Tridiagonal doubly stochastic matrices

Geir Dahl*

April 19, 2004

Abstract

We study the facial structure of the polytope Ω_n^t in $\mathbb{R}^{n \times n}$ consisting of the tridiagonal doubly stochastic matrices of order n. We also discuss some subclasses of Ω_n^t with focus on spectral properties and rank formulas. Finally we discuss a connection to majorization.

Keywords: Doubly stochastic matrix, Birkhoff polytope, eigenvalue, random walk, majorization.

1 Introduction

A (real) $n \times n$ matrix A is *doubly stochastic* if it is nonnegative and all its row and column sums are one. The *Birkhoff polytope*, denoted by Ω_n , consists of all doubly stochastic matrices of order n. A well-known theorem of Birkhoff and von Neumann (see [3]) states that Ω_n is the convex hull of all permutation matrices of order n. In this paper we discuss the subclass of Ω_n consisting of the tridiagonal doubly stochastic matrices and the corresponding subpolytope

$$\Omega_n^t = \{ A \in \Omega_n : A \text{ is tridiagonal} \}$$

of the Birkhoff polytope. We call Ω_n^t the tridiagonal Birkhoff polytope. Ω_n^t is a face of Ω_n and the structure of this face is investigated in the next section. Throughout the paper we assume that $n \geq 2$.

The permanent of tridiagonal doubly stochastic matrices was investigated in [7] and it was shown that the minimum permanent in this class is $1/2^{n-1}$ (where *n* denotes the order of the matrices). We remark that this result may also be derived from a related result in [4].

Tridiagonal doubly stochastic matrices arise in connection with random walks on the integers $\{1, 2, ..., n\}$ where (i) in a single transition from an integer *i* the process (say, a person) either stays in *i* or moves to an adjacent integer, and (ii) the transition probabilities are symmetric in the sense that $p_{i,i+1} = p_{i+1,i}$ $(1 \le i \le n-1)$. We return to this example in section 4.

^{*}Centre of Mathematics for Applications, University of Oslo, c/o Dept. of Mathematics, P.O. Box 1053 Blindern, NO-0316 Oslo, NORWAY (geird@ifi.uio.no)

The notation in this paper is as follows. An all zeros matrix is denoted by O, and we let J_n (or simply J) denote the all ones square matrix of order n. For a matrix (or vector) A we write $A \ge O$ if A is (componentwise) nonnegative. As usual the components of a vector $x \in \mathbb{R}^n$ are denoted by x_i , so $x = (x_1, x_2, \ldots, x_n)$. The cardinality of a finite set S is denoted by |S|.

2 The polytope Ω_n^t

We first describe a representation of all matrices in Ω_n^t . Define the polytope

$$P_n = \{ \mu \in \mathbb{R}^{n-1} : \mu \ge 0 , \quad \mu_i + \mu_{i+1} \le 1 \quad (1 \le i \le n-2) \}$$
(1)

in \mathbb{R}^{n-1} for $n \geq 3$. We also define $P_2 = [0, 1]$. For each vector $\mu \in \mathbb{R}^{n-1}$ we define the associated $n \times n$ matrix

$$A_{\mu} = \begin{bmatrix} 1 - \mu_{1} & \mu_{1} & 0 & 0 & \dots & 0 \\ \mu_{1} & 1 - \mu_{1} - \mu_{2} & \mu_{2} & 0 & \dots & 0 \\ 0 & \mu_{2} & 1 - \mu_{2} - \mu_{3} & \mu_{3} & \dots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & \dots & \mu_{n-2} & 1 - \mu_{n-2} - \mu_{n-1} & \mu_{n-1} \\ 0 & 0 & \dots & \mu_{n-1} & 1 - \mu_{n-1} \end{bmatrix}$$

So this is a symmetric matrix and its subdiagonal is equal to μ . If $\mu \in P_n$, then the matrix A_{μ} is doubly stochastic and tridiagonal, i.e., $A_{\mu} \in \Omega_n^t$. A useful fact is that every matrix in Ω_n has the form A_{μ} for some $\mu \in P_n$.

