ν = 1

5 ,
1
7 , . . .

2
5 ,

3
7 , . . . This appearance of plateaus at fractional

filling factors is known as the fractional quantum Hall effect, FQHE. The quantization at
fractional filling factors had not been predicted by theory, and was soon found to stem from
the collective many-body behavior of the electrons due to interactions. In the simplest case,
one assumes that all the electrons are confined to the LLL and that their internal degrees
of freedom (i.e. spin) are frozen out. The non-constant contribution to the Hamiltonian of
the system is therefore only the interaction term: in the case of Coloumb interaction one
has

H = PLLL
∑
i<j

1

|ri − rj |
PLLL (4.3.7)

where suitable units of length and energy have been chosen, and PLLL projects solutions
of the eigenvalue equation to the LLL [9]. We do not know the exact many-body solutions
to the eigenvalue equation

HΨ = EΨ (4.3.8)

for this Hamiltonian. To make matters worse, the lack of any small parameter in (4.3.7)
eliminates the perturbative approach one would usually take in this case. Therefore, one
can either try to find another, approximate Hamiltonian of the system and find the eigen-
states exactly, or one can construct a wave function based on some principal knowledge of
the system and hope to model the important physics in this way. Such wave functions are
often called ansatz wave functions. A very successful and celebrated ansatz for the FQHE
states was found by Robert Laughlin in 1983 [26]. It has the form

ΨLaughlin(z) =
∏
i<j

(zi − zj)m exp

(
−1

4

∑
i

|zi|2
)

(4.3.9)

where the unit of length has been set to l =
√
~/qB = 1 and m is an odd integer. It turns

out that this wave function gives a very good description of the states at filling factors
1/m. Its success was a very important step in understanding the FQHE in particular,
but it was also important for condensed matter physics in general because it proves that
it is not impossible to find very good descriptions of the physics one is studying despite
that the exact states are impossible to find analytically, and extremely complicated when
found numerically. However, this is not to say that good trial wave functions exist for a
large number of quantum many-body systems: the fractional quantum Hall effect is special
because it is the result of a very robust topological quantum phase.

4.4 The composite fermion idea

Even though the Laughlin wave function successfully described the states at filling factors
1/m, plateaus were observed at many fractions not of this form. To attempt to explain
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these other fractions, as well as gain some systematic way of obtaining trial wave functions,
Jain [9,10] proposed the idea of composite fermions. The idea is in essence to imagine that,
when the strongly interacting electrons (or generally, fermions) are subjected to a strong
magnetic field B, each of the fermions attach to themselves an even number of magnetic
“flux quanta” φ0 = h/q opposite to the external magnetic field. This definition of flux
quantum is borrowed from the field of superconductivity, where the magnetic field inside a
loop carrying a supercurrent is actually quantized; there is no quantization of the magnetic
field in our case. In a moment we will show that the attachment of an even number of
flux quanta gives us a composite particle which is also a fermion. In this picture, the
composite fermions do not experience the (strong) magnetic field B, but instead a weaker
field B∗ = B − 2pnfφ0 because of the attached flux quanta. We assume that the flux
quanta are smeared out such that the field B∗ is approximately uniform. Here nf is the
number density of fermions and 2p is the number of attached flux quanta per fermion. The
fermion filling factor was

ν =
nfh

qB
=
nfφ0

B
(4.4.1)

which leads to the composite fermion filling factor

ν∗ =
nfφ0

|B∗|
=

nfφ0

2pnfφ0 ±B
=

ν

2pν ± 1
(4.4.2)

The ± takes care of the fact that B∗ may point antiparallel to B.

Is this picture of flux attachment sufficient for a good description of the physics we are
studying here? After all, the “attachment” of magnetic flux quanta to fermions is clearly an
oversimplification of the actual, collective behavior of the fermion quantum fluid. Indeed,
Jain originally imagined attaching quantized unit vortices to the fermions, and not flux
quanta [9]. This distinction turns out not to matter for the CF predictions, because the
Aharonov-Bohm phase associated with any closed loop around 2p flux quanta is 2πφ/φ0 =
4πp. The phase picked up by following a closed loop around around one unit vortex is by
definition 2π, thus a closed loop around 2p such vortices is naturally 4πp. Moreover, the
phase factor on the wave function is e4πpi = 1, so the attachment of either flux quanta or
vortices is not observable in experiments [10]. So, for convenience, one can in fact use the
image of either vortex or flux attachment to visualize the physics of the FQHE to some
extent.

So what good is it then, to think about composite fermions in an effective magnetic field
B∗ instead of regular fermions in the field B? Consider the case of all electrons in the LLL,
ν ≤ 1. Here, the many-particle ground state is highly degenerate in absence of interaction
because all LLL configurations have the same energy, as we saw in Section 2.2. But at
ν ≤ 1, there will always exist a choice of p such that ν∗ > 1. If we assume that the
composite fermions are non-interacting, they will form Landau-like levels called Λ-levels
[9]. The ground state of the composite fermions at ν∗ > 1 must necessarily be a less
degenerate state, as more Λ-levels are occupied. In fact, when

ν∗ =
ν

2pν ± 1
= i ∈ Z (4.4.3)

the ground state is non-degenerate. This indicates that the composite fermions can be
treated as independent to a decent approximation, like we assumed. A consequence is
that we can write the many-body CF wave function as an antisymmetric combination of
single-CF eigenstates ηi(z, z̄). For ordinary fermions at filling factor ν, this is commonly
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accomplished by writing down a determinant of states known as a Slater determinant. It
has the form

Φz,z̄(ν) =

∣∣∣∣∣∣∣∣∣
η1(z1, z̄1) η1(z2, z̄2) · · · η1(zN , z̄N )
η2(z1, z̄1) η2(z2, z̄2) . . . η2(zN , z̄N )

...
...

. . .
...

ηN (z1, z̄1) ηN (z2, z̄2) · · · ηN (zN , z̄N )

∣∣∣∣∣∣∣∣∣ (4.4.4)

The concept of flux attachment to turn an ordinary fermion into a composite fermion
now attains its quantitative meaning: the CF wave function ansatz is written as a Slater
determinant at CF filling factor ν∗ times a factor JN,p representing the attached flux
quanta, projected into the LLL:

Ψ(z) = PLLL (Φz,z̄(ν
∗)JN,p) (4.4.5)

The factor JN,p is known as a Jastrow factor. It is defined as

JN,p =
∏

1≤i<j≤N
(zi − zj)2p (4.4.6)

We can now see how the flux attachment helps the composite fermions become more
independent: the factor Φz,z̄(ν) typically goes to zero as r2 when two particles get within
a distance r of each other. Clearly JN,p goes to zero as r2p, which is much faster than the
Pauli principle demands even for p = 1. And when the particles are kept further apart,
the repulsive interactions we consider become weaker. The flux attachment therefore helps
screen the composite fermions, leading to a lower total interaction energy. Another very
interesting conclusion we can draw from this argument is that the fractional filling factors
that were observed in experiments can be seen to correspond to integer CF filling factors!
For example ν = 2

5 corresponds to the CF filling factor

ν =
2

5
=

ν∗

2pν∗ ± 1
(4.4.7)

that is, composite fermions with 2p = 2 flux quanta each at filling factor ν∗ = 2. The
Laughlin states are simply the states where the composite fermions fill the LLL, ν∗ = 1.
This means that one can think of the FQHE of fermions simply as the IQHE of the
composite fermions. The fermions attach to vortices in order to minimize the interaction
energy.

4.5 CF wave functions for one-component Bose gas

The quantum Hall effect is truly a fascinating phenomenon to study, and important ad-
vances and additions to the understanding of the phenomenon are made even today. How-
ever, our present goal is to use this CF formalism to obtain approximations to the eigen-
states of the two-species rotating Bose gas. Therefore, we take a more pragmatic stance
and view the CF wave functions as trial wave functions to be tested agains exact results
(and/or experiments). The main idea is to adapt the CF formalism to bosons by recon-
sidering the vortex attachment defined by the Jastrow factor (4.4.6): we must attach and
odd number of vortices to each boson to end up with a composite fermion; we work out
the details in the following. The subtle conceptual and theoretical consequences of using
the CF formalism this way are mostly beyond the scope of this thesis; some discussions
are included in the concluding chapters.
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To apply the CF formalism to our bosonic gas, let us first consider a gas of one species,
such as was studied in Chapter 2. The Jastrow factor is the part of the ansatz that attaches
vortices to the particles of the original problem. In FQHE studies, the basic particles are
fermions, and we argued that an even number of vortices gave a composite particle that
was also a fermion. Now, the basic particles are bosons, and we must therefore attach an
odd number of vortices to each boson in order to turn them into composite fermions. The
simplest case is one vortex per boson, giving the Jastrow factor

JN =
∏

1≤i<j≤N
(zi − zj) (4.5.1)

This is the Jastrow factor we will be using in this thesis, and it contains the essential
difference between the CF wave functions for fermions and bosons. Thus, the CF candidate
wave functions become

ΨCF = PLLL (Φz,z̄(ν
∗)JN ) (4.5.2)

We know the single-particle eigenstates that go in the Slater determinants, namely the
eigenstates we found in Chapter 2:

ψn,m(z, z̄) = Nn,mz
mLmn

(
Mω

~
zz̄

)
exp(−Mω

2~
zz̄) (4.5.3)

Setting the unit of length to l =
√
~/2Mω = 1 and dropping the normalization factor, we

get
ψn,m(z, z̄) = zmLmn

(zz̄
2

)
exp

(
−zz̄

4

)
(4.5.4)

These are the ηi that go into the Slater determinant. Note that (4.5.4) contains powers of
both z and z̄. When these are projected into the LLL by the operator PLLL, the result
must be a wave function where the z̄ have vanished: remember that the polynomial parts
of the states in the LLL were analytic functions. A typical term in (4.5.4) has the form

zm(−1)k
(
n+m

n− k

)
(zz̄)k

(2)kk!
exp(−zz̄

4
)

∝z̄kzm+k exp(−zz̄
4

)

≡f(z, z̄)

(4.5.5)

If we project this onto an LLL wave function, we get〈
ψ0,m′

∣∣ f(z, z̄)
〉

=

∫
C
z̄m

′
z̄kzm+k exp(−zz̄

2
) d2r

=

∫
C
z̄m

′
zm+k

(
−2

∂

∂z

)
k exp(−zz̄

2
) d2r

= 0 +

∫
C

exp(−zz̄
2

)

(
2
∂

∂z

)k
z̄m

′
zm+k d2r

=

∫
C
z̄m

′

[(
2
∂

∂z

)k
zm+k

]
exp(−zz̄

2
) d2r

=
〈
ψ0,m′

∣∣ f(z, 2∂z)
〉

(4.5.6)

We have used integration by parts k times to get from line 2 to line 3, where all boundary
terms vanish. The equation means that the action of the projection operator PLLL is
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equivalent to the replacement z̄ → 2 ∂
∂z = 2∂z after moving all the z̄ to the left of all

the z; this is called normal ordering. The exponential is unaffected by the action of this
operator, just as it was unaffected by the angular momentum operator in Section 2.3. As
a convention for the rest of this thesis, the exponentials are not acted upon by differential
operators unless explicitly stated. Therefore we will omit them in most cases. To sum
things up, the many-body CF wave functions, adapted for bosons, are

ΨCF = Φz,2∂z(ν
∗)JN (4.5.7)

where Φz,2∂z is the projected Slater determinant.

We seek a CF candidate wave function that describes the ground state of the rotating Bose
gas at total angular momentum L for a given number of particles N . We know that the
degree of the polynomial part of the wave function determines the angular momentum. By
counting factors in the expression for JN , one finds that the degree of the Jastrow factor
JN is

LJ =
1

2
N(N − 1) (4.5.8)

Thus it is up to us to choose the single-particle wave functions in the Slater determinant
that give the correct angular momentum L when acting on the Jastrow factor. We make
an important note at this point. The Jastrow factor adds 1

2N(N − 1) ∼ N2 angular
momentum to the wave function. The CF formalism is usually applied to electrons in
strong magnetic fields, where the angular momentum is typically in this range or even
higher. But let us see what happens when we try to create a CF candidate for a system
in the low angular momentum regime L ≤ N . For example, one CF candidate for N = 4
bosons at angular momentum L = 4 is

ΨCF = PLLL

∣∣∣∣∣∣∣∣
z1 z2 z3 z4

1 1 1 1
z̄1 z̄2 z̄3 z̄4

z̄2
1 z̄2

2 z̄2
3 z̄2

4

∣∣∣∣∣∣∣∣
∏

1≤i<j≤4

(zi − zj) (4.5.9)

We see that after projection, the z̄ will differentiate the Jastrow factor 3 times, lowering
the angular momentum from 1/2 · 4 · 3 = 6 to 3, and the multiplication of a z will raise
it again to 4, giving the correct angular momentum. The single-state diagram for this
many-particle state would be

3 − − − − − −
2 � − − − −

n 1 � − − −
0 � � −
−3 −2 −1 0 1 2

m

(4.5.10)

where a � signifies an occupied state. But the Jastrow factor was responsible for the
favorable screening of bosons from one another: if we differentiate this factor, we might
very well destroy the good correlations it provided. This is one of the main points that make
the success of CF trial wave functions in this low angular momentum regime (mentioned
above) surprising.

At this point there seem to be many, many ways of choosing single-particle states in
the Slater determinant if the only constraint is that the total angular momentum should
come out correct: the state (4.5.9) was simply one possible choice. These different Slater
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determinants are in general not the same wave functions. We will discuss two important
constraints on the CF trial wave functions in a later section. For now, we will generalize
the CF construction to the main object of study, the two-species Bose gas.

4.6 Two species and pseudospin

As we did in Section 3.6, we take the pseudospin perspective into account, and see which
insights it may give. We remember that the building blocks of the eigenstates, |χτ 〉, were
quite complicated when expressed in the number representation. Because of this, we will
continue to write the CF functions in coordinate basis. We have N bosons of the first
species, which will take the role of pseudospin down, and M ≥ N bosons of the second
species, representing spin up. We have

S2Ψ = S(S + 1)Ψ
SzΨ = SzΨ

(4.6.1)

for eigenfunctions Ψ of the interaction. If Ψ is a CF wave function, the act of pseudospin
lowering will correspond to turning a single-particle CF state of the spin-up species into
the same state for the spin-down species. Physically, the number of particles of the two
species cannot change, of course, since the interaction conserves the particle numbers of
each species. That is, we cannot physically talk of turning a particle of one species into a
particle of the other species. However, for a given total number of particles N + M and
angular momentum L, the pseudospin language makes it natural to define a pseudospin
multiplet consisting of all the states at different M − N . The quantum number S of a
state Ψ can then be found by counting the number of states in the multiplet with the
same energy as Ψ: this number will equal 2S + 1. Spin raising/lowering a state thus
corresponds to finding a state for a different set of N andM but with the same energy and
total spin quantum number. When counting states of equal energy, we have to remember
that we have taken N ≤M as a starting point for the theory in this thesis, meaning that
we only count “half” of the systems in a multiplet, namely M − N ≥ 0. This must be
considered when calculating S. For example, if there exist states of energy E at L = 2
for (N,M) = (4, 4), (3, 5), (2, 6) then we would also find such states at (5, 3), (6, 2) if we
allowed the two species to switch roles. So

2S + 1 = 5 ⇒ S = 2 (4.6.2)

On the other hand, Sz is always given by

Sz =
M −N

2
(4.6.3)

It can be shown [9] that the CF construction, taking us from an antisymmetric wave func-
tion Φz,z̄,w,w̄ to a symmetric wave function ΨCF through multiplication by a Jastrow factor
and projection to the LLL, commutes with the pseudospin operators as well. Therefore,
our CF candidates are eigenfunctions of the pseudospin operators. In Section 4.8 we will
see what this entails. The function Φz,z̄,w,w̄ will for our purposes be a simple product of two
single-particle Slater determinants, because the interaction does not mix the two species.
That is

Φz,z̄,w,w̄ = Φz,z̄Φw,w̄ (4.6.4)
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and we place single-particle wave functions in these Slaters as before. The Jastrow factor
attaches one vortex to each boson; in other words, the Jastrow factor makes every boson
see a vortex on every other boson, regardless of species. Therefore, the Jastrow factor now
becomes

JN,M =
∏

1≤i<j≤N
(zi − zj)

∏
1≤k<l≤M

(wk − wl)
∏

1≤i≤N

∏
1≤k≤M

(zi − wk) (4.6.5)

Counting the number of parentheses gives us the angular momentum of the Jastrow factor:
it is

LJ =
1

2
N(N − 1) +

1

2
M(M − 1) +NM =

1

2
A(A− 1) (4.6.6)

where A = N +M as before. The projection is done the same way as in the single species
case, i.e. z̄ → 2∂z and w̄ → 2∂w after normal ordering. To sum this up, the CF candidates
for the two-species Bose gas will look like

ΨCF = PLLL (Φz,z̄Φw,w̄JN,M ) (4.6.7)

4.7 Compact states

We now discuss the constraints we should place on our trial wave functions to avoid con-
sidering all of the very many choices of single particle states one could put in the two Slater
determinants. The first constraint we place on our CF candidates is concerned with the
fact that the states we found in the previous chapter are translationally invariant. There
are certain CF wave functions called compact states, that by construction are always trans-
lationally invariant [9]. A compact state is a state where a given Λ-level is filled from the
lowest value of m without any “holes”. Also, an occupied single-particle state at a given
n and m must also have all the states for lower n and same m occupied. The following
diagrams should make the distinction clear. The state given by the diagram

3 � � − − − −
2 � − − − −

n 1 − − − −
0 � � −
−3 −2 −1 0 1 2

m

(4.7.1)

is a compact single-species state, because in any Λ-level the states are filled from the left
without vacancies. The fact that the n = 1 Λ-level is empty is perfectly all right. Also
note that there are no vacancies directly underneath any occupied state. On the other
hand the state

3 − − − − − −
2 � � − − −

n 1 � − � −
0 � − −
−3 −2 −1 0 1 2

m

(4.7.2)

is certainly not compact: the state at (n,m) = (1, 1) is missing states to the left of and
below it. We verify, using the CF generation code in Appendix A, that the latter is not
translationally invariant.
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The fact that we only consider compact states makes it possible to simplify the Slater
determinants to a great extent. We will show the procedure for the specific case (4.7.1)
and argue that it holds in general for compact states. The Slater determinant for this
one-species state is

Φz,z̄ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ0,0(z1, z̄1) · · · ψ0,0(z5, z̄5)

ψ0,1(z1, z̄1) · · ·
...

