
UNIVERSITY OF OSLO
Department of Informatics

Towards
Real-Time Depth
Estimation in
Large Spaces — A
Soccer Case Study

Masters thesis

Henrik Kjus Alstad

Towards Real-Time Depth Estimation in Large Spaces
— A Soccer Case Study

Henrik Kjus Alstad

Abstract

Many professional soccer sports clubs analyze their games either manually or using existing
analytics tools. However, the existing software often requires much manual work and spending
time looking through video tapes. Researchers and students from Simula Research Laboratory,
The University of Oslo, and The University of Tromsø have created a real-time analysis system
prototype called Bagadus. It is aimed at being automatic, easy to use and integrated with both
annotations, recording software, video processing and sensor-networks. The latter is providing
heartbeat, speed, position and various other statistics from the players.

Bagadus capture video footage from multiple angles, and delivers a stitched panorama
video. A natural extension of a system using many cameras from different angles, is a free-
view functionality. Free-view and virtual cameras means that we reconstruct an image from an
imaginary virtual camera. This image is reconstructed using data from nearby real cameras. To
reconstruct the scene as seen from the virtual camera, the depth of the pixels from the nearby
real cameras must be known.

In this thesis, we show look at how we can improve the Bagadus system by camera calibra-
tion and stereo vision for depth map generation needed by the virtual camera application. We
show how cameras can easily be installed and the system configured for the free-view, and how
depth maps can be generated in real-time. Finally, we discuss see how results from this work
can be applied to the Bagadus system.

ii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem Definition . 2
1.3 Limitations . 3
1.4 Research Method . 3
1.5 Main Contributions . 3
1.6 Outline . 4

2 The Bagadus System 5
2.1 The Basic Idea . 5
2.2 Analytics Subsystem . 7
2.3 Video Capture . 7

2.3.1 Synchronization . 8
2.3.2 Software . 9
2.3.3 Compression . 9
2.3.4 The Northlight Library . 10

2.4 Image Undistortion . 11
2.5 Tracking Subsystem . 11

2.5.1 Data and Queries . 12
2.5.2 Coordinate System . 13
2.5.3 Synchronization . 14
2.5.4 ZXY to Camera Coordinates . 14
2.5.5 Finding the Homographies . 16
2.5.6 Finding the Correct Camera . 17

2.6 Panorama Creation . 17
2.7 A Front-End Demo . 20
2.8 The new Bagadus Video Pipeline . 21

2.8.1 The Components . 21
2.8.2 The Interface . 22

2.9 Future Development: Free-View . 23
2.9.1 Motivation . 25
2.9.2 A Depth Map Pipeline . 25
2.9.3 Related works . 26

2.10 Summary . 27

iii

iv

3 Camera Calibration 29
3.1 The Theory . 29

3.1.1 The Pinhole Model and Intrinsics . 29
3.1.2 Extrinsics . 32
3.1.3 Epipolar Lines and Image Rectification 32

3.2 Implementation . 34
3.2.1 Intrinsics . 34
3.2.2 Undistortion . 36
3.2.3 Line Based Extrinsics . 37
3.2.4 Point Based Extrinsics . 47
3.2.5 Homography Based Rectification . 54
3.2.6 Chessboard Stereo Calibration . 57

3.3 Applications for the Bagadus Prototype . 58
3.3.1 Tracking Homography . 59
3.3.2 The Stitching Matrices . 59

3.4 Summary . 61

4 Depth Estimation 63
4.1 Depth Maps . 63
4.2 Applications . 64
4.3 Related Works . 64
4.4 Stereo Vision . 65

4.4.1 Disparity . 65
4.4.2 Matching . 66
4.4.3 Calculating the Depth . 67
4.4.4 Algorithms . 67

4.5 Quality Assessment . 68
4.6 Implementation . 69

4.6.1 PreProcessing . 69
4.6.2 Disparity Calculation . 71
4.6.3 Post-Processing . 73

4.7 Comparison . 74
4.8 Importance of Rectification . 74
4.9 Summary . 74

5 Optimization of the Depth Estimation 79
5.1 Camera Setup . 79
5.2 Background Subtraction . 82
5.3 Improving the Quality . 82
5.4 Towards Real-Time . 83

5.4.1 The Idea . 83
5.4.2 Finding the Region of Interest . 86
5.4.3 Splitting Bounding Boxes . 87
5.4.4 Results . 88

5.5 Correctness . 90
5.6 Summary . 91

v

6 Conclusion 93
6.1 Summary . 93
6.2 Main Contributions . 94
6.3 Future work . 95

A Accessing the Source Code 97

vi

List of Figures

2.1 Overall architecture . 6
2.2 The Basler ACE camera . 7
2.3 Current camera setup . 8
2.4 Exposure times . 9
2.5 Fixing barrel distortion . 11
2.6 ZXY Sport Tracking technology . 12
2.7 Metrics of a soccer pitch . 13
2.8 Projection of ZXY 3D onto a 2D plane . 14
2.9 Visualuization of soccer pitch . 15
2.10 Transform rom ZXY plane to camera plane 15
2.11 Homography warping preserves lines . 16
2.12 ZXY points mapped to image points . 17
2.13 Stitching methods . 18
2.14 Homography stitching . 19
2.15 An interactive demo . 20
2.16 The new pipeline . 21
2.17 The new stitcher . 23
2.18 A web-based user interface . 23
2.19 Free-view . 24
2.20 The depth map pipeline . 26

3.1 The camera pinhole model . 29
3.2 The pinhole model details . 30
3.3 Barrel distortion . 31
3.4 Epipolar lines . 33
3.5 Image rectification . 33
3.6 3D real-world coordinate system of a chessboard 35
3.7 Chessboard corner detection . 36
3.8 Same intrinsics for multiple cameras . 37
3.9 Detectable lines . 38
3.10 Canny algorithm . 40
3.11 Canny operation parameters . 41
3.12 Sinus wave of line-families . 42
3.13 HoughLines detected lines . 43
3.14 Lines filtered by color information . 45
3.15 Reference model . 46
3.16 Warped reference model . 47

vii

viii

3.17 Superimposed reference model . 48
3.18 Homography based on slightly wrong points 49
3.19 Rectificaiton input . 55
3.20 Homography rectification . 55
3.21 Surf features . 56
3.22 Rectification using surf points . 57
3.23 Finding warp matrices . 60
3.24 Finding warp matrices using SURF . 61
3.25 Images warped using SURF-homography . 62
3.26 Panorama image . 62

4.1 Digital image . 63
4.2 A depth map . 64
4.3 Stereo camera setup . 66
4.4 Disparity . 67
4.5 Occlusion . 68
4.6 Flipping the input images . 71
4.7 Rectified lab images . 76
4.8 Block matching results . 77
4.9 SGBM on our lab data set . 78
4.10 Right and wrong rectification . 78

5.1 Chessboard at Alfheim stadium . 80
5.2 The Alfheim data set . 81
5.3 Background subtraction . 83
5.4 SGBM applied at Alfheim stadium . 84
5.5 Extracted disparity . 85
5.6 Player bounding boxes . 86
5.7 Boxes combined . 87
5.8 Bounding box splitting . 88
5.9 Calculating disparity for a sub-image . 89
5.10 Accurate disparity computation . 90
5.11 Inaccurate disparity computation . 90

Acknowledgments

I would like to thank my supervisor, professor Pål Halvorsen, and professor Carsten Griwodz
for guidance, proofreading and helpful suggestions. I would like to thank Ph.D. candidates
Vamsidhar Reddy Gaddam and Håkon Kvale Stensland for proofreading my thesis and provid-
ing helpful suggestions and encouragement. I would like to thank Luis Alvarez for explaining
their paper [16] in more detail over a series of email exchange. Thanks to Marius Tennøe,
Mikkel Næss and Espen Oldeide Helgedagsrud and Simen Sægrov who have also worked on
the Bagadus system, for great discussions. Thanks to my family for their support.

ix

Chapter 1

Introduction

1.1 Background

Many professional sports clubs analyze their games either manually with pen and paper or
using existing software analytics tools, or a combination of the two. The ability of the coach
to analyze the performance of the team, such as what the players do correct and how they can
improve their performance, is important for the success. In this thesis, we look at soccer as a
case study, but with modifications to our pitch model and such, other games such as ice hockey,
basketball, handball etc, can also be considered.

To reduce the time and effort the coaching crew has to spend on reviewing games, a step in
the right direction is using a computer system which can automate some of this work. However,
the existing software often still require much manual work, such as looking through large video
recordings of the matches.

As described by [32,47], numerous software systems already exist today. Interplay sports [6]
have been used since 1994, but require coaches or trained personnel to manually look through
the video material and note who makes a pass, who has the ball and so on.

ProZone [8] and STATS SportVU Tracking Technology [9] are systems that automates some
of the manual work by automatic tracking of players. However, these systems lack analytics
tools, and the STATS SportVU Tracking Technology uses only visual information to generate
the statistics such as player tracking and velocity information. Tracking all players based on
visual information is computationally expensive and sometimes relies on pure estimation in
cases when the tracked objects or players can not be seen because they are hidden behind other
objects or players.

Our system will be integrated with the ZXY Sports tracking [12], which offers a sensor-
system where every player carries a small sensor that transmits data such as the position of
the player to a nearby server. Thus, our system will track players much more accurately and
less computationally intensive compared to the systems using only visual information. ZXY
also provide our system with information not obtainable by cameras covering the pitch, such as
heartbeat statistics. It samples these data at a resolution of 20Hz, which we can present with
charts, 3D graphics and animations.

