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algorithm for computing ν(a).

Keywords: Ferrers diagram; integer partition; majorization; polytope.

Mathematics Subject Classification 2000: 52B05; 05A17; 15A39

1. Introduction

Let n be a positive integer. We may write (or split) n as sums of n nonincreasing

nonnegative integers p1, p2, . . . , pn in different ways (or partitions; see Section 2).

For example, 3 = 3 + 0 + 0 = 2 + 1 + 0 = 1 + 1 + 1. If we denote by P (n) the

number of different partitions of n, then P (3) = 3. One may check that P (5) = 7.

As n gets large, P (n) increases rapidly. It is astounding that P (200) is about 4

trillion [1, p. 68]. The determination of P (n) is an intriguing and difficult problem

in number theory and combinatorics (see, e.g., [12] and [9, Chapter 15]). It has

much to do with the theories of majorization and polytopes. In the language of

majorization, P (5) = 7 means that there are 7 nonincreasing integral vectors in R5

that are majorized by the vector (5, 0, 0, 0, 0). Equivalently, there are 7 nonincreasing

integral vectors in R5 that are contained in the majorization polytope generated

by (5, 0, 0, 0, 0). In this paper we study majorization polytopes for more general

integral vectors.

For vectors x and a in Rn, we say that x is majorized by a, denoted by x � a,
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provided that
∑k
j=1 x[j] ≤

∑k
j=1 a[j] for k = 1, 2, . . . , n, where there is an equality

for k = n. Here x[j] is the jth largest component of x, j = 1, 2, . . . , n. Roughly

speaking, that x is majorized by a means that the components of x are dominated

by or less “spread-out” than the components of a. For given a ∈ Rn, the majorization

polytope M(a) is the collection of all vectors majorized by a, that is,

M(a) = {x ∈ Rn : x � a}.

We remark that M(a) is known under different names in the literature, e.g.,

“permutohedron” (see [10]) or “permutation polytope”a (see [2], where facial prop-

erties of this polytope are presented). Our M(a) may also be interpreted as the

convex hull convSn(a) of the set Sn(a) consisting of all permutations of vector a.

Majorization theory was first formally introduced in the Hardy-Littlewood-

Pólya’s well known book Inequalities [7, p. 45]. The monograph [8] contains a com-

prehensive study of majorization and its applications. Also, [3] treats majorization

in connection with several combinatorial classes of matrices. In [14] majorization

is discussed in detail in connection with matrix theory, particularly the spectral

properties of matrices, etc.

Let MI(a) be the set of all integral vectors (i.e., all components are integers)

contained in M(a). We are interested in the cardinality of MI(a) and its depen-

dence on a. As we shall see, the cardinality ν(a) of MI(a) is closely related to

integer partitions. In Section 2 we show several properties of the function a→ ν(a),

and in Section 3 we introduce an operation splitting and a recursive algorithm for

computing ν(a) based on operations on Ferrers diagrams.

2. Properties of ν and ν∗

As usual, the jth unit vector of Rn is denoted by ej , i.e., ej has jth component

1 and 0 elsewhere. For a vector x = (x1, x2, . . . , xn) ∈ Rn, its jth component is

xj . Let x[j] denote its jth largest component: x[1] ≥ x[2] ≥ · · · ≥ x[n] and write

x↓ = (x[1], x[2], . . . , x[n]). We say that x ∈ Rn is monotone if x1 ≥ x2 ≥ · · · ≥ xn.

So for any x ∈ Rn, x↓ is monotone.

We consider the sets M(a) and MI(a) as defined in Section 1. Note that M(a) =

M(a′) when a′ is a permutation of a. For a ∈ Rn, define

ν(a) = |MI(a)|.

So ν(a) is the number of integral vectors majorized by a. Let M∗I (a) denote the set

of monotone vectors in MI(a), and define

ν∗(a) = |M∗I (a)|.

Our goal is to investigate the functions ν and ν∗. Apparently, ν(a) equals zero if

the sum of the components of a is not an integer. For example, a = (2, 12 ), ν(a) = 0.

aNote: the term “permutation polytope” sometimes refers to a different object, namely, the convex
hull of a group of permutation matrices.
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We assume that the vectors in the study are integral. From the previous section, if

a = (5, 0, 0, 0, 0), we know that ν∗(a) = 7.