ψ2,−2(z1, z̄1) · · ·
...

ψ3,−3(z1, z̄1) · · ·
...

ψ3,−2(z1, z̄1) · · ·
...

∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.7.3)

We consider only the first column, drop the index 1 on the coordinates, and use the series
expansion of the Laguerre polynomials to get:

Φz,z̄ =

∣∣∣∣∣∣∣∣∣∣
1
z

1
2 z̄

2

−1
6 z̄

3

1
2 z̄

2 − 1
6 z̄

3z

∣∣∣∣∣∣∣∣∣∣
(4.7.4)

Now we remember that row operations only changes an overall factor of the determinant.
That does not matter here because we are not working with normalized wave functions
to begin with; the equalities will hold up to an unimportant overall factor. We see that
we can subtract row number three from row number five, and also multiply each row with
their denominators and signs giving

Φz,z̄ =

∣∣∣∣∣∣∣∣∣∣
1
z
z̄2

z̄3

z̄3z

∣∣∣∣∣∣∣∣∣∣
(4.7.5)

We realize that such elimination of terms from a given row would not be possible if states
are allowed to have vacancies “below” them; this is the structure of Laguerre polynomials.
In our example, the state at (n,m) = (2,−2) below (3,−2) allowed the simplification.

The next step is to consider projection. We make the replacement z̄ → 2∂z and forget
about the factors of 2, giving rows of the form ∂nz z

n+m. By acting on a test function f(z)
we see that

∂nz
(
zn+mf(z)

)
= ∂n−1

z

[
(n+m)zn+m−1f(z) + zn+m∂zf(z)

]
(4.7.6)

that is,
∂nz z

n+m = (n+m)∂n−1
z zn+m−1 + ∂n−1

z zn+m∂z (4.7.7)

The point is that the first term on the right hand side of this equation can be found in the
state “below” as well! For instance, row number five becomes

∂3
zz = ∂2

z + ∂2
zz∂z (4.7.8)

and the first term on the right hand side can be eliminated by subtracting the third row,
corresponding to the state “below”. The result of this was that we were able to move one
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differential to the right of the coordinate z in the last term. If we repeat this procedure
we get

∂2
zz∂z = ∂2

z + ∂zz∂
2
z (4.7.9)

which can again be eliminated. The end result is that we are able to move all the derivatives
to the right, that is

Φz,z̄ =

∣∣∣∣∣∣∣∣∣∣
1 · · · 1
z1 · · · z5

∂2
z1 · · · ∂2

z5
∂3
z1 · · · ∂3

z5
z1∂

3
z1 · · · z5∂

3
z5

∣∣∣∣∣∣∣∣∣∣
(4.7.10)

We see that we no longer need to compute the single-particle states at all: a particle in
the state ψn,m simply means a row of the form zn+m

i ∂nzi in the Slater determinant. A
special case appears when we only put one CF in each Λ-level: then all the states are
of the form ψn,−n, and the Slater determinants contain only differentials. To summarize,
compact states ensure two things: translational invariance, because states are filled “from
the left”, and simplified Slater determinants, because they are filled “from below”.

4.8 The Fock condition

The constraint that we only consider compact states as our CF candidates greatly reduces
the number of possible Slater determinants. However, we can do even better. As we have
pointed out, the states Ψ we are trying to model are eigenstates of the pseudospin operator
S2. In many cases where a CF candidate is a good approximation to the exact ground
state of a system, the ground state is a so-called highest weight state. This means that the
total pseudospin is purely in the “z direction”, that is,

S = Sz (4.8.1)

This is a consequence of the famous Hund’s first rule, applied to bosons in our case:
minimizing repulsive interaction by selecting an antisymmetric spatial part of the wave
function leads to an antisymmetric pseudospin part as well, i.e. the lowest possible value
of S [8]. We saw in Section 3.6 that the ground states satisfy (4.8.1) when N ≤ L ≤ M .
It can be shown [9] that a CF state has S = Sz if and only if it satisfies what is known
as Fock’s cyclical condition, or simply, the Fock condition. The condition is that any
attempt to antisymmetrize a pseudospin down coordinate with respect to the pseudospin
up coordinates gives a vanishing pair of Slater determinants. That is,(

I −
M∑
k=1

P↔(zi, wk)

)
Φ{zi,wk} = 0 ∀ i (4.8.2)

where I is the identity operator and P↔ is the exchange operator, exchanging the two
arguments it is given in the function it acts on. The simplest case, and the case we will
study most of the time, is when Φ{zi,wk} is a product of two Slater determinants. This
allows us to reformulate the Fock condition: the single-particle states that are occupied
in Φz,z̄ must also be occupied in Φw,w̄. In a more general case, Φ{zj ,wk} can be a linear
superposition of pairs of Slater determinants. We will use the term Fock states to mean
sets of Slater determinants satisfying the Fock condition in this thesis. The Fock states will
play an essential role in understanding the eigenstates in the next chapter. The revelation
is that all ground states can be approximated by states that are either Fock states, or
states that are obtained from Fock states by pseudospin lowering.



Chapter 5

Comparing CF states with exact
states

All the preliminaries are now in place for us to begin applying the CF scheme to our
system of rotating bosons. In this chapter we will only consider homogeneous interaction;
Chapter 6 gives a few first steps into the landscape of inhomogeneous interactions. To
give a quantitative measure of the comparison of CF wave functions with exact ones, we
calculate the overlap between them:

O = 〈ΨCF |Ψexact〉 (5.0.1)

that is, the inner product of the two wave functions after normalization (see Appendix A
for details). First, we create CF candidate wave functions for the states in the subspace
M of Hilbert space that we defined in Chapter 3. We will show that in many cases we
get exact states using very simple CF wave functions. In those cases where we don’t, we
will show that it’s possible to create CF wave functions with very high overlap against
the exact states, focusing on ground states. Then we create CF candidates for angular
momentum in the range M < L ≤ N + M . Since we don’t have any analytical results to
compare to in this parameter range, we turn to exact numerical diagonalization to get the
eigenstates and -energies. We will show that the CF wave functions fare remarkably well
also in this regime. The mathematical derivations as well as the Mathematica code used
to calculate overlaps and perform the exact diagonalization in this chapter and the next
can be found in Appendix A. The results are discussed in the final section of this chapter,
and in the Conclusions.

5.1 Notation

We would like to be able to state what single-particle wave functions we put in the Slater
determinants of the CF trial wave functions without having to write them out in matrix
form. We will employ two kinds of notations in the following. In the general case we need
to specify the single particle wave functions ψn,m that we place in the two determinants.
Since the states are uniquely characterized by the two quantum numbers n,m, we will
simply define lists of the form

{{n1,m1}, {n2,m2}, . . . , {nN ,mN}} (5.1.1)

42
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to mean the determinant ∣∣∣∣∣∣∣
ψn1,m1(z1) · · · ψn1,m1(zN )

...
...

...
ψnN ,mN (z1) · · · ψnN ,mN (zN )

∣∣∣∣∣∣∣ (5.1.2)

and equally for w. We call this the explicit notation for the determinants.

As we will see in a moment, we will give special attention to states where every Λ-level
contains at most one composite fermion. This means that the projected Slater determi-
nants will only consist of powers of differential operators, see Section 4.7. We define the
exponent notation corresponding to such a Slater determinant in the following way: the
tuple [p1, p2, . . . , pN ], pi ∈ {0, 1, 2, . . .} symbolizes the Slater determinant∣∣∣∣∣∣∣∣∣

∂p1z1 ∂p1z2 · · · ∂p1zN
∂p2z1 ∂p2z2 · · · ∂p2zN
...

...
. . .

...
∂pNz1 ∂pNz2 · · · ∂pNzN

∣∣∣∣∣∣∣∣∣ (5.1.3)

and equally for w. Notice that the numbers in the exponent notation directly tells us which
Λ-levels are occupied. Equations of the form [Φz] = [Φw] mean that the two determinants
have equal exponent notations, even though they concern different species.

5.2 The simple case N = M = L

The starting point for our trials with the CF wave functions were the exact ground states
for the very special cases N = M = L. We will here take an intuitive approach to finding a
trial wave function, and argue for the validity of the approach in the next sections. Because
the states at N = M = L satisfy L ≤ N , we know from Chapter 3 that they only contain
single particle angular momenta l = 0 and l = 1. From the last chapter we remember
that the Jastrow factor has angular momentum LJ = 1

2A(A− 1). Thus, to end up with a
polynomial that has L = N = M angular momentum, we need to differentiate a total of

LS = LJ − L =
1

2
(N +M)(N +M − 1)− L

=
1

2
(2L(2L− 1)− 2L)

= 2L(L− 1)

(5.2.1)

times with respect to certain combinations of the variables z and w. Well, since N = M ,
the two Slater determinants should intuitively have identical forms because the interaction
treats the two types of particles completely identically in this case. Therefore we let the
two Slater determinants differentiate the Jastrow factor L(L − 1) times each. L(L − 1)
happens to be equal to the sum of all even numbers up to the (L − 1)’th, that is, up to
2(L− 1). As a first trial wave function, we thus propose the projected Slater determinants
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[0, 2, 4, . . . , 2(L− 1)], i.e.

Φz =

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
∂2
z1 ∂2

z2 · · · ∂2
zN

...
...

...
...

∂
2(L−1)
z1 ∂

2(L−1)
z2 · · · ∂

2(L−1)
zN

∣∣∣∣∣∣∣∣∣

Φw =

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
∂2
w1

∂2
w2

· · · ∂2
wN

...
...

...
...

∂
2(L−1)
w1 ∂

2(L−1)
w2 · · · ∂

2(L−1)
wN

∣∣∣∣∣∣∣∣∣

(5.2.2)

in the CF trial wave function
ΨCF = ΦzΦwJL,L (5.2.3)

Let’s see how a product of Slater determinants such as ΦzΦw acts on the Jastrow factor
JL,L. The Jastrow factor JL,L contains all possible terms of the form

x0x1x2 · · ·xA−1 (5.2.4)

where the x are either zi or wk, with no coordinate appearing twice. A symbolic way of
writing a term in ΦzΦw acting on a term in JL,L is

(1 · ∂2
z · ∂4

z · · · ∂2L−2
z )(1 · ∂2

w · ∂4
w · · · ∂2L−2

w )(x0x1x2 · · ·xA−1) (5.2.5)

To see what can come out of this, let’s look at an example, say, N = M = L = 4. Then
we have

(1 · ∂2
z · ∂4

z · ∂6
z )(1 · ∂2

w · ∂4
w · ∂6

w)(x0x1x2x3x4x5x6x7) (5.2.6)

It is now clear that the only way this will not vanish is if both differential operators of
power 6 differentiate with respect to the variables that are raised to the 6th and 7th power,
the operators of power 4 differentiate with respect to the variables of power 4 and 5 and so
on. And because the operators always act on a variable of the same power or one higher,
we are left with only variables of power 0 or 1 after the differentiation: in other words,
only l = 0 and l = 1! This is exactly the sort of ground states we found in Chapter
3, so it might seem like we are on the right track. Moreover, this argument holds for
all systems with N = M = L. One could ask if there are other ways of distributing
the L(L − 1) differentiations in the Slater determinants that still treat the two species
identically (meaning [Φz] = [Φw]). Since the Jastrow factor vanishes when differentiated
more than A− 1 times with respect to one variable, the other possibilities for [Φz] = [Φw]
with L = 4 are, in exponent notation

[0, 1, 4, 7] [0, 1, 5, 6] [0, 2, 3, 7] [0, 3, 4, 5] [1, 2, 3, 6] [1, 2, 4, 5] (5.2.7)

By calculating the CF wave functions of these candidates with Mathematica, or by ana-
lyzing the action of the determinants on the Jastrow factor similarly to what we just did,
we can compare the CF wave functions with the known ground state. It turns out that
the CF state represented by the Slater determinants [0,2,4,6] is exactly equal to the ground
state given by the expressions in Chapter 3! Another very interesting fact is that all the
other six choices of Slater determinants give a vanishing wave function. This is a surprising
result for many reasons. Normally one would expect some vanishing CF candidates and
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some candidates with varying overlaps. We suspected that the overlaps should be good
given previous work on one-component Bose gases (see e.g. [12,13]), but here we get either
a vanishing candidate or the exact ground state.

In fact, it is known that for a one-component gas, the CF prescription trivially gives the
exact ground state for N = L = 2 and N = L = 3 because of translational symmetry
[11]. However, there does not seem to be any triviality of that type connected with the
two-species case N = M = L = 4. We have found that the CF wave functions resulting
from the Slater determinants (5.2.2) give the exact ground states in the cases N = M =
L = 2, 3, 4, 5 using the Mathematica code in Appendix A, and we believe that this holds
for all N = M = L.

5.3 General CF state diagonalization

We now turn to the other states where exact solutions were given in Chapter 3, namely
the ground states and some excited states for all angular momenta 0 ≤ L ≤M for given N
and M . We will primarily be interested in finding ground states, because as we know from
Section 3.5, the excited states in M are related to these. As argued in Chapters 3 and
4, the system can be described in pseudospin language, where the N particles of the first
type correspond to pseudospin down, and the M particles of the second type correspond
to pseudospin up. When viewed this way, all N and M for a given N +M and L are part
of the same pseudospin multiplet, and should be treated together. We remember that the
total pseudospin eigenvalue is S and the “z-component” is Sz = M−N

2 .

The general way to make CF predictions for the states in a multiplet of a given N + M
will be:

1. Consider the angular momenta N ≤ L ≤ M , where min(N,L) = N . The ground
states will then have S = A/2 − N = Sz, i.e. they are highest weight states (see
Section 3.6). This limits us to look at states satisfying the Fock condition.

2. Determine all pairs of Slater determinants that satisfy the Fock condition and give
the correct angular momentum L when acting on the Jastrow factor.

3. Compute the CF wave functions for all these pairs of determinants. Generally, there
will be some vanishing wave functions, and some Slaters producing equal wave func-
tions.

4. Keep only the unique, non-zero wave functions. This set of wave functions {ΨCF }
may or may not be a linearly independent set. If desirable, reduce to a linearly
independent set.

5. Diagonalize the interaction operator within the space spanned by {ΨCF }. If we are
primarily interested in finding ground states, it is sufficient to compute the linear
combination of the wave functions {ΨCF } that minimizes the interaction energy, i.e.
no diagonalization is necessary.

6. Use pseudospin lowering to find non-Fock states, including ground state candidates
at L < N and some excited states at N ≤ L ≤M .
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Let us look at some numbers to get a feel for the computations required to go through
the steps outlined above. For N = 2, M = 6, L = 8 the dimension of Hilbert space is
111. The number of possible pairs of Slater determinants that are compact, obey the Fock
condition and occupy Λ-levels lower than n = A is 260. We ignore states where Λ-level A or
higher is occupied because the Jastrow factor can only take at most A− 1 differentiations
with respect to one coordinate without vanishing. Even though the 260 candidates are
in fact more numerous than the dimension of Hilbert space, only 46 of these are unique
and non-zero. Since the time complexity for numerical diagonalization of n × n matrices
is typically O(n3) [27], we see that step 5 will be roughly

(
111
46

)3 ≈ 23 = 8 times faster
than a diagonalization on the full Hilbert space basis. The problem is that we need to
compute and store the CF wave functions of all the 260 candidates in order to obtain the
46 unique functions. This illustrates the general problem: the number of unique, non-zero
CF wave functions will usually be much smaller than the dimension of Hilbert space, often
between half as big to about an order of magnitude smaller. But there will be many,
many candidates, with number increasing both with system size and angular momentum,
which we have little control over until we compute their wave functions. In Appendix A,
we discuss a method that reduces the number of candidates by eliminating those that we
know will vanish before acting on the Jastrow. This reduces the number of candidate Fock
states here from 260 to 90, which is indeed a significant reduction. However, evaluating 90
CF wave functions is still a demanding task for a computer if N + M is larger than, say,
10.

