Tridiagonal doubly stochastic matrices

Geir Dahl*

April 19, 2004

Abstract

We study the facial structure of the polytope Ω_{n}^{t} in $\mathbb{R}^{n \times n}$ consisting of the tridiagonal doubly stochastic matrices of order n. We also discuss some subclasses of Ω_{n}^{t} with focus on spectral properties and rank formulas. Finally we discuss a connection to majorization.

Keywords: Doubly stochastic matrix, Birkhoff polytope, eigenvalue, random walk, majorization.

1 Introduction

A (real) $n \times n$ matrix A is doubly stochastic if it is nonnegative and all its row and column sums are one. The Birkhoff polytope, denoted by Ω_{n}, consists of all doubly stochastic matrices of order n. A well-known theorem of Birkhoff and von Neumann (see [3]) states that Ω_{n} is the convex hull of all permutation matrices of order n. In this paper we discuss the subclass of Ω_{n} consisting of the tridiagonal doubly stochastic matrices and the corresponding subpolytope

$$
\Omega_{n}^{t}=\left\{A \in \Omega_{n}: A \text { is tridiagonal }\right\}
$$

of the Birkhoff polytope. We call Ω_{n}^{t} the tridiagonal Birkhoff polytope. Ω_{n}^{t} is a face of Ω_{n} and the structure of this face is investigated in the next section. Throughout the paper we assume that $n \geq 2$.

The permanent of tridiagonal doubly stochastic matrices was investigated in [7] and it was shown that the minimum permanent in this class is $1 / 2^{n-1}$ (where n denotes the order of the matrices). We remark that this result may also be derived from a related result in [4].

Tridiagonal doubly stochastic matrices arise in connection with random walks on the integers $\{1,2, \ldots, n\}$ where (i) in a single transition from an integer i the process (say, a person) either stays in i or moves to an adjacent integer, and (ii) the transition probabilities are symmetric in the sense that $p_{i, i+1}=p_{i+1, i}(1 \leq i \leq n-1)$. We return to this example in section 4.

[^0]The notation in this paper is as follows. An all zeros matrix is denoted by O, and we let J_{n} (or simply J) denote the all ones square matrix of order n. For a matrix (or vector) A we write $A \geq O$ if A is (componentwise) nonnegative. As usual the components of a vector $x \in \mathbb{R}^{n}$ are denoted by x_{i}, so $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. The cardinality of a finite set S is denoted by $|S|$.

2 The polytope Ω_{n}^{t}

We first describe a representation of all matrices in Ω_{n}^{t}. Define the polytope

$$
\begin{equation*}
P_{n}=\left\{\mu \in \mathbb{R}^{n-1}: \mu \geq O, \quad \mu_{i}+\mu_{i+1} \leq 1 \quad(1 \leq i \leq n-2)\right\} \tag{1}
\end{equation*}
$$

in \mathbb{R}^{n-1} for $n \geq 3$. We also define $P_{2}=[0,1]$. For each vector $\mu \in \mathbb{R}^{n-1}$ we define the associated $n \times n$ matrix

$$
A_{\mu}=\left[\begin{array}{cccccc}
1-\mu_{1} & \mu_{1} & 0 & 0 & \cdots & 0 \\
\mu_{1} & 1-\mu_{1}-\mu_{2} & \mu_{2} & 0 & \cdots & 0 \\
0 & \mu_{2} & 1-\mu_{2}-\mu_{3} & \mu_{3} & \cdots & 0 \\
\vdots & & & \ddots & & \vdots \\
0 & 0 & \cdots & \mu_{n-2} & 1-\mu_{n-2}-\mu_{n-1} & \mu_{n-1} \\
0 & 0 & \cdots & & \mu_{n-1} & 1-\mu_{n-1}
\end{array}\right] .
$$

So this is a symmetric matrix and its subdiagonal is equal to μ. If $\mu \in P_{n}$, then the matrix A_{μ} is doubly stochastic and tridiagonal, i.e., $A_{\mu} \in \Omega_{n}^{t}$. A useful fact is that every matrix in Ω_{n} has the form A_{μ} for some $\mu \in P_{n}$.

Proposition 1

$$
\Omega_{n}^{t}=\left\{A_{\mu}: \mu \in P_{n}\right\}
$$

Proof. The inclusion $\left\{A_{\mu}: \mu \in P_{n}\right\} \subseteq \Omega_{n}^{t}$ is clear. For the opposite inclusion, consider a tridiagonal doubly stochastic matrix

$$
A=\left[\begin{array}{llllll}
a_{11} & a_{12} & 0 & 0 & \ldots & 0 \\
a_{21} & a_{22} & a_{23} & 0 & \cdots & 0 \\
0 & a_{32} & a_{33} & a_{34} & \cdots & 0 \\
\vdots & & & \ddots & & \vdots \\
0 & 0 & \ldots & & a_{n n-1} & a_{n n}
\end{array}\right]
$$

Define $\mu_{i}=a_{i+1}$ for $i=1,2, \ldots, n-1$ and let $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n-1}\right)$. We now verify that $A=A_{\mu}$. As A is doubly stochastic, $a_{11}=1-\mu_{1}$ and $a_{21}=\mu_{1}$ as desired. Assume, for a given i, that $a_{i-1}=\mu_{i-1}$. Since the i 'th row sum is one and $a_{i i+1}=\mu_{i}$, we obtain $a_{i i}=1-\mu_{i-1}-\mu_{i}$. Similarly, by considering the i 'th column, we calculate $a_{i+1 i}=1-a_{i i}-a_{i-1 i}=1-\left(1-\mu_{i-1}-\mu_{i}\right)-\mu_{i-1}=\mu_{i}$. It follows, by induction, that $A=A_{\mu}$.

