
UNIVERSITY OF OSLO
Department of Physics

FPGA Based
Development
Platform for
Biomedical
Measurements
ECG Module

Master thesis

Miriam Kirstine
Huseby

Spring 2013

FPGA Based Development Platform for
Biomedical Measurements

Miriam Kirstine Huseby

Spring 2013

ii

Abstract

This master thesis describes the development of an ECG module made
for implementation in an FPGA development platform by Lars Jørgen
Aamodt (2013).

The complete ECG system consists of an analogue ECG Front-End, a
Data Acquisition Card, and an FPGA Module based on the Pan-Tompkins
Algorithm for real-time QRS peak detection.

Measurements principles, instrument design and test results were re-
viewed. The system works as an independent ECG measuring instrument.

An iPad application was designed as an addition to the Android
application designed for the platform. The iPad does not support the
Bluetooth protocol used for transmission in the platform, so TCP/IP
platform was used. The iPad application was tested and verified with
generated data from a TCP/IP server

iii

iv

Acknowledgments

This thesis was carried out in the period from January 2012 to June 2013,
under the supervision of professor Ørjan G. Martinsen at UiO Electronics
Group, Ph.D Candidate Tore Andrè Bekkeng at UiO Plasma- and Space
Physics Group, and Dr. Christian Tronstad at the OUS Rikshospitalet,
Department of Medical Technology.

I am very grateful to Ørjan G. Martinsen for giving me the opportunity
to work with such an interesting topic. I would like to thank Martinsen
for his support and guidance during this work, and for his work with the
Bioimpedance group at UiO.

A special thanks to Tore Andrè Bekkeng for the countless hours he
patiently helped me when I needed it. Thank you for all the motivation
and guidance through the project. A thank you to Christian Tronstad for
the insight and help in the medical instrumentation field.

I would also like to thank the guys at the ELAB, especially Halvor
Strøm, Stein Nielsen and David Michael Bang, for all the help in the PCB
production. I learned a lot from you.

To all my fellow students over the years. Thank you for your support,
and for happytimes. A very special thank you to Lars Jørgen Aamodt
for his patience, knowledge, and friendship. I would not have made it
without you.

To my parents, thank you for all your love and support through
everything. To the rest of my family, thank you for being there. A very
special thank you to my beautiful sister and her Jonas. This would never
have happened without you. Thank you!

v

vi

Contents

1 Introduction 1
1.1 Background and Motivation 1
1.2 Goals of the Present Work . 2

2 Principles of Cardiac Measurements 3
2.1 Electrical Conduction in the Heart 3

2.1.1 The Resting Potential 3
2.1.2 Cardiac Action Potential 4
2.1.3 The Pacemaker Cells 5
2.1.4 The Cardiac Conduction System 5

2.2 ECG Electrodes and Leads . 9
2.2.1 The Electrode-Electrolyte Interface 10
2.2.2 Leads . 12

2.3 Clinical ECG . 16
2.3.1 Amplifiers . 16
2.3.2 Noise Reduction . 16
2.3.3 Isolation Circuit . 16
2.3.4 Analog-to-Digital Converter 17
2.3.5 Microcomputer . 17
2.3.6 Monitor/Printer . 17

2.4 The Pan-Tompkins QRS Detection Algorithm 17

3 Analog Front-Ends 23
3.1 ECG . 23

3.1.1 Circuit Design . 23
3.1.2 PCB realization . 30

3.2 Data Acquisition Card . 34
3.2.1 Circuit Design . 34
3.2.2 PCB realization . 39

4 MATLAB and Modelsim Simulation 41
4.1 MATLAB Simulation . 41
4.2 Modelsim Simulation . 46

vii

viii CONTENTS

5 Hardware Implementation 51
5.1 Altera Cyclone III FPGA . 51
5.2 Nios II Processor and Bluetooth 54
5.3 Clocks and Reset . 55

5.3.1 Phase-Locked Loop . 55
5.3.2 Clock Division . 55
5.3.3 Reset . 56

5.4 ADC . 58
5.5 ECG Module . 58

5.5.1 Lowpass and Highpass Filters 59
5.5.2 Derivation . 59
5.5.3 Squared . 59
5.5.4 Moving Window Integration 59
5.5.5 Peak Detection . 59
5.5.6 Heart Rate I . 61
5.5.7 Heart Rate II . 61
5.5.8 Heart Rate Variability 62

6 iPad Application 63
6.1 Application Overview . 63
6.2 Programming Language and Frameworks 63
6.3 Communications Protocol . 64
6.4 Designing the Application . 64
6.5 Future Prospects . 67

7 Verification of the ECG Module 69
7.1 Measurements . 69

7.1.1 Setup . 69
7.1.2 Results . 71

7.2 Summary . 79

8 Conclusion and Future Work 81
8.1 Conclusion of the Present Work 81
8.2 Future Work . 81

A Physical Constants 85

B Schematics and PCB Prints 87
B.1 Schematic drawing of the ECG Front-End 87
B.2 PCB realization of the ECG Front-End 90
B.3 Schematic drawings of the Data Acquisition Card circuit . . 92
B.4 PCB Prints of the Data Acquisition Card 100

C Matlab Code 105
C.1 Program for generating ECG signal 105
C.2 Matlab functions for Pan-Tompkins Algorithm 110

CONTENTS ix

D VHDL Code 117
D.1 Testbench for Modelsim Simulation 117
D.2 ECG Module . 120

E iPad Application Code 147
E.1 Python script for ECG Server 147
E.2 iPad Application . 150
E.3 FPGA Design . 168

x CONTENTS

List of Figures

2.1 Action Potential in the Cardiac Myocytes. 4
2.2 Action Potential of the Pacemaker Cells. 6
2.3 The Cardiac Conduction System 6
2.4 ECG Waveform . 8
2.5 U Wave seen on an ECG . 9
2.6 Electrode-electrolyte interface 10
2.7 Electrical equivalent circuit when body-surfaced elec-

trodes is placed on the skin 11
2.8 Dipole field of the heart when the R wave is maximal . . . 12
2.9 Einthoven’s triangle . 13
2.10 Electrodes connected to the body to obtain the Wilson

Central Terminal . 14
2.11 Electrode placement in a 12 lead ECG 14
2.12 Signals registered on a 12 lead ECG 15
2.13 Driven-right-leg circuit . 17
2.14 Waveforms of the Steps through the Pan-Tompkins QRS

Detection Algorithm . 22

3.1 Input Noise Spectral Density vs Gain for AD624AZ 24
3.2 CMRR vs Input Frequency 25
3.3 Bandpass Filter . 26
3.4 Simulated frequency response of Bandpass Filter 26
3.5 Circuit of an Operation Amplifier Notch Filter to elimin-

ate 50 Hz interference. 27
3.6 Simulated frequency response of the notch filter circuit . . 28
3.7 Simulated frequency response of the ECG filter circuit . . 29
3.8 Top layer of ECG PCB . 31
3.9 Bottom layer of ECG PCB . 32
3.10 Power Supply for the ECG Front-End 33
3.11 IC placement as described in Grødal (1997). 34
3.12 AD7766-2 Current vs MCLK frequency 35
3.13 Schematic for driving the AD7766-2 from a single-ended

source . 36
3.14 Comparison of Analog and Digital Signals 37

xi

xii LIST OF FIGURES

3.15 Frequency Spectrum for Anti-aliasing protection in the
AD7766 . 38

3.16 Timing diagram for reset, synchronization, power-up, and
power-down of the AD7766-2 38

3.17 Serial timing diagram for reading using CS 39

4.1 Output from MATLAB generated ECG signal 42
4.2 Simulated ECG signal after Lowpass Filter 42
4.3 Simulated ECG signal after Highpass Filter 43
4.4 Simulated ECG signal after Derivative 43
4.5 Simulated ECG signal after Squaring Function 44
4.6 Simulated ECG signal after Moving Window Integration . 44
4.7 Peak detection and calculated heart rate of generated ECG

signal . 45
4.8 Simulated Heart Rate Variability from generated ECG

signal . 45
4.9 Modelsim results for lowpass filter 46
4.10 Modelsim results for highpass filter 47
4.11 Modelsim results for derivation 47
4.12 Modelsim results for squaring process 48
4.13 Modelsim results for moving window integration 48
4.14 Modelsim results for peak detection 49

5.1 Conceptual Structure of an FPGA Device 52
5.2 Logic Elements for the Cyclone III FPGA 53
5.3 Clock system for the ECG design 56
5.4 Clock signal alignment in the clock module 57
5.5 Flow Chart for FSM for AD7766 58
5.6 Drawing of the ADC block in the ECG design 58
5.7 Direct-Form I IIR Filter Structure 60
5.8 Direct-Form I FIR Filter Structure 60

6.1 Port and host configuration setup in the iPad settings menu 65
6.2 Screenshot of running iPad application 66

7.1 Electrode Placement for testing the ECG FPGA Module . . 70
7.2 System Setup for ECG Measurements 70
7.3 ECG Wave from the output of the ECG PCB 71
7.4 FFT of the output from ECG PCB 72
7.5 FFT of the output of the signal when test subject touched

a ground pin on the DAQ . 73
7.6 ECG wave at the ADC output 74
7.7 Output of the lowpass filter 75
7.8 Output of the highpass filter 75
7.9 Output of differentiator . 76
7.10 Output of squaring process 76

LIST OF FIGURES xiii

7.11 Output of the moving integration 77
7.12 Output of the peak detection 77
7.13 Float-point calculations in FPGA 78

B.1 Power Distribution for ECG Circuit 88
B.2 ECG Circuit . 89
B.3 PCB ECG Front-End . 91
B.4 Overview Schematic of DAQ 93
B.5 Power distribution on DAQ 94
B.6 Circuit for ADC for ECG Signal 95
B.7 Circuit for ADC for EDA Signal 1 96
B.8 Circuit for ADC for EDA Signal 2 97
B.9 Circuit for ADC for EDA Signal 3 98
B.10 Circuit for DAC for EDA Signal 99
B.11 DAQ PCB Top Layer . 101
B.12 DAQ PCB Bottom Layer . 102
B.13 DAQ PCB . 103

E.1 Complete ECG FPGA Design 169
E.2 Clocks and Reset in ECG FPGA Design 170
E.3 Pan-Tompkins Algorithm implementation 171
E.4 Floating-Point Operations . 172

xiv LIST OF FIGURES

List of Tables

2.1 Colour System of ECG leads 15

5.1 Cyclone III Device Features 52

A.1 Physical Constants . 85

xv

xvi LIST OF TABLES

Nomenclature

ADC Analog-to-Digital Converter

Ag Silver

AgCl Silver Chloride

API Application Programming Interface

ATP Adenosine triphosphate

AV Atrioventricular

Ca2+ Calcium ions

Cl− Chloride ions

CMRR Common-Mode-Rejection-Ratio

DAC Digital-to-Analog Converter

DAQ Data Acquisition Card

DIP Dual In-line Package

DSP Digital Signal Processing

ECG Electrocardiogram

FET Field-effect Transistor

FIR Finite Impulse Response

FIR Finite Impulse Response

FPGA Field-Programmable Gate Array

FPS Frames per second

GPU Graphic Processing Unit

HDL Hardvare Description Language

xvii

xviii LIST OF TABLES

HRV Heart Rate Variability

HSMC High-Speed Mezzanine Card

IA Instrumentation Amplifier

IC Integrated Circuit

I IR Infinite Impulse Response

K+ Potassium ions

LA Left Arm

LE Logic Elements

LL Left Leg

LSB Least Significant Bit

MSB Most Significant Bit

mV Millivolt

Na+ Sodium ions

PCB Printed Circuit Board

PLL Phase-locked Loop

RA Right Arm

RL Right Leg

SA Sinoatrial

SAR Successive Approximation Register

SMD Surface-mount Device

TCP/IP Transmission Control Protocol/Internet Protocol

UART Universal Asynchronous Receiver/Transmitter

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuits

XFET eXtra implanted junction FET

Chapter 1

Introduction

1.1 Background and Motivation

Measurements of biomedical signals have traditionally been done using
PC-based instrumentation and microcontroller technology. Due to the
sequential nature of the microcontroller, it offers little flexibility when
adding new modules in an existing design.

Field-programmable Gate Arrays (FPGA) are integrated circuits with
programmable logic cells and interconnections. The FPGAs are flexible,
and functionality can be changed as needed. The technology is concurrent,
and new modules can be added without altering the existing design.
These properties makes it possible to add new features and perform
system maintenance at a low cost and engineering effort. A fully
tested and verified FPGA design can easily be transferred to a full-
custom Application Specific Integrated Circuit (ASIC) facilitating large
scale production. The combination of concurrency, flexibility and low
power consumption, makes the FPGA well suited for portable systems.

In the recent years, the use of mobile applications in smartphones and
tablets have exploded. This is true for the private market, and it is steadily
increasing in the professional market as well. An example of this is the use
of tablets, like the Apple Ipad, in public institutions like the parliament
and public schools. A mobile application as a monitoring device in a
measurement system offers great flexibility for the users. Monitoring can
be done in real-time, and with great distance between the observer and
the subject measured.

FPGA technology offers a flexible interface that can be used for
functions like wireless data exchange. An example of this to use a
Bluetooth module for communication and data transfer. Bluetooth is
implemented in most computers and mobile devices. This makes it a
highly available and low cost alternative for data transfer between an
FPGA and a mobile application unit.

1

2 CHAPTER 1. INTRODUCTION

1.2 Goals of the Present Work

The goal of this thesis is to design an FPGA based measuring system for
ECG measurements. It will be fully functioning as an independent unit,
with prospects of implementation on the FPGA development platform
prototype as described in Lars Jørgen Aamodt (2013). The complete
ECG system will include an analogue ECG circuit, a Data Acquisition
card, FPGA based digital signal processing, and an iPad application for
monitoring the signal.

Chapter 2

Principles of Cardiac
Measurements

Electrocardiophy (or ECG) is the measurement of electrical activity in
the cardiac muscular cells. By studying this activity we can analyze the
muscular mechanisms of the heart as it pumps blood to the body. The
physiological functions of the cardiac cells, gives a predictability as to
how the activity should be shown on an ECG. Any abnormalities, or
arrhythmia in the heart’s muscular activities will therefore be easily picked
up when analyzing the output of the ECG. Hence, these measurements are
an important tool in medical instrumentation.

2.1 Electrical Conduction in the Heart

The cardiac muscle is comprised of about 300 billion muscle cells, known
as myocardiocytes or cardiac myocytes, and cardiac pacemaker cells. As
with nervous cells and skeletal cells, the myocardiocytes are classified as
excitable cells. The myocardiocytes holds electrical attributes like resting
potential, and when appropriately stimulated, an action potential (John G.
Webster 2010).

2.1.1 The Resting Potential

All cells in the body have an electric potential difference between its
internal and external environments of the membrane. The internal
environment, the cytosol, has a large concentration of K+ ions compared
to that of Na+, Ca2+, and Cl− ions. The external environment, the
extracellular fluid, has a large concentration of Na+ compared to the
concentrations of K+, Ca2+, and Cl−. This creates a diffusion gradient
directed outwards across the membrane. The cell’s membrane is highly
permeable to K+, compared to Na+. Because of this, there is a higher
leakage of K+ outwards to the extracellular fluid than the Na+ inwards

3

4 CHAPTER 2. PRINCIPLES OF CARDIAC MEASUREMENTS

to the cytosol. With more positive ions leaving the cytosol than entering
it, the net value becomes negative and so forth the potential (Olav Sand
et al. 2009). The value of the resting potential of a cell is found close to the
equilibrium potential of the dominant contributor, measured in volts and
calculated from the Nernst equation (2.1)

EK =
RT
nF

ln
[a]o
[a]i

(2.1)

The n is the valence of the ion, [a]o and [a]i are the extracellular and
intracellular concentrations of the ion in moles pr liter, respectively. R is
the universal gas constant (A.1), T is absolute temperature in Kelvin, and
F is the Faraday constant (A.1) (John G. Webster 2010). The cell is now
polarized. The typical resting potential for myocardiocytes is around -85
to -95 mV, where K+ is the dominant contributor.

The maintenance of the resting potential for the cell is mainly kept by
the Na+/K+ − ATPase, known as the Sodium-Potassium Pump. With
energy from the ATP produced within the cell, the ionic pump actively
transports Na+ out of the cell, and K+ into the cell at a ratio of 3Na+:2K+.

Most cell types maintain a somewhat stable and negative potential.
Excitable cells, on the other hand, has the ability to change the potential
in a rapid manner to a positive potential. This happens during the action
potential.

2.1.2 Cardiac Action Potential

The action potential is the depolarization and repolarization of a cell. It
can be explained in five phases as shown in figure 2.1

Figure 2.1: Action Potential in the Cardiac Myocytes.
(Kreuger 2006) Electrical impulses from nearby cells makes the cell

depolarize. When a threshold is met, Na+ voltage gated channels open
and ions start flowing into the cytosol changing the potential. The

membrane potential determine the opening and closing of the voltage
gated channels for the Na+, Ca2+ and K+ ions, resulting in a specific

potential pattern.

2.1. ELECTRICAL CONDUCTION IN THE HEART 5

The 5 Phases of the Action Potential:

Phase 4: The resting potential of the membrane. A change from this state will
occur when electrical influences from nearby cells open up small gap
junctions in the cell membrane. Through the gap junctions, Na+ and
Ca2+ ions flow into the cytosol reducing the potential’s negativity.

Phase 0: When the depolarization has reached the cell’s potential of ap-
proximately -70mV, an all-or-none action potential occurs. At this
threshold potential, voltage gated channels open and Na+ starts
flowing into the cytosol and rapidly depolarizing the potential to-
wards the Na+ equilibrium potential of +67mV. Before it reaches this
potential, the channels close down, leaving the potential positive.

Phase 1: As the Na+ channels close down, voltage gated channels open for
K+ leaving the cytosol, and a repolarization occurs.

Phase 2: Before the potential becomes negative, voltage gated channels open
for Ca2+ to flow into the cytosol. At this stage, the K+ and Ca2+ pull
in different directions, and the potential remains positive.

Phase 3: The Ca2+ voltage gated channels are closed, and only the voltage
gated K+ channels are open. The K+-ions flow out of the cytosol,
rapidly repolarizing the cell to its resting potential.

(Rishi 2012a)

2.1.3 The Pacemaker Cells

The pacemaker cells are found in the Sinoatrial (SA) node, Atrioventricu-
lar (AV) node, Bundle of His, and the Purkinje fibers in the heart. These
cells differ from the myocardiocytes in the way that the pacemaker cells
has the property of automaticity. When the myocardiocytes require elec-
trical impulses to start their action potential, the pacemaker cells do that
themselves. It is this property that keeps the heart beating. The duration of
one action potential determines the heart rate of the person (Rishi 2012b).
The ion flow through the membrane is shown in figure 2.2

2.1.4 The Cardiac Conduction System

The pacemaker cells in the SA node initiates the rhythmic cardiac impulse.
The impulse passes from the SA node through the anterior, middle,
and posterior internodal tracts to the AV node, and to the Bachmann’s
bundle through the interial tract. It does so in an organized manner, first
activating the right and then the left atrium. The impulse is delayed at the
AV node, before it continues to the Bundle of His, the right bundle branch,

6 CHAPTER 2. PRINCIPLES OF CARDIAC MEASUREMENTS

Figure 2.2: Action Potential of the Pacemaker Cells.
The pacemaker cells does not have a resting potential. The properties of
the cell help maintain a steady flow of ions in and out through voltage

gated channels when certain potentials are reached.

Figure 2.3: The Cardiac Conduction System
(©John G. Webster 2010) The electrical impulse originates at the SA node.
It passes from the SA node, through specialized conducting tracts, to the
AV node and the Bachmann’s bundle. After a delay at the AV node, the
impulse continues to the Bundle of His, the right bundle branch, the left

bundle branch, anterior and posterior divisions of the left bundle, and the
Purkinje network.

2.1. ELECTRICAL CONDUCTION IN THE HEART 7

the common left bundle branch, the anterior and posterior divisions of the
left bundle, and the Purkinje network (Figure 2.3) (B.S. Lipman et al. 1972).

8 CHAPTER 2. PRINCIPLES OF CARDIAC MEASUREMENTS

ECG Wave during Electrical Conduction

The electrical impulses propagating through the heart is registered by the
ECG as a waveform. Each region of the waveform is produced by the
various depolarizations and repolarizations of the different muscle tissues
as the electrical impulse runs through them. (Figure 2.4)

Figure 2.4: ECG Waveform
The P-Q-R-S-T waves and spikes on the ECG is a visual representation of
the depolarization and repolarization of the muscle cells in the atria and

ventricles as the heart beats. (Wikipedia 2004a)

P wave: The P wave represents the depolarization of the atria, and starts just
before the atrial contraction. The duration of the P wave is 60 to 110
ms.

PR interval: The PR interval represents the delay in the AV node. Parts of the
atrial repolarization is also represented here. The duration of the
interval is usually about 120 to 200 ms long.

QRS complex: The QRS complex consists of three spikes closely following each
other. As a whole, the spikes represent the depolarization of
the ventricles. The ventricular contraction begins during the QRS
complex. The muscle mass of the ventricles is larger than that of
the atries. This becomes visible in the ECG waveform, as the QRS
complex is larger than the P wave. In the ventricles, the left muscle
contains more muscle mass and therefore contributes more to the
QRS complex. The duration of the complex is normally 60 to 100 ms.
In children and during physical activity, it may be shorter.

2.2. ECG ELECTRODES AND LEADS 9

QT interval: The QT interval represents the depolarization and repolarizarion of
the ventricles. The typical duration of this is 80 ms.

ST segment: The ST segment represents the period when the ventricles are
depolarized. The segment has a duration of 80 to 120 ms.

T wave: The T wave represents the repolarization of the ventricles. The
T wave is smaller than the QRS complex because the ventricular
repolarization is slower than the depolarization. The interval from
the beginning of the QRS complex to the apex of the T wave is the
absolute refractory period and is 250 ms in length. The last half of the
T wave is the relative refractory period. The refractory period is the
amount of time it takes for an excitable cell to be ready for a second
stimulus after it has settled to its resting state following excitation.

U Wave: The U wave is normally not seen in the ECG. It follows the T
wave, and is thought to represents the repolarization of the papillary
muscles or Purkinje fibers. An example of the U wave is shown in
figure 2.5.

(Olav Sand et al. 2009) (Wikipedia 2004b)

Figure 2.5: U Wave seen on an ECG
(Wikipedia 2007) The U wave is thought to represent the repolarization of
the papillary muscles or the Purkinje fibers. It is rarely visible on the ECG

2.2 ECG Electrodes and Leads

To be able to measure the electrical impulses in the heart, a connection of
electrodes and leads is set up from the human body to the ECG.

10 CHAPTER 2. PRINCIPLES OF CARDIAC MEASUREMENTS

2.2.1 The Electrode-Electrolyte Interface

To be able to measure the currents in the body, there needs to be an
interface between the body and the electronic measuring apparatus. The
body’s current is carried by ions, while the electrodes carries electrons. An
electrode-electrolyte interface, illustrated in figure 2.6 is created by adding
an electrolytic gel on the metal electrode.

Figure 2.6: Electrode-electrolyte interface
(John G. Webster 2010) The electrode consists of metallic atoms C. The
electrolyte is an aqueous solution containing cations of the electrode

metal C+, and anions A−. The current crosses from left to right.

At the interface, the chemical reaction represented by the reactions (2.2)
and (2.3), occurs.

C ⇀↽ Cn+ + ne− (2.2)

Am− ⇀↽ A + me− (2.3)

The electrode metal is made up of atoms of the same material as cations
in the gel. The cation is discharged into the electrolyte, and the electron
remains as a charge carrier in the electrode. The anion at the interface is
oxidized to a neutral atom, giving off free electrons to the electrode. This
results in a net current crossing the interface, passing from the electrode to
the electrolyte (John G. Webster 2010).

A commonly used ECG electrode is made up of a disk of Ag with a
layer of AgCl on its surface. The disk is placed on the test subject’s chest.
It stays in place, either by surgical tape or a plastic foam disc with adhesive
tack on one surface (John G. Webster 2010).

When a metal comes in contact with a solution containing ions of
that metal, the chemical reaction represented in equation (2.2) begins

2.2. ECG ELECTRODES AND LEADS 11

immediately. Depending on the concentration of the cations and the
reactions’ equilibrium conditions, the reaction goes predominantly either
to the left or the right. At the interface, the local concentration of the
cations change, which also affects the anion concentration. At this point on
the interface, the neutrality of charge is not maintained and a difference in
electrical potential from the rest of the solution is created. This potential
difference is known as the half-cell potential, and is 0.223V for Ag/AgCl
electrodes (John G. Webster 2010).

The outer layer of the skin, the stratum corneum, is dielectric and
impairs the transference of ions in the tissue to electrons in the electrode
as an impedance of the skin. This, in addition to the resistance of the
electrolytic gel, the double layer at the electrode-electrolyte interface, and
the half-cell potentials at both electrolyte interfaces, can be described as
the electrical circuit in figure 2.7

Figure 2.7: Electrical equivalent circuit when body-surfaced electrodes
is placed on the skin
The circuit elements on the right represent the physical process at which

they are aligned with on the left. (John G. Webster 2010.)

The Ag/AgCl show a low ohmic impedance in the whole frequency
specter. Its main purpose is to reduce the impact of the skin impedance
by making the stratum corneum ion conductive (Anna Gruetzmann et al.
2007). The half-cell potential at the electrodes introduce an offset to the
signal. The Ag/AgCl electrodes have a maximum offset of +/-300mV.

12 CHAPTER 2. PRINCIPLES OF CARDIAC MEASUREMENTS

2.2.2 Leads

To better understand the electrical activity of the heart, electrocardio-
graphers have developed a model where "the heart consists of an electric
dipole located in the partially conducting medium of the thorax" (John G.
Webster 2010). The dipole, and the field produced by it, changes mag-
nitude and orientation according to the electrical activity of the heart at
that given time. Instead of drawing a field plot to analyze the dipole field
of the heart, it is represented by its dipole moment. The dipole moment is
a vector directed from the negative to the positive charge. The magnitude
of the vector is proportional to the amount of charge multiplied by the
separation of the two charges. The vector is known as the cardiac vector,
illustrated in figure 2.8 (John G. Webster 2010).

Figure 2.8: Dipole field of the heart when the R wave is maximal
The dipole moment vector M is made up of points of equal positive and

negative charge separated from one another. (John G. Webster 2010)

During one cardiac cycle, 3 main changes are registered in the cardiac
vector. These are the atrial depolarization, the ventricular depolarization,
and the ventricular repolarization. They all differ in magnitude, direction
and duration, resulting in the ECG waveform.

A number of electrodes are connected and placed at different places
on the body surface. A pairing of two electrodes is known as a lead. The
space between them is defined as a lead vector. The lead vector defines
the direction the cardiac vector must have to generate maximum voltage
in a lead (John G. Webster 2010).

The three basic leads of the ECG setup makes up the frontal-plane ECG.
In this setup, electrodes are placed on the right arm (RA), left arm (LA)
and left leg (LL). If ground is required, or an addition of a separate special
circuit like the driven-right-leg (Figure 2.13), an electrode is placed on the
right leg. We then have the three leads:

2.2. ECG ELECTRODES AND LEADS 13

I: LA to RA

II: LL to RA

III: LL to LA

This forms an equilateral triangle, known as Einthoven’s triangle.
(Shown in figure 2.9) These three leads are all bipolar, meaning they have
one positive and one negative pole (John G. Webster 2010).

Figure 2.9: Einthoven’s triangle
Vector diagram of the three limb leads I, II, III, and the augmented leads
aVR, aVL, aVF. The limb leads and augmented leads are derived from the

same electrodes, but view the heart activity from different angles.

A clinical ECG is made up of the three limb leads, three augmented
leads in the frontal plane, and six leads in the transverse plane. The
three augmented leads in the frontal plane, aVR, aVL and aVF, are derived
from the same electrodes as the limb leads. (Shown in figure 2.9). The
augmented and transverse leads differ from the the limb leads in the
sense that they are based on signals obtained from more than one pair
of electrodes. They are called unipolar leads, because potential appearing
on one electrode is taken with respect to an equivalent reference electrode.
The reference electrode is the average of the signals seen at two or more
electrodes. This setup is known as the Wilson Central Terminal, shown in
figure 2.10 (John G. Webster 2010).

A setup with the leads in both the frontal and the transverse plane is
called a 12 lead ECG. The placement of the electrodes is shown in figure
2.11, and the ECG signal at each lead is shown in figure 2.12

ECG electrodes have dedicated labels and colours. The standards are
different in the USA and in Europe. A list of these standards is found in
table 2.1.

14 CHAPTER 2. PRINCIPLES OF CARDIAC MEASUREMENTS

Figure 2.10: Electrodes connected to the body to obtain the Wilson
Central Terminal
The three limb electrodes are connected through equal-valued resistors to

a common node, the Wilson Central Terminal. The voltage here is the
average of the voltages at each electrode. (©John G. Webster 2010)

Figure 2.11: Electrode placement in a 12 lead ECG
The three limb leads, LA, RA, LL, form Einthoven’s triangle. V1, V2, V3,
V4, V5 and V6 are the leads seeing the potentials in the transverse plane.