Proposition 1

$$\Omega_n^t = \{A_\mu : \mu \in P_n\}.$$

Proof. The inclusion $\{A_{\mu} : \mu \in P_n\} \subseteq \Omega_n^t$ is clear. For the opposite inclusion, consider a tridiagonal doubly stochastic matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & 0 & 0 & \dots & 0 \\ a_{21} & a_{22} & a_{23} & 0 & \dots & 0 \\ 0 & a_{32} & a_{33} & a_{34} & \dots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & \dots & a_{n\,n-1} & a_{nn} \end{bmatrix}$$

Define $\mu_i = a_{i\,i+1}$ for i = 1, 2, ..., n-1 and let $\mu = (\mu_1, \mu_2, ..., \mu_{n-1})$. We now verify that $A = A_{\mu}$. As A is doubly stochastic, $a_{11} = 1 - \mu_1$ and $a_{21} = \mu_1$ as desired. Assume, for a given i, that $a_{i\,i-1} = \mu_{i-1}$. Since the i'th row sum is one and $a_{i\,i+1} = \mu_i$, we obtain $a_{ii} = 1 - \mu_{i-1} - \mu_i$. Similarly, by considering the i'th column, we calculate $a_{i+1\,i} = 1 - a_{ii} - a_{i-1\,i} = 1 - (1 - \mu_{i-1} - \mu_i) - \mu_{i-1} = \mu_i$. It follows, by induction, that $A = A_{\mu}$.

Thus, every matrix in Ω_n^t is determined by its superdiagonal (or subdiagonal). Moreover we see that P_n and Ω_n^t are affinely isomorphic. This means that the polyhedral structure of the tridiagonal Birkhoff polytope is found directly from the corresponding structure of P_n .

Let f_n denote the *n*'th Fibonacci number. So $f_1 = f_2 = 1$ and $f_n = f_{n-1} + f_{n-2}$ for each $n \ge 3$. We recall that f_n is given explicitly as $f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n$ (see e.g. [2]). Polyhedral properties of the tridiagonal Birkhoff polytope are collected in the following theorem where we use the notation $K = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and J = [1].

Theorem 2 (i) Ω_n^t is a polytope in $\mathbb{R}^{n \times n}$ of dimension n-1 with f_{n+1} vertices. (ii) Its vertex set consists of all tridiagonal permutation matrices; these are the matrices of order n that can be written as a direct sum

$$A = A_1 \oplus A_2 \oplus \dots \oplus A_t \tag{2}$$

where each matrix A_i $(i \leq t)$, hereafter called a block, equals either J or K. (iii) Consider a vertex A as in (2). Then each adjacent vertex of A is obtained from A by either (a) interchanging a sequence of consecutive blocks J, K, K, \ldots, K (with $t \geq 1$ K's) and the sequence K, K, \ldots, K, J (with t K's), or (b) by interchanging a sequence of consecutive blocks K, K, \ldots, K (with $t \geq 1$ K's) and the sequence J, K, K, \ldots, K, J (with t - 1 K's).

Proof. Since Ω_n^t and P_n are affinely isomorphic, we may prove the theorem by considering P_n . Clearly, P_n has dimension n-1, since it contains all coordinate vectors and the zero vector. Therefore, Ω_n^t has dimension n-1. Using the extreme point property it is easy to verify that P_n has only integral vertices, i.e., all components are integers. It follows that the vertex set of P_n , denoted by V_n , consists of all (0, 1)vectors μ of length n-1 not having two consecutive 1's. (Actually, P_n is the stable set polytope associated with the graph which is a path of length n-1.) The corresponding matrices A_{μ} are the direct sum of matrices in the set $\{J, K\}$. We next determine the cardinality of the vertex set V_n . There is a bijection between $\{\mu \in V_n : \mu_{n-1} = 0\}$ and V_{n-1} ; it is obtained by dropping the last component of $\mu \in V_n$ (as $\mu_{n-1} = 0$). Similarly, there is a bijection between $\{\mu \in V_n : \mu_{n-1} = 1\}$ and V_{n-2} ; it is obtained by dropping the last two components of $\mu \in V_n$ (as $\mu_{n-1} = 1$ and $\mu_{n-2} = 0$). It follows that $|V_n| = |V_{n-1}| + |V_{n-2}|$ for $n \ge 4$. Clearly, $|V_2| = 2$ and $|V_3| = 3$. This means that the cardinalities $|V_n|$ $(n \ge 2)$ are given by the Fibonacci numbers: $|V_n| = f_{n+1}$ for each n. This proves (i) and (ii).

To prove (iii) consider two distinct vertices μ, μ' of P_n , and let $S = \{j : \mu_j = 1\}$, $S' = \{j : \mu'_j = 1\}$. We may write

$$S\Delta S' = I_1 \cup I_2 \cup \dots \cup I_p$$

where $I_r = \{i_r, i_r + 1, ..., j_r\}$ for some integers $i_r \leq j_r$ $(r \leq p)$ with $i_{r+1} \geq j_r + 2$ $(r \leq p - 1)$.

Claim: μ and μ' are adjacent if and only if p = 1, i.e., $S\Delta S'$ is an (integer) interval.