Thus, every matrix in Ω_{n}^{t} is determined by its superdiagonal (or subdiagonal). Moreover we see that P_{n} and Ω_{n}^{t} are affinely isomorphic. This means that the polyhedral structure of the tridiagonal Birkhoff polytope is found directly from the corresponding structure of P_{n}.

Let f_{n} denote the n 'th Fibonacci number. So $f_{1}=f_{2}=1$ and $f_{n}=f_{n-1}+f_{n-2}$ for each $n \geq 3$. We recall that f_{n} is given explicitly as $f_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$ (see e.g. [2]). Polyhedral properties of the tridiagonal Birkhoff polytope are collected in the following theorem where we use the notation $K=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $J=[1]$.
Theorem 2 (i) Ω_{n}^{t} is a polytope in $\mathbb{R}^{n \times n}$ of dimension $n-1$ with f_{n+1} vertices.
(ii) Its vertex set consists of all tridiagonal permutation matrices; these are the matrices of order n that can be written as a direct sum

$$
\begin{equation*}
A=A_{1} \oplus A_{2} \oplus \cdots \oplus A_{t} \tag{2}
\end{equation*}
$$

where each matrix $A_{i}(i \leq t)$, hereafter called a block, equals either J or K.
(iii) Consider a vertex A as in (2). Then each adjacent vertex of A is obtained from A by either (a) interchanging a sequence of consecutive blocks J, K, K, \ldots, K (with $t \geq 1 K$'s) and the sequence K, K, \ldots, K, J (with $t K$'s), or (b) by interchanging a sequence of consecutive blocks K, K, \ldots, K (with $t \geq 1 K$'s) and the sequence J, K, K, \ldots, K, J (with $t-1 K$'s).

Proof. Since Ω_{n}^{t} and P_{n} are affinely isomorphic, we may prove the theorem by considering P_{n}. Clearly, P_{n} has dimension $n-1$, since it contains all coordinate vectors and the zero vector. Therefore, Ω_{n}^{t} has dimension $n-1$. Using the extreme point property it is easy to verify that P_{n} has only integral vertices, i.e., all components are integers. It follows that the vertex set of P_{n}, denoted by V_{n}, consists of all $(0,1)$ vectors μ of length $n-1$ not having two consecutive 1's. (Actually, P_{n} is the stable set polytope associated with the graph which is a path of length $n-1$.) The corresponding matrices A_{μ} are the direct sum of matrices in the set $\{J, K\}$. We next determine the cardinality of the vertex set V_{n}. There is a bijection between $\left\{\mu \in V_{n}: \mu_{n-1}=0\right\}$ and V_{n-1}; it is obtained by dropping the last component of $\mu \in V_{n}$ (as $\mu_{n-1}=0$). Similarly, there is a bijection between $\left\{\mu \in V_{n}: \mu_{n-1}=1\right\}$ and V_{n-2}; it is obtained by dropping the last two components of $\mu \in V_{n}$ (as $\mu_{n-1}=1$ and $\mu_{n-2}=0$). It follows that $\left|V_{n}\right|=\left|V_{n-1}\right|+\left|V_{n-2}\right|$ for $n \geq 4$. Clearly, $\left|V_{2}\right|=2$ and $\left|V_{3}\right|=3$. This means that the cardinalities $\left|V_{n}\right|(n \geq 2)$ are given by the Fibonacci numbers: $\left|V_{n}\right|=f_{n+1}$ for each n. This proves (i) and (ii).

To prove (iii) consider two distinct vertices μ, μ^{\prime} of P_{n}, and let $S=\left\{j: \mu_{j}=1\right\}$, $S^{\prime}=\left\{j: \mu_{j}^{\prime}=1\right\}$. We may write

$$
S \Delta S^{\prime}=I_{1} \cup I_{2} \cup \cdots \cup I_{p}
$$

where $I_{r}=\left\{i_{r}, i_{r}+1, \ldots, j_{r}\right\}$ for some integers $i_{r} \leq j_{r}(r \leq p)$ with $i_{r+1} \geq j_{r}+2$ ($r \leq p-1$).

Claim: μ and μ^{\prime} are adjacent if and only if $p=1$, i.e., $S \Delta S^{\prime}$ is an (integer) interval.

