
UNIVERSITY OF OSLO
Department of Informatics

Introducing
Actions in
CommonSens: A
Hybrid
Agent-Based
Approach
Master thesis

Kristin Simonsen

May 1, 2013

Abstract

Systems that provide ambient assisted living (AAL) are currently emerging at
a rapid pace, and the amount of functionalities these systems provide is con-
stantly growing. AAL provides assistance at home for sick, disabled or elderly
people, by placing sensors in their homes. These sensors are used for monitor-
ing and assistive purposes.

Activities of daily living (ADLs) are all the possible situations that may oc-
cur in the home. Situations we wish to monitor are called events. A complex
event processing (CEP) system analyzes the data received from the sensors and
detects events. In order for, e.g. the monitored person not waking up in the
morning, to be detected by health personnel, CEP systems can send an alarm as
a response to each event. A challenge is how to supplement such a system with
the ability to respond to events in a more flexible way by acting in the environ-
ment, e.g. by turning on the lights and checking if the person wakes up. With
actions, the CEP system can act upon the environment, using actuators placed
in the home.

Events and actions are dual terms, since both describe a set of states in the
environment. Events are predefined changes that may be detected, and actions
are planned changes that may be executed upon the environment. Actions can
be implemented in CEP systems using intelligent agents. An intelligent agent
can be regarded as an entity which observes and acts upon an environment
through sensors and actuators.

We have considered how the CEP system CommonSens can be extended to
include the functionality of intelligent agents. For describing agents we use
the planning domain definition language (PDDL). We propose an architecture
that reflects the duality between events and actions. Additionally, we design an
agent architecture for CommonSens, and propose the overall design. Properties
in the system are chosen with two important ideas in mind: (1) The resulting de-
sign will represent the environment and current functionalities in CommonSens

i

as accurately as possible. (2) The level of complexity in the intelligent agent is
kept at a minimum in order to gain knowledge and experience with the behav-
ior of agents.

We use a hybrid agent architecture which can handle alarms in a reactive
manner, as well as having the functionalities needed for goal-directed behavior.
The latter gives an opportunity for the system to support both atomic and com-
plex actions. The hybrid agent architecture consists of three layers. The reactive
layer is responsible for sending alarms to health personnel when a critical event
has occurred. The action selection layer handles atomic actions. The planning
layer constructs plans, which constitute complex actions. We also discuss how
the life cycle of intelligent agents in CommonSens will look like.

ii

Acknowledgements

First of all, I wish to thank my supervisor Ellen Munthe-Kaas for her guidance
and support during the course of this thesis. I have an immense appreciation for
our discussions of the possibilities in this important topic. I also want to thank
my dear fiancé, Remy Kelley, for his patience, support and encouragement. Fi-
nally, I thank my friends and family for providing me with moral support.

Kristin Simonsen
University Of Oslo

May 1, 2013

iii

iv

Contents

1 Introduction 1

2 Background and Related Work 7
2.1 CommonSens . 7
2.2 Event Model . 8

2.2.1 Temporal and Spatial Properties 9
2.2.2 Atomic and Complex Events 10
2.2.3 Atomic and Complex Queries 11

2.3 Intelligent Agents . 12
2.3.1 Environment Properties . 13
2.3.2 Agent Programs . 15
2.3.3 Classical Planning . 20

3 Architecture and Methodology 27
3.1 Agent Architecture . 27

3.1.1 Deliberative Architecture 29
3.1.2 Reactive Architecture . 30
3.1.3 Hybrid Architecture . 30

3.2 Classification . 32
3.3 An Agent-Oriented Methodology 34
3.4 CommonSens Architecture . 37

4 Analysis 39
4.1 Environment properties . 40
4.2 Language . 44
4.3 Introducing Planning . 48

4.3.1 Planning in Shakey . 50
4.3.1.1 Issues . 52

4.3.2 Discussion . 53

v

5 Design 55
5.1 Hybrid Agent Architecture . 55

5.1.1 Functionality . 56
5.1.2 The Reactive Layer . 58
5.1.3 The Action Selection Layer 59
5.1.4 The Planning Layer . 60
5.1.5 Discussion . 62

5.2 Action Processing Model . 63
5.3 Life Cycle Phases . 65

6 Conclusion and Future Work 67

A First-Order Logic 73

B Event Processing Model and Sensor Model 75

vi

List of Figures

2.1 The relation of events and states in the environment [4] 9
2.2 An intelligent agent [7] . 12
2.3 Pseudo code for a table driven agent [7] 15
2.4 Pseudo code for a simple reflex agent [7] 16
2.5 Schematic diagram of a simple reflex agent [7] [9] 17
2.6 Pseudo code for a model-based reflex agent [7] 17
2.7 Schematic diagram of a model-based reflex agent [7] [9] 18
2.8 Schematic diagram of a goal based agent [7] [9] 18
2.9 Schematic diagram of a utility based agent [7] [9] 19
2.10 Schematic diagram of a learning agent [7] [9] 20
2.11 Action schema for turning on a light switch 23
2.12 The PDDL description of the morning routine problem 25
2.13 Action schema for increasing the temperature 25
2.14 Conditional action schema for increasing the temperature 26

3.1 Information and control flow in three different types of a layered
agent architecture (inspired by [13]) 31

3.2 The TouringMachines architecture [13] 34
3.3 The InteRRaP architecture [13] . 35
3.4 The 3T architecture [13] . 36
3.5 The relation of events, queries, actions and action schemas in

CommonSens [4] . 37

4.1 Illustration of Shakey and its environment 42
4.2 Initial state in Shakey example. 45
4.3 Action schemas in Shakey example. 45
4.4 Flow diagram showing the connection between an event and

corresponding action execution . 49
4.5 Plan generation steps . 51
4.6 Pseudo code for plan generation 51

vii

5.1 Proposed hybrid architecture for action processing in Common-
Sens. 56

5.2 Behavior of layers and flags in three different situations: (a)
Alarm (b) Atomic action (c) Plan (complex action) 58

5.3 World model for action selection layer and planning layer. 61
5.4 Key classes of the actionProcessor package. 63
5.5 Key classes of the acting package. 64
5.6 Sequence diagram of the control flow when an event is detected. 65
5.7 Life cycle phases in CommonSens. 66

A.1 The syntax of propositional logic, specified in Backus-Naur form.[7] 73
A.2 The syntax of first-order logic, specified in Backus-Naur form.[7] 74

B.1 Key classes of the eventProcessor package.[4] 75
B.2 Key classes of the sensing package.[4] 76
B.3 Overview of the event processing phase.[4] 76
B.4 Life cycle phases in CommonSens. 77

viii

List of Tables

2.1 PEAS description of the task environment for an automated taxi[7] 13
2.2 The truth table of KB in propositional logic 21

4.1 Constants and predicates in Shakey’s environment 47
4.2 Risk assessment of the events . 49

5.1 Description of the ASL and PL flags. 57
5.2 Critical event table in the reactive layer. 59
5.3 Condition-action rules in the action selection layer. 60

A.1 Connectives in first-order logic. 73

ix

x

Chapter 1

Introduction

Ambient assisted living (AAL), also known as automated home care, is the
placement of sensors in a private home to provide monitoring and assistance
for the person living there. This type of system can give sick, handicapped or el-
derly people a great advantage as they could live safely at home for a longer pe-
riod of time instead of being placed in a government-provided institution. AAL
could for instance help sick people through recovery, by doing medical exami-
nations in their homes each day and returning the results to the doctor. Another
possibility is to provide help for people with disabilities by lifting them into the
bathtub, opening doors for them and doing similar assisting tasks. Elderly peo-
ple could benefit from reminders of taking their medication and turning off the
stove. The patients this affects will avoid being isolated from their normal social
lives and daily routines as well as maintaining their privacy and sense of inde-
pendence. The society will also benefit financially. AAL is currently an active
research field. The importance of this topic can be highlighted by mentioning
the EU-funded AAL Joint Programme in Europe, which forms an international
unity for research, development and innovation within this area[1].

Within the topic of AAL, one of the challenges researchers face is the detec-
tion of activities of daily living (ADLs). An ADL is anything that may occur
in the home. It could for instance be a person walking from the living room to
the kitchen. The system will use sensors for extracting this information. The
sensors are chosen and placed as needed. Typical sensors are for instance cam-
eras, temperature monitors and device controllers found in electronic kitchen
devices. Not all ADLs are of interest to the system, since we wish to monitor
the home for specific situations. The situations which are of interest are called
events.

Events are predefined situations in the home which need attention from the

1

system. It could be the detection of a decreasing temperature, a device left on
for too long, or an irregular movement from the monitored person. The system
must therefore be able to differentiate between the ADLs, which are expected
in the home, and the events, which are unexpected and possibly dangerous.
Events can be of different levels of complexity, because events can describe both
simple and complex situations. Therefore we have two different types of events;
atomic events and complex events. Atomic events are ground events which can
not be split into two or more other events. An example of an atomic event is
the detection of a light switch being switched on. Complex events include two
or more atomic or complex events, and define complex situations in the home.
A complex event could for instance be the detection of a person falling to the
ground. The complex event must in this case define the timeframe from when
the person is standing to the moment the person is detected lying on the ground.

Complex event processing (CEP) is a set of techniques used for analysis of
complex events received from a stream of sensor data[2]. Sensors pull low-level
data from the home, this data is represented as tuples. For complex events
multiple tuples are needed from two or more different sensors. In order to
get a translation of this data into readable information we need a CEP system.
The CEP system will in this way provide a higher-level interface for declar-
ing and detecting events. ADLs will continuously occur in the home, but the
CEP system can choose to pull only those which are declared as events. Com-
plex events may occur consecutively or concurrently, and a CEP system should
be able to detect events in both situations. Not only can a CEP system detect
events, it should also have the ability to respond to them. CEP functionality
is currently used in e.g. enterprise applications with requirements of real-time
reaction upon business critical events[3].

A CEP system which does not have an ability to counteract or actively re-
spond to events that occur, is very good for monitoring purposes or for collect-
ing statistics. These systems may have some event triggered functionality, such
as notifying someone or setting off an alarm. In regard to AAL, a notification
such as this would not be very helpful for instance for elderly people that often
forget their medicine. We would rather give them a warning somehow, so they
could solve the situation themselves. It could be useful to see if other kinds of
responses could improve the functionality of the system. The techniques we
need for implementing responses which react to events in a CEP system are ac-
tuators and actions.

Actuators are hardware entities that perform basically the opposite job of a

2

sensor. While sensors have a sensing unit which detects certain attributes of its
environment, actuators have an internal motor which moves or changes some-
thing in its environment. A good example is an actuator for moving the wheels
of a robot. Actions describe the functions an application can use to act upon its
environment. Actuators and actions are interconnected as sensors and events
are. The hardware entity, the actuator or sensor, will be performing a task. This
task is specified by the software entity, the action or event. Actions are executed
by actuators and events are detected by sensors.

As for system responses, one can implement a link between events and ac-
tions in which a specific action is chosen as a direct response to an event. If this
same robot had a camera as a sensor, and it detected as an event that an object
is blocking the way, the application should somehow decide upon which action
to perform next. A system with behavior like this is regarded a reactive CEP
system. A reactive CEP system has a way of reacting to the events that occur,
using actuators, in addition to detecting them. With regard to AAL, events can
be viewed as a sign that ”something is not right”. Involving actions gives the
system a way to respond to a patient’s events.

Whenever possible, we should use existing techniques and systems to
present ideas. At the University of Oslo, we have available an experimental
CEP system, CommonSens[4]. It was developed within the Distributed Multi-
Media Systems research group. CommonSens is a CEP system designed for the
purpose of performing AAL in the homes of elderly people. The motivation
for introducing such a system was the continuous growth in the percentage of
elderly people in the world, and possibly a future problem of housing them in
nursing homes. The system is set up by placing sensors in their homes, which
can detect a fixed, predefined set of atomic and complex events.

Introducing actuators and actions also requires certain techniques. Existing
functionality can be found in artificial intelligence (AI). Intelligent agents are
entities in a system which receive percepts, AI’s equivalent of events, and per-
form actions. We can regard an intelligent agent as an entity which observes
and acts upon an environment through sensors and actuators. Percepts are ex-
tracted from and actions are executed upon an agent’s environment. Each agent
has an internal agent program which manages all reasoning within the agent.
Reasoning in AI is the agent’s ability to make the correct choices when taking
actions. Intelligent agents can also make plans, think ahead and reason in un-
certain environments. Some agents can even learn from their own behavior and
past experience.

3

Since we wish to unite the CEP system CommonSens with actuators and ac-
tions using intelligent agents, we need to first explain how events are currently
handled by CommonSens. Events are defined by queries. These queries are
provided to the system at configuration time, and will be compared against the
sensor data. If the sensor data match the conditions in one of the queries, the
sensor data is identified as an event, and CommonSens will alarm health per-
sonnel so that the monitored person can be assisted in his or her own home.
The events vary from the person not taking their medicine at the correct time to
serious accidents as for instance the person falling to the ground. As a response
to all of these events, the system will alarm health personnel. Clearly, when
the amount of events is large, this response type is not efficient nor will it help
solve the issue of reducing the load of the health personnel at nursing homes.
When every event results in an alarm, their workload is not reduced optimally.
If all events which are not severe could somehow be prevented or corrected, this
would help keep the number of house visits of health personnel to a minimum.

The system as it is now might pose difficulties if introduced to several homes
today. If there is a large number of queries, the number of events and therefore
alarms would be very high. It is understandable that we wish to have many
queries, since there are a number of different situations that need to be moni-
tored. For instance, we might wish to check that the monitored person is taking
his or her medicine and that the person wakes up at a certain time each day.
With the current implementation, CommonSens would send an alarm at devi-
ations from both of these situations. We propose using actuators to perform
actions upon the home, which again should help in preventing an extensive
number of events leading to an alarm. Intelligent agents is a technique that
can be utilized for action description and action handling. Also, an intelligent
agent has an internal set of rules or goals which it can use to search for a solu-
tion to the problem. The solution will consist of an atomic action or a complex
action, also known as a plan. The examples given earlier could be solved by
using intelligent agents in the following way. When the person does not take
the medicine at the appropriate time, the tv monitor could display a warning
to the monitored person. For the case of the person not waking up at a certain
time, the system could turn on the lights in the bedroom or turn on an alarm
clock and check if the person wakes up as a result of this.