Assume first that $p \geq 2$. Let $\gamma \in \mathbb{R}^{n-1}$ be the vector obtained from μ by letting $\gamma_j = 1 - \mu_j$ for each $j \in I_1$. Similarly, let $\gamma' \in \mathbb{R}^{n-1}$ be obtained from μ' by letting $\gamma'_j = 1 - \mu'_j$ for each $j \in I_1$. Then $\mu, \mu', \gamma, \gamma'$ are four distinct vertices of P_n satisfying $(1/2)(\mu + \mu') = (1/2)(\gamma + \gamma')$ which implies that the smallest face of P_n containing μ and μ' has dimension at least two. Thus, if $p \geq 2$, then μ and μ' are not adjacent. Next, assume that p = 1 and define the vector $w \in \mathbb{R}^{n-1}$ as follows: $w_j = n^2$ when $j \in S \cap S', w_j = -1$ when $j \notin S \cup S', w_j = |S \setminus S'|$ when $j \in S' \setminus S$ and, finally, $w_j = |S' \setminus S|$ when $j \in S \setminus S'$. Then one can check that the only vertices of P_n that maximize the linear function $w^T z$ for $z \in P_n$ are μ and μ' . This implies that these two vertices are adjacent on P_n . This proves our claim, and (iii) follows by translating this adjacency characterization into matrix language.

Let $G(\Omega_n^t)$ denote the graph of Ω_n^t (or 1-skeleton), i.e., the vertices and edges of the graph $G(\Omega_n^t)$ correspond to the vertices and edges of the polytope Ω_n^t . In Theorem 2 the vertices and edges of Ω_n^t were described. We now determine the diameter of $G(\Omega_n^t)$ which is defined as the maximum of d(u, v) taken over all pairs u, v of vertices, where d(u, v) is the smallest number of edges in a path between u and v in $G(\Omega_n^t)$.

Theorem 3 The diameter of $G(\Omega_n^t)$ equals $\lfloor n/2 \rfloor$.

Proof. Consider two distinct vertices μ, μ' of P_n . As in the proof of Theorem 2 we let $S = \{j : \mu_j = 1\}, S' = \{j : \mu'_j = 1\}$ so

$$S\Delta S' = I_1 \cup I_2 \cup \cdots \cup I_p.$$

Since each I_t is nonempty and consecutive intervals are nonadjacent, it follows that $p + (p-1) \le n-1$. So $p \le \lfloor n/2 \rfloor$. We may now find a path

$$Q: \mu = \mu^{(0)}, \mu^{(1)}, \dots, \mu^{(p)} = \mu'$$

of length p in $G(\Omega_n^t)$ where $\mu^{(t)}$ is obtained from $\mu^{(t-1)}$ by complementing zeros and ones for indices in I_t $(t \leq p)$. We see from the adjacency characterization of Theorem 2 that $\mu^{(t-1)}$ and $\mu^{(t)}$ are adjacent. Thus, $G(\Omega_n^t)$ contains a path between any pair of vertices of length $p \leq \lfloor n/2 \rfloor$, and therefore the diameter of $G(\Omega_n^t)$ is at most $\lfloor n/2 \rfloor$. To prove equality here consider first the case when n is even, say n = 2k. The distance (in $G(\Omega_n^t)$) between the matrices $A = J \oplus J \oplus \cdots \oplus J$ (with 2k J's) and $B = K \oplus K \oplus \cdots \oplus K$ (with k K's) is at least k since for any two adjacent vertices their number of K's differ by at most one (see Theorem 2). If n is odd, n = 2k + 1, we consider the matrices obtained from A and B above by adding a J block (at the end) and conclude that their distance is at least $k = \lfloor n/2 \rfloor$ as desired.

We conclude this section by some observations concerning optimization over the set Ω_n^t . Let C be a given square matrix of order n. The well-known assignment problem is to maximize a linear function $\langle C, A \rangle = \sum_{i,j} c_{ij} a_{ij}$ over all permutation matrices A. Equivalently, we may here maximize over the set Ω_n of doubly stochastic matrices; this follows from Birkhoff's theorem as the objective function is linear. Consider now the more restricted problem of maximizing $\langle C, A \rangle$ over the tridiagonal

permutation matrices A, or equivalently, over $A \in \Omega_n^t$. We may then assume that C is also tridiagonal. By using the relation between Ω_n^t and the polytope P_n (see Proposition 1) our problem reduces to a linear optimization problem over P_n (where the d_i 's are calculated from C):

$$\max\{\sum_{j=1}^{n-1} d_j \mu_j : \mu \in P_n\}.$$
(3)

Now, this problem may be solved by dynamic programming as follows. Define $v_k = \max\{\sum_{j=1}^k d_j \mu_j : \mu_j + \mu_{j+1} \le 1 \ (j \le k-1), \ \mu_1, \ldots, \mu_k \ge 0\}$ and note that v_{n-1} is the optimal value of (3). The algorithm is: (i) $v_1 = \max\{0, d_1\}, v_2 = \max\{v_1, d_2\}$, (ii) for $k = 3, 4, \ldots, n-1$ let $v_k = \max\{v_{k-1}, v_{k-2} + d_k\}$. This simple algorithm is linear, and by storing some more information we also find an optimal solution $\mu_1, \mu_2, \ldots, \mu_{n-1}$.