Example 2.1. Let a = (4, 2, 1). Then ν(a) = 12 and ν∗(a) = 3. In fact, MI(a)

consists of: the six permutations of (4, 2, 1), along with the three (different) permu-

tations of (3, 3, 1) and the three permutations of (3, 2, 2). M(a) is the convex hull

of the permutations of (4, 2, 1).

If a is a constant vector (i.e., all components are equal), then x � a implies

x = a, so MI(a) = M∗I (a) = {a} and thus ν(a) = ν∗(a) = 1. In general, for

an integral a ∈ Rn, since every vector in M∗I (a) generates through permutation

at most n! vectors in MI(a), we have ν(a) ≤ ν∗(a)n!. In addition, ν(−a) = ν(a)

and ν∗(−a) = ν∗(a). For integral a = (α, β) ∈ R2 with α ≥ β, we observe that

ν(a) = α− β + 1 and ν∗(a) = bα−β2 c+ 1.

The following result from [6] will be useful to prove our Proposition 2.3.

Theorem 2.2. ([6]) Let a, b ∈ Rn be monotone vectors. Then M(a+ b) = M(a) +

M(b). If, in addition, a and b are integral, then MI(a+ b) = MI(a) +MI(b). (Here

S + T = {s+ t : s ∈ S, t ∈ T}.)

Below are some basic observations about the function ν.

Proposition 2.3. Let a, b ∈ Rn be integral vectors. Then the following hold:

(i) If a � b, then ν(a) ≤ ν(b).

(ii) If a is a constant vector, then ν(a+ b) = ν(b).

(iii) ν(a+b) ≤ ν(a)ν(b). Equality holds if and only if a or b is a constant vector.

(iv) ν(ka) ≤ νk(a) for any positive integer k. Equality occurs if and only if

k = 1 or a is a constant vector.

Proof. (i). The majorization order is transitive. So a � b implies that MI(a) ⊆
MI(b). The cardinality inequality follows immediately.

(ii). If a is a constant vector, then x � b if and only if a+ x � a+ b. There is a

bijection between MI(b) and MI(a+ b). So ν(a+ b) = ν(b).

(iii). Note that a + b � a↓ + b↓. It follows that ν(a + b) = |MI(a + b)| ≤
|MI(a

↓ + b↓)| = |MI(a
↓) +MI(b

↓)| ≤ ν(a)ν(b) (the second equality is by Theorem

2.2). Assuming that a and b are not constant vectors, we show that the strict

inequality holds. To this end, it suffices to show that MI(a) + MI(b) contains at

least one duplicated element. Since a and b are non-constant integral vectors, there

are permutations a′ and b′ of a and b, respectively, with a′ = (α, β, . . . ), α > β, and

b′ = (p, q, . . . ), p < q. Set ã = (α− 1, β + 1, . . . ) and b̃ = (p+ 1, q − 1, . . . ), where ã

and b̃ have the same remaining components as a′ and b′, respectively. Then ã � a

and b̃ � b. Apparently, ã 6= a′ and b̃ 6= b′. However, a′ + b′ = ã+ b̃.

(iv). This is a consequence (repeated use) of (iii) by setting a = b. �
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Remark. Regarding (i), one may show that strict inequality holds if a is not a

permutation of b. Furthermore, ν∗(a) ≤ ν∗(b), with equality if and only if a is

a permutation of b. We also point out that these inequalities do not generalize

to weak majorizations. Property (ii) reveals that the cardinality of MI(b) remains

unchanged through “shifting”. Thus the vectors may be assumed to be nonnegative.

In addition, if a is a constant vector, then ν∗(a+ b) = ν∗(b). The analogous result

of (iii) for ν∗, i.e., ν∗(a + b) ≤ ν∗(a)ν∗(b), does not hold in general. For example,

take a = b = (1, 0). Then ν∗(a) = ν∗(b) = 1, however, ν∗(a+ b) = 2.

Given v ∈M∗I (a), let v have k distinct components ṽ1 > ṽ2 > · · · > ṽk, 1 ≤ k ≤
n, and let ṽi occur ni times in v. So n1 + · · ·+ nk = n. Denote

κ(v) =
n!

n1! · · ·nk!
.

Proposition 2.4. Let a ∈ Rn. Then

ν(a) =
∑

v∈M∗
I (a)

κ(v).