5.4 Primary results, need for simplification

In some cases where both N + M and L are sufficiently small, it is possible to do the
computations without overstepping the computer memory, even though the computation
of the very many CF candidates in step 3 above takes a lot of time. Our calculations show
that, for N +M = 8, the states we derived in Chapter 3 can all be reproduced exactly by
the above procedure. This is one of the main results we have produced. Let us look at the
highest weigh-states (S = Sz) first. In fact, the diagonalization of the interaction operator
within the CF subspace gives us more than the results we found in Chapter 3: we are able
to find excited states with larger energies than those in the subspaceM, and these states
also have complete overlaps with states from the full diagonalization. We suspect that
the few excited states that are not reproduced with the CF diagonalization are not highest
weight-states, so it is no surprise that our CF wave functions, bound by the Fock condition,
do not reproduce these. We have plotted the exact eigenstates together with those found
from CF diagonalization for N = 1, M = 7, L = 6 in Figure 5.4.1. As we claimed, almost
all states are captured by the CF diagonalization. The plot has been rotated relative to
other energy plots in this thesis for improved visualization of the results.

As stated in step 6 in the procedure, we find states at S > Sz by lowering the pseudospin
of the highest weight states found in steps 1-5. Generally we will have a linear combination
of Fock states, and it is not obvious how to lower them, because there are generally many
ways of moving a single-particle state in Φw to the same (vacant) state in Φz. We therefore
make a new set {ΨCF }low of candidate states by taking all possible pseudospin lowered
versions of all the states in the set {ΨCF }. For example, if a state in {ΨCF } has explicit
notation

{{0, 0}} × {{0, 0}, {0, 1}, {2,−2}, {3,−3}} (5.4.1)



CHAPTER 5. COMPARING CF STATES WITH EXACT STATES 47

14 16 18 20 22

5.6

5.8

6.0

6.2

6.4

Interaction energy

L
N =1, M = 7

Figure 5.4.1: Comparison of full diagonalization and CF diagonalization. The blue disks
are energies from full diagonalization. The red rings are CF diagonalization energies. All
CF states are eigenstates of the interaction.

then the contributions to the set {ΨCF }low from this state are the states

{{0, 0}, {0, 1}} × {{0, 0}, {2,−2}, {3,−3}}
{{0, 0}, {2,−2}} × {{0, 0}, {0, 1}, {3,−3}}
{{0, 0}, {3,−3}} × {{0, 0}, {0, 1}, {2,−2}}

(5.4.2)

A very important thing to note here is the fact that pseudospin lowering in this manner
may yield states that are not compact. We also note that this new set will be larger than
the set {ΨCF }. After generating the set {ΨCF }low, we go through the steps 3-5 in the
procedure again, reducing {ΨCF }low to a set of unique functions and performing the CF
diagonalization. Again, we find that the exact states are linear combinations of the unique
CF states, this time in the set {ΨCF }low.

Complete overlap between CF wave functions and exact states are quite rare, and the fact
that it happens in our situation is a manifestation of the simplicity of Hilbert space at
L ≤ M . The states in the subspace M are particularly simple and we have seen that
the general CF procedure reproduces them faithfully. We will see in a later section that
complete overlaps are not possible for L > M . And while achieving complete overlaps is
both a significant feat in itself and also a sign that it may be possible to get good overlaps
at higher L, there are some problems with the applicability of the above procedure.

The foremost problem is the huge number of possible pairs of Slater determinants. Whether
we only want a specific wave function, for instance the ground state, or the full spectrum
produced by CF diagonalization, we need to compute all these candidate wave functions.
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N=1, M=7, L=7 : CF= [ 0 ] [ 0 , 1 , 2 , 3 , 4 , 5 , 6 ] : OVERLAP = 0.99869
N=1, M=7, L=6 : CF= [ 0 ] [ 0 , 1 , 2 , 3 , 4 , 5 , 7 ] : OVERLAP = 0.995116
N=1, M=7, L=5 : CF= [ 0 ] [ 0 , 1 , 2 , 3 , 4 , 6 , 7 ] : OVERLAP = 0.986095
N=1, M=7, L=4 : CF= [ 0 ] [ 0 , 1 , 2 , 3 , 5 , 6 , 7 ] : OVERLAP = 0.978955
N=1, M=7, L=3 : CF= [ 0 ] [ 0 , 1 , 2 , 4 , 5 , 6 , 7 ] : OVERLAP = 0.916579
N=1, M=7, L=2 : CF= [ 0 ] [ 0 , 1 , 3 , 4 , 5 , 6 , 7 ] : OVERLAP = 1 .
N=1, M=7, L=1 : CF= [ 0 ] [ 0 , 2 , 3 , 4 , 5 , 6 , 7 ] : OVERLAP = 1 .
N=1, M=7, L=0 : CF= [ 0 ] [ 1 , 2 , 3 , 4 , 5 , 6 , 7 ] : OVERLAP = 1

Table 5.1: Overlaps of selected CF candidates and exact ground states, 1+7 particles.

This will in general be almost as challenging or in fact even more challenging (computation-
ally) than doing a full exact diagonalization, because the evaluation of a CF wave function
requires a large number of differentiations on a huge polynomial (the Jastrow factor). In
addition, the size of the set {ΨCF }low, needed to compute the CF prediction for all states
with S > Sz, is usually almost as large or equally large as the set of basis states for the
full Hilbert space. Because of this, the usage of full CF diagonalization loses some of its
appeal. Is it perhaps possible to remedy this situation? We will give a detailed description
of how we find simple CF candidates for ground states in Section 5.5, and a summary of
the results in Section 5.6.

5.5 Simple trial wave functions

The fact that (5.2.2) gave us the exact ground state for N = M = L inspires us to look for
the other ground states using the same type of CF candidate. Indeed the ground state was
a “highest weight” state, clearly visible from the fact that the Slater determinants (5.2.2)
satisfy the Fock condition. Another interesting fact is that these Slaters have no two CFs
in the same Λ-level. Note that states with more than one CF in each Λ-level are perfectly
reasonable states, and a priori there are no reasons why we should not consider them,
except for the computational issues presented in Section 5.4. As we shall see below, we
are actually able to get very good overlaps without including them. Therefore we restrict
our choice of CF candidates to compact states that have no two composite fermions in the
same Λ-level in the following. The Slater determinants will for this reason be expressed in
exponent notation. We will call such states simple states.

To make the following discussion as concrete and clear as possible, we study the case
N + M = 8, 0 ≤ L ≤ M . As far as possible we will try to keep the arguments valid for
the general case. The starting point should perhaps be the N = 0, M = 8 set of states, as
this corresponds to all particles having the same pseudospin, being a simplifying condition.
However, N = 0 is clearly not a two-species system per se, which is what we are interested
in in this thesis. Additionally, such single-species systems have been thoroughly studied in
the literature. Therefore we will not consider systems where N = 0 in the following, and
we begin by computing all the possible CF constructions of the type we are working with
for N = 1, M = 7 particles, and their overlaps with the exact ground states. A selection
from this computation can be seen in Table 5.1.

There are three remarkable things about the results of the computation. The first is that,
amazingly, all the possible simple states for a given L in fact reduce to the same wave
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N=2, M=6, L=6 : CF= [ 0 , 2 ] [ 0 , 2 , 3 , 4 , 5 , 6 ] : OVERLAP = 0.997821
N=2, M=6, L=6 : CF= [ 0 , 6 ] [ 0 , 1 , 2 , 3 , 4 , 6 ] : OVERLAP = 0.997821
N=2, M=6, L=6 : CF= [ 0 , 3 ] [ 0 , 1 , 3 , 4 , 5 , 6 ] : OVERLAP = 0.993041
N=2, M=6, L=6 : CF= [ 0 , 5 ] [ 0 , 1 , 2 , 3 , 5 , 6 ] : OVERLAP = 0.993041
N=2, M=6, L=6 : CF= [ 0 , 4 ] [ 0 , 1 , 2 , 4 , 5 , 6 ] : OVERLAP = 0.992753
N=2, M=6, L=6 : CF= [ 0 , 1 ] [ 0 , 1 , 3 , 4 , 6 , 7 ] : OVERLAP = 0.0125939
N=2, M=6, L=6 : CF= [ 0 , 3 ] [ 0 , 1 , 2 , 3 , 6 , 7 ] : OVERLAP = 0.0125939
N=2, M=6, L=6 : CF= [ 1 , 2 ] [ 0 , 1 , 2 , 4 , 5 , 7 ] : OVERLAP = 0.0125939
N=2, M=6, L=6 : CF= [ 1 , 4 ] [ 0 , 1 , 2 , 3 , 4 , 7 ] : OVERLAP = 0.0125939
N=2, M=6, L=6 : CF= [ 2 , 3 ] [ 0 , 1 , 2 , 3 , 5 , 6 ] : OVERLAP = 0.0125939
N=2, M=6, L=6 : CF= [ 2 , 5 ] [ 0 , 1 , 2 , 3 , 4 , 5 ] : OVERLAP = 0.0125939
N=2, M=6, L=6 : CF= [ 0 , 2 ] [ 0 , 1 , 2 , 4 , 6 , 7 ] : OVERLAP = 0.0113219
N=2, M=6, L=6 : CF= [ 1 , 3 ] [ 0 , 1 , 2 , 3 , 5 , 7 ] : OVERLAP = 0.0113219
N=2, M=6, L=6 : CF= [ 2 , 4 ] [ 0 , 1 , 2 , 3 , 4 , 6 ] : OVERLAP = 0.0113219
N=2, M=6, L=6 : CF= [ 0 , 1 ] [ 0 , 1 , 2 , 5 , 6 , 7 ] : OVERLAP = 0.00254563
N=2, M=6, L=6 : CF= [ 1 , 2 ] [ 0 , 1 , 2 , 3 , 6 , 7 ] : OVERLAP = 0.00254563
N=2, M=6, L=6 : CF= [ 2 , 3 ] [ 0 , 1 , 2 , 3 , 4 , 7 ] : OVERLAP = 0.00254563
N=2, M=6, L=6 : CF= [ 3 , 4 ] [ 0 , 1 , 2 , 3 , 4 , 5 ] : OVERLAP = 0.00254563

Table 5.2: Overlaps of simple states and exact ground state, 2+6 particles, L = 6.

function! This is the reason why we have only included one candidate per L in Table
5.1. The second remarkable thing is that, for L ≤ 2, the CF wave function equals the
ground state for that L. That is, as we lower L, the simple state suddenly equals the exact
ground state. The third remarkable thing is that all the overlaps are reasonably good.
The overlaps for L = 3 are maybe not extraordinary, but for higher L the result is rather
astonishing in my opinion.

The next step in understanding these pseudospin multiplets is to “flip one spin”, i.e. con-
sider the case N = 2, M = 6, 0 ≤ L ≤ 6. When it is possible to construct Slater
determinants that satisfy the Fock condition, we know that the states they represent must
have S = Sz. From Table 5.1 we see that these candidates have a good chance of obtaining
the highest possible overlap with the exact ground state. There are now many more ways
of constructing simple states for a given L: for example, for L = 6, there are 18 simple
Slater-pairs. However, we know that seemingly different Fock states might produce the
same wave function. To investigate whether this was something unique to the case N = 1,
M = 7 or a more general fact, we calculate the overlaps between all the 18 possible simple
states and the exact ground state for L = 6. The result can be found in Table 5.2. The
list has been sorted with highest overlap appearing first.

The new feature of Table 5.2 compared to the N = 1, M = 7 case is that not all simple
states give the same wave function. In fact, we now have six distinct wave functions (six
unique overlaps) and neither of them is by itself the exact ground state. We also see a
very prominent distinction between two classes of simple states, where three of the distinct
states have overlap larger than 99%, while the other three states have less than 2%. The
latter may in fact be excited states, but we choose to focus on ground states for now. We
find that taking a linear combination of these six distinct states can give us as much as
99.92% overlap for a certain set of coefficient in the linear combination. This occurred for
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coefficients 

−0.818291
0.539426
0.056109
0.096208
0.078756
−0.144265

 (5.5.1)

corresponding to the six distinct wave functions in Table 5.2, sorted in that order. How-
ever, one may argue that the improvement from 99.78% to 99.92% overlap is not such a
significant improvement, and that one may as well use only the one wave function with the
highest overlap as the approximate wave function instead of doing the linear combination.
For example, the expectation value of the energy of the state [0, 2] × [0, 2, 3, 4, 5, 6] is ap-
proximately 12.5039. Compared to the exact ground state energy 12.5, the relative error is
3.12 ·10−4. The linear combination has energy expectation value equal to 12.5 to computer
precision, which is about 15 decimal digits. Another point to consider is that, because we
have restricted ourselves to look at simple states, we see that there is a finite and relatively
small set of possible wave functions that we must calculate for a given system size. For
instance, the dimension of Hilbert space for N = 2, M = L = 6 is 47, while the possible
CF candidates we have allowed only counts 18, and the set of unique states counts only 6.

For L = 5 and L = 4 we obtain the same kind of result as for L = 6. A relatively large
set of Slater determinant pairs are simple states, but they result in only a few unique wave
functions, where some have very good overlaps and some have terrible overlaps with the
known exact ground state. None are exactly equal to the real ground state. Because of
the similarity to L = 6, we do not post the lists of overlaps here: they can be reproduced
using the code in Appendix A if needed. This trend ends abruptly at L = 3: there are 26
different combinations of simple Slater determinants, but the wave functions they result in
are either zero or equal to the exact ground state. The proof is in Table 5.3. This is found
to hold true for 0 ≤ L ≤ 3. For L = 0 and L = 1 the outcome was somewhat special: all
candidate wave functions vanished. We will see how to deal with this in a later paragraph.

Table 5.4 shows some results for the rest of the pseudospin multiplet. The full lists of
overlaps follow the same pattern that was seen for N = 2, M = 6 and so we only include
the simple states with the highest overlap for a given L. We are now almost in a position
where we can summarize the results so far, but first we need to deal with the cases where
the CF prescription seems to fail. These are the cases where either all simple states give
a vanishing wave function, or it is not possible to create Slater determinants that satisfy
the Fock condition at all. An example of the latter is the case N = M = 4, L = 3. The
fact that we cannot make a Fock state must mean that the ground state is not a S = Sz
state, and we have to create a trial wave function that is not bound by the Fock criterion.
When seen this way, it looks like we need to abandon the Fock states and compute all the
CF candidates for the given N , M and L without knowing which will be good candidates
for the ground state. Luckily, this is not the case. The pseudospin analogy tells us that
there is some N and M in the multiplet N + M = 8, L = 3 that has S = Sz, i.e.
that satisfies the Fock condition. By looking at the other combinations in the multiplet,
(N,M) = (3, 5), (2, 6) and (1, 7), we find that the CF state

[0, 2, 4]× [0, 2, 4, 6, 7] (5.5.2)

satisfies the Fock condition, is a simple state, and gives the exact ground state wave function
for L = 3. Since it is a Fock state, it must have S = M−N

2 = 1. By spin lowering this
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N=2, M=6, L=3 : CF= [ 0 , 2 ] [ 0 , 2 , 3 , 5 , 6 , 7 ] : OVERLAP = 1 .
N=2, M=6, L=3 : CF= [ 0 , 3 ] [ 0 , 1 , 3 , 5 , 6 , 7 ] : OVERLAP = 1 .
N=2, M=6, L=3 : CF= [ 0 , 3 ] [ 0 , 2 , 3 , 4 , 6 , 7 ] : OVERLAP = 1 .
N=2, M=6, L=3 : CF= [ 0 , 4 ] [ 0 , 1 , 3 , 4 , 6 , 7 ] : OVERLAP = 1 .
N=2, M=6, L=3 : CF= [ 0 , 4 ] [ 0 , 2 , 3 , 4 , 5 , 7 ] : OVERLAP = 1 .
N=2, M=6, L=3 : CF= [ 0 , 5 ] [ 0 , 1 , 3 , 4 , 5 , 7 ] : OVERLAP = 1 .
N=2, M=6, L=3 : CF= [ 0 , 5 ] [ 0 , 2 , 3 , 4 , 5 , 6 ] : OVERLAP = 1 .
N=2, M=6, L=3 : CF= [ 0 , 6 ] [ 0 , 1 , 2 , 3 , 6 , 7 ] : OVERLAP = 0
N=2, M=6, L=3 : CF= [ 0 , 6 ] [ 0 , 1 , 3 , 4 , 5 , 6 ] : OVERLAP = 1 .
N=2, M=6, L=3 : CF= [ 0 , 7 ] [ 0 , 1 , 2 , 3 , 5 , 7 ] : OVERLAP = 0
N=2, M=6, L=3 : CF= [ 1 , 2 ] [ 1 , 2 , 3 , 4 , 5 , 7 ] : OVERLAP = 0
N=2, M=6, L=3 : CF= [ 1 , 3 ] [ 0 , 1 , 3 , 4 , 6 , 7 ] : OVERLAP = 1 .
N=2, M=6, L=3 : CF= [ 1 , 3 ] [ 1 , 2 , 3 , 4 , 5 , 6 ] : OVERLAP = 0
N=2, M=6, L=3 : CF= [ 1 , 4 ] [ 0 , 1 , 2 , 4 , 6 , 7 ] : OVERLAP = 1 .
N=2, M=6, L=3 : CF= [ 1 , 4 ] [ 0 , 1 , 3 , 4 , 5 , 7 ] : OVERLAP = 1 .
N=2, M=6, L=3 : CF= [ 1 , 5 ] [ 0 , 1 , 2 , 4 , 5 , 7 ] : OVERLAP = 1 .
N=2, M=6, L=3 : CF= [ 1 , 5 ] [ 0 , 1 , 3 , 4 , 5 , 6 ] : OVERLAP = 1 .
N=2, M=6, L=3 : CF= [ 1 , 6 ] [ 0 , 1 , 2 , 4 , 5 , 6 ] : OVERLAP = 1 .
N=2, M=6, L=3 : CF= [ 1 , 7 ] [ 0 , 1 , 2 , 3 , 4 , 7 ] : OVERLAP = 0
N=2, M=6, L=3 : CF= [ 2 , 3 ] [ 0 , 2 , 3 , 4 , 5 , 6 ] : OVERLAP = 0
N=2, M=6, L=3 : CF= [ 2 , 4 ] [ 0 , 1 , 2 , 4 , 5 , 7 ] : OVERLAP = 1 .
N=2, M=6, L=3 : CF= [ 2 , 5 ] [ 0 , 1 , 2 , 3 , 5 , 7 ] : OVERLAP = 1 .
N=2, M=6, L=3 : CF= [ 2 , 5 ] [ 0 , 1 , 2 , 4 , 5 , 6 ] : OVERLAP = 1 .
N=2, M=6, L=3 : CF= [ 2 , 6 ] [ 0 , 1 , 2 , 3 , 5 , 6 ] : OVERLAP = 1 .
N=2, M=6, L=3 : CF= [ 3 , 5 ] [ 0 , 1 , 2 , 3 , 5 , 6 ] : OVERLAP = 1 .
N=2, M=6, L=3 : CF= [ 3 , 6 ] [ 0 , 1 , 2 , 3 , 4 , 6 ] : OVERLAP = 1 .

