
Attitude Estimation for Motion

Stabilization in Sonar Systems

Johan Kleiberg Jensen

Master Thesis

Department of Physics
University of Oslo

June 2013

Abstract

This thesis describes a project in attitude compensation for sonar ap-
plications using Micro Electrical Mechanical Systems (MEMS) accelerom-
eters and gyroscopes. An attitude determination algorithm based on a
complimentary filter has been implemented to run on a Raspberry Pi
single-board computer. Attitude performance tests have been conducted
in controlled environment and in a typical field environment.

Contents

1 Introduction 10
1.1 Preliminary information . 10

1.1.1 Abbreviations . 10
1.1.2 Marine Terminology . 10
1.1.3 Conventions . 11

1.2 Opening Words . 11
1.3 Problem Statement . 12
1.4 Motivation . 12
1.5 Commercial Units . 12
1.6 Attitude Estimation . 13
1.7 Thesis outline . 13
1.8 Time Line . 14

2 Theory 16
2.1 Inertial Motion . 16
2.2 Rotational Formalism . 17

2.2.1 Vector mathematics . 17
2.2.2 Reference Frames . 18
2.2.3 Euler Angles . 18
2.2.4 Rotation Matrices . 19
2.2.5 Quaternions . 21
2.2.6 Complimentary Filter . 21

2.3 Hydro-acoustic range and angle determination 22
2.4 Sensors . 22

2.4.1 Accelerometers . 22
2.4.2 Gyroscopes . 25
2.4.3 Magnetometer . 27
2.4.4 Barometer . 27
2.4.5 Other Sensors . 27

2.5 MEMS Technology . 28
2.5.1 MEMS Accelerometer . 29
2.5.2 MEMS Gyroscope . 29

2.6 PID controller . 30

3 Method 31
3.1 Considerations . 31

3.1.1 Abbe Error . 31
3.1.2 Real-time systems . 31
3.1.3 Bus Technologies . 31
3.1.4 Level shifters . 32
3.1.5 Intellectual Property . 32

3.2 First approach to building an attitude system 33
3.2.1 Sensors . 33
3.2.2 PCBs . 33
3.2.3 Testing . 37
3.2.4 Software to read sensors 39
3.2.5 Results from testing . 39

3.3 Second approach to building an attitude system 39

4

3.3.1 MPU9150 Sensor . 39
3.3.2 RaspberryPi . 41
3.3.3 Raspbian . 42
3.3.4 Assembled Hardware . 43
3.3.5 Price and availability . 46
3.3.6 Current Consumption . 46
3.3.7 Attitude estimation . 47
3.3.8 Complimentary Filter . 48
3.3.9 Implementing the Algorithm 51
3.3.10 Serial Data Output Format 52
3.3.11 Other Software . 53

3.4 Control Software . 53
3.4.1 Description . 54
3.4.2 Commands . 54

4 Testing 56
4.1 Static Test . 56

4.1.1 Static sensor testing . 56
4.1.2 Temperature Testing . 60
4.1.3 Filter parameters and tuning 62
4.1.4 Complimentary filter static test 64
4.1.5 Observations from the static test 65

4.2 Dynamic Test . 65
4.2.1 Setup . 65
4.2.2 Data . 67
4.2.3 Shake test . 72
4.2.4 Observations from the dynamic tests 73

4.3 Tachometer test . 74
4.3.1 Setup . 74
4.3.2 Data . 75
4.3.3 Observations from tachometer test 79

4.4 Field test at Songsvann . 79
4.4.1 Setup . 79
4.4.2 Description of tests . 81
4.4.3 Data . 82
4.4.4 Observations from Field Test 89

5 Summary 90
5.1 Improvements and further work 91

6 Conclusion 93

7 Bibliography 94

A Contents of DVD-ROM 95

B NMEA PASHR String 98

C RaspIMU Source Code 99

5

List of Tables

1 Project Time-line . 14
2 Planned Project Time-line . 15
3 Performance of the MMA8451Q, LIS331DLH, and IMU3000 sen-

sors quoted in the respective data-sheets. 33
4 Invensense MPU9150 quoted specifications. 40
5 Raspberry PI Hardware summary. 41
6 Cable and connector pin arrangement in external cable. 44
7 Internal connections between components. 46
8 Total component costs. 46
9 Quoted current draw of components and measured total current

draw. 46
10 Baud rates versus byte throughput. 53
11 Custom data output string . 53
12 Serial commands sent by the RaspIMU control program. 55
13 Standard Deviation and Average for Gyroscope and Accelerom-

eter for the MPU9150 at 50Hz. 59
14 Standard deviation and average of raw data for gyroscope and

accelerometer for the MPU9150 at 25Hz. 60
15 Standard deviation and average units for gyroscope and accelerom-

eter for the MPU9150 at 25Hz. 60
16 MPU9150 accelerometer output versus temperature relationship . 62
17 Complimentary filter attitude output statistics in static test . . . 65
18 Servo PWM control signals for MSG995 servos. 66
19 Angle output correction based on the dynamic test. 70
20 Measurements of top and bottom angles in tachometer test. . . . 75
21 Tachometer tests performed. 75
22 Summarised tachometer test results. 79
23 Description of tests performed at Sognsvann 81
24 Statistics on vertical positions from test 2. 83
25 Statistics on vertical positions from test 2. 86
26 Statistics on vertical positions from test 8. 87
27 Test 8. Period of swing of the hydrophone. 87
28 Summary of test results from Sognsvann field test in degrees. . . 89

6

List of Figures

1 A model of a two dimensional navigation system. 17
2 Euler angle transformation in three dimensions. 19
3 Simple rotation of θ. in a two dimensional system. 20
4 Calculating horizontal position with two hydrophones. 22
5 Conceptual model of an Accelerometer. 23
6 Conceptual Model of a Gyroscope. 26
7 Side view of a typical MEMS device. 28
8 Close-up of the LIS331DLH MEMS accelerometer. 29
9 Close-up of the IDG300Q MEMS Gyroscope. 30
10 Bi-directional level shifter using MOS transistors. 32
11 Invensense IMU3000 sensor PCB made for this project. 34
12 STMicroelectronics LIS331DLH sensor PCB made for this project. 34
13 Freescale Semiconductors MMA8151Q sensor PCB made for this

project. 35
14 Atmel ATMega8 micro-controller PCB made for this project. . . 35
15 Power and serial PCB made for this project. 36
16 Sensors, micro-controller, and power and serial board stacked to-

gether. 37
17 MMA8451Q accelerometer acceleration data recorded on the DSV

Acergy Osprey. 38
18 LIS331DLH accelerometer pitch and roll angle calculations recorded

on the DSV Acergy Osprey. 38
19 RawReader screen shot that decodes raw data from the sensors. . 39
20 The MPU9150 Engineering Evaluation Board. 40
21 The Raspberry Pi single-board computer. 41
22 Raspbian GUI accessed through a VNC connection. 43
23 Waterproof enclosure and connector used for the attitude system. 44
24 Exploded annotated view of the hardware components in the at-

titude system. 45
25 Diagramatic overview of the components in the attitude system. 45
26 Angle calculation from acceleration data. 47
27 Complimentary filter top level data-flow. 48
28 Top-level control flow of the attitude estimation system. 51
29 RaspIMU control program user interface. 54
30 RaspIMU control program when resized to a small window. . . . 54
31 Histogram from raw accelerometer readings for the MPU9150 at

50Hz. 57
32 Histogram from raw Gyroscope X-axis readings for the MPU9150

at 50Hz. 58
33 Histogram from raw Gyroscope Y-axis readings for the MPU9150

at 50Hz. 58
34 Histogram from raw Gyroscope Z-axis readings for the MPU9150

at 50Hz. 59
35 MPU9150 Accelerometer raw output versus temperature. 61
36 MPU9150 Gyroscope raw output versus temperature. 61
37 Complimentary filter PI-regulator tuning for different I factors. . 63
38 Complimentary filter PI-regulator tuning for different P factors. . 63

7

39 Typical settling time for the attitude estimation system from
power-on. 64

40 Pan-tilt test rig used in the dynamic test. 66
41 Step pattern test using pan-tilt servo rig as measured by the

attitude system. 67
42 Triangle pattern test using pan-tilt servo rig as measured by the

attitude system. 68
43 Pitch Angle Output for Dynamic Test with accelerometer based

angle calculations overlayed. 68
44 Roll Angle Output for Dynamic Test. 69
45 Pitch Angle Discrepancy for dynamic test. 69
46 Roll Angle Discrepancy for dynamic test. 70
47 Pitch Angle overshoot during sharp transition. 71
48 Roll Angle overshoot during sharp transition. 71
49 Angle calculated from accelerometer for shake test. 72
50 Algorithm attitude output for shake test. 73
51 Overview of the tachometer test setup. 74
52 Tachometer test 1. plotted tilt angle from sensor and tachometer. 76
53 Tachometer test 2. plotted tilt angle from sensor and tachometer. 76
54 Tachometer test 3. plotted tilt angle from sensor and tachometer. 77
55 Tachometer test 4. plotted tilt angle from sensor and tachometer. 77
56 Tachometer test 8. 78
57 Tachometer test 10. plotted tilt angle from sensor and tachometer. 78
58 Preparing the instruments at Sognsvann field test. 80
59 Copper acoustic target used in the field test. 80
60 Test 2. Vertical position before applying attitude corrections. . . 82
61 Test 2. Pitch angle measured by the sensor 82
62 Test 2. Roll angle measured by the sensor 82
63 Test 2. Vertical position after applying attitude corrections. . . . 83
64 Test 7. Vertical Position before applying attitude corrections. . . 84
65 Test 7. Pitch angle measured by the sensor. 84
66 Test 7. Vertical position after applying attitude corrections. . . . 85
67 Test 7. Uncompensated target strength from the sonar. 85
68 Test 8. Vertical position before applying attitude corrections. . . 86
69 Test 8. Vertical Position after applying attitude corrections. . . . 87
70 Test 10. Vertical position before applying attitude corrections. . 88
71 Test 10. Vertical position after applying attitude corrections. . . 88

8

Preface

I have been a part-time student on the master program since the autumn of
2009. In that time I have had two different full-time jobs, my first son was
born, and I have moved to a new house in a new city. I have spent evenings,
weekends and what spare time I have had writing this thesis. In these last four
years my loving family, Lene Amalie Aadahl and Johs Kleiberg Jensen, have
been supportive, patient, and a source of inspiration.

I would like to give a special thank my supervisor, Dr. Helge Balk. You
have gone out of your way to lend a hand when needed.

I would also like to thank my grand father, Johan Kleiberg, for urging me
on and for providing financial support.

I would also like to thank Bendik Sovegjerto and Joakim Myrland, for assist-
ing during the Sognsvann field test. And Bendik Sovegjarto again for developing
the tilt test rig together with Dr. Helge Balk. In addition to the three men-
tioned gentlemen scholars, I would like to thank Adam Olson, Morten Huseby
and Kjetil Rensel for academic support and discussions.

I would also like to thank the following people and companies for their sup-
port: MEMSIC and Nils Olav Gjorvad at ACAL Norway for MEMSIC Parts,
Freescale for providing MEMS parts, Chipsworks for allowing me to use their
MEMS die photos, and UiO ELAB for assisting with PCB production.

Finally, I would like to thank colleagues my at Acergy, ECN, and Kongsberg
Maritime for being flexible during my studies.

9

1 Introduction

1.1 Preliminary information

1.1.1 Abbreviations

ADC Analogue to Digital Converter
AHRS Attitude Heading Reference System
DoF Degrees of Freedom
FOG Fibre Optical Gyroscope
GCC GNU Compiler Collection
GNU GNU’s Not Linux
I2C Inter Integrated Circuit
IC Integrated Circuit
IMU Inertial Motion Unit
INS Inertial Navigation System
MARG Magnetic Accelerometer Rate Gyroscope
MEMS Micro Electrical Mechanical Systems
MRU Motion Reference Unit
PCB Printer Circuit Board
PWM Pulse Width Modulation
SPI Serial Peripheral Interface Bus
TWI Two Wire Interface
UART Universal Asynchronous Receiver Transmitter
USB Universal Serial Bus
VRU Vertical Reference Unit

1.1.2 Marine Terminology

Bow The front of the vessel
Stern The back of the vessel
Roll Rotation along the vessel
Pitch Rotation across the vessel
Yaw Rotation around the vessel
Heave up and down motion of the vessel
Sway Left to right motion of the vessel
Surge back to forth motion of the vessel
CoG Centre of Gravity of the vessel
Centre line Imaginary line precisely alongship

10

1.1.3 Conventions

Notation that we will be using to represent variables.

Acceleration vector ~a = [ax, ay, az]
Velocity vector ~v = [vx, vy, vz]
Displacement vector ~s = [sx, sy, sz]
Angular acceleration ~α = [αx, αy, αz]
Angular velocity ~ω = [ωx, ωy, ωz]
Angular displacement [φ, θ, ψ]

Identity Matrix I =

1 0 0
0 1 0
0 0 1

Rotation Matrix R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

1.2 Opening Words

This thesis describes the design, development, and analyses of an attitude esti-
mating system for use in sonar applications, and particularly in horizontal sonar
surveys.

Norway has committed to the Water Framework Directive1, which states
that all member states of the European Union should establish good qualitative
and quantitative status of all water bodies by 2015. Part of this is to estimate
fish population. In Norway, some of these water bodies may lie in hard to reach
locations, sometimes only reachable by foot.

In marine environments sonar is a commonly used tool for estimating fish
population. The sonar can mounted on a boat and directed downwards, so that
the sonar can scan for fish as the vessel moves. Using the same method for
estimating fish population in fresh water bodies poses a few challenges. Many
fresh water bodies and rivers are shallow, and the fish tend to congregate near
the surface. Because of this, a downward directed sonar would not be very useful.
It is therefore common to direct the sonar along the horizon in shallow waters,
rather than vertically. But this poses new problems; Firstly, small offsets in
the vessel can cause the sonar to be misaligned so that its echograms hit either
the surface or the lakebed. Secondly, varying motion in the vessel can cause
the fish to appear to be dancing around, when the fish are in fact stationary or
swimming in a straight line.

What is needed is a system that can sense the attitude of the vessel, specifi-
cally the pitch and the roll of the vessel. With pitch and roll data it is possible to
stabilise the dancing appearance caused by vessel motion, and to exclude data
that hit the surface or the lake bed. These types of systems are often referred
to as Motion Reference Units or Attitude Reference Systems (MRU/ARS). The
devices that are available on market are often bulky, expensive, and mainly
designed for offshore environments. Such a system would be a valuable to the
hydro-acoustic group at UiO.

1Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000
establishing a framework for Community action in the field of water policy

11

Inertial navigation systems, abbreviated INS, is a collective term for a sys-
tem that can estimate a relative position and attitude based on acceleration and
angular rates of change. This is possible because the second derivative of ac-
celeration is position, and similarly the derivative of the angular rate of change
is angular displacement. INS was successfully used first in submarines during
World War 1.

Micro-mechanical Systems, or MEMS for short, is the technology of the
very small, typically made up of components between 1 and 100 micrometers
in size. Commonly made of silicon and manufactured using processes adopted
from integrated circuit manufacturing. Because of economies of scale, MEMS
devices are usually cheap compared to their mechanical counterparts. Both
accelerometers and gyroscopes have been adopted as MEMS devices.

Since this project was started in 2009, there has been an explosion of devices
and the applications using them. Can recent advances in MEMS sensor technol-
ogy make it possible to construct a low-cost system for attitude compensation
in sonar systems?

1.3 Problem Statement

The use of sonar in a mobile vessel or stationary in rivers can be problematic. In
mobile vessels the motion of the vessel will move the sonar around. In rivers, the
current can induce motion and oscillations. This paper will investigate sensors
that can measure this type of motion, so that the misaligned sonar data can be
corrected.

The sensors should be put together in such a way that the motion recorded
by that system can be meaningfully used by a sonar system or stored on a
computer for later processing.

There is a wide variety of sensors and sensor technology for capturing motion.
The price of a sensor must be pitted against size, noise, robustness, accuracy
and precision.

The system must be able to operate in the environment of its intended use.
Further, mobility, simplicity of use and low cost should be prioritised. Lastly,
the system should be able to function well together with existing sonar systems
and auxiliary equipment.

1.4 Motivation

MEMS is a fast developing technology that is constantly finding new applica-
tions due to its small size, cost, low power, reliability and increasing perfor-
mance. Is it with today’s MEMS devices possible to construct a system that
addresses the problem of an offset transducer and to measure vibration that is
cheap, robust, low-power?

With the ability to determine where a transducer is pointing at during a
sonar survey, it should be possible to improve the data collected by the sonar
system.

1.5 Commercial Units

There are commercially available IMU/AHRS units, like the Kongsberg Mar-
itime’s Motion Reference Unit (MRU). This unit is however quite costly, costing

12

up to several hundred thousand Norwegian Kroner, depending on type and op-
tions. It is also a little heavy at 2.5 Kg, and consumes up to 12 W of power2.

Another interesting product is the x-IMU from X-IO Technologies3. This is
an open-source and open-hardware project. The project is based on the same
papers and community sources as our project, and has many similar sensor
components. The x-IMU was made available in 2012, and costs only 249 (GBP)
for the basic unit.

1.6 Attitude Estimation

The method of attitude estimation we use in this project is based on a compli-
mentary filter described in papers by Robert Mahoney et al4, and the commu-
nity work behind diydrones5 and gentlenav6, in particular the work of William
Premerlani and Paul Bizzrd[10].

This approach to calculating the attitude of a vehicle using mentioned method
was developed with aircraft in mind, but there is no reason why it shouldn’t
work for our application. There are some aspects of the filter that we will not
use, such as wind speed calculations and the assumption of the availability of a
GPS.

Kalman filtering is another method that can be used to estimate attitude.
It has been used in many guidance and navigation system, including the NASA
space shuttle and the International Space Station.

By comparison, the complimentary filter method is much simpler than the
Kalman filter method.

An internal paper by Sebastian O.H. Madgwick titled An efficient orien-
tation filter for inertial and inertial/magnetic sensor array7 concluded that a
filter fusion algorithm8 performed as well as a high quality commercial based
Kalman-based system9.

We ultimately chose the complimentary filter method because it is simpler
and less computationally expensive.

1.7 Thesis outline

The Theory chapter will discuss inertial sensors with emphasis on the
MEMS version of inertial sensors. Next, the chapter will introduce a formal
mathematical framework for representing attitude. The paper will then go on
to looking at how these sensors can be used in that framework.