RL is connected to ground the subject.

2.2. ECG ELECTRODES AND LEADS 15

Figure 2.12: Signals registered on a 12 lead ECG
ECG signal seen from the limb leads; I, II, III, the augmented leads; aVR,
aVL, aVF, and the leads in the transverse plane; V1, V2, V3, V4, V5, V6 .

Table 2.1: Colour System of ECG leads

AHA (American Heart Association) IEC (International Electrotechnical Commission)

Location Inscription Colour Inscription Colour
Right Arm RA White R Red
Left Arm LA Black L Yellow
Right Leg RL Green N Black
Left Leg LL Red F Green
Chest V1 Brown/Red C1 White/Red
Chest V2 Brown/Yellow C2 White/Yellow
Chest V3 Brown/Green C3 White/Green
Chest V4 Brown/Blue C4 White/Brown
Chest V5 Brown/Orange C5 White/Black
Chest V6 Brown/Purple C6 White/Violet

ECG leads in USA and Europe are labeled after different standards

16 CHAPTER 2. PRINCIPLES OF CARDIAC MEASUREMENTS

2.3 Clinical ECG

A typical clinical ECG consists of the following blocks:

2.3.1 Amplifiers

The purpose of the amplifier is to take the weak electric biopotential
and increase its amplitude for further processing and analysis. The
biopotential signal is obtained by bipolar electrodes, so a differential
amplifier is used. The amplifier should have a high input impedance so
the signal measured is provided with minimal load. It must have a high
common-mode-rejection-ratio (CMRR) to minimize interference from a
common-mode signal. Due to the small amplitudes of biopotential signals,
the amplifier must have a high gain. It must also be able to operate within
the frequency spectrum were the signals are found (John G. Webster 2010).

2.3.2 Noise Reduction

The ECG signal experience interference from several sources of noise.
From the test subject itself there can be some muscle noise. From
the surroundings, the system will experience interference from electrical
devices and power lines. The leads connected to the subject can also add
to the noise as a form of antenna when not properly connected.

To reduce the noise in the system, filtering is needed. A notch filter can
reduce the 50 Hz noise from the power lines. Since the ECG frequencies
are in the lower area, one can also limit interference with a lowpass filter.
Shielding the leads and grounding them, will help reducing interference.
Low impedance in the electrodes is also helpful for this purpose.

Driven-Right-Leg Circuit

The Driven-right-leg circuit reduces interference seen from the ECG
amplifier. Through a circuit as shown in figure 2.13 , the common mode
voltage is driven low in the negative feedback. It also grounds the patient.
If a high voltage appears between the subject and ground, the auxiliary
op.amp will saturate and consequently unground the subject.

2.3.3 Isolation Circuit

An isolation circuit contains a barrier from the test subject from the power
line. Such a barrier will prevent dangerous currents from flowing either
to or from the test subject. Examples of an isolation barrier can be an
optocoupler or an isolation amplifier.

2.4. THE PAN-TOMPKINS QRS DETECTION ALGORITHM 17

Figure 2.13: Driven-right-leg circuit
The circuit minimizes common-mode interference from a pair of

averaging resistors connected to the instrumentation amplifier. The right
leg is connected to the output of the auxiliary op.amp. (John G. Webster

2010)

2.3.4 Analog-to-Digital Converter

The Analog-to-Digital Converter (or ADC) digitizes the analog ECG signal
for processing in a microcomputer or other digital environments.

2.3.5 Microcomputer

The microcomputer perform analysis on the ECG signal. With the help
of digital processing, the user can implement algorithms computing the
wanted information from the original signal. A processed signal can,
among others, determine heart rate and recognize arrhythmia in the heart.

2.3.6 Monitor/Printer

A printer provides a hard copy of the ECG signal. The output is written on
specialized paper helping the physician to easily read the signal. In digital
systems, memory can be implemented and the information can be stored
and later analyzed.

2.4 The Pan-Tompkins QRS Detection Algorithm

The following section describes the Pan-Tompkins real-time QRS detection
algorithm. Full reference can be found in J.Pan (1985). This whole section
is based on the findings in that publication.

18 CHAPTER 2. PRINCIPLES OF CARDIAC MEASUREMENTS

The algorithm consists of a series of digital filters and signal processing
implemented in a digital processing unit. The signal processed is the
output from an ADC, at a sampling rate of 200 Hz. It passes through a
lowpass filter and a highpass filter to eliminate noise, before it continues
through a filter that approximates a derivative. Next, there is an amplitude
squaring process before the signal passes through a moving-window
integrator. The final step is an adaptive threshold method to determine
the location of the signal peaks.

Bandpass Filter

The bandpass filter reduces the influence of muscle noise, 50 Hz interfer-
ence, baseline wander and T-wave interference. The desired passband to
maximize the QRS energy is approximately 5− 15 Hz. The filters all have
poles and zeros on the unit circle of the z plane. The bandpass filter is
built from cascaded lowpass and highpass filters to achieve the desired
bandpass

Lowpass Filter

The lowpass filter is of the second order, and given by the transfer function
(2.4).

H(z) =
(
1− z−6) 2

(1− z−1) 2 (2.4)

With T as the sampling period, the difference equation of the filter is
given by (2.5).

y(nT) = 2y(nT− T)− y(nT− 2T) + x(nT)− 2x(nT− 6T) + x(nT− 12T)
(2.5)

This gives a cutoff frequency of about 11 Hz.

Highpass Filter

The highpass filter is given by the transfer function in (2.6).

H(z) =
(
−1 + 32z−16 + z−32)

(1 + z−1)
(2.6)

The difference equation is given by (2.7).

y(nT) = 32x(nT − 16T)− [y(nT − T) + x(nT)− x(nT − 32T)] (2.7)

The low cutoff frequency is about 5 Hz.

2.4. THE PAN-TOMPKINS QRS DETECTION ALGORITHM 19

Derivative

The signal is differentiated to provide the QRS complex slope information.
A five-point derivative is used, with the transfer function (2.8)

H(z) = (1/8T)(−z−2 − 2x−1 + 2z1 + z2) (2.8)

This give the difference equation in (2.9).

y(nT) = (2x(nT) + x(nT − T)− x(nT − 3T)− 2x(nT − 4T))/8 (2.9)

The fraction 1/8 is an approximation of the gain factor of 0.1 to
permit fast power-of-two calculation. The derivative approximates an
ideal derivative between dc and 30 Hz.

Squaring Function

The signal is now squared point by point with the equation (2.10).

y(nT) = [x(nT)]2 (2.10)

All data points are now made positive, and the squaring also does
a nonlinear amplification of the derivative emphasizing the higher
frequencies.

Moving-Window Integration

The moving-window integration obtain waveform information and the
slope of the R wave. It is given by the function (2.11).

y(nT) = (1/N)[x(nT − (N − 1)T + x(nT − (N − 2)T) + ... + x(nT)]
(2.11)

where N is the number of samples in the width of the integration
window. The width of the window should be approximately the same
as the widest possible QRS complex. A window too narrow will produce
several peaks in the integration waveform, while a window too wide will
merge the QRS and T complexes together. For a sample rate of 200 Hz, a
window of 30 samples has proven to be a good size.

Threshold adjustment

The time duration of the rising edge of the integration waveform
corresponds to the duration of the QRS complex. Thresholds are
automatically adjusted to float over the noise. Due to the good signal-to-
noise ratio improved by the bandpass filter, low thresholds are possible.

20 CHAPTER 2. PRINCIPLES OF CARDIAC MEASUREMENTS

Two thresholds are used to detect a QRS complex. The higher of the
two, Threshold1, identifies the peaks of the signal. If no peaks have been
identified within a certain time interval, the lower Threshold2 is used to
find a peak using a search back method. The thresholds are adjusted as
the integrated signal moves forward, and computed from

SPKI = 0.125PEAKI + 0.875SPKI (2.12)

NPKI = 0.125PEAKI + 0.875NPKI (2.13)

THRESHOLDI1 = NPKI + 0.25(SPKI − NPKI) (2.14)

THRESHOLDI2 = 0.5THRESHOLDI1 (2.15)

with the variables given as

PEAKI: The overall peak

SPKI: The running estimate of the signal peak

NPKI: The running estimate of the noise peak

THRESHOLDI1: The first threshold applied

THRESHOLDI2: The second threshold applied

To be identified as a QRS complex, a peak must be recognized as such
a complex both in the integration and the bandpass-filtered waveforms.

RR Intervals

Two RR intervals are maintained. One is the average of the last eight beats,
regardless of their values. The second is the average of the eight last beats
that fall within certain limits. The reason for this is to be able to adapt
to quickly changing or irregular heart beats. They are computed by the
following functions

RRAVERAGE1 = 0.125(RRn−7 + RRn−6 + ... + RRn) (2.16)

where RRn is the most recent RR interval.

RRAVERAGE2 = 0.125(RR′n−7 + RR′n−6 + ... + RR′n) (2.17)

where RR′n is the most recent RR interval falling between the
acceptable low and high limits given as

2.4. THE PAN-TOMPKINS QRS DETECTION ALGORITHM 21

RRLOWLIMIT = 92%RRAVERAGE2 (2.18)

RRHIGHLIMIT = 116%RRAVERAGE2 (2.19)

RRMISSEDLIMIT = 166%RRAVERAGE2 (2.20)

If a QRS complex is not found within the RR MISSED LIMIT, the
maximal peak between the two established thresholds are considered to
be a QRS candidate.

If each of the intervals calculated from RR AVERAGE1 is between RR
LOW LIMIT and RR HIGH LIMIT, the heart rate is considered as normal.

T-Wave Identification

If the RR interval is less than 360 ms, the peak detected might be a peak
from the T wave. If the maximal slope from the waveform is less than half
of the preceding one, the peak is identified as a T wave. Otherwise it is
determined as a QRS complex.

Heart Rate Variability

Heart rate variability is the variation in the time between heartbeats. The
RR interval calculations output the heartbeat. The difference between each
of these outputs, will give the heart rate variability measured over time.

22 CHAPTER 2. PRINCIPLES OF CARDIAC MEASUREMENTS

Waveforms in the Pan-Tompkins Algorithm

The processing of the signal from the output of the ADC til the peak
detection give the waveforms as shown in figure 2.14

Figure 2.14: Waveforms of the Steps through the Pan-Tompkins QRS
Detection Algorithm
(a) Original signal. (b) Output of bandpass filter. (c) Output of derivative

filter. (d) Output of squaring process. (e) Output of Moving-Window
Integrator. (f) Original signal delayed by processing time. (g) Output of

pulse stream (©J.Pan 1985)

Chapter 3

Analog Front-Ends

This chapter describes the design and development of the two front-end
cards, the ECG circuit and the Data Acquisition Card (DAQ).

3.1 ECG

The ECG circuit board take the weak electric biopotential and increase
its amplitude for further processing and analysis. The heart rate is the
number of peaks in the QRS complexes pr minute. As seen in figure 2.12
in section 2.2.2, a 1-lead ECG is sufficient for that purpose. The outline
of the circuit was inspired by an article published by Shawn Carlson in
the Scientific American (2000), and a paper by Bobbie and Arif at the
Southern Polytechnic State University in Georgia, USA (2004). The filters
at the output of the instrumentation amplifier were designed to meet the
requirements of anti-aliasing and data processing in the ADC.

3.1.1 Circuit Design

The circuit was first designed and tested on a breadboard, before being
realized on a Printed Circuit Board (PCB). The frequency response of the
filters were simulated in Texas Instruments’ TI Spice software. Ag/AgCl
electrodes and a 5-lead ECG cable were provided by OUS Rikshospitalet.
The output of the circuit was verified on an oscilloscope. For practical
purposes, the test subject during the development of the circuit was the
author of this thesis.

Electrodes and Lead

Ag/AgCl electrodes were placed on LA, RA and RL. The LA was
connected to the negative input of the instrumentation amplifier, the RA
to the positive input, and RL was connected to a 10MΩ resistor connected

23

24 CHAPTER 3. ANALOG FRONT-ENDS

to ground. This setup measures lead I in an ECG and outputs a signal as
seen in figure 2.12 in section 2.2.2 on page 12.

For practical purposes, the lead cables used during circuit verification
on the breadboard were made of lead wires intertwined and connected to
the electrodes with a banana connector. For the final PCB prototype, a 5-
lead ECG cable was used for this purpose. The ECG cable offers greater
protection from interference, as each lead is shielded and the shield is
grounded at the ECG PCB.

Instrumentation Amplifier

The instrumentation amplifier (IA) used was the AD624AZ from Analog
Devices. It holds many of the desired properties wanted from an IA in
an ECG; high input impedance, high CMRR, high gain accuracy, high
linearity, and low noise. The AD624AZ is designed to provide noise
performance near the theoretical noise floor. Input noise spectral density
is shown in figure 3.1

Figure 3.1: Input Noise Spectral Density vs Gain for AD624AZ
With a gain of 1000, the input noise spectral density is less than 10 nV√

Hz

The AD624AZ includes high accuracy pre-trimmed internal gain
resistors, allowing gains up to 1000. At this gain setting the AD624AZ
gives a CMRR of approximately 130 dB for the input frequency. (Figure
3.2)

A Driven-Right-Leg circuit was considered for the purpose of minim-
ization of common-mode interference. However, the specifications of the
AD624AZ guarantees a very high CMRR at the gain of 1000 so the driven-
right-leg circuit was left out in the final design.

Noise Reducing Filters

The frequency range of an ECG signal for monitoring purposes, is 0.05 -
40 Hz. To reduce noise and DC offset on the signal from the AD624AZ

3.1. ECG 25

Figure 3.2: CMRR vs Input Frequency

output, three filters were implemented. At the output of the AD624AZ,
cascaded lowpass and highpass filters were implemented to remove any
high and low frequency noise. The highpass filter also works as an AC
coupling removing the DC offset introduced by the half-cell potential in
the electrodes. A notch filter was made to reduce the 50 Hz interference
from the surroundings. An operation amplifier (LMC6464) was used as a
voltage follower between the highpass filter and the notch filter, to prevent
any loading effects from the latter. The LMC6464, by Texas Instruments, is
a quad micropower, rail-to-rail input output, CMOS operational amplifier
with very low power consumption. Simulations of the frequency response
of the filters were done with Texas Instruments’ TI Spice software.

Lowpass Filter :
The lowpass filter was a second order lowpass filter with the cutoff
frequency calculated from (3.1)

fc =
1

2πRC
(3.1)

fc ≈ 48 Hz for this filter. The second order attenuates the signal with
40 dB pr decade.

Highpass Filter :
The highpass filter was a first order filter with fc ≈ 0.048 Hz, calculated
from (3.1). The highpass filter attenuates the signal with 20 dB pr decade.
The cascaded lowpass and highpass filters form a bandpass filter. A
schematic of the complete bandpass filter is shown in figure 3.3

The simulated frequency response of the bandpass filter is shown in
figure 3.4

26 CHAPTER 3. ANALOG FRONT-ENDS

Figure 3.3: Bandpass Filter
Bandpass filter placed at the output of the AD624AZ

Figure 3.4: Simulated frequency response of Bandpass Filter

3.1. ECG 27

Notch Filter

After a voltage follower, an op amp notch filter was implemented. A
diagram of the ciruit is shown in figure 3.5

Figure 3.5: Circuit of an Operation Amplifier Notch Filter to eliminate
50 Hz interference.
The fnotch is calculated from equation (3.2), where the component values

are set as R = R3 = R4 and C = C1 = C2. (Poole 2013)

The circuit employs both positive and negative feedback around the
op.amp, providing a high degree of performance (Poole 2013). The center
frequency of the notch filter is calculated from equation 3.2

fnotch =
1

2πRC
(3.2)

The values of the resistors and capacitors are given as

R = R3 = R4

C = C1 = C2

Values for the 50 Hz notch filter are

C1 = C2 = 47nF

R1 = R2 = 10kΩ

R3 = R4 = 68kΩ

The frequency response of the filter, simulated in TI Spice, is shown in
figure 3.6

28 CHAPTER 3. ANALOG FRONT-ENDS

Figure 3.6: Simulated frequency response of the notch filter circuit

3.1. ECG 29

Gain

For a better control over the amplitude of the ECG signal on the output
of the PCB, an adjustable gain was placed at the end of the circuit. The
gain help increase the amplitude of the signal, so the full range of the
following ADC can be taken advantage of. The gain has a maximum of
5. The simulated frequency response of the filters, with gain, is shown in
figure 3.7

Figure 3.7: Simulated frequency response of the ECG filter circuit

The signal then goes through a voltage follower, to eliminate any
loading effects from the DAQ. Schematic of the final ECG circuit can be
seen in Appendix B.1

Isolation Circuit

The ECG circuit runs on 9V batteries. If currents from these runs to the
patient, this will not be lethal. An isolation barrier was therefore left out
of the design. During the work of this thesis, the ECG was connected to
the FPGA development board through the ADC. The development board
was connected to a power socket of 220V. This voltage will be dangerous

30 CHAPTER 3. ANALOG FRONT-ENDS

for the patient. It did, however, not seem necessary to include the isolation
barrier for testing purposes only.

3.1.2 PCB realization

The PCB for the ECG circuit is a two-layer card produced at the ELAB at
the University of Oslo. It is produced as a prototype issue. The schematics
and routing is done in the Cadstar PCB design tool. Where available,
surface mounted components (SMD) were used. The AD624AZ was only
available as a dual in-line package (DIP). To keep the signal lines in the
top layer of the PCB, the AD624AZ was mounted from the bottom layer
leaving its legs available for connection in the top layer. The print for the
realized PCB of the ECG Front-End is found in Appendix ??

The finished PCB is seen in figures 3.8 and 3.9

3.1. ECG 31

Figure 3.8: Top layer of ECG PCB

32 CHAPTER 3. ANALOG FRONT-ENDS

Figure 3.9: Bottom layer of ECG PCB

3.1. ECG 33

Power Distribution

The circuit’s power supply was made up of two 9V batteries. They are
connected in series opposing, creating a positive and a negative power
supply and common ground. This meets the power supply requirements
of the two amplifiers used in the circuit. Ground is referred to the reference
level that the components define as 0V. All components should have the
same reference level.

Figure 3.10: Power Supply for the ECG Front-End

The power and ground signals are mainly distributed on the bottom
layer of the PCB. To keep the ground signal as clean as possible in a
PCB, the use of a ground plane is ideal. With a two-layer PCB, however,
this is not possible. The ground and power supply distribution is done
by separate lines to each part of the circuit. Difference in length of the
power and ground lines, may increase electrical noise from the returning
currents.

Bypass capacitors

To reduce noise and current transients from the power supply, bypass
capacitors are used. To protect against transient currents, high frequency
bypassing is used. For this purpose a ceramic capacitor is best, due

34 CHAPTER 3. ANALOG FRONT-ENDS

(a) Wrong placement (b) Correct placement

Figure 3.11: IC placement as described in Grødal (1997).
In (a) voltage variation will occur on ground. In (b) the noise of the

transient current will occur in VCC, and ground will stay clean.

to its good high frequency characteristics. To stabilize low frequent
voltage variations from the power supply, low frequency bypassing is
used. For this purpose, electrolytes, often tantals, are used due to their
good low frequency performance. The two are placed in parallel. For
best performance, the capacitors are placed as close to the IC as possible,
preserving a stable voltage supply and ground to the component.

Due to inductance in every conductor, a voltage difference in the
conductor will occur in case of transient currents. The conductors must
therefore be as short as possible. To achieve this, the ideal placement of
the bypass capacitors is to route the power and ground distribution in a
manner such that power and ground connections enter the pad on the
bypass capacitor on the one side, and exits on the other. This routing
ensures that no current can go around the capacitor. (Grødal 1997). An
example of bypassing is seen in figure 3.11

3.2 Data Acquisition Card

The ECG signal requires one ADC to convert the analogue signal into
digital, for processing by the FPGA. A Data Acquisition Card (DAQ) was
made with the possibility for the ECG module to be added to work from
Aamodt (2013). The DAQ was therefore made to fulfill the requirements
of the complete platform.

3.2.1 Circuit Design

The DAQ consists of 4 ADCs and 1 DAC programmed from the Altera
FPGA. The card is connected to the FPGA’s HSMC connector through
an Altera Terasic THDB-HTG daughter card, which also provides power
supplies of 3.3V, 5V, and 12V.

3.2. DATA ACQUISITION CARD 35

Analog to Digital Converter

For Analog-to-Digital conversion a high performance, 24-bit oversampled
successive approximation (SAR) ADC (AD7766-2) is used. The output
of the oversampled SAR is filtered using a linear-phase FIR filter. The
fully filtered data is output in a 24-bit serial format with twos compliment,
using MSB.

The internal circuitry of the AD776-2 is run by the SCLK. The MCLK
sets the ADC sample rate. The MCLK can only be a fraction of the SCLK,
due to the successive-approximation algorithm. The maximum frequency
of the MCLK is 1.024MHz By employing oversampling, the quantization
noise of the converter is spread across the bandwidth of 0 to fMCLK .

The AD7766-2 has an output decimation rate of 32. The high
rate increases the noise performance while decreasing the usable input
bandwidth. The MCLK was set to 31.25kHz, with the decimation rate of
AD7766-2 at 32, this gives an output data rate of 976Hz. The SCLK driving
the internal circuit was set to 3.125MHz. By setting SCLK as a multiple of
the MCLK, the rising clock edge won’t skew (5.3 on page 55). The output
data rate scales linearly with the MCLK frequency.

The AD7766-2 has excellent performance at ultralow power. Both
digital and analog current consumption scales with the MCLK frequency
applied to the device. The actual throughput equals the MCLK frequency
divided by the decimation rate, seen in figure 3.12

Figure 3.12: AD7766-2 Current vs MCLK frequency
The current throughput equals the MCLK frequency divided by the

decimation rate of 32

The analog input is of differential structure. This provides rejections of
signals common to both Vin+ and Vin−. The signal to the ADC comes from
a single-ended source. The single-ended-to-differential driver ADA4941-1
creates a fully differential input to the AD7766-2. It is a low power, low

36 CHAPTER 3. ANALOG FRONT-ENDS

noise differential driver for ADCs in systems that are sensitive to power.
The choice of the driver was based on the suggestion from the AD7766-2
datasheet, as shown in figure 3.13.

Figure 3.13: Schematic for driving the AD7766-2 from a single-ended
source
R1, R2 and CF set the attenuation ratio between the input range and the
ADC range (Vre f). R3 and R4 set the common mode on the Vin− input,
and R5 and R6 set the common mode for the Vin+ input of the ADC.

R1 and CF are set to work as an anti-aliasing filter before the ADC.
When digitized at a sampling rate of fs, the original analog signal

is replicated throughout the spectrum at intervals of fs. Because of the
replication, there may occur corruption of the frequency components of
the original signal by components of the replicated signal. This is known
as aliasing, and the corrupted frequencies are alias frequencies.

To capture all of the important information in the original signal, as
well as eliminate the effect of aliasing, the sampling frequency must be at
least twice as high as the highest frequency in the original signal. (Thede
2004). This relationship stems from the Nyquist-Shannon sampling
theorem, that states: If a function x(t) contains no frequencies higher than B
Hz, it is completely determined by giving its ordinates at a series of points spaced
1/(2B) seconds apart. (Wikipedia 2001). From this follows function (3.3)

fs > 2 · fh (3.3)

A representation of analog and digital signals is illustrated in figure
3.14

On the DAQ, the values of the components in the anti-aliasing lowpass
filter are 1 kΩ and 1.5 µF respectively. This gives an fc of 106 Hz with an
attenuation of 20 dB pr decade. In addition, the on-board digital filter
provides a 38 dB attenuation for any possible aliasing frequency in the
range from the filter stop band to where the image of the digital filter pass

3.2. DATA ACQUISITION CARD 37

Figure 3.14: Comparison of Analog and Digital Signals
The digital replication of the analog signal increases accuracy with the

sampling frequency

band occurs. With a sampling rate of 31.25 kHz the anti-aliasing protection
is in the frequency range of 534 Hz to 30.7 kHz. This can be seen in figure
3.15

The signal is sampled as 24 bits. To fulfill the Nyquist-Shannon
theorem for anti-aliasing, the signal must have an attenuation of ≈ 144
dB at fs

2 = 15.625 kHz. The lowpass filter in the ECG ciruit, as shown
in 3.7 on page 29 has an attenuation of ≈ 90 dB at 15.625 kHz. This, with
anti-aliasing filter on the DAQ and protection of the digital filter, give an
attenuation well within the Nyquist frequency.

Power supply to the ADC originates at the 12V, 5V, and 3.3V pins on
the Terasic THDB-HTG connector, connected to the Cyclone Development
kit. From there the voltage is regulated to ensure the correct supply to
the ADC. The voltage applied to the reference input operates both as a
reference supply and as the power supply for the AD7766-2. As a nominal
reference voltage a 5V reference input was chosen, as this gives the full-
scale differential input range of 10V. To ensure a 5V power supply, the
ADR445 XFET voltage reference was used. It was chosen because of its
features of ultralow noise, high accuracy, and low temperature drift. The
analog voltage of 2.5V supplies the AVDD pin on the AD7766-2. The
voltage is ensured by a low dropout regulator, ADP3330. The regulator
achieves high accuracy at room temperature. It also include safe current
limit and a shutdown feature.

During initial power-up, power-down, synchronization and reset, a

38 CHAPTER 3. ANALOG FRONT-ENDS

Figure 3.15: Frequency Spectrum for Anti-aliasing protection in the
AD7766

With a first-order anti-aliasing filter, the digital filter in the AD7766
provides a 38 dB attenuation in the frequency spectrum of (0.547 × ODR)

to (fmclk - 0.547 × ODR). ODR is the Output Data Rate.

settling time tsettling, from the filter reset must elapse before valid data is
output by the device. The timing diagram for this is shown in figure 3.16

Figure 3.16: Timing diagram for reset, synchronization, power-up, and
power-down of the AD7766-2

After the filter has settled, data is read based on the timing diagram in
figure 3.17

Digital to Analog Converter

For Digital-to-Analog Conversion, the AD5340 by Analog Devices was
used. It is a single resistor-string CMOS DAC of 12 bits.

The voltage at the Vre f is set to 5V by an ADR445 to provide the
reference voltage for the DAC. The input coding to the DAC is straight
binary, and the ideal output voltage is given by (3.4)

3.2. DATA ACQUISITION CARD 39

Figure 3.17: Serial timing diagram for reading using CS

Vout = Vre f ×
D
2N × Gain (3.4)

where D is the decimal equivalent of the binary code, which is loaded to
the DAC register 0 to 4095 (12 bit). N is the DAC resolution. Gain is the
output amplifier gain, set to 1 or 2.

The low power consumption of the AD5340 can be reduced even
further by setting PD low. The output stage is then internally switched
from the output of the amplifier, making it open-circuit.

The schematics of the complete Data Acquisition Card is found in
Appendix ??.

3.2.2 PCB realization

The DAQ PCB was drawn and routed in Cadstar PCD Design tool. It was
designed as a two-layer PCB to be produced at the ELAB at the University
of Oslo. The last version of the PCB was, however, produced outhouse.
SMD components were mounted on the top of the card. Connectors for
connection to the FPGA were mounted on the back for practical purposes.
Schematics of the circuit is found in Appendix B.3. PCB print is found in
Appendix B.4.

Power and Ground Distribution

Power is supplied to the DAQ from the Altera Terasic THDB-HTG
connected to the Cyclone III development kit. It offers 3.3V, 5V, and 12V
from separate pins. The HMSC connector also offer 3.3V, 5V and ground
signal from the pin connector. The power is regulated through voltage
references and regulators as described in section 3.2.1. The power tracks
were placed on the bottom layer of the PCB, to reduce interference to the
signal tracks in the top layer.

40 CHAPTER 3. ANALOG FRONT-ENDS

Ground is referred to as the reference level the components in the
system defines as 0V. It is therefore important to have the same ground
potential throughout the circuit. The return current takes the path of
the least inductance to common ground. To reduce any noise the return
current may affect on the surrounding components, it would have been
preferable to have a separate ground plane on the PCB. However, since
the DAQ was designed as a two-layered PCB, this was not possible. The
bottom layer was filled to be as fully a ground plane as the design allowed,
making the ground potential the same for all components.

Bypass Capacitors

See section 3.1.2

Chapter 4

MATLAB and Modelsim
Simulation

4.1 MATLAB Simulation

Before implementing the algorithm into the FPGA, it was simulated in
MATLAB. To be able to test on a realistic signal, an ECG generating pro-
gram by McSharry & Clifford (2003) was downloaded from physionet.org.
This program generates an ECG signal and allows for adjustments of para-
meters like noise, number of heart beats, and sampling rate to make a more
realistic signal to work with. The program is otherwise randomized, mak-
ing each simulation slightly different from the other. The program proved
to be a valuable tool to verify the Pan-Tompkins algorithm in J.Pan (1985).
The program can be found in Appendix C.1.