Table 5.3: Overlaps of all simple states at 2+6 particles, L = 3.

state, we see that we can make the state

[0, 2, 4, 7]× [0, 2, 4, 6] (5.5.3)

that has N = M = 4, L = 3. This state has S = 1 and Sz = 0 because we lowered the spin.
The amazing fact is that this state is exactly equal to the ground state! So not only have
we found a CF candidate that exactly equals the ground state of the system, but we have
also learned that, for this L, the ground state is an S = 1 state, and not a highest weight
state as the other states have been. We now clearly see the advantage of the pseudospin
perspective we have taken. We also realize that generally, given a Fock state at some L,
we can use spin lowering on this state to create states with the same energy at other values
of N and M in the multiplet. Spin raising a Fock state does not work, because all the
pseudospin down-states are already occupied by the pseudospin up-states. Working this
way, we can save all the cases where the CF recipe seemed to fail before. For example, the
ground state candidate of N = M = 4, L = 1 (see Tables 5.1 & 5.4) is lowered three times
from

[0]× [0, 2, 3, 4, 5, 6, 7] (5.5.4)

giving for instance
[0, 2, 4, 6]× [0, 3, 5, 7] (5.5.5)

The wave function has complete overlap with the exact ground state. Notice that we could
have flipped the spins in lots of different ways here: the reason we chose exactly this form
will become clear in a moment.
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N=3, M=5, L=5 : CF= [ 0 , 2 , 4 ] [ 0 , 2 , 4 , 5 , 6 ] : OVERLAP = 0.993761
N=3, M=5, L=4 : CF= [ 0 , 2 , 4 ] [ 0 , 2 , 4 , 5 , 7 ] : OVERLAP = 1 .
N=3, M=5, L=3 : CF= [ 0 , 2 , 4 ] [ 0 , 2 , 4 , 6 , 7 ] : OVERLAP = 1 .
N=3, M=5, L=2 : CF= [ 0 , 2 , 6 ] [ 0 , 2 , 3 , 6 , 7 ] : OVERLAP = 0
N=3, M=5, L=1 : CF= [ 0 , 2 , 5 ] [ 0 , 2 , 5 , 6 , 7 ] : OVERLAP = 0
N=3, M=5, L=0 : CF= [ 0 , 2 , 6 ] [ 0 , 2 , 5 , 6 , 7 ] : OVERLAP = 0'
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N=4, M=4, L=4 : CF= [ 0 , 2 , 4 , 6 ] [ 0 , 2 , 4 , 6 ] : OVERLAP = 1 .
N=4, M=4, L=3 : NO FOCK STATE
N=4, M=4, L=2 : CF= [ 0 , 2 , 4 , 7 ] [ 0 , 2 , 4 , 7 ] : OVERLAP = 0
N=4, M=4, L=1 : NO FOCK STATE
N=4, M=4, L=0 : CF= [ 0 , 2 , 5 , 7 ] [ 0 , 2 , 5 , 7 ] : OVERLAP = 0

Table 5.4: Best simple state overlaps, (N,M) = (3, 5) and (4, 4), L ≤M .

5.6 Conclusions for L ≤M

Based on the data and discussions presented in the previous section we can now make some
general statements for the suitability of CF wave functions in the Papenbrock-Reimann-
Kavoulakis range of angular momenta.

1. For a given N,M,L we can either find a set of (non-vanishing) simple states, or a
set of states obtained from simple states at other values of M −N by spin lowering.

2. If simple states can be found at the given N,M,L, the state with the highest overlap
is the state that “looks the most like” the state given for N = M = L, Eq. (5.2.2).
That is, Φz will have the form [0, 2, . . . , 2(N − 1)] and Φw must be chosen to give
the correct angular momentum L. The other simple states will either reproduce this
wave function or a wave function with lower overlap.

3. Any non-vanishing simple state will be equal to the exact state if the angular mo-
mentum L is low enough. For N +M = 8 (and possibly higher), the statement holds
if L < min(2N,M). In some cases, the simple state also equals the exact ground
state if L = 2N < M or L = M < 2N .

4. The maximum overlaps one can achieve by taking linear combinations of simple
states, regardless of L, are very good, typically higher than 99% for the systems sizes
we have studied.

The second statement is simply an observation we have made from producing the lists of
overlaps for different combinations of N,M,L. If one does not require the highest precision
available when calculating quantities based on these wave functions, we argued in the last
section that one can choose to take only the state with the highest overlap as a good
approximate wave function, instead of a linear combination. The second statement allows
us to find this state without the need of computing all the simple states and comparing
their overlaps.

The third statement is again an observation made from computing the lists of overlaps.
The abrupt transition from Fock states with many different overlaps to trial wave functions
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with either 0 or 1 overlap at L < 2N leads us to believe that this is a systematic feature
rather than a coincidence due to small system size. We have found that all the states from
Chapter 3 can be reproduced by linear combinations of CF states that are not necessarily
simple. We realize that if the dimension of the subspace of unique, non-zero CF states is
1, then the simple state equals the exact state trivially. We believe this is the cause for
the transition; at angular momenta as low as L < min(2N,M), the CF subspace becomes
one-dimensional, and contains only one simple state that equals the exact ground state.
One normally perceives such low angular momentum states as far beyond the scope the CF
formalism, because we are very far away from the quantum Hall regime. We have shown
here that the opposite is true: CF trial wave functions work extraordinarily well in this
regime. We return to this discussion in the final section of this chapter.

5.7 Higher angular momenta M < L ≤ A

As we have now analyzed the application of CF trial wave functions to ground states in the
angular momentum range 0 ≤ L ≤ M , we turn to higher angular momenta M < L ≤ A.
Since we do not know expressions for the eigenstates in this angular momentum regime, we
turn to exact numerical diagonalization of the interaction to produce the wave functions
and energies. By applying the general CF prediction procedure described in Section 5.3, we
find that we are not able to achieve complete overlap with the eigenstates of the interaction
in this range of angular momenta. Additionally, higher angular momenta means a larger
Hilbert space, making the general procedure computationally difficult. But we can still
choose to work with simple CF states, and this is the approach we take also in this section.
The details of the algorithm that was used are discussed in Appendix A.

As we go to higher L, more and more configurations are available for the bosons, and the
coefficients in the ground state polynomial become highly non-trivial. The ground state
energies are also no longer given by simple fractions as was the case in the previous section.
Therefore one might suspect that the overlaps would start to worsen in this range of angular
momenta. However, we find that it is possible to obtain quite good overlaps also in this
range. An important difference from L ≤ M is that rule number 2 from the last section
fails in this higher angular momentum range: to give an example, [0, 2, 5] × [0, 2, 3, 4, 5]
has higher overlap than [0, 2, 4]× [0, 2, 3, 4, 6]. Apart from this, there are no fundamental
changes to the way one creates simple states or in their overlaps. To illustrate the combined
discoveries from this chapter, we proceed to plot the energies of the simple Fock states with
the best overlaps, along with their pseudospin lowered states. These are plotted together
with the full energy spectrum that one finds from exact diagonalization, neglecting center-
of-mass excitations. The interaction has been taken to be a contact interaction in these
plots, that is, we have used

vm =
(−1/2)m

m!
(5.7.1)

in the interaction defined in Section 3.1. We remember that the details of the repulsive
interaction affect the energies, but not the states, and therefore, not the overlaps. The
overlaps written below the ground state candidates are the overlaps between single simple
states (not linear combinations) and the exact ground states. Remembering that it was
possible to improve the overlaps somewhat by taking linear combinations of other simple
states at the same N,M,L, we interpret the quoted overlaps as lower bounds on the overlap
one can achieve. The plots are seen in Figures 5.7.1, 5.7.2. We use different colors to signify
different values of the spin quantum number S in all plots, as described in the plot insets.
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Figure 5.7.1: Plots of simple states and states lowered from simple states, N = 1, M = 7
and N = 2, M = 6 particles.
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Figure 5.7.2: Plots of simple states and states lowered from simple states, N = 3, M = 5
and N = M = 4 particles.
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We are very pleased to see that for all M − N in the multiplet N + M = 8 and all
0 ≤ L ≤ N + M , there are states given by a simple product of two Slater determinants
with very high overlaps with the exact ground states. We also see that spin lowering
produces some of the low-lying excitations as well. As already stated, the ground state
candidates are either simple states or states lowered from simple states, with one exception,
which we give special attention. This is the ground state at N = M = 4, L = 7. One
can quickly figure out that it is not possible to create a pair of similar Slater determinants
that give L = 7 here. A pair of Slaters at N = M adds or subtracts an even amount of
angular momentum from the Jastrow factor, and we know that LJ is even for N = M = 4.
Therefore we would normally assume that its spin is S > Sz, and use spin lowering from
another part of the multiplet. The natural choice is to lower the state [0, 2, 5]× [0, 2, 3, 4, 5],
which has the highest overlap for N = 3, M = 5, to the state [0, 2, 4, 5] × [0, 2, 3, 5]. But
this state actually has an overlap of less than 0.40. To investigate, we look at the energies
from the exact diagonalization: they reveal that this is a S = 0 state, so the state must
satisfy the Fock condition! The answer comes from creating a linear combination of lowered
states:

Φ = [0, 2, 3, 5]× [0, 2, 4, 5]− [0, 2, 4, 5]× [0, 2, 3, 5] (5.7.2)

This looks very much like a spin singlet state

|↑↓〉 − |↓↑〉 (5.7.3)

known from the two-level system of elementary quantum mechanics. This state satisfies the
Fock condition, because the terms resulting from antisymmetrization of a z with respect to
the w’s of the first pair cancel the ones from the second pair. Therefore it is a Fock state,
but indeed a more complicated one than those we have been dealing with until now. This
state has 0.997 overlap, as seen in Figure 5.7.2. This result may implicate that Fock states
that are not just a pair of determinants could become important in describing the states
at L > M for larger systems. We will not consider this however, because it complicates
matters to such an extent that using trial wave functions seems almost pointless compared
to exact diagonalization.

5.8 Occupancy of Λ-levels

We have now seen that the exact ground states can be modeled to impressive precision by
composite fermion wave functions that only have singly occupied Λ-levels. Can we explain
why we get such good results when only considering these simple trial wave functions?
In the lowest angular momentum regime that we studied in Chapter 3, almost all CF
states with more than one CF in each Λ-level actually vanish. We understand this by
remembering that a CF in Λ-level n entails differentiation of the Jastrow factor n times
with respect to one coordinate. Since the Jastrow factor has the form

x0x1 · · ·xA−1 (5.8.1)

where all the x are different zi and wk, we see that there is a maximum number of differen-
tiations with respect to any coordinate we can have before the Jastrow vanishes completely.
On the other hand, we need to differentiate it quite a bit in order to reduce the angular mo-
mentum down to the low values we are considering in this thesis. That is, as we approach
lower angular momenta for a given N,M , there are less and less options for single-particle
occupancies. It seems that the limit for placing two CFs in any same level is reached when
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L becomes less than min(2N,M). Consider the case N = 2, M = 6, L = 4. Obviously
L = min(2N,M). The simple state with the highest overlap here, about 98%, is given by
determinants

[0, 2]× [0, 2, 3, 4, 6, 7] (5.8.2)

But there are non-zero states with more than one CF per level. In this case there is only
one unique such state, and it is given by (for instance)

{{0, 0}, {2,−2}} × {{0, 0}, {2,−2}, {4,−4}, {5,−5}, {5,−4}, {7,−7}} (5.8.3)

What would happen if we tried to lower the angular momentum of these two CF states? We
obviously need to increase the number of differentiations that act on the Jastrow factor.
If we go to L = 3, where L < min(2N,M), we can easily manipulate the former state
appropriately: we get for instance

[0, 2]× [0, 2, 3, 5, 6, 7] (5.8.4)

Table 5.3 shows that the overlap is 1 for this state. The state (5.8.3) is a different story.
There is simply no way to get a non-vanishing wave function by rearranging this state so
that we keep two CFs in the same Λ-level and get the correct L: the cost of two CFs in the
same level is that we need to move another CF into a higher level, destroying the Jastrow
factor. We verify this using the Fock state generation code in Appendix A, sorting out the
candidates with multiply occupied levels. We plot the number of candidate Fock states and
the number of states that have two or more CFs in the same level for the (N,M) = (2, 6)
system in Figure 5.8.1. We can easily see that there are no multiply occupied levels at
L < min(2N,M) = 4. We have not been able to prove this trend analytically however,
mostly because there are generally very many states to consider. Therefore there might
exist larger systems that also allow multiply occupied Λ-levels for some L < 2N . However,
we believe that multiply occupied levels will be frozen out for all system sizes, for sufficiently
small L > 0.

At higher L, we have seen that it is not possible to get complete overlaps with the exact
states, even when taking states with multiply occupied levels into account. However, we
have shown that we get very high overlaps even when only considering simple states. That
means that, as we raise L, the states that are not simple states start to give significant
contributions to the wave functions. But the most important parts (overlap-wise) still come
from the states that are simple CF wave functions. This is perhaps the most important
result in this thesis.
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Figure 5.8.1: Numbers of unique Slater determinant configurations. The blue rings repre-
sent all allowed Fock states. The red disks represent Fock states with at least one multiply
occupied Λ-level.



Chapter 6

Inhomogeneous interaction

In this chapter we will give a brief discussion on the case of inhomogeneous interaction. This
is a highly relevant generalization of the homogeneous interaction we have been studying up
to this point, because in most experimental situations, the mixture of two species of bosons
will not interact completely uniformly. It has been studied very recently by Furukawa and
Ueda [28], but in torus geometry and for rotations in the quantum Hall regime. On the
other hand, letting the interaction become inhomogeneous breaks many of the symmetries
that allowed the analytical derivation of states in Chapter 3, and so the expectations for
analytical results in this regime and/or applicability of CF trial wave functions are lower.
Therefore, we will not study the case of completely inhomogeneous interaction, but focus
on a special case, and also limit the discussion to a certain well-known parameter range.

6.1 The interaction

We will continue to consider pairwise contact interactions modeled by simple delta function
potentials as we did in the previous chapters. We will assume that the intra-species inter-
actions are still equal in strength for the two species, but we will allow the inter-species
interaction to have a different strength. That is, we will consider the interaction operator

V =
L∑

m=0

vm(g1Am + g1Bm + g2Cm) (6.1.1)

where the operators Am, Bm, Cm are still defined as in Section 3.1. We will allow the inter-
species interaction strength g2 to vary from 0 to g1 continuously. There are two reasons
for this choice: the first is that the two species have equal intra-species coupling strength:
that makes it very unlikely that they should couple stronger to bosons of the other species
than to bosons of the same species. The other reason is that the behavior is well known in
the two limits g2/g1 = 0 and g2/g1 = 1. The latter is of course what we have been studying
in the other chapters of this thesis. The former case simply means that the two species
are independent of one another, meaning that the total wave function is a simple product
of two wave functions, one for each species! For this reason, the goal of this chapter is to
test an interpolation scheme where we use CF trial wave functions to interpolate between
the two known limits. If we factor g1 out of the sum in the interaction and set it as the
unit of energy, the expression for the interaction becomes

V =
L∑

m=0

vm(Am +Bm + gCm) (6.1.2)

59
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where g = g2/g1 ∈ [0, 1]. We will use vm = (−1/2)m/m! corresponding to a simple delta
function interaction as before.