Proof. This is because each v in M∗I (a) generates κ(v) vectors in MI(a). �

Example 2.5. Let a = (4, 2, 1). Then M∗I (a) = {a, u, v}, where u = (3, 3, 1),

v = (3, 2, 2). Moreover, κ(a) = 6, κ(u) = 6/2 = 3, κ(v) = 6/2 = 3, so ν(a) =

6 + 3 + 3 = 12 as we found in Example 2.1.

Corollary 2.6. If a = (s+ t, . . . , s+ t, s, . . . , s) ∈ Rn, where the first k (1 ≤ k < n)

components are s+ t, for some integer s and positive integer t, then

ν(a) ≤
(
n

k

)t
.

Equality holds if and only if t = 1.

Proof. Write a = se+t(1, . . . , 1, 0, . . . , 0), where e is the all-ones vector. By Propo-

sition 2.3 (ii) and (iv), we have ν(a) = ν
(
t(1, . . . , 1, 0, . . . , 0)

)
≤
(
n
k

)t
. Equality holds

if and only if t = 1 because a is not a constant vector. �

For the equality (t = 1) case, alternatively, the only vectors majorized by a are

the permutations of a. Any such permutation of a corresponds to a selection of the

k positions containing s+ 1, and the number of such selections is
(
n
k

)
. One can also

see this from Proposition 2.4: ν(a) = κ(a) = n!
k!(n−k)! =

(
n
k

)
.

The cardinality functions ν and ν∗ are related to integer partitions. A partition

of a positive integer n is a nonincreasing sequence p1, p2, . . . , pk of positive integers

whose sum is n. (We may add trailing zeros for convenience.) Clearly, such a par-

tition may be represented by a monotone integral vector (p1, p2, . . . , pk) (with the
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correct sum of its components). Each pi is a part of the partition. Let P(n) be the

set of all partitions of n (a subset of Rn) and denote the number of partitions of

an integer n by P (n). So P (n) = |P(n)|. It has been evident that determination

of P (n) is an intriguing and difficult problem in number theory and combinatorics;

see [12] and [9, Chapter 15] for related results in this area. We observe that P(n)

coincides with M∗I (a) when a = (n, 0, . . . , 0) ∈ Rn. Thus integer partition may be

described and studied by means of majorization.

Proposition 2.7. Let a = (n, 0, . . . , 0) ∈ Rn. Then

ν∗(a) = P (n), ν(a) =
∑

p∈P(n)

κ(p) =
∑

n≥p1>···>pq≥1
n1p1+···+nqpq=n

n!

n1! · · ·nq!(n−
∑q
i=1 ni)!

.

Proof. The first part is obvious because M∗I (a) contains exactly the partitions of n,

that is, M∗I (a) coincides with P(n). The second part follows from Proposition 2.4.

Note that in a partition n = p1 + · · · + p1 + · · · + pq + · · · + pq + 0 + · · · + 0,

p1 > · · · > pq ≥ 1, each pi appears ni times, 0 appears n− n1 − · · · − nq times. �

A classical result of Euler (see, e.g., [9, p. 155] or [12, p. 7]) gives the generating

function of P (n) (in the summation below we define P (0) = 1):

∞∑
n=0

P (n)xn =
1

1− x
· 1

1− x2
· 1

1− x3
· · ·

= (1 + x+ x2 + · · · )(1 + x2 + x4 + · · · )(1 + x3 + x6 + · · · ) · · · .

It is possible to compute the numbers P (n) recursively. Define Pk(n) as the

number of partitions of n into k parts. This is the same as the number of integral

solutions of x1 + x2 + · · ·+ xk = n, x1 ≥ x2 ≥ · · · ≥ xk ≥ 1, which again equals the

number of integral solutions of z1 + z2 + · · ·+ zk = n− k, z1 ≥ z2 ≥ · · · ≥ zk ≥ 0.

Considering the number of these zi’s that are 1 reveals the recursion ([9, p. 152])

Pk(n) =
k∑
s=1

Ps(n− k) (1 ≤ k ≤ n− 1),

with P1(n) = Pn(n) = 1 for all n and Pk(n) = 0 when k > n. This makes it

possible to compute the Pk(n)’s efficiently. Finally, one may compute P (n) by

P (n) =
∑n
k=1 Pk(n). For instance, if we view the numbers Pk(n) as the (k, n)

entry of a matrix P , this matrix may be computed row by row, and its column

sums are the numbers P (1), P (2), P (3), . . . . Although no explicit formula for P (n)

is known, several estimates are available; see, e.g., [12] and [9, Chapter 15].