Assume first that $p \geq 2$. Let $\gamma \in \mathbb{R}^{n-1}$ be the vector obtained from μ by letting $\gamma_{j}=1-\mu_{j}$ for each $j \in I_{1}$. Similarly, let $\gamma^{\prime} \in \mathbb{R}^{n-1}$ be obtained from μ^{\prime} by letting $\gamma_{j}^{\prime}=1-\mu_{j}^{\prime}$ for each $j \in I_{1}$. Then $\mu, \mu^{\prime}, \gamma, \gamma^{\prime}$ are four distinct vertices of P_{n} satisfying $(1 / 2)\left(\mu+\mu^{\prime}\right)=(1 / 2)\left(\gamma+\gamma^{\prime}\right)$ which implies that the smallest face of P_{n} containing μ and μ^{\prime} has dimension at least two. Thus, if $p \geq 2$, then μ and μ^{\prime} are not adjacent. Next, assume that $p=1$ and define the vector $w \in \mathbb{R}^{n-1}$ as follows: $w_{j}=n^{2}$ when $j \in S \cap S^{\prime}, w_{j}=-1$ when $j \notin S \cup S^{\prime}, w_{j}=\left|S \backslash S^{\prime}\right|$ when $j \in S^{\prime} \backslash S$ and, finally, $w_{j}=\left|S^{\prime} \backslash S\right|$ when $j \in S \backslash S^{\prime}$. Then one can check that the only vertices of P_{n} that maximize the linear function $w^{T} z$ for $z \in P_{n}$ are μ and μ^{\prime}. This implies that these two vertices are adjacent on P_{n}. This proves our claim, and (iii) follows by translating this adjacency characterization into matrix language.

Let $G\left(\Omega_{n}^{t}\right)$ denote the graph of Ω_{n}^{t} (or 1-skeleton), i.e., the vertices and edges of the graph $G\left(\Omega_{n}^{t}\right)$ correspond to the vertices and edges of the polytope Ω_{n}^{t}. In Theorem 2 the vertices and edges of Ω_{n}^{t} were described. We now determine the diameter of $G\left(\Omega_{n}^{t}\right)$ which is defined as the maximum of $d(u, v)$ taken over all pairs u, v of vertices, where $d(u, v)$ is the smallest number of edges in a path between u and v in $G\left(\Omega_{n}^{t}\right)$.

Theorem 3 The diameter of $G\left(\Omega_{n}^{t}\right)$ equals $\lfloor n / 2\rfloor$.
Proof. Consider two distinct vertices μ, μ^{\prime} of P_{n}. As in the proof of Theorem 2 we let $S=\left\{j: \mu_{j}=1\right\}, S^{\prime}=\left\{j: \mu_{j}^{\prime}=1\right\}$ so

$$
S \Delta S^{\prime}=I_{1} \cup I_{2} \cup \cdots \cup I_{p} .
$$

Since each I_{t} is nonempty and consecutive intervals are nonadjacent, it follows that $p+(p-1) \leq n-1$. So $p \leq\lfloor n / 2\rfloor$. We may now find a path

$$
Q: \mu=\mu^{(0)}, \mu^{(1)}, \ldots, \mu^{(p)}=\mu^{\prime}
$$

of length p in $G\left(\Omega_{n}^{t}\right)$ where $\mu^{(t)}$ is obtained from $\mu^{(t-1)}$ by complementing zeros and ones for indices in $I_{t}(t \leq p)$. We see from the adjacency characterization of Theorem 2 that $\mu^{(t-1)}$ and $\mu^{(t)}$ are adjacent. Thus, $G\left(\Omega_{n}^{t}\right)$ contains a path between any pair of vertices of length $p \leq\lfloor n / 2\rfloor$, and therefore the diameter of $G\left(\Omega_{n}^{t}\right)$ is at most $\lfloor n / 2\rfloor$. To prove equality here consider first the case when n is even, say $n=2 k$. The distance (in $G\left(\Omega_{n}^{t}\right)$) between the matrices $A=J \oplus J \oplus \cdots \oplus J$ (with $2 k J$'s) and $B=K \oplus K \oplus \cdots \oplus K$ (with $k K^{\prime}$'s) is at least k since for any two adjacent vertices their number of K 's differ by at most one (see Theorem 2). If n is odd, $n=2 k+1$, we consider the matrices obtained from A and B above by adding a J block (at the end) and conclude that their distance is at least $k=\lfloor n / 2\rfloor$ as desired.

We conclude this section by some observations concerning optimization over the set Ω_{n}^{t}. Let C be a given square matrix of order n. The well-known assignment problem is to maximize a linear function $\langle C, A\rangle=\sum_{i, j} c_{i j} a_{i j}$ over all permutation matrices A. Equivalently, we may here maximize over the set Ω_{n} of doubly stochastic matrices; this follows from Birkhoff's theorem as the objective function is linear. Consider now the more restricted problem of maximizing $\langle C, A\rangle$ over the tridiagonal
permutation matrices A, or equivalently, over $A \in \Omega_{n}^{t}$. We may then assume that C is also tridiagonal. By using the relation between Ω_{n}^{t} and the polytope P_{n} (see Proposition 1) our problem reduces to a linear optimization problem over P_{n} (where the d_{j} 's are calculated from C):

$$
\begin{equation*}
\max \left\{\sum_{j=1}^{n-1} d_{j} \mu_{j}: \mu \in P_{n}\right\} \tag{3}
\end{equation*}
$$

Now, this problem may be solved by dynamic programming as follows. Define $v_{k}=$ $\max \left\{\sum_{j=1}^{k} d_{j} \mu_{j}: \mu_{j}+\mu_{j+1} \leq 1(j \leq k-1), \mu_{1}, \ldots, \mu_{k} \geq 0\right\}$ and note that v_{n-1} is the optimal value of (3). The algorithm is: (i) $v_{1}=\max \left\{0, d_{1}\right\}, v_{2}=\max \left\{v_{1}, d_{2}\right\}$, (ii) for $k=3,4, \ldots, n-1$ let $v_{k}=\max \left\{v_{k-1}, v_{k-2}+d_{k}\right\}$. This simple algorithm is linear, and by storing some more information we also find an optimal solution $\mu_{1}, \mu_{2}, \ldots, \mu_{n-1}$.