A function was made for each step in the Pan-Tompkins algorithm.
The code for the function are in Appendix C.2. The whole program was
run, giving the outputs seen in figures 4.1 - 4.8

41

42 CHAPTER 4. MATLAB AND MODELSIM SIMULATION

Figure 4.1: Output from MATLAB generated ECG signal
ECG signal generated from MATLAB code from McSharry et al. 2003.
The approximate number of heart beats was set to 10. Noise is 0.1mV

Other parameters were set to default.

Figure 4.2: Simulated ECG signal after Lowpass Filter
Output of the lowpass filter. Some noise reduction is achieved.

4.1. MATLAB SIMULATION 43

Figure 4.3: Simulated ECG signal after Highpass Filter
Output of the highpass filter. Further noise reduction is achieved, and DC

offset is removed.

Figure 4.4: Simulated ECG signal after Derivative
Output of differentiator. The signal provides the QRS-complex slope

information.

44 CHAPTER 4. MATLAB AND MODELSIM SIMULATION

Figure 4.5: Simulated ECG signal after Squaring Function
Output of the squaring process. A nonlinear amplification of the

derivative signal, emphasizing the higher frequencies. All data becomes
positive

Figure 4.6: Simulated ECG signal after Moving Window Integration
Result of the moving window integration. Provides waveform feature

information and the slope of the R wave.

4.1. MATLAB SIMULATION 45

Figure 4.7: Peak detection and calculated heart rate of generated ECG
signal

The top figure shows the peaks of the integrated signal. These are
acknowledged as the peaks of the QRS-complex. The bottom figure

shows the heart rate, calculated from the averaged RR interval from the
eight most-recent beats.

Figure 4.8: Simulated Heart Rate Variability from generated ECG signal
The heart rate variability calculated as the difference in heart rate from

one heart beat to the next.

46 CHAPTER 4. MATLAB AND MODELSIM SIMULATION

4.2 Modelsim Simulation

Each of the logic blocks were written in VHDL. Each block was tested in
Modelsim to verify that the output was consistent with the arithmetic for
each difference equation. For practical purposes, the size of the signals
tested were set to 4 or 8 bits. This was changed during implementation
to fit the requirements of the design. To generate results in Modelsim,
testbenches were created. The testbench simulates input data to the logic
block. The same testbench was used for all but one of the functions.
For the peak detection, a separate on was made for simulation of a more
realistic signal. The VHDL code for the testbenches are found in Appendix
D.1. For practical purposes not all the input stimuli is included in the code
file, since that will take up several pages in the appendix. The results from
the simulations is seen in figures 4.9 to 4.14

The remaining calculations after peak detection were not tested in
Modelsim. They involve floating-point arithmetic, and floating-point in
VHDL requires more resources in the FPGA. This is further explained in
section 5.1 on page 54.

Figure 4.9: Modelsim results for lowpass filter
x_in sends in a signal counting up. y_out outputs the result from the

difference equation for the lowpass filter

4.2. MODELSIM SIMULATION 47

Figure 4.10: Modelsim results for highpass filter
x_in sends in a signal counting up. y_out outputs the result from the

difference equation for the highpass filter

Figure 4.11: Modelsim results for derivation
x_in sends in a signal counting up. y_out outputs the result from the

difference equation for the derivation

48 CHAPTER 4. MATLAB AND MODELSIM SIMULATION

Figure 4.12: Modelsim results for squaring process
x_in sends in a signal counting up. y_out outputs the result from the

difference equation for the squaring process

Figure 4.13: Modelsim results for moving window integration
x_in sends in a signal counting up. y_out outputs the result from the

difference equation for the moving window integrator

4.2. MODELSIM SIMULATION 49

Figure 4.14: Modelsim results for peak detection
x_in sends in a signal constructed as a wave. Threshold 1 displays the
first threshold. Threhsold2 is the adaptive threshold. Peak_value is the
the peak value. Peak_distance is the number of samples between two

consecutive peaks.

50 CHAPTER 4. MATLAB AND MODELSIM SIMULATION

Chapter 5

Hardware Implementation

The microcomputer platform chosen for digital signal processing of the
ECG signal is an Field-Programmable Gate Array (FPGA). FPGAs are
reprogrammable chips comprised of a two-dimensional array of logical
cells and programmable routing resources, conceptually visualized in
figure 5.1. The logic cells can be programmed to perform a function,
and a programmable switch can be customized to provide connections
among the cells. (Chu 2008). The custom design is written in software,
synthesized, compiled, and then programmed on to the FPGA. The
reprogrammable aspect of the FPGA makes it a great choice when
developing new technology in a fast and safe manner. The FPGA holds
the same logic as an ASIC. A fully tested and verified FPGA can therefore
be transferred to an ASIC for large scale production purposes.

5.1 Altera Cyclone III FPGA

The FPGA used for the development of the development platform is
an Altera Cyclone III EP3C120F780C7 FPGA. This is placed on a DSP
Development Kit, Cyclone III Edition by Altera Corporations. At the
initiation of this thesis, this was the newest device family available. At
the time, the Cyclone III offered the lowest power consumption combined
with high functionality. Today, both Cyclone IV and Cyclone V device
families exceeds the Cyclone III on both properties. The development kit
also holds two HSMC connectors, used to connect the FPGA to the DAQ
and the UART interface for the Bluetooth module. The FPGA includes the
Nios II soft processor, for use in embedded systems.

The Cyclone III uses SRAM cells to store configuration data, which
is downloaded to the device each time it powers up (Cyclone III Device
Handbook 2011). The Cyclone III features are listed in table 5.1

51

52 CHAPTER 5. HARDWARE IMPLEMENTATION

Figure 5.1: Conceptual Structure of an FPGA Device
The logic cells are programmed to perform functions, while the

programmable switches provide customized connections between the
cells. (©Chu 2008)

Table 5.1: Cyclone III Device Features

Feature Quantity

Logic Elements 119 088
Memory (Kbits) 3888
Multipliers 288
PLLs 4
Global clock networks 20

5.1. ALTERA CYCLONE III FPGA 53

Logic Elements

Logic Elements (LE) are the smallest units of logic in the FPGA archi-
tecture. They are constructed as shown in figure 5.2. The LEs are pro-
grammed using the Quartus II software. The software automatically
chooses the appropriate mode for the LE, to optimize its resource usage.

Figure 5.2: Logic Elements for the Cyclone III FPGA
Logic Elements are the smallest units of logic in the FPGA. They provide
advanced features with efficient logic usage (©Cyclone III Device Handbook

2011)

Quartus ®II Design Software

The language used to program the FPGA in this thesis is VHDL. It arose
from the US government Very High Speed Integrated Circuits (VHSIC)
program to became a standardized language for describing the structure
and functions of ICs. The name VHDL is an acronym for VHSIC Hardware
Description Language (Ashenden 2008). For the design of the FPGA ECG
Module, the Quartus design software was used. This is a development
environment that offers many tools for the development of complex
FPGA systems. In the Quartus software, Altera offers ready-made and
parameterized Intellectual Property (IP) blocks called megafunctions. The
megafunctions help access to architecture-specific features within simple
and complex functions and are optimized for efficient logic synthesis in
the FPGA (Introduction to Megafunction IP Cores 2013).

54 CHAPTER 5. HARDWARE IMPLEMENTATION

For DSP system design, a DSP Builder interface tool between the
Quartus II software and MathWorks’ Simulink and MATLAB design
environments can be used. This tool makes it possible to do arithmetic
and design in either Simulink or MATLAB, and convert to the HDL
environment in Quartus II (Quartus II Handbook 2013). For simulation
and verification of the design, the Quartus has interface to Modelsim and
SignalTap II Logic Analyzer.

Floating-point Numbers in VHDL

Floating-point numbers are great for precision in a wide dynamic range.
They are, however, very resource demanding when used in hardware.
Compared to fixed-point math, they take up almost 3 times as much
hardware. In VHDL, the floating-point is defined by the IEEE-754
specifications (Bishop 2008).

The Quartus II megafunctions library offers ready-made floating-point
functions for the designer to customize. Every floating-point operation
has a significant cost of either hardware resource or timing. If timing is
critical, more resources are used. And if hardware resources is critical,
timing will suffer. Either way, a floating point operation uses more time
than a fixed-point operation. The output of the floating-point module will
consequently always add a delay to the signal propagation.

5.2 Nios II Processor and Bluetooth

The Nios II processor is a configurable soft IP core processor embedded in
the Altera FPGA. The Nios II processor enables the possibility of software
emulation of the design. As explained in Aamodt (2013) a Nios II was
added to the platform. It is mainly used for interfacing the Bluetooth
module for the transmitting of data to the mobile application through an
Universal Asynchronous Receiver/Transmitter (UART).

The Nios II processor library holds an RS-232 UART peripheral for
sending and receiving data over two external pins; RxD and TxD. These
were assigned to one of the two HSMC connectors on the Cyclone III
development kit. A Digilent PmodBT2 Bluetooth Interface was connected
to the TxD for transmission of data to the mobile application. This
specific interface was chosen due to its UART interface. The PmodBT2
is compatible for Bluetooth 2.1, 2.0, 1.2 and 1.1(Digilent 2004).

(Nios II Prosessor Reference Handbook 2011)

5.3. CLOCKS AND RESET 55

5.3 Clocks and Reset

In sequential logic circuits, clocks are important to "drive" the signal
through it. Sequential circuits are defined as those that maintain internal
state. The output produced depends on the history of inputs received
previously. They are known as synchronous or clocked circuits, and "they
use a rising or falling edge of a clock or a level of an enable signal, to
control advance of state or storage of data." (Ashenden 2008)

The Cyclone III Development Board has two crystal oscillators driving
reference clocks to the FPGA. Their frequencies are 125 MHz and 50 MHz.
The 50 MHz reference clock has lower power consumption than the 125
MHz one. In the ECG Module, the 50 MHz reference clock was chosen
mainly due to fit the chosen clock design by Aamodt (2013).

In a multiclock system, it is important that all the clocks are aligned
on either the rising or falling edge, depending on the trigger. Clocks that
are not aligned can introduce a skew effect in the circuit, which again can
produce a metastable state. "A metastable state is created when the flip-
flop’s timing requirements are violated. The resulting output of the flip-
flop is unknown, and can make the entire design nondeterministic" (Behne
2003).

5.3.1 Phase-Locked Loop

The reference clock of 50 MHz is much faster than is applicable for the
logic in the ECG Module. It is therefore necessary to reduce the frequency
to a manageable ones. The Quartus software has a megafunction for
phase-locked loops (PLL) for clock management. When deciding the
frequencies on the output of the PLL, the requirements for the whole
design was taken into consideration. The system propagates on the rising
edge of a clock. This means that all clocks need to align on a rising edge to
prevent skew.

From section 3.2 on page 34 the ADC has a maximum MCLK of 1.024
MHz. The PLL was set up with two output clocks; SCLK and MCLK.
SCLK is the clock driving the ADC, and MCLK is the sample frequency
for the ADC. The division factor in the PLL was set to 16 and 1600,
respectively. This gives

SCLK = 3.125 MHz

MCLK = 31.25 kHz

5.3.2 Clock Division

The sequential logic in the implementation of the Pan-Tompkins algorithm
in 5.5 require that a clock set their sampling frequency of 200 Hz.

56 CHAPTER 5. HARDWARE IMPLEMENTATION

However, as the PLL was not able to divide the reference clock to the
required frequency, a clock divider was implemented. The clock divider is
referenced as clock160div in the ECG Module. It works as a small counter.
It uses MCLK as the clock reference. The counter counts to the division
factor, here 156. At every half of this the output is set either high or low,
creating a clock output of 200 Hz. VHDL code for the clock160div is found
in Appendix D.2

5.3.3 Reset

An asynchronous reset was implemented in the design for use in the ADC
and the clock divider. It was assigned to a switch on the Cyclone III
development kit. The logic with reset implemented is programmed to
reset when the switch is set. The sequential logic of the ECG Module does
not need a reset, as the signal is meant to just clock through the different
logic. It is therefore not implemented in them.

The complete clock module for the ECG design is found in figure 5.3.

Figure 5.3: Clock system for the ECG design
Reference clock from the development kit is 50 MHz. It goes to the PLL,

where it is divided into SCLK and MCLK. The clock160div uses the
MCLK to divide to ECG_clk of 200 Hz. Reset is active high.

The clock signals were tested in the SignalTap II Logic Analyzer. It was
set to trigger on the ekg_clk, so the signals could be best observed. As
shown in figure 5.4, the clocks aligned on the triggered rising edge.

5.3. CLOCKS AND RESET 57

Figure 5.4: Clock signal alignment in the clock module
The clocks used in the clock module, have no skew on the rising edge

trigger

58 CHAPTER 5. HARDWARE IMPLEMENTATION

5.4 ADC

The ADC module was built as a Moore Finite State Machine (FSM). The
Moore FSM architecture means that "the outputs are solely a function of
the present state" (Zwolinski 2004). The state machine was programmed
according to the timing diagrams in figures 3.16 on page 38 and 3.17 on
page 39. Figure 5.5 shows the flow chart for the FSM for the AD7766, as
generated by Quartus. A drawing of the ADC block in the design is found
in figure 5.6

Figure 5.5: Flow Chart for FSM for AD7766
A flow chart of the states in the Finite State Machine as the signal is read

in the AD7766

Figure 5.6: Drawing of the ADC block in the ECG design
Signals and pin assignments for the ADC in the ECG design

The DAQ holds a dedicated ADC for the ECG Module. Pin connections
from the FPGA to the DAQ is found in Appendix ??

5.5 ECG Module

This section describes the design and functionality for each of the FPGA
logic blocks included in the ECG module Design VHDL files for the FPGA

5.5. ECG MODULE 59

ECG Module is found in Appendix D.2. Code generated by Quartus II
Megafunctions are not included.

Filters

5.5.1 Lowpass and Highpass Filters

The difference equations of the lowpass and the highpass filters as
described in section 2.4 on page 18 are recursive. The digital filters for
these was therefore designed as Infinite Impulse Response (IIR) filters.
The filter structure of the IIR filter is of Direct-Form I as shown in figure
5.7 The signal goes through a D Flip-Flop for delay. It is then multiplied
by the filter coefficient in a multiplier. The signal is then added in an
adder, before it is sent to the output. In the IIR filter, the output is delayed,
multiplied and added to the signal using feedback. The delay can be seen
at the output in figures 4.9 and 4.10 on page 47.

5.5.2 Derivation

The difference equation of the derivation as described in section 2.4 on
page 19 is not recursive. The digital filter for this operation was therefore
designed as a Finite Impulse Response (FIR) filter. The structure of the
FIR filter is Direct-Form I is shown in figure 5.8. The signal goes through
a D Flip-Flop for delay. It is then multiplied by the filter coefficient in
a multiplier, here referred to as h(M). The signals are then added in an
adder, before sent to the output.

5.5.3 Squared

The squaring of the signal was done by using a multiplier, where the input
signal was multiplied with itself. The output of the multiplier was sent to
the output of the squaring logic block.

5.5.4 Moving Window Integration

The structure of the moving window integration is a Direct-Form I FIR
filter where all filter coefficients are 1. The filter was designed like the
previously implemented derivation filter. The filter structure is described
in 5.5.2.

5.5.5 Peak Detection

The peak detection module is built up by two sequential processes. The
first process runs through the first 400 samples of the signal. It determines

60 CHAPTER 5. HARDWARE IMPLEMENTATION

Figure 5.7: Direct-Form I IIR Filter Structure
(Jones 2004b) The signal goes through a D Flip-Flop for delay. It is then
multiplied by the filter coefficient in a multiplier. The signals are then

added in an adder, before sent to the output. In the IIR filter, the output is
delayed, multiplied and added to the output signal using feedback.

Figure 5.8: Direct-Form I FIR Filter Structure
The signal goes through a D Flip-Flop for delay. It is then multiplied by
the filter coefficient in a multiplier, here referred to as h(M). The signal is

then added in an adder, before it is sent to the output.

5.5. ECG MODULE 61

the peak value of all the samples taken. From this peak value, an initial
threshold is set as

Threshold = peak
3

With a sampling frequency of 200 Hz, a maximum is found within
2 seconds of measuring. Depending of the heart rate of the subject
measured, at least two QRS-complexes will have been detected within this
time frame.

The next process finds peaks over the set threshold, and counts the
number of samples between each peak. A peak is identified as a peak
when the signal passes the threshold value on its descending slope. When
a peak is identified as a peak, a new threshold is set based on that peak.
The signal-to-noise ratio is high due to the previous processing of the
signal. A threshold of 1

3 of the peak value, is sufficient to ignore noise
peaks.

Any peak detected within 50 samples of the previously detected peak
is rejected. At a sampling frequency of 200 Hz, 50 samples equals 250 ms.
As described in 2.1.4 on page 8, the cardiac refractory period is 250 ms
long, and any peaks detected before that will be a false detection. The
output of this module is the distance between peaks detected.

5.5.6 Heart Rate I

The heart rate calculates the first part of the RR Interval from the RR
AVERAGE1 as described in section 2.4. It is structured as a moving
window integration with a length of 8 samples. The output of this module
is the integrated window. To get the accurate value of the averaged
value, calculations with floating point numbers are needed. Floating
point algorithms in FPGA requires extra resources, as described in section
5.1. Floating point calculations are therefore separated from the integer
calculations.

Floating-Number Operations

Floating-point HDL design is very complex and complicated. However,
Quartus II offers floating-point arithmetic as megafunctions. Such
functions were used to do the floating-point operations in the rest of the
ECG module.

5.5.7 Heart Rate II

To get the correct number for the average heart rate, the output of the
moving window is divided by its length of 8. The output is the heart rate

62 CHAPTER 5. HARDWARE IMPLEMENTATION

measured in samples. As we wish to represent it in beats per minute, a
new floating-point operation is done from equation (5.1)

HeartRate =
60s · fs

RRAVERAGE1
=

60s · 200Hz
RRAVERAGE1

=
12000

RRAVERAGE1
(5.1)

5.5.8 Heart Rate Variability

Heart rate variability is the variation in the time between heartbeats.
The difference between each of these outputs, will give the heart rate
variability measured over time. The signal is sent to a floating-point
subtraction function. To be able to subtract the signal from itself by
one delay, the signal is split into to routes. One route is directly to the
subtraction function, while the other goes through a box with output =
input, creating the necessary delay. The heart rate variability is calculated
from equation (5.2)

HRV = HeartRatei+1 − HeartRatei (5.2)

Chapter 6

iPad Application

As tablets are becoming more and more common in the work place, I opted
to code for the iPad as Aamodt (2013) chose the Android platform. This
way we covered the two largest suppliers of tablets in the market place.

Tablets provide an excellent screen real estate, and todays tablets have
fast GPU (Graphic Processing Units) making them ideal for displaying real
time graphs and measurements.

6.1 Application Overview

The iOS application receives data via TCP/IP. A game engine is used to
render the graph to the screen, as game engines supplies fast graphics.
Using this, up to four graphs can be displayed simultaneously. However,
the application can be extended to display more if so was required.

It displays both graphs and numerical data with very low latency due
to the TCP/IP protocol and high bandwidth of the wifi card in the device.

6.2 Programming Language and Frameworks

Several frameworks were tested in the development of the application.
The first choice was QuartzCore as it is part of the iOS SDK. However the
draw calls were to slow, causing the graph to flicker and lag.

Open GL was then considered as it supplies fast rendering of graphics.
However, the learning curve was too steep and out of the scope of this
thesis.

For high FPS (Frames per second), the Coco2d game engine was chosen
as it provides an easy to understand API and a good frame rate.

63

64 CHAPTER 6. IPAD APPLICATION

6.3 Communications Protocol

As the iPad does not support Bluetooth 2.0 at the time of writing, TCP/IP
was chosen for the communications protocol.

The TCP/IP protocol has the advantage of having multiple devices
read from the same data source, only limited by the number of open
sockets the data provider (or server) can support. It is also considerably
faster and can handle a higher throughput than Bluetooth. TCP/IP also
has guaranteed delivery, and scales incredibly well.

A TCP/IP server was written in Python to transmit simulated biomed-
ical signal as proof of concept. The code for the server is found in Ap-
pendix ??

6.4 Designing the Application

The application design was broken down into three main challenges

Communication

The iOS SDK features a streamreader/streamwriter, which was suitable
for the application as they support callbacks. This makes it possible to up-
date the graphics in realtime, as callbacks can be handled asynchronously.

Settings

The host and port will most likely change depending on the network of
the device is currently connected to. It was therefore necessary to be able
to configure these as needed without recompiling the source. The iOS
SDK comes with support for user settings, and a wrapper was written
around this to simply set defaults and give the user access to change the
port and host without the application configuration. The port and host
configuration in the iPad settings menu is seen in figure ??

6.4. DESIGNING THE APPLICATION 65

Figure 6.1: Port and host configuration setup in the iPad settings menu

66 CHAPTER 6. IPAD APPLICATION

The Graph Renderer

Cocos2d game engine was used to render the graphs. A couple of simple
api calls will draw lines on the screen, not too different from the way
QuartzCore handles line drawing. However, the Cocos2d provides a lot
higher FPS rate. The lines were rendered by supplying data to an array
with a visible section and a buffer section. The visible section would be
read, drawn and the updated with the data in the current buffer.

Figure 6.2 shows a screenshot of the running application.

Figure 6.2: Screenshot of running iPad application

6.5. FUTURE PROSPECTS 67

6.5 Future Prospects

With this technical stack, the possibilities of various applications are
endless. This setup supports data distribution to multiple (authorized
users in real time. An example application of this would be a hospital
environment, where instant monitoring of patiens values could be
achieved without having to move between the patients. Alerts could be
triggered based on various rule sets within the application.

Using this setup, patients could even be monitored remotely. As a test,
this application was run against a server in London, with very low latency.

The python server used in this thesis could be expanded to include
Bluetooth communication through protocol packages. With such an
expansion, the server can distribute the actual signal sent from the FPGA
through the Bluetooth UART set up by Aamodt (2013. Other wireless
communication protocols could be implemented in the FPGA, making it
possible to bypass Bluetooth and communicate direclty via TCP/IP.

68 CHAPTER 6. IPAD APPLICATION

Chapter 7

Verification of the ECG Module

This chapter describes the measurements done to verify the ECG Module
described in section 5.5 on page 58

7.1 Measurements

7.1.1 Setup

The measurements were done on the author of this thesis. Ag/AgCl
electrodes were placed on LA and RA and RL, as illustrated in figure 7.1

The electrodes were connected to the ECG PCB with a 5-Lead ECG
cable. The ECG PCB was connected to the DAQ, and the DAQ to the
Cyclone III development board, as shown i figure 7.3 The output of the
ECG PCB was connected to an oscilloscope for reference.

69

70 CHAPTER 7. VERIFICATION OF THE ECG MODULE

(a) LA and RA electrode placement (b) RL electrode placement

Figure 7.1: Electrode Placement for testing the ECG FPGA Module
(a) Electrodes are placed on the left (LA) and right (RA) side on the chest
for measuring Lead I. (b) An electrode is placed on the right leg (RL) for

grounding

Figure 7.2: System Setup for ECG Measurements
Setup for measuring ECG. The ECG PCP is connected to the DAQ, and

the DAQ is connected to the Cyclone III development board

7.1. MEASUREMENTS 71

7.1.2 Results

The output signal from the ECG PCB, has some interference. Figure 3.1
shows the ECG wave with interference.

Figure 7.3: ECG Wave from the output of the ECG PCB
The ECG wave from the output of the ECG PCB. There is some 50 Hz

noise on the signal

From the Fast Fourier Transform (FFT) in figure 7.4, there is a peak at
the 50 Hz.

When the test subject touched a ground pin on the DAQ, the 50
Hz interference was attenuated with ≈ 10 dB. The FFT when properly
grounded is shown in figure 7.5

72 CHAPTER 7. VERIFICATION OF THE ECG MODULE

Figure 7.4: FFT of the output from ECG PCB
A spike at 50 Hz shows the interference on the signal

7.1. MEASUREMENTS 73

Figure 7.5: FFT of the output of the signal when test subject touched a
ground pin on the DAQ

When test subject was properly grounded, the 50 Hz interference
attenuated with 10 dB

74 CHAPTER 7. VERIFICATION OF THE ECG MODULE

The following figures show the signal outputs of the different modules
in the FPGA

Figure 7.6: ECG wave at the ADC output
The ECG signal at the output of the ADC. The 50 Hz interference is

noticable.

7.1. MEASUREMENTS 75

Figure 7.7: Output of the lowpass filter
The lowpass filter has a cutoff frequency of 11 Hz. The 50 Hz interference

is removed. The signal is delayed 9 clock cycles

Figure 7.8: Output of the highpass filter
The highpass filter has a cutoff frequency of 5 Hz. The signal is delayed

17 clock cycles

76 CHAPTER 7. VERIFICATION OF THE ECG MODULE

Figure 7.9: Output of differentiator
The output of the differentiator provides slope information for the

QRS-complex

Figure 7.10: Output of squaring process
All data points are positive. The squaring does a nonlinear amplification

of the derivative emphasizing the higher frequencies

7.1. MEASUREMENTS 77

Figure 7.11: Output of the moving integration
The moving-window integration obtain information of the waveform and

the R wave

Figure 7.12: Output of the peak detection
Peak detection output is the number of samples between each detected

peak

78 CHAPTER 7. VERIFICATION OF THE ECG MODULE

Figure 7.13: Float-point calculations in FPGA
The heartrate output is the integration filter for RR interval calculations.
The heartrate goes through a floating-point converter, and then into the
floating-point divider. Each floating-point operation is set with a latency

of 6 clock cycles. The fp_div:inst17 is the floating-point average of the
heartrate output, delayed 12 clock cycles. The fp_div:inst20 is the

calculation of the actual heart rate. Because it is floating-point
calculations, the output has a latency of 6 clock cycles.

7.2. SUMMARY 79

7.2 Summary

The figures 7.6 to 7.13 show the output of the modules used from the Pan-
Tompkins algorithm to help calculate the HRV. Compared to the results in
figure 2.14 on page 22 by J.Pan (1985), and the MATLAB simulation results
in Appendix ??, the outputs are as expected.

There is some 50 Hz interference on the original signal. This was
attenuated to an acceptable dB when touching a grounding pin on the
DAQ. The notch filter in the ECG circuit takes care of most of the 50 Hz
interference. Insufficient grounding of the test subject makes transient
current go through the body, and in effect making an antenna. By adding
a ground plane to the ECG PCB, this problem will most likely disappear.

Each of the modules contribute to a timing latency for the signal. Based
on reading the diagrams from the output figures, the total delay from the
QRS peak in the original ECG signal to the heart rate output from the
floating-point division is ≈ 80 samples. With the sampling frequency of
200 Hz, this equals 395ms.

80 CHAPTER 7. VERIFICATION OF THE ECG MODULE

Chapter 8

Conclusion and Future Work

8.1 Conclusion of the Present Work

The work of this master thesis describes the design, development and
analysis of an ECG measuring unit using the FPGA technology. According
to the accomplishments and contributions, the following conclusions can
be drawn:

• An analogue ECG circuit was developed and verified.

• A Data Acquisition Card developed, and verified

• An FPGA Module for ECG measurements was made, and verified.
The ECG Module runs through every step of the Pan-Tompkins
Algorithm for QRS peak detection. After the peaks are detected,
Heartrate and Heartrate variability is calculated. The module is
designed as such that the signal can be viewed and analyzed at any
point during the digital processing. It is not limited to only the final
output.

• The ECG FPGA Module is ready for implementation in the FPGA
Development Platform Prototype. The implementation is done by
connecting the output of the module to the Nios II PIO ports.

• An iPad application was created. As of today, it only works as
a proof of concept. The application itself works, but only with
generated data. The appropriate wireless communication protocol
is missing.

8.2 Future Work

Based on the experience and results of this thesis, improvements and
changes can be done.

81

82 CHAPTER 8. CONCLUSION AND FUTURE WORK

• To remove all the 50Hz noise from the ECG signal, the circuit need
better grounding.

• If the use of the ECG circuit is to be used with instruments not run on
batteries, an isolation barrier should be implemented for the safety
of the patient.

• A different wireless communication protocol needs to be added to
the FPGA, so that the iPad application can receive real data.

Bibliography

Aamodt, Lars Jorgen Johnsen (2013). ‘FPGA Based Development Platform
for Biomedical Measurements’. Master Thesis. University of Oslo.

Anna Gruetzmann, Stefan Hansen et al. (2007). ‘Novel dry electrodes for
ECG monitoring’. In: Physiol. Meas. 28, pp. 1375–1390.

Ashenden, Peter J. (2008). The Designer’s Guide to VHDL. Third Edition.
Morgan Kaufmann Publishers, imprint of Elsevier.

B.S. Lipman, E. Massie et al. (1972). Clinical Scalar Electrocardiography.
Chicago: Yearbook Medical Publishers, Inc.

Behne, Tim (2003). FPGA Clock Schemes. URL: http://www.embedded.com/
design/configurable-systems/4024526/FPGA-Clock-Schemes.

Bekkeng, Tore Andre (2009). ‘Prototype Development of a Multi-Needle
Langmuir Probe System’. Master Thesis. University of Oslo.