Given a positive integer n, the number of ways that n is written as a sum of

at most m parts can be described by the function ν and such function is bounded

by mn. To see this, let (n, 0, . . . , 0) ∈ Rm and write a = n(1, 0, . . . , 0). By Proposi-

tion 2.3 (iv), we have ν(a) ≤ νn(1, 0, . . . , 0) = mn.
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Proposition 2.8. For positive integers m,n, let a = (n, 0, . . . , 0) ∈ Rm. Then

ν∗(a) =

min{m,n}∑
k=1

Pk(n); ν(a) ≤
min{m,n}∑

k=1

m!

(m− k)!
Pk(n).

Proof. The identity for ν∗(a) follows from the aforementioned discussions. For

ν(a), it is sufficient to notice that each element (p1, . . . , pk, 0, . . . , 0) ∈ Rm counted

in Pk(n) can generate at most m!
(m−k)! vectors in MI(a). �

Example 2.9. Let a = (5, 0, 0) ∈ R3, n = 5,m = 3. Then

min{m,n}∑
k=1

m!

(m− k)!
Pk(n) =

3∑
k=1

3!

(3− k)!
Pk(5) = 27.

Example 2.10. Let a = (3, 0, 0, 0, 0) ∈ R5, n = 3,m = 5. Then

min{m,n}∑
k=1

m!

(m− k)!
Pk(n) =

3∑
k=1

5!

(5− k)!
Pk(3) = 85.

The following result gives an upper bound for ν(a) in terms of m and n. This

bound, not necessarily the best, but we believe, is better than mn (that we discussed

prior to Proposition 2.8). However, no proof is available yet.

Corollary 2.11. For positive integers m,n, let a = (n, 0, . . . , 0) ∈ Rm. Then

ν(a) ≤
min{m,n}∑

k=1

(
m

k

)(
n+ k(k−1)

2 − 1

k − 1

)
.

Proof. It is known [9, p. 154] that k!Pk(n) ≤

(
n+ k(k−1)

2 − 1

k − 1

)
. So

m!

(m− k)!
Pk(n) =

(
m

k

)
k!Pk(n) ≤

(
m

k

)(
n+ k(k−1)

2 − 1

k − 1

)
.

The upper bound is immediate from Proposition 2.8. �

Proposition 2.12. Let a = (a1, a2, . . . , an) be an integral vector. Then

ν(a) ≤ min

{
n
∑n

k=1 |ak|,

n∏
k=1

(min{n,|ak|}∑
t=1

n!

(n− t)!
Pt(|ak|)

)}
.
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Proof. Write a = a1e1 + a2e2 + · · ·+ anen. By Proposition 2.3 (iii), we have

ν(a) ≤
n∏
k=1

ν(akek) =

n∏
k=1

ν(|ak|ek) ≤
n∏
k=1

min{n,|ak|}∑
t=1

n!

(n− t)!
Pt(|ak|)

 .

The last inequality is by Proposition 2.8. On the other hand, by Proposition 2.3

(iv), we have for each k,

ν(akek) = ν(|ak|ek) ≤ n|ak|.

Thus ν(a) ≤ n
∑n

k=1 |ak|. Combining these reveals the desired inequality. �

3. The splitting operation

Let a = (a1, a2, . . . , an) be a nonnegative integral vector in Rn and let N =
∑n
j=1 aj .

Then each vector in M∗I (a) is a partition of N “controlled” by a. In this section,

we study partitions using Ferrers diagrams (or Young diagrams). For instance, the

partition p = (5, 4, 1) of N = 10 corresponds to the Ferrers diagram

in which the number of boxes (squares) in the first row is the first part p1 = 5, etc.

Let N and n be positive integers and let PN,n be the set of all monotone in-

tegral vectors of length n whose sum of components equals N . This corresponds

to partitions of N into at most n parts. Then PN,n equipped with majorization

ordering becomes a partially ordered set (poset) which has been studied in, e.g.,

[4]. This poset has a unique maximal element (N, 0, . . . , 0) ∈ Rn and a unique min-

imal element (v + 1, . . . , v + 1, v, . . . , v) ∈ Rn, where v = bN/nc and the number of

components being v + 1 is N − nv.