3 Diagonally dominant matrices in Ω_n^t

In this section we consider the tridiagonal doubly stochastic matrices that are diagonally dominant. Recall that a matrix $A = [a_{ij}]$ of order n is called *(row) diagonally dominant* if $|a_{ii}| \geq \sum_{j:j \neq i} |a_{ij}|$. If all these inequalities are strict, then A is called *strictly (row) diagonally dominant*, and it is well-known that this property implies that A is nonsingular.

Let

$$\Omega_n^{t,d} = \{A \in \Omega_n^t : A \text{ is diagonally dominant}\}$$

and note that, since each $A \in \Omega_n^t$ is symmetric, we need not distinguish between row and column diagonally dominance. We remark that every matrix A in $\Omega_n^{t,d}$ is also *completely positive*, i.e., $A = BB^T$ for some nonnegative $n \times k$ matrix B. Moreover, the smallest k in such a representation (called the cp-rank of A) is equal to the rank of A. We refer to the recent book [1] for a survey of completely positive matrices. These two facts concerning matrices in Ω_n^t follow from the general theory in [1], or a direct verification is also possible.

The following theorem shows that $\Omega_n^{t,d}$ is very similar to Ω_n^t . In the following discussion we define $\mu_0 = \mu_n = 0$.

Theorem 4 (i) $\Omega_n^{t,d}$ is a subpolytope of Ω_n^t .

(*ii*) $\Omega_n^{t,d} = \{A_\mu : \mu \ge 0, \ \mu_i + \mu_{i+1} \le 1/2 \ (i \le n-2)\} = \{A_\mu : \mu \in (1/2)P_n\}.$

(iii) The vertex set of $\Omega_n^{t,d}$ consists of the matrices of order n that may be written as a direct sum of matrices in the set $\{J_1, (1/2)J_2\}$.

Proof. The matrix A_{μ} is diagonally dominant if and only if $1-(\mu_{i-1}+\mu_i) \ge \mu_{i-1}+\mu_i$ $(1 \le i \le n)$, i.e., iff $\mu_{i-1} + \mu_i \le 1/2$ $(1 \le i \le n)$. This implies (ii) and also (i). To see (iii) we recall from the proof of Theorem 2 that the vertex set of P_n consists of all (0, 1)-vectors μ (of length n - 1) not having two consecutive 1's. So the vertices of the polytope $(1/2)P_n$ are the (0, 1/2)-vectors not having two consecutive $\frac{1}{2}$'s. This implies (iii).

We now investigate the rank of the matrices in the class $\Omega_n^{t,d}$.

Theorem 5 Let $A_{\mu} \in \Omega_n^{t,d}$. Then

$$\operatorname{rank}(A_{\mu}) = n - |\{i : \mu_i = 1/2\}|.$$

In particular, $\operatorname{rank}(A_{\mu}) \geq \lfloor n/2 \rfloor$.

Proof. Consider a matrix $A_{\mu} \in \Omega_n^{t,d}$, so $\mu \in (1/2)P_n$. If $\mu_i = 0$, for some i with $1 \leq i \leq n-1$, then A_{μ} is the direct sum of two matrices of order i and n-i, respectively. Therefore, since the rank of a direct sum of some matrices is the sum of the ranks of these matrices, it suffices to prove the result for the case when $\mu_i > 0$ $(1 \leq i \leq n-1)$. There are two possibilities. First, if $\mu_i = 1/2$ for some i, then it follows from the diagonal dominance that $\mu_{i-1} = \mu_{i+1} = 0$. This implies that n = 2 and that $A_{\mu} = (1/2)J_2$ and the rank formula holds. Alternatively, when $\mu_i < 1/2$ for each i, then $a_{11} = 1 - \mu_1 > \mu_1 = \sum_{j=2}^n a_{1j}$ and this combined with the diagonal dominance of A_{μ} (and that each $\mu_i > 0$) implies that A_{μ} is nonsingular (confer Theorem 3.6.8 in [3]). This implies the rank formula. The lower bound on the rank is due to the fact μ does not contain two consecutive components that are 1/2 whenever $\mu \in (1/2)P_n$.

Thus, we have a simple formula for the rank of matrices in the subclass $\Omega^{t,d}$. On the other hand, it is not as straightforward to determine the rank of a matrix $A \in \Omega_n^t \setminus \Omega_n^{t,d}$. A is then a direct sum of matrices A_i , say of order k_i , for which the corresponding μ_i 's are positive. Clearly each A_i has rank k_i or $k_1 - 1$, and to decide which is the case one can solve a triangular linear system (in order to determine if the first column of A_i lies in the span of the other columns). The nonsingularity of each A_i may be expressed by a polynomial equation in the μ_j 's, but it seems very complicated.