3 Diagonally dominant matrices in Ω_{n}^{t}

In this section we consider the tridiagonal doubly stochastic matrices that are diagonally dominant. Recall that a matrix $A=\left[a_{i j}\right]$ of order n is called (row) diagonally dominant if $\left|a_{i i}\right| \geq \sum_{j: j \neq i}\left|a_{i j}\right|$. If all these inequalities are strict, then A is called strictly (row) diagonally dominant, and it is well-known that this property implies that A is nonsingular.

Let

$$
\Omega_{n}^{t, d}=\left\{A \in \Omega_{n}^{t}: A \text { is diagonally dominant }\right\}
$$

and note that, since each $A \in \Omega_{n}^{t}$ is symmetric, we need not distinguish between row and column diagonally dominance. We remark that every matrix A in $\Omega_{n}^{t, d}$ is also completely positive, i.e., $A=B B^{T}$ for some nonnegative $n \times k$ matrix B. Moreover, the smallest k in such a representation (called the cp-rank of A) is equal to the rank of A. We refer to the recent book [1] for a survey of completely positive matrices. These two facts concerning matrices in Ω_{n}^{t} follow from the general theory in [1], or a direct verification is also possible.

The following theorem shows that $\Omega_{n}^{t, d}$ is very similar to Ω_{n}^{t}. In the following discussion we define $\mu_{0}=\mu_{n}=0$.

Theorem 4 (i) $\Omega_{n}^{t, d}$ is a subpolytope of Ω_{n}^{t}.
(ii) $\Omega_{n}^{t, d}=\left\{A_{\mu}: \mu \geq O, \mu_{i}+\mu_{i+1} \leq 1 / 2 \quad(i \leq n-2)\right\}=\left\{A_{\mu}: \mu \in(1 / 2) P_{n}\right\}$.
(iii) The vertex set of $\Omega_{n}^{t, d}$ consists of the matrices of order n that may be written as a direct sum of matrices in the set $\left\{J_{1},(1 / 2) J_{2}\right\}$.

Proof. The matrix A_{μ} is diagonally dominant if and only if $1-\left(\mu_{i-1}+\mu_{i}\right) \geq \mu_{i-1}+\mu_{i}$ $(1 \leq i \leq n)$, i.e., iff $\mu_{i-1}+\mu_{i} \leq 1 / 2(1 \leq i \leq n)$. This implies (ii) and also (i). To see (iii) we recall from the proof of Theorem 2 that the vertex set of P_{n} consists of all $(0,1)$-vectors μ (of length $n-1$) not having two consecutive 1's. So the vertices
of the polytope $(1 / 2) P_{n}$ are the $(0,1 / 2)$-vectors not having two consecutive $\frac{1}{2}$'s. This implies (iii).

We now investigate the rank of the matrices in the class $\Omega_{n}^{t, d}$.
Theorem 5 Let $A_{\mu} \in \Omega_{n}^{t, d}$. Then

$$
\operatorname{rank}\left(A_{\mu}\right)=n-\left|\left\{i: \mu_{i}=1 / 2\right\}\right| .
$$

In particular, $\operatorname{rank}\left(A_{\mu}\right) \geq\lfloor n / 2\rfloor$.
Proof. Consider a matrix $A_{\mu} \in \Omega_{n}^{t, d}$, so $\mu \in(1 / 2) P_{n}$. If $\mu_{i}=0$, for some i with $1 \leq i \leq n-1$, then A_{μ} is the direct sum of two matrices of order i and $n-i$, respectively. Therefore, since the rank of a direct sum of some matrices is the sum of the ranks of these matrices, it suffices to prove the result for the case when $\mu_{i}>0(1 \leq i \leq n-1)$. There are two possibilities. First, if $\mu_{i}=1 / 2$ for some i, then it follows from the diagonal dominance that $\mu_{i-1}=\mu_{i+1}=0$. This implies that $n=2$ and that $A_{\mu}=(1 / 2) J_{2}$ and the rank formula holds. Alternatively, when $\mu_{i}<1 / 2$ for each i, then $a_{11}=1-\mu_{1}>\mu_{1}=\sum_{j=2}^{n} a_{1 j}$ and this combined with the diagonal dominance of A_{μ} (and that each $\mu_{i}>0$) implies that A_{μ} is nonsingular (confer Theorem 3.6.8 in [3]). This implies the rank formula. The lower bound on the rank is due to the fact μ does not contain two consecutive components that are $1 / 2$ whenever $\mu \in(1 / 2) P_{n}$.

Thus, we have a simple formula for the rank of matrices in the subclass $\Omega^{t, d}$. On the other hand, it is not as straightforward to determine the rank of a matrix $A \in \Omega_{n}^{t} \backslash \Omega_{n}^{t, d}$. A is then a direct sum of matrices A_{i}, say of order k_{i}, for which the corresponding μ_{i} 's are positive. Clearly each A_{i} has rank k_{i} or $k_{1}-1$, and to decide which is the case one can solve a triangular linear system (in order to determine if the first column of A_{i} lies in the span of the other columns). The nonsingularity of each A_{i} may be expressed by a polynomial equation in the μ_{j} 's, but it seems very complicated.