The Method chapter will open up by looking at our first approach to build-
ing an attitude estimating system. We built a second attitude estimating system
based on experiences gained from the first approach. We will give an description
of the various components used in the final system. We will also describe the

2Quoting from data-sheet, included in appendix
3http://www.x-io.co.uk/products/x-imu/
4[3][4][5][6]. Papers included in appendix A
5http://diydrones.com/
6http://code.google.com/p/gentlenav/
7[11]. Paper included in appendix A.
8complimentary filter
9pg. 25

13

control program we wrote to go along the final attitude system. The imple-
mentation of the complimentary filter method for estimating attitude (roll and
pitch) will also be described.

The Test chapter we look at how the system was tested, both in the lab and
in the field.

The Summary chapter will sum up the results from testing. We will also
suggested improvements and further work.

The Conclusion chapter will sum up the papers most important findings
from the tests, and also what we learned.

Bibliography will list references used.

The appendix will also list the contents of the provided CD-ROM, which
includes source code, circuit schematics and diagram, logged test data, data
sheets, and other supporting information mentioned in this thesis.

1.8 Time Line

Table 1 shows the time-line of the project as it happened.

Year Semester Plan
2010 Spring Problem definition.
2010 Autumn Testing accelerometers and gyroscope sensors. Con-

struction of test cards.
2011 Spring Researching ways to implement AHRS system.
2011 Autumn Attitude algorithm testing.
2012 Spring Algorithm implementation on RaspberryPi.
2012 Autumn Final hardware assembly and software programming.

Static testing and data analyses.
2013 Spring Field Test. Tachometer test. Dynamic test. System

Completion.

Table 1: Project Time-line

Table 2 shows the original time allocation for the project, as it was planned
in spring 2010.

14

Year Semester Part
2010 Spring Research sensor and AHRS systems
2010 Autumn Selecting suitable sensors
2011 Spring Testing sensors and finding a suitable hardware plat-

form
2011 Autumn Planning
2012 Spring Building prototype
2012 Autumn Testing and field testing
2013 Spring Analyses of results completion of system

Table 2: Planned Project Time-line

The project had many twists and turns, and towards the last semester things
got a little hectic. All in all, the project went mostly as planned.

15

2 Theory

In this chapter we will introduce the theory that we will use in this project. The
bulk of this chapter is dedicated inertial sensors and how to determine attitude
from motion sensors.

2.1 Inertial Motion

Inertial navigation is the use of motion sensors (accelerometers) and rotation
sensors (gyroscopes) to continuously calculate the position, orientation, and
velocity without the need of external references. This is usually referred to as
a Inertial Navigation System (INS). If the system doesn’t calculate position, it
is sometimes referred to as an Inertial Motion Unit (IMU), Attitude Heading
Reference System (AHRS), Vertical Reference Unit (VRU) or Motion Reference
Unit (MRU).

Some areas of application for Inertial Navigation Systems are aeroplanes,
submarines, missiles, satellites, consumer electronics, and ships.

The first use of inertial technology for navigation utilised a stabilised plat-
form, which is where the inertial sensors are isolated from the rotational motion
of the vehicle through gimbals10 A strap-down systems on the other hand, is
the term given to a navigation system where the sensors are rigidly attached,
or ’strapped down’, to the body of the host vehicle. This reduces cost, size, and
increases reliability compared to a platform system, all of which are important
objectives for this project. The penalties are increased computing complexity
and a demand on sensors to be capable of measuring much higher rates of turn11.

With reference to figure 112, consider a one-dimensional system where an
object can move along a two-dimensional train track.

10[1] pg. 546
11[1]. pg.3
12Example and figure from [1] pg. 9

16

Figure 1: A model of a two dimensional navigation system.

Assume that there are no other forces but the accelerating force acting upon
this rigid object. Further, assume that the object was initially stationary and
we can absolutely measure the objects acceleration, ax and ay, and orientation
θ. We would then be able to calculate the objects position, sx and sy, and
velocity vx and vy, using Newtons laws of motion. This model can be extended
to a three-dimensional system which is free to move and rotate in space.

The number of independent axis are commonly referred to as degrees of
freedom (DoF). The above examples is a three-degree system. If we include
rotational motion in the system, we add these to the number of degrees of
freedom, i.e. three orthogonal linear axis and three orthogonal rotational axis
is referred to as a six degrees of freedom system.

2.2 Rotational Formalism

This section will establish a formal system for describing attitude.

2.2.1 Vector mathematics

The following results are for three dimensional vectors.
Vector cross-product of matrices is defined as13:

~b× ~c =

bycz − bzcybzcx − bxcz
bxcy − bycx

13[8] pg. 41

17

Vector dot-product is defined as14:

~b · ~c = bxcx + bycy + bzcz

The angle between to vectors is given by15

~b · ~c = ‖~b‖‖~c‖ cos θ

A vector can be scaled in the following way:

a~b =

abxaby
abz

A unit vector is a vector whose length is 1. A vector can be scaled to become

a unit vector by scaling by its length16:

b̂ =‖ ~b ‖= 1√
bx2+by2+bz2

bxby
bz

Lastly, a null vector is defined as a vector whose entries are zero.

2.2.2 Reference Frames

Reference frames are defined sets of orthogonal, right-handed, axis sets. We
will use two reference frames in this project; the body frame and the navigation
frame17.

The body frame has its axis aligned with the roll, pitch and yaw axis of the
sensor, and has its origin at the sensor. Our body frame is the sonar and our
attitude sensor.

The navigation frame also has its origin at the sensor, but axis aligned with
North, East and vertically down. This is our reference to the ground.

The angles between the body frame and the navigation frame are the angles
we want to estimate to compensate echograms in sonar surveys.

Next, we describe how to transform between two reference frames.

2.2.3 Euler Angles

Euler angles is a system where the transformation between two reference frames
is described by three successive rotations18. The transformation can be sum-
marised as:

1. Rotate through angle ψ about reference z-axis

2. Rotate through angle θ about new y-axis

3. Rotate through angle φ about new x-axis

14[8] pg. 375
15[8] pg. 381
16[8] pg. 429
17[1] pg. 21-22
18[1] pg 40-42

18

The angles ψ, θ, and φ are referred to as the Euler rotation angles. Figure 2
shows a general transformation19.

Figure 2: Euler angle transformation in three dimensions.

The Euler angle representation of rotation is popular because it corresponds
to the angles at the pick-ups of a gimbal. A gimbal gyroscope will be described
in the gyroscope section.

2.2.4 Rotation Matrices

Rotation Cosine Matrix, sometimes abbreviated as DCM (Direction Cosine Ma-
trix) or simply rotation matrix, is a matrix representation of describing orien-
tation. The DCM is a n×n matrix, for an n-dimensional representation, where
the columns represents unit vectors in body axes projected along the reference
axes. We use three dimensional vector space, so the matrix becomes a 3 × 3
matrix. This matrix is of the special orthogonal group SO(3). The entries in a
rotation matrix rij are real values between -1 and 1. The rows of the rotation
matrix can be thought of as unit vectors along the axis of the rotated space.

For a two dimensional version of a rotation matrix, a rotation of θ from one
reference frame to another can be written as:

R̄(θ) =

{
cos θ − sin θ
sin θ cos θ

}

The rotation can be illustrated as in figure 320:

19Figure from wikipedia.org with permission http://en.wikipedia.org/wiki/File:EulerG.png
20Image from [http://en.wikipedia.org/wiki/File:Counterclockwise rotation.png]

19

Figure 3: Simple rotation of θ. in a two dimensional system.

A three dimensional rotation matrix is represented as21:

R̄ =

r11 r12 r13
r21 r22 r23
r31 r32 r33

Rotation matrices can be added together. The resulting matrix will then

represent the total rotation described by those two rotation matrices:

¯Rtotal = R̄1R̄2

The rotations are not commutative (R̄1R̄2 6= R̄2R̄1). This is not so difficult
to imagine: for example, pitching an aeroplane down and then rolling right will
point a aeroplane in a different direction than if rolled right before pitching
down.

The rotation matrix R̄ is sometimes written as C̄nb , where b and n denotes
that this is the rotation matrix from the navigation frame (n) to the body frame
(b). The entries in the rotation matrix rij are of real values, and the matrices
are orthogonal with a determinant of one22:

R̄T = R̄−1,det R̄ = 1

We can go from Euler angles to a rotation matrix representation using the
result23:

R̄ =cos θ cosψ − cosφ sinψ + sinφ sin θ cosψ sinψ sinφ+ cosφ sin θ cosψ
cos θ sinψ cosφ cosψ + sinφ sin θ sinψ − sinφ cosψ + cosφ sin θ sinψ
− sin θ sinφ cos θ cosφ cos θ

21[1] pg. 39-40
22This is the same as being in the special orthogonal group SO(n).
23[1] pg. 41 Eq. (3.49)

20

The angles ψ, φ, and θ are the angles formed between two reference frames.
Notice that if we insert zero angles (no rotation), we get an identity matrix.

To go from a rotation matrix to Euler angles we can use the following re-
sult24.

ψ = arctan(r32r33)
φ = arcsin(−r31)
θ = arctan(r21r11)

There are some situations were the above result becomes indeterminate, such
as when r11 or r33 approaches zero. For these situations there are alternative
transformations which will not be reproduced here.

Another result we will be using is the small angle rotation result25, for when
the sines of the Euler angles approximates the angles26:

R̄ ≈

 1 −ψ θ
ψ 1 −φ
−θ φ 1

The above result will be used in the algorithm for when small angle updates

of ψ, θ and φ are added to the rotation matrix that keeps track of current
rotation.

2.2.5 Quaternions

We mention quaternions here briefly for completeness, because quaternions are
another popular way to describe orientation of a rigid body. A quaternion is a
four parameter representation of attitude27:

q̄ =

a
b
c
d

 = a+~ib+~jc+ ~kd

~i, ~j and ~k are complex numbers. We will not reproduce the relationship
between quaternions, rotation matrices and Euler angles. The relationships can
be found in [1] pg. 45.

2.2.6 Complimentary Filter

A complimentary filter is a method for combining accelerometer and gyro-
scope measurements, and optionally additional sensors. The idea is to take
the strength of each sensor and fuse them together to get a better attitude
estimate.

A full description of our implementation of a complimentary filter can be
found in the Method chapter under Complimentary Filter.

24[1] pg.46 Eq. (3.66)
25[1] pg. 41 Eq. (3.50)
26sin θ → θ, sinψ → ψ, sinφ→ φ
27[1] pg. 42-43.

21

2.3 Hydro-acoustic range and angle determination

To determine target vertical position in hydro-acoustics we need to use two or
more hydrophones that can pick up the returning echogram, as illustrated in
figure 4.

Figure 4: Calculating horizontal position with two hydrophones.

The time difference between receiving the echogram at the two hydrophones
(t1 and t2) determine the vertical position. The time divided by two determine
the range to the target. Trigonometry can be used to calculate the angle and
the vertical displacement from the centre (∆y).

The Simrad EY50028 hydrophone use the phase and not the amplitude to
determine the time difference between the two hydrophones. The zero-crossing
between the two detected signals are scaled by a factor to give degrees displace-
ment from the centre.

2.4 Sensors

In this section we will present sensors that can be used to estimate motion and
attitude.

A sensors range will be stated in terms of upper and lower bounds, for ex-
ample ±2g or ±250◦/S. When outside of this range the sensor will become
saturated. A saturated sensor will not report a higher measurement than its
bounds. If we continue to subject the sensor to an increasing value, it will even-
tually break. This figure is higher than the range, often by several magnitudes.
This data is usually stated as shock survivability.

Next we consider the sensitivity, which is the smallest change a sensor can
detect. In digital accelerometers this figure is usually stated in mg

digit , or as mV
g

in analogue accelerometers.
Sampling rate is the rate at which a sensor takes measurements. For digi-

tal sensors such as digital accelerometers and digital gyroscopes, this is a user
selectable setting.

2.4.1 Accelerometers

Accelerometers measure proper acceleration along their sensitive axis. This
acceleration along straight lines is referred to as translational acceleration. By

28We used the EY500 for the field test at sognsvann

22

contrast, proper acceleration is a measure of true acceleration; acceleration with
respect to its inertial space. The sensors inertial space is the same as its inertial
frame.

Accelerometers do not measure acceleration directly, they measure forces.
According to Newton’s second law of motion, a force ~F acting upon a body of
mass m will cause it to accelerate (~a) with respect to its inertial space:

~F = m~a

The force we measure, and by knowing the mass, we can estimate the ac-
celeration experienced by that object. However, if we want to measure the
acceleration of something through this relationship, it is not practical to mea-
sure the total force acting upon the body of interest. Instead, we measure the
force acting upon a small mass that is coupled to the body of interest. This
small mass is known as a proof mass or seismic mass.

When the two masses are coupled together, they must experience the same
acceleration. This allows us to infer the acceleration of the system we are
interested in, through the system we know something about. Conceptually this
can be a proof-mass suspended between to springs, as illustrated in figure 529.

Figure 5: Conceptual model of an Accelerometer.

The figure shows a mass suspended by a spring one end, and a dampener in
the other. The dampener represents certain characteristics of the acceleration,
such as vibration suppression and oscillation suppression. Any acceleration
along the accelerometers sensitive axis 30 will be resisted by the proof mass, due
to the proof mass’ own inertia. As a result, the proof mass is displaced with
respect to the accelerometers body. The displacement will be balanced against
the tension of the springs, and the net deflection of the springs is proportional
to the force exerted on the proof mass. If we were to measure deflection, we
could use Hooke’s law to estimate the force. Through these two relationships it
is possible to calculate the acceleration:

F = kX 31

29Illustration from Wikimedia Commons [http://commons.wikimedia.org/wiki/File:Pendular accel.svg]
30In our simple concept accelerometer, the sensitive axis is parallel to the spring, mass and

dampener.
31[2] pg. 756

23

~F = m~a = m(~f + ~g)32

The first equation is Hooke’s law, which states that the force F is propor-
tional displacement X multiplied by a spring constant k. The second equation
is a decomposition of forces. ~g is the acceleration caused by gravity (if present),
and ~a is the acceleration that is not. We have to include gravity as a force, since
we are measuring forces. There is no way of separating the two forces. This is
both a blessing and a curse, as this means that an accelerometer at rest33 can
be used to find a vertical reference. It is a curse because it is not possible to
determine from an accelerometer alone that it is at rest.

By combining the two equations, we end up with a relationship for acceler-
ation:

a = k
mX − g

The spring constant k and the inertial mass m are constant. X is the mea-
sured displacement.

We have removed the vector notation form since we are only dealing with
one sensitive axis. If we had put three of these together with their sensitive axis
perpendicular to each other, we would have a complete system for measuring
acceleration in all directions.

The force of gravity g may or may not be present on the sensitive axis.
If the sensitive axis was aligned parallel to the ground, the force of gravity
measured by the accelerometer would be zero. Conversely, if the sensitive axis
was perpendicular to the ground, the accelerometer would measure one unit of
gn

34. One unit of gn is defined as gn = 9.80665m/s2. The force of gravity is not
constant, but depends of geographical location and altitude. We are actually
measuring the direction to the centre of gravity of our Earth. However, when no
other forces are present, gravity is a force that is always downwards pointing.
We will use this fact to estimate a vertical reference to the ground. Output
from a typical accelerometer will be expressed in terms of units of gn.

Mechanical accelerometers are a well established and mature technology,
and can be as simple as the spring example presented above. Mechanical means
that they are based on mechanical principles. Other types of accelerometers are
vibrating quartz, vibrating fibre optic, silicon accelerometers, to mention just a
few. In this project, we will use MEMS accelerometers.

Mechanical accelerometers are either constructed as open-loop or closed-loop
systems. The example presented above is an example of an open-loop device.
An open-loop type accelerometer measures or senses acceleration directly, like
the tension in the spring.

A closed-loop accelerometer would try to counteract the deflection of the
proof mass, and measure how much force is needed to keep the proof mass
still. For example, if the proof mass was magnetic, an electromagnet would try
to ’push’ the proof mass back to its default position. In general, closed-loop
accelerometers are often more stable and accurate than open-loop systems35.

32[1] pg. 154
33It is not accelerating in any direction.
34Not to be confused with the gravity vector
35[1] pg. 161

24

Both closed- and open-loop accelerometers have errors in their output. Three
important sources of error are fixed bias, scale-factor error, and cross-coupling
errors36.

Fixed bias errors, or simply bias, is a deviation in the output from zero when
the accelerometer should be outputting zero. For example, if the accelerometer
is at rest and the sensitive axis is aligned with the horizon. The accelerometer
should output zero, and if it not, this is called fixed bias.

The scale factor error is a non-linearity in the output over the accelerometers
range. When acceleration is applied accelerometer, the accelerometer should
output a linear response. The deviation from the linear response is called scale
factor error.

If an accelerometer picks up acceleration that is perpendicular to its sensitive
axis this is called cross-coupling errors. This error is a result of manufacturing
imperfections.

An accelerometer will have a range, usually called a full-scale-range. This is
the maximum and minimum acceleration that the accelerometer can measure,
and is usually expressed in terms of ±gn, for example ±2gn or ±4gn. Go beyond
these limits and the accelerometer will saturate, an increase beyond this will not
be measured.

For a digital accelerometer, there is a lower limit to the resolution of the
output. The least significant bit will represent the smallest difference between
two measurements that the system can output. We use a digital accelerometer
in this project.

The device specific specifications and parameters for the accelerometer we
selected will be discussed in the method chapter.

2.4.2 Gyroscopes

Gyroscopes are devices that either measure or maintain rotation around its in-
ertial space. There are several types of sensors which can be used to measure
angular displacement or angular velocity, such as; ring laser gyroscopes (RLG)
and fibre optic gyroscopes (FOG), electrostatic gyroscopes (ESG), and vibrat-
ing gyroscopes, to mention just a few technologies. Measurements can be either
angular displacement or angular velocity. Strictly speaking, a sensor which mea-
sures angular velocity is not a gyroscope but an angular rate sensor. However,
the term gyroscope has come to mean both an angular rate sensor and an an-
gular displacement sensor. When mentioning gyroscopes, we will from now on
mean either, but specify which we are talking about is there is any ambiguity.

We will continue this section by introducing a conceptual model of a simple
gyroscope. Figure 637 shows a simple model of a mechanical spinning mass
gyroscope. The rotor in the figure is spinning around the s-axis, the rotor is
not mass-less. The rotor is free to rotate around axis t and p, through what is
known as gimbals. The outer gimbal is then connected to an outer casing. The
orientation of the rotor can be read of the angle pick-off.