In this thesis we consider how CommonSens could be extended to include the func-
tionality of intelligent agents. Our goal is that the resulting architecture will reflect a
duality between events and actions.

4

There would be many advantages of using intelligent agents in Common-
Sens. Plans are, in fact, complex actions. This enhances the duality between
events and actions. Additionally, intelligent agents can perform goal-directed
behavior. Nevertheless, there are many choices that must be made before im-
plementation. These choices will determine how the resulting structure and
behavior of the system will be. We need to decide upon agent programs, which
define how the agent will perform reasoning during action selection. An agent
architecture must be chosen, this will determine the overall structure and in-
formation flow in the system. Planning can be done in numerous ways, so we
need to choose which method works best for our domain.

In order to demonstrate intelligent agents and planning we use an illustra-
tive example, Shakey the robot. The example was a mandatory exercise in the
course INF5390 in the subject artificial intelligence at the University of Oslo1.
Shakey originates from the work of Rosen and Nilsson[5]. We will use the ex-
ample from the mandatory exercise because it limits the scope of Shakey’s ac-
tions. The robot Shakey maneuvers through an environment using its sensors
and actuators. It can move, push boxes, stand on boxes and turn on and off
light switches. Shakey is a very simple example of how intelligent agents work
in practice, this will help in our understanding of how CommonSens can make
use of the functionalities of intelligent agents. It will also be useful in explaining
planning, and how a planning algorithm may work.

In Chapter 2 we present relevant background material for the rest of the the-
sis. We present details about CommonSens with all its components and models,
along with intelligent agents and classical planning. In Chapter 3 we review
agent architectures and discuss how we can find the best architecture for our
system. Chapter 4 analyzes the design of intelligent agents and planning using
the Shakey example. In Chapter 5 we propose the design of our architecture,
and show how it can be included in CommonSens. Chapter 6 will provide our
conclusion and propose possible future work.

1Exercise can be found at this web page: http://www.uio.no/studier/emner/matnat/ifi/
INF5390/v12/undervisningsmateriale/ovinger/INF5390-2012%20Exercise%202.pdf

5

6

Chapter 2

Background and Related Work

Over the past few years, the concept of smart homes has become a popular re-
search topic within the health care sector world wide. Ambient assisted living
(AAL) as an application domain aspire to significantly improve the well being
of people in the comfort of their own homes. CommonSens is specifically de-
signed for taking care of the elderly. As the average life expectancy continues to
grow, there will be a higher percentage of elderlies in the not so distant future
[6].

In this chapter, we will present the background material of this thesis. Sec-
tion 2.1 will briefly explain CommonSens, and Section 2.2 will go deeper into
the details of its event model. Both sections will present the work of J. Søberg[4],
the developer of CommonSens. Section 2.3 gives us the details of intelligent
agents, a technique that emerged from Artificial Intelligence. This section illus-
trates the work of S. J. Russell and P. Norvig[7].

2.1 CommonSens

”CommonSens is a multimodal complex event processing (CEP) system for de-
tecting activities of daily living (ADLs) from sensors in the home”[4]. The sys-
tem should provide the necessary tools for observing the monitored person and
his or her environment, and also alarm health personnel in emergency situ-
ations. When implemented in a large scale, CommonSens should minimize
Health Care costs, reduce the quantity and workload of health personnel and
hopefully improve the life satisfaction of the elderly person.

In the process of introducing a CEP system to an environment, one needs

7

to define specific models for describing the sensors and its data tuples, the en-
vironmental objects and how events are handled. Accordingly, CommonSens
has three models. The sensor model describes the properties of each sensor and
the relationships between physical and logical values. The properties of a sen-
sor are its capabilities and coverage area. The environment model is needed
for describing the three dimensional geography of the monitored environment.
Properties as placement of objects and walls, shapes and sizes of the objects and
signal behavior are all handled by this model. Signal behavior can differ de-
pending on the object, thus each object has its own permeability value defining
if the signal goes through, stops or bounces off the object. Finally, the event
model detects states and state transitions that occur in the environment and
compares these to some predefined queries. In a home environment, the ma-
jority of the sensor data is needless, so this model has the task of detecting the
data of interest. The concepts and properties of the event model are defined in
Section 2.2.

The system is configured to match each subject’s personal needs. The mon-
itored person has his or her own health issues, living arrangements and daily
routines. A health services employee has knowledge of what is required for the
monitored person to be able to live in a healthy and safe state. The application
programmer will write the queries in cooperation with the health services em-
ployee.

2.2 Event Model

The event model describes the concept of events and defines all of its semantics.
All possible things that can happen in the monitored environment are general-
ized as states and state transitions. A state consists of a set of variables including
data values. The data values give information about certain measurable prop-
erties which describe what the environment look like. We will introduce these
properties shortly. A state transition, on the other hand, gives information about
a change in one or more of the state’s data values. We can visualize this with
a door that opens, its data value then changes from state closed to state open,
which in itself is a state transition.

The conceptual world will have a vast number of possible states and state
transitions, but only a small subset of these will be of interest, i.e., events. This
is modeled in Figure 2.1. The system uses queries for describing events. States
are detected by the sensors, and if the state values match the query description

8

Figure 2.1: The relation of events and states in the environment [4]

the state will be identified as an event. A state transition is an event if all states
involved match a set of queries.

2.2.1 Temporal and Spatial Properties

The temporal and spatial properties is an important part of the event model,
from which the system can acquire information regarding when and where an
event occurred. Firstly, we need to address the temporal properties of an event.

”A timestamp t is an element in the continuous time domain T: t ∈ T.”

Each data tuple has two timestamps, a start timestamp ts and an end times-
tamp te. The range of these two timestamps is defined as the time interval τ ⊂
T. The duration of τ can be found as δ = te - ts. This gives us a chance to query
the duration of an event, for instance how long time a person uses to take his
or her medicine. Secondly, we have spatial properties of an event. Each event
contains a specific Location of Interest (LoI).

”A location of interest (LoI) is a set of coordinates describing the boundaries
of an interesting location in the environment.”

The system needs LoIs for each state, because it gives a specific location for
where the event happened. A home has several similar objects. The queries
specify LoIs as part of their conditions, and therefore need these LoIs to be cov-
ered by corresponding sensors.

Overall, the temporal and spatial properties help pinpoint events out of all
other events and state transitions. They are also the key components of both

9

events and queries, which will be introduced in Section 2.2.2 and Section 2.2.3.

2.2.2 Atomic and Complex Events

The term event has many different interpretations, also within the field of com-
puter science. In [4], the author has defined the term as follows.

”An event e is a state or state transition in which someone has declared in-
terest.”

There are two different types of events, atomic and complex events. Later
on in the thesis, the term event will be used for both. An event is considered an
atomic event if it is impossible to divide it into two or more events. It contains
one set of properties for one specific duration and LoI.

”An atomic event eA consists of four attributes: eA = (e,loi,ts,te). e is the
event loi is the LoI where (|loi| = 1∨ loi = ∅) and (ts, te ∈ T).”

For two atomic events A and B with timestamps {as, ae} and {bs, be}we have
six classes of interval relations inspired by J. F. Allen[8]. The first class defines
consecutive events and the five others are concurrent events.

A before B : ae ≤ bs
A equals B : (as = bs) ∧ (ae = be)
A overlaps B : (as < bs) ∧ (ae > bs) ∧ (ae < be)
A during B : ((as > bs) ∧ (ae ≤ be)) ∨ ((as ≤ bs) ∧ (ae < be))
A starts B : (as = bs) ∧ (ae < be)
A finishes B : (as > bs) ∧ (ae = be)

”Two atomic events eAi and eAj are consecutive iff eAi.te < eAj.tb.”

The events eAi and eAj are consecutive if the end timestamp of one of them is
less than the start timestamp of the other. This proves that they do not overlap
in time.

”Two atomic events eAi and eAj are concurrent iff ∃tu,

(tu ≥ eAi.tb) ∧ (tu ≥ eAj.tb) ∧ (tu ≤ eAi.tb) ∧ (tu ≤ eAj.tb)”

Explained, for eAi and eAj to be concurrent there needs to exist a tu that can
be found in both intervals. This proves the events do overlap.

10

When two or more atomic events are related to each other according to one
of the interval relation classes, the set of these events is called a complex event.

”A complex event eC is a set of N atomic events: eC = {e0, ..., en−1}.”

2.2.3 Atomic and Complex Queries

In order to detect an atomic event, we need a predefined query which searches
for this event in the environment. LoIs and timestamps are of the same syntax
as in the events. Additionally, the queries use capabilities adapted from the sen-
sor model.

”A capability c is the type of state variables a sensor can observe. This is
given by a textual description c = (description)”

Each sensor has its own set of capabilities, which maps queries and sensors.
This way, the application programmer will address the capabilities, instead of
querying a sensor directly. This choice of architecture is based on the fact that
the sensor readings have different complexity and data types.

”An atomic query qA is described by a tuple: qA = (cond, loi, ts, te, preg).
cond is a triplet (C, op, val), where c is the capability, op ∈ {=, 6=,<,≤,>≥} is
the operator, and val is the expected value of the capability. If set, loi, ts, te and
preg specify the spatial and temporal properties.”

The most relevant part of the tuple is the condition, which describe a state
through the state variable called capability. If we want to detect the state of
a door, which is a capability, the condition can possibly be OpenDoor = True.
We can also detect a specific door, by for instance setting loi = Bedroom. There
could also be some temporal properties which could tell the system when the
door is expected to open. All these properties need to be set a priori by the ap-
plication programmer.

The system needs to run a number of concurrent queries in order to discover
a complex event. The application programmer also has to write queries which
describe the fact that the atomic events are concurrent. For this purpose, Com-
monSens also has the ability to run complex queries.

”A complex query qC is a list of atomic queries, and logical operators and re-

11

lations ρi between them: qC = {qA0ρ0...ρN−2qAN−1}. If the complex query only
consists of one atomic query, ρ0 = ∅”.

qAi are atomic queries and pi ∈ {&&, ||, !,→} are logical operators describ-
ing relations between the atomic queries. When examining the data tuples re-
ceived from a query, the following attributes are revealed.

(timestamp, sensor, capability, value, ts, te)

In addition to the properties of an event, the data tuples also have informa-
tion about which sensor the data is coming from. An example of a tuple will
be (151000, Oven01, GetTemperature, 22, 141000, 141000). The first value is the
timestamp when the tuple arrived, the second is the sensor from which the state
came from, the third is the capability, the fourth the value of the state variable,
and the fifth and sixth are the timestamp of the state. If a query should detect
this exact instance, the condition should be GetTemperature = 22.

2.3 Intelligent Agents

”An agent is anything that can be viewed as perceiving its environment through
sensors and act upon that environment through actuators”

Intelligent agents will choose the best possible rational action in a given sit-
uation. An agent will for each incoming set of percepts, data received from its
sensors, select an action based on these and its internal knowledge that will
maximize its performance measure.

Figure 2.2: An intelligent agent [7]

12

As noted in Figure 2.2, an intelligent agent can be considered as an entity
that interacts with its environment. Internally, it has an agent program which
is used to map percepts and actions. How the agent program is structured will
determine the functionality and performance of the agent.

2.3.1 Environment Properties

Before starting with the task of building an agent, the task environment needs
to be established. The task environment can be explained as the problems to
which intelligent agents are the solution. As the authors[7] propose, we use the
PEAS (Performance, Environment, Actuators, Sensors) description.

Table 2.1 shows an example from the book[7], where the intelligent agent is
a taxi driver robot. When designing an intelligent agent, one must firstly con-
sider what the performance measure should be. A performance measure cap-
tures the desirability of a sequence of states the environment goes through. This
sequence of states occurs because the agent performs a sequence of actions ac-
cording to the percepts it receives from the environment. There will very often
be conflicting goals, so the performance measures will require a certain amount
of trade-off.

Agent Type Performance
Measure

Environment Actuators Sensors

Taxi driver Safe, fast,
legal, com-
fortable trip,
maximize
profits

Roads,
other traffic,
pedestrians,
customers

Steering,
accelerator,
brake, sig-
nal, horn
display

Cameras,
sonar,
speedome-
ter, GPS,
odometer,
accelerom-
eter, engine
sensors,
keyboard

Table 2.1: PEAS description of the task environment for an automated taxi[7]

”As a general rule, it is better to design performance measures according to
what one actually wants in the environment, rather than according to how one
thinks the agent should behave.”

13

Thereafter, the environment must also be considered. The more restricted
the environment is, the easier the problem becomes. Actuators and sensors
must also be established. In order to choose the appropriate agent design, there
are some techniques for categorizing some properties of the task environment.
These properties will now be thoroughly explained.

PROPERTIES OF TASK ENVIRONMENTS

Fully observable or partially observable: The environment is fully observ-
able when the agent’s sensors at each point in time give access to the complete
state of the environment. The effect is that the sensors in the system can detect
all aspects that can be relevant to the selection of the next action. Fully observ-
able environments are easier to implement because the agent does not have to
keep track of how the system evolves. In the book, this feature is known as the
percept history, and if needed, the environment is partially observable.

Single agent or multiagent: For a more complex agent system, we need to
divide the problem into two or more agent components. These components
will cooperate towards common goals or compete against each others goals.
This describes a multiagent environment. If an agent’s behavior is maximizing
a performance measure, whose value is depending on another objects behavior,
we need to make this object an agent as well. If this is not the case for any of the
objects, a single agent environment will suffice.

Deterministic or stochastic: A deterministic environment is defined by the
fact that the next state of the environment can be completely determined by the
current state and the next action executed. Environments where this statement
is false, are stochastic. For a multiagent environment, it can be deterministic
even though an agent may not predict the next action of other agents.

