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Abstract

We study the facial structure of the polytope Ωtn in Rn×n consisting of the
tridiagonal doubly stochastic matrices of order n. We also discuss some sub-
classes of Ωtn with focus on spectral properties and rank formulas. Finally we
discuss a connection to majorization.

Keywords: Doubly stochastic matrix, Birkhoff polytope, eigenvalue, random walk,
majorization.

1 Introduction

A (real) n × n matrix A is doubly stochastic if it is nonnegative and all its row and
column sums are one. The Birkhoff polytope, denoted by Ωn, consists of all doubly
stochastic matrices of order n. A well-known theorem of Birkhoff and von Neumann
(see [3]) states that Ωn is the convex hull of all permutation matrices of order n. In
this paper we discuss the subclass of Ωn consisting of the tridiagonal doubly stochastic
matrices and the corresponding subpolytope

Ωtn = {A ∈ Ωn : A is tridiagonal}

of the Birkhoff polytope. We call Ωtn the tridiagonal Birkhoff polytope. Ωtn is a face
of Ωn and the structure of this face is investigated in the next section. Throughout
the paper we assume that n ≥ 2.

The permanent of tridiagonal doubly stochastic matrices was investigated in [7]
and it was shown that the minimum permanent in this class is 1/2n−1 (where n
denotes the order of the matrices). We remark that this result may also be derived
from a related result in [4].

Tridiagonal doubly stochastic matrices arise in connection with random walks on
the integers {1, 2, . . . , n} where (i) in a single transition from an integer i the process
(say, a person) either stays in i or moves to an adjacent integer, and (ii) the transition
probabilities are symmetric in the sense that pi,i+1 = pi+1,i (1 ≤ i ≤ n−1). We return
to this example in section 4.
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The notation in this paper is as follows. An all zeros matrix is denoted by O,
and we let Jn (or simply J) denote the all ones square matrix of order n. For a
matrix (or vector) A we write A ≥ O if A is (componentwise) nonnegative. As usual
the components of a vector x ∈ Rn are denoted by xi, so x = (x1, x2, . . . , xn). The
cardinality of a finite set S is denoted by |S|.

2 The polytope Ωt
n

We first describe a representation of all matrices in Ωtn. Define the polytope

Pn = {µ ∈ Rn−1 : µ ≥ O , µi + µi+1 ≤ 1 (1 ≤ i ≤ n− 2)} (1)

in Rn−1 for n ≥ 3. We also define P2 = [0, 1]. For each vector µ ∈ Rn−1 we define
the associated n× n matrix

Aµ =



1− µ1 µ1 0 0 . . . 0
µ1 1− µ1 − µ2 µ2 0 . . . 0
0 µ2 1− µ2 − µ3 µ3 . . . 0
...

. . .
...

0 0 . . . µn−2 1− µn−2 − µn−1 µn−1

0 0 . . . µn−1 1− µn−1


.

So this is a symmetric matrix and its subdiagonal is equal to µ. If µ ∈ Pn, then the
matrix Aµ is doubly stochastic and tridiagonal, i.e., Aµ ∈ Ωtn. A useful fact is that
every matrix in Ωn has the form Aµ for some µ ∈ Pn.

Proposition 1
Ωtn = {Aµ : µ ∈ Pn}.

Proof. The inclusion {Aµ : µ ∈ Pn} ⊆ Ωtn is clear. For the opposite inclusion,
consider a tridiagonal doubly stochastic matrix

A =


a11 a12 0 0 . . . 0
a21 a22 a23 0 . . . 0
0 a32 a33 a34 . . . 0
...

. . .
...

0 0 . . . ann−1 ann


Define µi = ai i+1 for i = 1, 2, . . . , n − 1 and let µ = (µ1, µ2, . . . , µn−1). We now
verify that A = Aµ. As A is doubly stochastic, a11 = 1 − µ1 and a21 = µ1 as
desired. Assume, for a given i, that ai i−1 = µi−1. Since the i’th row sum is one and
ai i+1 = µi, we obtain aii = 1− µi−1 − µi. Similarly, by considering the i’th column,
we calculate ai+1 i = 1− aii − ai−1 i = 1− (1− µi−1 − µi)− µi−1 = µi. It follows, by
induction, that A = Aµ.
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Thus, every matrix in Ωtn is determined by its superdiagonal (or subdiagonal).
Moreover we see that Pn and Ωtn are affinely isomorphic. This means that the poly-
hedral structure of the tridiagonal Birkhoff polytope is found directly from the cor-
responding structure of Pn.