Camargus [2] is a system that delivers good video analysis, but lacks such statistics. By
positioning 16 cameras in a camera rack from a fixed position, it allows relatively smooth tran-
sitions from camera to camera. Virtual cameras in general, can be chosen at any 3D point and
orientation, and allows the user to move a virtual camera around in the scene. This can be useful

1

2

for the coach, if he want to see things from different angles, but it also offer a totally new way
for the consumers to watch soccer matches.

In summary, there exist several systems today, both with respect to features and perfor-
mance. However, to our knowledge there are no existing systems that fully integrate all the men-
tioned features. We have created a real-time analysis system prototype called Bagadus [32, 46]
in cooperation with researchers from Simula Research Laboratory, The University of Oslo,
The University of Tromsø, and ZXY Sports tracking [12]. The system is also integrated with
Muithu [37] to provide optional manual input from the coach. For instance, using Muithu, the
coach can tag events such as an attack using a mobile device. The event tagged by the coach
will then automatically be synchronized with the video system and be ready to be played back
at halftime. The system is aimed at being automatic, easy to use and integrated with both an-
notations, recording software, video processing and sensor-networks, with the latter providing
heartbeat, speed, position, and similar statistics from the players.

Our system will have digital zoom, the ability of tracking players based on sensor readings,
panorama view and single camera views covering all parts of the pitch, event annotations, player
statistics, free-view and more. The prototype is now deployed at Alfheim Stadium (Tromsø IL,
Norway). While most of the components in the system are already working, the free-view /
virtual camera functionality is a work in progress.

1.2 Problem Definition

As seen, Camargus can offer a free-view, which we currently do not have in our prototype. But
from investigation, we see that the Camargus system uses 16 cameras mounted in succession
side by side vertically and horizontally in a small camera rack. Not only is this very costly, but it
also narrows your free-view enormously. For instance, imagine a player standing in the middle
of the pitch, and the Camargus rig is capturing the pitch only with cameras in the camera rig in
front of the player. The system can not possibly know exactly how the scene looks behind the
player if no camera has any field of view in the area. Thus, rotating 180 degrees to get a view
of the stadium from the opposite side results in poor visual results as the system lacks data that
is covered behind the players.

Papadakis et al. [44] have investigated a more dynamic free-view or virtual camera, with
cameras further apart covering larger distances and angles, using 3D reconstruction. This in-
volves using depth maps to try to estimate the third dimension, and recreating the scene in 3D
space. Their results look good visually, however, according to their measurements, it takes be-
tween 5 to 10 minutes to process just 1 frame, using a NVIDIA GTX 280 graphics card and an
Intel Core2 Quad CPU. For our system to be real-time, it must be able to do this 30 times each
second. We will therefore measure our algorithms and investigate if we can do the steps fast
enough, by using less computationally demanding algorithms at the expense of accuracy.

In this thesis, we will present an overview of the Bagadus system, depth map generation
and the initialization and setup needed, with focus on real-time results suitable for a free-view
system applied for a soccer scenario.

Although our current prototype is working, it is far from dynamic at the moment. Some
modules such as the panoramic view generation and ZXY tracking is coded in a way that only
works with the current setup. Even slightly moving a camera from its original position will
cause the system to produce wrong results, and a new calibration, coding and recompiling

3

of the system will be necessary. As such, we will also apply several utilities discovered and
implemented for the initialization of the free-view application, to the original system to aid in
easy setup and a more dynamic and mature system.

1.3 Limitations

To create a working good quality free-view application that runs in real-time and is easy to
install, is very complicated and will likely be too much for a single master’s thesis. We will
focus on the initialization and setup of the system, and depth generation suitable for a free-view
application.

Banz et al. [17] implemented a less computationally depth estimation technique based on
stereo vision, which performs at 27 frames per second (FPS) for 1024×768 pixel images on an
Nvidia Tesla C2050 GPU. GPU processing like how Banz et al. implemented could definitely
help the system handle larger images, and more expensive and more recent cards might perform
at real-time, since Banz et al. were close to real-time with 27FPS.

We will only consider CPU optimization in this thesis, as the implementation of Banz et al.
performed at less than our real-time threshold, despite running on an expensive GPU card, so
achieving better results will likely be more time consuming and more expensive than what a
masters thesis can cover.

We will present all the individual components of the pipeline and show that they can run
real-time, but the implementation of a pipeline where all the modules are integrated, is also out
of scope due to time limits. Although we mention free-view systems and offer some thoughts
on it for the future, the main focus of this thesis is the depth map generation and initialization
of the system.

1.4 Research Method

Our research method for this paper will be the design paradigm method of the ACM classifica-
tion [25]. We will create a design and implementation of a prototype which then is tested and
evaluated. The system will be tested both in our lab environment and on an actual soccer pitch;
Alfheim Stadium in Tromsø.

1.5 Main Contributions

In this thesis, we give an overview of the Bagadus system and investigate real-time depth map
generation suitable for a soccer free-view application, although it can be applied to other sports
such as ice hockey, basketball and handball as well.

We will present a pipeline for generation of depth maps with an automatic and a manual
approach for calibrating and initializing the pipeline. The individual parts of the pipeline will
be implemented, and we offer some thoughts on how to make it real-time, but we will not
integrate all the components into a working real-time pipeline.

Since the initialization and calibration for the depth estimation closely resemble the needs
for the calibration for the existing Bagadus system, we will also apply our solutions to the

4

Bagadus system to help initialize its tracking system and panoramic view stitching. The cali-
bration and applications for the existing prototype are tested at our system deployed at Alfheim
stadium.

The calibration is made less cumbersome, by reading parameters from a configuration file
and saving the output to a file in the XML format, allowing other applications such as a free-
view or the existing Bagadus system, to read them easily.

The system is tested on data sets captured in the lab for optimal lighting conditions, posi-
tioning and ease of calibration, as well as being tested on a data set captured at Alfheim Stadium
to test the system in a realistic setting with respect to lighting conditions and the long distance
between the cameras and the players on the pitch. We will time each individual component to
determine its real-time capabilities and efficiency, in addition to judging visual results mostly
based on visual inspection. Since we are using our down data sets is it difficult to give numeri-
cal performance measurements with respect to visual quality and correctness. However, we will
use existing depth estimations that are well explored.

Because the disparity decreases over distances, we compensate for this by increasing the
distance between the cameras.

By splitting the original image into sub-images centered around the players, we show that
the individual depth maps is calculated at 32ms, within our real-time constraint, for sub-images
of sizes up to roughly 442× 331 pixels. We show that the players depth can be estimated with
an accuracy of roughly few meters. To increase the accuracy of the depth estimation a lens that
gives more pixels per square meter or a higher resolution camera is required.

1.6 Outline
In chapter 2, we present an overview of the current prototype deployed at Alfheim stadium,
its main functionality, and the overview of each of its subsystems such as player tracking,
panoramic view, video capture, analytics subsystem etc. We also cover the most recent ad-
vances, such as the real-time pipeline. We discuss the free-view functionality, why it is needed,
and outline the first steps for an implementation.

In chapter 3, we investigate different methods for calibrating and initializing the system to
enable depth map generation. Solutions that can easily be applied to solve initialization and
calibration for the original Bagadus prototype will also be covered here.

In chapter 4, we give an overview of what depth maps are, and how to calculate them, with
the focus on stereo vision. Based on the results of [28] we investigate how the most promising
depth estimation algorithms we have available with respect to speed and accuracy. We will
apply these algorithms on our own data sets captured in the lab for optimal calibration, with our
own calibrated system to verify the correctness and performance of our system.

In chapter 5, we investigate possible ways of optimization to make the depth map generation
real-time for our free-view purposes. We will apply the algorithms to soccer related data sets to
test our system in the field.

Finally, in chapter 6, we discuss our main achievements and future work.

Chapter 2

The Bagadus System

In this chapter, we will give a brief overview of the Bagadus system and the prototype deployed
at Alfheim Stadium. In particular we will focus on the areas where we can apply initialization
and methods learned from the work with setting up the depth estimation system later on.

2.1 The Basic Idea
Sports analytics have become more and more important with the recent years. Unfortunately,
many of the existing systems require much manual effort to integrate the information from all
the different systems like expert annotations and video system. A full analysis might not be
finished until several hours after the game is finished. Bagadus [32, 47] is developed as part of
the iAD-project [5], and aims at integrating video, analytics, tracking, and annotation systems.
Also, the processing of the data should be done in a real-time fashion. Because of both limited
funding, the challenge of it, and the potential usefulness of a low cost system, we will not be
using very expensive hardware. Our system aims at offering the following functionality:

• Video recording

• Tracking of players

• Panorama and single camera views

• Digital zoom

• Automatically show video footage from a selected annotated event

• Other features are in development, such as a free-view functionality

As seen in figure 2.1, the Bagadus system is integrated with the ZXY Sports Tracking sys-
tem, explained in detail in section 2.5, which we name simply ZXY in this thesis. ZXY got
sensors on all the players transmitting location and other information, and inputs the informa-
tion from the sensor-belts into a dedicated database.