4 Matrices in $\Omega^{t,d}$ with constant subdiagonal

Consider the subpolytope

$$\Omega_n^{t,=} = \{ A_\mu \in \Omega_n^t : \mu_1 = \mu_2 = \dots = \mu_{n-1} \}$$

of Ω_n^t . The corresponding subpolytope of P_n (in the space of the μ -variables) is simply the line segment [O, (1/2)e]. Note that a matrix in $\Omega_n^{t,=}$ may or may not be diagonally dominant.

Our main goal is to find explicitly all eigenvalues and corresponding eigenvectors for every matrix $A_{\mu} \in \Omega_n^{t,=}$. This is done by solving certain difference equations. A similar approach for finding eigenvalues and eigenvectors of tridiagonal Toeplitz matrices may be found in e.g. [10] and [6] (the latter reference also treats an extension to so-called pseudo-Toeplitz matrices). Let $0 \le x \le 1/2$ and consider the (general) matrix

$$A_x = \begin{bmatrix} 1-x & x & 0 & 0 & \dots & 0 \\ x & 1-2x & x & 0 & \dots & 0 \\ 0 & x & 1-2x & x & \dots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & \dots & x & 1-2x & x \\ 0 & 0 & \dots & x & 1-x \end{bmatrix}$$

in $\Omega_n^{t,=}$. Observe that $A_x = I - x \cdot W_n$ where W_n is the $n \times n$ matrix

$$W_n = \begin{bmatrix} 1 & -1 & 0 & 0 & \dots & 0 \\ -1 & 2 & -1 & 0 & \dots & 0 \\ 0 & -1 & 2 & -1 & \dots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & \dots & -1 & 2 & -1 \\ 0 & 0 & \dots & -1 & 1 \end{bmatrix}.$$

It follows that the eigenvalues of A_x are $1 - x\lambda$ where λ is an eigenvalue of W_n . The corresponding eigenvectors are the same. Thus, we need to determine the spectrum of W_n . Note that W_n resembles the tridiagonal Toeplitz matrix

$$T_n = \begin{bmatrix} 2 & -1 & 0 & 0 & \dots & 0 \\ -1 & 2 & -1 & 0 & \dots & 0 \\ 0 & -1 & 2 & -1 & \dots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & \dots & -1 & 2 & -1 \\ 0 & 0 & \dots & -1 & 2 \end{bmatrix}$$

which has eigenvalues $2 - 2\cos(\frac{j\pi}{n+1})$ and corresponding eigenvector $s_j \in \mathbb{R}^n$ given by $s_j = (\sin(\frac{j\pi}{n+1}), \sin(\frac{2j\pi}{n+1}), \ldots, \sin(\frac{nj\pi}{n+1}))$ for $1 \leq j \leq n$ (see e.g. [10]). We now show that the eigenvalues of W_n are the eigenvalues of T_{n-1} plus the eigenvalue 0 (so W_n is singular).

Theorem 6 The eigenvalues of W_n are

$$2 - 2\cos(j\pi/n)$$
 $(0 \le j \le n - 1).$

In particular W_n is singular. The corresponding (orthogonal) eigenvectors are

$$(2\cos(\pi j(k-1/2)/n))_{k=1}^n \quad (0 \le j \le n-1).$$

Proof. Let λ be an eigenvalue and y a corresponding eigenvector of W_n . The eigenvector equation $(W_n - \lambda I)y = O$ may then be written as

$$-y_{k-1} + (2-\lambda)y_k - y_{k+1} = 0 \quad (1 \le k \le n)$$
(4)

where $y_0 := y_1$ and $y_{n+1} := y_n$. This is a linear second order difference equation with rather special boundary conditions. The corresponding characteristic equation $z^2 + (\lambda - 2)z + 1$ has solutions $r_1, r_2 = (1/2)(2 - \lambda) \pm \sqrt{(\lambda - 2)^2 - 4}$. Consider first the case when the roots coincide, i.e. when λ is 0 or 4. If $\lambda = 4$, then $r_1 = r_2 = -1$ and the general solution of (4) is $y_k = (\alpha + \beta k)(-1)^k$ where α, β are constants. It is easy to see that the boundary conditions lead to a contradictions in this case (we get from $y_0 = y_1$ that $\beta = 2\alpha$, and then the second boundary condition $y_n = y_{n+1}$ has no solution). Therefore $\lambda = 4$ is not an eigenvalue of W_n . On the other hand, if $\lambda = 0$, then $r_1 = r_2 = 1$ and the solution of (4) is $y_k = \alpha + \beta k$. But $y_0 = y_1$ implies $\beta = 0$ so $y_k = \alpha$ for some constant α . This proves that 0 is an eigenvalue of W_n with corresponding eigenvector $(1, 1, \ldots, 1)$.