Let fn denote the n’th Fibonacci number. So f1 = f2 = 1 and fn = fn−1 + fn−2

for each n ≥ 3. We recall that fn is given explicitly as fn = 1√
5
(1+
√

5
2 )n− 1√

5
(1−
√

5
2 )n

(see e.g. [2]). Polyhedral properties of the tridiagonal Birkhoff polytope are collected

in the following theorem where we use the notation K =
[

0 1
1 0

]
and J = [1].

Theorem 2 (i) Ωtn is a polytope in Rn×n of dimension n− 1 with fn+1 vertices.
(ii) Its vertex set consists of all tridiagonal permutation matrices; these are the ma-
trices of order n that can be written as a direct sum

A = A1 ⊕A2 ⊕ · · · ⊕At (2)

where each matrix Ai (i ≤ t), hereafter called a block, equals either J or K.
(iii) Consider a vertex A as in (2). Then each adjacent vertex of A is obtained from
A by either (a) interchanging a sequence of consecutive blocks J,K,K, . . . ,K (with
t ≥ 1 K’s) and the sequence K,K, . . . ,K, J (with t K’s), or (b) by interchanging
a sequence of consecutive blocks K,K, . . . ,K (with t ≥ 1 K’s) and the sequence
J,K,K, . . . ,K, J (with t− 1 K’s).

Proof. Since Ωtn and Pn are affinely isomorphic, we may prove the theorem by
considering Pn. Clearly, Pn has dimension n − 1, since it contains all coordinate
vectors and the zero vector. Therefore, Ωtn has dimension n− 1. Using the extreme
point property it is easy to verify that Pn has only integral vertices, i.e., all components
are integers. It follows that the vertex set of Pn, denoted by Vn, consists of all (0, 1)-
vectors µ of length n−1 not having two consecutive 1’s. (Actually, Pn is the stable set
polytope associated with the graph which is a path of length n−1.) The corresponding
matrices Aµ are the direct sum of matrices in the set {J,K}. We next determine the
cardinality of the vertex set Vn. There is a bijection between {µ ∈ Vn : µn−1 = 0}
and Vn−1; it is obtained by dropping the last component of µ ∈ Vn (as µn−1 = 0).
Similarly, there is a bijection between {µ ∈ Vn : µn−1 = 1} and Vn−2; it is obtained by
dropping the last two components of µ ∈ Vn (as µn−1 = 1 and µn−2 = 0). It follows
that |Vn| = |Vn−1| + |Vn−2| for n ≥ 4. Clearly, |V2| = 2 and |V3| = 3. This means
that the cardinalities |Vn| (n ≥ 2) are given by the Fibonacci numbers: |Vn| = fn+1

for each n. This proves (i) and (ii).
To prove (iii) consider two distinct vertices µ, µ′ of Pn, and let S = {j : µj = 1},

S′ = {j : µ′j = 1}. We may write

S∆S′ = I1 ∪ I2 ∪ · · · ∪ Ip

where Ir = {ir, ir + 1, . . . , jr} for some integers ir ≤ jr (r ≤ p) with ir+1 ≥ jr + 2
(r ≤ p− 1).

Claim: µ and µ′ are adjacent if and only if p = 1, i.e., S∆S′ is an (integer)
interval.
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Assume first that p ≥ 2. Let γ ∈ Rn−1 be the vector obtained from µ by letting
γj = 1 − µj for each j ∈ I1. Similarly, let γ′ ∈ Rn−1 be obtained from µ′ by letting
γ′j = 1−µ′j for each j ∈ I1. Then µ, µ′, γ, γ′ are four distinct vertices of Pn satisfying
(1/2)(µ+ µ′) = (1/2)(γ+ γ′) which implies that the smallest face of Pn containing µ
and µ′ has dimension at least two. Thus, if p ≥ 2, then µ and µ′ are not adjacent.
Next, assume that p = 1 and define the vector w ∈ Rn−1 as follows: wj = n2 when
j ∈ S ∩ S′, wj = −1 when j 6∈ S ∪ S′, wj = |S \ S′| when j ∈ S′ \ S and, finally,
wj = |S′ \ S| when j ∈ S \ S′. Then one can check that the only vertices of Pn that
maximize the linear function wT z for z ∈ Pn are µ and µ′. This implies that these
two vertices are adjacent on Pn. This proves our claim, and (iii) follows by translating
this adjacency characterization into matrix language.