Bishop, David (2008). Floating Point Package User’s Guide. URL: http://www.
vhdl.org/fphdl/Float_ug.pdf.

Bobbie, Patrick O. et al. (2004). ‘Electrocardiogram (EKG) Data Acquisition
and Wireless Transmission’. In: pp. 2665–2672.

Carlson, Shawn (2000). Home is where the ECG is. URL: http : / / www .
scientificamerican.com/article.cfm?id=home-is-where-the-ecg-is.

Christos Pavlatos Alexandros Dimopoulos, G. Manis et al. Hardware
Implementation of Pan and Tompkins QRS Detection Algorithm. URL: http:
//mule.cslab.ece.ntua.gr/docs/c8.pdf.

Chu, Pong P. (2008). FPGA Prototyping by VHDL Examples [Xilinx Spartan-3
Version]. John Wiley and Sons, Inc.

Cyclone III Device Handbook (2011). Altera Corporation.
Digilent (2004). PmodBT2 - Bluetooth Interface. URL: http://www.digilentinc.

com/Products/Detail.cfm?Prod=PMOD-BT2.
Grødal, Agnar (1997). Elektromagnetisk Kompabilitet for KonstruktÃ¸rer. Tapir

Forlag.
Introduction to Megafunction IP Cores (2013). URL: http://www.altera.com/

literature/ug/ug_intro_to_megafunctions.pdf.
J.Pan, W. J. Tompkins (1985). ‘A Real-Time QRS Detection Algorithm’. In:

IEEE Trans. Biomed. Eng. 32, pp. 230–236.
John G. Webster, Editor (2010). Medical Instrumentation [Application and

Design]. Fourth Edition. John Wiley and Sons, Inc.

83

http://www.embedded.com/design/configurable-systems/4024526/FPGA-Clock-Schemes
http://www.embedded.com/design/configurable-systems/4024526/FPGA-Clock-Schemes
http://www.vhdl.org/fphdl/Float_ug.pdf
http://www.vhdl.org/fphdl/Float_ug.pdf
http://www.scientificamerican.com/article.cfm?id=home-is-where-the-ecg-is
http://www.scientificamerican.com/article.cfm?id=home-is-where-the-ecg-is
http://mule.cslab.ece.ntua.gr/docs/c8.pdf
http://mule.cslab.ece.ntua.gr/docs/c8.pdf
http://www.digilentinc.com/Products/Detail.cfm?Prod=PMOD-BT2
http://www.digilentinc.com/Products/Detail.cfm?Prod=PMOD-BT2
http://www.altera.com/literature/ug/ug_intro_to_megafunctions.pdf
http://www.altera.com/literature/ug/ug_intro_to_megafunctions.pdf

84 BIBLIOGRAPHY

Jones, Douglas L. (2004a). FIR Filter Structures. URL: http://cnx.org/content/
m11918/latest/.

— (2004b). IIR Filter Structures. URL: http : / / cnx . org / content /m11919 /
latest/.

Kreuger, R.C.B (2006). URL: http://en.ecgpedia.org/wiki/Basics.
McSharry, Patrick et al. (2003). ‘ecgsyn.m’. In: IEEE Transactions On

Biomedical Engineering 50(3), pp. 289–294.
Nios II Prosessor Reference Handbook (2011). Version Design Suite Version

11.0. Altera Corporation.
Olav Sand Oystein V. Sjaastad, Egil Haug et al. (2009). Menneskekroppen

[Fysiologi og Anatomi]. Second Edition. Gyldendal Akademisk.
Poole, Ian (2013). Op amp notch filter circuit. URL: http : / / www . radio -

electronics.com/info/circuits/opamp_notch_filter/opamp_notch_filter.
php.

Quartus II Handbook (2013). Version 13. Altera Corporation.
Rishi (2012a). Action Potentials in Cardiac myocytes. URL: https : / / www .

khanacademy.org/science/healthcare- and-medicine/heart- depolarization/
v/action-potentials-in-cardiac-myocytes.

— (2012b). Action Potentials in Pacemaker Cells. URL: https : / / www .
khanacademy.org/science/healthcare- and-medicine/heart- depolarization/
v/action-potentials-in-pacemaker-cells.

Shukla, Ashish (2008). ‘Hardware Implementation of Real Time ECG
Analysis Algorithms’. Master Thesis. University of Hawaii.

Thede, Les (2004). Practical Analog and Digital Filter Design. Artech House,
Inc.

Uysal, Faruk (2011). QRS Complex Detection and ECG Signal Processing. URL:
http : / /matlabz . blogspot . no / 2011 / 04 / contents - cancellation - dc - drift -
and.html.

Vipinl (2011). VHDL for 4-tap-fir-filter. URL: http ://vhdlguru.blogspot .no/
2011/06/vhdl-code-for-4-tap-fir-filter.html.

Wikipedia (2001). URL: http : // en .wikipedia . org/wiki /Nyquist - Shannon_
sampling_theorem.

— (2004a). URL: https : / / en . wikipedia . org / wiki / Electrical _ conduction_
system_of_the_heart.

— (2004b). URL: http://en.wikipedia.org.
— (2007). URL: http://en.wikipedia.org/wiki/U_wave.
Zwolinski, Mark (2004). Digital System Design with VHDL. Second Edition.

Pearson Education Limited.

http://cnx.org/content/m11918/latest/
http://cnx.org/content/m11918/latest/
http://cnx.org/content/m11919/latest/
http://cnx.org/content/m11919/latest/
http://en.ecgpedia.org/wiki/Basics
http://www.radio-electronics.com/info/circuits/opamp_notch_filter/opamp_notch_filter.php
http://www.radio-electronics.com/info/circuits/opamp_notch_filter/opamp_notch_filter.php
http://www.radio-electronics.com/info/circuits/opamp_notch_filter/opamp_notch_filter.php
https://www.khanacademy.org/science/healthcare-and-medicine/heart-depolarization/v/action-potentials-in-cardiac-myocytes
https://www.khanacademy.org/science/healthcare-and-medicine/heart-depolarization/v/action-potentials-in-cardiac-myocytes
https://www.khanacademy.org/science/healthcare-and-medicine/heart-depolarization/v/action-potentials-in-cardiac-myocytes
https://www.khanacademy.org/science/healthcare-and-medicine/heart-depolarization/v/action-potentials-in-pacemaker-cells
https://www.khanacademy.org/science/healthcare-and-medicine/heart-depolarization/v/action-potentials-in-pacemaker-cells
https://www.khanacademy.org/science/healthcare-and-medicine/heart-depolarization/v/action-potentials-in-pacemaker-cells
http://matlabz.blogspot.no/2011/04/contents-cancellation-dc-drift-and.html
http://matlabz.blogspot.no/2011/04/contents-cancellation-dc-drift-and.html
http://vhdlguru.blogspot.no/2011/06/vhdl-code-for-4-tap-fir-filter.html
http://vhdlguru.blogspot.no/2011/06/vhdl-code-for-4-tap-fir-filter.html
http://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem
http://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem
https://en.wikipedia.org/wiki/Electrical_conduction_system_of_the_heart
https://en.wikipedia.org/wiki/Electrical_conduction_system_of_the_heart
http://en.wikipedia.org
http://en.wikipedia.org/wiki/U_wave

Appendix A

Physical Constants

Table A.1: Physical Constants

R = 8.31 J
mol·K Gas Constant

F = 96500C·valence
mole Faraday’s Constant

85

86 APPENDIX A. PHYSICAL CONSTANTS

Appendix B

Schematics and PCB Prints

B.1 Schematic drawing of the ECG Front-End

87

88 APPENDIX B. SCHEMATICS AND PCB PRINTS

Fi
gu

re
B.

1:
Po

w
er

D
is

tr
ib

ut
io

n
fo

r
EC

G
C

ir
cu

it

B.1. SCHEMATIC DRAWING OF THE ECG FRONT-END 89

Fi
gu

re
B.

2:
EC

G
C

ir
cu

it

90 APPENDIX B. SCHEMATICS AND PCB PRINTS

B.2 PCB realization of the ECG Front-End

B.2. PCB REALIZATION OF THE ECG FRONT-END 91

Fi
gu

re
B.

3:
PC

B
EC

G
Fr

on
t-

En
d

92 APPENDIX B. SCHEMATICS AND PCB PRINTS

B.3 Schematic drawings of the Data Acquisition
Card circuit

B.3. SCHEMATIC DRAWINGS OF THE DATA ACQUISITION CARD CIRCUIT93

Fi
gu

re
B.

4:
O

ve
rv

ie
w

Sc
he

m
at

ic
of

D
A

Q

94 APPENDIX B. SCHEMATICS AND PCB PRINTS

Fi
gu

re
B.

5:
Po

w
er

di
st

ri
bu

ti
on

on
D

A
Q

B.3. SCHEMATIC DRAWINGS OF THE DATA ACQUISITION CARD CIRCUIT95

Fi
gu

re
B.

6:
C

ir
cu

it
fo

r
A

D
C

fo
r

EC
G

Si
gn

al

96 APPENDIX B. SCHEMATICS AND PCB PRINTS

Fi
gu

re
B.

7:
C

ir
cu

it
fo

r
A

D
C

fo
r

ED
A

Si
gn

al
1

B.3. SCHEMATIC DRAWINGS OF THE DATA ACQUISITION CARD CIRCUIT97

Fi
gu

re
B.

8:
C

ir
cu

it
fo

r
A

D
C

fo
r

ED
A

Si
gn

al
2

98 APPENDIX B. SCHEMATICS AND PCB PRINTS

Fi
gu

re
B.

9:
C

ir
cu

it
fo

r
A

D
C

fo
r

ED
A

Si
gn

al
3

B.3. SCHEMATIC DRAWINGS OF THE DATA ACQUISITION CARD CIRCUIT99

Fi
gu

re
B.

10
:C

ir
cu

it
fo

r
D

A
C

fo
r

ED
A

Si
gn

al

100 APPENDIX B. SCHEMATICS AND PCB PRINTS

B.4 PCB Prints of the Data Acquisition Card

B.4. PCB PRINTS OF THE DATA ACQUISITION CARD 101

Fi
gu

re
B.

11
:D

A
Q

PC
B

To
p

La
ye

r

102 APPENDIX B. SCHEMATICS AND PCB PRINTS

Fi
gu

re
B.

12
:D

A
Q

PC
B

Bo
tt

om
La

ye
r

B.4. PCB PRINTS OF THE DATA ACQUISITION CARD 103

Fi
gu

re
B.

13
:D

A
Q

PC
B

104 APPENDIX B. SCHEMATICS AND PCB PRINTS

Appendix C

Matlab Code

C.1 Program for generating ECG signal

Listing: MATLAB script for generating ECG signal
function [s , ipeaks] = ecgsyn (sfecg ,M, Anoise , hrmean , hrstd , l f h f r a t i o , s f i n t , t i , ai , b i)
% [s , i p e a k s] = ecgsyn (s f e c g ,N, Anoise , hrmean , h r s t d , l f h f r a t i o , s f i n t , t i , a i , b i)
% Produce s s y n t h e t i c ECG with t h e f o l l o w i n g o u t p u t s :
% s : ECG (mV)
% i p e a k s : l a b e l s f o r PQRST p e a k s : P (1) , Q(2) , R (3) , S (4) , T (5)
% A z e r o l a b l e l i s ou tp ut o t h e r w i s e . . . use R= f i n d (i p e a k s ==3) ;
% t o f i n d t h e R p e a k s s (R) , e t c .
%
% O p e r a t i o n u s e s t h e f o l l o w i n g p a r a m e t e r s (d e f a u l t v a l u e s in [] s) :
% s f e c g : ECG sampl ing f r e q u e n c y [256 Hertz]
% M: a p p r o x i m a t e number o f h e a r t b e a t s [2 5 6]
% Anoise : A d d i t i v e u n i f o r m l y d i s t r i b u t e d measurement n o i s e [0 mV]
% hrmean : Mean h e a r t r a t e [60 b e a t s p e r minute]
% h r s t d : S tandard d e v i a t i o n o f h e a r t r a t e [1 b e a t p e r minute]
% l f h f r a t i o : LF /HF r a t i o [0 . 5]
% s f i n t : I n t e r n a l sampl ing f r e q u e n c y [256 Hertz]
% Order o f ex t r ema : [P Q R S T]
% t i = a n g l e s o f ex t r ema [−70 −15 0 15 100] d e g r e e s
% a i = z−p o s i t i o n o f ex t r ema [1 . 2 −5 30 −7.5 0 . 7 5]
% b i = Gauss ian width o f p e a k s [0 . 2 5 0 . 1 0 . 1 0 . 1 0 . 4]
% C o p y r i g h t (c) 2003 by P a t r i c k McSharry & Gar i C l i f f o r d , A l l R i g h t s R e s e r v e d
% See IEEE T r a n s a c t i o n s On B i o m e d i c a l Eng inee r ing , 5 0 (3) , 289−294 , March 2003 .
% C o n t a c t P . McSharry (p a t r i c k @ m c s h a r r y . n e t) o r G. C l i f f o r d (gar i@mit . edu)

% Thi s program i s f r e e s o f t w a r e ; you can r e d i s t r i b u t e i t and / o r modi fy
% i t under t h e t e rms o f t h e GNU G e n e r a l P u b l i c L i c e n s e a s p u b l i s h e d by
% t h e F r e e S o f t w a r e Foundat i on ; e i t h e r v e r s i o n 2 o f t h e L i c e n s e , o r
% (a t your o p t i o n) any l a t e r v e r s i o n .
%
% Thi s program i s d i s t r i b u t e d in t h e hope t h a t i t w i l l be u s e f u l ,
% but WITHOUT ANY WARRANTY; w i t h o u t even t h e i m p l i e d warranty o f
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See t h e
% GNU G e n e r a l P u b l i c L i c e n s e f o r more d e t a i l s .
%
% You s h o u l d have r e c e i v e d a copy o f t h e GNU G e n e r a l P u b l i c L i c e n s e
% a l o n g with t h i s program ; i f not , w r i t e t o t h e F r e e S o f t w a r e
% Foundat ion , I n c . , 59 Temple P la c e , S u i t e 330 , Boston , MA 02111−1307 USA
%
% ecgsyn .m and i t s d e p e n d e n t s a r e f r e e l y a v a i l b l e from P h y s i o n e t −
% h t t p : / / www. p h y s i o n e t . o rg / − p l e a s e r e p o r t any bugs t o t h e a u t h o r s a b o v e .

c l c ;

105

106 APPENDIX C. MATLAB CODE

c l e a r a l l
c lose a l l

% s e t p a r a m e t e r d e f a u l t v a l u e s
i f nargin < 1

s f e c g = 2 5 6 ;
end
i f nargin < 2

M = 1 0 ;%2 5 6 ;
end
i f nargin < 3

Anoise = 0 ;
end
i f nargin < 4

hrmean = 6 0 ;
end
i f nargin < 5

hrstd = 1 ;
end
i f nargin < 6

l f h f r a t i o = 0 . 5 ;
end
i f nargin < 7

s f i n t = 5 1 2 ;
end
i f nargin <8

% P Q R S T
t i = [−70 −15 0 15 1 0 0] ;

end
% c o n v e r t t o r a d i a n s
t i = t i * pi /180;
i f nargin <9 % z p o s i t i o n o f a t t r a c t o r

% P Q R S T
a i = [1 . 2 −5 30 −7.5 0 . 7 5] ;

end
i f nargin <10 % Gauss ian width o f e a c h a t t r a c t o r

% P Q R S T
bi = [0 . 2 5 0 . 1 0 . 1 0 . 1 0 . 4] ;

end

% a d j u s t ex t r ema p a r a m e t e r s f o r mean h e a r t r a t e
h r f a c t = sqr t (hrmean / 6 0) ;
h r f a c t 2 = sqr t (h r f a c t) ;
b i = h r f a c t * b i ;
t i = [h r f a c t 2 h r f a c t 1 h r f a c t h r f a c t 2] . * t i ;

% c h e c k t h a t s f i n t i s an i n t e g e r m u l t i p l e o f s f e c g
q = round (s f i n t /s f e c g) ;
qd = s f i n t /s f e c g ;
i f q ~= qd

e r r o r ([’ I n t e r n a l sampling frequency (s f i n t) must be an i n t e g e r mult ip le ’ . . .
’ of the ECG sampling frequency (s f e c g) . Your current cho ices are : ’ . . .
’ s f e c g = ’ i n t 2 s t r (s f e c g) ’ and s f i n t = ’ i n t 2 s t r (s f i n t) ’ . ’]) ;
end

% d e f i n e f r e q u e n c y p a r a m e t e r s f o r r r p r o c e s s
% f l o and f h i c o r r e s p o n d t o t h e Mayer waves and r e s p i r a t o r y r a t e r e s p e c t i v e l y
f l o = 0 . 1 ;
f h i = 0 . 2 5 ;
f l o s t d = 0 . 0 1 ;
f h i s t d = 0 . 0 1 ;

f i d = 1 ;
f p r i n t f (f id , ’ECG sampled at %d Hz\n ’ , s f e c g) ;
f p r i n t f (f id , ’ Approximate number of hear t beats : %d\n ’ ,M) ;
f p r i n t f (f id , ’ Measurement noise amplitude : %d \n ’ , Anoise) ;
f p r i n t f (f id , ’ Heart r a t e mean : %d bpm\n ’ , hrmean) ;

C.1. PROGRAM FOR GENERATING ECG SIGNAL 107

f p r i n t f (f id , ’ Heart r a t e std : %d bpm\n ’ , hrstd) ;
f p r i n t f (f id , ’LF/HF r a t i o : %g\n ’ , l f h f r a t i o) ;
f p r i n t f (f id , ’ I n t e r n a l sampling frequency : %g\n ’ , s f i n t) ;
f p r i n t f (f id , ’ P Q R S T\n ’) ;
f p r i n t f (f id , ’ t i = [%g %g %g %g %g] radians\n ’ , t i (1) , t i (2) , t i (3) , t i (4) , t i (5)) ;
f p r i n t f (f id , ’ a i = [%g %g %g %g %g]\n ’ , a i (1) , a i (2) , a i (3) , a i (4) , a i (5)) ;
f p r i n t f (f id , ’ b i = [%g %g %g %g %g]\n ’ , b i (1) , b i (2) , b i (3) , b i (4) , b i (5)) ;

% c a l c u l a t e t ime s c a l e s f o r r r and t o t a l o u t put
sampfreqrr = 1 ;
t r r = 1/sampfreqrr ;
t s t e p = 1/ s f e c g ;
rrmean = (60/hrmean) ;
Nrr = 2^(c e i l (log2 (M* rrmean/ t r r))) ;

% compute r r p r o c e s s
r r 0 = r r p r o c e s s (f l o , fh i , f l o s t d , f h i s t d , l f h f r a t i o , hrmean , hrstd , sampfreqrr , Nrr) ;

% upsample r r t ime s e r i e s from 1 Hz t o s f i n t Hz
r r = i n t e r p (rr0 , s f i n t) ;

% make t h e rrn t ime s e r i e s
dt = 1/ s f i n t ;
rrn = zeros (length (r r) , 1) ;
tecg =0;
i = 1 ;
while i <= length (r r)

tecg = tecg+ r r (i) ;
ip = round (tecg/dt) ;
rrn (i : ip) = r r (i) ;
i = ip +1;

end
Nt = ip ;

% i n t e g r a t e sys t em us ing f o u r t h o r d e r Runge−Kutta
f p r i n t f (f id , ’ I n t e g r a t i n g dynamical system\n ’) ;
x0 = [1 , 0 , 0 . 0 4] ;
Tspan = [0 : dt : (Nt−1)* dt] ;
[T , X0] = ode45 (’ derivsecgsyn ’ , Tspan , x0 , [] , rrn , s f i n t , t i , ai , b i) ;

% downsample t o r e q u i r e d s f e c g
X = X0 (1 : q : end , :) ;

% e x t r a c t R−p e a k s t i m e s
ipeaks = detectpeaks (X , t i , s f e c g) ;

% S c a l e s i g n a l t o l i e be tween −0.4 and 1 . 2 mV
z = X (: , 3) ;
zmin = min (z) ;
zmax = max (z) ;
zrange = zmax − zmin ;
z = (z − zmin) * (1 . 6) / zrange −0.4;

% i n c l u d e a d d i t i v e u n i f o r m l y d i s t r i b u t e d measurement n o i s e
e ta = 2* rand (length (z) ,1) −1 ;
s = z + Anoise * e ta ;

% p l o t (s)

%%%
% MY CODE:
%
qrs = s ;
f s = 2 0 0 ; %sampl ing r a t e

M = length (qrs) ; % S i g n a l l e n g t h

108 APPENDIX C. MATLAB CODE

t = [0 :M−1]/ f s ; %time i n d e x
f igure (1)
plot (t , qrs)

% p l o t (q r s)
xlabel (’ seconds ’) ; ylabel (’mV’) ; t i t l e (’ Input ECG Signa l ’)

lp_qrs = lowpass (qrs) ;
hp_qrs = highpass (lp_qrs) ;
d_qrs = derive (hp_qrs) ;
s_qrs = squarer (d_qrs) ;
mi_qrs = mwi(s_qrs) ;
r_peaks = threshold (mi_qrs) ;
r a t e = hrv (r_peaks) ;

%END OF MY CODE
%%%
function r r = r r p r o c e s s (f l o , fh i , f l o s t d , f h i s t d , l f h f r a t i o , hrmean , hrstd , s f r r , n)
w1 = 2* pi * f l o ;
w2 = 2* pi * f h i ;
c1 = 2* pi * f l o s t d ;
c2 = 2* pi * f h i s t d ;
s i g2 = 1 ;
s i g1 = l f h f r a t i o ;
rrmean = 60/hrmean ;
r r s t d = 60* hrstd /(hrmean * hrmean) ;

df = s f r r /n ;
w = [0 : n−1] ’*2* pi * df ;
dw1 = w−w1 ;
dw2 = w−w2 ;

Hw1 = s i g 1 * exp (−0 .5* (dw1/c1) . ^ 2) / sqr t (2 * pi * c1 ^ 2) ;
Hw2 = s i g 2 * exp (−0 .5* (dw2/c2) . ^ 2) / sqr t (2 * pi * c2 ^ 2) ;
Hw = Hw1 + Hw2;
Hw0 = [Hw(1 : n / 2) ; Hw(n / 2 : −1 : 1)] ;
Sw = (s f r r /2)* sqr t (Hw0) ;

ph0 = 2* pi * rand (n/2−1 ,1);
ph = [0 ; ph0 ; 0 ; −flipud (ph0)] ;
SwC = Sw . * exp (j *ph) ;
x = (1/n) * r e a l (i f f t (SwC)) ;

xstd = std (x) ;
r a t i o = r r s t d /xstd ;
r r = rrmean + x * r a t i o ;

%%%
function ind = detectpeaks (X , thetap , s f e c g)
N = length (X) ;
i rpeaks = zeros (N, 1) ;

t h e t a = atan2 (X (: , 2) , X (: , 1)) ;
ind0 = zeros (N, 1) ;
for i =1 :N−1

a = ((t h e t a (i) <= thetap) & (thetap <= t h e t a (i + 1))) ;
j = find (a ==1) ;
i f ~isempty (j)

d1 = thetap (j) − t h e t a (i) ;
d2 = t h e t a (i +1) − thetap (j) ;
i f d1 < d2

ind0 (i) = j ;
e lse

ind0 (i +1) = j ;
end

end
end

C.1. PROGRAM FOR GENERATING ECG SIGNAL 109

d = c e i l (s f e c g / 6 4) ;
d = max ([2 d]) ; %UTSKRIFT
ind = zeros (N, 1) ;
z = X (: , 3) ;
zmin = min (z) ;
zmax = max (z) ;
zext = [zmin zmax zmin zmax zmin] ;
s e x t = [1 −1 1 −1 1] ;
for i =1 :5

c l e a r ind1 Z k vmax imax i e x t ;
ind1 = find (ind0== i) ;
n = length (ind1) ;
Z = ones (n , 2 * d+1)* zext (i) * s e x t (i) ;
for j=−d : d

k = find ((1 <= ind1+ j) & (ind1+ j <= N)) ;
Z(k , d+ j +1) = z (ind1 (k)+ j) * s e x t (i) ;

end
[vmax , ivmax] = max (Z , [] , 2) ;
i e x t = ind1 + ivmax−d−1;
ind (i e x t) = i ;

end

110 APPENDIX C. MATLAB CODE

C.2 Matlab functions for Pan-Tompkins Al-
gorithm

Listing: Lowpass filter
% Lowpass f i l t e r in Pan−Tompkins a l g o r i t h m
% Author : Miriam Huseby
% Master T h e s i s 2013
% R e f e r e n c e : Faruk Uysal ; h t t p : / / m a t l a b z . b l o g s p o t . no / 2 0 1 1 / 0 4 / c o n t e n t s−c a n c e l l a t i o n−dc−d r i f t −and . html

function lp_qrs = lowpass (qrs)

f s = 2 0 0 ; %sampl ing r a t e
N = length (qrs) ; % S i g n a l l e n g t h
t = [0 :N−1]/ f s ; % time in s e c o n d s

% Low Pass F i l t e r = (1 / 3 2) (1−z ^−6)^2/(1− z^−1)^2
b = [1 0 0 0 0 −2 0 0 0 0 0 1] ; %Numerator
a = [32 −64 3 2] ; %Denominator
lp = f i l t e r (b , a , [1 zeros (1 , 1 2)]) ; % t r a n s f e r f u n c t i o n o f LPF
lp_qrs = conv (qrs , lp) ; %Convo lve s t h e v e c t o r
lp_qrs = lp_qrs (6 + [1 :N]) ; %c a n c l e d e l a y
lp_qrs = lp_qrs/ max (abs (lp_qrs)) ; % n o r m a l i z e , f o r c o n v e n i e n c e
f igure (2)
plot (t , lp_qrs)
xlabel (’ seconds ’) ; ylabel (’mV’) ; t i t l e (’ECG Signa l a f t e r LPF ’)

C.2. MATLAB FUNCTIONS FOR PAN-TOMPKINS ALGORITHM 111

Listing: Highpass filter
% Highpass f i l t e r in Pan−Tompkins a l g o r i t h m
% Author : Miriam Huseby
% Master T h e s i s 2013
% R e f e r e n c e : Faruk Uysal ; h t t p : / / m a t l a b z . b l o g s p o t . no / 2 0 1 1 / 0 4 / c o n t e n t s−c a n c e l l a t i o n−dc−d r i f t −and . html

function hp_qrs = highpass (lp_qrs)

f s = 2 0 0 ;%2 5 6 ; %200; %sampl ing r a t e
N = length (lp_qrs) ; % S i g n a l l e n g t h
t = [0 :N−1]/ f s ; % time in s e c o n d s

%High Pass F i l t e r
%Hp(z) = (−1 + z^−16 −z ^−32)/(1− z^−1)

b = [−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 −32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1]; %Numerator
a = [32 −32]; %Denominator
hp = f i l t e r (b , a , [1 zeros (1 , 3 2)]) ; % t r a n s f e r f u n c t i o n o f HPF
hp_qrs = conv (lp_qrs , hp) ; %Convo lve s t h e v e c t o r
hp_qrs = hp_qrs/ max (abs (hp_qrs)) ; %Normal iz e
f igure (3)
plot ([0 : length (hp_qrs)−1]/ fs , hp_qrs)
xlabel (’ seconds ’) ; ylabel (’mV’) ; t i t l e (’ECG Signa l a f t e r HPF ’)

112 APPENDIX C. MATLAB CODE

Listing: Derivative
% D e r i v a t i v e in Pan−Tompkins a l g o r i t h m
% Author : Miriam Huseby
% Master T h e s i s 2013
% R e f e r e n c e : Faruk Uysal ; h t t p : / / m a t l a b z . b l o g s p o t . no / 2 0 1 1 / 0 4 / c o n t e n t s−c a n c e l l a t i o n−dc−d r i f t −and . html

function d_qrs = derive (hp_qrs)

f s = 2 0 0 ; %sampl ing r a t e
N = length (hp_qrs) ; %S i g n a l l e n g t h
t = [0 :N−1]/ f s ; %time i n d e x

% D e r i v a t i v e o p e r a t o r
% y (n) = 1 / 8 [2 x (n) + x (n−1) − x (n−3) − 2x (n−4)]

h = (1 / 8) * [2 , 1 , 0 , −1, −2]; %T r a n s f e r f u n c t i o n o f t h e d e r i v a t i v e
d_qrs = conv (hp_qrs , h) ; %c o n v o l u t i o n o f t h e v e c t o r
d_qrs = d_qrs (2 + [1 : N]) ;
d_qrs = d_qrs/ max (abs (d_qrs)) ; %n o r m a l i z e
f igure (4)
plot (t , d_qrs)
xlabel (’ seconds ’) ; ylabel (’mV’) ; t i t l e (’ECG Signa l a f t e r d e r i v a t i v e operator ’)