Bagadus is also integrated with the Muithu system, explained in section 2.2, which is a novel
notational analysis system, allowing the coach to manually tag events in classes such as attack
or defense, and the players involved. The data from Muithu is being sent to a separate analytics

5

6

October 2011 University of Oslo

Second Alfheim Setup

Camera switching - view

Panorama - view

synchronized
camera array

sensors

expert
annotations

antenna

antenna

antenna

antenna

panorama pipeline

single camera pipeline video
system

analytics system

sensor system user interaction and retrieval

Figure 2.1: Overall architecture [32]

system, and the timestamps, type of event and involved players can be queried by the Bagadus
system.

We use four cameras with wide angle lenses, covering the entire pitch, including areas of
overlap to allow seamless stitching or transition between cameras. We generate both a panorama
video of the whole pitch, and the separate four views. The video is also processed in a pipeline
fashion and saved to disk.

A front-end system can then read data from all of the three systems, and create a real-
time analytics system with the features previously described. The idea is then that the coach
can use the system, with the annotations/events being ready to play with the click of a button,
eliminating the need to manually search through the video. The two screenshots to the right in
figure 2.1 shows a prototype front-end graphical user interface (GUI), running on Linux.

According to [14], television and cinemas have used a frame rate of 24 and 30 frames per
second (FPS) for a long time. Our system delivers 30 FPS, on par with common television and
cinema standards. This means we have 1000ms

30frames
= 33.33ms to process one frame. Real-time

in the context of our system means processing the data associated with a set of frames from
the cameras within the 33.33ms real-time constraint. However, we do accept an initial delay of
approximately 2 seconds, so that our system can have a latency of some seconds after the real
world events, due to buffers and pipeline components being initialized. Imagine pouring water
through an empty water pipe. Initially, it will be some delay, but once the pipe is flooded, it will
arrive at a constant rate.

7

2.2 Analytics Subsystem

Muithu [37] is a system allowing coaches to tag events, such as when a player is making an
attack, a good defense, and so on. The coach tags these events by clicking on the involved
players icons on an app on his smart phone, and the system saves it in a database. It is developed
by the University of Tromsø, but integrated with the Bagadus system through our front-end
system. When the coach wants to show the corresponding video material, all he has to do is
to click on the event-button showing up in the Bagadus user interface, and it will automatically
play the video material, tracking the involved players inside a tracking box and showing the
correct camera footage.

2.3 Video Capture

In our current setup at Alfheim stadium, we use four Basler acA1300 - 30gc cameras [1], seen
in figure 2.2. To cover the entire pitch with 4 cameras, including some overlap for stitching
the images to a panorama, we use Kowa 3.5mm wide angel lenses. The cameras have a max
resolution of 1289 × 964 pixels, a frame rate of 30FPS, and delivers images in the format
YUV4:2:2P. In YUV4:2:2P [14], Y is the luma, and UV is the chroma components. 4:2:2
means we use chroma subsampling, sampling the two chroma components less often than the
luma component. The standard considers the number 4 to represent the full sampling, while 2:2
means we sample the two chroma values at half resolution than what they used to be. This means
that we loose some chroma resolution. However, the human eye is less sensitive to chroma than
luma, in fact, the human eye can not even see the full 4:4:4 resolution chroma. The gain by
using 4:2:2 is that we reduce size of the images, and therefore the bandwidth usage between the
cameras and the computer, by a factor of 4∗height∗width+4∗height∗width+4∗height∗width

4∗height∗width+2∗height∗width+2∗height∗width
= 2

3
. For the

interested reader, see [47] for a more in-depth explanation.

Figure 2.2: The Basler ACE camera [1].

One of the selling points of the system is that it should require as little manual work as
possible. As such, we do not want to require the operator to setup or control the cameras during
the game, it should be enough to press a start and stop button. We offer this functionality by
covering the entire pitch with the 4 cameras, so that manual control or setup of the cameras is
unnecessary once the cameras are correctly deployed. They should ideally be positioned with
equal spread along the width of the pitch, to cover the most ground, and maintain the same

8

angles. However, because our trigger boxes (explained in section 2.3.1) have a limited cable
length, we had to use the camera setup as seen in figure 2.3.

The cameras are currently connected in pairs to two computers. The computers have the
following specifications: “Intel Core i7-2600 @ 3.4 GHz, 8 GB system memory and NVIDIA
GTX 460 graphic card”. As suggested in previous work [47], we later managed capture footage
with all four cameras connected to a single computer of the same specification without frame
loss at 30FPS using an Intel Server Adapter i350-T4 with 4 network interfaces.

Figure 2.3: Our current camera setup [47].

2.3.1 Synchronization
Making a panorama image out of several independent images captured at different viewpoints
is an important goal of the Bagadus system, giving an overview of the entire pitch in a single
high resolution image, eliminating the need to change the active camera view depending on
which part of the pitch should be visible. It is imperative that our cameras capture the images
at the exact same time. Without such synchronization, the different images do not correspond
to the same point in time. As players are often moving very fast, even a minor difference in
the capture time might introduce visual abnormalities like a player appearing at two locations
at once, if he is running in the overlapping area of the two cameras. As such, we need a shutter
level synchronization on the cameras. This is achieved by using an external synchronization
device we will refer to as the “trigger box”, developed at Simula Research Laboratory. The
trigger box is connected to all four cameras, sending a signal arriving at the same time at all
the four cameras signaling when to capture an image. The trigger box allows for adjusting
the wanted rate of signals being fired each second, directly corresponding to our wanted FPS.
The trigger boxes can also be wired together, supporting more than just four cameras. The old
setup did as mentioned make use of two separate machines to capture data, as one machine was
not sufficient to calculate everything in real-time, due to limited hardware. Even though the
cameras have been synchronized, the frames arrive from the cameras without any timestamp
data. Knowing when a frame was captured is useful in synchronizing with the ZXY database,
which is a separate system operated by the ZXY Sport Tacking company. Because the system

9

initially lacked a reliable Internet connection, utilizing the Network Time Protocol (NTP) [26]
was not considered. The synchronization of the two computers was done by using the “Time-
CodeServer” [47]. The TimeCodeServers implementation is based on the well known Berkley
algorithm described in [31]. However, we later got a fast Internet connection to the stadium,
and we thus started using the NTP instead, as it was less error prone and easier to use than the
TimeCodeServer.

2.3.2 Software
The cameras come with their own C++ SDK called “Pylon SDK”. The SDK allows controlling
a vast range of camera functions such as auto exposure, white balance, frame rate capture,
resolution, and more. The auto exposure is of special interest. The exposure time control for

Figure 2.4: Images of Greenwich, taken at different exposure times [27].

how long time the camera allow light into the senor. As seen in figure 2.4 we see that a longer
exposure times increase the amount of light in the image. The lighting conditions in Tromsø
vary greatly, from dark winter days to bright summer days. The auto exposure could therefore
help maintain a somewhat constant illumination.

The Pylon drivers and SDK also comes with a handful of executable applications such as
a configuration tool for the camera IP (ZeroConf and DHCP), and a “Pylon viewer app” that
allows us to capture an image or show the live feed from the detected cameras. However, for
capturing movies or using the data in any other way, we needed to use the Pylon SDK and create
our own recorder. This was done previously by [47]. The recorder takes as input parameters the
URI of the camera to record with, when to start, for how long to capture video, wanted FPS,
resolution and so on. The output is the frames, compressed and encoded in the H.264 encoding,
in 3 second segment files. The 3 second segmented files allow our front-end application, that
displays the results, to easily seek in the video.

2.3.3 Compression
With a resolution of 1294 × 964 pixels, and three 8bit channels, every frame requires approx-
imately 3.74MB. However, since we are using YUV4:2:2P with chroma subsampling, every
frame will then require approximately 2.5MB. Considering we have four cameras, and a frame
rate of 30FPS, we will produce 2.5 × 4 × 30 u 300MB/s. For a game of 90 minutes, which
is the length of a standard soccer game, it would require 1620GB. In addition we would like
to save the panorama image, which is roughly the same size as the 4 cameras combined (a bit
less, due to cropping and overlapping regions). To require more than 3TB of disk space for one
single match, we need an elaborate storage system for anything more than storing a few games,
increasing both hardware costs and ease of use. Even if we downsample to YUV4:2:0 instead
of YUV4:2:2, we loose even more chroma resolution, but reduce the data size by 1

2
, requiring

10

1.2TB for the four individual cameras, and a bit less for the panorama. It is still too much,
so we employ both image and video compression when saving the results to disk. To reduce
the bandwidth and disk usage, we encode the data as H.264, using the x264 library [11]. In
short, the H.264 video compression codec takes advantage of the many types of redundancy in
a video. Every frame contains too much chroma for the eye to see as mentioned (psychovisual
redundancy), and this can be subsampled. Pixels are often very similar to their neighbors, so by
using the difference from the last pixel instead of the value it self we get many similar values,
which will in turn be run length encoded. Then, there are redundancies in between the frames
themselves, as frames are often very similar when capturing at a rate of 30FPS. H.264 uses
some frames stored as an independent image, called intra coded frame (i-frame). Then, there
are predicted and bi-directional frames, which depend on the differences between the frames,
meaning it needs data from the previous and future frames.

When watching a video, using the seek function and for a brief moment see just black
gibberish, it is because we are processing p-frames and bi-directional frames. Without having
the original i-frame for the sequence, the relative differences in the p-frames and bi-directional
frames have no meaning. Once you hit the first i-frame, the quality looks fine again.

For a more detailed explanation of H.264, see [47]. Using H.264, storing 30 frames takes
roughly 3.23MB using lossy compression, compared to raw YUV4:2:2 which require approxi-
mately 112MB.