Episodic or sequential: An episodic environment implies that the agent’s
experience is divided into atomic episodes where each episode consists of the
agent perceiving one event and performing one action. Crucially, the agent’s
decision making does not depend on the behavior in previous episodes. Other-
wise, the environment is sequential.

Static or dynamic: An environment is dynamic if the environment can
change its state during the time when the agent deliberates. In such an envi-
ronment, the agent needs to keep sensing changes while it is deciding on the
next action. If the environment does not change during deliberation, it is static.

14

Discrete or continuous: When the environment is discrete, each agent has a
finite number of states, events and actions. Furthermore, each state has a finite
range of values. If the states, events and actions can take an infinite number of
values, the environment is continuous.

Known or unknown: In a known environment all the outcomes of all
possible actions can be predicted. The application programmer should know
how the technology works, and therefore how the actions will physically
change the state of the environment. If this is not feasible, the environment
is unknown.

2.3.2 Agent Programs

Intelligent agents consist of both architecture and program. The architecture of
an agent, described in Section 2.3.1, is the physical computing device the agent
is running on, with its physical sensors and actuators. We will now proceed to
the agent program. An agent program as in Figure 2.2 takes the current state as
an input and returns a single action. It can be visualized in pseudo code or as a
schematic diagram. We will briefly explain all kinds of agent programs.

TABLE-DRIVEN AGENT

The table-driven agent has the simplest implementation of all agent pro-
grams. It stores a table of all percepts and actions. When a new percept is
received, it performs a lookup function in the table and returns the appropriate
action. The pseudo code for a table driven agent is given in Figure 2.3.

function TABLE-DRIVEN-AGENT(percept) returns an action persistent:
percepts, a sequence, initially empty
table, a table of actions, indexed by percept sequences, initially fully
specified

append percept to the end of percepts
action← LOOKUP(percepts, table)
return action

Figure 2.3: Pseudo code for a table driven agent [7]

This agent program is not scalable. The table size grows exponentially as

15

the complexity of the problem grows. The lookup table will contain ∑T
t=1 |P|t

entries, where P is the set of possible percepts and T is the total number of per-
cepts the agent will receive. A simple game of chess would have a table with at
least 10150 entries.

SIMPLE REFLEX AGENT

The simple reflex agent assumes a fully observable environment and it is
based on the condition-action rule. The percept history is ignored, and the ac-
tion selection is only based the current percept. As shown in Figure 2.4, each
percept is checked against a set of conditions and the resulting action will be
executed.

function SIMPLE-REFLEX-AGENT(percept) returns an action persistent:
rules, a set of condition-action rules

state← INTERPRET-INPUT(percept)
rule← RULE-MATCH(state, rules)
action← rule.ACTION
return action

Figure 2.4: Pseudo code for a simple reflex agent [7]

As we see in Figure 2.5, the agent will for each new percept check which
action the rule chooses and returns this action.

MODEL-BASED REFLEX AGENT

The model-based reflex agent introduces an internal state as a way of han-
dling the part of the environment it can not observe at each point in time.

As seen in Figure 2.6, the agent will for each new percept check the model
and find a new state based on the previous state, the previous action and the
new percept. It then derives an action using the condition-action rule as the
simple reflex agent does.

As we see in Figure 2.7, the current percept is combined with the internal
state and compared to the agent’s own model of the environment. The agent’s
own model keeps track of ”how the world evolves” disregarding the agent’s
own actions. In addition to this, it checks ”what my actions do”, i.e. how its

16

Figure 2.5: Schematic diagram of a simple reflex agent [7] [9]

function MODEL-BASED-REFLEX-AGENT(percept) returns an action
persistent: state, the agent’s current conception of the world state
model, a description of how the next state depends on the current state
and action
rules, a set of condition-action rules
action, the most recent action, initially none

state← UPDATE-STATE(state, action, percept, model)
rule← RULE-MATCH(state, rules)
action← rule.ACTION
return action

Figure 2.6: Pseudo code for a model-based reflex agent [7]

actions affect the environment.

GOAL-BASED AGENT

When an agent has a superior goal state, we need each action to be chosen so
that the agent will be closer to that goal for each action executed. This describes
the goal-based agent, where the action selection is part of a search or a planning
algorithm. The goals are functionally different from the condition-action rules,

17

Figure 2.7: Schematic diagram of a model-based reflex agent [7] [9]

because they have a consideration for the future state of the environment and
how best to get to a state closer to the goal state.

Figure 2.8: Schematic diagram of a goal based agent [7] [9]

In Figure 2.8, we see a new element ”What it will be like if I do action A”,

18

which implies an algorithm for finding the best action A for the overall goal
state G. This step will be part of a search algorithm for the goal state.

UTILITY-BASED AGENT

In the real world, goals are not sufficient for an agent program in order to
get to the goal in a proper manner. There might be many action sequences
which can get to the goal, but they will not all be the best solution. Properties
as time, safety and cost can all be factors which make one action sequence bet-
ter than another. We call these properties utilities. Thus, we sometimes need
a utility-based agent. This agent has a utility function, which maximizes an
internal performance measure when selecting actions. When the utilities have
conflicting goals, for example time and cost, the utility function should specify
the adequate trade-off.

Figure 2.9: Schematic diagram of a utility based agent [7] [9]

As we can see in Figure 2.9, the utility function will choose the next action
in ”How happy will I be in such a state”. The action with the best utility will be
chosen accordingly.

LEARNING AGENT

Building an agent program is hard and time consuming work. Alan Turing

19

made an estimate of the work of building these machines by hand and con-
cluded that ”Some more expeditious method seems desirable”[7]. The concept
of teaching the machine to learn is preferred in many AI projects for building
state-of-the-art systems. A learning agent is an agent that monitors and delib-
erates on its own success and overall performance.

Figure 2.10: Schematic diagram of a learning agent [7] [9]

In Figure 2.10, the performance element can be viewed as the whole agent in
Figure 2.9. The learning elements will make improvements on the performance
element based on feedback from the critic, which measures how well the agent
is doing based on a predefined performance standard. The problem generator
will suggest new random actions in order to challenge the agent, which will re-
sult in a broader learning experience.

2.3.3 Classical Planning

When the agent has a consideration for the future state of the environment and
possibly a goal state, a planning algorithm will choose the best action for reach-
ing a certain goal. The state of the environment is defined in a factored rep-
resentation; a set of variables. In AI, there are multiple languages that can be
used to define states and actions. These languages use logic sentences, which

20

consist of certain variables or functions bound together by connectives. More
information regarding this can be found in Appendix A.

PROPOSITIONAL LOGIC

Propositional logic decides upon the truth of a sentence. A complex sentence
combines atomic or complex sentences using logical connectives. A truth table
can then be utilized to solve inference problems. We give an example, where the
proposition symbol Lx is true if the given light is on. The sentences Rx are rules
or proven truths that will be used derive the truth of a proposition symbol.

• L1 and L2 are on. This is a given truth. The connective is AND in the truth
table.

R1 : L1 ∧L2

• L2 and L3 are bi-conditional. This means L2 is true if and only if L3 is true.
This connective can be solved in a truth table as XOR.

R2 : L2⇔ L3

We will show the truth of L3 through a truth table. The truth table repre-
sents all possible models, which refer to all the agent’s ”possible worlds”. The
knowledge base KB is true where R1 through Rx are true. We can see in Figure
2.2 that where KB is true, L3 is true. Thus, L3 is entailed by the KB.

L1 L2 R1 R2 KB
true true true true true true
true true false true false false
true false true false false false
true false false false true false
false true true false true false
false true false false false false
false false true false false false
false false false false true false

Table 2.2: The truth table of KB in propositional logic

The entailment KB |= L3, is proved because L3 is true in every model in
which KB is true. In other words, for all ”possible worlds” the agent will en-
counter, given the ”rules” or sentences R1 and R2, L3 is true. This way, we have

21

proved the truth of L3.

KB |= L3 proves that the light L3 is on.

FIRST-ORDER LOGIC

First-order logic creates relations and functions between objects. It has a
more human-friendly syntax than propositional loc, especially in very complex
sentences.

The problem above would be represented in FOL with the objects L1, L2 and
L3 which are defined by constant symbols. There could also be relations, which
are defined by predicate symbols. The most definite relation in this example is if
a value describes a light switch, Switch, all the objects Li in Switch(Li) are true.
In addition, we can represent ”has the state” and the symbol could be State(x,
y). A relation could also be a function, where each input has only one value.
Here, ”located at” could be an example, and LocatedAt(x, y) the function sym-
bol. We will only use the given constant and predicate symbols in the following
example.

Quantifiers are often used in FOL, they express properties representing sets
of objects. The universal quantification symbol ∀x states a fact for all variables.
It can be pronounced ”for all x”. The existential quantification symbol ∃ states
a fact for at least one existing variable. This symbol can be pronounced ”there
exists an x”.

Let x be the state of a light switch, ON or OFF. Our sentences are given below.

• For all x, the state of L2 is x if and only if the state of L3 is x.

∀x State(L2, x)⇔ State(L3, x)

• The state of L2 is ON.

State(L2, ON)

We can derive the state of L3 by using the inference rule Generalized Modus
Ponens. For all i in pi,

p′1, p′2, ..., p′n, (p1 ∧ p2 ∧ ...∧ pn ⇒ q)
SUBST(θ, q)

22

The atomic sentences are defined by pi, p′i and q, and there is a substitution
θ where SUBST(θ, p′i) = SUBST(θ, pi). We derive premises from pi, our sentence
with two unknown variables, p′i, with one unknown variable, q, our query, and
θ, our substitution value. The premises are:

p1 is State(L2, x)
p2 is State(L3, x)
p′1 is State(L2, ON)
p′2 is State(L3, y)
q is State(L3, x)
θ is {x/ON, y/ON}
SUBST(θ, q) is State(L3, ON)

As we can see above, FOL uses Modus Ponens and substitution to solve
L3. Using the premises and substitution rule, we can derive the value x in our
query q; State(L3, x). The inference rule produced the same solution as in propo-
sitional logic, but is easier to follow for humans and much more scalable.

PLANNING DOMAIN DEFINITION LANGUAGE

In classical planning we use a language called PDDL (Planning Domain Def-
inition Language) to construct plans. A complete planning problem needs to be
defined through the initial state, all actions available and the goal state. PDDL
has a lifted representation, thus it lifts the reasoning level from complex propo-
sitional logic to a subset of first-order logic. The only logical connectives used
are ∧ and ¬. Figure 2.11 shows an action schema representing the action of
turning on a light switch.

Action(LightOn(l),
PRECOND: Off(l) ∧Switch(l)
EFFECT:On(l))

Figure 2.11: Action schema for turning on a light switch

The components of the action schema have important purposes. PRECOND
states the preconditions of the action. Thus, the sentence following it must be
true in order for the action to be executed. EFFECT shows how the action affect
the state of the environment. The action schema can be thought of as being uni-

23

versally quantified, and all kinds of values can instantiate the variables. How-
ever, there is one rule that decides if the values can be used.

”Action a is applicable in state s if the preconditions are satisfied by s.”

”a ∈ ACTIONS(s)⇔ s |= PRECOND(a)”

An action a available for state s can be executed iff every positive literal in
PRECOND(a) is in s and every negative literal is not. We use the example from
Figure 2.11 to show the rule.

∀kitchenLight(LightOn(kitchenLight) ∈ ACTIONS(s))⇔
s |= (O f f (kitchenLight) ∧ Switch(kitchenLight))

Basically, if the light is not off, or not a value of predicate Switch, the action
is not applicable.

We will proceed with an example of a complete planning problem. Figure
2.12 shows a morning routine problem. Firstly, the initial state tells us how the
state of the environment is before any action has occurred. We use constant
symbols for the objects. L1, L2 and L3 are true in predicate Switch, C is in pred-
icate CoffeeMachine and A is in predicate AlarmClock. The predicates Off and
On give the state of the objects. Secondly, the goal is to start the alarm clock,
turn on the lights in the bedroom, bathroom and kitchen, and start the coffee
machine. Finally, we have all the action schemas. These actions should suffice
to complete the goal state.

Before proceeding to the planning, we must state some important principles
in PDDL.

1. All the predicate states are ground, non-dividable and functionless.

2. The closed-world assumption regards all states that are not mentioned as
false.

3. The unique names assumption means that all constants are distinct.

We will now construct a plan using the three actions StartAlarmClock,
LightOn and StartCoffeeMachine. As we see in the action schemas, their ef-
fects can alter the initial state towards the goal state. The plan for achieveing

24

Init(Off(L1) ∧O f f (L2) ∧O f f (L3) ∧O f f (C) ∧O f f (A) ∧ Switch(L1)
∧Switch(L2) ∧Switch(L3) ∧Co f f eeMachine(C) ∧ AlarmClock(A))

Goal(On(A) ∧On(L1) ∧On(L2) ∧On(L3) ∧On(C))

Action(StartCoffeeMachine(c),
PRECOND: Off(c) ∧Co f f eeMachine(c)
EFFECT:On(c))

Action(LightOn(l),
PRECOND: Off(l) ∧Switch(l)
EFFECT:On(l))

Action(StartAlarmClock(a),
PRECOND: Off(a) ∧AlarmClock(a)
EFFECT:On(a))

Figure 2.12: The PDDL description of the morning routine problem

the goal is stated below.

[StartAlarmClock(A), LightOn(L1), LightOn(L2), LightOn(L3), StartCof-
feeMachine(C)]

When these actions are executed, they change the initial state of the environ-
ment into a new state of the environment, which completes the goal. The goal
state then becomes a subset of the new state of the environment.

Action(Increase(t, o),
PRECOND: TooLow(t) ∧On(o) ∧ Temperature(t) ∧Oven(o)
EFFECT:Increase(o) ∧ Normal(t))

Figure 2.13: Action schema for increasing the temperature

A real problem is when an action should have conditions. For example, the
temperature example needs to monitor the effects of the previous action prop-
erly and react accordingly. Figure 2.13 shows a regular action schema for in-
creasing the temperature.