C.2. MATLAB FUNCTIONS FOR PAN-TOMPKINS ALGORITHM 113

Listing: Squaring process
% Squar ing f u n c t i o n in Pan−Tompkins a l g o r i t h m
% Author : Miriam Huseby
% Master T h e s i s 2013
% R e f e r e n c e : Faruk Uysal ; h t t p : / / m a t l a b z . b l o g s p o t . no / 2 0 1 1 / 0 4 / c o n t e n t s−c a n c e l l a t i o n−dc−d r i f t −and . html

function s_qrs = squarer (d_qrs)

f s = 2 0 0 ; %sampl ing r a t e
N = length (d_qrs) ; % S i g n a l l e n g t h
t = [0 :N−1]/ f s ; %time i n d e x

% Squar ing t h e s i g n a l
% x^2
s_qrs = d_qrs . ^ 2 ; %Squar ing f u n c t i o n
s_qrs = s_qrs/ max (abs (s_qrs)) ; %Normal iz e
f igure (5)
plot (t , s_qrs)
xlabel (’ seconds ’) ; ylabel (’mV’) ; t i t l e (’ECG Signa l a f t e r squaring ’)

114 APPENDIX C. MATLAB CODE

Listing: Moving window integrator
% Moving Window I n t e g r a t i o n in Pan−Tompkins a l g o r i t h m
% Author : Miriam Huseby
% Master T h e s i s 2013
% R e f e r e n c e : Faruk Uysal ; h t t p : / / m a t l a b z . b l o g s p o t . no / 2 0 1 1 / 0 4 / c o n t e n t s−c a n c e l l a t i o n−dc−d r i f t −and . html

function mi_qrs = mwi(s_qrs)

f s = 2 0 0 ; %sampl ing r a t e
N = length (s_qrs) ; % S i g n a l l e n g t h
t = [0 :N−1]/ f s ; % time i n d e x

% moving−window i n t e g r a t i o n f i l t e r
% 30 s a m p l e s l ong
h = ones (1 , 3 1) / 3 1 ; %T r a n s f e r f u n c t i o n
mi_qrs = conv (s_qrs , h) ; %C o n v o l u t e s t h e v e c t o r
mi_qrs = mi_qrs (1 5 + [1 : N]) ;
mi_qrs = mi_qrs/ max (abs (mi_qrs)) ; %Normal iz e

f igure (6)
plot (t , mi_qrs)
xlabel (’ seconds ’) ; ylabel (’mV’) ; t i t l e (’ Resul t of Moving Window I n t e g r a t i o n ’)

C.2. MATLAB FUNCTIONS FOR PAN-TOMPKINS ALGORITHM 115

Listing: Adaptive threshold and Peak detection
% Peak d e t e c t i o n and c a l c u l a t e h e a r t r a t e in Pan−Tompkins a l g o r i t h m
% Author : Miriam Huseby
% Master T h e s i s 2013
function pks = threshold (mi_qrs)

f s = 2 0 0 ; %sampl ing r a t e
M = length (mi_qrs) ; % S i g n a l l e n g t h
t = [0 :M−1]/ f s ; %time i n d e x

%b e a t s = [] ;

% Finds t h e peak o f t h e i n t e g r a t e d s i g n a l
h = ones (1 , 3 1) / 3 1 ;
peak = max (mi_qrs) ;
thresh = 0 . 1 ;
y =mi_qrs ;%
hb = 0 ;
l = length (y) ;
xx = (0 : length (y)−1)/ f s ;

hh = length (h) ;
rrpos = [] ;

%Matlab f u n c t i o n f o r peak d e t e c t i o n in s i g n a l
[pks , l o c s] = findpeaks (y , ’ minpeakdistance ’ , hh , ’ minpeakheight ’ , thresh) ;
xx (l o c s) ;
f igure (7) , c l f
subplot (2 , 1 , 1)
plot ([0 : length (y)−1]/ fs , y)

%
hold on
plot (xx (l o c s) , pks , ’ r * ’ , ’ markerfacecolor ’ , [1 0 0])
xlabel (’ seconds ’) ; ylabel (’mV’) ; t i t l e (’ Peaks detec ted ’)

%C a l c u l a t e s b e a t s pr minute

%Finds number o f p e a k s
rrp = [] ;

for i = 1 : length (l o c s)−1
r r 1 = l o c s (i +1) − l o c s (i) ;
rrp (i) = r r 1 ;
end

%Finds t h e Average RR i n t e r v a l
z = 1 ;
hrv = [] ;
l e n_of _r r p = length (rrp)
while z + 8 <= l en_o f_r rp

c u r r e n t _ r r p s = rrp (z : z +7)
oo = mean (c u r r e n t _ r r p s) ;
hrv (length (hrv) +1) = oo ;
z = z + 1 ;

end

%C a l c u l a t e d b e a t s pr minute , and p l o t s i s
beats = (hrv/ f s) * 6 0 ;
subplot (2 , 1 , 2)
K = length (beats) ; % S i g n a l l e n g t h
t 1 = l inspace (0 ,max (t) ,K)
plot (t1 , beats)
xlabel (’ seconds ’) ; ylabel (’ Beats pr Minute ’) ; t i t l e (’ Heart Rate ’)

116 APPENDIX C. MATLAB CODE

Listing: Heart rate variability
% C a l c u l a t e h e a r t r a t e v a r i a b i l i t y
% Author : Miriam Huseby
% Master T h e s i s 2013

function r a t e = hrv (r_peaks)

f s = 2 0 0 ; %sampl ing r a t e
N = length (r_peaks) ; % S i g n a l l e n g t h
t = [0 :N−1]/ f s ; % time i n d e x

%C a l c u l a t e s t h e h e a r t r a t e v a r i a b l i t y
r a t e = [] ;
for i = 1 :N−1

ra = r_peaks (i +1) − r_peaks (i) ;
r a t e (i) = ra ;

end

figure (8)
K = length (r a t e) % S i g n a l l e n g t h
r a t e
t1 = l inspace (0 ,K,K)
plot (t1 , r a t e)
xlabel (’ seconds ’) ; ylabel (’ D i f f e r e n c e in hear t r a t e (minutes) ’) ; t i t l e (’ Heart Rate V a r i a b i l i t y ’)

Appendix D

VHDL Code

D.1 Testbench for Modelsim Simulation

Listing: Testbench for peak detection
−− Author : Miriam K i r s t i n e Huseby
−− Company : U n i v e r s i t y o f Oslo
−− F i l e name : t b _ d e t e c t . vhd
−− Date : 1 3 . 0 3 . 2 0 1 3
−− P r o j e c t : Master t h e s i s
−− Func t i on : t e s t b e n c h t e s t f o r d e t e c t i o n o f ekg
−− From : h t t p : / / vhdlguru . b l o g s p o t . no / 2 0 1 1 / 0 6 / vhdl−code−f o r−4−tap−f i r− f i l t e r . html

l i b r a r y i e e e ;
use i e e e . s t d _ l o g i c _ 1 1 6 4 . a l l ;
use i e e e . numeric_std . a l l ;
−−use i e e e . s t d _ l o g i c _ u n s i g n e d . a l l ;

e n t i t y t b _ d e t e c t i s
end t b _ d e t e c t ;

a r c h i t e c t u r e beh of t b _ d e t e c t i s
s ignal r e s e t : s t d _ l o g i c := ’ 0 ’ ;
s ignal c l k : s t d _ l o g i c := ’ 0 ’ ;
s ignal x_in : s t d _ l o g i c _ v e c t o r (7 downto 0) := (others => ’ 0 ’) ;
s ignal peak_value : s t d _ l o g i c _ v e c t o r (7 downto 0) := (others => ’ 0 ’) ;
s ignal threshold1 : s t d _ l o g i c _ v e c t o r (7 downto 0) := (others => ’ 0 ’) ;
s ignal threshold2 : s t d _ l o g i c _ v e c t o r (7 downto 0) := (others => ’ 0 ’) ;
s ignal beat_counter : s t d _ l o g i c _ v e c t o r (9 downto 0) := (others => ’ 0 ’) ;
s ignal peak_distance : s t d _ l o g i c _ v e c t o r (9 downto 0) := (others => ’ 0 ’) ;

constant c lk_per iod : time := 500 ns ;

begin

−− I n s t a n t i a t e t h e Unit Under T e s t (UUT)
uut : e n t i t y work . FSM_detect port map(

c l k => clk ,
r e s e t => r e s e t ,
x_in => x_in ,
threshold2 => threshold2 ,
beat_counter => beat_counter ,
threshold1 => threshold1 ,
−− b e a t d i s t => b e a t d i s t ,

117

118 APPENDIX D. VHDL CODE

−− peak => peak ,
peak_distance => peak_distance ,
peak_value => peak_value

) ;

−− c l o c k p r o c e s s d e f i n i t i o n s
c lk_process : process
begin

c l k <= ’ 0 ’ ;
wait for c lk_per iod /2;
c l k <= ’ 1 ’ ;
wait for c lk_per iod /2;

end process ;

−− St imulus p r o c e s s
stim_proc : process
begin

wait for c lk_per iod * 1 ;
x_in <= " 00000000 " ;
wait for c lk_per iod * 1 ;
x_in <= " 00000000 " ;
wait for c lk_per iod * 1 ;
x_in <= " 00000000 " ;
wait for c lk_per iod * 1 ;
x_in <= " 00000000 " ;
wait for c lk_per iod * 1 ;
x_in <= " 00000000 " ;
wait for c lk_per iod * 1 ;
x_in <= " 00000000 " ;
wait for c lk_per iod * 1 ;
x_in <= " 00000000 " ;
wait for c lk_per iod * 1 ;
x_in <= " 00000000 " ;
wait for c lk_per iod * 1 ;
x_in <= " 00000000 " ;
wait for c lk_per iod * 1 ;
x_in <= " 00000000 " ;
wait for c lk_per iod * 1 ;
x_in <= " 00000000 " ;

−−−−−−−−−−−−−−−−−−
−− more i n p u t s t i m u l i
−−−−−−−−−−−−−−−−−−−
wait for c lk_per iod * 1 ;
x_in <= " 00000000 " ;

wait ;
end process ;

end beh ;

D.1. TESTBENCH FOR MODELSIM SIMULATION 119

Listing: Testbench for functions in the Pan-Tompkins Algorithm
−− Author : Miriam K i r s t i n e Huseby
−− Company : U n i v e r s i t y o f Oslo
−− F i l e name : t b _ l o w p a s s . vhd
−− Date : 1 3 . 0 3 . 2 0 1 3
−− P r o j e c t : Master t h e s i s
−− Func t i on : t e a t b e n c h 4 t a p l o w p a s s I IR f i l t e r
−− From : h t t p : / / vhdlguru . b l o g s p o t . no / 2 0 1 1 / 0 6 / vhdl−code−f o r−4−tap−f i r− f i l t e r . html

l i b r a r y i e e e ;
use i e e e . s t d _ l o g i c _ 1 1 6 4 . a l l ;
use i e e e . numeric_std . a l l ;

e n t i t y tb_lowpass i s
end tb_lowpass ;

a r c h i t e c t u r e beh of tb_lowpass i s
s ignal c l k : s t d _ l o g i c := ’ 0 ’ ;
s ignal x_in : s t d _ l o g i c _ v e c t o r (7 downto 0) := (others => ’ 0 ’) ;
s ignal y_out : s t d _ l o g i c _ v e c t o r (15 downto 0) := (others => ’ 0 ’) ;
constant c lk_per iod : time := 500 ns ;

begin

−− I n s t a n t i a t e t h e Unit Under T e s t (UUT)
uut : e n t i t y work . lowpass port map(

c l k => clk ,
x_in => x_in ,
y_out => y_out

) ;

−− c l o c k p r o c e s s d e f i n i t i o n s
c lk_process : process
begin

c l k <= ’ 0 ’ ;
wait for c lk_per iod /2;
c l k <= ’ 1 ’ ;
wait for c lk_per iod /2;

end process ;

−− St imulus p r o c e s s
stim_proc : process
begin

wait for c lk_per iod * 2 ;
x_in <= " 00000001 " ;
wait for c lk_per iod * 1 ;
x_in <= " 00000010 " ;
wait for c lk_per iod * 1 ;
x_in <= " 00000011 " ;
wait for c lk_per iod * 1 ;
x_in <= " 00000100 " ;
wait for c lk_per iod * 1 ;
x_in <= " 00000101 " ;
wait for c lk_per iod * 1 ;
x_in <= " 00000110 " ;

−−−−−−−−
−− more i n p u t
−−−−−−−
wait for c lk_per iod * 1 ;
x_in <= " 00001000 " ;
wait ;

end process ;
end beh ;

120 APPENDIX D. VHDL CODE

D.2 ECG Module

Listing: Clock Divider for 200Hz output
−− Author : Miriam HUseby
−− Company : U n i v e r s i t y o f Oslo
−− F i l e name : Clock160Div . vhd
−− Date : 2 4 . 0 4 . 2 0 1 3
−− V e r s i o n : 01
−− P r o j e c t : Master T h e s i s
−− Func t i on : C l o c k d i v i d e r ; D i v i d e s MCKL o f 31 .25 kHz down t o 200Hz
−− by d i v i d i n g by 156

l i b r a r y i e e e ;
use i e e e . s t d _ l o g i c _ 1 1 6 4 . a l l ;
use i e e e . s t d _ l o g i c _ a r i t h . a l l ;
use i e e e . s td_logic_unsigned . a l l ;

e n t i t y c lock160div i s
port

(
c l k _ i n : in s t d _ l o g i c ;
r e s e t : in s t d _ l o g i c ;
c lk_out : out s t d _ l o g i c
) ;

end c lock160div ;

a r c h i t e c t u r e c lock_div_arch of c lock160div i s
constant DivFactor : i n t e g e r := 1 5 6 ;
constant DivFactor_hal f : i n t e g e r := 7 8 ;

begin

−− Di v ide t h e i n p u t c l o c k with D i v F a c t o r
CLK_DIV :
process (c lk_ in , r e s e t)
var iable div_cnt : i n t e g e r range 0 to DivFactor − 1 ;
begin

i f r e s e t = ’1 ’ then −− a synch ronous r e s e t
div_cnt := 0 ;
clk_out <= ’ 0 ’ ;

e l s i f r i s ing_edge (c l k _ i n) then
i f (div_cnt = DivFactor − 1) then

div_cnt := 0 ;
e lse

div_cnt := div_cnt + 1 ;
end i f ;
i f (div_cnt >= DivFactor_hal f) then

c lk_out <= ’ 0 ’ ;
e lse

c lk_out <= ’ 1 ’ ;
end i f ;

end i f ;
end process CLK_DIV ;

end c lock_div_arch ;

D.2. ECG MODULE 121

Listing: Finite State Machine for AD7766_A in DAQ
−− Author : Lar s J Ã¸r g e n Aamodt
−− Company : U n i v e r s i t y o f Oslo
−− F i l e name : AD7766 . vhd
−− Date : 1 5 . 0 8 . 2 0 1 2
−− P r o j e c t : Master p r o j e c t
−− Func t i on : C o n t r o l c i r c u i t f o r AD7766

l i b r a r y i e e e ;
use i e e e . s t d _ l o g i c _ 1 1 6 4 . a l l ;
use i e e e . numeric_std . a l l ;
use i e e e . s td_logic_unsigned . a l l ;

e n t i t y AD7766_A i s

port
(

r e s e t : in s t d _ l o g i c ;
DRDY_n : in s t d _ l o g i c ; −− Data ready , a c t i v e low
SDO : in s t d _ l o g i c ; −− Data output , MSB f i r s t

s c l k : in s t d _ l o g i c ;

SYNC_PD : out s t d _ l o g i c ; −− Sync / powerdown
CS_n : out s t d _ l o g i c ;

−− Chip s e l e c t , a c t i v e low

V_drive : out s t d _ l o g i c ;
d i s a b l e : out s t d _ l o g i c ;
DataReadyADC : out s t d _ l o g i c ;
DataOut : out s t d _ l o g i c _ v e c t o r (23 downto 0)

) ;

end AD7766_A ;

a r c h i t e c t u r e AD7766_arch of AD7766_A i s

s ignal b i t c n t : s t d _ l o g i c _ v e c t o r (4 downto 0) ;
s ignal r e s e t c n t : s t d _ l o g i c _ v e c t o r (11 downto 0) ;
s ignal s h i f t _ e n : s t d _ l o g i c ;

−−t y p e d e f .
type s t a t e t y p e i s (I n i t , PowerUp , ReadInit , Read_st , FinRead , Wait_st) ;

s ignal s t a t e : s t a t e t y p e ;

begin

−− i n s t a n t i a t e SR_Ser in_redge
SRin_Pout_reg : e n t i t y work . SRin_Pout_reg

port map (
c l k => sclk ,

DataIn => SDO,
s h i f t _ e n => s h i f t _ e n ,
DataOut => DataOut

) ;

V_drive <= ’ 1 ’ ;
d i s a b l e <= ’ 0 ’ ;

122 APPENDIX D. VHDL CODE

FSM_CONF_READ:
process (sc lk , r e s e t)
begin

i f (r e s e t = ’ 1 ’) then
s t a t e <= I n i t ;

e l s i f r i s ing_edge (s c l k) then
−− s e t d e f a u l t v a l u e s

cs_n <= ’ 1 ’ ;
sync_pd <= ’ 1 ’ ;
DataReadyADC <= ’ 0 ’ ;
s h i f t _ e n <= ’ 0 ’ ;
b i t c n t <= (others => ’ 0 ’) ;
r e s e t c n t <= (others => ’ 0 ’) ;
s t a t e <= I n i t ;

case s t a t e i s

when I n i t =>
sync_pd <= ’ 0 ’ ;
i f (r e s e t c n t = 4095) then

s t a t e <= PowerUp ;
e lse

r e s e t c n t <= r e s e t c n t + 1 ;
s t a t e <= I n i t ;

end i f ;

when PowerUp =>
sync_pd <= ’ 1 ’ ;
s t a t e <= Wait_st ;

when ReadIni t =>

i f drdy_n = ’0 ’ then
cs_n <= ’ 0 ’ ;
s h i f t _ e n <= ’ 1 ’ ;
s t a t e <= Read_st ;

e lse
s t a t e <= ReadIni t ;

end i f ;

when Read_st => −− Reads 24 b i t s o f v a l i d d a t a from ADC
i f (b i t c n t = 23) then

cs_n <= ’ 1 ’ ;
s h i f t _ e n <= ’ 0 ’ ;
s t a t e <= FinRead ;

e lse
cs_n <= ’ 0 ’ ;
s h i f t _ e n <= ’ 1 ’ ;
b i t c n t <= b i t c n t + 1 ;
s t a t e <= Read_st ;

end i f ;

when FinRead =>
−− S e t s DataReady f l a g

s h i f t _ e n <= ’ 0 ’ ;
DataReadyADC <= ’ 1 ’ ;
s t a t e <= Wait_st ;

when Wait_st =>
i f drdy_n = ’1 ’ then

s t a t e <= ReadIni t ;
e lse

D.2. ECG MODULE 123

s t a t e <= Wait_st ;
−−s t a t e <= R e a d I n i t ;

end i f ;

when others =>
s t a t e <= I n i t ; −− F a u l t t o l e r a n c e

end case ;

end i f ;
end process FSM_CONF_READ;

end AD7766_arch ;

124 APPENDIX D. VHDL CODE

Listing: Register for AD7766. Serial in, Parallel out
−− Author : Lar s J Ã¸r g e n Aamodt
−− Company : U n i v e r s i t y o f Oslo
−− F i l e name : SR_Ser In_redge . vhd
−− Date : 1 5 . 0 8 . 2 0 1 2
−− P r o j e c t : Master p r o j e c t
−− Func t i on : S e r i a l in p a r a l l e l out s h i f t r e g i s t e r , r i s i n g edge .

l i b r a r y i e e e ;
use i e e e . s t d _ l o g i c _ 1 1 6 4 . a l l ;
use i e e e . s t d _ l o g i c _ a r i t h . a l l ;
use i e e e . s td_logic_unsigned . a l l ;

e n t i t y SRin_Pout_reg i s
generic (

width : i n t e g e r := 2 4) ;

port
(
c l k : in s t d _ l o g i c ;
DataIn : in s t d _ l o g i c ;
s h i f t _ e n : in s t d _ l o g i c ;
DataOut : out s t d _ l o g i c _ v e c t o r (width−1 downto 0)
) ;

end SRin_Pout_reg ;

a r c h i t e c t u r e SRin_Pout_reg_arch of SRin_Pout_reg i s
s ignal d a t a _ i n t : s t d _ l o g i c _ v e c t o r (width−1 downto 0) ;

begin

SHIFT_REG :
process (c l k)
begin

i f r i s ing_edge (c l k) then
i f (s h i f t _ e n = ’ 1 ’) then

d a t a _ i n t (0) <= DataIn ;
for i in 0 to width−2 loop

d a t a _ i n t (i +1) <= d a t a _ i n t (i) ;
end loop ;

end i f ;

end i f ;
end process SHIFT_REG ;

DataOut <= d a t a _ i n t ;

end SRin_Pout_reg_arch ;

D.2. ECG MODULE 125

Listing: Lowpass Filter
−− Author : Miriam K i r s t i n e Huseby
−− Company : U n i v e r s i t y o f Oslo
−− F i l e name : l o w p a s s . vhd
−− Date : 1 3 . 0 3 . 2 0 1 3
−− P r o j e c t : Master t h e s i s
−− Func t i on : D i r e c t−Form I I IR l o w p a s s f i l t e r
−− From : h t t p : / / vhdlguru . b l o g s p o t . no / 2 0 1 1 / 0 6 / vhdl−code−f o r−4−tap−f i r− f i l t e r . html

l i b r a r y i e e e ;
use i e e e . s t d _ l o g i c _ 1 1 6 4 . a l l ;
use i e e e . numeric_std . a l l ;

e n t i t y lowpass i s
port (

c l k : in s t d _ l o g i c ; −− c l o c k s i g n a l
x_in : in signed (23 downto 0) ; −−i n p u t s i g n a l
y_out : out signed (28 downto 0) −− f i l t e r o u tp ut 29 b i t

) ;
end lowpass ;

a r c h i t e c t u r e beh of lowpass i s

component d _ f f _ l p i s
port (

c l k : in s t d _ l o g i c ; −− c l o c k i n p u t
D : in signed (47 downto 0) ; −− d a t a i n p u t from t h e mcm b l o c k
Q : out signed (47 downto 0) −− ou tp ut c o n n e c t e d t o t h e a d d e r

) ;
end component ;

s ignal H0, H1, H6, H12 : signed (23 downto 0) := (others => ’ 0 ’) ;
s ignal M0, M1, M2, M3, M4, M5, M6,

M7, M8, M9, M10, M11, M12 : signed (47 downto 0) := (others => ’ 0 ’) ;
s ignal add1 , add2 , add3 , add4 , add5 , add6 ,

add7 , add8 , add9 , add10 , add11 , add12 : signed (47 downto 0) := (others => ’ 0 ’) ;
s ignal Q1 , Q2 , Q3 , Q4 , Q5 , Q6 , Q7 ,

Q8 , Q9 , Q10 , Q11 , Q12 , Y1 , Y2 : signed (47 downto 0) := (others => ’ 0 ’) ;

begin

−− f i l t e r c o e f f i c i e n t i n i t i a l i z a t i o n s
−− y (n) = 2y (n−1)−y (n−2)+x (n)−2x (n−6)+x (n−12)

H0 <= to_signed (1 , 2 4) ;
H1 <= to_signed (0 , 2 4) ;
H2 <= to_signed (0 , 2 4) ;
H3 <= to_signed (0 , 2 4) ;
H4 <= to_signed (0 , 2 4) ;
H5 <= to_signed (0 , 2 4) ;
H6 <= to_signed (−2 ,24) ;
H7 <= to_signed (0 , 2 4) ;
H8 <= to_signed (0 , 2 4) ;
H9 <= to_signed (0 , 2 4) ;
H10 <= to_signed (0 , 2 4) ;
H11 <= to_signed (0 , 2 4) ;
H12 <= to_signed (1 , 2 4) ;

−−m u l t i p l e c o n s t a n t m u l t i p l i c a t i o n s
M12 <= H12* x_in ;
M11 <= H1* x_in ;
M10 <= H1* x_in ;
M9 <= H1x_in ;
M8 <= H1* x_in ;
M7 <= H1* x_in ;
M6 <= H6* x_in ;
M5 <= H1* x_in ;

126 APPENDIX D. VHDL CODE

M4 <= H1* x_in ;
M3 <= H1* x_in ;
M2 <= H1* x_in ;
M1 <= H1* x_in ;
M0 <= H0* x_in ;

−− a d d e r s
add1 <= Q1 + M11 ;
add2 <= Q2 + M10 ;
add3 <= Q3 + M9;
add4 <= Q4 + M8;
add5 <= Q5 + M7;
add6 <= Q6 + M6;
add7 <= Q7 + M5;
add8 <= Q8 + M4;
add9 <= Q9 + M3;
add10 <= Q10 + M2;
add11 <= Q11 + M1;
add12 <= Q12 + M0;

−− f l i p −f l o p s (f o r i n t r o d u c i n g a d e l a y)
d _f f _ l p 1 : d _ f f _ l p
port map(c lk , M12, Q1) ;

d _ f f _ l p 2 : d _ f f _ l p
port map(c lk , add1 , Q2) ;

d _ f f _ l p 3 : d _ f f _ l p
port map(c lk , add2 , Q3) ;

d _ f f _ l p 4 : d _ f f _ l p
port map(c lk , add3 , Q4) ;

d _ f f _ l p 5 : d _ f f _ l p
port map(c lk , add4 , Q5) ;

d _ f f _ l p 6 : d _ f f _ l p
port map(c lk , add5 , Q6) ;

d _ f f _ l p 7 : d _ f f _ l p
port map(c lk , add6 , Q7) ;

d _ f f _ l p 8 : d _ f f _ l p
port map(c lk , add7 , Q8) ;

d _ f f _ l p 9 : d _ f f _ l p
port map(c lk , add8 , Q9) ;

d_f f_ lp10 : d _ f f _ l p
port map(c lk , add9 , Q10) ;

d_f f_ lp11 : d _ f f _ l p
port map(c lk , add10 , Q11) ;

d_f f_ lp12 : d _ f f _ l p
port map(c lk , add11 , Q12) ;

−− an ou tpu t produced a t e v e r y p o s i t i v e edge o f c l o c k c y c l e
process (c l k)
begin

i f (r i s ing_edge (c l k)) then
Y1 <= add12 + Y2 ;
Y2 <= (Y2+Y2) − Y1 ;
y_out <= not Y2 (28 downto 0) ;

end i f ;
end process ;

end beh ;

D.2. ECG MODULE 127

Listing: D Flip-Flop for Lowpass Filter
−− Author : Miriam K i r s t i n e Huseby
−− Company : U n i v e r s i t y o f Oslo
−− F i l e name : d _ f f _ l p . vhd
−− Date : 1 3 . 0 3 . 2 0 1 3
−− P r o j e c t : Master t h e s i s
−− Func t i on : D F l i p−Flop f o r LowPass I IR F i l t e r
−− From : h t t p : / / vhdlguru . b l o g s p o t . no / 2 0 1 1 / 0 6 / vhdl−code−f o r−4−tap−f i r− f i l t e r . html

l i b r a r y i e e e ;
use i e e e . s t d _ l o g i c _ 1 1 6 4 . a l l ;
use i e e e . numeric_std . a l l ;

e n t i t y d _ f f _ l p i s
port (

c l k : in s t d _ l o g i c ; −− c l o c k i n p u t
D : in signed (47 downto 0) ; −− d a t a i n p u t from t h e mcm b l o c k
Q : out signed (47 downto 0) −− ou tp ut c o n n e c t e d t o t h e a d d e r

) ;
end d _ f f _ l p ;

a r c h i t e c t u r e beh of d _ f f _ l p i s

s ignal qt : signed (47 downto 0) := (others => ’ 0 ’) ;

begin
Q <= qt ;
d _ f f _ l p :
process (c l k)
begin

i f (r i s ing_edge (c l k)) then
qt <= D;

end i f ;
end process ;

end beh ;

128 APPENDIX D. VHDL CODE

Listing: Highpass Filter
−− Author : Miriam K i r s t i n e Huseby
−− Company : U n i v e r s i t y o f Oslo
−− F i l e name : h i g h p a s s . vhd
−− Date : 1 3 . 0 3 . 2 0 1 3
−− P r o j e c t : Master t h e s i s
−− Func t i on : D i r e c t−Form I I IR Highpass f i l t e r
−− From : h t t p : / / vhdlguru . b l o g s p o t . no / 2 0 1 1 / 0 6 / vhdl−code−f o r−4−tap−f i r− f i l t e r . html

l i b r a r y i e e e ;
use i e e e . s t d _ l o g i c _ 1 1 6 4 . a l l ;
use i e e e . numeric_std . a l l ;

e n t i t y highpass i s
port (

c l k : in s t d _ l o g i c ; −− c l o c k s i g n a l
x_in : in signed (28 downto 0) ; −−i n p u t s i g n a l
y_out : out signed (31 downto 0) −− f i l t e r o u tp ut 32 b i t