Let G(Ωtn) denote the graph of Ωtn (or 1-skeleton), i.e., the vertices and edges of
the graphG(Ωtn) correspond to the vertices and edges of the polytope Ωtn. In Theorem
2 the vertices and edges of Ωtn were described. We now determine the diameter of
G(Ωtn) which is defined as the maximum of d(u, v) taken over all pairs u, v of vertices,
where d(u, v) is the smallest number of edges in a path between u and v in G(Ωtn).

Theorem 3 The diameter of G(Ωtn) equals bn/2c.

Proof. Consider two distinct vertices µ, µ′ of Pn. As in the proof of Theorem 2 we
let S = {j : µj = 1}, S′ = {j : µ′j = 1} so

S∆S′ = I1 ∪ I2 ∪ · · · ∪ Ip.

Since each It is nonempty and consecutive intervals are nonadjacent, it follows that
p+ (p− 1) ≤ n− 1. So p ≤ bn/2c. We may now find a path

Q : µ = µ(0), µ(1), . . . , µ(p) = µ′

of length p in G(Ωtn) where µ(t) is obtained from µ(t−1) by complementing zeros and
ones for indices in It (t ≤ p). We see from the adjacency characterization of Theorem
2 that µ(t−1) and µ(t) are adjacent. Thus, G(Ωtn) contains a path between any pair of
vertices of length p ≤ bn/2c, and therefore the diameter of G(Ωtn) is at most bn/2c.
To prove equality here consider first the case when n is even, say n = 2k. The
distance (in G(Ωtn)) between the matrices A = J ⊕ J ⊕ · · · ⊕ J (with 2k J ’s) and
B = K ⊕K ⊕ · · · ⊕K (with k K’s) is at least k since for any two adjacent vertices
their number of K’s differ by at most one (see Theorem 2). If n is odd, n = 2k + 1,
we consider the matrices obtained from A and B above by adding a J block (at the
end) and conclude that their distance is at least k = bn/2c as desired.

We conclude this section by some observations concerning optimization over the
set Ωtn. Let C be a given square matrix of order n. The well-known assignment
problem is to maximize a linear function 〈C,A〉 =

∑
i,j cijaij over all permutation

matrices A. Equivalently, we may here maximize over the set Ωn of doubly stochastic
matrices; this follows from Birkhoff’s theorem as the objective function is linear.
Consider now the more restricted problem of maximizing 〈C,A〉 over the tridiagonal
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permutation matrices A, or equivalently, over A ∈ Ωtn. We may then assume that
C is also tridiagonal. By using the relation between Ωtn and the polytope Pn (see
Proposition 1) our problem reduces to a linear optimization problem over Pn (where
the dj ’s are calculated from C):

max{
n−1∑
j=1

djµj : µ ∈ Pn}. (3)

Now, this problem may be solved by dynamic programming as follows. Define vk =
max{

∑k
j=1 djµj : µj+µj+1 ≤ 1 (j ≤ k−1), µ1, . . . , µk ≥ 0} and note that vn−1 is the

optimal value of (3). The algorithm is: (i) v1 = max{0, d1}, v2 = max{v1, d2}, (ii) for
k = 3, 4, . . . , n−1 let vk = max{vk−1, vk−2 +dk}. This simple algorithm is linear, and
by storing some more information we also find an optimal solution µ1, µ2, . . . , µn−1.

3 Diagonally dominant matrices in Ωt
n

In this section we consider the tridiagonal doubly stochastic matrices that are diago-
nally dominant. Recall that a matrix A = [aij ] of order n is called (row) diagonally
dominant if |aii| ≥

∑
j:j 6=i |aij |. If all these inequalities are strict, then A is called

strictly (row) diagonally dominant, and it is well-known that this property implies
that A is nonsingular.

Let
Ωt,dn = {A ∈ Ωtn : A is diagonally dominant}

and note that, since each A ∈ Ωtn is symmetric, we need not distinguish between row
and column diagonally dominance. We remark that every matrix A in Ωt,dn is also
completely positive, i.e., A = BBT for some nonnegative n× k matrix B. Moreover,
the smallest k in such a representation (called the cp-rank of A) is equal to the rank
of A. We refer to the recent book [1] for a survey of completely positive matrices.
These two facts concerning matrices in Ωt

n follow from the general theory in [1], or a
direct verification is also possible.