Consider next when the the roots r_1 and r_2 are distinct. Since $z^2 + (\lambda - 2)z + 1 = (z - r_1)(z - r_2)$ we must have $r_1r_2 = 1$, i.e., $r_2 = r_1^{-1}$. Thus, the general solution of (4) is

$$y_k = \alpha r_1^k + \beta r_1^{-k}$$

The condition $y_0 = y_1$ gives $\alpha + \beta = \alpha r_1 + \beta r_1^{-1}$. We may assume $r_1 \neq 1$ (for otherwise $\lambda = 0$; a case already discussed). Therefore $\beta = \alpha r_1$ so

$$y_k = \alpha (r_1^k + r_1^{1-k}).$$

Note that $\alpha \neq 0$; otherwise y = O contradiction that y is an eigenvector. The boundary condition $y_n = y_{n+1}$ gives $r_1^n + r_1^{1-n} = r_1^{n+1} + r_1^{-n}$. Multiplying this equation by r_1^n and reorganizing terms gives $r_1^{2n}(1-r_1) = 1-r_1$. Therefore, as $r_1 \neq 1$, we must have $r_1^{2n} = 1$. So $r_1^2 = e^{2\pi i j/n}$ (where $i = \sqrt{-1}$) for some j with $1 \leq j \leq n-1$ (j = n is excluded as $r_1 \neq 1$). This shows that $r_1 = e^{\pi i j/n}$ and $r_2 = e^{-\pi i j/n}$. Moreover, using that $r_1 + r_2 = 2 - \lambda$ we obtain

$$\lambda = 2 - 2\cos(j\pi/n).$$

We have therefore found all the eigenvalues of W_n . An eigenvector corresponding to $\lambda = 2 - 2\cos(j\pi/n)$ (for fixed j) is $y = (y_k)$ given by

$$y_k = \alpha (e^{\pi i j k/n} + e^{\pi i j (1-k)/n})$$

Letting $\alpha = e^{-(1/2)\pi i j/n}$ we get

$$y_k = e^{\pi i j(k-1/2)/n} + e^{-\pi i j(k-1/2)/n} = 2\cos(\pi j(k-1/2)/n).$$

which gives the desired eigenvector.

We may now determine the spectrum of A_x (where again $0 \le x \le 1/2$).

Corollary 7 The eigenvalues of A_x are

$$1 - 2x(1 - \cos(j\pi/n)) \quad (0 \le j \le n - 1).$$

and the corresponding eigenvectors are described in Theorem 6.

Proof. This follows directly from Theorem 6 using the relation $A_x = I - x \cdot S$.

The rank of A_x is determined in the next corollary.

Corollary 8 If $x \in \{1/(2 - 2\cos(j\pi/n)) : \lceil n/3 \rceil \le j \le n - 1\}$, then A_x has rank n - 1. Otherwise A_x is nonsingular.

Proof. The last n-1 columns of A_x are linearly independent, so A_x has rank n-1 or n. The result now follows from Corollary 7.

Also note that the kernel of A_x (when A_x is singular) is known explicitly since we have determined a complete set of eigenvectors of A_x . The matrix $A_x \in \Omega_n^{t,=}$ is diagonally dominant if and only if $0 \le x \le 1/4$. From Corollary 7 it follows that A_x is positive semidefinite if and only if $0 \le x \le 1/(2 + 2\cos(\pi/n))$. Thus, when n is large, the class of positive semidefinite matrices in $\Omega_n^{t,=}$ is just "slightly larger" than the class of diagonally dominant matrices in $\Omega_n^{t,=}$.

For a general doubly stochastic matrix A the bound

$$|1 - \lambda| \ge 2(1 - \cos(\pi/n))\mu(A)$$
 (5)

for eigenvalues $\lambda \neq 1$ of A was found by Fiedler. Here $\mu(A)$ is a measure of the irreducibility of A given by $\mu(A) = \min_M \sum_{i \in M} \sum_{j \notin M} a_{ij}$ where the minimum is taken over all nonempty strict subsets M of $\{1, 2, \ldots, n\}$. See [8] for a discussion of such estimates. It is interesting to check the quality of the bound (5) for matrices $A_x \in \Omega_n^{t,=}$, as we know the eigenvalues for these matrices. Let $A_x \in \Omega_n^{t,=}$. Then we find that $\mu(A_x) = x$. So if λ denotes the second largest eigenvalue of A_x , we get from Corollary 7 that $1 - \lambda = 2x(1 - \cos(\pi/n)) = 2(1 - \cos(\pi/n))\mu(A)$. This means that Fiedler's estimate is tight for this subclass $\Omega_n^{t,=}$ of the doubly stochastic matrices.