36[1] pg. 156
37Image from [1] pg. 61

25

Figure 6: Conceptual Model of a Gyroscope.

Because of the inertia of the spinning rotor, when rotating the gyroscope’s
outer casing, the rotor will try to maintain its orientation. This is called gyro-
scopic inertia, and is because of the rotors angular momentum and precession38.

First we present angular momentum. Angular momentum is the momentum
of a spinning or rotating body given by H. I is its moment of inertia, and ωS
its angular velocity. The angular momentum gives the rotors resistance to stop
spinning.

H = IωS

Second we present precession, which is the rotation of the gimbal relative to
inertial space. Mathematically, precession can be expressed as torque ~T through
angular momentum vector ~H and angular velocity ω:

~T = ω × ~H

Like an accelerometer would not react to rotation, a gyroscope would not
react to linear acceleration. A gyroscope at rest39 would not react to the force
of gravity. These properties will be discussed further in a later section, and is
important for inertial motion measurements.

38For a full mathematical explanation of angular momentum and precession, we recommend
reading pg 60-67 in [1].

39not rotating

26

The range in angular rate gyroscopes is stated in degrees per second. Typical
values are stated as ±250◦/s to ±2000◦/s. If the gyroscope is rotated faster
than this, the sensor will be become saturated.

For digital angular rate gyroscopes, sensitivity is expressed in bits per degree.
The gyroscope shares many of its sources of errors with the accelerometer;

fixed bias, scale-factor, and cross-coupling errors. An additional important40

sources of error specific to gyroscopes41 is acceleration-dependent bias. This is
the bias that is proportional to the applied linear acceleration.

Another concept in gyroscope technology is drift, which is not to be confused
with bias. In this project we will use bias to mean a non-zero measurement when
a gyroscope or a accelerometer is at rest. By drift, we will mean the divergence
from the reference direction over time42.

2.4.3 Magnetometer

Magnetometers measure the strength and the direction of magnetic fields. A
three-axis magnetometer can be used to find the Earth’s magnetic north, and
since the Earth’s magnetic pole is close enough to the Earth’s true north, it can
be used as a navigational aid. A common magnetometer technology is based on
the Hall effect. Sensors based on this principle produce a voltage proportional
to the applied magnetic field, and will also sense the fields polarity.

The Earth’s magnetic field varies in strength, but for navigational purposes,
it is the direction of the field that is of interest, and not its strength. Near the
surface of the Earth, the magnetic field can be approximated by the field of a
magnetic dipole, at a strength of roughly 1.3× 105T 43.

2.4.4 Barometer

Barometers are pressure sensors that are tuned to measure atmospheric air
pressure. As you move vertically up, the pressure decreases. If you go down,
pressure increases. With this you could estimate relative vertical displacement,
called heave in marine terminology. The measured atmospheric pressure is not
constant, so this would serve only as a relative measurement.

Such a sensor would need to be placed in air to work, and would not work
in our setup were the sensor is under water.

2.4.5 Other Sensors

Global Positioning Systems (GPS), and recently the European Gallileo and the
Russian GLONASS project, provide a global positioning system. From such a
positioning system we can get absolute position, velocity and height above sea
level. Velocity can be estimated between two consecutive positions.

Positioning systems are satellite radio based, and does not work under water,
since the water will block these weak radio signals.

Another sensor that is worth mentioning in the context of this paper is the
Doppler velocity logger (DVL) manufactured by Teledyne RDI44. This instru-

40To this project
41As listed in [1] pg. 72-73
42As used by [1]
43[2] pg. 572
44http://www.rdinstruments.com/navigator.aspx

27

ment uses acoustics to track the bottom, and calculates velocity based on this.
The instrument is designed for under water operations, but needs to ’see’ the
bottom in order to work. This type of instrument is prohibitively expensive for
this project.

2.5 MEMS Technology

MEMS is short for Micro Electro-mechanical Systems. These devices that are
forged in processes adapted from technology used for making integrated circuits.
Using materials like silicone, aluminium, and gold. By etching, depositing,
lithography and layering, minute mechanical systems can be formed. These
mechanical systems can be both complex, such as cogs and gears, and simple,
consisting of little more that a silicone membrane. Any logic silicon45 that is
needed can be fused together with the MEMS part, as in figure 746.

Figure 7: Side view of a typical MEMS device.

The advantages that MEMS holds over mechanical equivalent are47

• small size

• low weight

• lower cost (when mass-produced)

• lower complexity

• lower power

• better robustness

• high reliability

However, there are drawbacks. Because miniaturisation causes noise, non-
MEMS sensors are less noisy and have a better bias. In time, it is expected
that MEMS technology will approach perhaps even supersede their conventional
counterparts48

45ASIC, Application Specific Integrated Circuit
46Used with permission from ChipWorks [http://www.chipworks.com/
47[1] pg. 190
48[1] pg. 191

28

2.5.1 MEMS Accelerometer

MEMS devices can be miniaturized versions of their mechanical counterparts.
For example, a typical MEMS accelerometer is a miniaturised version of the
proof-mass and spring. Figure 8 shows the LIS331DLH49 accelerometer. Here
we can see hinges, a proof-mass, and capacitive fingers. The capacitance fingers
are an electronic part, and are used to sense displacement.

Figure 8: Close-up of the LIS331DLH MEMS accelerometer.

2.5.2 MEMS Gyroscope

MEMS gyroscopes can also be miniaturized versions of a full-size gyroscope.
Figure 9 shows a close-up of a MEMS gyroscope, the IDG300Q gyroscope from
Invensense50. Again, the figure shows mechanical parts such as hinges and a
proof-mass.

49Figure used with permission from ChipWorks [http://www.chipworks.com/
50Used with permission from ChipWorks [http://www.chipworks.com/]

29

Figure 9: Close-up of the IDG300Q MEMS Gyroscope.

2.6 PID controller

PID controllers are process controllers. The P, I, D stands for Product, Integral,
and Derivative respectivly. PID regulators have a measured process value and
a desired51 process value. The PID regulator will try to steer the process so
that the measured value is equal to the desired process value. The difference
between the measured and the desired process value is called the e(t) error, and
this error is used to steer the process.

P = KP e(t)
I = KI

∫
e(t)dt

D = KD
d
dte(t)

The P term is simply the error multiplied by a factor KP . The P term can
be thought of as the current error. The I term is the integral of the error e(t)
multiplied by a factor KI , and can be thought of as the historic error. The D
term is the derivative of the error e(t) multiplied by a factor KD, and can be
thought of as the projected future error. The sum of P , I, and D is the value
that will be used to steer the process towards the desired process value. By
adjusting the factors KP , KI , and KD, the way the process is steered changes.

A general equation for a PID regulator can be stated as follows52:

econtrol(t) = KP · e(t) +KI

t∫
0

e(t)dt+KD
d
dte(t)

51called a set-point
52[9] pg. 210

30

3 Method

Our goal is to build a system that can determine the attitude of a hydrophone,
and by attitude we mean the orientation of the hydrophone. We want to use
the attitude to compensate for the hydrophones movement to eliminate data
outside of the hydrophone beam and to stabilise data the data that is inside the
beam. This would increase accuracy in fish population estimates and other bio-
mass estimations, especially in horizontal hydro-acoustic surveys. To do this,
we need to determine the angles that the hydrophone is pointing in. We have
built two units that can do that, and a control software that can be used with
the second unit.

3.1 Considerations

3.1.1 Abbe Error

Abbe Error, also called sine error, is the magnification of angular error over
distance. A 1◦ discrepancy in any one axis will at 1 meter result in a 1.745cm,
and 17.45cm at 10 metres. When shooting horizontal sonar surveys, Abbe error
can be particularly detrimental.

3.1.2 Real-time systems

A real-time system can be said to be a system that is required to react to stimuli
from the environment (including passage of time) within time intervals dictated
the environment53.

Our project has to be aware of passage of time. Time is needed in calcu-
lating motion, and time is needed as a reference when outputting a new set
of calculated attitude data. The system would not fail if it takes longer time
to collect a new sample. By knowing the time at which a new sample of raw
motion data was taken, we have made the system time-aware.

This project uses Linux as its operating system. In general, Linux is not a
Real-time operating system (RTOS). There are possibilities of creating custom
Linux kernels that are real-time. However, the Linux distribution available for
our hardware is not real-time. In practise, it was not been a problem for us that
the operating system was not real-time.

3.1.3 Bus Technologies

I2C is a serial bus technology developed and licensed by Phillips. The bus
topology is multiple master and multiple slaves, which means that many master
device can access many slave devices on a single bus. I2C uses two wires for
bi-directional communication, one clock line, and one data line. The lines are
open-drain. The name I2C is an acronym for Inter Integrated Circuit, which
reflects its applications. It is mainly used for communication between devices
over short distances, such as between devices on the same PCB. We use I2C to
communicate with the sensors.

53[7] pg. 2.

31

SPI short for Serial Peripheral Interface Bus is another popular serial bus
technology seen in digital sensor devices. The application of SPI are mostly the
same as for I2C, low speed data transmission over short distances. The digital
sensor devices investigated in this project can communicate using I2C or SPI,
or both.

UART short for Universal Asynchronous Receiver Transmitter, is another
serial communication device. Although it is almost completely disappeared
from personal computers, it can still be found in industrial applications. Two
popular electrical standards of UART are RS-232 and RS-422. The RS-422
standard defines a maximum transmission distance of 1500 metres. RS-232 has
no defined maximum transmission distance. In practise, RS-232 should be able
to function over several tens of metres. In this project we chose to use RS-232
for data transmission over medium ranges. For very long ranges of hundred
metres and longer, RS-422 would be an option.

3.1.4 Level shifters

Because there may be situations in which one device operates at 5 volts and
another at 3.3 volts, we may need to convert between the two voltage levels.
This is the situation for the Raspberry Pi single-board computer which we will
use in this project. The Raspberry Pi is a 3.3 volt device, and it is not 5 volt
tolerant. If a pin is fed a 5 volt signal, it would be permanently damaged.

An application note from Phillips54 has an elegant solution to this problem
using MOS transistors. Such a device is also bi-directional, so it is perfect for
our use. Figure 10 is a schematic of the level shifter taken from the application
note.

Figure 10: Bi-directional level shifter using MOS transistors.

3.1.5 Intellectual Property

The makers of the Raspberry Pi single-board computer, the RaspberryPI foun-
dation, has pledged to make the RaspberryPI an open hardware platform. On
the 20th of April 2012 they released the schematics for the first production
version of the B model. The schematic is included in the appendix.

The operating system this project runs on is Raspbian, which is based on
Debian. Debian is a free-software, and so are the tools and utilities used in this

54AN97055 Bi-directonal level shifter for I2C-bus and other systems.

32

project. The software wrote that runs on the Linux platform, was compiled
using the GCC55 compiler.

The software we wrote for the Microsoft Windows platform is compiled in
Lazarus (IDE56), and is licensed under GPL57.

All software written or used in this project is listed the appendix and in-
cluded on the CD-ROM.

3.2 First approach to building an attitude system

As a pilot project we built a system based on an 8-bit micro-controller and an
accelerometer sensor. Later we added a gyroscope sensor when we saw that
an accelerometer alone could not reliably determine attitude. The system was
modular and stackable, so that we could try out different sensors. We wrote a
MS Windows program that read the raw data from the sensors via the micro-
controller UART serial port.

3.2.1 Sensors

The first sensors that were investigated were the MMA8451Q accelerometer
from Freescale Semiconductors, the LIS331DLH accelerometer from STMicro-
electronics, and the IMU3000 gyroscope from Invensense. Common for these
devices where that they were all digital, so they did not need an external ana-
logue to digital converter (ADC). Further, the accelerometers and the gyro-
scopes could measure within the range we wanted. Table 3 is a summary of
some of the parameters of these sensors. The parameters listed are the best
achievable values with respect to low noise and high sensitivity.

Sensor Parameter Value
MMA8451Q Range ±2g,±4g, or ± 8g

Sensitivity 4096 counts/g at ±2g

Output Noise 99µ/
√
Hz

LIS331DLH Range ±2g,±4g, or ± 8g
Sensitivity 3.9 mg/digit at ±2g

Output Noise 218µ/
√
Hz

IMU3000 Range ±250◦/s,±500◦/s,±1000◦/s, or ± 2000◦/s
Sensitivity 131 LSB/(◦/s) at ±250◦/s

Output Noise 0.1◦/s(RMS)

Table 3: Performance of the MMA8451Q, LIS331DLH, and IMU3000 sensors
quoted in the respective data-sheets.

3.2.2 PCBs

Printed circuit boards (PCB) were created in StarCAD, and manufactured by
El-lab at Blindern. All boards are 5cm by 5cm, and have matching mounting
holes. Because of the fine pitched IC package of the sensors, the production was

55GNU C Compiler
56Integrated Development Environment
57GNU General Public License

33

done by an external PCB manufacturer. All sensor ICs used a Land-Grid Array
(LGA) in either 16 or 20 pin packages, which is designed to be re-flow soldered.

The components were placed onto the boards by hand, and re-flow soldered
with El-labs re-flow oven.

Figures 11, 12, and 13 show the sensor boards that were made.

Figure 11: Invensense IMU3000 sensor PCB made for this project.

Figure 12: STMicroelectronics LIS331DLH sensor PCB made for this project.

34

Figure 13: Freescale Semiconductors MMA8151Q sensor PCB made for this
project.

The boards were made so that all functions of the sensors could be investi-
gated and taken advantage of. The boards have configurable pull-up for the I2C
bus, configurable address trough jumpers, external interrupt lines, and voltage
regulator (except IMU3000).

Figure 14 and 15 shows the two boards that were made to interface with the
sensors; an Atmel ATmega8 micro-controller board, and a combined serial and
power board.

Figure 14: Atmel ATMega8 micro-controller PCB made for this project.

35

Figure 15: Power and serial PCB made for this project.

The ATMega8 PCB was of a simple design, and had only a voltage regulator
and jumper selectable pull-up resistors for the I2C bus.

The Power and USART board regulated voltage from source to 5V, 3V3,
and 1V8. This is because of the different voltage requirements of the sensors.
The board also has a MAX323258 chip from Maxim, which is a TTL-to-USART
chip. This is the serial line converter for the micro-controller.

The cards where designed to be stackable, as can be seen in figure 16. There
were two reasons for this. Firstly to minimize axis non-alignment between the
gyroscope and the accelerometer. Secondly, to have tidy electronics in which to
build and enclosure around.

Schematics, PCB, and Gerber files are included on the DVD-ROM as listed
in appendix A.

58Data-sheet is included in appendix.

36

Figure 16: Sensors, micro-controller, and power and serial board stacked to-
gether.

Serial data that came up on the serial line from the ATmega8 micro-controller
was raw data. The micro-controller would first set up the I2C and USART com-
munications, and then wrote settings to the sensors via the I2C bus. These set-
tings adjusted scale, sample-rate, filters and interrupts. The sensors triggered an
external interrupt when data was ready to be read. The micro-controller would
then read and convert the sensor readings from two eight-bit twos-compliment
to numeric ASCII characters. These characters, together with comma separa-
tion and line feed, where written to the USART port. The source code for the
micro-controller software is included in the appendix.

3.2.3 Testing

In 2011 we were fortunate enough to be able to test the accelerometers aboard
the dive support vessel DSV Acergy Osprey. We did several recordings of data
from the sensors during normal seas. We realised that an accelerometer alone
could not reliably provide attitude data. The accelerometers were very noisy,
and sway and surge got in the way of angle calculations. Below is a test we did
on the dive support vessel DSV Acergy Osprey. Figure 17 shows the accelera-
tion measured using the MMA8451Q accelerometer. Figure 18 shows the pitch
and roll angles calculated from the acceleration measured by the LIS331DLH
accelerometer.

37

Figure 17: MMA8451Q accelerometer acceleration data recorded on the DSV
Acergy Osprey.

Figure 18: LIS331DLH accelerometer pitch and roll angle calculations recorded
on the DSV Acergy Osprey.

After testing the accelerometers, we concluded that we needed a gyroscope
to combine with an accelerometer to calculate reliable pitch and roll angles.
We acquired a gyroscope, the IMU3000 from Invensense, and began testing this
sensor.

We found one method for combining accelerometer and gyroscope data called
a complimentary filter. To gain insight into the complimentary filter algorithm,
a program was written that read the serial data from the COM-port and pro-
cessed it in real-time. The program for was called RawReader, and was written
in Lazarus Free Pascal. Figure 19 shows a screen-shot of this program as it de-
codes the data it is receiving. The source code and compiled software is included
in the appendix.

38

3.2.4 Software to read sensors

Figure 19: RawReader screen shot that decodes raw data from the sensors.

3.2.5 Results from testing

We learned that an accelerometer alone could not be used to determine attitude
of a mobile platform. We needed a gyroscope sensor as well.

Secondly, we realised that the ATMEGA8 micro-controller was not powerful
enough to run the complimentary filter algorithm. We still wanted the final
sensor unit to run as a stand-alone system, so we began searching for another
hardware system to run the algorithm on.

3.3 Second approach to building an attitude system

The second generation system consists of a powerful single-board computer to-
gether with a sensor that combines an accelerometer and a gyroscope in one IC
package.

3.3.1 MPU9150 Sensor

In 2012 Invensense released a new sensor, the MPU9150. This sensor has an
accelerometer, a gyroscope and a magnetometer all built into one chip package.
This eliminates the problem of the axis of the different sensors coming out of

39

alignment, secondly, this eases the interfacing to the sensor. Lower component
count, lower power and lower complexity. When the MPU9150 was released
it was not available as a single chip. An engineering evaluation board was
available, and this was purchased. Figure 20 shows the evaluation board59.

Figure 20: The MPU9150 Engineering Evaluation Board.

The board has all the required connections broken out on a pin header, which
made it easy to interface. In addition the evaluation board had four mounting
holes. With these holes, the board could be securely mounted to the enclosure.

An extract of some of the parameters of the MPU9150 sensor are listed in
table 4. The values are taken from the data-sheet, which is available on the
DVD-ROM.

MPU9150
Accelerometer Tri-axial
Gyroscope Tri-axial
Temperature sensor On-board
Magnetometer Tri-axial AKM AK8975
Interface I2C fast-mode (400kHz)
Operating temperature -40C - 105C
Power 9.9mA at 3V3 (Full power)
Accelerometer Range ±2g,±4g,±8g, or ± 16g
Accelerometer Sensitivity 16’384 LSB/g at ±2g
Accelerometer Output Noise 4mg (RMS)
Gyroscope Range ±250◦/s,±500◦/s,±1000◦/s, or ± 2000◦/s
Gyroscope Sensitivity 131 LSB/(◦/s) at ±250◦/s
Gyroscope Output Noise 0.06◦/s (RMS)

Table 4: Invensense MPU9150 quoted specifications.