) ;
end highpass ;

a r c h i t e c t u r e beh of highpass i s

component d_ff_hp i s
port (

c l k : in s t d _ l o g i c ; −− c l o c k i n p u t
D : in signed (57 downto 0) ; −− d a t a i n p u t from t h e mcm b l o c k
Q : out signed (57 downto 0) −− ou tp ut c o n n e c t e d t o t h e a d d e r

) ;
end component ;

s ignal H0, H1, H16 , H32 : signed (28 downto 0) := (others => ’ 0 ’) ;
s ignal M0, M1, M16, M32 : signed (57 downto 0) := (others => ’ 0 ’) ;
s ignal add1 , add2 , add3 , add4 , add5 , add6 , add7 , add8 , add9 , add10 , add11 , add12 ,

add13 , add14 , add15 , add16 , add17 , add18 , add19 , add20 , add21 , add22 , add23 , add24 ,
add25 , add26 , add27 , add28 , add29 , add30 , add31 , add32 : signed (57 downto 0) := (others => ’ 0 ’) ;

s ignal Q1 , Q2 , Q3 , Q4 , Q5 , Q6 , Q7 , Q8 , Q9 , Q10 , Q11 , Q12 , Q13 , Q14 , Q15 ,
Q16 , Q17 , Q18 , Q19 , Q20 , Q21 , Q22 , Q23 , Q24 , Q25 , Q26 ,
Q27 , Q28 , Q29 , Q30 , Q31 , Q32 : signed (57 downto 0) := (others => ’ 0 ’) ;

s ignal Y1 : signed (57 downto 0) := (others => ’ 0 ’) ;

begin

−− f i l t e r c o e f f i c i e n t i n i t i a l i z a t i o n s
−− y (n) = 2y (n−1)−y (n−2)+x (n)−2x (n−6)+x (n−12)

H0 <= to_signed (−1 ,29) ;
H1 <= to_signed (0 , 2 9) ;
H16 <= to_signed (3 2 , 2 9) ;
H32 <= to_signed (1 , 2 9) ;

−−m u l t i p l e c o n s t a n t m u l t i p l i c a t i o n s
M32 <= H32* x_in ;
M16 <= H16* x_in ;
M1 <= H1* x_in ;
M0 <= H0* x_in ;

−− a d d e r s
add1 <= Q1 + M1;
add2 <= Q2 + M1;
add3 <= Q3 + M1;
add4 <= Q4 + M1;

D.2. ECG MODULE 129

add5 <= Q5 + M1;
add6 <= Q6 + M1;
add7 <= Q7 + M1;
add8 <= Q8 + M1;
add9 <= Q9 + M1;
add10 <= Q10 + M1;
add11 <= Q11 + M1;
add12 <= Q12 + M1;
add13 <= Q13 + M1;
add14 <= Q14 + M1;
add15 <= Q15 + M1;
add16 <= Q16 + M16 ;
add17 <= Q17 + M1;
add18 <= Q18 + M1;
add19 <= Q19 + M1;
add20 <= Q20 + M1;
add21 <= Q21 + M1;
add22 <= Q22 + M1;
add23 <= Q23 + M1;
add24 <= Q24 + M1;
add25 <= Q25 + M1;
add26 <= Q26 + M1;
add27 <= Q27 + M1;
add28 <= Q28 + M1;
add29 <= Q29 + M1;
add30 <= Q30 + M1;
add31 <= Q31 + M1;
add32 <= Q32 + M0;

−− f l i p −f l o p s (f o r i n t r o d u c i n g a d e l a y)
d_ff_hp1 : d_ff_hp
port map(c lk , M32, Q1) ;

d_ff_hp2 : d_ff_hp
port map(c lk , add1 , Q2) ;

d_ff_hp3 : d_ff_hp
port map(c lk , add2 , Q3) ;

d_ff_hp4 : d_ff_hp
port map(c lk , add3 , Q4) ;

d_ff_hp5 : d_ff_hp
port map(c lk , add4 , Q5) ;

d_ff_hp6 : d_ff_hp
port map(c lk , add5 , Q6) ;

d_ff_hp7 : d_ff_hp
port map(c lk , add6 , Q7) ;

d_ff_hp8 : d_ff_hp
port map(c lk , add7 , Q8) ;

d_ff_hp9 : d_ff_hp
port map(c lk , add8 , Q9) ;

d_ff_hp10 : d_ff_hp
port map(c lk , add9 , Q10) ;

d_ff_hp11 : d_ff_hp
port map(c lk , add10 , Q11) ;

d_ff_hp12 : d_ff_hp
port map(c lk , add11 , Q12) ;

130 APPENDIX D. VHDL CODE

d_ff_hp13 : d_ff_hp
port map(c lk , add12 , Q13) ;

d_ff_hp14 : d_ff_hp
port map(c lk , add13 , Q14) ;

d_ff_hp15 : d_ff_hp
port map(c lk , add14 , Q15) ;

d_ff_hp16 : d_ff_hp
port map(c lk , add15 , Q16) ;

d_ff_hp17 : d_ff_hp
port map(c lk , add16 , Q17) ;

d_ff_hp18 : d_ff_hp
port map(c lk , add17 , Q18) ;

d_ff_hp19 : d_ff_hp
port map(c lk , add18 , Q19) ;

d_ff_hp20 : d_ff_hp
port map(c lk , add19 , Q20) ;

d_ff_hp21 : d_ff_hp
port map(c lk , add20 , Q21) ;

d_ff_hp22 : d_ff_hp
port map(c lk , add21 , Q22) ;

d_ff_hp23 : d_ff_hp
port map(c lk , add22 , Q23) ;

d_ff_hp24 : d_ff_hp
port map(c lk , add23 , Q24) ;

d_ff_hp25 : d_ff_hp
port map(c lk , add24 , Q25) ;

d_ff_hp26 : d_ff_hp
port map(c lk , add25 , Q26) ;

d_ff_hp27 : d_ff_hp
port map(c lk , add26 , Q27) ;

d_ff_hp28 : d_ff_hp
port map(c lk , add27 , Q28) ;

d_ff_hp29 : d_ff_hp
port map(c lk , add28 , Q29) ;

d_ff_hp30 : d_ff_hp
port map(c lk , add29 , Q30) ;

d_ff_hp31 : d_ff_hp
port map(c lk , add30 , Q31) ;

d_ff_hp32 : d_ff_hp
port map(c lk , add31 , Q32) ;

−− an ou tp ut produced a t e v e r y p o s i t i v e edge o f c l o c k c y c l e
process (c l k)
begin

i f (r i s ing_edge (c l k)) then
Y1 <= −Y1 + add32 ;
y_out <= Y1 (31 downto 0) ;

end i f ;

D.2. ECG MODULE 131

end process ;
end beh ;

132 APPENDIX D. VHDL CODE

Listing: D Flip-Flop for Highpass Filter
−− Author : Miriam K i r s t i n e Huseby
−− Company : U n i v e r s i t y o f Oslo
−− F i l e name : d _ f f _ h p . vhd
−− Date : 1 3 . 0 3 . 2 0 1 3
−− P r o j e c t : Master t h e s i s
−− Func t i on : D F l i p−Flop f o r HighPass I IR F i l t e r
−− From : h t t p : / / vhdlguru . b l o g s p o t . no / 2 0 1 1 / 0 6 / vhdl−code−f o r−4−tap−f i r− f i l t e r . html

l i b r a r y i e e e ;
use i e e e . s t d _ l o g i c _ 1 1 6 4 . a l l ;
use i e e e . numeric_std . a l l ;

e n t i t y d_ff_hp i s
port (

c l k : in s t d _ l o g i c ; −− c l o c k i n p u t
D : in signed (57 downto 0) ; −− d a t a i n p u t from t h e mcm b l o c k
Q : out signed (57 downto 0) −− ou tp ut c o n n e c t e d t o t h e a d d e r

) ;
end d_ff_hp ;

a r c h i t e c t u r e beh of d_ff_hp i s

s ignal qt : signed (57 downto 0) := (others => ’ 0 ’) ;

begin
Q <= qt ;
d_ff_hp :
process (c l k)
begin

i f (r i s ing_edge (c l k)) then
qt <= D;

end i f ;
end process ;

end beh ;

D.2. ECG MODULE 133

Listing: Derivative
−− Author : Miriam K i r s t i n e Huseby
−− Company : U n i v e r s i t y o f Oslo
−− F i l e name : d e r i v . vhd
−− Date : 1 3 . 0 3 . 2 0 1 3
−− P r o j e c t : Master t h e s i s
−− Func t i on : 5 t a p FIR f i l t e r f o r D e r i v a t i v e
−− From : h t t p : / / vhdlguru . b l o g s p o t . no / 2 0 1 1 / 0 6 / vhdl−code−f o r−4−tap−f i r− f i l t e r . html

l i b r a r y i e e e ;
use i e e e . s t d _ l o g i c _ 1 1 6 4 . a l l ;
use i e e e . numeric_std . a l l ;

e n t i t y deriv i s
port (

c l k : in s t d _ l o g i c ; −− c l o c k s i g n a l
x_in : in signed (31 downto 0) ; −−i n p u t s i g n a l
y_out : out signed (30 downto 0) −− f i l t e r o u tp ut 31

) ;
end deriv ;

a r c h i t e c t u r e beh of deriv i s

component d_ff_d i s
port (

c l k : in s t d _ l o g i c ; −− c l o c k i n p u t
D : in signed (63 downto 0) ; −− d a t a i n p u t from t h e mcm b l o c k
Q : out signed (63 downto 0) −− ou tp ut c o n n e c t e d t o t h e a d d e r

) ;
end component ;

s ignal H0, H1, H2, H3, H4 : signed (31 downto 0) := (others => ’ 0 ’) ;
s ignal M0, M1, M2, M3, M4, M5 : signed (63 downto 0) := (others => ’ 0 ’) ;
s ignal add1 , add2 , add3 , add4 : signed (63 downto 0) := (others => ’ 0 ’) ;
s ignal Q1 , Q2 , Q3 , Q4 : signed (63 downto 0) := (others => ’ 0 ’) ;

begin

−− f i l t e r c o e f f i c i e n t i n i t i a l i z a t i o n s
−− H = 1 / 8 [2 1 0 −1 −2]

H0 <= to_signed (2 , 3 2) ;
H1 <= to_signed (1 , 3 2) ;
H2 <= to_signed (0 , 3 2) ;
H3 <= to_signed (−1 ,32) ;
H4 <= to_signed (−2 ,32) ;

−−m u l t i p l e c o n s t a n t m u l t i p l i c a t i o n s
M4 <= (H4) * x_in ;
M3 <= (H3) * x_in ;
M2 <= (H2) * x_in ;
M1 <= (H1) * x_in ;
M0 <= (H0) * x_in ;

M5 <= M4/8;

−− a d d e r s
add1 <= Q1 + M3/8;
add2 <= Q2 + M2/8;
add3 <= Q3 + M1/8;
add4 <= Q4 + M0/8;

−− f l i p −f l o p s (f o r i n t r o d u c i n g a d e l a y)
d_ff_d1 : d_ff_d
port map(c lk , M5, Q1) ;

134 APPENDIX D. VHDL CODE

d_ff_d2 : d_ff_d
port map(c lk , add1 , Q2) ;

d_ff_d3 : d_ff_d
port map(c lk , add2 , Q3) ;

d_ff_d4 : d_ff_d
port map(c lk , add3 , Q4) ;

−− an ou tp ut produced a t e v e r y p o s i t i v e edge o f c l o c k c y c l e
process (c l k)
begin

i f (r i s ing_edge (c l k)) then
y_out <= not add4 (30 downto 0) ;

end i f ;
end process ;

end beh ;

D.2. ECG MODULE 135

Listing: D Flip-Flop for Derivative
−− Author : Miriam K i r s t i n e Huseby
−− Company : U n i v e r s i t y o f Oslo
−− F i l e name : d _ f f _ d . vhd
−− Date : 1 3 . 0 3 . 2 0 1 3
−− P r o j e c t : Master t h e s i s
−− Func t i on : D F l i p−Flop f o r D e r i v a t i v e f i l t e r
−− From : h t t p : / / vhdlguru . b l o g s p o t . no / 2 0 1 1 / 0 6 / vhdl−code−f o r−4−tap−f i r− f i l t e r . html

l i b r a r y i e e e ;
use i e e e . s t d _ l o g i c _ 1 1 6 4 . a l l ;
use i e e e . numeric_std . a l l ;

e n t i t y d_ff_d i s
port (

c l k : in s t d _ l o g i c ; −− c l o c k i n p u t
D : in signed (63 downto 0) ; −− d a t a i n p u t from t h e mcm b l o c k
Q : out signed (63 downto 0) −− ou tp ut c o n n e c t e d t o t h e a d d e r

) ;
end d_ff_d ;

a r c h i t e c t u r e beh of d_ff_d i s
s ignal qt : signed (63 downto 0) := (others => ’ 0 ’) ;

begin
Q <= qt ;
d_ff_d :
process (c l k)
begin

i f (r i s ing_edge (c l k)) then
qt <= D;

end i f ;
end process ;

end beh ;

136 APPENDIX D. VHDL CODE

Listing: Squaring Operation
−− Author : Miriam K i r s t i n e Huseby
−− Company : U n i v e r s i t y o f Oslo
−− F i l e name : s q u a r e r . vhd
−− Date : 1 1 . 0 3 . 2 0 1 3
−− V e r s i o n : 01
−− P r o j e c t : Master p r o j e c t
−− Func t i on : Squar ing o p e r a t i o n

l i b r a r y i e e e ;
use i e e e . s t d _ l o g i c _ 1 1 6 4 . a l l ;
use i e e e . numeric_std . a l l ;

e n t i t y squarer i s
port

(
c l k : in s t d _ l o g i c ;

data_in : in signed (30 downto 0) ;
data_out : out signed (61 downto 0) −− 61 b i t out

) ;

end squarer ;

a r c h i t e c t u r e squarer_arch of squarer i s
s ignal product : signed (61 downto 0) ;
s ignal squared : signed (30 downto 0) ;

begin
squared <= data_in ;
product <= squared * squared ; −− m u l t i p l i e s t h e s i g n a l

SQUARE:
process (c l k)
begin

i f r i s ing_edge (c l k) then
data_out <= product ;

end i f ;
end process SQUARE;

end squarer_arch ;

D.2. ECG MODULE 137

Listing: Moving Window Integration
−− Author : Miriam K i r s t i n e Huseby
−− Company : U n i v e r s i t y o f Oslo
−− F i l e name : mov_int . vhd
−− Date : 1 3 . 0 3 . 2 0 1 3
−− P r o j e c t : Master t h e s i s
−− Func t i on : 30 t a p FIR f i l t e r f o r Moving window i n t e g r a t o r
−− From : h t t p : / / vhdlguru . b l o g s p o t . no / 2 0 1 1 / 0 6 / vhdl−code−f o r−4−tap−f i r− f i l t e r . html

l i b r a r y i e e e ;
use i e e e . s t d _ l o g i c _ 1 1 6 4 . a l l ;
use i e e e . numeric_std . a l l ;

e n t i t y mov_int i s
port (

c l k : in s t d _ l o g i c ; −− c l o c k s i g n a l
x_in : in signed (61 downto 0) ; −−i n p u t s i g n a l
y_out : out signed (63 downto 0) −− f i l t e r o u tp ut 64 b i t

) ;
end mov_int ;

a r c h i t e c t u r e beh of mov_int i s

component d_f f i s
port (

c l k : in s t d _ l o g i c ; −− c l o c k i n p u t
D : in signed (123 downto 0) ; −− d a t a i n p u t from t h e mcm b l o c k
Q : out signed (123 downto 0) −− ou tp ut c o n n e c t e d t o t h e a d d e r

) ;
end component ;

s ignal H0, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10 , H11 , H12 , H13 , H14 , H15 , H16 , H17 , H18 , H19 ,
H20 , H21 , H22 , H23 , H24 , H25 , H26 , H27 , H28 , H29 : signed (61 downto 0) := (others => ’ 0 ’) ;

s ignal M0, M1, M2, M3, M4, M5, M6, M7, M8, M9, M10, M11, M12, M13, M14, M15, M16, M17, M18, M19,
M20, M21, M22, M23, M24, M25, M26, M27, M28, M29 : signed (123 downto 0) := (others => ’ 0 ’) ;

s ignal add1 , add2 , add3 , add4 , add5 , add6 , add7 , add8 , add9 , add10 , add11 , add12 , add13 , add14 , add15 ,
add16 , add17 , add18 , add19 , add20 , add21 , add22 , add23 , add24 , add25 , add26 , add27 , add28 ,
add29 : signed (123 downto 0) := (others => ’ 0 ’) ;

s ignal Q1 , Q2 , Q3 , Q4 , Q5 , Q6 , Q7 , Q8 , Q9 , Q10 , Q11 , Q12 , Q13 , Q14 , Q15 , Q16 , Q17 , Q18 , Q19 ,
Q20 , Q21 , Q22 , Q23 , Q24 , Q25 , Q26 , Q27 , Q28 , Q29 : signed (123 downto 0) := (others => ’ 0 ’) ;

begin

−− f i l t e r c o e f f i c i e n t i n i t i a l i z a t i o n s
−− H = [1 1]

H0 <= to_signed (1 , 6 2) ;

−−m u l t i p l e c o n s t a n t m u l t i p l i c a t i o n s
M0 <= H0* x_in ;

−− a d d e r s
add1 <= Q1 + M0;
add2 <= Q2 + M0;
add3 <= Q3 + M0;
add4 <= Q4 + M0;
add5 <= Q5 + M0;
add6 <= Q6 + M0;
add7 <= Q7 + M0;
add8 <= Q8 + M0;
add9 <= Q9 + M0;
add10 <= Q10 + M0;
add11 <= Q11 + M0;
add12 <= Q12 + M0;
add13 <= Q13 + M0;
add14 <= Q14 + M0;
add15 <= Q15 + M0;

138 APPENDIX D. VHDL CODE

add16 <= Q16 + M0;
add17 <= Q17 + M0;
add18 <= Q18 + M0;
add19 <= Q19 + M0;
add20 <= Q20 + M0;
add21 <= Q21 + M0;
add22 <= Q22 + M0;
add23 <= Q23 + M0;
add24 <= Q24 + M0;
add25 <= Q25 + M0;
add26 <= Q26 + M0;
add27 <= Q27 + M0;
add28 <= Q28 + M0;
add29 <= Q29 + M0;

−− f l i p −f l o p s (f o r i n t r o d u c i n g a d e l a y)
d_f f1 : d_ f f
port map(c lk , M29, Q1) ;

d_f f2 : d_ f f
port map(c lk , add1 , Q2) ;

d_f f3 : d_ f f
port map(c lk , add2 , Q3) ;

d_f f4 : d_ f f
port map(c lk , add3 , Q4) ;

d_f f5 : d_ f f
port map(c lk , add4 , Q5) ;

d_f f6 : d_ f f
port map(c lk , add5 , Q6) ;

d_f f7 : d_ f f
port map(c lk , add6 , Q7) ;

d_f f8 : d_ f f
port map(c lk , add7 , Q8) ;

d_f f9 : d_ f f
port map(c lk , add8 , Q9) ;

d_f f10 : d_ f f
port map(c lk , add9 , Q10) ;

d_f f11 : d_ f f
port map(c lk , add10 , Q11) ;

d_f f12 : d_ f f
port map(c lk , add11 , Q12) ;

d_f f13 : d_ f f
port map(c lk , add12 , Q13) ;

d_f f14 : d_ f f
port map(c lk , add13 , Q14) ;

d_f f15 : d_ f f
port map(c lk , add14 , Q15) ;

d_f f16 : d_ f f
port map(c lk , add15 , Q16) ;

d_f f17 : d_ f f
port map(c lk , add16 , Q17) ;

d_f f18 : d_ f f

D.2. ECG MODULE 139

port map(c lk , add17 , Q18) ;

d_f f19 : d_ f f
port map(c lk , add18 , Q19) ;

d_f f20 : d_ f f
port map(c lk , add19 , Q20) ;

d_f f21 : d_ f f
port map(c lk , add20 , Q21) ;

d_f f22 : d_ f f
port map(c lk , add21 , Q22) ;

d_f f23 : d_ f f
port map(c lk , add22 , Q23) ;

d_f f24 : d_ f f
port map(c lk , add23 , Q24) ;

d_f f25 : d_ f f
port map(c lk , add24 , Q25) ;

d_f f26 : d_ f f
port map(c lk , add25 , Q26) ;

d_f f27 : d_ f f
port map(c lk , add26 , Q27) ;

d_f f28 : d_ f f
port map(c lk , add27 , Q28) ;

d_f f29 : d_ f f
port map(c lk , add28 , Q29) ;

−− an ou tp ut produced a t e v e r y p o s i t i v e edge o f c l o c k c y c l e
process (c l k)
begin

i f (r i s ing_edge (c l k)) then
y_out <= add29 (63 downto 0) ;

end i f ;
end process ;

end beh ;

140 APPENDIX D. VHDL CODE

Listing: D Flip-Flop for Moving Window Integration
−− Author : Miriam K i r s t i n e Huseby
−− Company : U n i v e r s i t y o f Oslo
−− F i l e name : d _ f f . vhd
−− Date : 1 3 . 0 3 . 2 0 1 3
−− P r o j e c t : Master t h e s i s
−− Func t i on : D F l i p−Flop f o r Moving window i n t e g r a t o r
−− From : h t t p : / / vhdlguru . b l o g s p o t . no / 2 0 1 1 / 0 6 / vhdl−code−f o r−4−tap−f i r− f i l t e r . html

l i b r a r y i e e e ;
use i e e e . s t d _ l o g i c _ 1 1 6 4 . a l l ;
use i e e e . numeric_std . a l l ;

e n t i t y d_f f i s
port (

c l k : in s t d _ l o g i c ; −− c l o c k i n p u t
D : in signed (123 downto 0) ; −− d a t a i n p u t from t h e mcm b l o c k
Q : out signed (123 downto 0) −− ou tp ut c o n n e c t e d t o t h e a d d e r

) ;
end d_f f ;

a r c h i t e c t u r e beh of d_f f i s
s ignal qt : signed (123 downto 0) := (others => ’ 0 ’) ;

begin
Q <= qt ;
d_ f f :
process (c l k)
begin

i f (r i s ing_edge (c l k)) then
qt <= D;

end i f ;
end process ;

end beh ;

D.2. ECG MODULE 141

Listing: Peak Detection
−− Author : Miriam K i r s t i n e Huseby
−− Company : U n i v e r s i t y o f Oslo
−− F i l e name : p e a k _ d e t e c t . vhd
−− Date : 0 2 . 0 4 . 2 0 1 3
−− P r o j e c t : Master p r o j e c t
−− Func t i on : Peak d e t e c t i o n .

l i b r a r y i e e e ;
use i e e e . s t d _ l o g i c _ 1 1 6 4 . a l l ;
use i e e e . numeric_std . a l l ;

e n t i t y peak_detect i s
port

(
c l k : in s t d _ l o g i c ;
x_in : in signed (63 downto 0) ;
y_out : out unsigned (8 downto 0)

) ;
end peak_detect ;

a r c h i t e c t u r e peak_detect_arch of peak_detect i s
s ignal data_int , data_q : signed (63 downto 0) := (others => ’ 0 ’) ;
s ignal data_max : signed (63 downto 0) := (others => ’ 0 ’) ;
s ignal thr1 : signed (63 downto 0) ;

begin

−− Finds t h e f i r s t t h r e s h o l d f o r t h e incoming s i g n a l b a s e d on t h e f i r s t 400 s a m p l e s .
threshold :
process (c l k)

var iable cnt : i n t e g e r := 0 ;
begin

i f (r i s ing_edge (c l k)) then
d a t a _ i n t <= x_in ;
i f (cnt = 400) then −−400

thr1 <= data_max /3;
e lse

i f (data_max < d a t a _ i n t) then
data_max <= d a t a _ i n t ;

e lse
data_max <= data_max ;

end i f ;
cnt := cnt + 1 ;

end i f ;
end i f ;

end process threshold ;

peak :
process (c l k)
var iable peakPos : i n t e g e r := 0 ;
var iable peakDistance : i n t e g e r := 0 ;
var iable t o t a l D i s t a n c e : i n t e g e r := 0 ;
var iable beat : i n t e g e r := 0 ;
var iable beatDis tance : i n t e g e r := 0 ;

var iable thr2 : signed (63 downto 0) := thr1 ;

begin
i f (r i s ing_edge (c l k)) then

beat := beat + 1 ;
i f (x_in > thr2) then −− Input i s h i g h e r than t r e s h o l d so we s t a r t c h e c k i n g f o r p e a k s

i f (x_in > data_q) then −− Thi s i s a p o s s i b l e peak , but i t i s not y e t c o n f i r m e d
data_q <= x_in ;
peakPos := beat ; −− We s e t t h e peak p o s i t i o n t o t h e c u r r e n t b e a t e v e r y t ime

end i f ; −−− we r e a c h a v a l u e h i g h e r th en t h e p r e v i o u s v a l u e
end i f ;

142 APPENDIX D. VHDL CODE

i f (thr2 >= x_in and data_q >= thr2) then
i f (peakPos > 0) then

peakDistance := beat − peakPos ;
beatDis tance := beat − peakDistance ;
t o t a l D i s t a n c e := beatDis tance + peakDistance ;
i f (t o t a l D i s t a n c e > 50) then

beat := 1 ; −− R e s e t s t h e b e a t c o u n t e r
peakPos := 0 ; −− S e t t h e peak d i s t a n c e t o z e r o
thr2 := data_q /3; −− A d a p t i v e t h r e s h o l d
data_q <= (others => ’ 0 ’) ; −− R e s e t t h e d a t a _ q
y_out <= to_unsigned (t o t a l D i s t a n c e , 9) ; −−ou tp ut

e lse
t o t a l D i s t a n c e := t o t a l D i s t a n c e + 1 ;
data_q <= (others => ’ 0 ’) ;

end i f ;
end i f ;

end i f ;
end i f ;

end process peak ;

end peak_detect_arch ;

D.2. ECG MODULE 143

−− Author : Miriam K i r s t i n e Huseby
−− Company : U n i v e r s i t y o f Oslo
−− F i l e name : h e a r t r a t e . vhd
−− Date : 1 3 . 0 3 . 2 0 1 3
−− P r o j e c t : Master t h e s i s
−− Func t i on : 8 t a p FIR f i l t e r f o r Moving window i n t e g r a t o r
−− From : h t t p : / / vhdlguru . b l o g s p o t . no / 2 0 1 1 / 0 6 / vhdl−code−f o r−4−tap−f i r− f i l t e r . html

l i b r a r y i e e e ;
use i e e e . s t d _ l o g i c _ 1 1 6 4 . a l l ;
use i e e e . numeric_std . a l l ;

e n t i t y h e a r t r a t e i s
port (

c l k : in s t d _ l o g i c ; −− c l o c k s i g n a l
x_in : in unsigned (8 downto 0) ; −−i n p u t s i g n a l from p e a k _ d e t e c t o r
y_out : out unsigned (31 downto 0) −− f i l t e r ou tp ut 18 b i t , s a t t opp t i l 32 b i t f o r f l o a t c o n v e r s i o n

) ;
end h e a r t r a t e ;

a r c h i t e c t u r e beh of h e a r t r a t e i s

component d_f f_hr i s
port (

c l k : in s t d _ l o g i c ; −− c l o c k i n p u t
D : in unsigned (31 downto 0) ; −− d a t a i n p u t from t h e mcm b l o c k
Q : out unsigned (31 downto 0) −− ou tp ut c o n n e c t e d t o t h e a d d e r

) ;
end component ;

s ignal H0 : unsigned (22 downto 0) := (others => ’ 0 ’) ;
s ignal M0, M1, M2, M3, M4, M5, M6, M7 : unsigned (31 downto 0) := (others => ’ 0 ’) ;
s ignal add1 , add2 , add3 , add4 , add5 , add6 , add7 : unsigned (31 downto 0) := (others => ’ 0 ’) ;
s ignal Q1 , Q2 , Q3 , Q4 , Q5 , Q6 , Q7 : unsigned (31 downto 0) := (others => ’ 0 ’) ;

begin

−− f i l t e r c o e f f i c i e n t i n i t i a l i z a t i o n s
−− H = [1 1 1 1 1 1 1 1]

H0 <= to_unsigned (1 , 2 3) ;

−−m u l t i p l e c o n s t a n t m u l t i p l i c a t i o n s
M7 <= H0* x_in ;
M6 <= H0* x_in ;
M5 <= H0* x_in ;
M4 <= H0* x_in ;
M3 <= H0* x_in ;
M2 <= H0* x_in ;
M1 <= H0* x_in ;
M0 <= H0* x_in ;

−− a d d e r s
add1 <= Q1 + M6;
add2 <= Q2 + M5;
add3 <= Q3 + M4;
add4 <= Q4 + M3;
add5 <= Q5 + M2;
add6 <= Q6 + M1;
add7 <= Q7 + M0;

−− f l i p −f l o p s (f o r i n t r o d u c i n g a d e l a y)
d_f f1 : d_f f_hr
port map(c lk , M7, Q1) ;

d_f f2 : d_f f_hr
port map(c lk , add1 , Q2) ;