4 Matrices in $\Omega^{t, d}$ with constant subdiagonal

Consider the subpolytope

$$
\Omega_{n}^{t,=}=\left\{A_{\mu} \in \Omega_{n}^{t}: \mu_{1}=\mu_{2}=\cdots=\mu_{n-1}\right\}
$$

of Ω_{n}^{t}. The corresponding subpolytope of P_{n} (in the space of the μ-variables) is simply the line segment $[O,(1 / 2) e]$. Note that a matrix in $\Omega_{n}^{t,=}$ may or may not be diagonally dominant.

Our main goal is to find explicitly all eigenvalues and corresponding eigenvectors for every matrix $A_{\mu} \in \Omega_{n}^{t,=}$. This is done by solving certain difference equations. A similar approach for finding eigenvalues and eigenvectors of tridiagonal Toeplitz matrices may be found in e.g. [10] and [6] (the latter reference also treats an extension to so-called pseudo-Toeplitz matrices).

Let $0 \leq x \leq 1 / 2$ and consider the (general) matrix

$$
A_{x}=\left[\begin{array}{cccccc}
1-x & x & 0 & 0 & \cdots & 0 \\
x & 1-2 x & x & 0 & \cdots & 0 \\
0 & x & 1-2 x & x & \cdots & 0 \\
\vdots & & & \ddots & & \vdots \\
0 & 0 & \cdots & x & 1-2 x & x \\
0 & 0 & \cdots & & x & 1-x
\end{array}\right]
$$

in $\Omega_{n}^{t,=}$. Observe that $A_{x}=I-x \cdot W_{n}$ where W_{n} is the $n \times n$ matrix

$$
W_{n}=\left[\begin{array}{rrrrrr}
1 & -1 & 0 & 0 & \ldots & 0 \\
-1 & 2 & -1 & 0 & \ldots & 0 \\
0 & -1 & 2 & -1 & \ldots & 0 \\
\vdots & & & \ddots & & \vdots \\
0 & 0 & \ldots & -1 & 2 & -1 \\
0 & 0 & \ldots & & -1 & 1
\end{array}\right]
$$

It follows that the eigenvalues of A_{x} are $1-x \lambda$ where λ is an eigenvalue of W_{n}. The corresponding eigenvectors are the same. Thus, we need to determine the spectrum of W_{n}. Note that W_{n} resembles the tridiagonal Toeplitz matrix

$$
T_{n}=\left[\begin{array}{rrrrrr}
2 & -1 & 0 & 0 & \ldots & 0 \\
-1 & 2 & -1 & 0 & \ldots & 0 \\
0 & -1 & 2 & -1 & \ldots & 0 \\
\vdots & & & \ddots & & \vdots \\
0 & 0 & \ldots & -1 & 2 & -1 \\
0 & 0 & \ldots & & -1 & 2
\end{array}\right]
$$

which has eigenvalues $2-2 \cos \left(\frac{j \pi}{n+1}\right)$ and corresponding eigenvector $s_{j} \in \mathbb{R}^{n}$ given by $s_{j}=\left(\sin \left(\frac{j \pi}{n+1}\right), \sin \left(\frac{2 j \pi}{n+1}\right), \ldots, \sin \left(\frac{n j \pi}{n+1}\right)\right)$ for $1 \leq j \leq n$ (see e.g. [10]). We now show that the eigenvalues of W_{n} are the eigenvalues of T_{n-1} plus the eigenvalue 0 (so W_{n} is singular).

Theorem 6 The eigenvalues of W_{n} are

$$
2-2 \cos (j \pi / n) \quad(0 \leq j \leq n-1)
$$

In particular W_{n} is singular. The corresponding (orthogonal) eigenvectors are

$$
(2 \cos (\pi j(k-1 / 2) / n))_{k=1}^{n} \quad(0 \leq j \leq n-1) .
$$

Proof. Let λ be an eigenvalue and y a corresponding eigenvector of W_{n}. The eigenvector equation $\left(W_{n}-\lambda I\right) y=O$ may then be written as

$$
\begin{equation*}
-y_{k-1}+(2-\lambda) y_{k}-y_{k+1}=0 \quad(1 \leq k \leq n) \tag{4}
\end{equation*}
$$

where $y_{0}:=y_{1}$ and $y_{n+1}:=y_{n}$. This is a linear second order difference equation with rather special boundary conditions. The corresponding characteristic equation $z^{2}+(\lambda-2) z+1$ has solutions $r_{1}, r_{2}=(1 / 2)(2-\lambda) \pm \sqrt{(\lambda-2)^{2}-4}$. Consider first the case when the roots coincide, i.e. when λ is 0 or 4 . If $\lambda=4$, then $r_{1}=r_{2}=-1$ and the general solution of (4) is $y_{k}=(\alpha+\beta k)(-1)^{k}$ where α, β are constants. It is easy to see that the boundary conditions lead to a contradictions in this case (we get from $y_{0}=y_{1}$ that $\beta=2 \alpha$, and then the second boundary condition $y_{n}=y_{n+1}$ has no solution). Therefore $\lambda=4$ is not an eigenvalue of W_{n}. On the other hand, if $\lambda=0$, then $r_{1}=r_{2}=1$ and the solution of (4) is $y_{k}=\alpha+\beta k$. But $y_{0}=y_{1}$ implies $\beta=0$ so $y_{k}=\alpha$ for some constant α. This proves that 0 is an eigenvalue of W_{n} with corresponding eigenvector $(1,1, \ldots, 1)$.