In addition to the accelerometer and the gyroscope, the MPU9150 has an
on-board temperature sensor and an on-chip magnetometer. The temperature

59The data-sheet and schematics for the evaluation board is included in the appendix.

40

sensor we used to investigate how the MPU9150s accelerometer and gyroscope
reacted to changes in temperature. The temperature sensor measures the tem-
perature on the IC die of the MPU9150. The on-chip magnetometer can be
used as a compass to determine magnetic North.

3.3.2 RaspberryPi

In 2012 the Raspberry Pi Foundation released its first Raspberry Pi singe-board
computer. The Foundations goal was to provide a cheap and versatile, yet
powerful single-board computer. The board can be seen in figure 2160.

Figure 21: The Raspberry Pi single-board computer.

The heart and the brains of the Raspberry Pi board is the Broadcom BCM2835
System-on-Chip (SoC). This chip has an ARM core with floating point support
running at 700Mhz. Table 5 lists an extract of some of the specifications of the
Raspberry Pi.

RaspberryPi B-Model
CPU 700 MHz ARM1176JZF-S on SoC
Storage Secure Digital (SD) card
Power 5V 700mA through Micro USB
LAN 10/100 wired Ethernet RJ45
Peripherals UART (2-pin), I2C, SPI and GPIO (all 3V3)
Size 85.60mm x 53.98mm

Table 5: Raspberry PI Hardware summary.

We thought that Raspberry Pi would be ideal for this project. It is powerful,
cheap, has the required interfaces, small, and does not use allot of power.

60Picture from Wikipedia.org. [http://en.wikipedia.org/wiki/File:RaspberryPi.jpg]

41

3.3.3 Raspbian

The Raspberry Pi has its operating system and software stored on a SD61 card,
unlike a micro-controller which has its softwares stored in non-volatile memory.
At present, there are a few available operating systems for the Raspberry Pi.
We chose to run Rasbian as the operating system. Raspbian is a variant of the
Linux OS Debian. It is compiled specifically to run on the Raspberry PI, and
enables, among other things, support for hardware floating point mathematics.
However, we needed to make some modifications to the operating system to suit
our needs.

First we needed to disable the serial console to free the serial port. We need
to free this device so that we can use this serial port to transmit data out of the
system. We need to edit the file /boot/cmdline.txt, changing the line:

dwc_otg.lpm_enable=0 console=ttyAMA0,115200 kgdboc=ttyAMA0,115200

console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4 elevator=deadline

rootwait

to:

dwc_otg.lpm_enable=0 console=tty1 root=/dev/mmcblk0p2 rootfs=ext4

elevator=deadline rootwait

And then delete the line in /etc/inittab:

T0:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100

As we were early adopters of the RasberryPi, the default operating system,
Raspbian, did not come with support for I2C. Luckily, someone wrote kernel
drivers for this. We had to compile a new kernel to get the I2C working. In
the latest release of Raspbian, I2C support is included in the kernel by default.
We now use a kernel with I2C support in the kernel. There is a similar problem
with GPIO62 support, were there isn’t hardware interrupt routines at the time
of writing this. This is something that the Raspbian community is working on,
and will at some point be included in the kernel. A project called WiringPi63

has made good progress in making the GPIO-port accessible hardware.
The attitude data is output on the serial port, but general access to the

Raspberry Pi is done via Ethernet.
To access the Raspbian Pi we can open a remote shell using SSH64. To open

a remote shell in MS Windows we used the free software Putty65. We have
set up the Raspberry Pi with a fixed IP address of 192.168.1.109. The user
login name is pi, and the password is Johankj2012. SSH comes installed with
Raspbian by default.

We have also set up the Raspberry Pi to start up a GUI66 session automat-
ically. In MS Windows this can be accessed using ThightVNC67, another free
software. Access is on address 192.168.1.109:1, and the user name and password

61Secure Digital
62General Purpose Input Output, digital input and output from the RaspberryPi
63https://projects.drogon.net/raspberry-pi/wiringpi/
64Secure Shell
65Included in the appendix
66Graphical User Interface
67Included on the DVD-ROM

42

is the same as for the SSH login. Figure 22 shows the Raspbian GUI running
on the Raspberry Pi accessed through a VNC connection.

Figure 22: Raspbian GUI accessed through a VNC connection.

The GUI session also serves another important purpose, and that is to au-
tomatically start any software when power is applied. When the Raspberry Pi
starts up, it will automatically run the complimentary filter attitude program
that we wrote for this project. To start the motion software we wrote a bash
script that launches together with the GUI session. The script is located in:

/.config/lxsession/LXDE/autostart

3.3.4 Assembled Hardware

The whole system needed to be enclosed in a watertight box so that the electron-
ics would be kept dry during normal use. We use a waterproof plastic container
with a rubber seal and a waterproof connector. Figure 23 shows the container,
the connector, and the cable.

43

Figure 23: Waterproof enclosure and connector used for the attitude system.

The cable is a regular multi-stranded twister pair Ethernet cable, were two
of the pairs are connected together for power. The connector has five pins, and
are arranged according to table 6:

Pin Function Wire code
1 12 VDC Brown/Brown White
2 Ground Orange/Orange White
3 Signal ground Green
4 Transmit Green White
5 Receive Blue White

Table 6: Cable and connector pin arrangement in external cable.

Figure 24 shows an exploded view of the system. The MPU9150 sensor
board is screwed onto stand-offs through the mounting holes on the PCB. The
stand-offs are glued to the enclosure with epoxy.

Other than the Raspberry Pi and the MPU9150 sensor board, we have a
DC-to-DC converter that converts 12 volts down to 5 volts. We did not want
to use a low drop-out regulator68, because of the power loss in such devices.

We also have a USART board which converts the serial signal from the
Raspberry Pi to true RS-232 signals. We also have a bi-directional level con-
verter that converts the 3.3 volt signal from the Rasperry Pi to a 5V signal.
The USART board is based on the Maxim MAX3232 IC69 which can be used
with 3.3 volts, but the level converter also acts as a buffer that protects the
pins on the Raspberry Pi. Running the USART board at 5 volts also means
increased voltage differential on the USART line, which in turn makes the line
more robust.

68LDO
69Data-sheet is included in the appendix

44

Figure 24: Exploded annotated view of the hardware components in the attitude
system.

All the different parts were wrapped in Capton tape, a non-conductive ther-
mal resistant tape, to prevent short-circuiting between components.

Figure 25 a diagrammatic representation of the hardware, with all the lines
named. Table 7 describes the connections to the different headers on the devices.

Figure 25: Diagramatic overview of the components in the attitude system.

Include table of internal connections here, from RPI to MP9150EVB and
USART. Including power and ground.

45

Pin in (RPI) Pin out (Device) Function
P1/3 JP12/22 I2C SDA
P1/5 JP12/20 I2C SCL
P1/14 - UART TX
P1/15 - UART RX

Table 7: Internal connections between components.

3.3.5 Price and availability

All the components used are off the shelf and easily obtainable. Our goal was
also to assemble a low cost system. Table 8 is a summary of the cost of all the
components used. The cost is in USD, since most of the components were paid
for in that currency. We have not included shipping costs.

Part Price (USD)
Raspberry Pi B-model 35 USD
MPU9150 Engineering board 79.95 USD
DC-to-DC converter 5.50 USD
USART Converter 3.28 USD
Line Converter 2.46 USD
Water-proof enclosure 10.93 USD
Water-proof connector 8 USD
Cable free
Total 142.12 USD

Table 8: Total component costs.

The simpler A model of the Raspberry Pi costs 25 USD. It has no Ethernet
port, and only a single USB port. The MPU9150 sensor on its own costs 17
USD to purchase.

3.3.6 Current Consumption

Another important consideration of the system is how much power it draws,
since the system is powered of a battery in the field. Table 9 lists the maximum
current consumption taken from the data-sheets where known.

Device Current
Raspberry Pi 700 mA
MPU9150 9.9 mA
MAX3232 1.0 mA
Line converter Unknown
Other parts Unknown
Total 710.0 mA
Measured 182.5 mA

Table 9: Quoted current draw of components and measured total current draw.

46

The stated efficiency of the DC-to-DC converter is up to 96 percent. During
the field test at Sognsvann we powered the system from a 12 volt 7Ah sealed
lead acid battery for several hours.

We measured the current draw from the system to be 182.5 mA using a
multimeter.

3.3.7 Attitude estimation

An accelerometer by itself can be used to estimate pitch and roll angles, since
an accelerometer can be used to measure the force of gravity. The angles can
be estimates by taking the cosines of the forces as measured on the axis, as in
the figure 26:

Figure 26: Angle calculation from acceleration data.

The angle can be calculated by taking the sine:

φ = sin−1(xy)

However, an accelerometer can not differentiate between the force of gravity
and acceleration. If acceleration is present, the roll and pitch estimate will not
be correct.

Likewise, an angular rate gyroscope can be used to estimate roll and pitch
angles. An angular rate gyroscope will measure angular velocity, so to get an-
gular displacement we need only to integrate angular velocity once with respect
to time. The time step, dt, is simply the time step between two samples:

θ =
∫
ωθdt

If we sum the angular displacements, we can get the roll, pitch angles. The
data from the angular rate gyroscope would not be susceptible to acceleration
as with the accelerometer. The first problem with this approach is that we need
to provide a starting point for the sum, a sort of tarring. The second problem is
that bias and errors in the angular velocity data will cause the sum of angular
displacements to drift.

47

If we could combine the data from the accelerometer and the gyroscope,
we could have the cake and eat it too; an absolute reference provided by the
accelerometer and angles provided by the angular rate gyroscope.

Our choice of algorithm for estimating roll and pitch angles is based on a so
called complimentary filter, which will be presented in the next section.

3.3.8 Complimentary Filter

A top level data flow of our implementation of the complimentary filter can be
seen in figure 27:

Figure 27: Complimentary filter top level data-flow.

We have enumerated the different processes so that they can be discussed.

1. Gyro data input. Here we convert the input from the angular rate gyro-
scope and accelerometer into a form we can use in the algorithm. In this project
the sensors were all digital, and the sensor data were readily available to collect
from the sensor. If the sensors were analogue, we would have to convert the
reading using an ADC70.

Next we convert the raw sensor data into real units, i.e. acceleration in
(m/s2) and angles in degrees (deg). This step will depend on the sensor model,
and any options that is set with regards to scale and sampling rate.

To convert the raw acceleration data to real acceleration data we simply be
scale linearly. The gyroscope data will need to be scaled and then multiplied
by the time step, which is the same as the sampling rate.

2. Gyro drift/bias adjustement. In this step we apply corrections calcu-
lated in the previous cycle. The calculation of the corrections will be discussed
in step 8. The corrections are added to the gyroscope data.

3. Rotation matrix update. Next we add the new gyroscope data to the
rotation matrix that keeps track of the attitude. We do this by constructing
what we have called an update rotation matrix R̄update, which based on the
small angle theorem we introduced earlier.

R̄update =

 1 −ψn θn
ψn 1 −φn
−θn φn 1

70Analogue to Digital Converter.

48

Where φn, θn and ψn are the gyroscope data from the previous step.
We can now multiply the two matrices together to get the updated rotation

matrix:

R̄n = R̄n−1R̄update

4. Rotation matrix renormalization. Because repeated applications of
small angle rotation matrices will skew the rotation matrix, we need to take
steps to keep the rotation matrix orthogonal. We do this by exploiting that the
rows in the rotation matrix should be orthogonal71. If the rows are orthogonal,
the dot product between the should be zero. A non-zero value is the error scalar:

error =
[
r11r12r13

] r21r22
r23

We then apply the error scalar to the two rows in opposite direction by cross

coupling: r11r12
r13

orthogonal

=

r11r12
r13

− error
2

r21r22
r23

r21r22
r23

orthogonal

=

r11r12
r13

− error
2

r21r22
r23

With the two now orthogonal rows we calculate the third row by taking their

cross product:r31r32
r33

orthogonal

=

r11r12
r13

orthogonal

×

r21r22
r23

orthogonal

Lastly, we scale the orthogonal matrices to ensure that their magnitudes are
equal to one. We do this by dividing the sum of the squares of each row:r11r12

r13

normalized

= 1√
r211+r

2
12+r

2
13

r11r12
r13

orthogonalr21r22

r23

normalized

= 1√
r221+r

2
22+r

2
23

r21r22
r23

orthogonalr31r32

r33

normalized

= 1√
r231+r

2
32+r

2
33

r31r32
r33

orthogonal

These three normalised matrices now form the normalized rotation matrix
R̄.

71This method was developed by William Premerlani and Paul Bizard of the Gentlenav
community

49

5. Euler Orientation output. Now we calculate the Euler angles based on
the current rotation matrix. These are the pitch and roll angles which is the
attitude estimate output of the algorithm.

ψ = arctan(r32r33)
φ = arcsin(−r31)
θ = arctan(r21r11)

Where ψ, φ and θ is the roll, pitch and yaw angle respectively. Since the
inverse tangens function has singularities, we could optionally use one of the
other forms. But since this is only a problem at the poles, we can ignore this;
a boat that is upside down will have larger problems to deal with.

6. Accelerometer data input. Here we simply take the accelerometer data
and scale it to a unit vector. The result will be used as our horizontal reference
in the next step.

ĝ =‖ ~g ‖

7. Drift/Bias estimation. In this step we want to estimate the drift of
the system, so we can counteract the drift in the next cycle. We start off by
estimating the drift error by comparing the current rotation matrix R̄ with
the accelerometer vector ĝ. The assumption here is that on the average, the
accelerometer will give us gravity as a vector. I.e. the system will not accelerate
in any one direction indefinitely, so accelerations will cancel out eventually. The
exception to this is if the system is constantly turning in the same direction, for
example going around in a circle.

We calculate the cross product between the Z-row in the rotation matrix with
the unit vector from the accelerometer72, and get a third vector that represents
the drift error:

~edrift = ĝ × ~Rz

If the gravity unit vector and the z-row of the R̄-matrix are aligned, the
resulting error vector ~edrift will be a null vector. The larger the deviation
between the two, the larger the error vector will be.

8. PID Controller. In the final step we want to use the error vector from
step 7. to create a set of corrections to apply in the next iteration.

We then sum and multiply the estimated error from drift into two new
vectors we call ~CI and ~CP :

~CP = KP · ~edrift
~CI = ~CI +KI · ~edrift

This is a PID regulator where we use the PI parts, the proportional and inte-
gral terms, only. To use common process control terminology; The accelerometer
output is our set-point, the drift error is the error, and the rotation matrix is
the process variable.

The algorithm now has made a full pass, and will start back at step 1.

72assumed to be the direction of gravity

50

3.3.9 Implementing the Algorithm

We chose to implement the algorithm in C language using the GCC compiler.
We chose this language because it is hardware near and it is known to us.

Figure 28 shows a top-level data flow diagram for the program we wrote to
implement the algorithm.

Figure 28: Top-level control flow of the attitude estimation system.

Initialize marks the start-up of the program. This is were we initialise the
variables we are going to use. It is also were we set ut the devices we are going
to use. This is the USART port, the I2C-device, and the log file. The log file
is mostly for writing debugging information, and can be disabled by setting the
option

DEBUG_MODE=false

in the header of the source code. This is a compile option. The USART port
which is used to output data from the motion algorithm is set up with 57600
baud in a 8-N-173 configuration. The USART settings are coded into the source.
The last device we set up is the I2C-device, namely the MPU9150 MEMS motion
sensor.

After setting up the I2C-link, we write a number of options into registers74

that determine the behaviour of the MPU9150. The register SMPLRTDIV is
set to 49. The formula from which the output sample rate is calculated is

samplerate = (internalgyroscopeoutputrate)/(1 + SMPLRTDIV)

This which gives a sample rate of 20 Hz. Next we set the register DLPFCFG
to 1. This sets the digital low pass filter for the accelerometer and the gyro-
scope to option 175. This sets the internal gyroscope output rate to 1kHz. The
accelerometer and gyroscope bandwidths are set to 184 Hz and 188 Hz respec-
tively. This also introduces a delay for the accelerometer and gyroscope data of
2.0 mS and 1.9 mS respectively. The MPU9150 is set to a gyroscope range of
±250◦ and ±2g for the accelerometer at power-on, so we do not have to write
to those registers.

738 bits, no parity, one stop-bit.
74Registers are named as in the device data-sheet, which is included in the appendix.
75See the MPU9150 register map pg. 13 for other modes. The register map is included in

the appendix.

51

Sample is were we check if the MPU9150 has a new sample ready, and read
that accelerometer and gyroscope data. The MPU9150 is capable of generat-
ing an external signal when a new sample is ready, but the Raspberry Pi did
not have this feature implemented in the time of writing this. We read the
DATARDYINT register bit instead of using the external interrupt. This reg-
ister bit is set to 1 when a new sample is ready. We read the accelerometer,
gyroscope and temperature at the same time.

Time stamp is exactly that. We record the Raspberry Pi system time at
this point. This time will be output together with the attitude and temperature
data.

Process is the implementation of the complimentary filter as described in the
theory section.

Output is where the sample time, temperature and calculated attitude is
output on the USART.

3.3.10 Serial Data Output Format

The serial data will be output at a predefined baud rate. By default the baud-
rate is set to 57600 baud, in an 8-1-N configuration (8 data-bits, one stop-bit, and
no parity). A new data string is sent as soon as updated data has be calculated.
Data can be sent both ways. On an electrical level the data will be output using
the RS232 standard, but in a three wire configuration (No handshaking). In
this way, the data can be carried for a reasonable length (tens of metres).

The USART serial line is a relatively slow bus, with a limited transmitting
range. The higher the bit-rate, the shorter distance the serial line can transmit
error free. This is because of the unbalanced nature of the RS232 bus. While
we want to keep the bit-rate low, we don’t want to saturate the bus76.

Serial data for marine electronics commonly use the NMEA 0183 protocol,
or its successor NMEA 2000. This is a proprietary and licensed protocol, but
we used it as a basis for the first serial data output format. The NMEA 0183
protocol defines an attitude sensor ASCII string $PASHR. As with all NMEA
strings they follow a specific format. The NMEA string has a maximum length
of 71 bytes, including sign bits and carried return/line feed. The number of bytes
we have available per sentence must be more than 71 bytes. The available data
output-rates for common standard baudrates is listed in table 10. We chose
a baudrate of 57’600 as a good trade-off between data-rate and transmitting
distance. At at data-rate of 50Hz, we can transmit 144 bytes per sentence, and
are therefore left with spare capacity. The final system outputs at a data rate
of 25Hz.