144 APPENDIX D. VHDL CODE

d_f f3 : d_f f_hr
port map(c lk , add2 , Q3) ;

d_f f4 : d_f f_hr
port map(c lk , add3 , Q4) ;

d_f f5 : d_f f_hr
port map(c lk , add4 , Q5) ;

d_f f6 : d_f f_hr
port map(c lk , add5 , Q6) ;

d_f f7 : d_f f_hr
port map(c lk , add6 , Q7) ;

−− an ou tp ut produced a t e v e r y p o s i t i v e edge o f c l o c k c y c l e
process (c l k)
begin

i f (r i s ing_edge (c l k)) then
y_out <= add7 ;

end i f ;
end process ;

end beh ;

D.2. ECG MODULE 145

−− Author : Miriam K i r s t i n e Huseby
−− Company : U n i v e r s i t y o f Oslo
−− F i l e name : d _ f f _ h r . vhd
−− Date : 0 7 . 0 5 . 2 0 1 3
−− P r o j e c t : Master t h e s i s
−− Func t i on : D F l i p−Flop f o r Moving window i n t e g r a t o r t o d e t e r m i n e h e a r t r a t e
−− From : h t t p : / / vhdlguru . b l o g s p o t . no / 2 0 1 1 / 0 6 / vhdl−code−f o r−4−tap−f i r− f i l t e r . html

l i b r a r y i e e e ;
use i e e e . s t d _ l o g i c _ 1 1 6 4 . a l l ;
use i e e e . numeric_std . a l l ;

e n t i t y d_f f_hr i s
port (

c l k : in s t d _ l o g i c ; −− c l o c k i n p u t
D : in unsigned (31 downto 0) ; −− d a t a i n p u t from t h e mcm b l o c k
Q : out unsigned (31 downto 0) −− ou tp ut c o n n e c t e d t o t h e a d d e r

) ;
end d_f f_hr ;

a r c h i t e c t u r e beh of d_f f_hr i s
s ignal qt : unsigned (31 downto 0) := (others => ’ 0 ’) ;

begin
Q <= qt ;
d_f f_hr :
process (c l k)
begin

i f (r i s ing_edge (c l k)) then
qt <= D;

end i f ;
end process ;

end beh ;

146 APPENDIX D. VHDL CODE

Appendix E

iPad Application Code

E.1 Python script for ECG Server

Listing: TCP/IP Server for generating data to iPad app
S e r v e r t o t r a n s m i t s i m u l a t e d b i o m e d i c a l s i g n a l s t o iPad a p p l i c a t i o n
P r o j e c t : Master T h e s i s
Wri t t en by J o n a s H a g s t e d t & Miriam Huseby
Date : 2 8 . 0 4 . 2 0 1 3

import random
from gevent import server
from gevent import event
from gevent . monkey import p a t c h _ a l l ; p a t c h _ a l l ()
import gevent
from mult iprocess ing import Process
import os
from datetime import datetime

c l a s s EkgClient (o b j e c t) :
def _ _ i n i t _ _ (s e l f , socket , address , server_handler) :

s e l f . socket = socket
s e l f . address = address
s e l f . server_handler = server_handler
gevent . spawn (s e l f . l i s t e n)

def l i s t e n (s e l f) :
f = s e l f . socket . makef i le ()
while True :

l i n e = f . r e a d l i n e ()
i f not l i n e :

print ’ c l i e n t died ’
del s e l f . server_handler . users [s e l f . address]
break

l i n e = l i n e . r s t r i p ()
for addr , c in s e l f . server_handler . users . i t e r i t e m s () :

msg = ’<%s> says : %s ’ % (s e l f . address , l i n e)
c . send (msg)

print ’<%s >: %s ’ % (s e l f . address , l i n e)

def send (s e l f , msg) :
f = s e l f . socket . makef i le ()
f . wri te (’%s\r\n ’ % msg)
f . f l u s h ()

147

148 APPENDIX E. IPAD APPLICATION CODE

c l a s s EkgServerHandler (o b j e c t) :
def _ _ i n i t _ _ (s e l f) :

s e l f . users = { }
s e l f . generate_metr ics_event = event . Event ()
gevent . spawn_later (1 , s e l f . generate_metr ic_data)
s e l f . command_list = [’RANDOM’ , ’MAX’]
s e l f . command = ’RANDOM’

def _ _ c a l l _ _ (s e l f , socket , address) :
c l i e n t = EkgClient (socket , address , s e l f)
s e l f . users [address] = c l i e n t
s e l f . socket = socket
s e l f . address = address
print ’ connect ion made ’

def set_command (s e l f , cmd) :
i f cmd in s e l f . command_list :

s e l f . command = cmd
print cmd

def generate_metr ic_data (s e l f) :
print ’ s t a r t i n g ekg ’
while True :

data = ’%s %s %s %s ’ % (
s e l f . generate_ekg_data () ,
s e l f . generate_conductance_data () ,
s e l f . g e n e r a t e _ p o t e n t i a l _ d a t a () ,
s e l f . generate_susceptance_data ()

)
s e l f . send_data (data)

s e l f . generate_metr ics_event . wait (0 . 3)

def generate_ekg_data (s e l f) :
ekg_data = [s t r (i n t (1 7 * random . random () + 5 8)) for i in xrange (1)]
t = datetime . now () . time ()
ekg_data = [s t r (t . second + 50) for i in xrange (1 1)]
ekg_data = ’E%s ’ % ’ , ’ . j o i n (ekg_data)
return ekg_data

def generate_conductance_data (s e l f) :
con_data = [s t r (i n t (3 2 . 5 * random . random () + 3 7 . 5)) for i in xrange (1)]
c o n _ d a t a = [’ 1 0 3 ’ f o r i in xrange (1 1)]
con_data = ’C%s ’ % ’ , ’ . j o i n (con_data)
return con_data

def generate_susceptance_data (s e l f) :
sus_data = [s t r (i n t (4 * random . random () + 1 8)) for i in xrange (1)]
s u s _ d a t a = [’ 7 0 ’ f o r i in xrange (1 1)]
sus_data = ’ S%s ’ % ’ , ’ . j o i n (sus_data)
return sus_data

def g e n e r a t e _ p o t e n t i a l _ d a t a (s e l f) :
pot_data = [s t r (i n t (2 3 * random . random () + −20)) for i in xrange (1)]
p o t _ d a t a = [’−10 ’ f o r i in xrange (1 1)]
pot_data = ’P%s ’ % ’ , ’ . j o i n (pot_data)
return pot_data

def send_data (s e l f , data) :
for addr , c in s e l f . users . i t e r i t e m s () :

c . send (data)
p r i n t ’ s e n t t o %s c l i e n t s ’ % l e n (s e l f . u s e r s)

def c l e a r _ s c r e e n () :
os . system ([’ c l e a r ’ , ’ c l s ’] [os . name == ’ nt ’])

E.1. PYTHON SCRIPT FOR ECG SERVER 149

def handle_command (cmd) :
c l e a r _ s c r e e n ()
print cmd
server . handle . set_command (cmd)

print (’\r\n ’)
print (’Command l i s t :\ r\n ’)
print (’\r\n ’)

i f __name__ == ’ __main__ ’ :
se rver = server . StreamServer ((’ 0 . 0 . 0 . 0 ’ , 5 0 0 0) , EkgServerHandler ())
p = Process (t a r g e t = server . s e r v e _ f o r e v e r)
p . s t a r t ()
cmd = raw_input ()
while cmd != ’ q ’ :

cmd = raw_input ()
handle_command (cmd)

150 APPENDIX E. IPAD APPLICATION CODE

E.2 iPad Application

Listing: main file
/ /
/ / main .m
/ / B i o P l o t
/ /
/ / C r e a t e d by J o n a s H a g s t e d t on 2 7 / 0 4 / 2 0 1 3 .
/ / C o p y r i g h t __MyCompanyName__ 2013 . A l l r i g h t s r e s e r v e d .
/ /

import <UIKit/UIKit . h>

i n t main (i n t argc , char * argv []) {

NSAutoreleasePool * pool = [[NSAutoreleasePool a l l o c] i n i t] ;
i n t r e t V a l = UIApplicationMain (argc , argv , n i l , @" AppController ") ;
[pool r e l e a s e] ;
return r e t V a l ;

}

E.2. IPAD APPLICATION 151

Listing: IntroLayer header file
/ /
/ / I n t r o L a y e r . h
/ / B i o P l o t
/ /
/ / C r e a t e d by J o n a s H a g s t e d t on 2 7 / 0 4 / 2 0 1 3 .
/ / C o p y r i g h t __MyCompanyName__ 2013 . A l l r i g h t s r e s e r v e d .
/ /

/ / When you im po r t t h i s f i l e , you im po r t a l l t h e c o c o s 2 d c l a s s e s
import " cocos2d . h"

/ / He l l oWor ldLaye r
@ i n t e r f a c e IntroLayer : CCLayer
{
}

/ / r e t u r n s a CCScene t h a t c o n t a i n s t h e He l l oWor ldLaye r as t h e on ly c h i l d
+(CCScene *) scene ;

@end

Listing: IntroLayer m file
/ /
/ / I n t r o L a y e r .m
/ / B i o P l o t
/ /
/ / C r e a t e d by J o n a s H a g s t e d t on 2 7 / 0 4 / 2 0 1 3 .
/ / C o p y r i g h t __MyCompanyName__ 2013 . A l l r i g h t s r e s e r v e d .
/ /

/ / Impor t t h e i n t e r f a c e s
import " IntroLayer . h"
import " HelloWorldLayer . h"

#pragma mark − IntroLayer

/ / He l l oWor ldLaye r i m p l e m e n t a t i o n
@implementation IntroLayer

/ / He l p e r c l a s s method t h a t c r e a t e s a Scene with t h e He l l oWor ldLaye r as t h e on ly c h i l d .
+(CCScene *) scene
{

/ / ’ s c e n e ’ i s an a u t o r e l e a s e o b j e c t .
CCScene * scene = [CCScene node] ;

/ / ’ l a y e r ’ i s an a u t o r e l e a s e o b j e c t .
IntroLayer * l a y e r = [IntroLayer node] ;

/ / add l a y e r as a c h i l d t o s c e n e
[scene addChild : l a y e r] ;

/ / r e t u r n t h e s c e n e
return scene ;

}

/ /
−(void) onEnter
{

[super onEnter] ;

/ / a s k d i r e c t o r f o r t h e window s i z e
CGSize s i z e = [[CCDirector sharedDirec tor] winSize] ;

152 APPENDIX E. IPAD APPLICATION CODE

CCSprite * background ;

i f (UI_USER_INTERFACE_IDIOM () == UIUserInterfaceIdiomPhone) {
background = [CCSprite s p r i t e W i t h F i l e :@" Defaul t . png "] ;
background . r o t a t i o n = 9 0 ;

} e lse {
background = [CCSprite s p r i t e W i t h F i l e :@" Default−Landscape~ipad . png "] ;

}
background . p o s i t i o n = ccp (s i z e . width /2 , s i z e . height / 2) ;

/ / add t h e l a b e l a s a c h i l d t o t h i s Layer
[s e l f addChild : background] ;

/ / In one s e c o n d t r a n s i t i o n t o t h e new s c e n e
[s e l f scheduleOnce : @ s e l e c t o r (makeTransition :) delay : 0 . 1] ;

}

−(void) makeTransition : (ccTime) dt
{

[[CCDirector sharedDirec tor] replaceScene : [CCTransitionFade trans i t ionWithDurat ion : 1 . 0 scene : [HelloWorldLayer scene] withColor : ccWHITE]] ;
}
@end

E.2. IPAD APPLICATION 153

Listing: HelloWorldLayer header file
/ /
/ / He l l oWor ldLaye r . h
/ / B i o P l o t
/ /
/ / C r e a t e d by J o n a s H a g s t e d t on 2 7 / 0 4 / 2 0 1 3 .
/ / C o p y r i g h t __MyCompanyName__ 2013 . A l l r i g h t s r e s e r v e d .
/ /

import <GameKit/GameKit . h>

/ / When you im po r t t h i s f i l e , you im po r t a l l t h e c o c o s 2 d c l a s s e s
import " cocos2d . h"
import " Connect iv i ty . h"
import " GraphDetail . h "
import " G e t S e t t i n g s . h"

/ / He l l oWor ldLaye r
@ i n t e r f a c e HelloWorldLayer : CCLayer <ConnectionDelegate > {

NSTimer * t imer ;
NSMutableArray * newData ;
NSMutableDictionary * graphs ;
Connect iv i ty * connect ion ;

CCLabelTTF * ekgLabelVal ;
CCLabelTTF * conLabelVal ;
CCLabelTTF * susLabelVal ;
CCLabelTTF * potLabelVal ;

}

/ / r e t u r n s a CCScene t h a t c o n t a i n s t h e He l l oWor ldLaye r as t h e on ly c h i l d
+(CCScene *) scene ;
− (void) receivedNewData : (NSArray *) someData forGraph : (NSString *) graphId ;

@end

Listing: HelloWorldLayer m file
/ /
/ / He l l oWor ldLaye r .m
/ / DrawLineNonsense
/ /
/ / C r e a t e d by J o n a s H a g s t e d t & Miriam Huseby on 2 7 / 0 4 / 2 0 1 3 .
/ / C o p y r i g h t __MyCompanyName__ 2013 . A l l r i g h t s r e s e r v e d .
/ /

/ / Impor t t h e i n t e r f a c e s
import " HelloWorldLayer . h"

/ / Needed t o o b t a i n t h e N a v i g a t i o n C o n t r o l l e r
import " AppDelegate . h"

#pragma mark − HelloWorldLayer

/ / He l l oWor ldLaye r i m p l e m e n t a t i o n
@implementation HelloWorldLayer

/ / He l p e r c l a s s method t h a t c r e a t e s a Scene with t h e He l l oWor ldLaye r as t h e on ly c h i l d .
+(CCScene *) scene
{

/ / ’ s c e n e ’ i s an a u t o r e l e a s e o b j e c t .
CCScene * scene = [CCScene node] ;

/ / ’ l a y e r ’ i s an a u t o r e l e a s e o b j e c t .
HelloWorldLayer * l a y e r = [HelloWorldLayer node] ;

154 APPENDIX E. IPAD APPLICATION CODE

/ / add l a y e r as a c h i l d t o s c e n e
[scene addChild : l a y e r] ;

/ / r e t u r n t h e s c e n e
return scene ;

}

s t a t i c i n t pointCount = 0 ;
s t a t i c i n t screenMiddle = 0 ;
s t a t i c CGSize winSize ;

−(id) i n i t
{

i f ((s e l f =[super i n i t])) {
winSize = [[CCDirector sharedDirec tor] winSize] ;
pointCount = winSize . width ;
screenMiddle = winSize . height / 2 ;
newData = [NSMutableArray new] ;
graphs = [[NSMutableDictionary new] r e t a i n] ;

GraphDetail * ekg = [[GraphDetail a l l o c] initWithName :@" ekg " a n d V i s i b l e B u f f e r S i z e : k V i s i b l e B u f f e r S i z e andGraphId :@"E"] ;
ekg . r = 2 5 5 ;
ekg . g = 2 5 5 ;
ekg . b = 2 5 5 ;
ekg . shouldShowLabel = YES ;
ekg . labelFromVal = 5 0 ;
ekg . labelToVal = 1 6 0 ;
ekg . z e r o P o i n t P o s i t i o n = −40;
ekg . labe lPo int Increment = 1 0 ;
ekg . l a b e l T e x t = @" Heartrate : %.1 f bpm" ;
for (i n t i = 0 ; i < kDrawBufferSize ; i ++) {

[ekg . graphData addObject : [NSValue valueWithCGPoint : CGPointMake (i * kSpeedMult ipl ier + kLeftPadding , 5 0)]] ;
}
[graphs s e t O b j e c t : ekg forKey : ekg . graphId] ;
[ekg r e l e a s e] ;

GraphDetail * conductance = [[GraphDetail a l l o c] initWithName :@" conductance " a n d V i s i b l e B u f f e r S i z e : k V i s i b l e B u f f e r S i z e andGraphId :@"C"] ;
conductance . r = 0 ;
conductance . g = 2 5 5 ;
conductance . b = 0 ;
conductance . shouldShowLabel = YES ;
conductance . labelFromVal = −50;
conductance . labelToVal = 1 2 5 ;
conductance . z e r o P o i n t P o s i t i o n = 4 0 0 ;
conductance . labe lPo int Increment = 1 7 . 5 ;
conductance . l a b e l T e x t = @" Conductance : 0 . 0 uS " ;

for (i n t i = 0 ; i < kDrawBufferSize ; i ++) {
[conductance . graphData addObject : [NSValue valueWithCGPoint : CGPointMake (i * kSpeedMult ipl ier + kLeftPadding , −50)]] ;

}
[graphs s e t O b j e c t : conductance forKey : conductance . graphId] ;
[conductance r e l e a s e] ;

GraphDetail * susceptance = [[GraphDetail a l l o c] initWithName :@" susceptance " a n d V i s i b l e B u f f e r S i z e : k V i s i b l e B u f f e r S i z e andGraphId :@" S "] ;
susceptance . r = 3 0 ;
susceptance . g = 3 0 ;
susceptance . b = 2 5 5 ;
susceptance . shouldShowLabel = NO;
susceptance . labelFromVal = −50;
susceptance . labelToVal = 1 2 5 ;
susceptance . z e r o P o i n t P o s i t i o n = 4 0 0 ;
susceptance . labe lPoint Increment = 1 7 . 5 ;
susceptance . l a b e l T e x t = @"wa : 0 . 0 uS " ;

for (i n t i = 0 ; i < kDrawBufferSize ; i ++) {
[susceptance . graphData addObject : [NSValue valueWithCGPoint : CGPointMake (i * kSpeedMult ipl ier + kLeftPadding , −50)]] ;

}

E.2. IPAD APPLICATION 155

[graphs s e t O b j e c t : susceptance forKey : susceptance . graphId] ;
[susceptance r e l e a s e] ;

GraphDetail * p o t e n t i a l = [[GraphDetail a l l o c] initWithName :@" p o t e n t i a l " a n d V i s i b l e B u f f e r S i z e : k V i s i b l e B u f f e r S i z e andGraphId :@"P"] ;
p o t e n t i a l . r = 2 5 5 ;
p o t e n t i a l . g = 0 ;
p o t e n t i a l . b = 0 ;
p o t e n t i a l . shouldShowLabel = YES ;
p o t e n t i a l . l abe lR ightAl ign = YES ;
p o t e n t i a l . labelFromVal = −55;
p o t e n t i a l . labelToVal = 2 0 ;
p o t e n t i a l . z e r o P o i n t P o s i t i o n = 4 0 0 ;
p o t e n t i a l . l abe lPoint Increment = 7 . 5 ;
p o t e n t i a l . l a b e l T e x t = @" ro : 0 . 0 uS " ;

for (i n t i = 0 ; i < kDrawBufferSize ; i ++) {
[p o t e n t i a l . graphData addObject : [NSValue valueWithCGPoint : CGPointMake (i * kSpeedMult ipl ier + kLeftPadding , −55)]] ;

}
[graphs s e t O b j e c t : p o t e n t i a l forKey : p o t e n t i a l . graphId] ;
[p o t e n t i a l r e l e a s e] ;

/ / c r e a t e and i n i t i a l i z e l a b e l s
[s e l f drawLabels] ;

[s e l f scheduleUpdate] ;

connect ion = [Connect iv i ty new] ;
connect ion . de legate = s e l f ;
G e t S e t t i n g s * gs = [[G e t S e t t i n g s a l l o c] i n i t] ;
[connect ion connect : [gs getHost] port : [gs getPor t]] ;
[gs r e l e a s e] ;

/ / [c o n n e c t i o n c o n n e c t :@" 1 9 2 . 1 6 8 . 1 . 1 0 4 " p o r t : 5 0 0 0] ;
/ / t i m e r = [NSTimer s c h e d u l e d T i m e r W i t h T i m e I n t e r v a l : 0 . 3 t a r g e t : s e l f s e l e c t o r : @ s e l e c t o r (t i m e r F i r e d) u s e r I n f o : n i l r e p e a t s : YES] ;

}
return s e l f ;

}

− (void) t imerFired {
f l o a t r = getRandomSmall () ;
f l o a t val = getRandom () ;
NSMutableString * d a t a S t r i n g = [NSMutableString s t r i n g W i t h S t r i n g :@"E"] ;
for (i n t i = 0 ; i < r ; i ++) {

val = 1 5 0 ;
i f (i < r−1) {

[d a t a S t r i n g appendString : [NSString stringWithFormat :@"%f , " , val]] ;
} e lse {

[d a t a S t r i n g appendString : [NSString stringWithFormat :@"%f " , val]] ;
}

}
[d a t a S t r i n g appendString :@" C"] ;
for (i n t i = 0 ; i < r ; i ++) {

val = 1 0 0 ;
i f (i < r−1) {

[d a t a S t r i n g appendString : [NSString stringWithFormat :@"%f , " , val]] ;
} e lse {

[d a t a S t r i n g appendString : [NSString stringWithFormat :@"%f " , val]] ;
}

}
[s e l f dataAvai lable : d a t a S t r i n g] ;

}

/ / Th i s happens when t h e s o c k e t r e c e i v e s new d a t a (o r when t e s t t i m e r has done i t ’ s j o b)
− (void) dataAvai lable : (NSString *) data {

NSArray * rawGraphs = [data componentsSeparatedByString :@" "] ;

for (NSString * graphStr ing in rawGraphs) {
NSString * graphId = [graphStr ing substringToIndex : 1] ;
graphStr ing = [graphStr ing substringFromIndex : 1] ;

156 APPENDIX E. IPAD APPLICATION CODE

for (id key in graphs) {
GraphDetail * graphDetai l = [graphs objectForKey : key] ;
i f ([graphId isEqualToStr ing : graphDetai l . graphId]) {

NSArray * rawGraphData = [graphStr ing componentsSeparatedByString :@" , "] ;
NSMutableArray * graphData = [NSMutableArray new] ;
for (NSString * graphValue in rawGraphData) {

[graphData addObject : [NSNumber numberWithFloat : [graphValue f l o a t V a l u e]]] ;
}
[s e l f receivedNewData : graphData forGraph : graphDetai l . graphId] ;

}

i f ([graphDetai l . graphId isEqualToStr ing :@"E"])
ekgLabelVal . s t r i n g = [graphDetai l getLabelText] ;

e lse i f ([graphDetai l . graphId isEqualToStr ing :@"C"])
conLabelVal . s t r i n g = [graphDetai l getLabelText] ;

e lse i f ([graphDetai l . graphId isEqualToStr ing :@" S "])
susLabelVal . s t r i n g = [graphDetai l getLabelText] ;

e lse i f ([graphDetai l . graphId isEqualToStr ing :@"P"])
potLabelVal . s t r i n g = [graphDetai l getLabelText] ;

}
}

}

/ / P r o c e s s d a t a
− (void) receivedNewData : (NSArray *) someData forGraph : (NSString *) graphId {

/ / 1 . Check what graph t h e d a t a b e l o n g s t o
for (id key in graphs) {

GraphDetail * graphDetai l = [graphs objectForKey : key] ;
i f ([graphDetai l . graphId isEqualToStr ing : graphId]) {

i f ([someData count] > kReceivedBufferSize) {
NSUInteger x = [someData count] ;
graphDetai l . receivedGraphData = [[someData subarrayWithRange : (NSRange) { x−kReceivedBufferSize , kReceivedBufferSize }] copy] ;

} e lse {
graphDetai l . receivedGraphData = [someData copy] ;

}
}

}
}

−(void) draw {
[s e l f drawGraph] ;

}

− (void) drawGraph {
glLineWidth (1 . 0 f) ;

for (id key in graphs) {
GraphDetail * graphDetai l = [graphs objectForKey : key] ;
ccDrawColor4B (graphDetai l . r , graphDetai l . g , graphDetai l . b , 2 5 5) ;
for (i n t i = 0 ; i < graphDetai l . v i s i b l e B u f f e r S i z e ; i ++) {

NSMutableArray * drawBuffer = graphDetai l . graphData ;
CGPoint from = [[drawBuffer ob jectAtIndex : i] CGPointValue] ;
CGPoint to = [[drawBuffer ob jectAtIndex : i +1] CGPointValue] ;
from . y = ((from . y − graphDetai l . labelFromVal) * kSignalZoom) * [graphDetai l doStuf f] + graphDetai l . labelFromVal + graphDetai l . z e r o P o i n t P o s i t i o n ;
/ / t o . y = ((t o . y + g r a p h D e t a i l . z e r o P o i n t P o s i t i o n) * kSignalZoom) * [g r a p h D e t a i l d o S t u f f] ;
to . y = ((to . y − graphDetai l . labelFromVal) * kSignalZoom) * [graphDetai l doStuf f] + graphDetai l . labelFromVal + graphDetai l . z e r o P o i n t P o s i t i o n ;
/ / l a b e l F r o m V a l
ccDrawLine (from , to) ;

}
}

}

− (void) drawLabels {
CGFloat f o n t S i z e = 2 0 ;

E.2. IPAD APPLICATION 157

CGFloat labelTopPadding = 4 0 ;
CCLabelTTF * ekgLabel = [CCLabelTTF l ab e l Wi t h St r i ng :@" Heartra te (bpm) " fontName :@" Futura " f o n t S i z e : f o n t S i z e] ;
ekgLabel . anchorPoint = ccp (0 , 0) ;
ekgLabel . p o s i t i o n = ccp (1 0 , winSize . height − labelTopPadding) ;
[s e l f addChild : ekgLabel] ;

ekgLabelVal = [CCLabelTTF l a b e lW i t hS t r in g :@" 0 . 0 " fontName :@" Futura " f o n t S i z e : f o n t S i z e] ;
ekgLabelVal . anchorPoint = ccp (0 , 0) ;
ekgLabelVal . p o s i t i o n = ccp (1 0 , winSize . height − labelTopPadding * 2) ;
[s e l f addChild : ekgLabelVal] ;

CCLabelTTF * conLabel = [CCLabelTTF la b e lW i t hS t r in g :@" Conductance (uS) " fontName :@" Futura " f o n t S i z e : f o n t S i z e] ;
conLabel . anchorPoint = ccp (0 , 0) ;
conLabel . p o s i t i o n = ccp (2 1 0 , winSize . height − labelTopPadding) ;
conLabel . c o l o r = ccc3 (0 , 255 , 0) ;
[s e l f addChild : conLabel] ;

conLabelVal = [CCLabelTTF l ab e l Wi t h St r i ng :@" 0 . 0 " fontName :@" Futura " f o n t S i z e : f o n t S i z e] ;
conLabelVal . anchorPoint = ccp (0 , 0) ;
conLabelVal . p o s i t i o n = ccp (2 1 0 , winSize . height − labelTopPadding * 2) ;
conLabelVal . c o l o r = ccc3 (0 , 255 , 0) ;
[s e l f addChild : conLabelVal] ;

CCLabelTTF * susLabel = [CCLabelTTF l a be l W i th S t r i n g :@" Susceptance (uS) " fontName :@" Futura " f o n t S i z e : f o n t S i z e] ;
susLabel . anchorPoint = ccp (0 , 0) ;
susLabel . p o s i t i o n = ccp (4 3 0 , winSize . height − labelTopPadding) ;
susLabel . c o l o r = ccc3 (3 0 , 30 , 2 5 5) ;
[s e l f addChild : susLabel] ;

susLabelVal = [CCLabelTTF la b e lW i t h St r i ng :@" 0 . 0 " fontName :@" Futura " f o n t S i z e : f o n t S i z e] ;
susLabelVal . anchorPoint = ccp (0 , 0) ;
susLabelVal . p o s i t i o n = ccp (4 3 0 , winSize . height − labelTopPadding * 2) ;
susLabelVal . c o l o r = ccc3 (3 0 , 30 , 2 5 5) ;
[s e l f addChild : susLabelVal] ;

CCLabelTTF * potLabel = [CCLabelTTF la b e l Wi t h St r i ng :@" P o t e n t i a l (mV) " fontName :@" Futura " f o n t S i z e : f o n t S i z e] ;
potLabel . anchorPoint = ccp (0 , 0) ;
potLabel . p o s i t i o n = ccp (6 5 0 , winSize . height − labelTopPadding) ;
potLabel . c o l o r = ccc3 (2 5 5 , 0 , 0) ;
[s e l f addChild : potLabel] ;

potLabelVal = [CCLabelTTF la b e lW i t hS t r in g :@" 0 . 0 " fontName :@" Futura " f o n t S i z e : f o n t S i z e] ;
potLabelVal . anchorPoint = ccp (0 , 0) ;
potLabelVal . p o s i t i o n = ccp (6 5 0 , winSize . height − labelTopPadding * 2) ;
potLabelVal . c o l o r = ccc3 (2 5 5 , 0 , 0) ;
[s e l f addChild : potLabelVal] ;

for (id key in graphs) {
GraphDetail * graph = [graphs objectForKey : key] ;
i f (graph . shouldShowLabel) {