Consider next when the the roots r_{1} and r_{2} are distinct. Since $z^{2}+(\lambda-2) z+1=$ $\left(z-r_{1}\right)\left(z-r_{2}\right)$ we must have $r_{1} r_{2}=1$, i.e., $r_{2}=r_{1}^{-1}$. Thus, the general solution of (4) is

$$
y_{k}=\alpha r_{1}^{k}+\beta r_{1}^{-k}
$$

The condition $y_{0}=y_{1}$ gives $\alpha+\beta=\alpha r_{1}+\beta r_{1}^{-1}$. We may assume $r_{1} \neq 1$ (for otherwise $\lambda=0$; a case already discussed). Therefore $\beta=\alpha r_{1}$ so

$$
y_{k}=\alpha\left(r_{1}^{k}+r_{1}^{1-k}\right) .
$$

Note that $\alpha \neq 0$; otherwise $y=O$ contradiction that y is an eigenvector. The boundary condition $y_{n}=y_{n+1}$ gives $r_{1}^{n}+r_{1}^{1-n}=r_{1}^{n+1}+r_{1}^{-n}$. Multiplying this equation by r_{1}^{n} and reorganizing terms gives $r_{1}^{2 n}\left(1-r_{1}\right)=1-r_{1}$. Therefore, as $r_{1} \neq 1$, we must have $r_{1}^{2 n}=1$. So $r_{1}^{2}=e^{2 \pi \mathrm{i} j / n}$ (where $\mathrm{i}=\sqrt{-1}$) for some j with $1 \leq j \leq n-1\left(j=n\right.$ is excluded as $\left.r_{1} \neq 1\right)$. This shows that $r_{1}=e^{\pi \mathrm{i} j / n}$ and $r_{2}=e^{-\pi \mathrm{i} j / n}$. Moreover, using that $r_{1}+r_{2}=2-\lambda$ we obtain

$$
\lambda=2-2 \cos (j \pi / n) .
$$

We have therefore found all the eigenvalues of W_{n}. An eigenvector corresponding to $\lambda=2-2 \cos (j \pi / n)$ (for fixed j) is $y=\left(y_{k}\right)$ given by

$$
y_{k}=\alpha\left(e^{\pi \mathrm{i} j k / n}+e^{\pi \mathrm{i} j(1-k) / n}\right)
$$

Letting $\alpha=e^{-(1 / 2) \pi \mathrm{i} j / n}$ we get

$$
y_{k}=e^{\pi \mathrm{i} j(k-1 / 2) / n}+e^{-\pi \mathrm{i} j(k-1 / 2) / n}=2 \cos (\pi j(k-1 / 2) / n) .
$$

which gives the desired eigenvector.
We may now determine the spectrum of A_{x} (where again $0 \leq x \leq 1 / 2$).
Corollary 7 The eigenvalues of A_{x} are

$$
1-2 x(1-\cos (j \pi / n)) \quad(0 \leq j \leq n-1) .
$$

and the corresponding eigenvectors are described in Theorem 6.

Proof. This follows directly from Theorem 6 using the relation $A_{x}=I-x \cdot S$.

The rank of A_{x} is determined in the next corollary.
Corollary 8 If $x \in\{1 /(2-2 \cos (j \pi / n)):\lceil n / 3\rceil \leq j \leq n-1\}$, then A_{x} has rank $n-1$. Otherwise A_{x} is nonsingular.

Proof. The last $n-1$ columns of A_{x} are linearly independent, so A_{x} has rank $n-1$ or n. The result now follows from Corollary 7 .

Also note that the kernel of A_{x} (when A_{x} is singular) is known explicitly since we have determined a complete set of eigenvectors of A_{x}. The matrix $A_{x} \in \Omega_{n}^{t,=}$ is diagonally dominant if and only if $0 \leq x \leq 1 / 4$. From Corollary 7 it follows that A_{x} is positive semidefinite if and only if $0 \leq x \leq 1 /(2+2 \cos (\pi / n))$. Thus, when n is large, the class of positive semidefinite matrices in $\Omega_{n}^{t,=}$ is just "slightly larger" than the class of diagonally dominant matrices in $\Omega_{n}^{t,}=$.

For a general doubly stochastic matrix A the bound

$$
\begin{equation*}
|1-\lambda| \geq 2(1-\cos (\pi / n)) \mu(A) \tag{5}
\end{equation*}
$$

for eigenvalues $\lambda \neq 1$ of A was found by Fiedler. Here $\mu(A)$ is a measure of the irreducibility of A given by $\mu(A)=\min _{M} \sum_{i \in M} \sum_{j \notin M} a_{i j}$ where the minimum is taken over all nonempty strict subsets M of $\{1,2, \ldots, n\}$. See [8] for a discussion of such estimates. It is interesting to check the quality of the bound (5) for matrices $A_{x} \in \Omega_{n}^{t,=}$, as we know the eigenvalues for these matrices. Let $A_{x} \in \Omega_{n}^{t,=}$. Then we find that $\mu\left(A_{x}\right)=x$. So if λ denotes the second largest eigenvalue of A_{x}, we get from Corollary 7 that $1-\lambda=2 x(1-\cos (\pi / n))=2(1-\cos (\pi / n)) \mu(A)$. This means that Fiedler's estimate is tight for this subclass $\Omega_{n}^{t,=}$ of the doubly stochastic matrices.