25

Action(ConditionalIncrease(t, o),
EFFECT: when StillIncreasing(o): noop
∧ when ¬ StillIncreasing(o): Increase(o) ∧Normal(t))

Figure 2.14: Conditional action schema for increasing the temperature

In Figure 2.14, we see how a conditional action schema checks if the electric
oven is still working on increasing the temperature. This will result in a no-op,
which means no operation is needed.

26

Chapter 3

Architecture and Methodology

We will in this chapter go into details regarding current agent architectures
available and why this is important to define at an early stage of intelligent sys-
tems design. Our overall goal throughout this chapter is to investigate which
agent architecture is appropriate for our domain. There will be made some as-
sumptions about the system, we will aim for a simple structure as a basis for a
possible future extension.

Since we wish to bring together CommonSens and intelligent agents, we
need to firstly assess the properties of intelligent agents and how these fit into
CommonSens. We will address the three well-known agent architectures in Sec-
tion 3.1. We will proceed with a classification of our system-to-be in Section 3.2.
Then we will state the methodology of three existing architectures in Section
3.3. In Section 3.4 we discuss these methods with regard to CommonSens, and
its current architecture.

3.1 Agent Architecture

Müller[10] proposes that every application developer should be certain that an
object-based approach is insufficient before deciding upon using an agent-based
paradigm. If the agent-based properties are needed in the system-to-be, we will
need to use agents. These properties are stated below.

– Dynamic: The system must adapt and respond to a dynamic
environment

27

– Failures: The failures that occur must be dealt with through re-
scheduling, re-planning or re-allocation

– Behaviors: The behaviors can be long-term, goal-directed or short-
term and reactive

– Guaranteed time: Both critical and complex reaction and response
times must be guaranteed

– Node properties: Distributed, autonomous or heterogeneous nodes

– System properties: Reliability, robustness and maintainability

– Information: Complex, decentralized resource allocation problems
when encountering incomplete information

– User: Need of a flexible interaction intended for human users

We will now review all these properties with regard to CommonSens. The
system needs to adapt and respond to the dynamic environment. Environment
properties are discussed in Section 4.1, there we elaborate on why our environ-
ment is dynamic. Failures could be a real threat to the monitored person, so
the system should be able to handle this. The monitored person could benefit
from all behaviors stated, i.e. long-term, goal-directed, short-term and reactive.
Examples could be long-term movement monitoring, short-term health crisis re-
action, and a goal-directed daily physical activity training program. Response
times in CommonSens are probably of human scale. Alarms must be sent at a
reasonable time, but a millisecond difference would not be considered a serious
problem. However, delays in terms of several minutes are probably unaccept-
able, and delays in terms of hours are definitely unacceptable.

The nodes should be distributed, autonomous and heterogeneous. The sen-
sors in CommonSens have these properties, so actuators should of course also
be implemented with this in mind. As for the incomplete information issue, the
work of Søberg[4] does not explicitly state that this leads to a resource allocation
problem in CommonSens. Finally, CommonSens does focus on a human user.
As for a flexible interaction, this may be a good idea for the future. A way for
the user to interact with the system should be achieved through an interactive
tablet of some sort. An example of a situation could be that the system asks
the user if the stove should be on, and the user replies yes because he or she is
making a time-consuming meal. As we see, most of these properties are needed
in the system-to-be. We therefore conclude that agents are, in fact, needed in
CommonSens.

28

In earlier work by Wooldridge and Jennings[11], the importance of a de-
fined agent architecture was discussed as a prominent factor to the success of
the implementation of an agent-based system. The agent architecture should
be modeled in a way so that the design of the system will fulfill all the prop-
erties of the agents. There are different approaches to the architecture, with
vastly different resulting implementations. Ferguson[12] differentiates the de-
liberative, reactive and hybrid architectures in the following way. If the agent
deliberates upon the options that are present when choosing an action, the agent
is considered deliberative. Alternatively, if the agent’s choice of action is pre-
programmed or ”hardwired” to execute in response to the environmental con-
ditions, the agent is considered reactive. The architectures which realise the
choice of action by using a combination of deliberative and reactive techniques,
are considered hybrid. In the remaining part of this section, we will use related
work from Müller[10], Wooldridge and Jennings[11] and Wooldridge[13] to de-
scribe the possible agent architectures.

3.1.1 Deliberative Architecture

The classical approach to building agent systems emerged from how symbolic
AI views agents; a type of knowledge-based system. The basis of the symbolic
AI paradigm is Simon and Newell’s physical symbol system hypothesis. They
assume an internal representation of the world maintained by the agents, and
that symbolic reasoning helps modify a mental state. From this hypothesis, de-
liberate agents emerged. Ideally, deliberate agents can make decisions based on
logical reasoning, using an internal symbolic representation of the world. De-
velopers might be fooled into believing it is sufficient to present an agent with
a logical representation, and as a result the agent will do some theory proving
for them.

There are two major problems with this architecture. The transduction prob-
lem; translating the world into an acceptable description in time for it to be
useful. The representation/reasoning problem; representing real-time entities and
processes that agents can reason with in time for the results to be useful. As
Wooldridge and Jennings states, ”... most researchers would accept that neither
is anywhere near solved.”[11]. This has caused researchers to look for different
solutions, which led to the emergence of reactive architectures.

As a positive, this architecture is the only one which has the ability to act
pro-actively in a goal-directed manner. It may not be reactive, as it does not

29

guarantee any specific response times in real-time environments, but it can be
utilized to devise plans that eventually will lead the agent to a goal state. In
systems requiring planning, hybrid architectures have proved a better choice.

3.1.2 Reactive Architecture

The problems encountered by utilizing deliberative agents have caused ques-
tions regarding the viability of the symbolic AI paradigm, and led to the devel-
opment of reactive architectures. Reactive agents do not have a symbolic model
of the world. Decisions are made at run-time based on a limited amount of in-
formation and set condition-action rules. Decision-making is solely based on
the percepts received from sensors. The idea is that robust behavior should be
more important that optimal behavior. One of the largest critics of symbolic AI
was Rodney Brooks. In his research he presented two ideas:

1. Situatedness and embodiment: Theorem provers and expert systems do
not provide real intelligence, this is situated in the world.

2. Intelligence and emergence: We get intelligent behavior as a result of the
interactions between an agent and its environment. Intelligence is subjec-
tive; it can not be defined as an innate, isolated property.

Reactive agents can provide a response time guarantee, and are highly reac-
tive as real-time systems have a need for. There have been many successful im-
plementations of reactive agents, but these architectures are restrictive as they
can not do complex tasks which require means-end reasoning or cooperation.
Also, there is a lack of a clear methodology in how to build such systems.

3.1.3 Hybrid Architecture

The deliberative and the reactive architectures have many shortcomings, some
researchers have suggested that neither of them are applicable. Completely de-
liberate agents have intractable general-purpose reasoning mechanisms, which
are not reactive and therefore not suitable for systems with real-time require-
ments. Completely reactive systems, on the other hand, have a limited scope
because they can not implement complex goal-directed behavior.

30

Figure 3.1: Information and control flow in three different types of a layered
agent architecture (inspired by [13])

A solution to this is a hybrid architecture also known as a layered architec-
ture, which combines features from deliberative and reactive architectures. The
agent’s functionalities may be structured into multiple layers in a hierarchy.
These layers can interact with each other for behavioral purposes. Layers with
deliberative features will contain symbolic representations of information, thus
they will make decisions and perform planning. Other layers may have reac-
tive requirements, they skip the complex reasoning and react rapidly to critical
events. The reactive part of the system often takes precedence over the deliber-
ative part.

This layered architecture supports reactivity, deliberation, cooperation and
adaptability. Different layers may run in parallell. This increases computational
capability, but more importantly a reactive layer can monitor for events while a
deliberative layer is planning.

With regard to the layering, information and control flows can either be hor-

31

izontally or vertically layered. Horizontal layering, as in Figure 3.1(a), is struc-
tured in a way so that each layer is connected to both input and output. The
layer itself acts as an agent, deliberating upon which action to choose. How-
ever, to ensure that the overall behavior is coherent there is a need of a me-
diator function. If there are n layers, each with m possible actions, this gives
mn layer interactions that must be considered by the mediator. This will be a
bottleneck in decision-making and will certainly result in a poor performance
as well. In vertical layering the input and output are dealt with by at most one
layer at a time. In one-pass architectures, as showed in Figure 3.1(b), the control
flow goes upwards through the layers, the final layer generating an output. In
two-pass architectures, as in Figure 3.1(c), the information flows up to the high-
est layer, and the resulting commands flow down again. This approach is not
fault-tolerant, failures in a layer has serious consequences for the performance
of the whole agent.

3.2 Classification

As Müller[10] suggests, we should elaborate on which agent architecture is ap-
propriate for our domain and present software application. We will use this
work as a tool for discussing the paradigms. For a classification to be accept-
able, it is suggested to find answers to the following questions.

1. Of which material state is the agent?

(a) Hardware agent(s): interact with a physical environment, including
some internal software components.

(b) Software agent(s): programs that interact with a software environ-
ment.

2. Establish the mode of interaction between an agent and its environment.

(a) Autonomous agent(s): the system only considers the agent and its
environment.

(b) Multiagent(s): agents use knowledge in order to coordinate actions
and collaborate towards a goal.

(c) Assistant agent(s): these agents mostly interact with and on behalf of
humans.

32

These two questions must be answered, as this will give us an agent taxon-
omy. We need to precisely define which properties our agent is supposed to
have. This can help us in deciding which architecture to choose.

Question 1 is quite simple; does there exist a physical environment with
which our agent interacts? CommonSens has hardware sensors, and should
implement actuators when including actions in the future, so the answer is that
our agent is a hardware agent. Software agents interact within a software en-
vironment, thus they never detect physical events nor do they interact with the
real world.

In question 2 we need to determine how the agent should interact with its
environment. This property will depend heavily on how complex we want the
system-to-be to become. Multiagents and assistant agents as described in 2(a)
and (b) will use knowledge, and as multiagents both will need communication
skills. As we will thoroughly explain in Chapter 4, CommonSens is best served
with the property of a single agent environment, the system as a whole will be
viewed upon as an agent in itself. Autonomous agent is the best mode of in-
teraction, since our primary focus will be on the system and its environment.
This may need to be changed over time, if the desired properties of the agent(s)
change.

We have now concluded that our architecture will be based on an au-
tonomous hardware agent. Most autonomous control systems are placed in
this category. Autonomous control systems should be self-managing in all pos-
sible situations, which is a requirement they share with CommonSens. Often,
autonomous hardware agents are best suited with a hybrid architecture. When
reviewing Section 3.1.3, we decided to choose this approach for CommonSens.
The reactive layer should deal with critical events, for instance the monitored
person falling, which require a real-time reaction. Atomic actions and planning
(complex actions) should be represented as deliberate layers, including a sym-
bolic representation of the environment, plans, goals and action schemas.

Before going into more details of our hybrid architecture, we need to state
the importance of a clear methodology in the architecture design.

33

3.3 An Agent-Oriented Methodology

It is very important to look at the methodological differences between tradi-
tional development and agent-oriented development. Agent-based develop-
ment of a system brings forward an approach that is very different than the
conventional developing practices. The methodology should therefore try to in-
corporate these different techniques, while maintaining some of the traditional
developing features.

The methodologies analyze the methods and phases of agent architectures,
and we will in this section focus on methodologies for hybrid architectures.
Three examples from Wooldridge[13] will be enhanced here. Keep in mind that
the agent is an autonomous hardware agent. The three hybrid architectures are
Innes Ferguson’s TouringMachines, Jörg Müller’s InterRap and the three-tier
architecture known as 3T1.

TOURINGMACHINES

Figure 3.2: The TouringMachines architecture [13]

TouringMachines has a horizontally layered architecture, consisting of three
activity-producing layers. These are shown in Figure 3.2. Activity-producing

1Since the author did not explicitly reference the name of the developer(s), I assume that 3T
is a term for a known type of three-tier architecture. After some researching, the developers of
3T might be the authors of Bonasso et al.[14] Again, this is not certain to my understanding.

34

signifies that each layer produces suggestions for which action that should be
performed by the agent.

The reactive layer provides an immediate response to changes in the environ-
ment, using situation-action rules. These rules will directly map sensor input to
actuator output. The planning layer employs a library of plans called schemas,
and elaborates these schemas at run-time until it finds one which matches the
goal. Each schema contains subgoals, which the planning layer must match
with other schemas in the library. Finally, the modelling layer has information
about all agents in the environment, and can predict conflicts and generate new
goals which can resolve these conflicts. These goals will be forwarded to the
planning layer.

The decision of which layer should have control over the agent is made by
the control subsystem. It is implemented as a set of control rules.

INTERRAP

Figure 3.3: The InteRRaP architecture [13]

InteRRaP is a vertically layered two-pass agent architecture. As we see in
Figure 3.3, it consists of three layers. The lowest, behavior-based, layer has a reac-

35

tive behavior. Moreover, the middle, local planning, layer performs goal-driven
planning for the agent. Finally, the uppermost, cooperative planning, layer deals
with interactions between agents. Each layer has a dedicated knowledge base, a
model of the world which is appropriate for the layer. This knowledge repre-
sents the agent at different layers of abstraction; high-level for plans and action
of other agents, middle-level for plans and actions of the agent itself, and low-
level for detailed information about the environment.

Interactions between layers are either bottom-up activation or top-down execu-
tion. When a layer is incompetent in dealing with a situation, it passes control
over to a higher layer with bottom-up activation. If a layer can deal with the
situation itself, there is no need to do this. Also, when a layer wishes to make
use of functionalities in a lower layer in order to achieve a goal, top down exe-
cution is used.

3T

Figure 3.4: The 3T architecture [13]

3T is also a three-level agent architecture, as shown in Figure 3.4. One of the
main functionalities of 3T is the usage of skills. A skill is much like we envision
actions, it is a primitive behavior that defines a certain ability.

The reactive skills layer contains a set of skills, of which one will eventually
be executed. Each skill is selected and instantiated by the sequencing layer. De-
liberation and planning is performed in the planning layer.