6.2 Ground states in the two known limits

We showed in the previous chapter that linear combinations of CF wave functions satisfying
the Fock condition give the exact ground states for N ≤ L ≤ M , and that the ground
states at L < N can be found by spin lowering of Fock states “higher up” in the multiplet.
We want to take the simplest possible (non-trivial) starting point for our interpolation
scheme, and choose to study the states where N = M = L. In the limit g = 1, we know
that the ground state is given exactly by the CF state with Slater determinants

[0, 2, 4, . . . , 2(L− 1)]× [0, 2, 4, . . . , 2(L− 1)] (6.2.1)

This can be expressed in terms of symmetric polynomials as

ΨL,L,g=1(z, w) =
L∑
λ=0

c
(L)
λ eλ(z)eL−λ(w) (6.2.2)

where we remember that projection P0 is not necessary (Section 3.5). The coefficients can
be found from the formula [8]

c
(L)
λ = (−1)λ

(M −N + λ)!(N − λ)!

(M − L)!N !
(6.2.3)

which for N = M = L gives the very simple result

c
(L)
λ = (−1)λ

λ!(L− λ)!

L!
= (−1)λ

(
L!

λ!(L− λ)!

)−1

= (−1)λ
(
L

λ

)−1

(6.2.4)

This gives a formula for the ground state wave function:

ΨL,L,g=1(z, w) =

L∑
λ=0

(−1)λ
(
L

λ

)−1

eλ(z)eL−λ(w) (6.2.5)

What about the other limit, g = 0? The total wave function should be a simple product
of two one-species wave functions:

ΨN,M,L,g=0(z, w) = ΨN,L1(z)ΨM,L2(w) (6.2.6)

where L1 + L2 = L. These one-species wave function have been studied in great detail in
the literature [13,14,19] and are known to be given by

ΨN,L(z) = eL(z − Z) (6.2.7)

where Z is the center of mass for the species z,

Z =
1

N
e1(z) (6.2.8)

The same obviously holds for the other species w. The ground state is degenerate when
g = 0, and the states with the lowest energy are

Ψ(z, w) = eλ(z − Z)eL−λ(w −W ) (6.2.9)
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where λ = 0, 2, 3, 4, . . . , L− 3, L− 2, L. The reason λ = 1 and λ = L− 1 do not appear is
simply because the wave functions will vanish in these cases:

e1(z − Z) =

N∑
i=1

(zi − Z) =

N∑
i=1

(
zi −

1

N
(z1 + · · ·+ zN )

)
= 0 (6.2.10)

Any normalized linear combination of these states will also be a state with the ground state
energy, so it will be up to us to decide what such combination the interpolation should give
in this limit. We would like the total wave function to satisfy the Fock condition, based on
the results in Chapter 5. Note that for g in the range (0, 1), the interaction eigenstates will
in general not be eigenstates of the pseudospin operators at all, so it is not obvious that
we should demand that the CF candidates satisfy the Fock condition. We choose this form
simply because the CF candidate that give the exact ground state at g = 1 has this form,
and because the interaction still treats the two species in a somewhat symmetric manner,
leading us to believe that the ground states are highest weight states.

6.3 Trial wave functions at g = 0

The CF predictions in this limits are also products of two one-component wave functions.
To find a CF trial wave function for the states (6.2.9) we produce CF candidates for the
one-component functions

eλ(z − Z) and eL−λ(w −W ) (6.3.1)

We mentioned the one-component CF wave functions in Chapter 4, and we show the way
they are created for the z species. The CF wave functions are

ΨCF (z) = PLLL (Φz,λJN ) (6.3.2)

where Φz,λ is a Slater determinant resulting in ΨCF (z) having angular momentum λ, and

JN =
∏

1≤i<j≤N
(zi − zj) (6.3.3)

for bosons. Since this Jastrow factor carries LJ = N(N − 1)/2 = L(L − 1)/2 we need to
make a determinant Φ with angular momentum

LΦ = λ− LJ = λ− 1

2
L(L− 1) (6.3.4)

To accomplish this, we begin by placing one composite fermion each in the Λ-levels n =
0, 1, . . . . , N − 1 = 0, 1, . . . , L − 2. This determinant would have carried negative angular
momentum LΦ = −(L − 1)(L − 2)/2. We need to figure out in which Λ-level to place
the final composite fermion. The available states for this last CF are (n,−n + 1) for
n = 0, 1, . . . , L−2 and (n,−n) for n ≥ L−1. Placing it in a state (n,−n+1) = (1−m,m)
gives us LΦ = −(L− 1)(L− 2)/2 +m, and we get the equation

λ− 1

2
L(L− 1) = −1

2
(L− 1)(L− 2) +m (6.3.5)

The solution is
m = λ+ 1− L (6.3.6)
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That is, to get the correct angular momentum λ, we place the last CF in the single-particle
state (L− λ, λ+ 1− L). To make a compact state, we see that this expression only holds
if

L− λ ≤ L− 2

λ ≥ 2
(6.3.7)

We have seen that λ = 1 does not occur, and λ = 0 corresponds to the exponent notation
[0, 1, 2, . . . , L − 1]. This last CF state is simply equal to 1 after normalization, matching
perfectly e0(z − Z) = 1.

What about other sets of single-particle states? We know already that different choices
will generally give different wave functions. To check this, we use a modified version of the
Fock state generation code in Appendix A. For the angular momenta L = 3, 4, 5, 6 we find
that they all reduce to the same wave functions or vanish. This makes matters simpler for
us. Indeed, we know from the previous chapter that this was also the case for g = 1, and so
we anticipated that it might also happen at g = 0. A few diagrams make the process easier
to visualize. We display the diagrams of single-particle states for Φz,λ at N = M = 6 for
λ = 0, 3, 5:

λ = 0



5 � − − − − − − −
4 � − − − − − −
3 � − − − − −
2 � − − − −

n 1 � − − −
0 � − −

−3 −2 −1 0 1 2
m



λ = 3



5 − − − − − − − −
4 � − − − − − −
3 � � − − − −
2 � − − − −

n 1 � − − −
0 � − −

−3 −2 −1 0 1 2
m



λ = 5



5 − − − − − − − −
4 � − − − − − −
3 � − − − − −
2 � − − − −

n 1 � � − −
0 � − −

−3 −2 −1 0 1 2
m



(6.3.8)

We mentioned in Chapter 5 that the one-component CF wave function is known to equal
the symmetric polynomial eL(z − Z) when L = 2, 3. This means that for a total angular
momentum larger than 2 · 3 = 6, the product of two CF trial wave functions will not equal
the exact ground state. It has been shown [12,13] that the overlaps with the exact ground
state seem to increase with N . Therefore we do not expect the trial wave functions to give
the ground states exactly when g < 1. Out goal will be to create an interpolation process
to approximate the ground states at g ∈ (0, 1) which has the states discussed in the last
two sections as limits when g = 0 or 1.
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Figure 6.4.1: Ground state energy vs. g from exact diagonalization, calculated for 100
values of g ∈ [0, 1].

6.4 Exact ground state energies

Before giving the interpolating trial wave functions, we would like to know something
about how the ground states vary as a function of g. We choose to calculate and plot the
ground state energies for various values of g in the range [0, 1] using exact diagonalization.
We made a script that runs the diagonalization code in Appendix A with g = i/100,
i = 0, 1, . . . , 100. The ground state energies were then plotted against the values of g.
Figure 6.4.1 shows the result.

We see that the energy varies rather smoothly with g and seems to be parabolic. We let
Mathematica find a least-squares quadratic fit, and we get

E(g) = 7.96276 + 9.0732g − 2.01899g2 (6.4.1)

with R2 = 0.999999. The statistic R2 measures how well E(g) fits the data, and is given
by

R2 = 1−
∑

i(Ei − E(gi))
2∑

i(Ei − E)2
(6.4.2)

where Ei is the computed energy expectation value at g = gi and

E =
1

N

∑
i

Ei (6.4.3)

is the mean value of the calculated expectation values. We see that a perfect fit, e.g.
E(gi) = Ei entails R2 = 1, meaning that (6.4.1) is a very good fit to the calculated



CHAPTER 6. INHOMOGENEOUS INTERACTION 64

0.0 0.2 0.4 0.6 0.8 1.0

8

10

12

14

16

Inter - spec . strength g

G
ro

u
n

d
st

at
e

en
er

g
y

Contact interaction , N = M = L = 4

Figure 6.4.2: Quadratic fit to the ground state energies.

data. The function E(g) is plotted together with the data points in Figure 6.4.2. When
creating the trial wave functions in the next sections, comparison with these plots will be
an important way of checking the validity of the trial functions.

6.5 A naive interpolation

The simplest interpolation we can think of is based on the energy distribution in Figure
6.4.1. To reproduce this plot, we naively interpolate the ground states at intermediate g
by a linear combination of the states we already know, namely the states at g = 0 and
g = 1:

Ψg(z, w) = f(g)Ψg=0(z, w) + h(g)Ψg=1(z, w) (6.5.1)

The state at g = 0 is chosen to be the state in the degenerate set of ground states (6.2.9)
that distributes the angular momentum most equally between the two species. That is, we
choose

Ψg=0(z, w) = eL/2(z − Z)eL/2(w −W ) (6.5.2)

for even L and

Ψg=0(z, w) = e(L+1)/2(z − Z)e(L−1)/2(w −W ) + e(L−1)/2(z − Z)e(L+1)/2(w −W ) (6.5.3)

for odd L. We also normalize the wave functions Ψg=1 and Ψg=0. We demand that the
known states are reproduced by this formula, meaning that

f(0) = 1 h(0) = 0

f(1) = 0 h(1) = 1
(6.5.4)
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Figure 6.5.1: Expectancy of interaction energy of the naive interpolating function (1 −
g)Ψg=0 + gΨg=1. The blue line is the quadratic fit in (6.4.1).

Since we do not (yet) know the physics precisely in the intermediate g-regime, we propose
a linear transition from Ψg=0 to Ψg=1 as g grows. This means that

Ψg(z, w) = (1− g)Ψg=0 + gΨg=1 (6.5.5)

The expectation value of the interaction energy is found in Mathematica for N = M = L =
4, and we plot it in Figure 6.5.1. We see that the energy approaches the exact ground state
energies in the two limits, as we demanded, but does a relatively poor job of approximating
the exact energies in the interior region of the plot. Considering the very naive approach
we have utilized here, this is to be expected. How about overlaps with exact states? Even
if the energy of the state (6.5.5) had a very similar structure to the exact energies, the
overlaps might have been good, or they might have been terrible. Of course, the energy
is only one out of many observables, and any wave function certainly contains much more
information than what its energy is. Calculating the overlap between the state (6.5.5) and
the exact ground states for a few values of g results in some overlaps of about 60-70%, and
some overlaps that are almost zero. The overlap of order 10−12 at g = 0.4 makes us realize
that this method is indeed too simple, and completely unreliable. We therefore discard it,
and move on to the next attempt at an interpolating scheme, where the difference between
the forms of the CF constructions in the two limits leads to a recipe for interpolation.
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6.6 The improved interpolating wave functions

We are now ready to present a more carefully planned interpolation process. When exam-
ining the form of the CF wave functions at g = 1

ΨCF,g=1 = PLLL (ΦzΦwJN,M ) (6.6.1)

and at g = 0
ΨCF,g=0 = PLLL (ΦzJNΦwJM ) (6.6.2)

we see that the main structural difference is in the Jastrow factor(s). Since Φw does not
act on JN in the last equation, we can move it to the right and write out the factors of J
explicitly. We get

ΨCF,g=1 = PLLL

ΦzΦw

∏
i<j

(zi − zj)
∏
k<l

(wk − wl)
∏
i,k

(zi − wk)


ΨCF,g=0 = PLLL

ΦzΦw

∏
i<j

(zi − zj)
∏
k<l

(wk − wl)

 (6.6.3)

The products run over the same indices as in previous chapters. The difference is obvious:
the factors that correlate pairs of z’s and w’s are completely absent at g = 0, and fully
present at g = 1. Based on this, we choose the interpolation to be a gradual attachment
of factors of the form (zi − wk) when raising g from 0 to 1. The way to do this while pre-
serving the symmetry required by the bosonic statistics is to attach elementary symmetric
polynomials in the coordinate differences to ΨCF,g=0: we define a set

A = {(zi − wk) | 0 ≤ i ≤ N, 0 ≤ k ≤M} (6.6.4)

and attach the factors
ek(A) (6.6.5)

The two limits g = 1 and g = 0 correspond to k = N ·M and k = 0 respectively. The
limits are reproduced nicely because

e0(A) = 1

eN ·M (A) =
∏
i,k

(zi − wk) (6.6.6)

To be able to construct Fock state CF wave functions at N = M = L, we notice that the
Jastrow-like part of the wave function needs to carry an even number of angular momentum
units. Therefore we let k take values k = 0, 2, 4, . . . . , N ·M . We will be interested in
determining what values of k correspond best to what values of g. The fact that the
energy of the ground state does not grow linearly in g suggests that the correspondence
between k and g is non-trivial.

When lowering the value of k, we obviously need to adjust what single-particle states we
place in the determinants in order for the angular momentum to remain L. Since we lower
k in steps of 2, we correct for this by moving the composite fermion at (L− λ, λ+ 1−L),
mentioned in the last section, down one Λ-level in both Φz and Φw. If we have only one
CF in each Λ-level, we begin by moving the CF in the highest level to the level below it.
Working this way, we are able to find CF candidates for all the cases k = 0, 2, . . . N ·M . We



CHAPTER 6. INHOMOGENEOUS INTERACTION 67

begin at k = N ·M where we know that the CF wave function given by [0, 2, 4, . . . , 2(L−1)]
equals the exact ground state. Then, as we lower k to N ·M − 2, we move the highest
level CF down one level in each determinant, i.e. [0, 2, 4, . . . , 2(L− 1)− 1]. The procedure
continues in this manner. In the next section we show the interpolation procedure explicitly
for a choice of L.

6.7 The case N = M = L = 4

We focus our efforts on this case and show explicitly how to create the interpolating wave
functions when k = 0, 2, . . . , 16. We will use both explicit and exponent notation for
determinants in this section. We begin at k = 16. The starting point for the interpolation
is the exact ground state at g = 1, given by

ΨCF,k=16(z, w) = (Φz,2Φw,2)
∏
i<j

(zi − zj)
∏
k<l

(wk − wl)
∏
i,k

(zi − wk) (6.7.1)

where [Φz,2] = [Φw,2] = [0, 2, 4, 6]. The state of course corresponds to g = 1, and we can
calculate the energy using formula in Chapter 3; the energy is Ek=16 = 15. It is interesting
however to let Mathematica treat g as a variable, and instead calculate the energy as a
function of g. The result is

E16(g) = 〈ΨCF,k=16 |V |ΨCF,16=0〉 = 10 + 5g (6.7.2)

We may compare this result to what we get for other values of k and see if there is a
systematic behavior. The next step is k = 14. The CF trial wave function is

ΨCF,k=14(z, w) = (Φz,2Φw,2)
∏
i<j

(zi − zj)
∏
k<l

(wk − wl)e14(A) (6.7.3)

where the determinants now have the form [0, 2, 4, 5]. The energy is

E14(g) = 〈ΨCF,k=14 |V |ΨCF,14=0〉 = 10.9602 + 4.33243g (6.7.4)

We continue to lower k and adjusting the determinants in this fashion. We use the Fock
state generator code to check how many unique trial wave functions there are at each
k; for k = 16, 14 there are only the states we have quoted, but at k = 12 there are
two distinct states, namely [0, 2, 3, 5] and [0, 1, 4, 5]. These have somewhat different en-
ergy dependence on g: we will list them in Table 6.1 in what follows. For k = 10, the
first candidate with more than one CF in a Λ-level appears. The three candidates are
{{0, 0}, {0, 1}, {4,−4}, {5,−5}}, [0, 2, 3, 4] and [0, 1, 3, 5]. There are generally very few
Fock states to choose from, and at most three unique wave functions, for N = M = L = 4.

The final state at k = 0 deserves special mention, because we remember that there was
a priori no preference to which of the degenerate ground state basis states (6.2.9) the
interpolation should take us to. Table 6.1 shows us that the interpolation gives an energy
of exactly 8 at g = 0, which is the energy for the states (6.2.9). Upon inspection, the CF
state at k = 0, which is given by determinants {{0, 0}, {0, 1}, {2,−2}, {3,−3}}, is seen to
be exactly equal to the state

e2(z − Z)e2(w −W ) (6.7.5)

which is of course an exact ground state. It is delightful to see that the interpolation,
whose form was mostly based on the known ground state at g = 1, reproduces the known
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k 16 14 12 10 8

Ek(g) 10 + 5g 10.96 + 4.33g
10.93 + 4.38g
10.76 + 4.40g

8 + 10.44g
11.00 + 4.41g
10.77 + 4.42g

8 + 10.44g
10.81 + 4.40g

k 6 4 2 0

Ek(g)
8 + 10.44g

10.79 + 4.41g
8 + 10.44g

10.79 + 4.41g
8 + 10.44g 8 + 10.44g

Table 6.1: Energies as function of g for k = 16, 14, . . . 2, 0. Multiple lines for a given k
corresponds to unique Fock states.

lower limit g = 0. As mentioned, for L > 6, the interpolation would not give the exact
ground state in the limit g = 0, but we see that we would get that CF state which is known
to have the highest overlap.

The entries in Table 6.1 are somewhat peculiar. For example, the energy 8+10.44g appears
at all k < 12. These correspond to Fock states with more than one CF in a Λ-level. The
adjustment of the determinants apparently cancels the change of the Jastrow-like factor
as k is varied; these are all the same wave function! We see that this is not the case for
the other energies, which correspond to Fock states with only one CF in any level. We
know that the exact ground state energy falls off monotonically as g goes from 1 to 0;
from the entries at k = 12, 10, 8, it seems that we might need to take linear combinations
of the unique states in order to not overshoot the energy of the states we are trying to
approximate. A plot will make this point clearer.