An application. We briefly discuss an application of Corollary 7 to Markov chains. Recall the specific random walk discussed in the introduction and assume that the one-step transition matrix of the chain is A_{x} for some $x \in[0,1 / 2]$. Thus, if $p_{i j}$ is the probability of moving in one step from state i to state j, then we have $p_{i+1}=p_{i+1 i}=x(1 \leq i \leq n-1), p_{i i}=1-2 x(2 \leq i \leq n-1)$, and $p_{11}=p_{n n}=$ $1-x$ while all other $p_{i j}$'s are zero. The explicit knowledge of the eigenvalues and eigenvectors of A_{x}, presented in Corollary 7, is very useful for analyzing the behavior of this random walk. To be specific, let U be the $n \times n$ matrix with the eigenvectors of A_{x} as its columns, and let D be the diagonal matrix with the associated eigenvalues along the diagonal. So $U^{T} A_{x} U=D$ and since U is orthogonal we get $A_{x}^{k}=U D^{k} U^{T}$ for each positive integer k. The $(i, j)^{\prime}$ 'th entry of A_{x}^{k} equals the probability that the process goes from state i to state j in k transitions (see e.g. [5] for the theory of Markov chains). This means that one can calculate the k step transition probabilities (the powers of A_{x}) efficiently. Moreover, one can get explicit information about how fast the chain converges towards its stationary distribution (which is the uniform distribution as A_{x} is doubly stochastic) since we know all the eigenvalues.

$5 \Omega_{n}^{t}$ and majorization

Doubly stochastic matrices are important in the area of majorization. For two vectors $x, y \in \mathbb{R}^{n}$ we say that x is majorized by y if $\sum_{i=1}^{k} x_{[i]} \leq \sum_{i=1}^{k} y_{[i]}$ for $k \leq n$ and where equality holds when $k=n$. Here $x_{[i]}$ denotes the i 'th largest component of x. A basic result here is a theorem of Hardy, Littlewood and Pólya saying that x is majorized by y if and only if there is a doubly stochastic matrix A such that $x=A y$. For a discussion of this result and a strengthened result concerning restricted doubly stochastic matices, so-called T-transforms, see [9].

Motivated by the mentioned theorem we now define a majorization concept which is stronger than ordinary majorization. Let $x, y \in \mathbb{R}^{n}$ be monotone vectors, i.e., the components are nonincreasing. We say that x is tridiagonally majorized by y if there is a tridiagonal doubly stochastic matrix A such that $x=A y$. So, if x is tridiagonally majorized by y, then x is majorized by y. Intuitively, if x is tridiagonally majorized by y, then x may be obtained from y by a redistribution among consecutive components in y. (Remark: in contrast to majorization, tridiagonal majorization is not a transitive relation, an therefore not a preorder.)

It is natural to ask for a characterization of tridiagonal majorization in terms of linear inequalities involving the components of x and y. We now give such a result. In the theorem we consider a monotone vector $y \in \mathbb{R}^{n}$, so there are indices $1 \leq i_{s} \leq i_{s}^{\prime} \leq n-1(1 \leq s \leq p)$ with $i_{s}^{\prime} \leq i_{s+1}-2$ and $y_{i}>y_{i+1}$ for $i_{s} \leq i \leq i_{s}^{\prime}$ $(1 \leq s \leq p)$ and $y_{i}=y_{i+1}$ for all remaining indices $i \leq n-1$. We also define $i_{p+1}=n+1$ and the index set $I=\left\{1, \ldots, i_{1}-1\right\} \cup \bigcup_{s=1}^{p}\left\{i_{s}^{\prime}+2, \ldots, i_{s+1}-1\right\}$.

Theorem 9 Let $x, y \in \mathbb{R}^{n}$ be monotone, and let $i_{s}, i_{s}^{\prime}(1 \leq s \leq p)$ and I be as above. Then x is tridiagonally majorized by y if and only if $x_{i}=y_{i}(i \in I)$ and for $1 \leq s \leq p$
(i) $\sum_{i=i_{s}}^{i_{s}^{\prime}+1} x_{i}=\sum_{i=i_{s}}^{i_{s}^{\prime}+1} y_{i}$
(ii) $\quad \sum_{i=i_{s}}^{k} x_{i} \leq \sum_{i=i_{s}}^{k} y_{i} \quad\left(i_{s} \leq k \leq i_{s}^{\prime}\right)$
(iii) $\quad x_{k} \geq y_{k+1}+\frac{y_{k-1}-y_{k+1}}{y_{k-1}-y_{k}}\left(\sum_{i=1}^{k-1} y_{i}-\sum_{i=1}^{k-1} x_{i}\right) \quad\left(i_{s} \leq k \leq i_{s}^{\prime}-1\right)$.

If x is tridiagonally majorized by y and y is strictly decreasing, then there is a unique tridiagonal doubly stochastic matrix A such that $x=A y$.