2.3.4 The Northlight Library

The codebase for our project was based upon the Verdione project [10], a large project focusing
on real-time video processing. We use many different libraries. Many of them will be covered
later, but examples are x264, the Basler SDK [1], and OpenCV [7]. The Northlight library [47],
contains functions for converting in between different representations that the different libraries
uses, and was aimed to integrate the different libraries. We mainly use it for converting between
image formats, x264 wrappers, and the Basler SDK. In particular, our recorder software makes
use of the Basler camera function wrappers provided by Northlight.

An alternative to the YUV representation is the red, green and blue (RGB) representation,
where every pixel is represented by the three additive primary colors. As mentioned, the cam-
eras deliver YUV4:2:2P, where one sample of chroma represents two pixels. For this reason, and
the fact that it is easier to manipulate RGB values, we convert YUV4:2:2 to RGBA at the begin-
ning of the pipeline, right after reading the data from the camera. The reason for not going for
RGBA from the camera it self is that the network bandwidth between the camera and our com-
puter is limiting. At the moment, Northlight does not support conversion between YUV4:2:2P
and RGBA, so the way it is solved now is by converting from YUV4:2:2P to YUV4:2:0P, and
then from YUV4:2:0P to RGBA. The extra conversion step is fast and does not cause any prob-
lems in the current system. However it consumes some of the CPU resources, and some chroma
accuracy is lost for no reason. In the future, it would be beneficial to develop or make use of a
library supporting YUV4:2:2P directly to RGBA.

11

2.4 Image Undistortion
Because we use inexpensive and wide angle lenses, the image becomes distorted. In figure 2.5,
we see how straight lines get bent in the image. What is happening is that the magnification
decreases the further away from the optical axis you go. This particular distortion is called
barrel distortion, because straight lines gets bent like how straight lines at a barrel do. Because

undistortion

Figure 2.5: Fixing barrel distortion. Note the distorted lines in the left image

wide angle lenses use this effect to their advantage for capturing a wider view, our images will
suffer heavily from this kind of distortion. However, the distortions can be corrected using
functions provided by OpenCV. For a more detailed explanation, see chapter 3.

2.5 Tracking Subsystem
The Bagadus system is able to track players, using the ZXY sensor tracking system. Tracking
in the context of our system means to locate where on the pitch a player is located, which
cameras includes this position in their field of view, and which pixel corresponds to the player
coordinate. This allows us to automatically zoom and follow a player close up with digital
zoom.

ZXY is in use by professional Norwegian soccer clubs like Tromsø Idrettslag (TIL) and
Rosenborg Ballklub (RBK). Each player carries a belt around the waist with a small sensor
chip, which does not affect the performance of the players in any negative way. It uses wireless
communication, and conforms to the IEEE 802.11 standard. Receivers are then mounted at
different locations in the stadium, tracking the sensors sending the positions to a ZXY database,
as illustrated in figure 2.6. Besides positional data, it also registers data such as heart rate and
acceleration, but the positions are the most interesting for us.

The ZXY sensor tracking system use a coordinate system with the origin located in a pitch
corner, in the case of our prototype at Alfheim stadium, the origin is located at the lower left
corner as observed from the camera rig, which we will call the ZXY coordinate system. To
obtain the ZXY coordinates of a player, we make queries to a database system storing the data
being sent from the sensors on the players.

12

The prototype uses an early version of the ZXY sensor system [12], which delivers tracking
information at a rate of 20Hz. This is less than our video sampling, which means we sometimes
reuse the last received ZXY data. However, judging by the visual quality, this problem is barely
noticeable, if at all. However, according to the ZXY web page, they are now able to deliver a
resolution of 40Hz, so in any case this is no longer a problem, if the system were to be installed
at another stadium, we could choose to install the ZXY system capable of 40Hz instead.

Figure 2.6: ZXY Sport tracking technology [12].

2.5.1 Data and Queries

The data is stored in a relational database, optimized for high import and export.This database
is separate from the Bagadus video system, but is integrated by allowing us to login to it and
do normal SQL queries for the data we want. ZXY use the Sybase SQL Anywhere as their
database management system(DBMS), which offers a C interface, which we use for minimum
overhead. The database contains a table mapping the player names of each team to the ID of
a belt. This table must be manually maintained. To get the positions of a belt/player within a
time period, one can use a SQL query such as this:

Listing 2.1: Get all positions of player with id tagId and in between the time intervalStart
and intervalEnd

SELECT t imes tamp , x_pos , y_pos
FROM zxy_ove r sample
WHERE t a g _ i d = t a g I d
AND DATEFORMAT(t imes tamp , ’ yyyy−mm−dd hh :mm: s s . s s s ’) >=

DATEFORMAT(’ " + i n t e r v a l S t a r t + " ’ , ’ yyyy−mm−dd hh :mm: s s .
s s s ’)

13

AND DATEFORMAT(t imes tamp , ’ yyyy−mm−dd hh :mm: s s . s s s ’) <=
DATEFORMAT(’ " + i n t e r v a l E n d + " ’ , ’ yyyy−mm−dd hh :mm: s s . s s s
’)

ORDER BY t imes t amp ;

Other interesting queries could be to look for all cases where the x_pos and y_pos of any
of the sensor belts are within the 18-yard box of the pitch, See figure 2.7. By such a query we
could fully automate interesting events happening. Other examples are corners, time periods
when the players are clustered or very far apart. But for the system overall, the most interesting
data is the positions them selves, as they can be used to track the players.

2.5.2 Coordinate System

The x_pos says where the player is along the x-axis, which is defined to go along the line
of the longest of the pitch dimensions. The y_pos is then the axis that goes parallel to the
shortest of the pitch dimensions. One of the corners are chosen as the (0,0) origin. The ZXY
coordinates are in other words a Cartesian coordinate system of the pitch, seen from a birds eye
perspective, given in meters. If the pitch is 105m wide, and 68m long, then the center would be
at ZXY coordinate x_pos=52.5 and y_pos=34. Since the ZXY uses the actual sizes and metrics

Figure 2.7: The meterics of a soccer pitch [23].

of the pitch as its coordinate system, we can easily assign certain points in the pitch, to ZXY
coordinates, such as the corners, and points where the white lines intersect. For instance, the
lower left corner as seen from the cameras in Alfheim stadium is the origin (0,0).

14

2.5.3 Synchronization
As previously mentioned, NTP was not an option for synchronization in the beginning of the
project. Our initial way to solve it was manually synchronizing timestamps from ZXY to our
own video frame timestamps, typically by finding the time difference between the ZXY times-
tamp for the start of the match, and when we see it starting in the video. This is a cumbersome,
error prone and manual process, which we fixed later on by coordinating with ZXY to use the
same NTP server, allowing us to assume our own video frame timestamps equals the timestamps
from ZXY, given sufficient synchronization on a local area network (LAN).

2.5.4 ZXY to Camera Coordinates
The biggest challenge we had in tracking was mapping the ZXY coordinate system to the cam-
era coordinates. Each camera will need its own individual mapping. If we were to move the
cameras, they would need a recalibration. Luckily, once the system is installed, the cameras can
stay stationary, since our current setup covers all of the pitch. The ZXY coordinate system can
be viewed as a plane, by applying a projection onto a cardinal axis. [30], as seen in figure 2.8.
A projection is simply a dimension reducing operation, like we are projecting a 3D space onto
a 2D space. In our case, we do this simply by omitting the Z dimension. For instance, the ZXY
coordinate (20,50,0) becomes just (20,50). This is fine, as we are assuming the pitch to be a
plane, with all points of the pitch located at Z=0.

x

y

Figure 2.8: Projection of ZXY 3D onto a 2D plane

The camera coordinate system also be seen as a plane, with the number of pixels being the
metrics, and x and y being the two dimensions in the captured image, as seen in figure 2.9.

Thus, to track a player by finding roughly which pixel in the captured image that corresponds
to a ZXY player location, we define a function transformZXY (xz, yz), such that if (xz, yz)
is a location in the ZXY plane, and (xc, yc) is the corresponding point in camera space, then
transformZXY ((xz, yz)) = (xc, yc), this is illustrated in figure 2.10.

To find the transformZXY function, we use the open source computer vision library OpenCV [7].
OpenCV contains a functions aimed at solving computer vision tasks, including mathematical
calculations. The function maps a plane to another plane. OpenCV has functions to calculate a
homography [33], which is a transformation that maps straight lines to straight lines (see figure
2.11), described by a 3x3 floating point matrix. The homography is the concept of transforming
the image, while the 3× 3 matrix represents the transformation in a compact way. In this thesis

15

Visualized pitch plane, as
observed from the camera

y

x
Camera at Alfheim

Figure 2.9: Visualization of soccer pitch plane seen from cameras

x

y

Visualized pitch plane, as
observed from the camera

y

x

TransformZXY(x,y)

Figure 2.10: Transforming from ZXY plane to camera plane

we will from now on just refer to the matrix it self as a homography matrix or just a homog-
raphy. It is also called perspective transform, because it changes the perspective of the image.
In our case, we want to change the perspective from a top-down birds eye perspective, to the
perspective of the camera. Equation 2.1 shows the components in a homography.

H =

h11 h12 h13
h21 h22 h23
h31 h32 h33

 (2.1)

The homography is defined such that if the matrix representing it is H , and a desired trans-
formation function is h, thenh(x) = Hx.