36

3.4 CommonSens Architecture

In Section 2.2 we illustrated the relation of events and queries in Figure 2.1.
These conceptual ideas will be included in our new architecture, which has re-
lations between events and queries as well as actions and action schemas. This
is given in Figure 3.5. We propose such an architecture to ensure that we main-
tain our philosophy regarding the fact that events and actions are considered
dual terms.

Events are predefined situations in the environment which need attention
from the system. These are described using queries and detected by sensors.
The sensors have a sensing unit which can detect the states in the environment.
Actions will also be predefined, and represent something that will change the
environment. Action schemas describe the actions, and they are executed by
actuators. These actuators have an internal motor which can change the states
in the environment. So, events are used for detecting states and actions are used
for changing states.

Figure 3.5: The relation of events, queries, actions and action schemas in
CommonSens [4]

Note that we will not describe the agent architecture at this point, but the
relations between the environment states, hardware and knowledge in Com-
monSens. We begin with a description of the states of the environment. An
event is a set of states or state transitions which are detected in the environ-
ment. An action results in a change in a set of states. Events are thus passive,
and actions are active entities. Also, the hardware sensors and actuators are also

37

interconnected, as they perform consequently the passive and active behavior.
The sensors detect the events in the environment, whilst the actuators execute
the actions upon the environment. Finally, knowledge is needed in order for the
hardware entities to perform their behavior. The queries describe which sets of
states and state transitions should be identified as events. On the other hand,
the action schemas describe the sets of actions, with resulting changes in the
states. This knowledge should be predefined, and added to the system in the a
priori phase. This will be discussed in Section 5.7.

The duality of actions and events is not an easy statement to prove. As we
see in Figure 3.5, both describe something in the environment. They are only
similar in context after the information, from the queries or action schemas, are
translated to low-level data. This low-level data is the data tuples received from
the sensors or sent to the actuators for execution. The data tuples for actions
should have a similar structure as we saw in Chapter 2 for events.

(timestamp, actuator, capability, value, ts, te)

The temperature example could give the following tuple (173000, Oven01,
RaiseTemperature, 22, 181000, 184000). The first attribute is the timestamp of
when the action is generated. The system should be able to derive the specific
actuator needed for the task. Then follows the capability and resulting value
of the action, and finally ts and te, which represent when the action should be
executed.

We conclude this section with the fact that events, sensors and queries have
common behaviors with actions, actuators and action schemas. The purpose
of events and actions are different, events are used for monitoring reasons and
actions for supportive reasons. Nevertheless, the structure is quite similar, and
this indicates that events and actions may be implemented in a somewhat sim-
ilar way. As long as the action schemas are translated into readable commands
for the actuators, the structure of their low-level data could be similar to the
sensor data.

38

Chapter 4

Analysis

This chapter will provide an analysis of the intelligent agent paradigm with re-
gard to CommonSens. We need to make some choices regarding environmental
properties, language and complexity of the system-to-be. In Chapter 3 we dis-
cussed the different agent architectures in a high-level manner. Before propos-
ing our own design, we need to specify how intelligent agents and planning can
be used in practice. We will now go into the details of intelligent agents, using
the earlier research of agents from Chapter 2.

”An agent is anything that can be viewed as perceiving its environment through
sensors and acting upon that environment through actuators.” [7]

If CommonSens should be extended to include actuators in its implementa-
tion, the system should benefit from using intelligent agents as a concept. This
will provide many possibilities for expanding and improving the system in the
future. As an example of a possible future extension, learning agents can collect
and store their inputs as knowledge and learn which new behavior is appro-
priate using suitable performance measures. An agent’s behavior is described
by an agent function which maps any given inputs to an action. This abstract
agent function is implemented by an agent program.

”In which we see how an agent can take advantage of the structure of a problem to
construct complex plans of action.” [7]

Planning in AI is defined as devising a plan, which is a list of actions, that
can achieve the goals of an agent. Thus, planning will deliberate and produce
complex actions. A plan is a solution to a search problem, solving the problem
of reaching the goal state of the agent using the available action schemas. Also,
there may be several plans which lead to the same goals, performance metrics

39

could describe how to choose between them. Alternatively, these plans could
be inserted in the system a priori as queries are already.

In Section 4.1 we will choose the appropriate environment properties for the
system. We proceed in Section 4.2 with a discussion regarding the language
of the agents. Section 4.3 will explain how planning can be used as a tool for
goal-directed behavior. Throughout this chapter we will use a simple example
of how such a system could work. Shakey is a simple robot which can execute
actions leading up to a goal. We will use Shakey as a very simple example to
show how actions and planning can be done in practice.

4.1 Environment properties

Choosing the correct environment properties is essential in creating an agent
architecture. The system’s complexity increases with the complexity and size
of the environment. We therefore need to choose these properties wisely, so
that our environment is comprehensible during execution. These properties
will also affect how the system performs planning. We will go through the
seven main properties of the environment in CommonSens, and explain why
we choose the way we do.

It is important to first discuss if we require a multiagent or a single agent en-
vironment. A single agent approach at first seemed as an unappropriate aim for
our environment, because we have multiple different actuators which should
perform different actions of varying complexity. Nevertheless, we discovered
in Section 3.2 that our agent should be autonomous, thus it will act as one agent.
This means that we will concentrate on only the agent and its environment. We
therefore choose a single-agent environment. If we added agents for every ac-
tuator, there would be need of an immense amount of communication, and we
have concluded that this could be a huge bottleneck for performance. The func-
tionality of multiagents is simply not worth that unless there is a way of op-
timizing the communication between the agents. There exist research on both
multiagent[15] and single agent[16] environments in systems similar to ours.
Our goal is to have all agent functionality in one place, so that the communica-
tion will not intrude on the normal behavior of the system.

Our environment is assumed to be fully observable. We assume this be-
cause the application programmer should place appropriate sensors for all as-
pects of the environment that he or she considers important to monitor. Thus,

40

when needed, we can at all times retrieve information from all these aspects of
the environment. Realistically, the cameras must be excluded from this assump-
tion because cameras always have blind spots. If the monitored person falls in
such a spot, this should be detected in other ways. There could perhaps be a
query noticing the persons inactivity when in a blind spot.

The environment is assumed deterministic. This is true for a state which is
on or off, because if the current state is off and we perform an action, TurnOn,
we will be able to determine that the state of this object will be on after the ac-
tion has been executed. For temperatures, the effects of the action needs some
time. If we turn the temperature up 5 degrees, it will not register in the room a
few seconds later. Therefore, the temperature monitors are actually stochastic.
Nevertheless, we will assume a deterministic environment as a basis to build
upon.

It is also assumed to be episodic. As an example, if the temperature monitor
detects a low temperature, the agent should not consider what the temperature
was several hours ago. This might not be the case with the cameras monitoring
a person. If the monitored person went to bed it should not set off an alarm
because there is no movement in the environment. The agent program needs
to keep track of the monitoring history, and thence conclude that the person is
sleeping. This is also a special case, and we will again assume the whole envi-
ronment as episodic.

Furthermore, this is a dynamic environment, since the environment can
change its state during the time when the agent deliberates. This must be taken
into account when actions are executed. A simple example here is the elec-
tric oven, which can only be on or off. If it has been on for too long, and the
agent concludes that an action should be invoked, the monitored person might
turn it off during the deliberation. In the worst case scenario, the action will
reverse the monitored person’s behavior. We will not assume a static environ-
ment, since the fact that this environment is dynamic is undeniable. Classical
planning, which we will use later in this chapter, requires a static environment.

The environment is discrete, each state has a finite range of values. This
applies to the temperature monitor which has values as in a thermometer, and
actions as a positive or negative addition to the current value. Cameras have
discrete input, but are often viewed as representing continuously varying val-
ues.

41

Finally, it is assumed to be a known environment. This is because we as-
sume the agent programmer has a good enough state of knowledge of the laws
of physics of the technicalities of the environment. In the temperature monitor
example, this will be an assumption that we know whether an action of +2 will
result in the current temperature plus two degrees instead of only 2 degrees.

Intelligent agents may be difficult to comprehend when lacking a descrip-
tive example. We need to explain how to construct plans given a specific goal.
In order to do that we introduce Shakey, a robot which maneuvers through an
environment consisting of objects. Figure 4.1 illustrates Shakey’s environment.
This example is inspired by a mandatory exercise given in a course in artifi-
cial intelligence given at the University of Oslo1. The name Shakey most likely
originates from the work of Rosen and Nilsson[5], which introduced ”Shakey
the robot”. The exercise presented at the University of Oslo had less complex ac-
tions, and a very simple environment. This is why we did not choose to present
an example from the origin of Shakey.

Figure 4.1: Illustration of Shakey and its environment

Shakey has sensors and actuators and can execute actions following a plan.
1The exercise is given at http://www.uio.no/studier/emner/matnat/ifi/INF5390/v12/

undervisningsmateriale/ovinger/INF5390-2012%20Exercise%202.pdf.

42

Shakey has the following available actions.

GO
Shakey moves from one location to another within a room.

PUSH
Shakey pushes a box from one location to another within a room.

CLIMBUP
Shakey climbs up a box.

CLIMBDOWN
Shakey climbs down from a box.

TURNON
Shakey turns on a light switch.

TURNOFF
Shakey turns off a light switch.

These actions are used by Shakey for it moving around, pushing boxes
around, climbing up and down boxes and turning on or off light switches. As
we see in Figure 4.1, Shakey has a simple environment consisting of four rooms
and a corridor. Each room has a door connecting it to the corridor. There are
also objects in the environment, i.e., four boxes and four light switches.

Shakey uses classical planning for creating plans, as we will revisit later in
this chapter. Classical planning assumes an environment which is fully observ-
able, deterministic and static. As we have seen, CommonSens deals with a dy-
namic environment. We will assume a static environment for the purpose of
creating a basis for planning, which can be extended to support dynamic envi-
ronments in the future.

Shakey needs a fully observable environment, meaning everything neces-
sary to detect can be detected through its sensors. We assume Shakey has a
camera for observing the environment, wheels for moving around and arms for
climbing and pushing. The environment is deterministic because the agent is
the only element in it which can alter the states in the environment. This means
that all changes in states follow from an action executed by Shakey. No states
change during Shakey’s deliberation, thus the environment is also static.

43

4.2 Language

There are many different languages for describing logical sentences. We have
first-order logic (FOL), propositional logic and Planning Domain Definition
Language (PDDL). When CommonSens was developed, it was implemented
with a new language. This language is perhaps not optimal for describing ac-
tions and plans in agent programs. The action handling is most easily defined
through a common, known language. It may not be optimal to introduce an-
other language to CommonSens, in addition to the existing language it uses.
When implementing intelligent agents in CommonSens, one should consider if
some aspects in the representation of events should be altered to provide con-
sistency in the system.

As S. J. Russell and P. Norvig[7] suggest, we will use PDDL because Shakey
needs classical planning. This because Shakey’s environment is fully observ-
able, deterministic and static.

Actions are described by a set of action schemas in PDDL. The functionality
these schemas provide can give us a definition of all actions ACTIONS(s) and
the result for each action RESULT(s, a) for a problem-solving search with initial
state s and action a. In classical planning specifically, the actions are general-
ized as leaving most of the states unchanged. The actions change the state of
the environment using an add list and a delete list.

RESULT(s, a) = (s - DEL(a)) ∪ ADD(a)

The result of executing action a is discovered starting with the initial state s,
deleting all negative fluents DEL(a) and adding all positive fluents ADD(a) in
the actions effects.

In Figure 4.2 we see a PDDL representation of Shakey’s initial state, as
showed in Figure 4.1. Shakey’s action schemas are also represented in PDDL
in Figure 4.3. The constants used in the initial state and the predicates used in
the action schemas are listed in Table 4.1. All actions will now be explained ac-
cording to the definition of action schemas in PDDL.

The first action GO(x,y,r) takes as input two variables, x and y, true for pred-
icate Location and one, r, true for predicate Room. As a precondition, Shakey
must initially be in Room r at Location x. Also, x and y must be in the same
Room r. This action will move Shakey from x to y. This must be done by chang-
ing a constant in the system representing the location of Shakey.

44

Init(At(LocShakey) ∧PlacedOn(Ground) ∧ In(LocShakey, Room3) ∧
In(Box1, Room1) ∧ In(Box2, Room1) ∧ In(Box3, Room1) ∧
In(Box4, Room1) ∧ In(Switch1, Room1) ∧ In(Switch2, Room2) ∧
In(Switch3, Room3) ∧ In(Switch4, Room4) ∧O f f (Switch1) ∧
O f f (Switch2) ∧O f f (Switch3) ∧O f f (Switch4))

Figure 4.2: Initial state in Shakey example.

Action(GO(x, y, r),
PRECOND: PlacedOn(Ground)
∧At(x) ∧ In(x, r) ∧ In(y, r) ∧ Location(x) ∧ Location(y) ∧ Room(r)
EFFECT:¬At(x) ∧ At(y))

Action(PUSH(b, x, y, r),
PRECOND: PlacedOn(Ground) ∧At(x) ∧ At(b, x) ∧ In(x, r) ∧ In(y, r) ∧
Location(x) ∧ Location(y) ∧ Room(r)
EFFECT:¬At(x) ∧ At(y) ∧ ¬At(b, x) ∧ At(b, y))

Action(CLIMBUP(b),
PRECOND: At(b) ∧PlacedOn(Ground) ∧ Location(b) ∧ Box(b)
EFFECT:¬PlacedOn(Ground) ∧ PlacedOn(b))

Action(CLIMBDOWN(b),
PRECOND: PlacedOn(b) ∧Box(b)
EFFECT:¬PlacedOn(b) ∧ PlacedOn(Ground))

Action(TURNON(s),
PRECOND: At(b, s)
∧PlacedOn(b) ∧O f f (s) ∧ Box(b) ∧ Switch(s) ∧ Location(b) ∧ Location(s)
EFFECT:¬O f f (s) ∧On(s))

Action(TURNOFF(s),
PRECOND: At(b, s)
∧PlacedOn(b) ∧On(s) ∧ Box(b) ∧ Switch(s) ∧ Location(b) ∧ Location(s)
EFFECT:¬On(s) ∧O f f (s))

Figure 4.3: Action schemas in Shakey example.