Given a monotone integral vector a ∈ Rn, the set M∗I (a) is a subset of the poset

PN,n, where N =
∑n
j=1 aj , so M∗I (a) is a subposet. It is actually the principal ideal

in PN,n generated by a (see, e.g., [5] or [11, Chapter 3]). The set M∗I (a), or rather

the corresponding Ferrers diagrams, may be constructed recursively as follows: Start

with the Ferrers diagram of a and, repeatedly, choose a box at the end of a row

and move it to the end of some row below, assuming monotonicity of the parts is

preserved. Moving a box in this way corresponds to an integral transfer and it is

known that any integral vector majorized by a may be produced by a sequence

of such transfers (see [8, Chapter 5]). An enumeration like this is, of course, only

practical for computing ν∗(a) when this number is reasonably small. A better (more

efficient) approach is introduced in this section. That is, instead of moving one box

each time, we move multiple boxes each time by so-called splitting vectors that are

less spread-out and have lower dimensions.
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Example 2.1 - continued. Let again a = (4, 2, 1). Then M∗I (a) contains 3 vectors

and their Ferrers diagrams are

Now we introduce an operation on monotone integral vectors which is convenient

to explain using Ferrers diagrams. Let F be the Ferrers diagram of a monotone

integral vector a = (a1, a2, . . . , an), define N =
∑n
j=1 aj , and consider an integer j

with dN/ne ≤ j ≤ a1. Let F j| be the Ferrers diagram obtained from F by moving all

boxes in columns j+1, j+2, . . . , a1 to other rows with preference to the uppermost

rows, and then deleting the first row. (If j = a1, no boxes are moved, but still delete

the first row.) The corresponding integral vector, whose Ferrers diagram is F j|, is

denoted by aj| and this vector lies in Rn−1. We call aj| a splitting of a.

Example 3.1. Let a = (6, 5, 3, 2, 2) and j = 4. Then a4| = (4, 4, 4, 2). The Ferrers

diagram of a and a4| are shown below

F F 4|

• •
•

•
• •

•
• •

a = (6, 5, 3, 2, 2) a4| = (4, 4, 4, 2)

Bullets indicate the boxes that were moved, and the intermediate Ferrers diagram

(before the first row was deleted) is also shown.

For fixed j with dN/ne ≤ j ≤ a1, we can give an explicit expression for aj|.

Define ā1:s = 1
s

∑s
i=1 ai (1 ≤ s ≤ n) which is the (arithmetic) mean of the first s

components of a. Since a is monotone,

a1 = ā1:1 ≥ ā1:2 ≥ · · · ≥ ā1:n =
1

n

n∑
i=1

ai =
N

n
.

Now let q (1 ≤ q ≤ n) be the largest integer such that ā1:q ≥ j; such q exists and

is unique (and depends on j). The ith component a
j|
i of the vector aj| ∈ Rn−1 is

given by

a
j|
i =


j (1 ≤ i ≤ q − 1)∑q+1

t=1 at − qj (i = q)

ai+1 (q + 1 ≤ i ≤ n− 1),

(3.1)
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that is, written out explicitly,

aj| =
(
j, . . . , j,

q+1∑
t=1

at − qj, aq+1, . . . , an

)
∈ Rn−1.

One may verify that aj| is monotone and
∑n−1
i=1 a

j|
i = N − j.

The construction of aj| leads to the following proposition concerning splittings.

It also gives a recursive expression for the counting function ν∗.

Proposition 3.2. Let x = (x1, x2, . . . , xn) and a = (a1, a2, . . . , an) be monotone

integral vectors in Rn. Then x � a if and only if (x2, x3, . . . , xn) � ax1|. Moreover,

with N =
∑n
j=1 aj, we have

ν∗(a) =

a1∑
j=dN/ne

ν∗(aj|). (3.2)

Proof. By definition, x ∈ M∗I (a) means that x is (integral) monotone and ma-

jorized by a. Considering the vectors in M∗I (a) with the first component being j

and from the construction of the Ferrers diagram of aj| (with moved boxes in the

topmost rows), we see that the set {x ∈M∗I (a) : x1 = j} is the same as

{x ∈ Zn : x is monotone, x1 = j, (x2, x3, . . . , xn) � aj|}.

(Here Zn for integral vectors in Rn.) This proves the first statement of the theorem.