If we assume for a while that we have already computed the 3x3 homography H , then a
pixel/point in the original image can be mapped to a pixel/point in the target image as seen with
the new perspective, given the following function [7]:

dst(x, y) = src

(
H11x+H12y +H13

H31x+H32y +H33

,
H21x+H22y +H23

H31x+H32y +H33

)
(2.2)

This is in fact a matrix multiplication, since we are working with homogeneous coordinates [33].
If we define a 2D point (x,y) to be equal to a point (x,y,1), and further, any 2D point (x,y) is
equal to a point (kx, ky, k), then we can translate from (kx, ky, k)→ (x, y, 1) by dividing by k:
(kx, ky, k)→ (x/k, y/k, k/k). All our points are originally defined to be on the form (x, y, 1).
But after the matrix multiplication, the third matrix component is (H31x + H32y + H33 ∗ 1)
which is why we divide by this sum. As such, a homography is a 3x3 matrix such that given a

16

collection of points xp from the original image, and a set of corresponding points x′p from the
other image, a 3×3 matrix H will be defined such that xpH = x′p. This has several uses. One is
that we can multiply 2D points with 3x3 matrices, allowing translation, skewing and rotation.
Another use, is that we can represent points at infinity, by (x, y, 0).

Figure 2.11: Points A,B,C,D are mapped to A’, B’, C’, D’ by a homography [53].

To change the perspective of the entire image, we need to do this to every pixel in the
original image. If every pixel in the source image is mapped to the destination image using this
function, we say that we have warped the image. Note that when warping images, we also need
to do interpolation, which will be explained in section 2.6. In this specific case, we only need to
transform the ZXY coordinate to the camera coordinate, by applying equation 2.2. Our function
transformZXY would thus take the x,y of the ZXY coordinates as input, and apply equation
2.2, using a calculated homography H . The output will be the corresponding point/pixel in the
image taken by the camera. We can then for example draw tracking boxes around the players in
the video by applying the transform function on the ZXY-point for the players we want to track,
for every frame, and painting a rectangle around the transformed points. Because the cameras
do not move, we only need to calculate the homography H once for each camera. This can
be done as a calibration step, offline before the game, with no real-time constraints. However,
since every camera shows the pitch from a different angle and position, we need a different
homography for each individual camera. The average time to perform these calculations on our
machines are less than 0.5ms, far below our real-time constraint.

2.5.5 Finding the Homographies
To find the homographies, we use the OpenCV function findHomography. As mentioned ear-
lier, this step can be done offline (not during a match) as an initialization step, and it only needs
to be done once, unless the camera is moved. It takes an array of selected 2D points in the
original plane, and a list of the corresponding 2D points in the target plane. From these points
it calculates the homography that will transform the original plane points, to the target plane
points. The (3,3) component of the homography is a scale parameter, much like the last com-
ponent of the homogeneous coordinates, thus the homography has eight numbers that can vary
that we need to find, another way to say this is that it has eight degrees of freedom. Every point
has two constraints (x and y), so that four points is enough to estimate the homography. For the
interested reader, the details on how the algorithm works is described by OpenCVs documen-
tation and source code [7] and [33]. The original plane will in our case be the ZXY plane, and
the target plane is the plane as seen from the cameras.

17

Since we know the locations of all the intersections of the white lines in the pitch, based on
standard soccer metrics (see figure 2.7), and that Alfheim is 105m wide and 68m long, we can
calculate all the known ZXY / real-world birds eye intersections of the white lines in the pitch.
To find the corresponding points in an image captured by a camera, we zoomed in at maximum
with an image editor like Gimp, to find the corresponding pixel coordinate of the intersection.
Figure 2.12 shows an example of corresponding points.

Figure 2.12: ZXY points mapped to image points [47].

2.5.6 Finding the Correct Camera
When we track a player, we would like our system to figure out in which camera the player
is visible, and automatically show footage from this camera. In addition, if the player moves
out of the cameras field of view and into another, we would like the system to automatically
switch to the new camera. To find out in which cameras a given player is visible, we transform
the ZXY coordinate of the player with our function and the homography H of that camera.
We then observe the transformed point is outside of the image boundaries, meaning x must be
within [0,imageWidth] and y must be within [0, imageHeight]. If either the x or y value is
outside ranges, it means the player is not visible in the given camera.

2.6 Panorama Creation
To create a panoramic view of the entire pitch, we need to stitch the photographic images from
each of the four cameras together to a single panoramic view. To stitch the images means the
process of combining multiple images into a segmented panorama or high resolution image.
Since we are working with video, we have to do this for every set of matching frames from the
four cameras, meaning we have less than 33.33ms to do the stitching, in order to do it in real-
time. Stitching involves “image registration” and “compositing” [7]. “Image registration” is to
locate overlapping regions between the images, and find common feature points within these
areas. “Composition” is to warp the images as described in section 2.5, based on the common
features points found, find the seam masks and blend the seams. However, note that the warping
of the images can be done with more than a homography.

18

(a) Planar stitching [47]

(b) Spherical stitching [47]

(c) Cylindrical stitching [47]

Figure 2.13: Different stitching methods

Figure 2.13a shows an example of a panoramic view of Alfheim stadium, created using
OpenCVs Automatic stitcher functionality, using planar projection. Figure 2.13b and figure
2.13c shows spherical and cylindrical projections respectively. These are created using map
projections, where the image plane is wrapped around a real-world 3D object like a cylinder or
sphere. While these methods yield quite visually appealing results, they perform far from our
real-time constraint of 33.33ms, as seen in table 2.1. One reason for this is that the OpenCV
stitcher performs functionality such as blending pixels of the overlapping image together, find-
ing seam masks, color correction of the images and more.

Homography stitching. Thus we chose a more manual stitching method, based essentially
upon the same idea as the mapping from ZXY to camera space, as in section 2.5, only now
we are warping images to fit a common image plane, simply selected to be one of our camera
perspectives. In figure 2.14, we see how we stitch the images together by warping them to fit
the second camera from the left, by first warping them and then padding the images until they

19

Image Execution time
Algorithm resolution (ms per image)
OpenCV Planar projection 12040x3051 14103
OpenCV Cylindrical projection 9275x1803 4900
OpenCV Spherical projection 2371x1803 1746
Homography stitch 7000x960 974

Table 2.1: Stitching characteristics [32].

overlap. We do not use blending of the overlapping pixels, instead we do a simple static cut
bottom to top, at a given width of the image. Like with the ZXY→camera homography, we only
need to find it once, unless the camera is moved out of position, same goes for finding where
to cut the images (deciding when to stop using the leftmost image, and when to start displaying
the rightmost image in the area of overlap). Thus, the operations that have to be executed in
real-time are only the warping and a series of memcopy operations. In table 2.1, you can see
that our homography stitch is executed in 974ms, which shows potential to be real-time with
further optimizations.

Figure 2.14: Homography stitching [47].

To find the common points for the homographies, we use the exact same method as in
section 2.5, opening the images in an image editor like Gimp, zooming in and manually locating
corresponding feature points, and using them to create the homography with OpenCV. As for
the seam, it is found by aligning the images in an image editor and testing where to cut the

20

images along the x-axis by trial and error. In chapter 3, we will present a more automatic
approach.

2.7 A Front-End Demo

A demo application that integrates the features discussed has been implemented, and is featured
in [47]. It plays the video footage captured at a frame rate of 30FPS, both footage from the single
cameras and a stitched panorama video, allowing the user to manually select which camera to
show footage from, or to show the panorama video.

It supports tracking of players, drawing a white box around each player. Everything is done
real-time in the demo, except the panorama video stitching, which was done offline and stored
for the demo purposes. However, in the current system, panorama video stitching has been
made a real-time process.

You can zoom using the current tracked player as the center of focus, or track multiple
players at the same time. It also features automatic switching if the player runs outside of the
current camera, as well as automatically forwarding or rewinding to the time of events tagged
by the coach, tracking the players involved in the event.

A screenshot of the demo can be seen in figure 2.15, and a youtube video of the demo can
be found at 1.

Figure 2.15: An interactive demo, integrating ZXY, Muithu and our video system [47].

1http://www.youtube.com/watch?v=1zsgvjQkL1E

21

2.8 The new Bagadus Video Pipeline
While the Bagadus prototype had functioning components, they did not run within our real-time
constraint, when applied in sequence, on a single CPU core. [34, 43, 49] have been working
on pipelining the individual steps, so that they can run in parallel. In addition, not all of the
subsystems, such as the panorama creation, were fast enough, even when timed individually.
To offload the CPU, and increase the performance, the panorama warping and stitching were
implemented to run on the GPU.

Figure 2.16, describes the new Bagadus video pipeline, with the modules listed along the
columns, and the rows representing different frames(and thus also time) , with a new frame
arriving every 33.33ms. Every 33.33ms, the frame in every module is passed on to the next
module, where every module runs in parallel on different cores, utilizing both the GPU and
CPU. When adding all the sequential modules, we get far more than our real-time constraint of
33.33ms, but because we are pipelining, and running the modules in parallel, the system stays
real-time. After 11 frames have been processed, the all the modules are processing a frame, and
a new frame is written to disk every 33.33ms, by the panoramaWriter module.