CGFloat l a b e l P o s i t i o n = graph . z e r o P o i n t P o s i t i o n + graph . labelFromVal ;
CGFloat x = 1 0 ;
i f (graph . labe lRightAl ign)

x = winSize . width − 3 0 ;
for (CGFloat i = graph . labelFromVal ; i <= graph . labelToVal ; i +=graph . labe lPo int Increment) {

NSString * t e x t = [NSString stringWithFormat :@" %.1 f " , i] ;
CCLabelTTF * l = [CCLabelTTF l a b e l W i th S t r i n g : t e x t fontName :@" Futura " f o n t S i z e : 1 2] ;
l . anchorPoint = ccp (0 , 0 . 5) ;
l . p o s i t i o n = ccp (x , l a b e l P o s i t i o n * kSignalZoom) ;
l . c o l o r = ccc3 (graph . r , graph . g , graph . b) ;
l a b e l P o s i t i o n += kGraphSpacing ; / / graph . l a b e l P o i n t I n c r e m e n t ;
[s e l f addChild : l] ;

}
}

}

/ / Lower l a b e l s
/ / i n t l a b e l P o s i t i o n = 0 + kBottomPadding ;

158 APPENDIX E. IPAD APPLICATION CODE

/ / f o r (i n t i = 5 0 ; i <= 1 6 0 ; i +=10) {
/ / NSString * t e x t = [NSString s t r i n g W i t h F o r m a t :@"%d " , i] ;
/ / CCLabelTTF * l = [CCLabelTTF l a b e l W i t h S t r i n g : t e x t fontName :@" Futura " f o n t S i z e : 1 2] ;
/ / l . c o l o r = c c c 3 (2 5 5 , 255 , 2 5 5) ;
/ / l . a n c h o r P o i n t = ccp (0 , 0 . 5) ;
/ / l . p o s i t i o n = ccp (1 0 , l a b e l P o s i t i o n * kSignalZoom) ;
/ / l a b e l P o s i t i o n +=10;
/ / [s e l f a d d C h i l d : l] ;
/ / }
/ /
/ / l a b e l P o s i t i o n = 130 + kBottomPadding ;
/ / f o r (f l o a t i = −55; i <= 2 5 ; i +=7.5) {
/ / NSString * t e x t = [NSString s t r i n g W i t h F o r m a t :@"%.1 f " , i] ;
/ / CCLabelTTF * l = [CCLabelTTF l a b e l W i t h S t r i n g : t e x t fontName :@" Futura " f o n t S i z e : 1 2] ;
/ / l . a n c h o r P o i n t = ccp (0 , 0 . 5) ;
/ / l . p o s i t i o n = ccp (winS iz e . width −30, l a b e l P o s i t i o n * kSignalZoom) ;
/ / l . c o l o r = c c c 3 (2 5 5 , 0 , 0) ;
/ / l a b e l P o s i t i o n +=13;
/ / [s e l f a d d C h i l d : l] ;
/ / }
/ /
/ / l a b e l P o s i t i o n = 130 + kBottomPadding ;
/ / f o r (f l o a t i = −50; i <= 1 3 0 ; i +=17.5) {
/ / NSString * t e x t = [NSString s t r i n g W i t h F o r m a t :@"%.1 f " , i] ;
/ / CCLabelTTF * l = [CCLabelTTF l a b e l W i t h S t r i n g : t e x t fontName :@" Futura " f o n t S i z e : 1 2] ;
/ / l . a n c h o r P o i n t = ccp (0 , 0 . 5) ;
/ / l . p o s i t i o n = ccp (1 0 , l a b e l P o s i t i o n * kSignalZoom) ;
/ / l . c o l o r = c c c 3 (0 , 0 , 2 5 5) ;
/ / l a b e l P o s i t i o n +=13;
/ / [s e l f a d d C h i l d : l] ;
/ / }

}

− (void) update : (ccTime) d e l t a {
for (id key in graphs) {

GraphDetail * graphDetai l = [graphs objectForKey : key] ;
[graphDetai l updateGraph] ;

}
}

f l o a t getRandom () {
f l o a t y = arc4random () % 2 5 0 ;
y += 5 0 ;
return y ;

}

f l o a t getRandomSmall () {
f l o a t y = arc4random () % 2 0 ;
return y ;

}

− (void) d e a l l o c
{

[super d e a l l o c] ;
[t imer r e l e a s e] ;
[newData r e l e a s e] ;
[graphs r e l e a s e] ;
[connect ion r e l e a s e] ;

}

@end

E.2. IPAD APPLICATION 159

Listing: GraphDetail header file
/ /
/ / G r a p h D e t a i l . h
/ / B i o P l o t
/ /
/ / C r e a t e d by J o n a s H a g s t e d t & Miriam Huseby on 2 8 / 0 4 / 2 0 1 3 .
/ /
/ /

import <Foundation/Foundation . h>

define kLeftPadding 50
define kRightPadding 10
define kSpeedMult ipl ier 4
define kDrawBufferSize ((1 0 2 4) / kSpeedMult ipl ier)−kRightPadding
define kReceivedBufferSize 10
define k V i s i b l e B u f f e r S i z e kDrawBufferSize − kReceivedBufferSize
define kSignalZoom 1
define kBottomPadding 10
define kGraphSpacing 25

@ i n t e r f a c e GraphDetail : NSObject

@property (nonatomic , r e t a i n) NSMutableArray * graphData ;
@property (nonatomic , r e t a i n) NSMutableArray * receivedGraphData ;
@property (nonatomic , r e t a i n) NSString *name ;
@property (nonatomic , r e t a i n) NSString * graphId ;

@property (nonatomic , ass ign) NSInteger v i s i b l e B u f f e r S i z e ;

@property (nonatomic , ass ign) NSInteger r ;
@property (nonatomic , ass ign) NSInteger g ;
@property (nonatomic , ass ign) NSInteger b ;
@property (nonatomic , ass ign) CGFloat z e r o P o i n t P o s i t i o n ;

@property (nonatomic , ass ign) CGFloat labelFromVal ;
@property (nonatomic , ass ign) CGFloat labelToVal ;
@property (nonatomic , ass ign) CGFloat labe lPo int Increment ;
@property (nonatomic , ass ign) BOOL shouldShowLabel ;
@property (nonatomic , ass ign) BOOL labe lRightAl ign ;

@property (nonatomic , r e t a i n) NSString * l a b e l T e x t ;

− (id) initWithName : (NSString *) theName a n d V i s i b l e B u f f e r S i z e : (NSInteger) a V i s i b l e B u f f e r S i z e andGraphId : (NSString *) aGraphId ;
− (void) updateGraph ;
− (CGFloat) doStuf f ;
− (NSString *) getLabelText ;
@end

Listing: GraphDetail m file
/ /
/ / G r a p h D e t a i l .m
/ / B i o P l o t
/ /
/ / C r e a t e d by J o n a s H a g s t e d t & Miriam Huseby on 2 8 / 0 4 / 2 0 1 3 .
/ /
/ /

import " GraphDetail . h "

@implementation GraphDetail

@synthesize graphId , graphData , name ;
@synthesize receivedGraphData ;
@synthesize v i s i b l e B u f f e r S i z e ;
@synthesize r , g , b ;

160 APPENDIX E. IPAD APPLICATION CODE

@synthesize z e r o P o i n t P o s i t i o n ;
@synthesize labelFromVal , labelToVal , shouldShowLabel , labe lPoint Increment , labe lRightAl ign ;
@synthesize l a b e l T e x t ;

− (id) initWithName : (NSString *) theName a n d V i s i b l e B u f f e r S i z e : (NSInteger) a V i s i b l e B u f f e r S i z e andGraphId : (NSString *) aGraphId {
i f (s e l f = [super i n i t]) {

s e l f . graphData = [[NSMutableArray a l l o c] i n i t] ;
s e l f . receivedGraphData = [[NSMutableArray a l l o c] i n i t] ;
s e l f . name = [[theName copy] r e t a i n] ;
s e l f . graphId = [[aGraphId copy] r e t a i n] ;
s e l f . v i s i b l e B u f f e r S i z e = a V i s i b l e B u f f e r S i z e ;

}
return s e l f ;

}

− (void) updateGraph {
for (i n t i = 0 ; i < [s e l f . graphData count]−1; i ++) {

NSValue * oldVal = [s e l f . graphData objectAtIndex : i] ;
NSValue * newVal = [s e l f . graphData objectAtIndex : i + 1] ;
NSValue *v = [NSValue valueWithCGPoint : CGPointMake (oldVal . CGPointValue . x , newVal . CGPointValue . y)] ;
[s e l f . graphData removeObjectAtIndex : i] ;
[s e l f . graphData i n s e r t O b j e c t : v atIndex : i] ;

}

i f (s e l f . receivedGraphData) {
for (NSInteger j = 0 ; j < [s e l f . receivedGraphData count] ; j ++) {

CGFloat y = [[s e l f . receivedGraphData objectAtIndex : j] f l o a t V a l u e] ;
/ / i n t i n d e x = s e l f . v i s i b l e B u f f e r S i z e + j ;

i n t index = kDrawBufferSize − [s e l f . receivedGraphData count] + j ;

i n t a l a l = [s e l f . receivedGraphData count] ;
CGFloat x = ((NSValue *) [s e l f . graphData objectAtIndex : index]) . CGPointValue . x ;
NSValue * newValue = [NSValue valueWithCGPoint : CGPointMake (x , y)] ;
[s e l f . graphData removeObjectAtIndex : index] ;
[s e l f . graphData i n s e r t O b j e c t : newValue atIndex : index] ;

}
s e l f . receivedGraphData = n i l ;

}
}

− (CGFloat) doStuf f {
return kGraphSpacing / s e l f . l abe lPo int Increment ;

}

− (NSString *) getLabelText {
NSNumber *n = [s e l f . receivedGraphData l a s t O b j e c t] ;
return [NSString stringWithFormat :@" %.1 f " , [n f l o a t V a l u e]] ;

}

− (void) d e a l l o c {
[super d e a l l o c] ;
[s e l f . graphData r e l e a s e] ;
[s e l f . name r e l e a s e] ;
[s e l f . graphId r e l e a s e] ;
[s e l f . receivedGraphData r e l e a s e] ;

}

@end

E.2. IPAD APPLICATION 161

Listing: GetSettings header file
/ /
/ / G e t S e t t i n g s . h
/ / B i o P l o t
/ /
/ / C r e a t e d by J o n a s H a g s t e d t on 2 9 / 0 4 / 2 0 1 3 .
/ /
/ /

import <Foundation/Foundation . h>

@ i n t e r f a c e G e t S e t t i n g s : NSObject {
NSUserDefaults * userDefaul t s ;

}

− (NSString *) getHost ;
− (NSInteger) ge tPor t ;
+ (void) reg is terDefaul t sFromSet t ingsBundle ;
@end

Listing: GetSettings m file
/ /
/ / G e t S e t t i n g s .m
/ / B i o P l o t
/ /
/ / C r e a t e d by J o n a s H a g s t e d t on 2 9 / 0 4 / 2 0 1 3 .
/ /
/ /

import " G e t S e t t i n g s . h"

@implementation G e t S e t t i n g s

− (id) i n i t {
i f (s e l f = [super i n i t]) {

userDefaul t s = [NSUserDefaults standardUserDefaults] ;
}
return s e l f ;

}

− (NSString *) getHost {
NSString * host = [userDefaul t s str ingForKey :@" hos t_pre ference "] ;
return host ;

}

− (NSInteger) ge tPor t {
NSInteger port = [userDefaul t s integerForKey :@" por t_pre ference "] ;
return port ;

}

+ (void) reg is terDefaul t sFromSet t ingsBundle {
NSString * se t t ingsBundle = [[NSBundle mainBundle] pathForResource :@" S e t t i n g s " ofType :@" bundle "] ;
i f (! se t t ingsBundle) {

NSLog(@" Could not f ind S e t t i n g s . bundle ") ;
return ;

}

NSDictionary * s e t t i n g s = [NSDictionary dic t ionaryWithContentsOfFi le : [se t t ingsBundle stringByAppendingPathComponent :@" Root . p l i s t "]] ;
NSArray * p r e fe r e n c es = [s e t t i n g s objectForKey :@" P r e f e r e n c e S p e c i f i e r s "] ;

NSMutableDictionary * d e f a u l t s T o R e g i s t e r = [[NSMutableDictionary a l l o c] in i tWithCapaci ty : [p r e fe r e n c es count]] ;
for (NSDictionary * p r e f S p e c i f i c a t i o n in p r e f e r e n ce s) {

NSString * key = [p r e f S p e c i f i c a t i o n objectForKey :@"Key"] ;
i f (key) {

[d e f a u l t s T o R e g i s t e r s e t O b j e c t : [p r e f S p e c i f i c a t i o n objectForKey :@" DefaultValue "] forKey : key] ;
}

162 APPENDIX E. IPAD APPLICATION CODE

}
[[NSUserDefaults standardUserDefaults] r e g i s t e r D e f a u l t s : d e f a u l t s T o R e g i s t e r] ;
[d e f a u l t s T o R e g i s t e r r e l e a s e] ;

}

@end

E.2. IPAD APPLICATION 163

Listing: Connectivity header file
/ /
/ / c o n n e c t i v i t y . h
/ / s t a t u s T h i n g y T e s t
/ /
/ / C r e a t e d by J o n a s H a g s t e d t on 2 5 / 0 1 / 2 0 1 3 .
/ / C o p y r i g h t (c) 2013 J o n a s H a g s t e d t . A l l r i g h t s r e s e r v e d .
/ /

import <Foundation/Foundation . h>

@protocol ConnectionDelegate <NSObject>
− (void) dataAvai lable : (NSString *) data ;
@end

@ i n t e r f a c e Connect iv i ty : NSObject <NSStreamDelegate >

@property (strong) NSInputStream * inputStream ;
@property (strong) NSOutputStream * outputStream ;

@property (strong) id <ConnectionDelegate > delegate ;

− (void) connect : (NSString *) host port : (f l o a t) port ;

@end

Listing: Connectivity m file
/ /
/ / c o n n e c t i v i t y .m
/ / s t a t u s T h i n g y T e s t
/ /
/ / C r e a t e d by J o n a s H a g s t e d t on 2 5 / 0 1 / 2 0 1 3 .
/ / C o p y r i g h t (c) 2013 J o n a s H a g s t e d t . A l l r i g h t s r e s e r v e d .
/ /

import " Connect iv i ty . h"

@implementation Connect iv i ty

@synthesize delegate , inputStream , outputStream ;

− (void) connect : (NSString *) host port : (f l o a t) port {
CFReadStreamRef readStream ;
CFWriteStreamRef writeStream ;

CFStreamCreatePairWithSocketToHost (NULL, (__bridge CFStringRef) host , port , &readStream , &writeStream) ;

inputStream = (_ _ b r i d g e _ t r a n s f e r NSInputStream *) readStream ;
outputStream = (_ _ b r i d g e _ t r a n s f e r NSOutputStream *) writeStream ;

[inputStream setDelegate : s e l f] ;
[outputStream setDelegate : s e l f] ;

[inputStream scheduleInRunLoop : [NSRunLoop currentRunLoop] forMode : NSDefaultRunLoopMode] ;
[outputStream scheduleInRunLoop : [NSRunLoop currentRunLoop] forMode : NSDefaultRunLoopMode] ;
[inputStream open] ;
[outputStream open] ;

}

− (void) stream : (NSStream *) theStream handleEvent : (NSStreamEvent) streamEvent {

switch (streamEvent) {

case NSStreamEventOpenCompleted :
NSLog(@" Stream opened ") ;
break ;

164 APPENDIX E. IPAD APPLICATION CODE

case NSStreamEventHasBytesAvailable :
i f (theStream == inputStream) {

u i n t 8 _ t b u f f e r [1 0 2 4] ;
i n t len ;

while ([inputStream hasBytesAvai lable]) {
len = (i n t) [inputStream read : b u f f e r maxLength : s i ze of (b u f f e r)] ;
i f (len > 0) {

NSData * data = [NSData dataWithBytes : b u f f e r length : len] ;
NSString * output = [[NSString a l l o c] ini tWithData : data encoding : NSASCIIStringEncoding] ;
[s e l f . de legate dataAvai lable : output] ;

}
}

}
break ;

case NSStreamEventErrorOccurred :
NSLog(@"Can not connect to the host ! ") ;
break ;

case NSStreamEventEndEncountered :
[theStream c l o s e] ;
[theStream removeFromRunLoop : [NSRunLoop currentRunLoop] forMode : NSDefaultRunLoopMode] ;
theStream = n i l ;

break ;
default :

NSLog(@"Unknown event ") ;
}

}

@end

E.2. IPAD APPLICATION 165

Listing: AppDelegate header file
/ /
/ / AppDelegate . h
/ / B i o P l o t
/ /
/ / C r e a t e d by J o n a s H a g s t e d t on 2 7 / 0 4 / 2 0 1 3 .
/ / C o p y r i g h t __MyCompanyName__ 2013 . A l l r i g h t s r e s e r v e d .
/ /

import <UIKit/UIKit . h>
import " cocos2d . h"

@ i n t e r f a c e AppController : NSObject <UIApplicationDelegate , CCDirectorDelegate >
{

UIWindow *window_ ;
UINavigat ionControl ler * navControl ler_ ;

CCDirectorIOS * d i r e c t o r _ ; / / weak r e f
}

@property (nonatomic , r e t a i n) UIWindow *window ;
@property (readonly) UINavigat ionControl ler * navControl ler ;
@property (readonly) CCDirectorIOS * d i r e c t o r ;

@end

Listing: AppDelegate m file
/ /
/ / AppDelegate .m
/ / B i o P l o t
/ /
/ / C r e a t e d by J o n a s H a g s t e d t on 2 7 / 0 4 / 2 0 1 3 .
/ / C o p y r i g h t __MyCompanyName__ 2013 . A l l r i g h t s r e s e r v e d .
/ /

import " cocos2d . h"

import " AppDelegate . h"
import " IntroLayer . h"
import " G e t S e t t i n g s . h"

@implementation AppController

@synthesize window=window_ , navControl ler=navControl ler_ , d i r e c t o r = d i r e c t o r _ ;

− (BOOL) a p p l i c a t i o n : (UIApplication *) a p p l i c a t i o n didFinishLaunchingWithOptions : (NSDictionary *) launchOptions
{

[G e t S e t t i n g s reg is terDefaul t sFromSet t ingsBundle] ;
/ / C r e a t e t h e main window
window_ = [[UIWindow a l l o c] initWithFrame : [[UIScreen mainScreen] bounds]] ;

/ / C r e a t e an CCGLView with a RGB565 c o l o r b u f f e r , and a d e p t h b u f f e r o f 0− b i t s
CCGLView * glView = [CCGLView viewWithFrame : [window_ bounds]

pixelFormat : kEAGLColorFormatRGB565 / / kEAGLColorFormatRGBA8
depthFormat : 0 / / GL_DEPTH_COMPONENT24_OES

preserveBackbuffer :NO
sharegroup : n i l

multiSampling :NO
numberOfSamples : 0] ;

d i r e c t o r _ = (CCDirectorIOS *) [CCDirector sharedDirec tor] ;

d i r e c t o r _ . wantsFullScreenLayout = YES ;

/ / D i s p l a y FSP and SPF

166 APPENDIX E. IPAD APPLICATION CODE

[d i r e c t o r _ s e t D i s p l a y S t a t s :NO] ;

/ / s e t FPS a t 60
[d i r e c t o r _ se tAnimat ionInterva l : 1 . 0 / 6 0] ;

/ / a t t a c h t h e openglView t o t h e d i r e c t o r
[d i r e c t o r _ setView : glView] ;

/ / f o r r o t a t i o n and o t h e r m e s s a g e s
[d i r e c t o r _ se tDe lega te : s e l f] ;

/ / 2D p r o j e c t i o n
[d i r e c t o r _ s e t P r o j e c t i o n : kCCDirectorProject ion2D] ;

/ / [d i r e c t o r s e t P r o j e c t i o n : k C C D i r e c t o r P r o j e c t i o n 3 D] ;

/ / E n a b l e s High Res mode (R e t i n a D i s p l a y) on iPhone 4 and m a i n t a i n s low r e s on a l l o t h e r d e v i c e s
i f (! [d i r e c t o r _ enableRet inaDisplay : YES])

CCLOG(@" Retina Display Not supported ") ;

/ / D e f a u l t t e x t u r e f o r m a t f o r PNG/BMP/ TIFF / JPEG / GIF images
/ / I t can be RGBA8888 , RGBA4444 , RGB5_A1 , RGB565
/ / You can change anyt ime .
[CCTexture2D setDefaultAlphaPixelFormat : kCCTexture2DPixelFormat_RGBA8888] ;

/ / I f t h e 1 s t s u f f i x i s not found and i f f a l l b a c k i s e n a b l e d then f a l l b a c k s u f f i x e s a r e go ing t o s e a r c h e d . I f none i s found , i t w i l l t r y with t h e name w i t h o u t s u f f i x .
/ / On iPad HD : "− i p ad hd " , "− i p a d " , "−hd"
/ / On iPad : "− i p a d " , "−hd"
/ / On iPhone HD: "−hd"
CCFi leUt i l s * s h a r e d F i l e U t i l s = [CCFi leUt i l s s h a r e d F i l e U t i l s] ;
[s h a r e d F i l e U t i l s s e t E n a b l e F a l l b a c k S u f f i x e s :NO] ; / / D e f a u l t : NO. No f a l l b a c k s u f f i x e s a r e go ing t o be used
[s h a r e d F i l e U t i l s se t iPhoneRet inaDisp laySuf f ix :@"−hd"] ; / / D e f a u l t on iPhone R e t i n a D i s p l a y i s "−hd"
[s h a r e d F i l e U t i l s s e t i P a d S u f f i x :@"−ipad "] ; / / D e f a u l t on iPad i s " i p a d "
[s h a r e d F i l e U t i l s s e t i P a d R e t i n a D i s p l a y S u f f i x :@"−ipadhd "] ; / / D e f a u l t on iPad R e t i n a D i s p l a y i s "− i p ad hd "

/ / Assume t h a t PVR images have p r e m u l t i p l i e d a l p h a
[CCTexture2D PVRImagesHavePremultipliedAlpha : YES] ;

/ / and add t h e s c e n e t o t h e s t a c k . The d i r e c t o r w i l l run i t when i t a u t o m a t i c a l l y when t h e view i s d i s p l a y e d .
[d i r e c t o r _ pushScene : [IntroLayer scene]] ;

/ / C r e a t e a N a v i g a t i o n C o n t r o l l e r wi th t h e D i r e c t o r
navControl ler_ = [[UINavigat ionControl ler a l l o c] ini tWithRootViewControl ler : d i r e c t o r _] ;
navControl ler_ . navigationBarHidden = YES ;

/ / s e t t h e N a v i g a t i o n C o n t r o l l e r a s t h e r o o t view c o n t r o l l e r
/ / [window_ addSubview : n a v C o n t r o l l e r _ . view] ; / / G e n e r a t e s f l i c k e r .

[window_ setRootViewControl ler : navControl ler_] ;

/ / make main window v i s i b l e
[window_ makeKeyAndVisible] ;

return YES ;
}

/ / Suppor t ed o r i e n t a t i o n s : Landscape . Customize i t f o r your own n e e d s
− (BOOL) shouldAutorota teToInter faceOr ienta t ion : (U I I n t e r f a c e O r i e n t a t i o n) i n t e r f a c e O r i e n t a t i o n
{

return UIInter faceOr ienta t ionIsLandscape (i n t e r f a c e O r i e n t a t i o n) ;
}

/ / g e t t i n g a c a l l , pause t h e game
−(void) appl i ca t ionWi l lRes ignAct ive : (UIApplicat ion *) a p p l i c a t i o n
{

i f ([navControl ler_ v i s i b l e V i e w C o n t r o l l e r] == d i r e c t o r _)
[d i r e c t o r _ pause] ;

}

E.2. IPAD APPLICATION 167

/ / c a l l g o t r e j e c t e d
−(void) applicationDidBecomeActive : (UIApplicat ion *) a p p l i c a t i o n
{

i f ([navControl ler_ v i s i b l e V i e w C o n t r o l l e r] == d i r e c t o r _)
[d i r e c t o r _ resume] ;

}

−(void) applicationDidEnterBackground : (UIApplicat ion *) a p p l i c a t i o n
{

i f ([navControl ler_ v i s i b l e V i e w C o n t r o l l e r] == d i r e c t o r _)
[d i r e c t o r _ stopAnimation] ;

}

−(void) appl icat ionWil lEnterForeground : (UIApplicat ion *) a p p l i c a t i o n
{

i f ([navControl ler_ v i s i b l e V i e w C o n t r o l l e r] == d i r e c t o r _)
[d i r e c t o r _ startAnimation] ;

}

/ / a p p l i c a t i o n w i l l be k i l l e d
− (void) appl ica t ionWil lTerminate : (UIApplication *) a p p l i c a t i o n
{

CC_DIRECTOR_END () ;
}

/ / purge memory
− (void) applicationDidReceiveMemoryWarning : (UIApplication *) a p p l i c a t i o n
{

[[CCDirector sharedDirec tor] purgeCachedData] ;
}

/ / n ex t d e l t a t ime w i l l be z e r o
−(void) appl ica t ionSigni f icantTimeChange : (UIApplicat ion *) a p p l i c a t i o n
{

[[CCDirector sharedDirec tor] setNextDeltaTimeZero : YES] ;
}

− (void) d e a l l o c
{

[window_ r e l e a s e] ;
[navControl ler_ r e l e a s e] ;

[super d e a l l o c] ;
}
@end

168 APPENDIX E. IPAD APPLICATION CODE

Appendix F

FPGA Design

169

170 APPENDIX F. FPGA DESIGN

Fi
gu

re
F.

1:
C

om
pl

et
e

EC
G

FP
G

A
D

es
ig

n

171

Fi
gu

re
F.

2:
C

lo
ck

s
an

d
R

es
et

in
EC

G
FP

G
A

D
es

ig
n

172 APPENDIX F. FPGA DESIGN

Fi
gu

re
F.

3:
Pa

n-
To

m
pk

in
s

A
lg

or
it

hm
im

pl
em

en
ta

ti
on

173

Fi
gu

re
F.

4:
Fl

oa
ti

ng
-P

oi
nt

O
pe

ra
ti

on
s

	1 Introduction
	1.1 Background and Motivation
	1.2 Goals of the Present Work

	2 Principles of Cardiac Measurements
	2.1 Electrical Conduction in the Heart
	2.1.1 The Resting Potential
	2.1.2 Cardiac Action Potential
	2.1.3 The Pacemaker Cells
	2.1.4 The Cardiac Conduction System

	2.2 ECG Electrodes and Leads
	2.2.1 The Electrode-Electrolyte Interface
	2.2.2 Leads

	2.3 Clinical ECG
	2.3.1 Amplifiers
	2.3.2 Noise Reduction
	2.3.3 Isolation Circuit
	2.3.4 Analog-to-Digital Converter
	2.3.5 Microcomputer
	2.3.6 Monitor/Printer

	2.4 The Pan-Tompkins QRS Detection Algorithm

	3 Analog Front-Ends
	3.1 ECG
	3.1.1 Circuit Design
	3.1.2 PCB realization

	3.2 Data Acquisition Card
	3.2.1 Circuit Design
	3.2.2 PCB realization

	4 MATLAB and Modelsim Simulation
	4.1 MATLAB Simulation
	4.2 Modelsim Simulation

	5 Hardware Implementation
	5.1 Altera Cyclone III FPGA
	5.2 Nios II Processor and Bluetooth
	5.3 Clocks and Reset
	5.3.1 Phase-Locked Loop
	5.3.2 Clock Division
	5.3.3 Reset

	5.4 ADC
	5.5 ECG Module
	5.5.1 Lowpass and Highpass Filters
	5.5.2 Derivation
	5.5.3 Squared
	5.5.4 Moving Window Integration
	5.5.5 Peak Detection
	5.5.6 Heart Rate I
	5.5.7 Heart Rate II
	5.5.8 Heart Rate Variability

	6 iPad Application
	6.1 Application Overview
	6.2 Programming Language and Frameworks
	6.3 Communications Protocol
	6.4 Designing the Application
	6.5 Future Prospects

	7 Verification of the ECG Module
	7.1 Measurements
	7.1.1 Setup
	7.1.2 Results

	7.2 Summary

	8 Conclusion and Future Work
	8.1 Conclusion of the Present Work
	8.2 Future Work

	A Physical Constants
	B Schematics and PCB Prints
	B.1 Schematic drawing of the ECG Front-End
	B.2 PCB realization of the ECG Front-End
	B.3 Schematic drawings of the Data Acquisition Card circuit
	B.4 PCB Prints of the Data Acquisition Card

	C Matlab Code
	C.1 Program for generating ECG signal
	C.2 Matlab functions for Pan-Tompkins Algorithm

	D VHDL Code
	D.1 Testbench for Modelsim Simulation
	D.2 ECG Module

	E iPad Application Code
	E.1 Python script for ECG Server
	E.2 iPad Application
	E.3 FPGA Design