An application. We briefly discuss an application of Corollary 7 to Markov chains. Recall the specific random walk discussed in the introduction and assume that the one-step transition matrix of the chain is A_x for some $x \in [0, 1/2]$. Thus, if p_{ij} is the probability of moving in one step from state *i* to state *j*, then we have $p_{i\,i+1} = p_{i+1\,i} = x \ (1 \le i \le n-1), \ p_{i\,i} = 1 - 2x \ (2 \le i \le n-1), \ \text{and} \ p_{11} = p_{n\,n} = p_{n\,$ 1 - x while all other p_{ij} 's are zero. The explicit knowledge of the eigenvalues and eigenvectors of A_x , presented in Corollary 7, is very useful for analyzing the behavior of this random walk. To be specific, let U be the $n \times n$ matrix with the eigenvectors of A_x as its columns, and let D be the diagonal matrix with the associated eigenvalues along the diagonal. So $U^T A_x U = D$ and since U is orthogonal we get $A_x^k = U D^k U^T$ for each positive integer k. The (i, j)'th entry of A_x^k equals the probability that the process goes from state i to state j in k transitions (see e.g. [5] for the theory of Markov chains). This means that one can calculate the k step transition probabilities (the powers of A_x) efficiently. Moreover, one can get explicit information about how fast the chain converges towards its stationary distribution (which is the uniform distribution as A_x is doubly stochastic) since we know all the eigenvalues.

5 Ω_n^t and majorization

Doubly stochastic matrices are important in the area of majorization. For two vectors $x, y \in \mathbb{R}^n$ we say that x is majorized by y if $\sum_{i=1}^k x_{[i]} \leq \sum_{i=1}^k y_{[i]}$ for $k \leq n$ and where equality holds when k = n. Here $x_{[i]}$ denotes the *i*'th largest component of x. A basic result here is a theorem of Hardy, Littlewood and Pólya saying that x is majorized by y if and only if there is a doubly stochastic matrix A such that x = Ay. For a discussion of this result and a strengthened result concerning restricted doubly stochastic matrices, so-called T-transforms, see [9].

Motivated by the mentioned theorem we now define a majorization concept which is stronger than ordinary majorization. Let $x, y \in \mathbb{R}^n$ be monotone vectors, i.e., the components are nonincreasing. We say that x is tridiagonally majorized by y if there is a tridiagonal doubly stochastic matrix A such that x = Ay. So, if x is tridiagonally majorized by y, then x is majorized by y. Intuitively, if x is tridiagonally majorized by y, then x may be obtained from y by a redistribution among consecutive components in y. (Remark: in contrast to majorization, tridiagonal majorization is not a transitive relation, an therefore not a preorder.)

It is natural to ask for a characterization of tridiagonal majorization in terms of linear inequalities involving the components of x and y. We now give such a result. In the theorem we consider a monotone vector $y \in \mathbb{R}^n$, so there are indices $1 \leq i_s \leq i'_s \leq n-1$ $(1 \leq s \leq p)$ with $i'_s \leq i_{s+1}-2$ and $y_i > y_{i+1}$ for $i_s \leq i \leq i'_s$ $(1 \leq s \leq p)$ and $y_i = y_{i+1}$ for all remaining indices $i \leq n-1$. We also define $i_{p+1} = n+1$ and the index set $I = \{1, \ldots, i_1-1\} \cup \bigcup_{s=1}^p \{i'_s + 2, \ldots, i_{s+1}-1\}$.

Theorem 9 Let $x, y \in \mathbb{R}^n$ be monotone, and let i_s , i'_s $(1 \le s \le p)$ and I be as above. Then x is tridiagonally majorized by y if and only if $x_i = y_i$ $(i \in I)$ and for $1 \le s \le p$

(i)
$$\sum_{i=i_s}^{i'_s+1} x_i = \sum_{i=i_s}^{i'_s+1} y_i$$

(ii) $\sum_{i=i_s}^k x_i \le \sum_{i=i_s}^k y_i$ $(i_s \le k \le i'_s)$
(iii) $x_k \ge y_{k+1} + \frac{y_{k-1} - y_{k+1}}{y_{k-1} - y_k} (\sum_{i=1}^{k-1} y_i - \sum_{i=1}^{k-1} x_i)$ $(i_s \le k \le i'_s - 1)$

If x is tridiagonally majorized by y and y is strictly decreasing, then there is a unique tridiagonal doubly stochastic matrix A such that x = Ay.