Figure 2.16: The steps needed for storing video are pipelined. The blue CPU bar is the old
prototype, and the green GPU bar is the new pipeline

2.8.1 The Components
The components of the video pipeline are mostly the ones we have discussed earlier in this
chapter, with a few additions and modifications. The following is a short list describing the
modules of the list:

Cam-reader (CPU)
Accepts synchronized frames from the cameras, and stores them in a small input-buffer

Converter (CPU)
Converts the images to RGB, as explained in section 2.3.4.

Debarreler (CPU)
Removes the geometrical distortion from the lens, as explained in section 2.4.

SingleCam Writer + Uploader (CPU)
Writes the frames from each individual camera to disk, encoded using H.264. It also
uploads each frame to the GPU for further processing.

22

BGS (GPU)
This module performs background subtraction, using differences in between video frames
to separate the objects in the scene, into background and foreground. The foreground
represents moving objects, typical objects of interests such as the players. The foreground
is separated from the background with a mask. For more information, [49], and our usage
of the BGS in chapter 5.

Warper (GPU)
Warps the images onto a common plane, so that they are aligned for panorama stitch-
ing. This part was optimized by [34, 43], which implemented a stitcher integrated in the
Bagadus system, running real-time utilizing the Graphics processing unit (GPU), through
the NVIDIA Performance Primitives library, as seen in figure 2.17.

Color corrector (GPU)
[43] implemented a color correction application, looking at the differences of intensity
between two overlapping areas of image pairs, and adjusting the global image intensities
so that the images have a similar intensity. This makes the end result of stitching and
free-views more visually appealing, and the stereo correspondence algorithms look for
corresponding intensities.

Stitcher (GPU) The old prototype used static cuts in the images, sometimes cutting through
players, which results in distortions since the warping is not perfect. [34] implemented
a dynamic stitcher, searching for a path through the image which does not hit a player,
using both color information, and the foreground masks from the BGS, to find a more
optimal seam.

Yuv-converter (GPU) [43] implemented an RGB-to-YUV converter on the GPU, because of
the large size of the panorama images.

Downloader (CPU) Downloads the processed video frame from the GPU back to system mem-
ory.

PanoramaWriter (CPU) Writes the images back to disk, using encoded with H.264.

2.8.2 The Interface
In the earlier prototype, the components of the video system were not integrated. To record a
match, we had to start a recorder for every camera, which saved the raw footage to disk. The
footage would later be processed manually by an application for removing the barrel distortion,
and then through another application, which warped and stitched the frames into a panorama
video. This requires much input from the user, and assumes the user to posses quite technical
skills.

To increase the process more user friendly, the new video pipeline offers a web-based user
interface, for starting and stopping recordings, pictured in figure 2.18. Using the web interface,

23

Warper Stitcher Converter
0

100

200

300

400

500

M
e
a
n
 t

im
e
 (

m
s)

GPU (GTX 680)
CPU (i7-3930K @ 4.4Ghz)
Real-time threshold

Figure 2.17: The new pipeline: The results from the new stitcher show a clear improvement,
compared to the old CPU based pipeline

Figure 2.18: A web-based user interface for starting and stopping recordings

the user can schedule recordings to start at a chosen time, or recordings can be canceled. Since
the pipeline now integrates all the modules, the user only need to interact with the web interface,
and the pipeline takes care of the rest, all within real-time.

2.9 Future Development: Free-View
Although it is out of scope for this thesis, the goal for the Bagadus system is to at some point
in the future be able to offer a free-view or virtual camera functionality [44] [28]. We will use
the terms free-view and virtual camera interchangeably. A videos viewpoint is usually fixed,
usually at the position and heading of the single camera capturing the footage. In free-view, we

24

use several cameras to capture the scene from different positions and angles, allowing the user
to change the position and orientation of the viewpoint. Further, the viewpoint is not restricted
to one of the physical cameras in the scene. The goal of the free-view is to allow the scene to be
seen a arbitrary point and angle in 3D-space, not necessarily a physical camera, but somewhere
between two physical cameras. Thus, we will recreate the scene as seen from a virtual camera
using information from the real cameras. Figure 2.19 shows four cameras and an example

P

Virtual camera

Figure 2.19: A free-view demonstrated by a virtual camera

virtual camera view, as well as the results of two of the cameras capturing the scene, in addition
to how the scene will be rendered, as seen by the virtual camera. Two of the real cameras can
see both of the red and blue objects, while the image computed by the virtual camera shows
only the blue, because the red object is hidden behind the blue one from the view of the virtual
camera.

The reconstruction of the scene can be done by transferring the depth-maps of the nearby
real cameras to the free-view camera, and then backward mapping the pixels from the virtual
camera to the real ones, by the depth of those pixels. Further operations needed for a high
quality free-view are testing the depth-value of the pixels mapped to the virtual camera and
only show the lowest depth values so that the nearest ones are shown.

Also, some post-processing of the result will be required, since the virtual camera relies
on data from other cameras in other positions, small “holes” in the view might appear due to
the fact that the virtual camera might include small areas which is not visible for the two real
cameras. This step is known as hole-filling. The objects being projected using the depth maps
might also look artificial along their edges, which can be remedied by for instance blurring the
edges and the background.

The generation of depth maps is a very computationally expensive operation, and estimating
such a map for a 1294× 964 pixel image within our real-time constraint is not trivial to do with
today’s hardware. For our definition of real-time, see section 2.3.

25

When dealing with free-view in soccer stadiums, we can make the task of depth estimation
and the synthesis of the free-view image more feasible by taking into advantage that apart from
the players, the scene has very few depth planes. The main focus is on the pitch it self, which
we can assume is a flat plane. Thus, we can create a 3D-model of the stadium, using a flat plane
with a texture model on top of it to illustrate the grass, as suggested by Papadakis et al [44]. The
background and sides of the stadium are not important for the game, but for aesthetic reasons,
we can approximate them by considering them to be flat walls, wrapping a texture on them,
captured by the real cameras. Thus, only computing the depth of the players remains. Our
focus for the depth estimation in this thesis, is thus obtaining a depth map of the players, in
real-time.

2.9.1 Motivation
With a free-view function, it is possible to radically change the way spectators watch soccer
games. Instead of having a fixed viewpoint, the spectators them selves could control a virtual
camera, offering a much more immersive experience. A virtual camera could be placed in
locations where a physical camera could not have been, like in between the goal posts, or it
could be following a specific player, or even the ball. It can also be used by the coach, to get a
better view of a given situation, by seamlessly rotating around the scene, in either a paused or
slow motion state.

2.9.2 A Depth Map Pipeline
There are different methods for estimating the depth. With some assumptions, it can be done
from a single image (monocular video) [38]. This method assumes the scene to be a plane, and
estimate the depth by comparing the height of the pixel, and the real-world height of the camera.
This method is briefly covered in section 4.3.

The depth can be also be estimated using two cameras observing the same scene from
slightly different positions. This technique is called stereo matching, and is the one we will
use, as it gives a more accurate depth map by combining information from two cameras instead
of just one. The basic idea is to observe the same objects of interest from two different view-
points, then compare the difference of the pixels positions in the two images, to determine the
depth. For a detailed explanation of stereo matching, see chapter 4.

Figure 2.20 shows our pipeline for depth map estimation. Note that the first step, the camera
calibration is done offline, meaning it does not have to be real-time, and we only have to do it
once for each camera setup. If we change lenses or move any of the cameras in relation to each
other, then a new calibration will have to be done. Since we are mounting the cameras at a far
distance with wide angle lenses, we assume that moving the cameras will not be done often,
especially not when the system is running. During the camera calibration step we calculate im-
portant camera characteristics and create maps and matrices, used for removing lens distortion
and warping the images to a common plane as needed by the stereo correspondence algorithms.

The online processes have to process frames within our real-time constraint at 33.33ms. We
will only measure their performance individually, as they can be pipelined in the same way as
the Bagadus prototype. In our implementation the rectify component of the pipeline is a simple
call to the OpenCV function remap and symbolize that we apply the calibration parameters
estimated in the offline step. The color correction component should ideally be included, but

26

Calibration

Background subtractionColor correction Depth estimationRectify

Offline processing

Online processing

Figure 2.20: A pipeline for real-time depth map estimation

in our implementation it is not. [43] implemented a color correction application, looking at
the differences of intensity between two overlapping areas of image pairs, and adjusting the
global image intensities so that the images have a similar intensity. This makes the end result
of stitching and free-views more visually appealing, and the stereo correspondence algorithms
look for corresponding intensities. Due to the late completion of the color corrector, it was not
integrated into the pipeline, however it is shown to run real-time, and can be directly applied to
our images.

The background subtraction is implemented by [49], and separates the moving parts from
the background of the movie. In our case, the moving parts will be the players. Since the
stereo correspondence algorithms are computationally intensive and shown not to run real-time
for large images [44] such as ours, we will use the background subtracter to only calculate the
depth for the areas around the players, and use a simpler depth model for the pitch.

The depth estimation component will run a stereo correspondence algorithm to estimate the
depth of the pixels. It is important to note that the image pairs from the stereo cameras are
synchronized at the camera shutter level, so that they are captured at the exact same time. This
is accomplished by the trigger box, as described earlier in section 2.3.

2.9.3 Related works
Kjetil Endal [28] created a pipeline for a free-view application, however he concluded that he
probably needed a better rectification and some kind of hole-filling in the depth-maps as a post-
processing step, to get good quality depth maps. He tested various stereo-vision algorithms for
depth computation on a system running an Intel Core i5-450M 2.4 GHz dual core processor.
However, his data set consisted of 320×240 pixels images, far less than our dimensions. The al-
gorithms he tested were Block Matching (BM) and Semi-Global Block Matching (SGBM). The
BM performed at an average of 45FPS, and SGBM at an average of 13FPS, and he concluded
that BM included too much noise and had several holes. SGBM gave much more accurate
results, but did not run real-time. We will test these algorithms for our data set, and see if
optimizations and post processing can make it run real-time and with acceptable quality.