We plot the two energy expressions at k = 8 together with the quadratic fit of the exact
energies. Intuitively, k = 8 could correspond to g = 1/2 as it is the middle value of the
two limits. We see from Figure 6.7.1 that both the interpolating functions give energies
that are too large in the middle region of the plot. We choose to investigate this point by
calculating some overlaps in the region g ∈ [0.4, 0.6]. We choose the trial wave function to
be a linear combination of the two states at k = 8, that is,

Ψtrial(z, w) = c1Ψ1 + c2Ψ2 (6.7.6)

where
Ψ1 : {{0, 0}, {0, 1}, {4,−4}, {5,−5}}
Ψ2 : [0, 1, 3, 4]

(6.7.7)

The calculations show that, for g < 0.5 (we chose values 0.40, 0.43, 0.45, 0.48) the overlaps
are in fact as bad as they were with the naive approach. The maximum overlap one can
achieve by varying c1, c2 are of order 10−10. For g = 0.5, the situation changes radically.
The exact ground state is actually degenerate, with two eigenstates of minimum energy,
and the best overlap in the subspace of these two states is 58%. As we let g take even
larger values (0.53, 0.55, 0.58, 0.60) the ground state is again non-degenerate, and the best
overlap increases monotonically. The weight of the function Ψtrial gradually shifts more
and more to Ψ2 as we raise g, which is to be expected. But the fact remains that, at
g < 0.5, the trial wave functions at k = 8 failed to produce good overlaps with the exact
ground state.
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Figure 6.7.1: Comparing exact energies and the two expressions at k = 8. The red line is
8 + 10.44g, the green line is 10.81 + 4.40g and the blue line is the quadratic fit (6.4.1)

6.8 Concluding remarks

How can we understand the fact that our interpolation recipe fails so miserably just below
g = 0.5, while it does a better, but not near satisfactory, job at higher values? We choose
to inspect the form of the wave functions to see if we can find a clue to answer this question.
We know that the ground state at g = 1 only has single-particle angular momenta l = 0, 1.
That is, all terms in the polynomial are of the form

Cxi1xi2xi3xi4 (6.8.1)

for N = M = L = 4. The x are either z’s or w’s. When removing factors (zi − wk)
from JN,M and adjusting the determinants accordingly, we introduce terms with higher
single-particle angular momenta. However, the coefficients of these terms are significantly
lower than those for l = 0, 1, so we can say that contributions to the overlap with another
wave function of similar form will still mainly come from the terms (6.8.1). On the other
hand, we have seen that all the wave functions with two CF’s in the same Λ-level are in fact
equal, regardless of k. By inspection, we find that these wave functions have comparable
coefficients on all terms, and the terms have single-particle angular momenta l = 0, 1, 2.

The exact ground states are not like this for g slightly less than 0.5. In fact, the largest
coefficients here are for terms of the form

x2
i1xi2xi3 , x2

i1x
2
i2 (6.8.2)

and also some terms with l = 3, 4. On the contrary, the coefficients of terms (6.8.1) are
almost zero! This helps explain the almost vanishing overlaps. If we compare with excited
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states instead, the overlaps actually improve; the overlap with the second excited state at
g = 0.45 is as high as 0.87. We are therefore forced to make the following conclusion. The
interpolation recipe we have designed here is not suitable for approximating the ground
states at g far from the limits g = 0, g = 1. For values of g close to but less than 0.5, a new
type of ground state seems to emerge, where configurations of the form (6.8.1) seem to be
unfavorable, energetically. Indeed, the interpolation we have developed might somewhat
describe excited states in this g-regime. In any case, the interpolation does not fulfill the
goals we set, namely to give decent approximations to the ground states, and to establish
a connection between the values of g and k. We have, however, been able to see hints of
possibly new physics at g slightly less than 0.5. It would be interesting to study the exact
ground states in further detail, for instance calculating pseudospin properties, correlation
functions or similar observables. With this information at hand one could possibly design
better interpolation schemes. This is beyond the scope of this thesis, and is left for future
work on the subject.



Chapter 7

Conclusions

In this thesis we have explored the rotational properties of a two-species Bose gas rotating in
a harmonic trap. We have used analytical and numerical methods to study the eigenstates
of a perturbatively weak repulsive interaction. For a homogeneous interaction, we have
derived exact analytical expressions for eigenstates and -energies in a subspaceM of Hilbert
space. We showed that linear combinations of trial wave functions from the composite
fermion formalism reproduce both these states and many of the more excited states, as
long as we considered sufficiently low angular momenta 0 ≤ L ≤ M . For higher angular
momenta M < L ≤ N + M , the procedure gave good but not exact wave functions and
energies. The lowest-lying states were further approximated by very simple CF states,
which we showed had good overlaps with exact states also outside the subspace M, i.e.
at all L in the range 0 ≤ L ≤ N + M . Many ideas were formulated in the language of
pseudospin, which is the natural language to use both when understanding the structure
of the subspaceM, and also when applying the two-component CF formalism.

The fact that the CF wave functions produce exact or nearly exact states could be inter-
preted as a support for the idea that the bosons “capture” vortices and become composite
fermions in order to minimize the interaction. In this sense the bosons could be seen to
turn into composite fermions in order to take advantage of the combined effects of Pauli
exclusion and vortex screening. However, there is some controversy associated with this
literal interpretation of the composite fermion ideas. Also, we must remember that the
Jastrow factor representing the vortices bound to the bosons is heavily manipulated by
differential operators as we construct the trial wave functions. In particular, the origin
of the exactness of wave functions for L ≤ M is not perfectly clear. Since the dimension
of Hilbert space decreases with L, it may be a mathematical peculiarity (that we are un-
aware of) causing such low values of the angular momentum to force the CF predictions
to become exact.

For a certain inhomogeneous interaction, we showed that we are somewhat able to predict
interaction energies by using an interpolation scheme, but that the wave functions derived
from this scheme are poor representation of the exact wave functions. Our results hint at
physics that is not captured by the CF wave functions, at least in the manner utilized in
Chapter 6, in the intermediate inter-species interaction regime. The inhomogeneous case
might be interesting to study further, both because of the possibly novel phases in this
situation, and because of the relevance to experiments. We leave this for future work.

In total, the conclusion we can draw from this thesis is that the CF method of making
trial wave functions is well suited for two-component rotating bosons with homogeneous
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interaction. At the angular momenta we have studied, we have identified certain simple
CF wave functions, representing singly occupied Λ-levels. These were shown to be the
major contributors to the large overlaps with exact states.



Appendix A

Algorithms and Mathematica code

In this Appendix I will explain the algorithms and display the Mathematica code that was
used in the calculations in this thesis. The first sections will contain descriptions of the
algorithms that have been used, while the actual pieces of code will be collected in the
final section. I have divided the code into smaller parts for two reasons. The first reason
is readability, as I hope the ideas behind the algorithms and their implementation will be
clearer when separated in this fashion. The second reason is that many calculations were
made by combining these smaller code parts into larger pieces of code and/or making small
adjustments to the parts, and considering each part at a time therefore reduces repetition.

There are two main reasons that I chose to use Mathematica as the programming language
for this thesis. Both reasons stem from the fact that Mathematica is a symbolic program-
ming language, meaning that it is able to represent and do operations on mathematical
variables without the need to assign numeric values to these variables. The first reason
is that the main objects of study in this thesis are polynomials in N + M variables. The
symbolic nature of Mathematica lets us input these polynomials as we would write them
with pen and paper, and compare, add, subtract, multiply and differentiate (among other
operations) these polynomials without the need of representing them as lists of numerical
coefficients. This is particularly handy when constructing the CF wave functions, as we
shall see. Mathematica also comes with some very useful functions specifically suited to
handle polynomials in their symbolic form. For example, the function PolynomialReduce
will write any polynomial as a linear combination of a given set of basis polynomials. The
second reason is that the symbolic nature of Mathematica allows it to represent fractions,
radicals and powers of integers exactly, without converting them to floating point numbers
with a given precision in each sub-calculation. This feature is important to us because we
find that some CF wave functions are exactly equal to the analytic ground state in the
L ≤ M regime. Mathematica allows us to be sure that this conclusion is not caused by
limited floating point precision.

A note is in order regarding efficiency of the code in this appendix. I am not experienced
with symbolic programming or Mathematica beyond the work with this thesis, but I have
made some small effort in optimizing the code, beyond it being able to complete the desired
computations in a reasonable amount of time. This has involved the use of sparse matrices
instead of dense matrices where appropriate, to conserve system memory, and certain
exploitations of symmetries instead of “brute force” computations (see Section A.5). The
code could probably be optimized to run faster than it does in the current form, but this
has been of negligible interest in this thesis as we primarily wanted to bring out the physics
and structure of the system.
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Comments have been added to the code in places where built-in Mathematica functions
have been used, unless the name of the function or its context in the code makes the
meaning relatively obvious. The reader is encouraged to use the excellent Mathematica
documentation found online to complement the explanations in this appendix.

A.1 Defining variables and quantities

The first code snippet is simply a piece of code that initializes the parameters of the problem
and creates variables that will be used in the other pieces of code. When creating CF trial
wave functions, all the information about the parameters of the problem is stored in the
contents of the Slater determinants. These are normally expressed in exponent notation in
the code. When allowing more than one particle in any Λ-level, we use the explicit notation
instead, modifying the code that generates Slater determinants accordingly: the difference
is discussed in the CF code section. The initialization code can be seen in Algorithm A.1.
In the case where we do not compute CF wave functions, for example when computing
the Papenbrock-Reimann-Kavoulakis ground states or when doing exact diagonalization
of the interaction, we simply remove the definitions of expolist1, expolist2 from the
code and manually input Nn,M,L. Note that Mathematica reserves the symbol N to signify
that numerical methods should be used instead of symbolic computation. Therefore the
number of particles of the first species is called Nn throughout.

A.2 Analytical wave functions

In this section, we implement the results from [8,18], derived in Chapter 3. Algorithm
A.2 essentially backtraces the derivations we made: first the βk are calculated by equating
coefficients of powers of λ in the recurrence relation

(Nλ+M(L− λ) + 2λ(L− λ)− εn) c
(n)
λ

+(N − λ)(L− λ)c
(n)
λ+1 + λ(M − L+ λ)c

(n)
λ−1 = 0

(A.2.1)

using the power series ansatz

c
(n)
λ =

n∑
k=0

βkλ
k (A.2.2)

From these, the coefficients c(n)
λ are calculated, and the ground state wave function is

computed and given the name phi.

A.3 Exact diagonalization

Algorithm A.3 was created to find an exact diagonalization of the two-body contact inter-
action. We start by defining the interaction as it was formulated in Section 31, using the
coefficients vm appropriate for the delta function interaction. Then we create the basis for
the Hilbert space,

eλ1(z)eλ2(z) · · · eλk(z)eµ1(w)eµ2(w) · · · eµl(w) (A.3.1)
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where the degrees of the polynomials λi, µj must satisfy

k∑
i=1

λi +
l∑

j=1

µj = L (A.3.2)

All the sets {λ} ∪ {µ} that satisfy (A.3.2) can be found by letting

k∑
i=1

λi = L′ ⇒
l∑

j=1

µj = L− L′ (A.3.3)

where L′ = 0, 1, . . . , L. For a given L′, the possible values of λ equal the integer partitions
of L′, as mentioned in Section 3.2. That is, for L′ = 5 the possible values of {λ} are

{5, 0, 0, 0, 0}
{4, 1, 0, 0, 0}
{3, 2, 0, 0, 0}
{3, 1, 1, 0, 0}
{2, 2, 1, 0, 0}
{2, 1, 1, 1, 0}
{1, 1, 1, 1, 1}

(A.3.4)

In our code, the integer partitions are generated with the command IntegerPartitions.
The number of partitions of a natural number n, p(n), is not a known function in closed
form: one must solve a recurrence relation to determine it. Therefore, the dimension
of Hilbert space is not straight forward to calculate, and we choose to simply count the
number of basis states generated by the above algorithm.

After creating the basis polynomials, they are sorted using Mathematica’s Sort function,
and represented by a set of elementary unit vectors. Then, the action of the interaction
operator on each basis polynomial is computed, and the result is projected onto the vector
basis using the built-in command PolynomialReduce. These projected vectors form the
columns of the matrix representation of the interaction operator. This matrix is diagonal-
ized exactly. The function Eigensystem yields the eigenvalues and eigenvectors of the ma-
trix, and the numbers are represented exactly : note however that finding the eigenvalues E
of a m×m matrix V is equivalent to solving the characteristic equation det (V − EIm) = 0
where Im is the m × m identity matrix. This equation is of degree m, and because of
the Abel-Ruffini theorem the exact eigenvalues may not be represented by radicals when
m ≥ 5. Mathematica handles this by representing these eigenvalues as objects called
Root[polynomial,n] , meaning the n’th solution to the equation polynomial=0. Using
the function N one may obtain these eigenvalues as floating point numbers.

When the dimension of Hilbert space becomes somewhat large (say, larger than 30) the
diagonalization using exact representation of numbers begins to take a good deal of time.
Since there is little use in knowing the exact form of the energies and coefficients beyond
visually comparing with the analytical results on a case by case basis, one may very well tell
Mathematica to represent the interaction matrix using floating point numbers. This speeds
up the diagonalization tremendously, and we have done just this in most calculations.
Normally we are most interested in the ground state, and we store the polynomial form
of this in the variable phi. If needed, one can also export the full spectra to files. This
was done for instance when plotting the yrast spectra in Chapters 3 and 5. These are
commented by default.
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A.4 Generating Fock states

We now turn to the computation of the CF wave functions. These first two pieces of
code create all possible pairs of Slater determinants that are compact and satisfy the
Fock condition. The first code Algorithm A.4 was used for most of the calculations in
Chapter 5, and only considers those states that have singly occupied Λ-levels. Therefore,
the Slater determinants in the code are expressed in exponent notation. The code tries
all combinations of singly occupied Λ-levels, and returns the ones that satisfy the Fock
condition and give the correct angular momentum for a given N,M,L. Note that the
highest Λ-level we can possibly occupy without completely eradicating the Jastrow factor
is A− 1.

The second code, Algorithm A.5 was written to also include multiply occupied levels, in
order to more closely examine the exact ground states of both homogeneous and inhomo-
geneous interaction. The notation here is different: we use the explicit notation, specifying
the quantum numbers (n,m) of all occupied single-particle states. Instead of trying all
possible combinations of single-particle states, this code fills the Λ-levels in Φz from “be-
low”, only making compact states. Then the result is copied over to Φw, and this is filled
with the remaining particles in the same manner. This ensures that the product state
obeys the Fock condition. The code then returns the states that end up with the correct
angular momentum. In addition to only occupy Λ-levels n ≤ A − 1, we impose another
constraint on the candidates. We recall that the Jastrow factor contains terms of the form

x0x1 · · ·xA−1 (A.4.1)

We know of course that it vanishes if differentiated more than once by a differential operator
∂A−1
x . If we have no such operators in the Slater determinants, it vanishes if acted upon

more than twice by operators ∂A−2
x ; if we have one operator ∂A−1

x then we can only have
one ∂A−2

x . In any case, the number of differential operators of degree larger than or equal
to A− 2 is two. The same reasoning applies to all the lower degrees A− p: we can have at
most p differential operators of degree larger than or equal to A− p. The last condition in
the final If-statement guarantees this. A familiar result can be produced from this code,
namely that for all systems with N = M = L, the only state returned by the code is the
known exact state

[0, 2, 4, . . . , 2(L− 1)] (A.4.2)

A.5 Computing CF wave functions

Here we explain the code used to actually generate the CF wave functions. It is split in
two and displayed in Algorithms A.6 and A.7. Algorithm A.6 displays the code that sets
up variables and definitions used during the calculations, and this part does not depend
on the specific choice of Slater determinants. First, the Jastrow factor is constructed from
definition. Then, a function MakeSlater is defined to create Slater determinants from
specifications in either explicit or exponent notation. We show the explicit version here, as
the exponent version is a simplified case. Finally, lists of all the possible permutations of
the particles of each species, and the Mathematica rules one would apply to perform the
permutations, are generated. The reason for this is discussed in a moment.