76Trying to push data to the bus faster than the bus can transmit it

52

Baud Rate 100 Hz 50 Hz 25 Hz 10 Hz
9600 12 24 48 120
19200 24 48 96 240
38400 48 96 192 480
57600 72 144 288 720
115200 144 288 576 1 440

Table 10: Baud rates versus byte throughput.

The data fields in the PASHR NMEA string are listed in appendix B.

After the field test at Sognsvann, we decided to use a custom data format
instead of the NMEA string. The way we used the NMEA string meant we had
allot of empty fields, so we took away those, and the string identifier.

The revised and custom data-format is much shorter. Table 11 lists the new
output data-format implemented:

No. Name Description Format Example
1 Time Time-stamp of data hhmmss.mm 150822.12
2 Temperature Temperature at the sensor [±]ccc.c 14.2
3 Roll Roll in degrees [±]ppp.pp 3.66
4 Pitch Pitch in degrees [±]rrr.rr -3.95

Table 11: Custom data output string

The data in the custom string is comma-separated and line-terminated, just
as the NMEA string. The maximum number of characters that will be sent in
this format is 37 characters. We decided to keep the baud-rate of the serial port
at 57’600 baud, since this worked well at the Sognsvann field test.

3.3.11 Other Software

To write the initial Raspbian OS onto an SD card we use the free software
Win32DiskImages. Both this software, and the official Raspbian OS image is
included on the DVD-ROM.

To copy an existing OS from an SD card we use the free software HDDRaw-
Copy. This software, and the latest disk image is included in on the DVD-ROM.

A free serial emulator called RealTerm is also included on the DVD-ROM.
This software can read and log data coming from the serial port of the Raspberry
Pi. This is what we used before we wrote the control software.

3.4 Control Software

We wrote a program that can be used together with the attitude system. This
control program can log the data coming from the attitude system to file. The
control program can send settings to the attitude system. The control program
will also show current readings from the attitude system, both numerically and
graphically.

The control program is written in Lazarus IDE. The source code and a
compiled program is included on the DVD-ROM.

53

3.4.1 Description

The program can record the motion data from the system to a file, as well as
displaying the current sensor time, pitch and roll, and sensor temperature.

The control software can send current system time down to the attitude
system, for time synchronisation.

It is also possible to tune filter parameters and scaling factors in the attitude
system. The bias can also be nulled by the control software.

In addition, it is possible to select an output rate and whether or not to send
out an external syncing pulse. Figure 29 shows the user interface of the control
program.

Figure 29: RaspIMU control program user interface.

The control program window can be resized to only show the current pitch
and roll, so that it is unobtrusive. Figure 30 shows a resized window.

Figure 30: RaspIMU control program when resized to a small window.

3.4.2 Commands

RaspIMU can send commands to the Raspberry Pi on the UART port. The
program that runs on the Raspberry Pi can then interpret these commands.

54

The different commands are listed in the table 12.

Data output Function
TInn:nn:nn Sends current system time
SY0 / SY1 Turns External Sync. signal off/on
SRn Sets output rate of external sync. signal and data rate
GXn.nnnn Sets gyroscope scaling x-axis
GYn.nnnn Sets gyroscope scaling y-axis
AXn.nnnn Sets accelerometer scaling x-axis
AYn.nnnn Sets accelerometer scaling y-axis
KInnnn Sets integral filter parameter
KPnnnn Sets product filter parameter
SB Sets gyroscope bias to current reading

Table 12: Serial commands sent by the RaspIMU control program.

55

4 Testing

We tested the system in four separate tests; a static test, two dynamic test,
and a field test. The static test was performed to investigate the raw output
from the sensors. The dynamic test was a dry-run to the real-world test, to
see how well our system worked and to uncover any problems in a controlled
environment. The real-world test was to see how well the system performed in
a typical field test.

The tests in this section are all performed using the MPU9150 sensor on the
Raspberry Pi.

4.1 Static Test

The static sensor tests were done to investigate the characteristics of the sensors
when they are motionless. In this state, it is easier to investigate the charac-
teristics of the sensors, such as accelerometer output noise and angular rate
gyroscope bias. If we know something about the characteristics of the output
from the sensors we can perhaps take steps to improve measurements, or at
least get an indication of why we get the results we get. We expected measure-
ments to be normally distributed. The angular rate gyroscope will have bias,
and with a motionless system we can determine this bias. Both the angular
rate gyroscope and the accelerometer will display some output noise, and again,
since the sensor is motionless we can statistically determine these values.

With the sensor in a motionless state, we can also investigate characteristics
of the algorithm we use to estimate the attitude angles.

It was observed that the sensor is sensitive enough to pick up footsteps,
opening and closing of doors, and similar disturbances. We took care not to do
these things while recording data from the sensor.

4.1.1 Static sensor testing

We waited a minute for the sensor to stabilise before we recorded the data. We
recorded a few thousand samples of acceleration, angular rate, and temperature.

Figures 31, 32, 33, and 34 show the histogram for the accelerometer and the
gyroscope with sampling at 50Hz. The raw data can be found on the DVD-
ROM.

56

Figure 31: Histogram from raw accelerometer readings for the MPU9150 at
50Hz.

Figure 31 shows the histogram for the accelerometer. Here we use the length
of the vector, and not independent axis, as for the gyroscope below.

We calculated that the average for the accelerometer is 16’257.8 raw units,
and the standard deviation is 16.2679 raw units. To get the results in terms of
the constant, g, we divide by the number of bits to the g77. We end up with
0.992297g average, and a standard deviation of 0.992914mg. We would expect
the average to be close to one g, which it is. We are mostly interested in the
direction of gravity, and not its magnitude. This is because we use the direction
to estimate a horizontal reference.

The standard deviation is close to 1mg. This is of more importance to us, as
this will say something about the noise present in the accelerometer data. We
also note that the histogram looks normally distributed, i.e. it is not skewed.
This is good, and expected for an accelerometer sensor.

77From MPU9150 data-sheet, which depends on selected range. 16’384 for ±2g

57

Figure 32: Histogram from raw Gyroscope X-axis readings for the MPU9150 at
50Hz.

Figure 33: Histogram from raw Gyroscope Y-axis readings for the MPU9150 at
50Hz.

58

Figure 34: Histogram from raw Gyroscope Z-axis readings for the MPU9150 at
50Hz.

Figure 32, 33, and 34 show histograms from of each axis of the gyroscope.
On each histogram the average and standard deviation is noted. We see that
the gyroscope does not measure an average of zero, but take on a non-zero
value. This is the bias of the gyroscope. The standard deviation, as for the
accelerometer, say something about the noise in the gyroscope. We divide the
raw data by the number of bits to ◦/s 78. Table 13 is a summary of the results
stated in ◦/s.

Axis Average Standard Deviation
X −11.0269◦/s 0.089053◦/s
Y 2.12271◦/s 0.089373◦/s
Z −4.56129◦/s 0.077740◦/s

Accelerometer 0.992297g 0.992914mg

Table 13: Standard Deviation and Average for Gyroscope and Accelerometer
for the MPU9150 at 50Hz.

We repeated the test, but now we lowered the sampling rate from 50Hz to
25Hz. We did this to see the effects the sampling rate had to the data. Table 14
lists the results.

78From MPU9150 data-sheet, depends on selected range. 131 for ±250◦/s

59

Minimum Maximum Average Standard Deviation
Temperature 16.33 16.47 16.41 0.029
Accelerometer X -1264 -926 -1090.67 43.65
Accelerometer Y -298 28 -134.08 44.03
Accelerometer Z 14626 15116 14868.45 63.41
Gyroscope X -103 -58 -73.37 4.07
Gyroscope Y 79 140 92.27 3.62
Gyroscope Z 22 58 39.23 4.86

Table 14: Standard deviation and average of raw data for gyroscope and ac-
celerometer for the MPU9150 at 25Hz.

Average Standard Deviation
Accelerometer X −66.57mg 2.66mg
Accelerometer Y −8.18mg 2.69mg
Accelerometer Z 907.50mg 3.87mg
Gyroscope X −0.56◦/s 0.031◦/s
Gyroscope Y 0.70◦/s 0.028◦/s
Gyroscope Z 0.30◦/s 0.037◦/s

Table 15: Standard deviation and average units for gyroscope and accelerometer
for the MPU9150 at 25Hz.

We notice that the standard deviation is smaller when the sampling rate is
lowered, as is expected. We decided to keep the sampling rate at 25Hz.

4.1.2 Temperature Testing

In this test we wanted to see how the MPU9150 sensor reacts to changes in tem-
perature. We cooled the sensor down to about 8 degrees centigrade. We then
moved the sensor to a warm room, and let the sensor warm up gradually. When
the temperature reached ambient room temperature, we heated the sensor fur-
ther with a hot air gun. There are fewer data points between 16 and 22 degrees
centigrade. This is because the hot air gun heated the sensor a little faster than
anticipated. We moved the hot air gun further away for the remainder of the
temperature test. Figure 35 shows the accelerometer during the temperature
test, and figure 36 shows the gyroscope.

60

Figure 35: MPU9150 Accelerometer raw output versus temperature.

Figure 36: MPU9150 Gyroscope raw output versus temperature.

The accelerometer data is quite flat for the whole range of temperatures,
however there is a small change. The changes we measured are listed in the
table. We assume the trend is a linear, so we used a linear regression in a
spread sheet to calculate the relationship. Table 16 summarised the relationship
we found.

61

Axis Raw units Real units

X −13.7unitc◦ −0.8361mgc◦
Y −2.783unitc◦ −0.1698mgc◦
Z −16.455unitc◦ −1.004mgc◦

Table 16: MPU9150 accelerometer output versus temperature relationship

The MPU9150 gyroscope shows a more complex reaction to temperature,
perhaps a quadratic regression would be a good fit. We can remove this bias at
one temperature point from the gyroscope data in our algorithm through the
Set Bias command. The idea is that any slow change in bias after the set bias
command will be compensated for in the complimentary filter.

4.1.3 Filter parameters and tuning

The complimentary filter has a PI-regulator with parameters that can be tuned.
With the MPU9150 slanted at an angle, we changed the P and I parameter to
see the effects on the attitude output. For each different setting og P and I79

we restarted the algorithm. The data is included on the DVD-ROM. Figure 37
shows the attitude output for different setting of I, whilst holding P constant.
Figure 38 shows the attitude output for different setting of P, whilst I is constant.
For this test we did not zero the gyroscope bias, to see how well the filter would
handle a non-zero bias. The factor is scaled for readability, both here and in
the software. The real PI factors are divided by 65’535.

79Product term and Integral term.

62

Figure 37: Complimentary filter PI-regulator tuning for different I factors.

Figure 38: Complimentary filter PI-regulator tuning for different P factors.

We see that it is only when I approaches 8192 that the I factor takes effect.
If the I factor is pushed even further, we get oscillations.

63

For the P factor, we see that when P is 0, the filter doesn’t settle. When P
is set to 128 and above the filter settles. If we keep increasing the we see that
the filter settles very quickly, but that allot of the noise from the accelerometer
comes through.

A P and I factor somewhere in between these extremes is what we use. We
have set the default values for P and I are 512 and 512 respectively. These
values for P and I worked well for us.

While we looked at the filter parameters, we also considered the settling
time. The settling time is the time it takes for a system to reach a fraction
of the final output value. This is interesting to us primarily to see how long
it takes for the algorithm to go from its initial state, to a state we consider
operational. Figure 39 of the output from the algorithm from its initial state
up to 1000 samples.

Figure 39: Typical settling time for the attitude estimation system from power-
on.

The output reaches 99% of its final value after the 582. How long this takes
in real time depends on the sampling rate and filter parameters, everything else
being equal. For a sample rate of 10Hz the settling time would be 58.2 seconds,
and 29.1 seconds with a sample rate of 25Hz.

4.1.4 Complimentary filter static test

Following the same setup as the static sensor test, we recorded the attitude
output from the attitude system. Table 17 summarises statistics calculated
from this test. We waited for the complimentary filter to settle before we started
recording. We collected 9555 samples.

64

Temperature Pitch Roll
Average 17.59 C 2.68◦ −0.11◦

Standard deviation 0.07 C 0.016◦ 0.032◦

Table 17: Complimentary filter attitude output statistics in static test

Compared to the standard deviation in the raw output from the gyroscope
in table 13 from the static sensor testing, we see that the deviation is of the
same magnitude.

4.1.5 Observations from the static test

We have seen that the MPU9150 accelerometer and gyroscope data is normally
distributed. We also saw that both the accelerometer and the gyroscope is
sensitive to changes in temperature.

We manually tuned the PI-regulator in the complimentary filter, and found
a set of good P and I filter parameters to use. For large P filter parameters that
the noise from the accelerometer became evident. We have selected a P filter
parameter that removes that noise.

When we recorded the attitude output from the complimentary filter, we
saw that the standard deviation of the attitude was of the same magnitude as
the standard deviation of the raw gyroscope output.

The standard deviation of the attitude from the complimentary filter will be
our measure of precision, but only when the system is motionless. In the next
tests we investigate the systems precision when it is in motion.

4.2 Dynamic Test

For the dynamic test we want the system to experience motion, and we want
be able to compare the estimated attitude against an external reference. For
our dynamic test, we used a laser pointer aimed at a flat wall. We used simple
geometry to make an angular scale based on the distance between the wall and
the sensor. The sensor itself was mounted on a hardware platform that was able
to move in two independent axis.

The point of the dynamic test is to investigate how well the system is able
to estimate attitude when in motion.

4.2.1 Setup

We assembled a hardware system that could move a platform in two independent
axis, we call this the pan and tilt platform. The pan and tilt platform is moved
to a position by two digital servos, which are able to move the platform in full
180 ◦ by 180 ◦ half-sphere. An Atmel ATMega8 micro-controller sends out a
Pulse Width Modulated (PWM) signal to the servos to set the angle of the pan
and tilt platform. Figure 40 shows the pan and tilt platform with servos.

65

Figure 40: Pan-tilt test rig used in the dynamic test.

A servo will react to a PWM-pulse by trying to set the servo shaft to an angle
based on the length of the pulse. Commonly servos expect a 20mS repetition
rate, with a pulse length between 1mS and 2mS where 1.5mS is the neutral
position. The two servos used were standard hobbyist servos (MSG995) and
their position to pulse relationship can be found in table 18.

No. Servo type Min (0 ◦) Neutral (90 ◦) Max (180 ◦) Pulse Rate
- Common 1mS / −90 ◦ 1.5mS / 0◦ 2mS / +90◦ 20mS

Table 18: Servo PWM control signals for MSG995 servos.

A program was written for an ATMEGA8 micro-controller that generates
PWM-pulses. The source code can be found in the appendix. The ATMEGA8
micro-controller was chosen because it can generate the PWM-pulse in hard-
ware and it is relatively easy to do so. The program will the move the sensor
platform in a known pattern, so that measurements and observations can be
made. Since measurements are now done while the sensor is in motion, that
tests are dynamic.

The sensor was mounted on the platform relatively close to the point of
rotation, only offset by a few centimetres. Because of this we assume that
the rotation is at the sensor, so that we don’t have to take into account the

66

centripetal forces during rotation. The centripetal forces will be larger the
farther away the sensor is placed from the point of rotation.

The idea was to move the pan-tilt in different patterns, such as a sine or a
sawtooth motion, or even simulating a boat. We would know the position of
the platform through the PWM signal, which we could then compare against
the measured attitude.

4.2.2 Data

The problem with this method was that the servos were no where near accurate
enough for this purpose. The servos would hunt for the position that was sent
from the micro-controller. The servos could not reliably reproduce the motion
patterns we fed them either. The servos would miss the target angle by several
degrees, so we had no repeatability. Figure 41 shows the attitude data for a
stepping pattern. Typical servo hunting can seen in step number two and four.

Figure 41: Step pattern test using pan-tilt servo rig as measured by the attitude
system.

Figure 42 shows the attitude data for a triangle pattern. We could hear and
see the servos hunting for position. We could pick up this jerky motion with
the attitude sensor.

67

Figure 42: Triangle pattern test using pan-tilt servo rig as measured by the
attitude system.

What we did in the end was to manually rotate the platform in small steps,
and then recorded the projected angles. Figures 43 and 44 shows a plot for
the pitch axis and the roll axis from one of these test. The pitch angle plot is
overlayed with the pitch angle calculated from the raw accelerometer data.

Figure 43: Pitch Angle Output for Dynamic Test with accelerometer based
angle calculations overlayed.

68

Figure 44: Roll Angle Output for Dynamic Test.

We compared the measured attitude data and the measured projected angles.
We found some discrepancy between the two, the result is shown the two plots
in figure 45 and 46.

Figure 45: Pitch Angle Discrepancy for dynamic test.

69

Figure 46: Roll Angle Discrepancy for dynamic test.

Table 19 summarises the linear and quadratic equations we calculated on
the discrepancy. The regressions were calculated in a spread-sheet. We have
decided to take out the zero-crossing parameter from the equations, because the
angles should be zero when at level.

Axis Linear regression Quadratic regression
Roll y = 0.0923x y = −0.0012x2 + 0.1207x
Pitch y = 0.1107x y = −0.0005x2 + 0.1269x

Table 19: Angle output correction based on the dynamic test.

We observe from the figures that the quadratic equation is a better fit. We
also see that the quadratic parameter is one magnitude smaller than the linear
parameter. The linear equation would be a good approximation of the angle
discrepancy.

Another effect that we saw was that the attitude estimate over-shoots during
the sharp transitions. Figure 47 and 48 shows a transition for each roll and pitch.

70

Figure 47: Pitch Angle overshoot during sharp transition.

Figure 48: Roll Angle overshoot during sharp transition.

We see that there is a short spike during sharp transitions for both axis. This
is most probably due to some give in the gearing of the test platform; when the
platform is forced to a new angle, the platform returns a little when we let go.
In other words, it is not perfectly rigid.

We decided to let the user input parameters for linear corrections for the
accelerometer and the gyroscope as part of the user interface.

71

4.2.3 Shake test

One additional test we did was a shake test. In this test we gave the pan-tilt rig
a violent shake. The purpose was to see how well the algorithm suppresses linear
acceleration. We let the system settle first, and that shook the rig back and
forth, keeping the rig flat against a surface. We did this first for the roll-axis,
then for the pitch-axis, and one second time for the roll-axis. The accelerometer
should pick up acceleration, but the gyroscope should pick up very little rotation.
Next we plotted output from the algorithm and the angle for the corresponding
axis calculated solely from the accelerometer data. Figures 49 and 50 show the
plots for the roll axis.