The following theorem shows that Ωt,dn is very similar to Ωtn. In the following
discussion we define µ0 = µn = 0.

Theorem 4 (i) Ωt,dn is a subpolytope of Ωtn.
(ii) Ωt,dn = {Aµ : µ ≥ O, µi + µi+1 ≤ 1/2 (i ≤ n− 2)} = {Aµ : µ ∈ (1/2)Pn}.
(iii) The vertex set of Ωt,dn consists of the matrices of order n that may be written as
a direct sum of matrices in the set {J1, (1/2)J2}.

Proof. The matrixAµ is diagonally dominant if and only if 1−(µi−1+µi) ≥ µi−1+µi
(1 ≤ i ≤ n), i.e., iff µi−1 + µi ≤ 1/2 (1 ≤ i ≤ n). This implies (ii) and also (i). To
see (iii) we recall from the proof of Theorem 2 that the vertex set of Pn consists of
all (0, 1)-vectors µ (of length n − 1) not having two consecutive 1’s. So the vertices
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of the polytope (1/2)Pn are the (0, 1/2)-vectors not having two consecutive 1
2 ’s. This

implies (iii).

We now investigate the rank of the matrices in the class Ωt,dn .

Theorem 5 Let Aµ ∈ Ωt,dn . Then

rank(Aµ) = n− |{i : µi = 1/2}|.

In particular, rank(Aµ) ≥ bn/2c.

Proof. Consider a matrix Aµ ∈ Ωt,dn , so µ ∈ (1/2)Pn. If µi = 0, for some i
with 1 ≤ i ≤ n − 1, then Aµ is the direct sum of two matrices of order i and
n− i, respectively. Therefore, since the rank of a direct sum of some matrices is the
sum of the ranks of these matrices, it suffices to prove the result for the case when
µi > 0 (1 ≤ i ≤ n − 1). There are two possibilities. First, if µi = 1/2 for some
i, then it follows from the diagonal dominance that µi−1 = µi+1 = 0. This implies
that n = 2 and that Aµ = (1/2)J2 and the rank formula holds. Alternatively, when
µi < 1/2 for each i, then a11 = 1 − µ1 > µ1 =

∑n
j=2 a1j and this combined with

the diagonal dominance of Aµ (and that each µi > 0) implies that Aµ is nonsingular
(confer Theorem 3.6.8 in [3]). This implies the rank formula. The lower bound on
the rank is due to the fact µ does not contain two consecutive components that are
1/2 whenever µ ∈ (1/2)Pn.

Thus, we have a simple formula for the rank of matrices in the subclass Ωt,d.
On the other hand, it is not as straightforward to determine the rank of a matrix
A ∈ Ωtn \ Ωt,dn . A is then a direct sum of matrices Ai, say of order ki, for which the
corresponding µi’s are positive. Clearly each Ai has rank ki or k1 − 1, and to decide
which is the case one can solve a triangular linear system (in order to determine if
the first column of Ai lies in the span of the other columns). The nonsingularity of
each Ai may be expressed by a polynomial equation in the µj ’s, but it seems very
complicated.

4 Matrices in Ωt,d with constant subdiagonal

Consider the subpolytope

Ωt,=n = {Aµ ∈ Ωtn : µ1 = µ2 = · · · = µn−1}

of Ωtn. The corresponding subpolytope of Pn (in the space of the µ-variables) is simply
the line segment [O, (1/2)e]. Note that a matrix in Ωt,=n may or may not be diagonally
dominant.

Our main goal is to find explicitly all eigenvalues and corresponding eigenvectors
for every matrix Aµ ∈ Ωt,=n . This is done by solving certain difference equations.
A similar approach for finding eigenvalues and eigenvectors of tridiagonal Toeplitz
matrices may be found in e.g. [10] and [6] (the latter reference also treats an extension
to so-called pseudo-Toeplitz matrices).
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Let 0 ≤ x ≤ 1/2 and consider the (general) matrix

Ax =



1− x x 0 0 . . . 0
x 1− 2x x 0 . . . 0
0 x 1− 2x x . . . 0
...

. . .
...

0 0 . . . x 1− 2x x
0 0 . . . x 1− x


in Ωt,=n . Observe that Ax = I − x ·Wn where Wn is the n× n matrix

Wn =



1 −1 0 0 . . . 0
−1 2 −1 0 . . . 0

0 −1 2 −1 . . . 0
...