The Camargus system has functionality for a free-view, but they use 16 cameras mounted
close to each other on a rig, and it is uncertain if their system generate depth maps at all. A long

27

term goal for Bagadus is to present a cheaper more flexible free-view solution using generation
of depth maps.

Papadakis et al. [44] presented a system capable of calculating depth maps, and creating
high quality synthesis images from a virtual camera. It is also coined at soccer games, and
they use a similar image resolution as we are: 1920 × 1080 pixels. Their solution is far from
running real-time though; one single frame took between 5 to 10 minutes of processing on a
single CPU core, running on a system with an Intel Core2 Quad CPU and a NVIDIA GTX280
graphics card. We need to spend no more than 33.33ms for each frame, to satisfy our definition
of real-time. They state that half of the intern processes are real-time: separating the players
and the background, synthesis, and filtering. The components that did not run in less than 33
ms real-time were the depth-estimation and in-painting. The in-painting / hole-filling could
be optimized by preparing a search-tree of texture to use, instead of building a new tree every
frame. The majority of the time however, was spent on computing the depth maps. They were
segmenting the players, limiting the depth map calculations to the players, but they were using
a computationally expensive algorithm (graph cuts) for computing the depth maps. We will try
to employ a less computationally intensive algorithm and see if we can still get good quality
depth maps, within our real-time constraint.

2.10 Summary
We have seen how the Bagadus system records video using four cameras covering the entire
pitch, and how it stitches the frames from each individual camera into a panorama video. We
have seen how to track players using the ZXY sensor system and how the coach can annotate
events and save the data into a database through the Muithu system, and how this can be in-
tegrated into a playback application instantly showing the desired events with the click of a
button.

But as we have seen, the Bagadus system is depending on much manual work and hardcoded
parameters for initialization of the system, especially in regards to the ZXY and panoramic
warping homographies. Further, the system lacks a free-view functionality, which depends on
having video frames with their corresponding depth maps. We have looked at some existing
systems and previous work for depth map generation, such as Papadakis et al. [44], Camargus
[2], and [28]. Camargus needed many cameras, and could only support a limited change in
viewpoint. [44] were far from real-time, requiring between 5 to 10 minutes per frame. [28]
investigated less computationally expensive algorithms, but the tests were performed at low
resolution images, the most promising method (SGBM), had an average of 13 FPS, and it was
not tested in a large open space. Thus, we investigate the possibility of providing depth map
generation in real-time, and the first step in our depth map pipeline, is the camera calibration.

28

Chapter 3

Camera Calibration

An important part of the depth map pipeline discussed in section 2.9, and for the current
Bagadus pipeline as it exists today, is the calculation of various homographies, the position
of the cameras, and the mappings used for correcting geometrical distortions. In this chapter,
we will investigate methods for calculating these, as part of the camera calibration1. Several of
the algorithms involved in depth estimation assume images with no optical distortions, and the
cameras must have the same lens and point in the exact same heading. However, this is near
impossible to achieve in practice, so we will have to perform camera calibration and correct for
the misalignments, optical distortions and so on in software.

3.1 The Theory

3.1.1 The Pinhole Model and Intrinsics
There are several camera models, but the simplest of them is the pinhole model [33]. If we
consider a camera without any lens to bend the light, we end up with a small “hole” where the
light is allowed to pass through, and is captured on a plane further back in the device, illustrated
in figure 3.1.

Figure 3.1: The camera pinhole model [45].

The plane at the back of the device where the image is projected, is called the image plane,
or focal plane. The point letting in the light is called the camera center, and can be seen as the

1While the term camera calibration is usually reserved for calculating the intrinsics, we will also cover the
extrinsics, and homography calculations

29

30

point where we place the aperture, which lets light in. In practice when constructing cameras,
it is natural to put the image plane in the back of the device, behind the camera center. For the
purpose of the theoretical model, we can move the image plane in front of center of projection,
and still pretend that the same rays of light hits the plane, as if it were in the back. The effect
of this is that the image is not flipped horizontally, nor vertically, anymore. If we consider C
to be the center of projection, in figure 3.2, we see the principal point p is located along the
perpendicular axis Z. The principal point marks where along the perpendicular axis Z, that the
image plane goes, illustrated by the bold black line from p. The distance between C and p, is
the focal length.

p

Y

Z

X

p

Image plane

C

f

Object 1

Object 2

 fY / Z

X

Y

Image planeFigure 3.2: Pinhole model detailed

The focal length, will directly affect where on the image plane a ray will intersect. In
general, the point (x, y, z) will be mapped to (fx

z
, fy

z
, f). For the purpose of determining the

points in the image plane, we do not need the last coordinate, as the image plane is parallel to
f . However, this assumes that the origin of the image plane is the same as the principal point,
which is not always true. To correct for this, we need to assume that the principal point can
be moved to some other location in the image plane. If we let (px, py) be the position of the
principal point in the image plane, then the point (x, y, z) will be mapped to (fx

z
+px,

fy
z

+py, f).
This can thus be expressed by matrix multiplication as in equation 3.1.

f 0 px 0
0 f py 0
0 0 1 0

x
y
z
1

 =

(
fx

z
+ px,

fy

z
+ py, 1

)
(3.1)

This matrix represent a mapping from real-world coordinates to the image plane, and is
called the Camera matrix, representing the position of the principal point, and the focal length.
This assumes that the image plane will have the same scale for each axis, but this not always
the case. For instance, a camera might have less pixels per unit in height, than in width. This
is corrected for, by replacing f in the camera matrix with f ∗ pixelsPerUnit in each x and y
axis, denoted fx and fy. Thus, our final camera matrix looks like:

31

C =

fx 0 px 0
0 fy py 0
0 0 1 0

We have assumed that we are using a pinhole model. If we have a small aperture, then

very little light hits the image plane, and we require long exposure times. If we increase the
aperture size, we can reduce the exposure time, but multiple rays of light from the same object
point will hit different spots in the image plane, resulting in a blurry image. Using a lens, we
can bend the light to give a more correct focus. In practice, cameras use a lens, and do not
act exactly like the pinhole model. However, lenses are never exactly correct, and deviate from
the “perfect” pinhole model, creating aberrations, especially so for wide angle and inexpensive
lenses. Several types of aberrations exist, such as chromatic aberrations, but we will only cover
geometrical distortions. The result of geometrical distortions, is that straight lines in the real
world, is not straight in the image plane. The most commonly encountered distortions are radial
distortions, because the lens bend the light in such a way, that straight lines appear to have a
circular form. Figure 3.3, shows an example of a radial distortion.

Figure 3.3: Barrel distortion [47]

There are other kinds of geometrical distortions than radial distortions, such as tangential
distortion, which is a distortion which does not affect the image in a symmetric way. The radial
and tangential distortions can be described as:

x = x
′
(1 + k1r

2 + k2r
4 + k3r

6) + 2p1x
′
y

′
+ p2(r

2 + 2x
′2) (3.2)

y = y
′
(1 + k1r

2 + k2r
4 + k3r

6) + p1(r
2 + 2y

′2) + 2p2x
′
y

′
(3.3)

Where r is the distance to the distortion center, k2, k4 and k6 are variables describing the
radial distortion, and p1 and p2 describe the tangential distortion. (x, u) is the undistorted point
and (x

′
, y

′
) is the distorted point.

Intrinsics

We have now described the camera matrix, and the distortion coefficients, which maps real-
world coordinates to the image plane. These are called the intrinsics of the camera, and are
usually constant for each individual camera and lens. Exceptions are cameras where you can
swap the lens, or adjust the focal length. By calculating approximations for the camera matrix
and distortion coefficients, we can correct the tangential, and radial distortions.

32

3.1.2 Extrinsics

We have looked at how intrinsics determine how the camera maps the world points to the image
plane, through the pinhole model, and how they are “internal” to each individual camera. We
also have the extrinsics, which is the rotation and translation needed to align the axes of the
external, real-world coordinate space to the camera space. The translation can be expressed by
a translation vector of three elements T = (x, y, z), which is how much to move along each
cardinal axis, and a rotation vector R = (rx, ry, rz), expressed as an Euler angle, specifying
how much to rotate the heading of the camera along first the x axis, then the y axis, and then
the z axis. For instance, if we were to move the real-world coordinate system with the points of
(0,0,1), (1,1,1) and (5,5,1) to the 2D image coordinates of (3,3,1), (4,4,1) and (8,8,1), we see
that the extrinsics would be R = (−3,−3, 0), and T = (0, 0, 0). The rotation and translation of
a camera is also called the camera pose, or just the pose.

It is worth noting that the extrinsics values depend largely on what we choose as the real-
world coordinate system. We can choose whatever coordinate system, and origin we want.
Further, the extrinsics change every time any of the coordinate systems changes, which means
if we either move the cameras or move the “world”, then the extrinsics will have to be re-
calculated.

One way to calculate the extrinsics, is to undistort the image using the intrinsics, so that
the straight lines appear as straight in the image, then find the homography based on common
points, as described in section 2.5. Since the homography translates between two planes, if one
of those planes are the real-world coordinate system we are interested in, then the homography
and the intrinsics, is enough to extract the extrinsics. The basic idea is to equate the columns of
the manipulated matrices of extrinsics and intrinsics [16].