Next, note that every vector x in M∗I (a) satisfies x1 ≥ dN/ne (due to mono-

tonicity and
∑n
j=1 xj = N). We count M∗I (a) by partitioning this set according

to the value of the first component of its vectors. Thus, by the first part of this

theorem, we have

ν∗(a) =
∑a1
j=dN/ne |{x ∈M∗I (a) : x1 = j}|

=
∑a1
j=dN/ne |{(j, z) ∈ Z× Zn−1 : (j, z) is monotone, z � aj|}|

=
∑a1
j=dN/ne |M∗I (aj|)|

=
∑a1
j=dN/ne ν

∗(aj|),

so (3.2) holds. �

Equation (3.2) in Proposition 9 clearly gives an algorithm for computing ν∗(a).

Combined with the formula in Proposition 2.4, this algorithm may also be used

to compute ν(a). Note that in (3.2) the computation of ν∗(aj|) can sometimes be

simplified, especially for “small” j, by using the property ν∗(b) = ν∗(b− bne) for a

monotone vector b (where e is the all-ones vector and bn is the smallest component

of b), see Proposition 2.3. Proposition 3.2 leads to an algorithm for enumeration

of the set M∗I (a): compute the aj|’s, and then repeat this process for each of the

constructed aj|’s, etc.
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Example 3.1 - continued. Consider again a = (6, 5, 3, 2, 2). So n = 5, N = 18

and dN/ne = 4. The Ferrers diagram of F j| for j = 4, 5, 6 are

F 4| F 5| F 6|

a4| = (4, 4, 4, 2) a5| = (5, 4, 2, 2) a6| = (5, 3, 2, 2)

Using formula (3.2) recursively, we compute

ν∗(a4|) = 2, ν∗(a5|) = 4, ν∗(a6|) = 4.

Therefore, by (3.2), ν∗(a) = 2 + 4 + 4 = 10.

Let a = (a1, a2, . . . , an) ∈ Rn be a nonnegative integral monotone vector, and

define m = a1. The conjugate of a is the vector a∗ = (a∗1, a
∗
2, . . . , a

∗
m) ∈ Rm, where

a∗k = |{i : ai ≥ k}| (1 ≤ k ≤ m).

If F is the Ferrers diagram corresponding to a, the row sums in F (viewing boxes as

ones, and otherwise having zeros) are the components in a while the column sums

are the components in a∗. In particular, the Ferrers diagram of a∗ is the transpose

of F (making rows into columns, as for matrices). For instance, if a = (2, 2, 2, 1, 1),

then a∗ = (5, 3).

Proposition 3.3. Let a = (a1, a2, . . . , an) ∈ Rn be a nonnegative monotone inte-

gral vector. Then

ν(a) ≤
a1∏
k=1

(
n

a∗k

)
. (3.3)

Equality holds if and only if a = (s+ 1, . . . , s+ 1, s, . . . , s) for some s.

Proof. Let ξk = (1, . . . , 1, 0, . . . , 0) ∈ Rn be the vector with k leading ones and

otherwise zeros (k ≤ n). We decompose a = (a1, a2, . . . , an) as

a =

m∑
k=1

ξa∗k (m = a1).

By Proposition 2.3 (iii) and Corollary 2.6, we have

ν(a) = ν
( m∑
k=1

ξa∗k

)
≤

m∏
k=1

ν(ξa∗k) =

m∏
k=1

(
n

a∗k

)
. (3.4)

Equality in (3.3) occurs if and only if overall equality in (3.4) holds, which is true,

by Proposition 2.3 (iii), if and only if one of ξa∗k ’s is non-constant. By Corollary 2.6,

a is of the desired form. �



April 1, 2013 10:48 WSPC/INSTRUCTION FILE
MajPolytope˙DahlZhang˙Final˙20130329

Integral Majorization Polytopes 11

Example 3.4. Let a = (2, . . . , 2, 1, . . . 1) ∈ Rn, in which the number of 2’s is k.

Then a∗ = (n, k). So Proposition 3.3 gives

ν(a) ≤
(
n

n

)
·
(
n

k

)
=

(
n

k

)
,

which we know (by Proposition 2.6) is tight, i.e., ν(a) =
(
n
k

)
. If a = (4, 2, 1) (Ex-

ample 2.1), then a∗ = (3, 2, 1, 1) and ν(a) = 12 while the bound in Proposition 3.3

is 1 · 3 · 3 · 3 = 27.

As this example shows, the quality of the bounds we have found is highly de-

pendent on vector a itself. We believe that the bound in Proposition 3.3 may be

acceptable when “the span” a1 − an is rather small.
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