. . .
...

0 0 . . . −1 2 −1
0 0 . . . −1 1


.

It follows that the eigenvalues of Ax are 1− xλ where λ is an eigenvalue of Wn. The
corresponding eigenvectors are the same. Thus, we need to determine the spectrum
of Wn. Note that Wn resembles the tridiagonal Toeplitz matrix

Tn =



2 −1 0 0 . . . 0
−1 2 −1 0 . . . 0

0 −1 2 −1 . . . 0
...

. . .
...

0 0 . . . −1 2 −1
0 0 . . . −1 2


which has eigenvalues 2− 2 cos( jπ

n+1 ) and corresponding eigenvector sj ∈ Rn given by
sj = (sin( jπ

n+1 ), sin( 2jπ
n+1 ), . . . , sin( njπn+1 )) for 1 ≤ j ≤ n (see e.g. [10]). We now show

that the eigenvalues of Wn are the eigenvalues of Tn−1 plus the eigenvalue 0 (so Wn

is singular).

Theorem 6 The eigenvalues of Wn are

2− 2 cos(jπ/n) (0 ≤ j ≤ n− 1).

In particular Wn is singular. The corresponding (orthogonal) eigenvectors are

(2 cos(πj(k − 1/2)/n))nk=1 (0 ≤ j ≤ n− 1).

Proof. Let λ be an eigenvalue and y a corresponding eigenvector of Wn. The
eigenvector equation (Wn − λI)y = O may then be written as

−yk−1 + (2− λ)yk − yk+1 = 0 (1 ≤ k ≤ n) (4)
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where y0 := y1 and yn+1 := yn. This is a linear second order difference equation
with rather special boundary conditions. The corresponding characteristic equation
z2 + (λ− 2)z + 1 has solutions r1, r2 = (1/2)(2− λ) ±

√
(λ− 2)2 − 4. Consider first

the case when the roots coincide, i.e. when λ is 0 or 4. If λ = 4, then r1 = r2 = −1
and the general solution of (4) is yk = (α + βk)(−1)k where α, β are constants. It
is easy to see that the boundary conditions lead to a contradictions in this case (we
get from y0 = y1 that β = 2α, and then the second boundary condition yn = yn+1

has no solution). Therefore λ = 4 is not an eigenvalue of Wn. On the other hand, if
λ = 0, then r1 = r2 = 1 and the solution of (4) is yk = α+ βk. But y0 = y1 implies
β = 0 so yk = α for some constant α. This proves that 0 is an eigenvalue of Wn with
corresponding eigenvector (1, 1, . . . , 1).

Consider next when the the roots r1 and r2 are distinct. Since z2 + (λ− 2)z+ 1 =
(z − r1)(z − r2) we must have r1r2 = 1, i.e., r2 = r−1

1 . Thus, the general solution of
(4) is

yk = αrk1 + βr−k1 .

The condition y0 = y1 gives α+β = αr1+βr−1
1 . We may assume r1 6= 1 (for otherwise

λ = 0; a case already discussed). Therefore β = αr1 so

yk = α(rk1 + r1−k
1 ).

Note that α 6= 0; otherwise y = O contradiction that y is an eigenvector. The
boundary condition yn = yn+1 gives rn1 + r1−n

1 = rn+1
1 + r−n1 . Multiplying this

equation by rn1 and reorganizing terms gives r2n
1 (1 − r1) = 1 − r1. Therefore, as

r1 6= 1, we must have r2n
1 = 1. So r2

1 = e2πij/n (where i =
√
−1) for some j with

1 ≤ j ≤ n − 1 (j = n is excluded as r1 6= 1). This shows that r1 = eπij/n and
r2 = e−πij/n. Moreover, using that r1 + r2 = 2− λ we obtain

λ = 2− 2 cos(jπ/n).

We have therefore found all the eigenvalues of Wn. An eigenvector corresponding to
λ = 2− 2 cos(jπ/n) (for fixed j) is y = (yk) given by

yk = α(eπijk/n + eπij(1−k)/n)

Letting α = e−(1/2)πij/n we get

yk = eπij(k−1/2)/n + e−πij(k−1/2)/n = 2 cos(πj(k − 1/2)/n).

which gives the desired eigenvector.