Algorithm A.7 shows the procedure for acting on the Jastrow factor with the operators
in the determinants. We explain the method here. The most direct way of comput-
ing the wave functions would have been to simply expand the determinants and then
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let all terms in the expansion act on the Jastrow factor one by one, adding up the re-
sult. However, both the number of factors in the Jastrow and the number of terms in
the expanded determinants grow very quickly with N and M , making this method quite
time consuming. However there is a clever way about it that exploits the symmetry be-
tween particles of the same species. We realize that, for a given set of single-particle
states {{n1,m1}, {n2,m2}, . . . , {nN ,mN}} to put in the determinant Φz, all terms in the
expanded determinant will have the form

ε(i1, . . . iN )zn1+m1
i1

∂n1
zi1
· · · znN+mN

iN
∂nNziN

(A.5.1)

where all permutations of the indices are allowed. The factor ε(i1, . . . , iN ) is the Levi-
Civita symbol, giving the sign of the permutation. The same is of course true for the other
determinant Φw. So instead of letting all these similar terms act on the Jastrow factor, we
let the representative term

Φrep
z = zn1+m1

1 ∂n1
z1 · · · z

nN+mN
N ∂nNzN (A.5.2)

together with the corresponding term from Φw, Φrep
w , act on the Jastrow factor:

Ψrep
CF = Φrep

z Φrep
w

∏
i,j

(zi − zj)
∏
k,l

(wk − wl)
∏
i,k

(zi − wk) (A.5.3)

We then sum up all permutations of z’s and w’s in Ψrep
CF , and this gives us the complete

CF wave function ΨCF . We actually do not need to worry about the signs ε coming from
the permutations here: the sign coming from the permutations of the operator part of the
expression will always equal the overall sign induced when permuting the Jastrow factor.
That is, the sign from permuting z’s will always be the same in the operator part and in the
Jastrow part

∏
i,j(zi− zj), and likewise for permutations of w’s. The permutations do not

affect the sign of the (zi−wk) part of the Jastrow factor. Finally, we divide out any overall
constant factor in the wave function. We have chosen to write this code as a function
instead of a procedure, because we will need to generate CF wave functions repeatedly
when investigating linear combinations of Fock states. If needed, one may change the lines
of code that divide out the overall factor to normalize the wave functions instead, if one
needs to work with normalized states. The normalization code can be copied from the
code that calculates overlaps, see the next section.

A.6 Overlap between states

To compare CF and exact wave functions, we will calculate what is known as the overlap
[14] between a pair of wave functions. The overlap O is defined as the inner product of
two normalized wave functions ψa, ψb; in bra-ket notation

O = 〈ψa |ψb〉 (A.6.1)

If the wave functions are not normalized, we take care of this by remembering that the
normalization factor N of a wave function ψ is given by

|N |2 = 〈ψ |ψ〉 (A.6.2)

so the overlap becomes

O =
〈ψa |ψb〉√

〈ψa |ψa〉 〈ψb |ψb〉
(A.6.3)
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We are working with wave functions that, in configuration space, are homogeneous sym-
metric polynomials of a given degree L times an exponential function. This allows us
to write down a formula for the overlap in terms of the coefficients and powers in the
polynomial part of the wave function. Let

ψa(z, w) = F (z, w) exp
(
−Mω

2~

(∑N
i=1 |zi|2 +

∑M
j=1 |wj |2

))
ψb(z, w) = G(z, w) exp

(
−Mω

2~

(∑N
i=1 |zi|2 +

∑M
j=1 |wj |2

)) (A.6.4)

Here F and G are the polynomial parts of the wave functions. We have

〈ψa |ψb〉 =

∫
CN+M

ψa(z, w)ψb(z, w) dz1 · · · dzNdw1 · · · dwM (A.6.5)

in configuration space, so inserting (A.6.4) results in the equation

〈ψa |ψb〉 =

∫
F (z, w)G(z, w) exp

−Mω

~

 N∑
i=1

|zi|2 +
M∑
j=1

|wj |2
 dN+Mx (A.6.6)

where dN+Mx = dz1 · · · dzN dw1 · · · dwM . Let

{x} = x1, . . . , xN , xN+1, . . . xN+M = z1, . . . , zN , w1, . . . , wM (A.6.7)

and {y} = {x}. The product F (z, w)G(z, w) contains terms of the form

C(p1, . . . , pN+M )C(q1, . . . , qN+M )

N+M∏
i,j=1

ypixqi (A.6.8)

where
∑N+M

i=1 pi =
∑N+M

i=1 qi = L. That is, we will only be calculating overlaps of
wave functions of the same angular momentum. The real numbers CF (p1, . . . , pN+M ),
CG(q1, . . . , qN+M ) are the coefficients of the terms in F (z, w) and G(z, w) respectively.

Consider the integral

I =

∫
C
xnxm exp(−Mω

~
|x|2) dx (A.6.9)

where n,m ∈ Z. Changing to polar coordinates x = reiθ gives

I =

∫ 2π

0

∫ ∞
0

rn+mei(m−n)θe−Mωr2/~ dr rdθ (A.6.10)

At once we see that the integral over θ gives a factor 2πδn,m where δn,m is the Kronecker
delta. The integral over r can be looked up or computed with successive integrations by
parts. The result is

I = 2πδn,m2nn! (A.6.11)

This tells us that only the terms (A.6.8) that satisfy pi = qi survive the integration. That
is, when the terms (A.6.8) are inserted into (A.6.6), the result is

〈ψa |ψb〉 =
∑
{p}

CF ({p})CG({p})(2π)N+M2L
N+M∏
i=1

pi! (A.6.12)
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This is the desired formula for the inner product. The sum runs over all sets of powers {p}
in the polynomial F . Inserted into (A.6.3) we find

O =

∑
{p}CF ({p})CG({p})

∏
pi!√∑

{p}CF ({p})2
∏
pi!
∑
{q}CG({q})2

∏
qi!

(A.6.13)

which is the formula we sought. Notice that the factors (2π)N+M and 2L were divided out
in the fraction.

Using Mathematica to compute overlaps using (A.6.13) is now rather straightforward. We
assume that the two polynomials F (z, w) and G(z, w) are stored in the variables psi
and phi. The built-in Mathematica function CoefficientList returns a matrix of all
coefficients in the argument, assumed to be a polynomial. The coefficient C(p1, . . . , pN+M )
as defined above is stored in the position [[p1 +1, p2 +1, . . . , pN+M +1]]. Note that this will
result in a (N+M)×(N+M) matrix, and normally there will be very many elements that
are zero. Working with sparse arrays therefore has advantages both when system memory
and computation time is concerned. A function f produces the inner product coefficients∏
pi! The squared normalization factors are calculated for both wave functions, and finally

the overlap is computed. Algorithm A.8 contains the code that was used.

A.7 Calculating interaction energy

This is really just a mixture of the code for overlap calculation and the code that models
the interaction. We calculate the expected value of the interaction energy of a state ψ,

E = 〈ψ |V |ψ〉 (A.7.1)

by first normalizing the wave function. We store the coefficients in the variable newpsilist.
Then we let the interaction, modeled as in the exact diagonalization code, act on the
normalized state, store the resulting wave function in a variable VPsi, find its coefficients
using CoefficientList, and finally we take the inner product with this and the normalized
state, using the algorithm for the inner product developed above. The code is displayed in
Algorithm A.9. In the displayed code we have added a variable g to the interaction model,
needed for the calculations in Chapter 6. For homogeneous interaction this is set to 1 as
discussed in that chapter.

A.8 Plotting energies

This last pieces of code take care of plotting energy spectra and overlaps together in nice
figures. The code is split in two, visible in Algorithm A.10 and A.11. We describe them
both here. First we choose what values of N and M to consider, and we import lists of
energies generated from CF diagonalization of the interaction that are stored in text files
in the working directory. The format of the data in the text files are

{N,M,L, energy} (A.8.1)

separated by line shifts. As these files may contain data for complete pseudospin multiplets
(all M −N ≥ 0 for a given N +M), we first select only the ones matching out choice for
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N,M . Then the energies of states “higher up” in the multiplet (larger values of M − N)
gets taken into account, because these have the same energies as spin lowered states, which
we want to include. The data are stored in lists called CFplotlist[S] where the number
S is the spin quantum number S of the states in that list.

The code then repeats this procedure for the energies from the full diagonalization. These
are stored in text files as well, with the same format as above. After importing the data,
we proceed to remove center-of-mass excitations. In Chapter 3, we argued that states of
the form

RlΨL(z, w) (A.8.2)

has angular momentum L+ l and the same energy as ΨL. Naturally, such states will show
up in the full diagonalization spectrum. The code removes these from the lists of data
point by comparing any given energy at angular momentum L with all the energies at
higher angular momenta L+ l, l > 0.

Finally, we create scatter plots for exact and simple CF state energies, and show them
in the same figure. This code was used for the energy diagrams in Chapters 3 and 5.
In Chapter 5, we add lines of code that sets up plot markers of different colors corre-
sponding to different spin quantum numbers, and to plot a legend inset describing the
colors. We have included the lines of code that accomplishes this in Algorithm A.11. It
also reads overlaps between CF candidates and exact ground states from lists and presents
these as text in the figures. The overlaps are stored in two lists, overlaplist.txt and
remaining-overlaps.txt containing overlaps of Fock states and pseudospin lowered states
respectively.
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A.9 Pieces of code

Algorithm A.1 Parameters and variables for CF

Clear [ "Global ‘∗ " ]
SetDirectory [NotebookDirectory [ ] ] ;

(∗ S l a t e r determinants exponent no ta t i on ∗)
e xp o l i s t 1 = {0 , 2 , 4 , 6} ;
e x p o l i s t 2 = {0 , 2 , 4 , 6} ;

Nn = Length [ e x p o l i s t 1 ] ;
M = Length [ e x p o l i s t 2 ] ;
t o t = Nn + M;
L = 1/2∗ to t ∗( to t − 1) − Total [ e x p o l i s t 1 ] − Total [ e x p o l i s t 2 ] ;
n = Min [ L , Nn ] ; (∗ Ground s t a t e parameter in PRK (10) ∗)

(∗ L i s t s o f coord ina t e s ∗)
zcoor = {} ; Do[AppendTo [ zcoor , Subscript [ z , i ] ] , { i , Nn} ] ;
wcoor = {} ; Do[AppendTo [ wcoor , Subscript [w, i ] ] , { i , M} ] ;
coor = Flatten [ { zcoor , wcoor } ] ;
R = Sum[ coor [ [ i ] ] , { i , t o t } ] / to t ; (∗ Center o f mass ∗)
zred = zcoor − R;
wred = wcoor − R;
SP [k_, vars_ ] := SymmetricPolynomial [ k , vars ]
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Algorithm A.2 Papenbrock-Reimann-Kavoulakis wave functions

(∗ Compute the be ta c o e f f i c i e n t s ∗)
ep s i l o n = (Nn + M)(L − n) + n(n − 1 ) ; (∗ Eigenva lue parameter ∗)
lambdapoly [ l_ ] :=

(L∗M + l (2L + Nn − M − 2 l ) − ep s i l o n )∗Sum[B[ k ]∗ l ^k , {k , 0 , n } ]
+ (Nn − l ) (L − l )∗Sum[B[ k ] ∗ ( l + 1)^k , {k , 0 , n } ]
+ l (M − L + l )∗Sum[B[ k ] ∗ ( l − 1)^k , {k , 0 , n } ] ; (∗ Recurrence r e l a t i o n ∗)

B l i s t = Array [B[# − 1 ] &, n ] ; (∗ L i s t o f be ta c o e f f i c i e n t s , not i n c l u d i n g B[ n ] ∗)

(∗ Gather up the equa t i ons needed to f i nd the B[ k ] in terms o f B[ n ] ∗)
e q u a t i o n l i s t = {} ;
Module [ { i , l } ,

For [ i = n − 1 , i >= 0 , i−−,
I f [ i != 0 ,

AppendTo [ e q u a t i o n l i s t , Coefficient [ lambdapoly [ l ] , l ^ i ] == 0 ] ,
AppendTo [ e q u a t i o n l i s t , CoefficientList [ lambdapoly [ l ] , l ] [ [ 1 ] ] == 0 ]

]
]

] ;

r u l e s = Solve [ e q u a t i o n l i s t , B l i s t ] ;
AppendTo [ B l i s t , B[ n ] ] ; B l i s t = B l i s t / . Flatten [ r u l e s ] ;

(∗ Choose a norma l i sa t ion so t ha t we only g e t i n t e g e r b e t a s ∗)
B l i s t = B l i s t / . B[ n ] −> LCM[##] & @@ Denominator [ B l i s t ] ;

(∗ Compute the Papenbrock wave func t i on ∗)
c o f f [ l_ ] :=

I f [ l != 0 ,
Sum[ B l i s t [ [ k + 1 ] ] ∗ l ^k , {k , 0 , n } ] ,
B l i s t [ [ 1 ] ]

] ;

I f [ L <= M,
phi = Sum[ c o f f [ l ]∗SymmetricPolynomial [ l , z red ]

∗SymmetricPolynomial [ L − l , wred ] , { l , 0 , n } ]
] ;
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Algorithm A.3 Exact diagonalization of the interaction.

(∗ I n t e r a c t i on model ∗)
A[ z_ ,m_, psi_ ] :=

Sum[
I f [ j > i ,

( z [ [ i ] ] − z [ [ j ] ] ) ^m ∗ Sum[
Binomial [m, k ] ∗ (−1)^k ∗ D[ ps i , { z [ [ i ] ] ,m − k} ,{ z [ [ j ] ] , k } ] ,
{k , 0 , m}
] ,

0
] , { i , 1 , Nn − 1} , { j , 2 , Nn}

] ; (∗ Papenbrock e t a l (4) ∗)

B[w_,m_, psi_ ] :=
Sum[

I f [ j > i ,
(w [ [ i ] ] − w [ [ j ] ] ) ^m ∗ Sum[

Binomial [m, k ] ∗ (−1)^k ∗ D[ ps i , {w [ [ i ] ] ,m − k} ,{w [ [ j ] ] , k } ] ,
{k , 0 , m}
] ,

0
] , { i , 1 , M − 1} , { j , 2 , M}

] ; (∗ Papenbrock e t a l (5) ∗)

Cc [ z_ ,w_,m_, psi_ ] :=
Sum[

( z [ [ i ] ] − w [ [ j ] ] ) ^m ∗ Sum[
Binomial [m, k ] ∗ (−1)^k ∗ D[ ps i , { z [ [ i ] ] ,m − k} ,{w [ [ j ] ] , k } ] ,
{k , 0 , m}

] , { i , 1 , Nn} , { j , 1 , M}
] ; (∗ Papenbrock e t a l (6) ∗)

v [m_] := (−1/2)^m/(m! ) ;
vPsi [ z_ , w_, psi_ ] :=

Sum[ v [m] ∗ (A[ z , m, p s i ] + B[w, m, p s i ] + Cc [ z , w, m, p s i ] ) , {m, 0 , L + 1 } ] ;

(∗ Create a H i l b e r t space b a s i s ∗)
ba s i s = {} ;
Do[ i p a r t s = IntegerPartitions [ I ] ; j p a r t s = IntegerPartitions [ L − I ] ;

Do[ I f [ (Max[ i p a r t s [ [ i ] ] ] <= Nn) && (Max[ j p a r t s [ [ j ] ] ] <= M) ,
AppendTo [ bas i s ,

Product [ SP [ i i , zcoor ] , { i i , i p a r t s [ [ i ] ] } ] ∗
Product [ SP [ j j , wcoor ] , { j j , j p a r t s [ [ j ] ] } ]

]
] , { i , Length [ i p a r t s ] } , { j , Length [ j p a r t s ] }

] , {I , 0 , L } ] ;

s o r t b a s i s = Union [ b a s i s ] ;
dim = Length [ s o r t b a s i s ] ;

(∗ Create the i n t e r a c t i o n matrix ∗)
Velem = {} ;
Do[AppendTo [ Velem ,

PolynomialReduce [ vPsi [ zcoor , wcoor , s o r t b a s i s [ [ i ] ] ] , s o r t ba s i s , coor ] [ [ 1 ] ]
] , { i , dim}

] ;
Vmat = Transpose [ Velem ] ;
{ ene rg i e s , s t a t e s } = Eigensystem [N[Vmat ] ] ;
phi=s t a t e s [ [ − 1 ] ] . s o r t b a s i s ;

(∗ Export [ S t r i n g I n s e r t [ ToString [100∗Nn+10∗M+L] ,"− ene r g i e s . t x t " ,−1] , ene r g i e s ] ; ∗)
(∗ Export [ S t r i n g I n s e r t [ ToString [100∗Nn+10∗M+L] ,"− s t a t e s . t x t " ,−1] , s t a t e s ] ; ∗)
(∗ Export [ S t r i n g I n s e r t [ ToString [100∗Nn+10∗M+L] ,"− b a s i s . t x t " ,−1] , s o r t b a s i s ] ; ∗)
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Algorithm A.4 Simple Fock states.

(∗ Degree o f S l a t e r determinants ∗)
Ls = 1/2∗ to t ∗( to t − 1) − L ;

vars = Array [ I f [# <= Nn, a [#] , b[# − Nn ] ] &, to t ] ;
i t e r a t o r s = Flatten [

{Array [ I f [# == 1 ,
{ vars [ [ # ] ] , 0 , t o t − 1} ,
{ vars [ [ # ] ] , vars [ [# − 1 ] ] + 1 , to t − 1} ] &, Nn
] ,

Array [ I f [# == Nn + 1 ,
{ vars [ [ # ] ] , 0 , t o t − 1} ,
{ vars [ [ # ] ] , vars [ [# − 1 ] ] + 1 , to t − 1} ] &, M, Nn + 1 ]

} ,
1 ] ;

f o c k l i s t = {} ;
Do[

I f [
DeleteDuplicates [ vars [ [ ; ; Nn ] ] ] == vars [ [ ; ; Nn ] ] &&
DeleteDuplicates [ vars [ [ Nn + 1 ; ; ] ] ] == vars [ [ Nn + 1 ; ; ] ] &&
Total [ vars ] == Ls &&
(And[##] & @@ Array [MemberQ[ vars [ [ Nn + 1 ; ; ] ] , a [# ] ] &, Nn ] ) ,
AppendTo [ f o c k l i s t , { vars [ [ ; ; Nn ] ] , vars [ [ Nn + 1 ; ; ] ] } ]

] , ##
] & @@ i t e r a t o r s ;
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Algorithm A.5 All compact Fock states.