Figure 49: Angle calculated from accelerometer for shake test.

72

Figure 50: Algorithm attitude output for shake test.

We notice that the angle calculated from the accelerometer is quite large,
almost 60 degrees difference peak-to-peak. When compared to the output from
the algorithm, we see two peaks corresponding to the two shakes. There is a
change in angle, but less than a degree. This could well be a little rattling in
the pan-tilt rig, as the sensor was at this point still mounted on the pan-tilt rig.
The attitude algorithm suppresses linear acceleration well.

4.2.4 Observations from the dynamic tests

We saw that general purpose hobby servos are not well suited for precise mea-
surements. The main issues with the test method was that the servos were not
very precise. When the servos were commanded to go to a position, we saw that
the servos would often miss by several degrees. When a repeated command were
sent the servos would not to go to the same position. Secondly, sometimes the
servo would hunt for its position. When this happened, the servo would shake.
This hunting would introduce noise into our attitude measurements.

It is possible that there are more precise servos that would be better suited
for our test, but we did not trying to find one. A better method would perhaps
to use a stepper motor, which have precisely defined steppes, and to gear that
motor as low as possible to produce smooth movements.

We observed that there was a discrepancy between the attitude sensor angle
and the measured angle. We also saw an overshot during sharp transitions.

The shake test showed that the attitude sensor suppressed linear distur-
bances very well.

73

4.3 Tachometer test

The aim of this test is to investigate the performance of the system when in
motion.

4.3.1 Setup

For this test we attached our sensor to a rod coupled to a wheel. The wheel
could spin. The spinning wheel will translate to a sinusoidal tilt angle as seen
from the rod. A micro-controller was set up to count the length between pulses
from an IR reflector/detector. This would give us a basic tachometer. See the
figure 51 for the test setup.

Figure 51: Overview of the tachometer test setup.

Every pair of spokes was taped with reflecting silver tape, 18 pairs altogether.
The difference between top angle and bottom angle was 26 degrees. This means
we have a 1.45 degree resolution per tick. The IR detector will give out a
pulse when a reflection of the tape is detected. The IR detector is based on
the Hamamatsu light modulation photo IC80. An Atmel XMEGA measures the
time between two pulses, and outputs that time on the USART port81.

Measurements where taken of the geometry the setup. A laser pointer was
used to measure the top and bottom angles against a flat wall. A tape measurer
was used to measure distances. We assume that the wall we measure against is
right angled. The angles are listed in table 20.

80Data-sheet is included in the appendix
81Source code is included in the appendix

74

Adjacent Opposite Calculated Sensor
Top 251.3 cm 513.3 cm 26.09◦ 27.64◦

Bottom 41.3 cm 524.7 cm 4.50◦ 3.75◦

Table 20: Measurements of top and bottom angles in tachometer test.

A total of ten tests where performed. Table 21 list the tests performed.

No. Summary
1 One slow controlled revolution.
2 Gentle spin.
3 Three successive gentle spins.
4 Moderate spin.
5 Hard spin. Failed when equipment detached.
6 Hard spin. Failed when rod lifted off the table.
7 Hard spin with extra weight. Rod lifted off table again.
8 Hard spin with extra weight.
9 Three successive hard spins and stops. Frame moved, failed.
10 Three successive hard spins and stops.

Table 21: Tachometer tests performed.

Of the ten tests, tests 5, 6, 7, 8 and 9 are not used due to equipment
malfunction.

4.3.2 Data

We manually fitted the sensor and the tachometer data together, the result of
the plots are in figures 52, 53, 54, 55, 56 and 57. We adjusted the start
time offset between the tachometer and the attitude sensor. The tachometer
was always started from the same sector of the wheel, we adjusted the angle
offset to match the two data sets. Finally we adjusted the half range angle of
the tachometer data set to fit the attitude sensor data.

75

Figure 52: Tachometer test 1. plotted tilt angle from sensor and tachometer.

Figure 53: Tachometer test 2. plotted tilt angle from sensor and tachometer.

76

Figure 54: Tachometer test 3. plotted tilt angle from sensor and tachometer.

Figure 55: Tachometer test 4. plotted tilt angle from sensor and tachometer.

77

Figure 56: Tachometer test 8.

Figure 57: Tachometer test 10. plotted tilt angle from sensor and tachometer.

We then took the took the difference between the tachometer angle data and
the sensor angle data to get the difference between the two. We then took the
standard deviation of the difference. The results for the test are summarised in
table 22:

78

No. Standard Dev. Average Time offset Angle offset Angle Half Range
1 0.6886◦ −0.005◦ -0.395 s 15.53◦ 13◦

2 0.5692◦ 0.008◦ -3.525 s 15.35◦ 13◦

3 1.583◦ 0.008◦ -2.39 s 15.675◦ 12.575◦

4 0.954◦ −0.003◦ -0.35 s 15.25◦ 12.16◦

8 2.668◦ 0.003◦ -1.6 s 16.9◦ 14.35◦

10 1.883◦ −0.002◦ -3.95 s 16.82◦ 14.45◦

Table 22: Summarised tachometer test results.

4.3.3 Observations from tachometer test

In the tachometer test we saw that there was a good match between the attitude
sensor and the tachometer rig. Visually, we can see that the two curves fit
together. When we looked at the difference between the attitude sensor and the
tachometer we get figures for standard deviation as low as 0.5692◦.

We observe that there is a change in the manual adjustments we had to
make for test 8 and 10. In test 8 and 10 we had fitted the rod with a weight
to hold down the rod while we were spinning the wheel. This altered the initial
setup, and this is probably the reason for the changes.

The attitude sensor performed well when measured against the tachometer
rig, but we saw lower accuracy when the speed of the wheel increased.

4.4 Field test at Songsvann

Sognsvann is a small lake close to the University of Oslo, Blindern campus.
The lake is representable for the type of environment our system is designed
for. The purpose of the field test was twofold: To test the system in a typical
environment, and to test its performance against the sonar equipment.

4.4.1 Setup

The test was carried out on the 20th of February. Prior to departing for
Sognsvann, all the equipment was checked and packed at Blindern. Along with
the attitude system we brought a sonar system, and equipment needed at the
site (such as ice bores, batteries, an axe, a table, and so on). The equipment
was then packed into a car, and we headed for Sognsvann.

At Sognsvann the weather was very good, with clear blue skies and no wind,
as can be seen in figure 58 from the test site. We carried the equipment the short
distance from the car park down to the lake. We then scouted out a promising
spot to carry out the test. The lake was frozen over, and the ice was deemed
safe. We wanted to find a spot on the ice were the water was deep enough for
our test, and to have an unobstructed path between the sonar and the target.

79

Figure 58: Preparing the instruments at Sognsvann field test.

We removed the snow from the top of the ice. There was about 10 cm of
water on top of the ice. The water made it a little difficult to drill holes for our
equipment.

We drilled an exploratory hole. We measured the depth to be 5 meters,
which would be sufficient for our test. The hole was then enlarged to be big
enough to pass the sonar boom through. A second hole was drilled roughly ten
meters away from the first hole. This hole was measured to be 5 meters deep.
The second hole would be used to lower the acoustic target into. The target
was a small copper sphere, and its diameter is such that resonates with the
sonar frequency. This creates a strong return echo. The target sphere is 1 cm
in diameter, and can be seen in figure 59.

Figure 59: Copper acoustic target used in the field test.

After we had prepared the two holes, we lowered the sonar and the acoustic
target. We then tested that the sonar system could locate the target. The
sonar could see the target, so we retracted the sonar again. We then mounted
the sensor system onto boom and lowered the boom into the water. The sensor

80

was mounted so that the roll axis of the sensor was aligned to the sonars beam
direction.

4.4.2 Description of tests

A total of nine tests were carried out. Data from the sonar and the sensor
system was recorded simultaneously. The sonar was attached to a boom, and
the motion sensing system was placed close to the sonar. The boom assembly
was attached to a wooden cradle assembly that allows the boom to swing in
one direction. A centre position and a grade scale marks the top of the boom
cradle. The description of the tests are listed in table 23, in chronological order.

No. File Description
1. caption1.txt Equipment test
2. caption2.txt No Movement - Stationary
3. caption3.txt Sonar moved in steps
4. caption4.txt Slow swinging
5. caption5.txt Shaking of mounting plate and boom
6. caption6.txt No movement - Stationary
7. caption7.txt Sonar moved in steps
8. caption8.txt Slow, then fast swinging
9. caption9.txt Shaking of the mounting plate and boom
10. caption10.txt Shaking of the mounting plate and boom

Table 23: Description of tests performed at Sognsvann

Tests 1 through 5 were performed with the target at roughly 11.5 meters
distance from the sonar. The sonar data was a little noisy, so we decided to
drill a third hole closer to the sonar and repeat the tests. Tests 6 through 9
were a repeat of the tests, but approximately 1 meters closer to the target. Test
number 9 was repeated in test number 10 as the acoustic target went too far
outside the sonar beam.

Test number 1 was an equipment test, just to see that everything worked
before we proceeded.

Test number 2 and 6 were stationary tests. With the acoustic target centred
in the sonar beam, a short length of attitude data was collected. This serves
as a baseline, so that we can extract angle offsets between the two systems and
calculate a baseline performance.

In tests 3 and 7 we moved the transducer in steps. In this test it should be
relatively easy to pick out the angles in the two systems in this test, to do a
stepwise comparison.

In tests 4 and 8 the boom was swung back and forth, taking care in keeping
the acoustic target inside the view of the sonar system. These tests were to
emulate the rocking of a boat boat.

Tests 5, 9, and 10, were designed to try to throw of the motion sensing
system by violently and rapidly shaking the boom cradle and the boom itself.

81

4.4.3 Data

The data from the sonar and the sensor was processed in Sonar5. Our acoustic
target was stationary, so when the boom was tilted up and down, we could see
the target moving up and down inside the beam. After merging the attitude
data with the sonar data, we would want to see the acoustic target stationary,
as if the hydrophone was not moving at all.

The first set of data we present is the stationary test from test 2. Here
we looked at the sonar target when there is no movement in the hydrophone.
We want to see a stationary flat line plus noise. Figure 60 shows the vertical
position calculated from the sonar data using Sonar5.

Figure 60: Test 2. Vertical position before applying attitude corrections.

The pitch and the roll should not vary much either, since we did not move
the rig with the sonar. Figures 61 and 62 show the pitch and the roll data
recorded by the sensor system.

Figure 61: Test 2. Pitch angle measured by the sensor

Figure 62: Test 2. Roll angle measured by the sensor

We can see that there is some very slight changes in the pitch and roll
angles. The attitude82 data was then merged with the sonar data in Sonar5.

82Pitch and roll

82

The compensated vertical position can be seen in figure 63.

Figure 63: Test 2. Vertical position after applying attitude corrections.

Visually there is not much to distinguish the two curves. We calculated
the standard deviation from test 2 for the vertical position and the corrected
vertical position, summarised in the table 24.

Average Standard Deviation Data
-1.110 cm 1.934 cm Sonar data only
-3.150 cm 1.420 cm Sonar merged with attitude data

Table 24: Statistics on vertical positions from test 2.

The standard deviation is a little lower for the corrected vertical position. If
the recorded attitude was just noise, that noise should be additive. The standard
deviation of the merged data would be higher that the sonar data alone.

We have now established a baseline for when the acoustic target is in the
centre of the beam and the hydrophone is not moving. This is the optimal situ-
ation with respect to performance of the sonar and the motion sensing system.
Next we present the data for the other three tests.

The next plots is data from test 7. This is one of the test where we move
the sonar boom. Figure 64 shows the vertical position of the target, as seen by
the sonar system. Figure 65 shows the tilt angle simultaneously measured by
the sensor.

83

Figure 64: Test 7. Vertical Position before applying attitude corrections.

Figure 65: Test 7. Pitch angle measured by the sensor.

As can be seen from figures 64 and 65, the data from the sonar and the
sensor are similar but opposite. The oppositeness depends on how you define
your axis. Figure 66 shows the vertical position of the target after we merge the
attitude with the sonar data.

84

Figure 66: Test 7. Vertical position after applying attitude corrections.

As we can see in the figure 66, the jumps are now gone. There are some parts
of the plot that are straighter than other. If we look at the return strength83

of the echo in figure 67, we can see that return is strong when the target is in
the centre of the beam, and weakens when the target is nearer the edge of the
beam. With a lower return strength it becomes more difficult for the track-
ing algorithm to estimate vertical position. The determination of the position
becomes drastically unreliable outside the half-power84 of the sonar beam85.

Figure 67: Test 7. Uncompensated target strength from the sonar.

We observe that low return strength causes more noise in the vertical posi-

83Uncompensated target strength
84-3dB
85Unpublished data by Helge Balk

85

tion.

We also see that between ping 680 and 1244, the motion sensor picks up two
distinct positions, but the sonar only picks up one.

Table 25 summarises the standard deviation in the vertical position from
test 7. If we where to exclude noisy sections, we would get a lower deviation.

Average Standard Deviation Data
4.71 cm 29.66 cm Sonar data only

-2.917 cm 3.188 cm Sonar merged with attitude data
-2.349 cm 1.766 cm Sonar merged with attitude data (ping 1372-2398)

Table 25: Statistics on vertical positions from test 2.

If we take only an extract of the data, from when the target was near centre
of the beam and the return strength was strong, we get an improved figure of
standard deviation. We calculate the standard deviation from the corrected
vertical position in ping 1372 through 2398. This deviation is closer to the
deviation we calculated from test 2.

In test 8 we swung the boom back and forth in a smooth motion, first slowly
and the quickly. We tried to keep the acoustic target inside the beam at all
times. Test eight test was designed to see how well the motion sensing system
copes with a constantly moving target. Figures 68 and 69 shows the sonar alone
and merged vertical position of the acoustic target.

Figure 68: Test 8. Vertical position before applying attitude corrections.

86

Figure 69: Test 8. Vertical Position after applying attitude corrections.

We see that the we are able to smooth out the data when the hydrophone
moves at a period of 17.68 seconds, but not when the period increases to 1.229
seconds86. We summarise the data in table 26. The data up until ping 1800 is
of a slowly swinging boom.

Average Standard Deviation Data
-1.982 cm 26.42 cm Sonar data only
-12.62 cm 12.29 cm Sonar merged with attitude data
-12.61 cm 4.070 cm Sonar merged with attitude data (ping 1-1800)

Table 26: Statistics on vertical positions from test 8.

The period of the swinging motion is listed in table 27, showing the shortest
and the longest swing period.

Period Frequency Motion Samples Pings
Slow 17.68 Sec 0.0566 Hz 884 586
Fast 1.229 Sec 0.5882 Hz 90 67

Table 27: Test 8. Period of swing of the hydrophone.

In test 9 and 10 we tried to stress the sensor system as much as possible.
We picked up the boom rig by one corner and shook the whole platform. We
then shook the rig by the opposite corned. Finally, we shook the sonar boom
violently. Figure 70 show the vertical position calculated using the sonar data.
Figure 71 shows the vertical position when merged with the attitude data.

86See table 27 for periods

87

Figure 70: Test 10. Vertical position before applying attitude corrections.

Figure 71: Test 10. Vertical position after applying attitude corrections.

As we saw in test 8, the motion sensing system is not able to correct for
motion that is too rapid. Visually we can see that the motion sensing system
has managed to smooth out some sections, such as when the rig was let go off.

In table 28 we summarise the results from the tests in degrees, rather than
centimetres vertical displacement. We do this by using the tangents function.
Tests 7. and 8. appear twice, with vertical standard deviation for both the

88

whole data set, and an extracted data set.

No. Acoustic range Vertical SD (cm) Vertical SD (degrees)
2. 11.74 m 1.420 cm 0.0692◦

7. 10.00 m 3.188 cm 0.1827◦

7. (1372-2398) 10.00 m 1.766 cm 0.1012◦

8. 9.993 m 12.29 cm 0.7046◦

8. (1-1800) 9.993 m 4.070 cm 0.2334◦

10. 9.992 m - -

Table 28: Summary of test results from Sognsvann field test in degrees.

4.4.4 Observations from Field Test

The test condition at Sognsvann were very good. We had perfect weather, and
the ice was safe. There was no injury to the participants, and no damage to
our equipment. The mood in was good, and everyone was motivated. Our
equipment worked, and we were able to collect ten sets of data.

We saw that the attitude system worked well in the environment at Sognsvann,
which is an important success criteria. The sensor system was submerged in wa-
ter, and there was no water ingress.

We saw that we could compensate sonar data using the attitude from the
sensor system. We had some challenges when trying to synchronise the two sets
of data. Since both data sets were time stamped, after finding the displacement
between the two, the sensor data could be merged with the sonar data. Sonar
5 calculates the tilt angle from the sensor by looking at the two closest sensor
readings, and linearly interpolating between the two87.

87tilt = at+ b.

89

5 Summary

The goal of this project was to build a system that could be used to compensate
for a mobile hydrophone in hydro-acoustic surveys.

The first unit we built had limitations with respect to a micro-controller
that was not powerful enough to run the attitude estimation algorithm. We
therefore built a more powerful second unit that could run the algorithm.

The system had to operate in a typical environment for a hydro-acoustic
survey. We successfully ran a hydro-acoustic survey in such an environment
when we did the field test at Sognsvann. The system was submerged in water
for several hours without any water ingress. The system should also be able to
tolerate rough handling. The system has no parts that are particularly sensitive,
so we have achieved this too.

The system was to be reasonably priced. The total cost of the parts in the
second generation system was 140.12 USD. The single most expensive compo-
nent was the MPU9150 evaluation board, costing 79.95 USD. The price of a
single MPU9150 sensor is only 17 USD. A custom PCB board for the MPU9150
sensor would bring the total cost down considerably. Optionally a custom board
can include all the other components, except for the Raspberry Pi single-board
computer. This would bringing the cost even further down. In any case, the
total cost of one unit is still low.

The system should be easy to use. We achieved this by writing a control
program for the system. The attitude system will turn itself on automatically
when power is applied. The user only needs to run the control program and
click the start button to see the data coming through.

We ran several tests to investigate the performance of the second generation
system, both in the field and in a laboratory set up.

In the static tests we investigated the raw output from the MPU9150 ac-
celerometer and gyroscope when motionless.