45

Furthermore, PUSH(b,x,y,r) has as input one variable, b, true for predicate
Box, two, x and y, true for predicate Location and one, r, true for predicate
Room. This action shares preconditions with GO(x,y,r), but in addition Loca-
tion x must be equal to the location of b. This means that Shakey’s location and
the location of the box must be equal in order for Shakey to push the box. The
issue regarding locations will be discussed shortly. The action will move both
Shakey and the Box b from x to y.

The third action CLIMBUP(b) has as input one variable, b, true for predicate
Box. It has as a precondition that the location of Shakey must be equal to the lo-
cation of Box b. Also, Shakey must be on the ground. This action moves Shakey
from the ground to the top of Box b. Due to this, the two previous actions, GO
and PUSH, must have an additional precondition; that Shakey is on the ground.

Similarly, CLIMBDOWN(b) has as input one variable, b, true for predicate
Box. As a precondition, Shakey must be on Box b. Common logic shows that
Shakey’s location must be equal to b, because otherwise Shakey could not be on
Box b. In other words, the precondition we have gives us this information. This
action moves Shakey from Box b to the ground. The Locations before and after
the action is executed, x and y, are assumed to remain equal even though this
may not be true in a real environment.

The next action, TURNON(s) has as input one variable, l, true for predicate
Switch. It has multiple preconditions. Shakey must be on Box b. The location
of Box b, let us call it x, must be equal to the location of Switch s, which we will
call y. These variables, x and y, should be accessible through constants along
with the question of Shakey’s placement on the ground or a Box b. Addition-
ally, Switch s must be off. The action turns on Switch s.

Finally, TURNOFF (s) has as input one variable, s, true for predicate Switch.
Its preconditions is similar to TURNON (s), but Switch s must be on. The action
turns off Switch s.

We have now analyzed the preconditions of the actions, but there are also
some environmental conditions for Shakey. To turn on of off a light switch,
Shakey must be in the same room and also stand on a box. Shakey must move
a box to the same location as the light switch and then climb it. When Shakey
has climbed a box, it cannot move before it has climbed down from the box.
Furthermore, in order for Shakey to switch rooms it must first go to the location
of a door, which is assumed to be located in both rooms with which it is con-

46

nected to. These facts are based on reasoning, and we need this information to
be implemented correctly in order to get the correct results.

Constants Predicates
Switch1, Switch2, Switch3,
Switch4

Switch, Location, In, At,
On and Off

Room1, Room2, Room3,
Room4, Corridor

Room and In

Door1, Door2, Door3,
Door4

Door, Location and In

Box1, Box2, Box3, Box4 Box, Location, In, At and
PlacedOn

LocShakey Location, In and At
Ground PlacedOn

Table 4.1: Constants and predicates in Shakey’s environment

All the predicate states are ground, non-dividable and functionless. The two
assumptions from database semantics should be mentioned.

• The closed-world assumption regards all states that are not mentioned as
false.

• The unique names assumption means that all constants, as for instance
Room1 and Room2, are distinct.

We need constants to represent a number of variables true for predicate Lo-
cation. For action GO, we need Shakey’s current location. For action PUSH,
we need Shakey’s location and the location of a box. We also need these loca-
tions for the action CLIMBUP. Also, for the actions TURNON and TURNOFF,
we need the location of a box and a light switch. The connection between these
constants and the predicate Location is found in Table 4.1. For instance, action
CLIMBUP in Figure 4.3 treats b as both a Box(b) and Location(b). In addition to
this, we also need constants for the different rooms, boxes, light switches and
Shakey’s placement, respectively predicates Room, Box, Switch and Placement.
The predicates On and Off are needed for the light switches, In for a location in
a room and At as a position of an object.

47

4.3 Introducing Planning

In CommonSens, the queries are instantiated using state machine techniques.
If queries and planning should be dual terms, as events and actions, we would
need them to behave in a similar way. The fundamental question here is if they
really can be treated equally. We could either adapt the state machine principle
into our planning component, or reversely change the query component lan-
guage into PDDL or another subset of FOL. At the moment, we cannot be sure
if any of these approaches are feasible. They may need to be treated as two dif-
ferent components using vastly different techniques.

We will show how we can use planning to determine which actions should
be executed in order to change the state of the environment. While queries de-
scribe events which sensors should detect, action schemas define which actions
could be used to change the states and state transitions. Thus, planning deals
with intentional changes, each plan acts upon the environment, resulting in a
change in the environment. We will in this section discuss planning as a reac-
tion to an event. Additionally, we could also have pre-determined plans which
are triggered at a certain time.

Fistly, the system needs to differentiate between expected events and severe
events in need of a reaction from the system. This is the first step in Figure
4.4, which shows the general idea of how events and actions can be intercon-
nected in CommonSens. A severe event could for instance be that the monitored
person falls to the ground.This will be detected through a query performing
fall detection via camera sensors. In this case the system should avoid time-
consuming planning. The system should rather quickly set of an alarm directly
to the health personnel. Life-threatening situations in the home should be as-
sessed in advance, so the system can pinpoint these severe events. Due to this,
there needs to be done a risk assessment a priori. This assessment must define
which events fall into the severe category. This is done by calculating a quan-
titative risk factor for each event provided to the system. With regard to the
severe category, false positives are preferred against false negatives, so all pos-
sible dangerous situations should be covered.

An example of how some events could be categorized is given in Table 4.2.
In this table, the darkest fields represent a severe event and lighter fields show
less severe events. The leftmost column shows differences in how critical the
event is. As an example, a fairly high temperature is not regarded critical in
itself. But some factors may be of importance here. If the temperature is ex-
tremely high, this may denote a fire or extreme weather. Also, the timeframe of

48

Figure 4.4: Flow diagram showing the connection between an event and
corresponding action execution

which the temperature remains high is an indicator of the severity.

As we see in the table, a fall is always regarded severe, the monitored person
forgetting their medicine is almost always severe, and the stove staying on for
a very long time will also be defined as severe. The table is not accurate, it is
only meant as an example of how to categorize the events with regard to their
risk factors. We expect the number of severe cases to be minimal. The severe
events could simply be defined in a list or table, and a lookup function could
be executed to figure out if the current event is severe. This list or table must be
provided to the system a priori.

Fridge Temperature Stove Medicine Fall detection
Critical

Medium
Normal

Table 4.2: Risk assessment of the events

When the event is not severe, the system can proceed with planning. A goal
state is needed first, this is the only thing needed in order to generate a plan.
Very few, complex agents can set their own goals, so this must be provided to

49

the system a priori.

When the goal for the current event is found, the system should proceed
with finding one or more actions which satisfy this goal. In Figure 4.4, this pro-
cess is visualized as a recursive planning procedure. When the goal is satisfied,
the system proceeds with action execution.

4.3.1 Planning in Shakey

We will continue this section with the Shakey example. Planning in Shakey’s
environment will provide a good basis for our understanding of how planning
works. When a problem occurs we need to define a certain goal statement, de-
scribing how we want the environment to be. The goal will list one or several
states of the predicates. As an example, a goal could be On(Switch2). To solve
this problem, we would need to perform a complex action. The complex action
is dependent on the initial state. In order to know which actions should be ex-
ecuted, and in which order, we need to construct a plan which represents the
solution to the problem.

Our goal is On(Switch2). We will use the plan generation steps in Figure
4.5. Firstly, we check if the goal is already satisfied, in other words if the goal
state is a subset of the initial state. In the initial state, in Figure 4.2, we see that it
contains Off(Switch2). Thus, the goal state is not a subset of the initial state. Sec-
ondly, we know Shakey needs to eventually perform action TURNON(Switch2),
see Figure 4.3. TURNON has On(s) as an effect, thus when called with Switch2
it includes our goal state in its effects. If all preconditions for TURNON would
be satisfied, we could execute the action TURNON(Switch2) as an atomic ac-
tion. If we compare the preconditions of TURNON with Shakey’s initial state,
we discover that the preconditions are not satisfied. Thus, we know that plan-
ning is needed. Thirdly, we call the recursive method createPlan(TURNON).

Planning in the Shakey example is visualized in pseudo code in Figure 4.6.
This algorithm will for the action given in its parameters check if all precondi-
tions of this action is satisfied in the world model. The world model will initially
be a copy of the initial state. If a precondition does not hold, the method will
search through all available action schemas’ effects to find one matching this
precondition. It will then make a recursive call to itself with this new action
as a parameter. When eventually an action has all preconditions satisfied, this
action is added to the plan log and the variables its effects change in the world

50

1. Check if goal is a subset of Init

2. Check all actions if there is one action whose effect contain
all states in the goal

(a) Check if all preconditions are satisfied

3. Call the recursive method createPlan(Action), where Action
is the action that most closely fulfills the goal

Figure 4.5: Plan generation steps

boolean createPlan(action a)
for all preconditions p in a do

if p holds then
break;

end
else

for all actions b in ActionSet do
if one of b.effect is equal to p then

result = createPlan(b)
if result == false then

return false;
end

end
end

end
end
add action to log
change variables according to a.effect
return true

Figure 4.6: Pseudo code for plan generation

model will be updated. One of these effects should then satisfy one of the call-
ing method’s precondition for its action. When the method is completed, the
log will contain the plan in the correct order.

51

4.3.1.1 Issues

As Figure 4.5 suggests, we need firstly to define the extent of the plan. If we
only need to call one action, the problem is not hard to solve. If not, step 3 will
call the recursive method proposed in Figure 4.6. The pseudo code may at first
seem to solve the issue, but an informed reader might have noticed a problem
of redundant actions. If several preconditions share a common action, which
effects affect both, the plan will not be minimal nor optimal.

A more severe problem is when Shakey needs a plan which changes rooms.
Take the example above, Shakey needs to move from its location in Room3
to the room Box2 is in, Room1. As humans, we know the plan will be
{GO(LocShakey, Door3, Room3), GO(Door3, Door1, Corridor), GO(Door1,
Box2, Room1)}. But how to implement this? The common denominator is
the corridor. All room switches will include this constant. Therefore, we
could simply add a new action GOROOM(x1, d1, r1, x2, d2, r2), which will call
GO three times giving {GO(x1, d1, r1), GO(d1, d2, C), GO(d2, x2, r2)}. The vari-
ables d1 and d2 must be of object type Door, and d1 6=d2. Also, x1 and d1
must be located in r1, and x2 and d2 in r2. Similarly, we can add an action
PUSHROOM(b, x1, d1, r1, x2, d2, r2) for pushing a box to another room.

The plan for the example goal On(L2), is given below.

[GOROOM(LocShakey, Door3, Room3, Box2, Door1, Room1), PUSH-
ROOM(Box2, Box2, Door1, Room1, Switch2, Door2, Room2), CLIMBUP(Box2),
TURNON(Switch2)]

In other words, Shakey goes to the Box2 in Room1, pushes Box2 to Switch2
in room Room2, climbs Box2 and turns on Switch2. This is the optimal num-
ber and order of actions. To complete TURNON(Switch2), the box must be in
the same room. Shakey must first move the box to the correct location before
executing CLIMBUP(B2). If Shakey does this action before moving the box, it
must do a CLIMBDOWN, PUSH and the CLIMBUP again. That is where the
redundant actions comes into play.

Action selection in the pseudo code for createPlan in Figure 4.6 is highly
dependent on the order of the preconditions. These preconditions are selected
upon installation and must be ordered carefully. We will present an example
of what could go wrong, and why we wish to point out the importance of the
order of preconditions. In Figure 4.3, we see the order of the preconditions for
TURNON. If On(b) was placed before At(b, x), the plan would be as stated in

52

the previous paragraph. Shakey would first go to the box, then climb up the
box, climb down, push the box, and finally all preconditions are satisfied even
though Shakey is eventually not On(b). Therefore, this must be implemented
carefully and monitored closely before action execution occurs.

4.3.2 Discussion

As we have mentioned earlier, the environment in CommonSens is dynamic.
Because of this, we can not adopt the techniques from classical planning in
CommonSens. Also, we can not ignore that time is an important matter, so
planning must be done in an efficient way. There could also be issues when
scaling up small planning approaches to real-world sets of events and actions.

Since a system using classical planning will not consider the success of an
executed action, we will never know if dynamic changes in the environment
during deliberation may have come in conflict with the planned action. In or-
der to avoid this problem, the system must somehow monitor the execution of
the planned actions.

If the action execution does not result in the desired effects, the system
should initiate a modification in the plan. However, the system needs to find the
origin of why the action was unsuccessful; if the monitored person’s dynamic
behavior resulted in a situation where there is no need of action, this must be
taken into account. Otherwise, if it resulted in another event in need of reac-
tion, modifications or replanning is needed. There is some research on dynamic
planning, but we choose to propose this as future work.

Ferguson[12] provides an overview of hybrid architectures using dynamic
planning. We will briefly present the most interesting architecture in this work.
Dynamic reaction is a set of techniques for manging the monitoring and acting in
dynamic domains. It has been extended to interact with a planning system, the
abstraction-partitioned evaluator (APE) architecture. APE uses action control lay-
ers similar to the two-pass layered architecture. The most interesting feature for
our need is APE’s state of affairs (SOA) structure and monitor components. SOA
contains an up-to-date world model, along with records of the current goals
for the agent. The monitors are information gathering components which will
send reports to the SOA model, i.e. about observed events or plan constraint
violations. Additionally, the monitors can initiate replanning and take action
according to predicted exceptions.

53

Some of the features from the APE architecture may provide the techniques
we need in order to implement dynamic planning. We leave the further research
of planning techniques as future work. In this chapter, we chose environment
properties and language of our agent. We also provided some insight in in-
telligent agents and planning with our Shakey example. The next chapter will
propose an overall design of the system.