We may now determine the spectrum of Ax (where again 0 ≤ x ≤ 1/2).

Corollary 7 The eigenvalues of Ax are

1− 2x(1− cos(jπ/n)) (0 ≤ j ≤ n− 1).

and the corresponding eigenvectors are described in Theorem 6.
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Proof. This follows directly from Theorem 6 using the relation Ax = I−x ·S.

The rank of Ax is determined in the next corollary.

Corollary 8 If x ∈ {1/(2 − 2 cos(jπ/n)) : dn/3e ≤ j ≤ n − 1}, then Ax has rank
n− 1. Otherwise Ax is nonsingular.

Proof. The last n− 1 columns of Ax are linearly independent, so Ax has rank n− 1
or n. The result now follows from Corollary 7.

Also note that the kernel of Ax (when Ax is singular) is known explicitly since
we have determined a complete set of eigenvectors of Ax. The matrix Ax ∈ Ωt,=n is
diagonally dominant if and only if 0 ≤ x ≤ 1/4. From Corollary 7 it follows that Ax
is positive semidefinite if and only if 0 ≤ x ≤ 1/(2 + 2 cos(π/n)). Thus, when n is
large, the class of positive semidefinite matrices in Ωt,=

n is just “slightly larger” than
the class of diagonally dominant matrices in Ωt,=n .

For a general doubly stochastic matrix A the bound

|1− λ| ≥ 2(1− cos(π/n))µ(A) (5)

for eigenvalues λ 6= 1 of A was found by Fiedler. Here µ(A) is a measure of the
irreducibility of A given by µ(A) = minM

∑
i∈M

∑
j 6∈M aij where the minimum is

taken over all nonempty strict subsets M of {1, 2, . . . , n}. See [8] for a discussion of
such estimates. It is interesting to check the quality of the bound (5) for matrices
Ax ∈ Ωt,=n , as we know the eigenvalues for these matrices. Let Ax ∈ Ωt,=n . Then we
find that µ(Ax) = x. So if λ denotes the second largest eigenvalue of Ax, we get from
Corollary 7 that 1− λ = 2x(1 − cos(π/n)) = 2(1− cos(π/n))µ(A). This means that
Fiedler’s estimate is tight for this subclass Ωt,=

n of the doubly stochastic matrices.

An application. We briefly discuss an application of Corollary 7 to Markov
chains. Recall the specific random walk discussed in the introduction and assume
that the one-step transition matrix of the chain is Ax for some x ∈ [0, 1/2]. Thus,
if pij is the probability of moving in one step from state i to state j, then we have
pi i+1 = pi+1i = x (1 ≤ i ≤ n − 1), pii = 1 − 2x (2 ≤ i ≤ n − 1), and p11 = pnn =
1 − x while all other pij ’s are zero. The explicit knowledge of the eigenvalues and
eigenvectors of Ax, presented in Corollary 7, is very useful for analyzing the behavior
of this random walk. To be specific, let U be the n×n matrix with the eigenvectors of
Ax as its columns, and let D be the diagonal matrix with the associated eigenvalues
along the diagonal. So UTAxU = D and since U is orthogonal we get Akx = UDkUT

for each positive integer k. The (i, j)’th entry of Akx equals the probability that the
process goes from state i to state j in k transitions (see e.g. [5] for the theory of
Markov chains). This means that one can calculate the k step transition probabilities
(the powers of Ax) efficiently. Moreover, one can get explicit information about how
fast the chain converges towards its stationary distribution (which is the uniform
distribution as Ax is doubly stochastic) since we know all the eigenvalues.
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5 Ωt
n and majorization

Doubly stochastic matrices are important in the area of majorization. For two vectors
x, y ∈ Rn we say that x is majorized by y if

∑k
i=1 x[i] ≤

∑k
i=1 y[i] for k ≤ n and where

equality holds when k = n. Here x[i] denotes the i’th largest component of x. A basic
result here is a theorem of Hardy, Littlewood and Pólya saying that x is majorized
by y if and only if there is a doubly stochastic matrix A such that x = Ay. For
a discussion of this result and a strengthened result concerning restricted doubly
stochastic matices, so-called T -transforms, see [9].