Proof. For given monotone x and y we consider the system $x=A y$ where $A \in \Omega_{n}^{t}$, i.e. (due to Proposition 1) $A=A_{\mu}$ with $\mu \in P_{n}$. In component form the system $x=A_{\mu} y$ becomes

$$
x_{i}=\mu_{i-1} y_{i-1}+\left(1-\mu_{i-1}-\mu_{i}\right) y_{i}+\mu_{i} y_{i+1} \quad(1 \leq i \leq n)
$$

or equivalently

$$
\begin{equation*}
\mu_{i}\left(y_{i}-y_{i+1}\right)=\mu_{i-1}\left(y_{i-1}-y_{i}\right)+y_{i}-x_{i} \quad(1 \leq i \leq n) \tag{6}
\end{equation*}
$$

where we define $y_{0}=\mu_{0}=y_{n+1}=\mu_{n}=0$. This is a difference equation in the variables $\mu_{i}(1 \leq i \leq n-1)$. Define $\alpha_{i}=y_{i}-y_{i+1}$ and $\Delta_{i}=y_{i}-x_{i}(1 \leq i \leq n)$, so
$\alpha_{i} \geq 0$. Then the system (6) decomposes into

$$
\Delta_{i}=0 \quad\left(1 \leq i \leq i_{1}-1\right)
$$

and the following independent subsystems for $1 \leq s \leq p$

$$
\begin{align*}
\alpha_{i_{s}} \mu_{i_{s}} & =\Delta_{i_{s}} \\
\alpha_{i_{s}+1} \mu_{i_{s}+1} & =\alpha_{i_{s}} \mu_{i_{s}}+\Delta_{i_{s}+1} \\
& \vdots \tag{7}\\
\alpha_{i_{s}^{\prime}} \mu_{i_{s}^{\prime}} & =\alpha_{i_{s}^{\prime}-1} \mu_{i_{s}^{\prime}-1}+\Delta_{i_{s}^{\prime}} \\
0 & =\alpha_{i_{s}^{\prime}} \mu_{i_{s}^{\prime}}+\Delta_{i_{s}^{\prime}+1}
\end{align*}
$$

and $\Delta_{i}=0\left(i_{s}^{\prime}+2 \leq i \leq i_{s+1}-1\right)$. Here we have $\alpha_{i}>0\left(i_{s} \leq i \leq i_{s}^{\prime}\right)$. Now, the subsystem (7) is consistent if and only if

$$
\begin{equation*}
\sum_{i=i_{s}}^{i_{s}^{\prime}+1} \Delta_{i}=0 \tag{8}
\end{equation*}
$$

and then (7) has the unique solution $\mu_{i}\left(i_{s} \leq i \leq i_{s}^{\prime}\right)$ given by

$$
\mu_{i}=\frac{\sum_{j=i_{s}}^{i} \Delta_{j}}{\alpha_{i}} \quad\left(i_{s} \leq i \leq i_{s}^{\prime}\right)
$$

In the solution set of (6) the remaining variables μ_{i} are free (i.e., when i is outside each set $\left.\left\{i_{s}, \ldots, i_{s}^{\prime}\right\}\right)$. In summary, (6) is consistent if and only if $\Delta_{i}=y_{i}-x_{i}=0$ ($i \in I$) and (8) hold for $1 \leq s \leq p$. Moreover, the constraints $\mu_{i} \geq 0$ and $\mu_{i}+\mu_{i+1} \leq 1$ for each i (i.e., A_{μ} is doubly stochastic) translate into the remaining inequalities in the characterization of the theorem. Finally, if y is strictly decreasing, then $p=1$ and each α_{i} is positive and therefore $\mu_{1}, \mu_{2}, \ldots, \mu_{n-1}$ are uniquely determined by (6).

We recognize conditions (i) and (ii) in the theorem as ordinary majorization conditions for certain subvectors of x and y. The proof of Theorem 9 also contains a complete description of the set of all tridiagonal doubly stochastic matrices A satisfying $x=A y$. Finally, from the proof one also finds a characterization of tridiagonal majorization for possible nonmonotone vectors, but these inequalities are more complicated (as some α_{i} may be negative).

References

[1] A. Berman and N. Shaked-Monderer. Completely positive matrices. World Scientific Publ., 2003.
[2] R.A. Brualdi. Introductory Combinatorics. Prentice-Hall, 1999.
[3] R.A. Brualdi and H.J. Ryser. Combinatorial matrix theory. Encyclopedia of Mathematics. Cambridge University Press, 1991.
[4] R.A. Brualdi. An interesting face of the polytope of doubly stochastic matrices. Linear and Multilinear Algebra Vol. 17, pp 5-18, 1985.
[5] S. Karlin and H.M. Taylor. A first course in stochastic processes. Academic Press, 1975.
[6] D. Kulkarni, D. Schmidt and Sze-Kai Tsui. Eigenvalues of tridiagonal pseudoToeplitz matrices. Linear Algebra and its Appl. Vol. 297, pp 63-80, 1999.
[7] Seok-Zun Song and Young-Bae Jun. Minimum permanents of tridiagonal doubly stochastic matrices. Linear and Multilinear Algebra. Vol. 50, No.4, pp 301-306, 2002.
[8] M. Fiedler. An estimate of the nonstochastic eigenvalues of doubly stochastic matrices . Linear Algebra and its Appl. 214:133-143, 1995.
[9] A.W. Marshall and I. Olkin. Inequalities: Theory of Majorization and Its Applications. Academic Press, 1979.
[10] C.D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, 2000.

[^0]: ${ }^{*}$ Centre of Mathematics for Applications, University of Oslo, c/o Dept. of Mathematics, P.O. Box 1053 Blindern, NO-0316 Oslo, NORWAY (geird@ifi.uio.no)