54

Chapter 5

Design

In the previous chapters, we have discussed different architectures and argued
about which properties our agents should have. We decided upon using a hy-
brid agent-oriented architecture and saw how an implementation of an agent-
based system will work using the Shakey example. In this chapter we approach
how to integrate parts of the discussed techniques into CommonSens. Our hy-
brid agent architecture will be explained thoroughly, and a new proposed de-
sign will be presented.

In Section 5.1 we present our hybrid architecture, and define its layers. Each
layer will represent different components of the action selection process. Sec-
tion 5.2 will look at the current design models in CommonSens, and propose
new models representing the action processing and actuators. Finally, Section
5.3 will propose how the life cycle phases in CommonSens need to be changed.
The most important phase is the a priori phase, since introducing the proposed
architecture requires more knowledge at configuration time.

5.1 Hybrid Agent Architecture

We have chosen a two-pass vertically layered agent architecture. This entails
that the flow of information will surpass all layers until it reaches the upper
layer, the response will then flow down to the lowest layer. The structure of the
architecture is given in Figure 5.1. We will first explain the process as a whole,
before going into the details of each layer.

55

Figure 5.1: Proposed hybrid architecture for action processing in CommonSens.

5.1.1 Functionality

Our proposed architecture divides the deliberative and reactive agent function-
ality into multiple layers. Since our system should differentiate between critical,
atomic and complex actions, we have created a three-layer hierarchy. Each layer
represents one of these types of actions. The layers also have available some
knowledge. The knowledge each layer has represents the different levels of ab-
straction in the agent. The reactive layer has a critical event layer, stating which
events require an alarm. The action selection layer has condition-action rules,
which are used for mapping events with goal actions, and the world model.
The planning layer has a planning algorithm and the world model. The world
model contains symbolic notions used in planning, as action schemas, goals
and the initial state of the world. This initial state must somehow be updated
dynamically, since the states may change during the time when the agent delib-
erates.

As we learned in Section 3.1.3, the reactive layers often take precedence over
deliberative layers in hybrid architectures. Our reactive layer has the highest
precedence and the higher the layer is in the hierarchy, the lower the precedence
is. Thus, if an incoming event requires an alarm, the reactive layer uses its prece-
dence and reacts directly to the event without involving the other layers. This is
inspired by the bottom-up activation functionality in InteRRaP, which we pre-
sented in Section 3.2. Bottom-up activation is performed if a layer can not deal
with the situation, and this is similar to the behavior we wish to achieve. The
output needs to signify the action type, in order for action execution to work
correctly. We have chosen to embed this functionality into the message using

56

flags.

We need to address the information flow in this proposed architecture. The
layers deliver different content in the messages they send, depending upon
which layer takes precedence. In Table 5.1, we list the three possible ways action
processing may take place. We have decided to use flags to denote which layer
takes precedence, making it easier for further action processing and execution.
The first flag is called ASL (Action Selection Layer). When ASL is set, the action
selection layer does not process the message, thus it has been preceded. The
same is true for the PL (Planning Layer) flag. When set, the planning layer does
not process the contents of the message. Table 5.1 shows the ASL, PL pairs,
these represent which flags are set. When the pair is 00, none of the flags are set,
when it is 01, the PL flag is set, and finally when it is 11, both the ASL and PL
flags are set.

ASL,PL pair 00 01 11
Flag(s) set
by

None Action selec-
tion layer

Reactive
layer

Action type Complex ac-
tion

Atomic
action

Alarm

Flag mean-
ing

All layers
process the
information

Skips plan-
ning layer

Skips action
selection
and plan-
ning layer

Table 5.1: Description of the ASL and PL flags.

If the reactive layer detects a critical event, it sets both the ASL and PL flag,
and the reactive layer sends an alarm. The other layers will never be invoked.
This is illustrated in Figure 5.2(a). If the event is not an alarm, no flags are set by
the reactive layer, and it needs to send the events and flags to the action selec-
tion layer, since it is not capable of solving the situation. If the action selection
layer then detects an atomic event, it sets the PL flag. The planning layer will
then never be invoked, and the action selection layer sends an atomic action
and the flags to the reactive layer. This is shown in Figure 5.2(b).

When neither the reactive layer nor the action selection layer can solve the
situation, we need planning. The action selection layer should then send the
goal action or actions along with the flags, which are not set, to the planning
layer. The planning layer runs some planning algorithm which results in a plan.

57

Figure 5.2: Behavior of layers and flags in three different situations: (a) Alarm
(b) Atomic action (c) Plan (complex action)

The plan and the flags are sent back. The action selection layer goes through
these actions, sending them down one by one. The reactive layer executes each
action and, because no flags are set, sends back an acknowledgement to the ac-
tion selection layer for the first 1 to (n-1) actions. When the action selection layer
sends the last action of the plan, it resets the PL flag, denoting an atomic action.
The reactive layer will not send back an acknowledgement after sending this
action for execution. This process is found in Figure 5.2(c).

5.1.2 The Reactive Layer

The lowest layer, the reactive layer, deals with situations that require a reactive
behavior. All events are relayed to the reactive layer from CommonSens, since
CommonSens already has the mechanisms for recognising atomic and complex
events. The layer will not have any knowledge about the world, it should sim-
ply react as quickly as possible to critical events. In CommonSens, the most
important performance measure is the health of the monitored person. Because
of this, the most severe events are those which are life-threatening; i.e. a fall or a
long duration of inactivity. Since there are very few situations in which we need
to alarm health personnel, a table-lookup will suffice here. Table 5.2 shows an
example of how this table might look. If the event matches any of the critical
events in the table, the reactive layer will take control over the action process-
ing itself. Take note that if this list is large, the performance will be poor. We
envision this table as a small set of events, because there should not be many
situations of this severity.

58

CriticalEvents
FallDetected
LongInactivity
FireDetected
AlarmActivated
...

Table 5.2: Critical event table in the reactive layer.

Basically, the reactive layer checks if the event is listed in the critical event
table, and a match denotes that an alarm is needed. The other layers will not
be involved in this situation, and the alarm and flags, both set, will be sent for
execution. See Table 5.1 regarding these flags, they implement the precedence
of the reactive layer over the other layers. If the event is not severe, the reactive
layer passes it on without setting the flags.

When the reactive layer receives an action passed on from higher layers, it
firstly checks the flags. If only the PL flag is set, it sends this action along with
the flags for execution. The special case concerning flags is when no flags are
set. This implies that the current action is part of a complex action. The reactive
layer must in this case inform the above layer when the action is sent for execu-
tion, possibly with a timed delay, so it can proceed with the next action of the
plan. On the last action received, the above layer sets the PL flag, and execution
proceeds as if it was an atomic action.

5.1.3 The Action Selection Layer

The middle layer, the action selection layer, deals with situations that require
a deliberative agent. It has access to an internal model of the world, and can
respond to atomic actions. It also needs to handle plan execution, as plans can
be sent from the layer above for execution. Actions we could encounter here
are for instance turning on or off a light switch, increasing the temperature and
other similar tasks. This layer uses condition-action rules much like the simple-
reflex agent in Section 2.3.2. An example of the events and resulting goal actions
in the condition-action rules is shown in Table 5.3.

The behavior of the layer when receiving an event is to do a rule check for
the event, using the condition-action rules. This should yield one or more goal
actions per event. If there are several actions, the action selection layer imme-

59

Event Goal actions
LightOnAtNight {TurnOffLight}
OvenOnForTooLong {TurnOffOven}
InactivityDetected {TurnOnAlarmClock,

ShowWarningOnMonitor}
... ...

Table 5.3: Condition-action rules in the action selection layer.

diately sends these to the above layer. Otherwise, it checks the preconditions
of the action. Theses are found in the action schemas in the world model. Fig-
ure 5.3 is an incomplete example of how the world model is stuctured. If the
preconditions are not satisfied in the initial state of the model, it sends the ac-
tion to the planning layer. If all preconditions are satisfied, the layer sets the PL
flag denoting an atomic action, and send this down to the reactvie layer. The
messages that are sent downward may have a similar purpose as InteRRaP’s
top-down execution.

When the action selection layer receives a message from the above layer, it
checks the flags. If both flags are set, it sends the control to the below layer. If
the PL flag is set, it sends the action stored earlier to the below layer. If no flags
are set, the layer has received a plan from the above layer. This plan must be
decomposed into a linked list of some sort, and it must remove and send the
first action of the list to the below layer. When the last action is removed, the
action selection layer must set the PL flag, which implies an atomic action.

5.1.4 The Planning Layer

The planning layer deals with only the situations which require planning.
The layer has access to the internal model of the world as well as a planning
algorithm for plan creation. The planning algorithm should somehow support
an interrupt function, which interrupts the deliberation process when a new
critical event has occurred. As we discussed in Section 4.3.2, there is a need of
reactive planning in CommonSens. How this should be implemented has not
been discussed in this thesis, so Figure 5.3 is an incomplete example of how the
world model could look like. We have intentionally left the preconditions and
effects blank in the action schemas, because these can vary depending on how
planning is done. We will not propose a planning algorithm either, because this
is based on the planning approach that is chosen. We will simply state how we

60

envision the functionalities of this layer will work.

Init(Off(LightBedRoom)
∧O f f (LightKitchen) ∧On(LightLivingRoom) ∧O f f (LightBathRoom) ∧
LocationPerson(LivingRoom) ∧On(Oven) ∧O f f (AlarmClock) ∧
TempWithinBounds(LivingRoom) ∧ TempTooHigh(Kitchen) ∧
TempWithinBounds(BedRoom) ∧ TempWithinBounds(BathRoom)...)

Goal(TurnOffOven)

Action(TurnOnLight(l),
PRECOND:

EFFECT:)

Action(TurnOffLight(l),
PRECOND:

EFFECT:)

Action(TurnOffAlarmClock(a),
PRECOND:

EFFECT:)

Action(TurnOnAlarmClock(a),
PRECOND:

EFFECT:)

Action(ShowWarningOnMonitor(w),
PRECOND:

EFFECT:)

Action(TurnUpTemp(t),
PRECOND:

EFFECT:)

Action(TurnDownTemp(t),
PRECOND:

EFFECT:)

Action(TurnOffOven(o),
PRECOND:

EFFECT:)

Figure 5.3: World model for action selection layer and planning layer.

When this layer receives a message from the layer below, this message will

61

contain one or more goal actions. If there are several actions, the layer checks if
both actions’ preconditions are satisfied in the initial state. If they are, it should
somehow order the actions in a plan, and send this along with the flags to the
below layer. None of the flags are set. If one or more of the preconditions are
not satisfied, it will use a planning algorithm for solving the problem. This al-
gorithm should, as our algorithm example for Shakey in Section 4.3.1, result in
a plan. This plan will also be sent along with the flags.

The world model includes the initial state, a goal state and all the available
action schemas. We can see the initial state in our example of a world model in
Figure 5.3. If an event occurred because the oven is on, the kitchen light is off
and the monitored person is not in the kitchen, a response to this could be two
actions. Firstly, a warning could be displayed on the tv monitor. Also, the sys-
tem could turn the oven off after a certain time if the monitored person did not
react to the warning. Plans like this are complex, and the planning algorithm
should handle this and many other situations.

5.1.5 Discussion

The hybrid architecture gives our system many good features. The reactivity
of the reactive layer provides real-time features for the very important alarms.
The agents can also execute complex actions, a functionality we strived for be-
cause CommonSens has complex events. The vertically layered structure gives
scalability for control messages, so agent performance will not be poor in gen-
eral. Nevertheless, if a failure occurs in one of the layers, the overall agent
performance will suffer because all layers are surpassed at each run in this ar-
chitecture. The question is if this is something we can fix or live with.

If multiagents will be chosen in the future, the architecture will have need
of a communication layer. This layer must keep track of other layers and detect
conflicts between itself and other agents. The must also be a unit of control in
multiagent systems.

The layers we chose was inspired by the InteRRaP architecture, presented in
Section 3.3. The action selection layer is not as deliberative as we would like,
since the condition-action rules are somewhat ”hardwired”.

62

5.2 Action Processing Model

We now proceed with the structural modeling of our agent architecture. In or-
der to have a duality between events and actions, we need the models to be
rather similar. In Appendix B, we have the UML models by Søberg[4]. Com-
monSens has a package called eventProcessor, as seen in Figure B.1, which han-
dles all events with corresponding queries and data tuples. There is also a pack-
age handling the connection of events and sensors, the sensing package shown
in Figure B.2. We need to understand how these models work in order to create
new models for action processing and the actuators.

Figure B.1 shows how the components in event processing is connected.
Each complex query is implemented in the query pool by one or more objects
of the QueryPoolElement. The classes Box and Transition create a boxes-and-
arrows structure. This enhances support for logical operators and provides a
simpler evaluation of atomic queries.

Figure 5.4: Key classes of the actionProcessor package.

The eventProcessor package will not start processing until the system is run-
ning, either as a simulation or real-world monitoring. As we see in Figure B.3,
the sensors are pulled and tuples received. The system then calls evaluate-
Batch(), which returns a match if the tuples match the conditions in the queries.
This information is then returned to DataTupleFilter. Thus, DataTupleFilter is

63

a good starting point for the action processing. The idea is that this class will
create a new thread which will start the action processing when needed.

As a corresponding package, we introduce the actionProcessor as showed
in Figure 5.4. It covers the hybrid agent architecture we discussed in Section
5.1, with the layers Reactive, ActionSelection and Planning. All the layers have
internal knowledge, but the action selection layer and planning layer also uses
a model of the world, WorldModel. In Figure 5.1, the reactive layer was con-
nected to the environment. This was a way of illustrating how the architecture
should work. In fact, the reactive layer will receive events from the DataTuple-
Filter. Additionally, we have a class ActionExecutor which is responsible for the
actual execution.

Figure 5.5: Key classes of the acting package.