Proof. For given monotone x and y we consider the system x = Ay where $A \in \Omega_n^t$, i.e. (due to Proposition 1) $A = A_\mu$ with $\mu \in P_n$. In component form the system $x = A_\mu y$ becomes

$$x_i = \mu_{i-1}y_{i-1} + (1 - \mu_{i-1} - \mu_i)y_i + \mu_i y_{i+1} \quad (1 \le i \le n)$$

or equivalently

$$\mu_i(y_i - y_{i+1}) = \mu_{i-1}(y_{i-1} - y_i) + y_i - x_i \quad (1 \le i \le n)$$
(6)

where we define $y_0 = \mu_0 = y_{n+1} = \mu_n = 0$. This is a difference equation in the variables μ_i $(1 \le i \le n-1)$. Define $\alpha_i = y_i - y_{i+1}$ and $\Delta_i = y_i - x_i$ $(1 \le i \le n)$, so

 $\alpha_i \geq 0$. Then the system (6) decomposes into

$$\Delta_i = 0 \quad (1 \le i \le i_1 - 1)$$

and the following independent subsystems for $1 \le s \le p$

$$\alpha_{i_s}\mu_{i_s} = \Delta_{i_s}$$

$$\alpha_{i_s+1}\mu_{i_s+1} = \alpha_{i_s}\mu_{i_s} + \Delta_{i_s+1}$$

$$\vdots$$

$$\alpha_{i'_s}\mu_{i'_s} = \alpha_{i'_s-1}\mu_{i'_s-1} + \Delta_{i'_s}$$

$$0 = \alpha_{i'_s}\mu_{i'_s} + \Delta_{i'_s+1}$$
(7)

and $\Delta_i = 0$ $(i'_s + 2 \le i \le i_{s+1} - 1)$. Here we have $\alpha_i > 0$ $(i_s \le i \le i'_s)$. Now, the subsystem (7) is consistent if and only if

$$\sum_{i=i_s}^{i'_s+1} \Delta_i = 0 \tag{8}$$

and then (7) has the unique solution μ_i $(i_s \leq i \leq i'_s)$ given by

$$\mu_i = \frac{\sum_{j=i_s}^i \Delta_j}{\alpha_i} \quad (i_s \le i \le i'_s).$$

In the solution set of (6) the remaining variables μ_i are free (i.e., when *i* is outside each set $\{i_s, \ldots, i'_s\}$). In summary, (6) is consistent if and only if $\Delta_i = y_i - x_i = 0$ $(i \in I)$ and (8) hold for $1 \leq s \leq p$. Moreover, the constraints $\mu_i \geq 0$ and $\mu_i + \mu_{i+1} \leq 1$ for each *i* (i.e., A_{μ} is doubly stochastic) translate into the remaining inequalities in the characterization of the theorem. Finally, if *y* is strictly decreasing, then p = 1and each α_i is positive and therefore $\mu_1, \mu_2, \ldots, \mu_{n-1}$ are uniquely determined by (6).

We recognize conditions (i) and (ii) in the theorem as ordinary majorization conditions for certain subvectors of x and y. The proof of Theorem 9 also contains a complete description of the set of all tridiagonal doubly stochastic matrices A satisfying x = Ay. Finally, from the proof one also finds a characterization of tridiagonal majorization for possible nonmonotone vectors, but these inequalities are more complicated (as some α_i may be negative).

References

 A. Berman and N. Shaked-Monderer. Completely positive matrices. World Scientific Publ., 2003.

- [2] R.A. Brualdi. Introductory Combinatorics. Prentice-Hall, 1999.
- [3] R.A. Brualdi and H.J. Ryser. Combinatorial matrix theory. Encyclopedia of Mathematics. Cambridge University Press, 1991.
- [4] R.A. Brualdi. An interesting face of the polytope of doubly stochastic matrices. Linear and Multilinear Algebra Vol. 17, pp 5–18, 1985.
- [5] S. Karlin and H.M. Taylor. A first course in stochastic processes. Academic Press, 1975.
- [6] D. Kulkarni, D. Schmidt and Sze-Kai Tsui. Eigenvalues of tridiagonal pseudo-Toeplitz matrices. *Linear Algebra and its Appl.* Vol. 297, pp 63–80, 1999.
- [7] Seok-Zun Song and Young-Bae Jun. Minimum permanents of tridiagonal doubly stochastic matrices. *Linear and Multilinear Algebra*. Vol. 50, No.4, pp 301–306, 2002.
- [8] M. Fiedler. An estimate of the nonstochastic eigenvalues of doubly stochastic matrices. *Linear Algebra and its Appl.* 214:133–143, 1995.
- [9] A.W. Marshall and I. Olkin. Inequalities: Theory of Majorization and Its Applications. Academic Press, 1979.
- [10] C.D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, 2000.