Both the MPU9150 accelerometer and gyroscope sensor were sensitive to
changes in temperature. The accelerometer showed a linear response to tem-
perature changes, while the gyroscope showed a more complex response. The
non-zero output from a motionless gyroscope is its bias. Small changes in the
bias of the gyroscope is handled by the complimentary filter. The initial bias
of the gyroscope can be removed through the control program by using the set
bias function.

We looked at different P and I factors for the PI-regulator in the compli-
mentary filter. We found a value for P and I that we think will work well.

We also looked at a typical settling time for the complimentary filter from
start-up to a operational state. The settling time depends on the P and I factors.

Finally we looked at the attitude estimate in a static set-up. We found the
standard deviation of the pitch and roll axis to be 0.016◦ and 0.032◦ respectively.

In the dynamic tests we wanted to use servos to generate motion test pat-
terns, but we found the servos to be too inaccurate. We tested how well the
complimentary filter could measure attitude against an external reference tilt-
ing the sensor at different angles. We found a discrepancy between the attitude
estimate and the external reference.

90

We subjected the system to vigorous linear forces, and we found that the
complimentary filter can suppress this linear acceleration well.

In the tachometer test we used a spinning wheel to apply a known motion
onto the attitude estimation system.

We calculated standard deviations of the difference between the two measure-
ments to obtain performance of the attitude estimation system. The standard
deviation of this dynamic test was 0.5692◦ and 2.668◦ as best and worst value.

In the field test at Sognsvann we used a Simrad EY500 sonar together
with our attitude system. The attitude system worked well in this environment.

The sonar and the attitude data was processed in Sonar5. With a motionless
target, we used the attitude data to smooth out the motion we subjected the
hydrophone to.

5.1 Improvements and further work

We believe that the systems accuracy can be improved. There is some jitter
in the real-time clock we use to time-stamp the output data, but we can not
improve on this. There is also some jitter in the attitude program. The attitude
program asks the MPU9150 if it has new data ready before reading the data,
and this time may vary. Implementing external interrupt may lower jitter.

In the complimentary filter algorithm we assume that the small angle ap-
proximation holds, but we may violate this approximation with large angular
displacements. Higher internal sampling rate would help against this.

Then there is the noise and bias in the accelerometer and the gyroscope.
The complimentary filter will recover from gyroscope error and bias, and ac-
celerometer errors. The initial gyroscope bias can be zeroed from the control
program. The accelerometer noise will be filtered away by the complimentary
filter because the it behaves as a low pass filter. The attitude estimate of the
complimentary filter will tend towards the accelerometer. We know that the
bias of the accelerometer is affected by temperature, so compensating for tem-
perature will improve the attitude estimate.

There was not enough time to do everything we wanted to do. We will here
list suggestions for improvements and for further work, in no particular priority.

• An external synchronization pulse output that marks the time of a sample.
This could be used with sonar systems that support external synchroni-
sation.

• External interrupt from MPU9150 for when data is ready could reduce
jitter in the attitude data. The MPU9150 supports this, but we did not
have this feature available in the Raspberry Pi at the time of programming.

• Real-time clock synchronization from the control program would be useful
for the operator. At present the control software can send the time, but
the attitude system does not adjust its real-time clock.

• Elevating the attitude systems thread priority in the scheduler. This could
also reduce jitter, particularly if external interrupt in implemented.

91

There are some tests that we would have liked to do, but did not find the
time to do. We list them in no particular order of priority.

• We would have liked to see if increasing the internal sampling rate would
increase the accuracy of the system under rapid motion.

• We would have liked to do a test on a boat or a vessel. We did try to
find the time for a test aboard the research vessel RSV Braarud. With
such a test we could have investigated how the attitude estimation system
behaved on a vessel. We would also have had the opportunity to test our
system against the system on that vessel.

• We would also have liked to test our system against a state-of-the-art
attitude system, such as the Kongsberg Seatex MRU-6 or similar. These
systems are costly, and out of the budget of this project.

92

6 Conclusion

We have built a system consisting of a Raspberry Pi single-board computer and
a MPU9150 MEMS accelerometer and gyroscope sensor. We have written a
program that implements a complimentary filter for attitude estimation. This
system can compensate for the attitude of a hydrophone in hydro-accoustic
surveys.

• We have shown that the MPU9150 MEMS sensor can be used to stabilise
acoustic data.

• We have put together a low cost system.

• We have shown that a complimentary filter can estimate attitude using
an accelerometer and a gyroscope.

• We have shown that it is possible to implement a complimentary filter on
the Raspberry Pi single-board computer.

• We have shown that this attitude estimate can be used to compensate for
a mobile hydrophone in hydro-acoustic surveys.

The system that we have built will be used by the hydro-acoustic group at
the University of Oslo, and is expected to be an asset in hydro-acoustic surveys.

93

7 Bibliography

1. David Titterton and John Weston. Strapdown Inertial Navigation Tech-
nology, 2nd Edition. IET Radar, sonar, navigation and avionics series 17,
2004. ISBN 0-86341-260-2

2. Marcelo Alonso, Edward J. Finn. Physics. ISBN 0-201-56518-8

3. Robert Mahoney, Tarek Hamel, and Jean-Michel Pflimlin. Nonlinear
Complimentary Filters on the Special Orthogonal Group. IEEE TRANS-
ACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO.5 JUNE 2008.

4. Robert Mahoney, Sung-Han Cha, Tarek Hamel. A coupled estimation and
control analyses for attitude stabilisation of mini aerial vehicles. November
20, 2006.

5. Grant Baldwin, Robert Mahoney, Jochen Trumpf, Tarek Hamel, Thibault
Cheviron. Complimentary filter design on the Special Euclidian group
SE(3).

6. Mark Euston, Paul Coote, Robert Mahoney, Jonghyuk Kim and Tarek
Hamel. A Complimentary Filter for Attitude Estimation of a Fixed-Wing
UAV.

7. Alan Burns and Andy Wellings. Real-time systems and Programming
Languages. Fourth Edition. ISBN 978-0-321-41745-9.

8. David C. Lay. Linear Algebra and its applications. Third Edition. ISBN
0-201-70970-8.

9. Helge Balk. Linear Kretselektronikk. Compendium.

10. William Premerlani and Paul BizardDirection. Cosine Matrix IMU The-
ory. http://diydrones.ning.com/profiles/blogs/dcm-imu-theory-first-draft

11. Sebastian O.H. Madgwick. An efficient orientation filter for inertial and
inertial/magnetic sensor arrays. April 30. 2010.

94

A Contents of DVD-ROM

Papers

• Robert Mahoney, Tarek Hamel, and Jean-Michel Pflimlin. Nonlinear
Complimentary Filters on the Special Orthogonal Group. IEEE TRANS-
ACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO.5 JUNE 2008.

• Robert Mahoney, Sung-Han Cha, Tarek Hamel. A coupled estimation and
control analyses for attitude stabilisation of mini aerial vehicles. November
20, 2006.

• Grant Baldwin, Robert Mahoney, Jochen Trumpf, Tarek Hamel, Thibault
Cheviron. Complimentary filter design on the Special Euclidian group
SE(3).

• Mark Euston, Paul Coote, Robert Mahoney, Jonghyuk Kim and Tarek
Hamel. A Complimentary Filter for Attitude Estimation of a Fixed-Wing
UAV.

• William Premerlani and Paul BizardDirection. Cosine Matrix IMU The-
ory. http://diydrones.ning.com/profiles/blogs/dcm-imu-theory-first-draft

Data-sheets

• AK8975 Magnetometer

• MPU9150 Multi-senor Evaluation Board

• MPU9150 Multi-sensor Register MAP

• MPU9150 Multi-sensor Product Specification

• ATMega8 Micro-controller

• LIS331DLH Accelerometer

• MMA8451Q Accelerometer

• IMU3000 Gyroscope Product Specification

• BMP085 Digital Pressure Sensor

• MAX3232 RS232 Transceiver

• MRU5+ Motion sensor

Application notes and white papers

• AN97055 Bi-directonal level shifter for I2C-bus and other systems.

95

PCB Schematics

• Atmega8 Micro-controller board

• Power and USART board

• Raspberry PI

• MMA8451Q board

• LIS331DLH board

• IMU3000 board

Source Code

• Raspberry RaspIMU (Source code is also included appendix C)

• RaspIMU Control Program

• RawReader

• Atmega8 Servo Control

• Atmega8 Combined Sensor Interface

• Atmega8 IMU3000 Interface

• Atmega8 LIS331DLH Interface

• Atmega8 MMA8451Q Interface

• Xmega Pulse Counter

Test Data

• IMU3000 Static Test

• LIS331DLH Test on DSV Acergy Osprey

• MMA8451Q Test on DSV Acergy Osprey

• MPU9150 Dynamic Test (Roll, pitch and Sawtooth)

• MPU9150 Filter tuning

• MPU9150 Static Test Histograms

• MPU9150 Shake Test

• MPU9150 Statistics Test

• MPU9150 Temperature Test

• RaspIMU Attitude Stability Test

• Tachometer Test

• Data from Sognsvann Field Test

96

Software

• HDD Raw Copy

• Lazarus IDE

• Putty

• Realterm

• TightVNC

• Win32DiskImager

Images

• Raspbian Wheezy (09.02.2013)

• RaspIMU (18.05.2013)

97

B NMEA PASHR String

No. Name Description Format Example
1 Identifier Proprietary heading, roll,

pitch and heave
$PASHR $PASHR

2 Time Time (hhmmss.sss) UTC
This field will be blank until
UTC time is known.

HHMMSS.SSS 134500.125

3 Heading (True) heading in degrees HHH.HH 270.34
4 Type A character is output by the

navigation system to repre-
sent that the heading is to
true or magnetic north.

T/M M

5 Roll Roll of the navigation system,
measured in degrees, with
leading sign, leading 0s where
needed and 2 decimal places.
Positive values mean that the
left side is up.

RRR.RR 0.12

6 Pitch Pitch of the navigation sys-
tem, measured in degrees,
with leading sign, leading 0s
where needed and 2 decimal
places. Positive values mean
that the front is up.

PPP.PP 1.04

7 Heave Heave of the navigation sys-
tem, measured in metres,
with leading sign, leading 0s
where needed and 2 decimal
places.

aaa.aa 0.34

8 Roll Ac-
curacy

Roll angle accuracy estimate
(stdev) in degrees

r.rrr 0.01

9 Pitch Ac-
curacy

Pitch angle accuracy estimate
(stdev) in degrees

p.ppp 0.03

10 Heading
Accuracy

Heading angle accuracy esti-
mate (stdev) in degrees

h.hhh 0.05

11 Aiding
Status

GPS position mode: 0; No
GPS fix, 1; GPS position fix
3; RTK integer position fix.

Q1 2

12 IMU Sta-
tus

IMU status: 0; IMU is OK 1;
IMU error.

Q2 1

13 Checksum 2-byte XOR sum of data to
check for transmission errors

*CS *7D

14 CR + LF Carried return and line feed
marks the end of the string

*CR *LF #13#10

98

C RaspIMU Source Code

1 // Complimentary Attitude Filterfor MPU9150 sensor

2 // By Johan Kleiberg Jensen - Last update: 13052013

3 // For UiO Master project

4
5 // Included libraries

6 #include <stdio.h> // Standard IO definitions

7 #include <fcntl.h> // File control definitions

8 #include <unistd.h> // UNIX standard function definitions

9 #include <errno.h> // Error number definitions

10 #include <stdlib.h> // Standard library

11 #include <string.h> // String function definitions

12 #include <math.h> // Maths library

13 #include "i2c -dev.h" // I2C library

14 #include <termios.h> // POSIX terminal control definitions

15 #include <sys/time.h> // Real -time and CPU -time library

16 #include <stdbool.h> // Boolean types

17 //#include <wiringPi.h> // GPIO library for accessing pins

18
19 // Definitions of register MPU9150 map from data -sheet - Consider

moving to library

20 static int AUX_VDDIO =1;

21 static int SMPLRT_DIV =25;

22 static int CONFIG =26;

23 static int GYRO_CONFIG =27;

24 static int ACCEL_CONFIG =28;

25 static int FF_THR =29;

26 static int FF_DUR =30;

27 static int MOT_THR =31;

28 static int MOT_DUR =32;

29 static int ZRMOT_THR =33;

30 static int ZRMOT_DUR =34;

31 static int FIFO_EN =35;

32 static int I2C_MST_CTRL =36;

33 static int I2C_SLV0_ADDR =37;

34 static int I2C_SLV0_REG =38;

35 static int I2C_SLV0_CTRL =39;

36 static int I2C_SLV1_ADDR =40;

37 static int I2C_SLV1_REG =41;

38 static int I2C_SLV1_CTRL =42;

39 static int I2C_SLV2_ADDR =43;

40 static int I2C_SLV2_REG =44;

41 static int I2C_SLV2_CTRL =45;

42 static int I2C_SLV3_ADDR =46;

43 static int I2C_SLV3_REG =47;

44 static int I2C_SLV3_CTRL =48;

45 static int I2C_SLV4_ADDR =49;

46 static int I2C_SLV4_REG =50;

47 static int I2C_SLV4_DO =51;

48 static int I2C_SLV4_CTRL =52;

49 static int I2C_SLV4_DI =53;

50 static int I2C_MST_STATUS =54;

51 static int INT_PIN_CFG =55;

52 static int INT_ENABLE =56;

53 static int INT_STATUS =58;

54 static int ACCEL_XOUT_H =59;

55 static int ACCEL_XOUT_L =60;

56 static int ACCEL_YOUT_H =61;

57 static int ACCEL_YOUT_L =62;

58 static int ACCEL_ZOUT_H =63;

59 static int ACCEL_ZOUT_L =64;

99

60 static int TEMP_OUT_H =65;

61 static int TEMP_OUT_L =66;

62 static int GYRO_XOUT_H =67;

63 static int GYRO_XOUT_L =68;

64 static int GYRO_YOUT_H =69;

65 static int GYRO_YOU_L =70;

66 static int GYRO_ZOUT_H =71;

67 static int GYRO_ZOUT_L =72;

68 static int MOT_DETECT_STAT_US =97;

69 static int I2C_SLV0_DO =99;

70 static int I2C_SLV1_DO =100;

71 static int I2C_SLV2_DO =101;

72 static int I2C_SLV3_DO =102;

73 static int I2C_MST_DELAY_CT_RL =103;

74 static int SIGNAL_PATH_RES_ET =104;

75 static int MOT_DETECT_CTRL =105;

76 static int USER_CTRL =106;

77 static int PWR_MGMT_1 =107;

78 static int PWR_MGMT_2 =108;

79 static int FIFO_COUNTH =114;

80 static int FIFO_COUNTL =115;

81 static int FIFO_R_W =116;

82 static int WHO_AM_I =117;

83
84 // MPU9150 Device options

85 static int SAMPLERATEDIVIDER =39; // 1kHz/40 = 25Hz sample

rate

86 static int DLPF_CFG =1; // Gives 1kHz sampling and

188Hz BW

87 static int BYPASS_CFG =0; // Set up for i2c non -by -

pass mode

88
89 // AK8975C Device options

90 static int AK_ADR =12; // Slave adress of

magnetometer

91 static int AK_CNTL_MODE =1; // Single measurement mode

92
93 // General options

94 static int DEBUG_MODE =1; // If 1, program will be

verbose

95 static int ACC_LSB =16384; // No. of bits pr g

96 static int GYRO_LSB =131; // No. of bits pr deg/s

97 static int GYRO_HZ =25; // Data output rate

98 static int GYRO_DT =20; // Time constant = 20mS

99
100 // Other definitions

101 static double PI=M_PI;

102
103 // Convert 2’s compliment to an integer

104 int comp2int(int msb , int lsb) // Converts 2’s compliment

to integer

105 {

106 int x=0;

107 if ((msb &128) ==128) {

108 lsb ^= 255;

109 msb ^= 255;

110 msb &= 127;

111 x = (int)((msb <<8)+lsb+1);

112 return -x;

113 }

114 else {

115 x = (int)((msb <<8)+lsb);

100

116 return x;

117 }

118 }

119
120 // Main procedure

121 int main(void)

122 {

123 // begin Variable declarations

124 int file;

125 int file_AK;

126 int adapter_nr =0;

127 char filename [40];

128 int i2c_addr =104;

129 int read_bytes =14;

130 char buf [16]={0};

131 //Other variables

132 float Temperature =0;

133 int raccx=0,raccy=0,raccz =0;

134 int rgyrox=0,rgyroy=0,rgyroz =0;

135 double accx ,accy ,accz ,gyrox ,gyroy ,gyroz;

136 double gmagnitude;

137 int i,p,n;

138 // Matrixes with initial values

139 double gvector [3]={0 ,0 ,1};

140 double R[9]={1,0,0,0,1,0,0,0,1};

141 double Rup[9]={1,0,0,0,1,0,0,0,1};

142 double Rbuff [9]={1,0,0,0,1,0,0,0,1};

143 // Correction variables , experimentally set

144 double KIPitchRoll =512;

145 double KPPitchRoll =512;

146 double ErrorRP [3]={0 ,0 ,0};

147 double OmegaCorrPAcc [3]={0 ,0 ,0};

148 double AccIntegral [3]={0 ,0 ,0};

149 double OmegaCorrIAcc [3]={0 ,0 ,0};

150 int gyrobiasx =-60, gyrobiasy =90, gyrobiasz =70;

151 //int gyrobiasx=0, gyrobiasy =0, gyrobiasz =0;

152 // Renormalise variables

153 double normalisevector1 [3];

154 double normalisevector2 [3];

155 double error;

156 double normalise;

157 // Filter angle Output

158 double Roll =0;

159 double Pitch =0;

160 double Yaw=0;

161 // Variables for constructing output string

162 char SerialString [128];

163 char SerialTime [16];

164 char SerialHeading [8];

165 char SerialHeadingType [8];

166 char SerialRoll [8];

167 char SerialPitch [8];

168 char SerialHeave [8];

169 char SerialRollStdev [8];

170 char SerialPitchStdev [8];

171 char SerialAidingType [8];

172 char SerialIMUStatus [8];

173 char SerialChecksum [8];

174 char SerialEOS [8];

175 char SerialTemperature [8];

176 // Variables for time stamping

177 char* SystemTimeString;

101

178 struct timeval SystemTime;

179 unsigned SystemTimeusec;

180 // Other variables for parameter passing from companion program

181 int rx_length = 0;

182 unsigned char rx_buffer [32];

183 int rec_time;

184 int rec_syncrate , rec_sync;

185 float rec_ax ,rec_ay ,rec_gx ,rec_gy;

186 int rec_ki ,rec_kp;

187 bool set_bias=false;

188 bool set_time=false;

189 bool set_sync=false;

190 bool set_rate=false;

191 // Variable declarations done

192
193 // Open terminal (Serial/UART) port

194 int fd;

195 fd = open("/dev/ttyAMA0", O_RDWR | O_NOCTTY | O_NDELAY);

196 if (fd == -1)

197 {

198 printf("Unable to open serial port\n");

199 //EXIT!!