(∗ Degree o f S l a t e r determinants ∗)
Ls = L − 1/2∗ to t ∗( to t − 1 ) ;

i t e r a t o r s = Array [ I f [# == 1 ,
{n [#] , 0 , to t − 2} ,
{n [#] , n[# − 1 ] , t o t − 2} ] &, Nn

] ;
add i t e r a t o r s = Array [ I f [# == Nn + 1 ,

{nn [#] , 0 , t o t − 1} ,
{nn [#] , nn[# − 1 ] , t o t − 1} ] &, M − Nn, Nn + 1

] ;

f o c k l i s t = {} ;
Do[

zpropose = {{n [ 1 ] , −n [ 1 ] } } ;
maxm = −n [ 1 ] ;
Do[

m[ i ] = −n [ i ] + Count [Array [ n [#] &, i − 1 ] , n [ i ] ] ;
I f [ n [ i ] == 0 | | maxm >= m[ i ] ,

AppendTo [ zpropose , {n [ i ] , m[ i ] } ] ;
I f [m[ i ] > maxm, maxm = m[ i ] ; ] ;

] , { i , 2 , Nn}
] ;
wpropose = zpropose ;
Do[ nn [ i ] = n [ i ] , { i , Nn} ] ;
Do[

m[ i ] = −nn [ i ] + Count [Array [ nn [#] &, i − 1 ] , nn [ i ] ] ;
I f [ nn [ i ] == 0 | | maxm >= m[ i ] ,

AppendTo [ wpropose , {nn [ i ] , m[ i ] } ] ;
I f [m[ i ] > maxm, maxm = m[ i ] ; ] ;

] , { i , Nn + 1 , M}
] ;
I f [

Length [ zpropose ] == Nn &&
Length [ wpropose ] == M &&
Total [Map[Last , Flatten [ { zpropose , wpropose } , 1 ] ] ] == Ls &&
(And[##] & @@ Array [

Length [Cases [Map[ First , Flatten [ { zpropose , wpropose } , 1 ] ] ,
x_ / ; x >= tot − #]] <= # &, to t

] ) ,
AppendTo [ f o c k l i s t , { zpropose , wpropose } ] ;

] , ##
] & @@ Flatten [ { i t e r a t o r s , a dd i t e r a t o r s } , 1 ] ;
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Algorithm A.6 Computing the CF wave functions, part 1

j a s t row = 1 ;
Do[

I f [Unequal [ i , j ] && i < j ,
ja s t row ∗= ( coor [ [ i ] ] − coor [ [ j ] ] )

] , { i , 1 , t o t } , { j , 1 , t o t }
] ;

derop [ a_, n_] := D[# , {a , n } ] &;
timesop [ a_, n_] := Times [ a^n , #] &;
MakeSlater [ x_, exp l i s t_ ] :=

Module [ { s l a t , l , n , m} ,
s l a t = {} ;
l = Length [ e x p l i s t ] ;
Do[

{n , m} = e x p l i s t [ [ i ] ] ;
AppendTo [ s l a t ,
Array [Composition [ t imesop [ x [ [# ] ] , n + m] , derop [ x [ [# ] ] , n ] ] &, l ]
] , { i , 1 , l }

] ;
Return [ s l a t ]

] ;

zperms = Permutations [ zcoor ] ;
wperms = Permutations [ wcoor ] ;

zpermrules = {} ;
Do[

AppendTo [ zpermrules ,
{Array [ zcoor [ [ # ] ] −> a [#] &, Nn] ,
Array [ zperms [ [ i , #]] −> zcoor [ [ # ] ] &, Nn] ,
Array [ a [#] −> zperms [ [ i , #]] &, Nn]

}
] , { i , Length [ zperms ] }

]

wpermrules = {} ;
Do[

AppendTo [ wpermrules ,
{Array [ wcoor [ [ # ] ] −> b[#] &, M] ,
Array [ wperms [ [ i , #]] −> wcoor [ [ # ] ] &, M] ,
Array [ b [#] −> wperms [ [ i , #]] &, M]

}
] , { i , Length [ wperms ] }

]
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Algorithm A.7 Computing the CF wave function, part 2

makeCF [ expol i st1_ , expo l i s t2_ ] := (
s l a t 1 = MakeSlater [ zcoor , e x p o l i s t 1 ] ;
s l a t 2 = MakeSlater [ wcoor , e x p o l i s t 2 ] ;

(∗ The next l i n e s expands the S l a t e r determinants ∗)
(∗ and makes a r e p r e s e n t a t i v e opera tor c a l l e d compdet ∗)
S i g l i s t 1 = LeviCivitaTensor [Nn ] ;
S i g l i s t 2 = LeviCivitaTensor [M] ;
Loop l i s t 1 = Drop [Map[ First , ArrayRules [ S i g l i s t 1 ] ] , −1];
Loop l i s t 2 = Drop [Map[ First , ArrayRules [ S i g l i s t 2 ] ] , −1];

i i = Loop l i s t 1 [ [ 1 ] ] ;
d e t l i s t 1 = Array [ s l a t 1 [ [# , i i [ [ # ] ] ] ] &, Nn ] ;

j j = Loop l i s t 2 [ [ 1 ] ] ;
d e t l i s t 2 = Array [ s l a t 2 [ [# , j j [ [ # ] ] ] ] &, M] ;

compdet = Composition[##] & @@ Flatten [ { d e t l i s t 1 , d e t l i s t 2 } ] ;

p s iba s e = Expand [ compdet @ jas t row ] ;

(∗ Add up a l l permutat ions o f v a r i a b l e s corresponding to ∗)
(∗ d i f f e r e n t opera to r s from expanded S l a t e r terms ∗)
p s i = Sum[

Fold[#1 / . #2 &,
Fold[#1 / . #2 &,

ps ibase , Array [ zpermrules [ [ i , #]] &, 3 ]
] , Array [ wpermrules [ [ j , #]] &, 3

]
] , { i , Length [ zperms ] } , { j , Length [ wperms ] }

] ;

(∗ Divide out any o v e r a l l numerical f a c t o r ∗)
I f [

! IntegerQ [ p s i ] ,
p s i = p s i /First [FactorTerms [ p s i ] ] ;

] ;

Return [Expand [ p s i ] ]
)
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Algorithm A.8 Calculating the overlap between two wave functions.

d im l i s t = ConstantArray [ tot , t o t ] ;
p s i l i s t = SparseArray [ CoefficientList [ ps i , coor ] , d im l i s t ] ;

(∗ L i s t o f p o s i t i o n s o f non−zero c o e f f i c i e n t s ∗)
p s i p o s l i s t = Drop [Map[ First , ArrayRules [ p s i l i s t ] ] , −1];

(∗ f c on s t r u c t s inner product c o e f f i c i e n t s ∗)
f [ l_ ] := Module [ { i , y } ,

For [ i = 1 ; y = 1 , i <= Length [ l ] , i++, y = y∗( l [ [ i ] ] − 1 ) ! ] ;
Return [ y ]

] ;

(∗ p s i f a c t l i s t con ta ins necessary inner product c o e f f i c i e n t s
f o r p s i ∗)
p s i f a c t l i s t = SparseArray [ p s i p o s l i s t −> Map[ f , p s i p o s l i s t , 2 ] , d im l i s t ] ;

(∗ psinorm i s the squared norma l i za t ion f a c t o r f o r p s i ∗)
(∗ equa l to the inner product o f p s i wi th i t s e l f ∗)
psinorm = Total [Drop [Map[Last , ArrayRules [ p s i l i s t ∗ p s i l i s t ∗ p s i f a c t l i s t ] ] , −1 ] ] ;

p h i l i s t = SparseArray [ CoefficientList [ phi , coor ] , d im l i s t ] ;
p h i p o s l i s t = Drop [Map[ First , ArrayRules [ p h i l i s t ] ] , −1];
p h i f a c t l i s t = SparseArray [ p h i p o s l i s t −> Map[ f , p h i p o s l i s t , 2 ] , d im l i s t ] ;
phinorm = Total [Drop [Map[Last , ArrayRules [ p h i l i s t ∗ p h i l i s t ∗ p h i f a c t l i s t ] ] , −1 ] ] ;

I f [ psinorm == 0 ,
over lap = 0 ,
over lap = N[Total [Drop [Map[Last ,

ArrayRules [ p s i l i s t ∗ p h i l i s t ∗ p h i f a c t l i s t ] ] , −1]]/Sqrt [ phinorm∗psinorm ]
]

]
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Algorithm A.9 Calculating the interaction energy expectation value for a state.

(∗ I n t e r a c t i on model ∗)
A[ z_ ,m_, psi_ ] :=

Sum[
I f [ j > i ,

( z [ [ i ] ] − z [ [ j ] ] ) ^m ∗ Sum[
Binomial [m, k ] ∗ (−1)^k ∗ D[ ps i , { z [ [ i ] ] ,m − k} ,{ z [ [ j ] ] , k } ] ,
{k , 0 , m}
] ,

0
] , { i , 1 , Nn − 1} , { j , 2 , Nn}

] ; (∗ Papenbrock e t a l (4) ∗)

B[w_,m_, psi_ ] :=
Sum[

I f [ j > i ,
(w [ [ i ] ] − w [ [ j ] ] ) ^m ∗ Sum[

Binomial [m, k ] ∗ (−1)^k ∗ D[ ps i , {w [ [ i ] ] ,m − k} ,{w [ [ j ] ] , k } ] ,
{k , 0 , m}
] ,

0
] , { i , 1 , M − 1} , { j , 2 , M}

] ; (∗ Papenbrock e t a l (5) ∗)

Cc [ z_ ,w_,m_, psi_ ] :=
Sum[

( z [ [ i ] ] − w [ [ j ] ] ) ^m ∗ Sum[
Binomial [m, k ] ∗ (−1)^k ∗ D[ ps i , { z [ [ i ] ] ,m − k} ,{w [ [ j ] ] , k } ] ,
{k , 0 , m}

] , { i , 1 , Nn} , { j , 1 , M}
] ; (∗ Papenbrock e t a l (6) ∗)

v [m_] := (−1/2)^m/(m! ) ;
vPsi [ z_ , w_, psi_ ] :=

Sum[ v [m] ∗ (A[ z , m, p s i ] + B[w, m, p s i ] + g ∗ Cc [ z , w, m, p s i ] ) , {m, 0 , L + 1 } ] ;

(∗ Ca l cu l a t e i n t e r a c t i o n energy ∗)
p s i = ps i /Sqrt [ psinorm ] ;
n ewp s i l i s t = SparseArray [ CoefficientList [ ps i , coor ] , d im l i s t ] ;
VPsi = vPsi [ zcoor , wcoor , p s i ] ;
VP s i l i s t = SparseArray [ CoefficientList [ VPsi , coor ] , d im l i s t ] ;

energy = N[Total [Drop [Map[Last , ArrayRules [ n ewp s i l i s t ∗VPs i l i s t ∗ p s i f a c t l i s t ] ] , −1 ] ] ]
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Algorithm A.10 Plotting energy spectra, part 1.

SetDirectory [NotebookDirectory [ ] ]

(∗ CF ene r g i e s and ove r l ap s ∗)
e n e r g y l i s t = ReadList [ " CFenergy l i s t . txt " ] ;
ove r l ap s = Map[Last , ReadList [ " o v e r l a p l i s t . txt " ] ] ;

Nn = 4 ; M = 4 ; to t = Nn + M;

t h i smu l t i p l e t = Cases [ e n e r g y l i s t , {Nn, M, _, _} ] ;
t h e s e ove r l ap s =

Flatten [Map[ ove r l ap s [ [ # ] ] &, Position [ e n e r g y l i s t , {Nn, M, _, _} ] ] , 1 ] ;
Do[ CFp l o t l i s t [ i ] = {} , { i , (M − Nn)/2 , to t /2} ] (∗ Ind i c e s in b r a c k e t s are sp in ∗)
CFp lo t l i s t [ (M − Nn)/2 ] = Map[# [ [ 3 ; ; 4 ] ] &, t h i smu l t i p l e t ] ;

Do[ { a , b , c , d} = en e r g y l i s t [ [ i ] ] ;
I f [ b > M,

AppendTo [ CFp l o t l i s t [ ( b − a )/2 , {c , d } ]
] , { i , Length [ e n e r g y l i s t ] }

]

o v e r l a p p l o t l i s t =
Array [ { t h i smu l t i p l e t [ [# , 3 ] ] , t h e s e ov e r l ap s [ [# ] ] } &, Length [ t h e s e ove r l ap s ] ] ;

r emop l i s t = ReadList [ " remaining−ove r l ap s . txt " ] ;
t h i s r emop l i s t = Cases [ r emopl i s t , {Nn, M, _, _} ] ;
o v e r l a p p l o t l i s t =

Sort [ Flatten [ { o v e r l a p p l o t l i s t , Map[# [ [ 3 ; ; 4 ] ] &, t h i s r emop l i s t ] } , 1 ] ] ;

(∗ Energ ies from exac t d i a g ona l i z a t i o n ∗)
f = FileNames [ToString [Nn ] <> ToString [M] <> "∗−en e r g i e s . txt " ] ;
Do[ en [ i ] = ReadList [ f [ [ i + 1 ] ] ] , { i , 0 , t o t } ] ;

(∗ Remove center−of−mass e x c i t a t i o n s from the p l o t ∗)
Do[

I f [
Count [Chop [ en [ j ] − en [ i ] [ [ k ] ] ] , 0 ] >= Count [ en [ i ] , en [ i ] [ [ k ] ] ] ,
en [ j ] = Delete [ en [ j ] , Position [Chop [ en [ j ] − en [ i ] [ [ k ] ] ] , 0 ] [ [ 1 , 1 ] ] ]

] , { i , 0 , t o t } , { j , i + 1 , to t } , {k , Length [ en [ i ] ] }
]
Do[

l i s t [ i ] = {} ;
Do[

AppendTo [ l i s t [ i ] , { i , en [ i ] [ [ j ] ] } ]
, { j , Length [ en [ i ] ] }
] , { i , 0 , t o t }

]
e n p l o t l i s t = Flatten [Array [ l i s t [#] & , to t + 1 , 0 ] , 1 ] ;
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Algorithm A.11 Plotting energy spectra, part 2.

t o t p l o t l i s t = { e n p l o t l i s t } ;
Do[

AppendTo [ t o t p l o t l i s t , CFp l o t l i s t [ i ] ]
, { i , (M − Nn)/2 , to t /2}

]
sp inp lo tmarker s = {

{Graphics [ {Red, Thickness [Medium] , Circle [ ] } ] , 0 . 03} ,
{Graphics [ {Black , Thickness [Medium] , Circle [ ] } ] , 0 . 03} ,
{Graphics [ {Orange , Thickness [Medium] , Circle [ ] } ] , 0 . 03} ,
{Graphics [ {Green , Thickness [Medium] , Circle [ ] } ] , 0 . 03} ,
{Graphics [ {Magenta , Thickness [Medium] , Circle [ ] } ] , 0 .03}

} ;

(∗ Make p l o t o f ene r g i e s . Colored CF markers are de f ined above , the exac t ∗)
(∗ ene r g i e s are g iven b l u e dot markers in the l i n e be low ∗)
p lo t1 =

ListPlot [ t o t p l o t l i s t ,
PlotMarkers −> Flatten [

{{{Graphics [ {Blue , Disk [ ] } ] , 0 .015}} , sp inp lo tmarker s [ [ 1 + (M − Nn)/2 ; ; ] ] }
, 1 ] ,
PlotRange −> {{−0.5 , to t + 1} , {0 , Max[ en [ 0 ] ] + 0 .1∗Max[ en [ 0 ] ] } } ,
Frame −> True , FrameLabel −> {"L" , " I n t e r a c t i o n ␣ energy " } ,
PlotLabel −> "N=" <> ToString [Nn ] <> " , ␣M=" <> ToString [M] ,
Axes −> False

] ;

o v e r l a p l a b e l s =
Array [Graphics [Text [

ToString [
SetPrecision [ Last [ o v e r l a p p l o t l i s t [ [ # ] ] ] , 3 ]

] ,
{ o v e r l a p p l o t l i s t [ [# , 1 ] ] ,
Min [Map[Last , Cases [ e n p l o t l i s t , { o v e r l a p p l o t l i s t [ [# , 1 ] ] , _} ] ] ] − 1
}
] ] &, Length [ o v e r l a p p l o t l i s t ]

] ;

sp in l egend = {
Graphics [Text [ "Pseudospin ␣S" , {2 , 9 } ] ] ,
Array [Graphics [Text [ToString [#] , {#, 7 } ] ] &, 5 , 0 ] ,
ListPlot [Array [{{# , 5}} &, 5 , 0 ] , PlotMarkers −> spinp lotmarker s ]

} ;

legendbox = {Graphics [ {
Thin ,
Line [{{−0.25 , 3} , {−0.25 , 10} , {4 . 5 , 10} , {4 . 5 , 3} , {−0.25 , 3}} ]

} ] } ;

Show [ p lot1 , ov e r l ap l ab e l s , sp in legend , legendbox ]
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