The next package, acting, resembles the sensing package. Similarly to sens-
ing, which implements sensors and their capabilities used by the events, acting
implements actuators and their capabilities. In the sensor model, a capability is
a description of all things a sensor can observe. For actions, a capability should
describe all thing an actuator can do in the environment. The queries never
address sensors directly, they address the capabilities the sensors provide. This
should also be the case for actions, these should address an actuators capabili-
ties. Nevertheless, the capabilities need to be differentiated, there should be one
set of capabilities for the sensors and another for the actuators. This because no
sensor and actuator can provide the same capability.

Figure 5.6 shows the control flow when an event is detected. The data tu-

64

Figure 5.6: Sequence diagram of the control flow when an event is detected.

ple filter will call the reactive layer if the event has occurred, in other words if
the tuples matched the conditions in the query. The reactive layer checks if the
event requires an alarm, the action selection layer checks if we need an atomic
action, and the planning layer checks if we need a complex action. The result-
ing action or actions will be sent from the reactive layer to the action executor,
which should find the corresponding capability for action execution.

5.3 Life Cycle Phases

We continue with a discussion regarding the different life cycle phases of the
system. CommonSens already has defined how the life cycle phases should be.
This is shown in Figure B.4. When introducing actions and planning, we have
throughout this thesis noticed that prior knowledge is needed in order for the
agents to do reasoning when performing action selection. As we mentioned in
Section 5.1, the layers in the architecture need a critical event table, condition-

65

action rules, action schemas and an internal world model. This information
needs to be set by an application programmer a priori, in order for the pro-
posed architecture to work.

Figure 5.7: Life cycle phases in CommonSens.

In Figure 5.7 we present the new life cycle phases in CommonSens. This fig-
ure is inspired by Figure B.4. In addition to details regarding queries and sen-
sors, we need knowledge about critical events, condition-action rules and action
schemas. This information must be added off-line, so if new actions should be
introduced to the system it must be reconfigured. Both sensors and actuators
must be placed as seen fit. The final change in the a priori phase is that the
world model should be instantiated. This model will be updated statically each
time an action is needed. The event processing phase is expanded with action
execution after evaluation.

66

Chapter 6

Conclusion and Future Work

In this last chapter we will provide a summary of the work in this thesis and its
contributions. We will also discuss the possible solutions and improvements on
the observed problems and flaws we encountered. Finally, we look at how our
work may be continued, and the possibilities available for future work.

Many decisions had to be made with regard to agent properties and architec-
ture. We wanted to present the fundamental principles.To have a manageable
starting point we chose as simple properties as possible, that met our reqire-
ments. The idea was that the resulting design of the architecture would demon-
strate proof-of-concept, as a first step towards an adequate architecture.

The first task was to choose a methodology for implementing actions in
CommonSens. Similar systems encountered used intelligent agents for action
processing. Some basic knowledge in this field was provided in the course
INF5390 about artificial intelligence at the University of Oslo. Since there, to
our understanding, does not exist an adequate alternative to intelligent agents
for the purpose of action processing, we researched the possibilities they pro-
vide.

We needed to research the background material for CommonSens as well.
In order to find out how we can integrate actions in the system, we needed to
understand the functionalities of events, the counterpart of actions. Our main
material for details on intelligent agents was provided by the textbook in the
INF5390 course. As we dug deeper into the subject, the focus of an agent archi-
tecture appeared. Many authors in AI had published work related to the choice
of an agent architecture. The possibilities and concerns were many. We realized
that an agent architecture classification is an important first step in the devel-
opment of intelligent systems. We found a step-by-step classification on how

67

we can choose an agent architecture. This, along with our knowledge about
CommonSens, helped in choosing a hybrid agent architecture. This decision
narrowed down the amount of possible designs. We found inspiration in three
of these, TouringMachines, InteRRaP and 3T.

We concluded that some of the elements in the design of the event model
in CommonSens could be extended with properties of actions. Events and ac-
tions represent a change in the environment, sensors and actuators are the hard-
ware entities which can sense or perform these changes, and queries and ac-
tion schemas represent the knowledge needed. With regard to the environment
properties, most of these could easily be chosen due to the CommonSens envi-
ronment. The simple structure of the environment in CommonSens gives us a
fully observable, deterministic, episodic, dynamic, discrete and know environ-
ment. An exception was the choice of a multiagent vs. a single agent environ-
ment. A multiagent environment consists of multiple agents which are either
cooperating or competing against each other. This entails that these agents need
communication functionalities. Agent communication can be difficult to imple-
ment and real-time messages between agents may result in poor overall perfor-
mance. Most importantly, this is a complex design problem, since they need to
cooperate in a correct manner. In multiagent systems there may occur conflicts,
both in goals and actions. Because of this there is need of a control unit, which
decides which agent should have control over the other. Single agent environ-
ments concentrate all agent functionality into one single entity. All decisions
are then centralized, thus overall action control is ensured. Because of this, we
chose to use the single agent approach. The choice of the easiest solution will
also give us an opportunity to get some experience in the behavior of the sys-
tem.

In order to help the reader to understand the core concepts of intelligent
agents, we introduced the example Shakey. When introduced, we may have
underestimated the number of issues that would arise when this example was
used to visualize planning. We chose to include the example regardless of this,
because it illustrates all the elements needed in planning; action schemas, initial
state, goals and planning algorithm.

Another fundamental decision we had to make was the choice of language
used to describe our model of the world. Actions are often described using
some logic, most commonly propositional logic or first-order logic (FOL). Since
our Shakey example used classical planning, we chose to use a subset of FOL,
the planning domain definition language (PDDL). Ideally, to best preserve the

68

duality between events and actions, we would like both to be described using
the same language. Since the language CommonSens uses for its events is not
a commonly used language, it was not clear to us how it can be extended to
define actions. This language was developed along with CommonSens, as a
completely new language tailored to the needs of the system. We would have
to do extensive research and testing in order to figure out how this language
could be used for actions. This was not done due to a limited amount of time.
PDDL is a well known language for intelligent agents, it can also be applied in
planning, so we chose to use this as a basis for describing agent functionality.

Planning was only described in this thesis in the Shakey example. This ex-
ample uses classical planning, which we at an early point viewed as a good
choice for CommonSens. After some time, however, we realized that classical
planning requires a static environment. The environment in CommonSens is
dynamic. Thus, classical planning will run as though the states in the environ-
ment can not change during the time when the agent deliberates. In order for
planning to work in CommonSens, the world model must somehow be updated
dynamically, so that any changes during deliberation are taken into account be-
fore any action is executed.

We chose to use a hybrid agent architecture, this was based on the fact that
CommonSens could make use of both goal-directed planning and reactive be-
havior. The latter was viewed as a good solution for alarms. The alternatives
were a deliberative architecture, where alarms would have to be stated as an ac-
tion without a real-time guarantee, and a reactive architecture, where we would
not have been able to use planning and thus complex actions.

Our problem statement was as follows. In this thesis we consider how Com-
monSens could be extended to include the functionality of intelligent agents. Our goal
is that the resulting architecture will reflect a duality between events and actions. We
now need to assess if we achieved these goals.

At the beginning of this thesis, our main goal was to introduce actions in
CommonSens. Initially, we did not know how to do this, so a lot of work went
into actually finding techniques that supported actions and actuators. Intelli-
gent agents were presented to me in the course INF5390. Besides this course,
there has not been much research in this field at our University. Therefore, we
found that much of the time we had in the beginning were used learning how
intelligent agents, and especially their architectures, work in practice.

69

We have chosen environment properties to our best knowledge, with some
assumptions. Since we have not researched the functionality of advanced sen-
sors, as for example camera monitoring, it was difficult to address which envi-
ronment properties these might affect. Also, when choosing single agents we
aimed for a simple structure, there may be advantages in using multiagents
because of cooperation in planning. Multiagents would provide support for
concurrent and consecutive action processing, which is currently not provided.

The agent architecture was chosen as a basis for the design and structure of
the intelligent agent. We chose a hybrid agent architecture, as we think is the
best solution for the system. This because alarms are handled in a reactive way
by the system. The decision was made due to the classification we made of the
agent. We state that we have an autonomous hardware agent. If this should
prove to be incorrect, the architecture needs to be changed accordingly. If mul-
tiagents should be implemented, there would be need of some functionality
which handles agent communication and a control unit must delegate control
to these agents. There would probably be many more complications due to this.
If the classification or environment properties are incorrect, or advised to be
changed after a certain time, the decision of an agent architecture must be revis-
ited.

The duality of events and actions is only partially realized. They both rep-
resent the states of the environment, which form current or future situations.
In the system, because of the language, the information is not similarly repre-
sented. Events are represented using queries, and actions uses action schemas
as their knowledge. We could not find any earlier research which had united
an existing CEP system with intelligent agents, thus we were uncertain if the
whole system should be reprogrammed. Nevertheless, when this information
is translated into low-level data, we proposed using similar data tuples. Intel-
ligent agents use capabilities, as the sensors of CommonSens do, and therefore
this would not be a problem to implement.

Planning requires much more research before this can be implemented.
Looking back, we regret the fact that we did not contribute more on this im-
portant matter. We found research on dynamic planning, but due to the short
amount of time we had left, we had no choice but to leave this for future work.
It is also important to discover how the world state should be updated in a
dynamic environment like CommonSens’. There are many pitfalls in planning
in general, as we discovered in the simple Shakey example. This example also
gave insight into the fact that condition-action rules had to be presented to the

70

system a priori, in order for the system to know the goal actions for each event.
We do not propose that this is the most efficient, nor the easiest approach. Per-
haps the plans could be constructed a priori, as a way of getting experience with
how plans may be remembered by the system and found in a lookup function
after they are made. These possibilities, among many others, are also consid-
ered future work.

Due to the amount of research needed to get this far, we did not have time
to conduct any implementation or testing of our proposed architecture. More
knowledge in the implementation of intelligent agents is needed in order for the
agent functionalities to work correctly. CommonSens is a complex system and
in order for us to be able to test the new functionalities, we need more knowl-
edge on the current possibilities of testing in CommonSens.

71

72

Appendix A

First-Order Logic

Symbol Formal Name Connective
¬ negation not ...
∧ conjuction ... and ...
∨ disjunction ... or ...
⇒ conditional if ... then ...
⇔ biconditional ... if and only if ...
∀ universal quantifier for all ...
∃ existential quantifier there exists at least one ...

Table A.1: Connectives in first-order logic.

Figure A.1: The syntax of propositional logic, specified in Backus-Naur form.[7]

73

Figure A.2: The syntax of first-order logic, specified in Backus-Naur form.[7]

74

Appendix B

Event Processing Model and Sensor
Model

Figure B.1: Key classes of the eventProcessor package.[4]

75

Figure B.2: Key classes of the sensing package.[4]

Figure B.3: Overview of the event processing phase.[4]

76

Figure B.4: Life cycle phases in CommonSens.

77

78

Bibliography

[1] T. E. Parliament and the Council of the European Union, “Decision
no 742/2008/ec of the european parliament and of the council of
9 july 2008,” Official Journal of the European Union, 2008. [Online].
Available: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:
L:2008:201:0049:0057:EN:PDF

[2] D. Luckham, “The power of events: An introduction to complex event
processing in distributed enterprise systems,” in Rule Representation,
Interchange and Reasoning on the Web, ser. Lecture Notes in Computer
Science, vol. 5321. Springer Berlin Heidelberg, 2008, pp. 3–3. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-88808-6\ 2

[3] A. Gal and E. Hadar, Principles and Applications of Distributed Event-Based
Systems. Information Science Reference (an imprint of IGI Global), 2010.

[4] J. Søberg, “CommonSens: A Multimodal Complex Event Processing Sys-
tem for Automated Home Care,” Ph.D. dissertation, Faculty of Mathemat-
ical and Natural Sciences, University of Oslo, 2011.

[5] N. J. Nilsson, “Shakey the robot,” Artificial Intelligence Center, Computer
and Technology Division, SRI International, Tech. Rep. 323, 1984.

[6] K. Kinsella and W. He, “An aging world,” U.S. Department
of Health and Human Services, 2008. [Online]. Available: http:
//www.census.gov/prod/2009pubs/p95-09-1.pdf

[7] S. J. Russell and P. Norvig, Atificial Intelligence - A Modern Approach, 3rd ed.
Pearson Education, Inc., Prentice Hall, 2010.

[8] J. F. Allen, “Maintaining knowledge about temporal intervals,” Communi-
cations of ACM, vol. 26, no. 11, pp. 832–843, Nov. 1983.

[9] C. Hendahewa, “Types of intelligent agents,” 2009. [Online]. Available:
http://digit.lk/09\ dec\ ai

79

[10] J. P. Müller, “Architectures and applications of intelligent agents: A
survey,” The Knowledge Engineering Review, vol. 13, no. 4, pp. 353–380, 1998.

[11] M. Wooldridge and N. R. Jennings, “Intelligent agents: theory and
practice,” The Knowledge Engineering Review, vol. 10, no. 2, pp. 115–152,
1995.

[12] I. A. Ferguson, “Touringmachines: an architecture for dynamic, rational,
mobile agents,” Computer Laboratory, University of Cambridge, Tech.
Rep. 273, 1992.

[13] M. Wooldridge, An Introduction to MultiAgent Systems, 2nd ed. John Wiley
& Sons Ltd, 2009.

[14] D. P. M. R. Peter Bonasso, David Kortenkamp and M. Slack, “Experiences
with an architecture for intelligent, reactive agents.” Journal of Experimental
and Theoretical Artificial Intelligence.

[15] A. Rammal and S. Trouilhet, “Keeping elderly people at home: A
multi-agent classification of monitoring data,” in Smart Homes and Health
Telematics, ser. Lecture Notes in Computer Science, S. Helal, S. Mitra,
J. Wong, C. Chang, and M. Mokhtari, Eds. Springer Berlin Heidelberg,
2008, vol. 5120, pp. 145–152.

[16] D. Cook, M. Youngblood, I. Heierman, E.O., K. Gopalratnam, S. Rao,
A. Litvin, and F. Khawaja, “Mavhome: an agent-based smart home,” in
Pervasive Computing and Communications, 2003. (PerCom 2003). Proceedings
of the First IEEE International Conference on Pervasive Computing and
Communications, 2003, pp. 521–524.

80