200 }

201 else

202 {

203 if (DEBUG_MODE) printf("Serial port open\n");

204 //fcntl(fd, F_SETFL , 0);

205 }

206 // Set baudrate etc

207 struct termios options;

208 tcgetattr(fd, &options); // Get current options

209 cfsetispeed (&options , B57600); // Set baud rates

210 cfsetospeed (&options , B57600);

211 options.c_cflag &= ~PARENB; // 8N1

212 options.c_cflag &= ~CSTOPB;

213 options.c_cflag &= ~CSIZE;

214 options.c_cflag |= CS8;

215 options.c_cflag |= (CLOCAL | CREAD); // Enable receiver and set

local mode

216 tcsetattr(fd, TCSANOW , &options); // Set new options

217
218 // Write to serial port

219 n = write(fd, "Port open\n" ,10);

220 if (n<0) printf("Serial port write failed\n");

221
222 // Open log file for writing

223 FILE *fp;

224 fp=fopen("log.txt","w");

225
226 // Open MPU9150 on I2C

227 if (DEBUG_MODE) printf("Opening I2C bus\n");

228 sprintf(filename ,"/dev/i2c -%d",adapter_nr);

229 if ((file=open(filename ,O_RDWR)) <0){

230 printf("ERRNO: %s\n",strerror(errno));

231 exit (1);}

232 else if (DEBUG_MODE) {printf("I2C Bus aquired !\n");}

233 if(ioctl(file ,I2C_SLAVE ,i2c_addr) <0){

234 printf("Failed to aquire device (MPU9150) in I2C bus ...\n")

;

235 printf("ERRNO: %s\n",strerror(errno));

236 exit (1);}

237 else if (DEBUG_MODE) {printf("I2C device (MPU9150) aquired !\n");}

102

238
239 // Wake up MPU9150

240 buf [0]=107;

241 buf [1]=0;

242 if (write(file ,buf ,2) !=2){

243 printf("Device failed to wake up!\n");}else if (DEBUG_MODE) printf(

"MP9150 woken !\n");

244
245 // Set samplerate divisor for MPU9150

246 buf [0]= SMPLRT_DIV;

247 buf [1]= SAMPLERATEDIVIDER;

248 if (write(file ,buf ,2) !=2) printf("Device write failed\n");

249
250 // Set lowpassfilter for MPU9150

251 buf [0]= CONFIG;

252 buf [1]= DLPF_CFG;

253 if (write(file ,buf ,2) !=2) printf("Device write failed\n");

254
255 // Set MPU9150 in non -by -pass mode to access magnetometer (slave)

256 buf [0]= INT_PIN_CFG;

257 buf [1]= BYPASS_CFG;

258 if (write(file ,buf ,2) !=2) printf("Device write failed\n");

259
260 // Main loop begins here - Run forever

261 for (;;){

262 // Check if data ready on MPU9150

263 // Read register 3A/58 INT_STATUS , bit0 DATA_RDY_INT see if data is

ready

264 do {

265 usleep (1000);

266 buf [0]= INT_STATUS;

267 if (write(file ,buf ,1) !=1) printf("Unable to write to device !\n");

268 if (read(file ,buf ,1) !=1) printf("Unable to read from device !\n");

269 }while ((buf [0]&1) !=1);

270
271 // Set register adress to read

272 buf [0]= ACCEL_XOUT_H;

273 if (write(file ,buf ,1) !=1){printf("Unable to write to device !\n");}

274
275 // Read registers data registera (accelerometer and gyroscope)

276 if (read(file ,buf ,read_bytes)!= read_bytes){

277 printf("Read Failed !!");}

278
279 // Get current time of sample (time -stamp)

280 gettimeofday (&SystemTime ,NULL);

281 SystemTimeString = ctime (& SystemTime.tv_sec);

282 SystemTimeusec = SystemTime.tv_usec;

283 SerialTime [0] = SystemTimeString [11];

284 SerialTime [1] = SystemTimeString [12];

285 SerialTime [2] = SystemTimeString [14];

286 SerialTime [3] = SystemTimeString [15];

287 SerialTime [4] = SystemTimeString [17];

288 SerialTime [5] = SystemTimeString [18];

289 SerialTime [6] = ’.’;

290 SerialTime [7] = (char)(((SystemTimeusec /100000) %10000) +48); //Quick

’n’Dirty convertion

291 SerialTime [8] = (char)(((SystemTimeusec /10000) %1000) -(10*((

SystemTimeusec /100000) %10000))+48);

292 SerialTime [9] = ’,’;

293 SerialTime [10] = ’\0’;

294
295 // Convert accelerometer and gyroscope to integer raw values

103

296 Temperature = (short)((buf[6]<<8)+buf [7]);

297 Temperature = (Temperature +11900) /340;

298 raccx = comp2int(buf[0],buf [1]);

299 raccy = comp2int(buf[2],buf [3]);

300 raccz = comp2int(buf[4],buf [5]);

301 rgyrox = comp2int(buf[8],buf [9]);

302 rgyroy = comp2int(buf[10],buf [11]);

303 rgyroz = comp2int(buf[12],buf [13]);

304 fprintf(fp,"%2.2f,%i,%i,%i,%i,%i,%i\n",Temperature ,raccx ,raccy ,

raccz ,rgyrox ,rgyroy ,rgyroz);

305
306 // Set bias (if command to set bias has been recieved)

307 if (set_bias == true)

308 {

309 gyrobiasx = rgyrox;

310 gyrobiasy = rgyroy;

311 gyrobiasz = rgyroz;

312 set_bias = false;

313 }

314
315 // Remove bias from gyro

316 rgyrox = rgyrox - gyrobiasx;

317 rgyroy = rgyroy - gyrobiasy;

318 rgyroz = rgyroz - gyrobiasz;

319
320 // Convert accelerometer and gyroscope data to real units

321 accx = (double) raccx/ACC_LSB; // Gives values in

mg

322 accy = (double) raccy/ACC_LSB;

323 accz = (double) raccz/ACC_LSB;

324 gyrox = (double) rgyrox /(GYRO_LSB*GYRO_DT); // Gives values in

deg/sec

325 gyroy = (double) rgyroy /(GYRO_LSB*GYRO_DT);

326 gyroz = (double) rgyroz /(GYRO_LSB*GYRO_DT);

327 // Deggrees to radians

328 gyrox = gyrox * PI/180;

329 gyroy = gyroy * PI/180;

330 gyroz = gyroz * PI/180;

331 gyroz = 0; // Keep 0 until compass is implemented

332
333 // Apply Corrections from previous data

334 gyrox = gyrox + OmegaCorrPAcc [0] + OmegaCorrIAcc [0];

335 gyroy = gyroy + OmegaCorrPAcc [1] + OmegaCorrIAcc [1];

336 gyroz = gyroz + OmegaCorrPAcc [2] + OmegaCorrIAcc [2];

337
338 // Accelerometer to vector calculations

339 gmagnitude = sqrt(pow(accx ,2)+pow(accy ,2)+pow(accz ,2));

340 gvector [0] = accx/gmagnitude;

341 gvector [1] = accy/gmagnitude;

342 gvector [2] = accz/gmagnitude;

343
344 // Convert to Matrix form

345 // Construct update matrix

346 Rup [0] = 1;

347 Rup [1] = -gyroz;

348 Rup [2] = gyroy;

349 Rup [3] = gyroz;

350 Rup [4] = 1;

351 Rup [5] = -gyrox;

352 Rup [6] = -gyroy;

353 Rup [7] = gyrox;

354 Rup [8] = 1;

104

355
356 // Multiply Update matrix to rotation matrix and add back

357 // R=R*Rup;

358 Rbuff [0] = R[0]* Rup [0]+R[1]* Rup [3]+R[2]* Rup [6];

359 Rbuff [1] = R[0]* Rup [1]+R[1]* Rup [4]+R[2]* Rup [7];

360 Rbuff [2] = R[0]* Rup [2]+R[1]* Rup [5]+R[2]* Rup [8];

361 Rbuff [3] = R[3]* Rup [0]+R[4]* Rup [3]+R[5]* Rup [6];

362 Rbuff [4] = R[3]* Rup [1]+R[4]* Rup [4]+R[5]* Rup [7];

363 Rbuff [5] = R[3]* Rup [2]+R[4]* Rup [5]+R[5]* Rup [8];

364 Rbuff [6] = R[6]* Rup [0]+R[7]* Rup [3]+R[8]* Rup [6];

365 Rbuff [7] = R[6]* Rup [1]+R[7]* Rup [4]+R[8]* Rup [7];

366 Rbuff [8] = R[6]* Rup [2]+R[7]* Rup [5]+R[8]* Rup [8];

367 R[0] = Rbuff [0];

368 R[1] = Rbuff [1];

369 R[2] = Rbuff [2];

370 R[3] = Rbuff [3];

371 R[4] = Rbuff [4];

372 R[5] = Rbuff [5];

373 R[6] = Rbuff [6];

374 R[7] = Rbuff [7];

375 R[8] = Rbuff [8];

376
377 // Renormalise rotation matrix (to keep orthogonal)

378 normalisevector1 [0] = R[0];

379 normalisevector1 [1] = R[1];

380 normalisevector1 [2] = R[2];

381 normalisevector2 [0] = R[3];

382 normalisevector2 [1] = R[4];

383 normalisevector2 [2] = R[5];

384
385 error = -0.5*(normalisevector1 [0]* normalisevector2 [0] +

normalisevector1 [1]* normalisevector2 [1] + normalisevector1 [2]*

normalisevector2 [2]);

386
387 Rbuff [0] = R[0] * error;

388 Rbuff [1] = R[1] * error;

389 Rbuff [2] = R[2] * error;

390 Rbuff [3] = R[3] * error;

391 Rbuff [4] = R[4] * error;

392 Rbuff [5] = R[5] * error;

393
394 Rbuff [0] = Rbuff [0] + R[0];

395 Rbuff [1] = Rbuff [1] + R[1];

396 Rbuff [2] = Rbuff [2] + R[2];

397 Rbuff [3] = Rbuff [3] + R[3];

398 Rbuff [4] = Rbuff [4] + R[4];

399 Rbuff [5] = Rbuff [5] + R[5];

400 Rbuff [6] = ((Rbuff [1]* Rbuff [5]) - (Rbuff [2]* Rbuff [4]));

401 Rbuff [7] = ((Rbuff [2]* Rbuff [3]) - (Rbuff [0]* Rbuff [5]));

402 Rbuff [8] = ((Rbuff [0]* Rbuff [4]) - (Rbuff [1]* Rbuff [3]));

403
404 normalise = 1/sqrt(Rbuff [0]* Rbuff [0] + Rbuff [1]* Rbuff [1] + Rbuff

[2]* Rbuff [2]);

405 R[0] = Rbuff [0] * normalise;

406 R[1] = Rbuff [1] * normalise;

407 R[2] = Rbuff [2] * normalise;

408
409 normalise = 1/sqrt(Rbuff [3]* Rbuff [3] + Rbuff [4]* Rbuff [4] + Rbuff

[5]* Rbuff [5]);

410 R[3] = Rbuff [3] * normalise;

411 R[4] = Rbuff [4] * normalise;

412 R[5] = Rbuff [5] * normalise;

105

413
414 normalise = 1/sqrt(Rbuff [6]* Rbuff [6] + Rbuff [7]* Rbuff [7] + Rbuff

[8]* Rbuff [8]);

415 R[6] = Rbuff [6] * normalise;

416 R[7] = Rbuff [7] * normalise;

417 R[8] = Rbuff [8] * normalise;

418
419 // Drift Calculations

420 ErrorRP [0] = ((gvector [1]*R[8]) -(gvector [2]*R[7]))/65536;

421 ErrorRP [1] = ((gvector [2]*R[6]) -(gvector [0]*R[8]))/65536;

422 ErrorRP [2] = ((gvector [0]*R[7]) -(gvector [1]*R[6]))/65536;

423
424 OmegaCorrPAcc [0] = ErrorRP [0]* KPPitchRoll;

425 OmegaCorrPAcc [1] = ErrorRP [1]* KPPitchRoll;

426 OmegaCorrPAcc [2] = ErrorRP [2]* KPPitchRoll;

427
428 AccIntegral [0] = AccIntegral [0] + (ErrorRP [0]* KIPitchRoll)/(1024*

GYRO_DT);

429 AccIntegral [1] = AccIntegral [1] + (ErrorRP [1]* KIPitchRoll)/(1024*

GYRO_DT);

430 AccIntegral [2] = AccIntegral [2] + (ErrorRP [2]* KIPitchRoll)/(1024*

GYRO_DT);

431
432 OmegaCorrIAcc [0] = AccIntegral [0];

433 OmegaCorrIAcc [1] = AccIntegral [1];

434 OmegaCorrIAcc [2] = AccIntegral [2];

435
436 // Retrieve Euler Angels

437 Pitch = (asin(R[7]))*180/PI;

438 Roll = (atan2(-R[6],R[8]))*180/ PI;

439 Yaw = (atan2(-R[1],R[4]))*180/PI;

440
441 // Construct string to write to serial port

442 SerialString [0] = NULL;

443 sprintf(SerialTemperature , "%3.1f,", Temperature);

444 sprintf(SerialRoll , "%3.2f,", Roll);

445 sprintf(SerialPitch , "%3.2f", Pitch);

446 sprintf(SerialEOS , "\r\n");

447 strcat(SerialString ,SerialTime);

448 strcat(SerialString ,SerialTemperature);

449 strcat(SerialString ,SerialRoll);

450 strcat(SerialString ,SerialPitch);

451 strcat(SerialString ,SerialEOS);

452
453 // Write serial string to serial port

454 n = write(fd,SerialString ,strlen(SerialString));

455 if (n<0) printf("Serial write failed !\n");

456
457 // Check if commands have been recieved on USART (USART is in non -

blocking read)

458 // Read the buffer - get length first

459 rx_length = read(fd ,(void*)rx_buffer ,2);

460 if (rx_length < 0)

461 {

462 // Error while reading USART

463 }

464 else if (rx_length == 0)

465 {

466 //No data waiting

467 }

468 else

469 {

106

470 printf("\nSerial data received");

471 // Bytes have been recieved - Check if they are

commands

472 if ((rx_buffer [0] == ’S’) && (rx_buffer [1] == ’B’))

473 {

474 // Set bias in next cycle

475 printf("\nSet Bias");

476 set_bias = true;

477 }

478 if ((rx_buffer [0] == ’T’) && (rx_buffer [1] == ’I’))

479 {

480 rx_length = read(fd ,(void*)rx_buffer ,8);

481 if (rx_length >7)

482 {

483 // Get time

484 rec_time = ((int)rx_buffer [0] -48)

*100000 + ((int)rx_buffer

[1] -48) *10000 + ((int)rx_buffer

[3] -48) *1000 + ((int)rx_buffer

[4] -48) *100 + ((int)rx_buffer

[6] -48) *10 + ((int)rx_buffer

[7] -48);

485 printf("\nTime synchronised: %i",

rec_time);

486 printf("\n");

487 }

488 }

489 if ((rx_buffer [0] == ’S’) && (rx_buffer [1] == ’Y’))

490 {

491 rx_length = read(fd ,(void*)rx_buffer ,1);

492 if (rx_length >0)

493 {

494 rec_sync = (int)rx_buffer [0] - 48;

495 // Disable external sync command

496 if (rx_buffer [0] == ’0’) {set_sync

= false ;}

497 // Enable external sync command

498 if (rx_buffer [0] == ’1’) {set_sync

= true;}

499 }

500 }

501 if ((rx_buffer [0] == ’S’) && (rx_buffer [1] == ’R’))

502 {

503 rx_length = read(fd ,(void*)rx_buffer ,1);

504 if (rx_length >0)

505 {

506 // Get external sync. rate

507 rec_syncrate = (int)rx_buffer - 48;

508 if (rx_buffer [0] == ’0’) {printf("\

nSynchronization rate 20Hz");}

509 if (rx_buffer [0] == ’1’) {printf("\

nSynchronization rate 10Hz");}

510 if (rx_buffer [0] == ’2’) {printf("\

nSynchronization rate 5Hz");}

511 if (rx_buffer [0] == ’3’) {printf("\

nSynchronization rate 2.5Hz");}

512 if (rx_buffer [0] == ’4’) {printf("\

nSyncronization rate 1.25Hz");}

513 printf("\n");

514 }

515 }

516 if ((rx_buffer [0] == ’P’) && (rx_buffer [1] == ’A’))

107

517 {

518 rx_length = read(fd ,(void*)rx_buffer ,27);

519 if (rx_length >26)

520 {

521 // Recieve advanced filter options

and scaling

522 // Accelerometer and gyroscope scaling

523 rec_ax = (int)rx_buffer [0] -48 + ((int)rx_buffer [2]) /10 + ((int)

rx_buffer [3]) /100 + ((int)rx_buffer [4]) /1000;

524 rec_ay = (int)rx_buffer [5] -48 + ((int)rx_buffer [7]) /10 + ((int)

rx_buffer [8]) /100 + ((int)rx_buffer [9]) /1000;

525 rec_gx = (int)rx_buffer [10] -48 + ((int)rx_buffer [12]) /10 + ((int)

rx_buffer [13]) /100 + ((int)rx_buffer [14]) /1000;

526 rec_gy = (int)rx_buffer [15] -48 + ((int)rx_buffer [17]) /10 + ((int)

rx_buffer [18]) /100 + ((int)rx_buffer [19]) /1000;

527 // K and I filter factors

528 rec_ki = ((int)rx_buffer [20] -48) *1000 + ((int)rx_buffer [21]) *100 +

((int)rx_buffer [22]) *10 + ((int)rx_buffer [23]);

529 rec_kp = ((int)rx_buffer [24] -48) *1000 + ((int)rx_buffer [25]) *100 +

((int)rx_buffer [26]) *10 + ((int)rx_buffer [27]);

530 KIPitchRoll = rec_ki;

531 KPPitchRoll = rec_kp;

532 }

533 printf("\n");

534 }

535 }

536 } // Loop returns here!

537
538 //Close file

539 fclose(fp);

540 if (file >=0) close(file);

541 printf("Log file closed\n");

542
543 // Exit gracefully

544 printf("Done ...\n");

545 return 0;

546 }

108