Motivated by the mentioned theorem we now define a majorization concept which
is stronger than ordinary majorization. Let x, y ∈ Rn be monotone vectors, i.e., the
components are nonincreasing. We say that x is tridiagonally majorized by y if there
is a tridiagonal doubly stochastic matrix A such that x = Ay. So, if x is tridiagonally
majorized by y, then x is majorized by y. Intuitively, if x is tridiagonally majorized by
y, then x may be obtained from y by a redistribution among consecutive components
in y. (Remark: in contrast to majorization, tridiagonal majorization is not a transitive
relation, an therefore not a preorder.)

It is natural to ask for a characterization of tridiagonal majorization in terms
of linear inequalities involving the components of x and y. We now give such a
result. In the theorem we consider a monotone vector y ∈ Rn, so there are indices
1 ≤ is ≤ i′s ≤ n − 1 (1 ≤ s ≤ p) with i′s ≤ is+1 − 2 and yi > yi+1 for is ≤ i ≤ i′s
(1 ≤ s ≤ p) and yi = yi+1 for all remaining indices i ≤ n − 1. We also define
ip+1 = n+ 1 and the index set I = {1, . . . , i1 − 1} ∪

⋃p
s=1{i′s + 2, . . . , is+1 − 1}.

Theorem 9 Let x, y ∈ Rn be monotone, and let is, i′s (1 ≤ s ≤ p) and I be as above.
Then x is tridiagonally majorized by y if and only if xi = yi (i ∈ I) and for 1 ≤ s ≤ p

(i)
∑i′s+1

i=is
xi =

∑i′s+1
i=is

yi

(ii)
∑k

i=is
xi ≤

∑k
i=is

yi (is ≤ k ≤ i′s)

(iii) xk ≥ yk+1 + yk−1−yk+1
yk−1−yk (

∑k−1
i=1 yi −

∑k−1
i=1 xi) (is ≤ k ≤ i′s − 1).

If x is tridiagonally majorized by y and y is strictly decreasing, then there is a unique
tridiagonal doubly stochastic matrix A such that x = Ay.

Proof. For given monotone x and y we consider the system x = Ay where A ∈ Ωtn,
i.e. (due to Proposition 1) A = Aµ with µ ∈ Pn. In component form the system
x = Aµy becomes

xi = µi−1yi−1 + (1− µi−1 − µi)yi + µiyi+1 (1 ≤ i ≤ n)

or equivalently

µi(yi − yi+1) = µi−1(yi−1 − yi) + yi − xi (1 ≤ i ≤ n) (6)

where we define y0 = µ0 = yn+1 = µn = 0. This is a difference equation in the
variables µi (1 ≤ i ≤ n− 1). Define αi = yi − yi+1 and ∆i = yi − xi (1 ≤ i ≤ n), so
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αi ≥ 0. Then the system (6) decomposes into

∆i = 0 (1 ≤ i ≤ i1 − 1)

and the following independent subsystems for 1 ≤ s ≤ p

αisµis = ∆is

αis+1µis+1 = αisµis + ∆is+1

...

αi′sµi′s = αi′s−1µi′s−1 + ∆i′s

0 = αi′sµi′s + ∆i′s+1

(7)

and ∆i = 0 (i′s + 2 ≤ i ≤ is+1 − 1). Here we have αi > 0 (is ≤ i ≤ i′s). Now, the
subsystem (7) is consistent if and only if

i′s+1∑
i=is

∆i = 0 (8)

and then (7) has the unique solution µi (is ≤ i ≤ i′s) given by

µi =

∑i
j=is

∆j

αi
(is ≤ i ≤ i′s).

In the solution set of (6) the remaining variables µi are free (i.e., when i is outside
each set {is, . . . , i′s}). In summary, (6) is consistent if and only if ∆i = yi − xi = 0
(i ∈ I) and (8) hold for 1 ≤ s ≤ p. Moreover, the constraints µi ≥ 0 and µi+µi+1 ≤ 1
for each i (i.e., Aµ is doubly stochastic) translate into the remaining inequalities in
the characterization of the theorem. Finally, if y is strictly decreasing, then p = 1
and each αi is positive and therefore µ1, µ2, . . . , µn−1 are uniquely determined by
(6).

We recognize conditions (i) and (ii) in the theorem as ordinary majorization con-
ditions for certain subvectors of x and y. The proof of Theorem 9 also contains a
complete description of the set of all tridiagonal doubly stochastic matrices A satis-
fying x = Ay. Finally, from the proof one also finds a characterization of tridiagonal
majorization for possible nonmonotone vectors, but these inequalities are more com-
plicated (as some αi may be negative).
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