3.1.3 Epipolar Lines and Image Rectification

In chapter 4, we will see that depth estimation algorithms based on stereo vision, need images of
the same scene, taken by two cameras at different positions. Further, the stereo correspondence
algorithms desire that a feature point detected at pixel p1 = (x1, y1) in the first image, should be
found at p2 = (x2, y1) in the second image, to limit the search space for matching pixels along
the epipolar lines. The stereo vision algorithms are explained in detail in chapter 4. In other
words, the pixels in both images can vary along the x-axis, but they must be on the same image
scanline. Achieving this effect by perfect real-world camera alignment is extremely difficult,
and software correction is used instead. To do this we need to make use of epipolar geome-
try [33], which is the intrinsic projective geometry between two views. What kind of objects
are in the scene, and how far away the objects are, does not change the epipolar geometry, it is
only dependent on the intrinsics, and extrinsics of the cameras.

Figure 3.4, shows a point X observed by two cameras, with center of projection OL and
OR. XL is the point where the ray from X hits the left image plane, and similarly with XR for
the right view. Notice that the point X , OL and OR together defines a plane, which is called the
epipolar plane. The intersection of the epipolar plane and the image planes defines a line in the
two image planes, which is called the epipolar lines. Thus, the epipolar lines change if any of
our three points defining the epiplane change. Points that lie in the plane will be visible in the
epipolar lines. Though, the epipolar lines do not need to be parallel to any of the cardinal axes
in the image planes.

33

Left view

X

x
L

x
R

OL OR

Right view

eL eR

Figure 3.4: The epipolar lines eR - xR and eL - xL [42]

Image rectification

Assuming the images have already been corrected for geometrical distortions from the lens, a
linear transformation can transform the images by rotating, skewing, and scaling the images
so that the epipolar lines are parallel to the scanlines (horizontal axis). This is the same as
transforming the two images onto a common plane. The rectification relies on the epipolar

(1)

(2)

Figure 3.5: Rectification of two images observing the same object from different view points
[51]

geometry between the cameras, described by the 3×3 fundemental matrix F . If x and x′ are
two corresponding homogeneous points in the image planes of two views of the same scene,
then F is defined such that x′TFx = 0, where Fx describes an epipolar line, on which x

34

lies. The essential matrix E, is also a 3×3 matrix, describing the normalized coordinates of F .
Thus, to rectify the images, one must estimate either F , or E. Figure 3.5, shows two cameras
observing the same object from different angles, and the result of rectifying the images, so that
the epipolar lines becomes horizontal.

3.2 Implementation
We will now discuss how we implemented the calibration system, and made use of the theory.
We will use the OpenCV library for much of the mathematical functionality.

3.2.1 Intrinsics

To correct the distortions in the image, so that straight lines remain straight, we need to estimate
the camera matrix and distortion coefficients. Finding the distortion coefficients and camera
matrix, involves approximation based on sets of corresponding 3D real-world points, and 2D
image points, where each point correspondence makes up for two degrees of freedom.

OpenCV provides functions for doing this easily, using a calibration pattern that provides
recognizable points. In our implementation, we use a chessboard, where the black and white
squares makes it easy to find corners where black squares meet white squares.

The real-world coordinates are somewhat imaginary, where we simply say that the Z coor-
dinate are always 0, since the chessboard is a plane, and we define the origin to be the upper left
of the chessboard. The first corner will then be at (1,1). Since we know that the chessboard is a
plane, and that we are dealing with squares, the distance between two corners is the same along
both the x, and y axis. Thus, we can increase our location in the coordinate space by a unit of
1, for every new corner.

To support for multiple kinds of chessboard patterns, the OpenCV function takes the num-
ber of corners along the x, and y axis, as parameter, and generates a two-dimensional array
containing the real-world 3D points assuming Z=0. In figure 3.6, we see an example coordinate
system, with the number of corners along the x axis as nine, and the number of corners along the
y axis as six. The real-world 3D points will remain unchanged, no matter how the chessboard
is rotated or positioned, because translating or rotating the chessboard also translate and rotate
the chessboard local coordinate system by the same amount.

Finding the corresponding points in the image involves object recognition, locating the
chessboard, and then locating the internal chessboard corners. This is done by the OpenCV
function findChessboardCorners(image,patternSize,corners), where image is the input image,
patternSize is a tuple describing the x × y corner chessboard, and corners is the output two
dimensional array of image points, row for row, left to right. To improve the accuracy the points
detected, we can call the function cornerSubPix to get more accurate results. cornerSubPix use
the gradients of the chessboard squares to determine more accurately where the corner is. An
example of chessboard corners located by the algorithm, is seen in figure 3.7.

Now, we have two arrays of corresponding points. By calling the function calibrateCamera,
OpenCV approximates the camera matrix and distortion coefficients, by using the correspond-
ing points to solve for the degrees of freedom in the camera matrix C, and the distortion coef-
ficients, of equation 3.1, 3.2 and 3.3. Although one picture is enough to estimate the intrinsics,
the points from the chessboard will not cover all parts of the image plane, which might have

35

Z

X
Y

(1,1,0)(1,1,0)

(9,2,0)(9,2,0)

(9,6,0)(9,6,0)

Figure 3.6: The 3D real-world coordinate system of the chessboard.

local distortions, and the approximation is likely not accurate enough. By taking multiple views
of the chessboards, in different angles and positions, all sets of points are considered, by use of
the Levenberg-Marquardt optimization [33]. This algorithm estimates the set of coefficients, so
that the difference between 2D points and the reprojected 3D points, is minimized. In our case
the minimum function is the difference between the 2D-points and the 3D-points, reprojected
into camera-space using the camera matrix. Remember that X = Cx, where X is the image
point, and x is a 3D real-world point.

Every camera has slightly different intrinsics, even cameras and lenses of the same model.
Although the differences are not large, for maximum accuracy, we need to calculate the intrin-
sics for every individual camera. Figure 3.8, shows two images taken by two different cameras,
corrected using the same intrinsics, while they have the same camera and lense models. We see
that even though the models are the same, there is still differences, as one of the images ap-
pears to be corrected, while the other have quite visible distortions. In the Bagadus prototype,
we used the same intrinsics for all the cameras, and hardcoded them. A free-view application
needs many cameras, and future experiments with different lenses are likely needed to find an
optimal setup. Therefore, we edited the original OpenCV code to read the number of cameras
to calibrate, and the name of each of the directories containing input pictures, from an XML
file. We also save the intrinsics in the XML format, in a file named the same as the camera
name, read from the application configuration file. In this way we can handle lots of different
cameras, without loosing track of which is which, and Bagadus can easily stop using hardcoded
values, by reading stored the XML files containing the individual camera intrinsics.

Since the intrinsics do not change unless we change lenses, adjust zoom, or focal length,
we only need to do this step once. It can be done in a very controllable environment, like in a
computer lab. Once all the images of the chessboard are captured, the camera can be mounted
at the soccer stadium.

36

Figure 3.7: The detected corners of the chessboard.

3.2.2 Undistortion

When we have the intrinsics, we can undistort, or correct for the distortions in the image. This
is done by calculating where the undistorted pixels would be, using the intrinsics. The corre-
sponding undistorted coordinates is stored in two two-dimensional arrays of the same size as the
original image, one array for the x axis, and one for the y axis. Just as the intrinsics only need
to be calculated only once, so can the undistortion mapping arrays. By calculating them only
once, we can simply use the maps to find the undistorted pixel location, instead of running all
the computations for every frame. The function initUndistortRectifyMap, generates the maps,
based on the intrinsics and equations explained earlier in section 3.1.1.

To apply the map on a frame, we call remap. The function is defined such that:

dst(x, y) = src(mapx(x, y),mapy(x, y))

Because some of the coordinates in the maps are floating points, and the pixels are only integers,
we need to do some kind of interpolation. One option is to simply round to the nearest integer.
This is called nearest neighbor interpolation, and is the fastest one. Other methods look at the
values of neighboring pixels, and fit the value based on their values, often using a polynomial
function. These other methods have more smooth and accurate results, but are more computa-
tionally demanding. Table 3.1, shows the performance of the different interpolation methods
available in OpenCV.

Since we can not use more than 33.3ms of processing pr frame, due to our real-time con-
straint, we need to stick to the nearest neighbor, or bilinear interpolation. The bilinear interpo-
lation fits data from the 4×4 neighbor area. Figure 2.5, shows an example of the pitch before
and after the remapping.

37

(a) Camera1 undistorted

(b) Camera2 undistorted

Figure 3.8: Images captured by different cameras, corrected with the same intrinsics. As seen
in figure 3.8a, there are some errors which are not present in 3.8b

3.2.3 Line Based Extrinsics

The extrinsics, or the homography to map the images onto a common plane, is needed for
rectification of the images, to make the epipolar lines horizontal. The extrinsics might also be
useful for the free-view application it self. For instance if you move a virtual camera around
in world-coordinates, it makes sense to use the cameras closest to the virtual position, for the
extraction of pixels.

A line based approach

The extrinsics change each time one of the coordinate systems is moved, meaning when you
move the cameras, the extrinsics must be recalculated. This means it can likely not be done
in the lab, it must be done when the cameras are mounted in the right position at the soccer
stadium. To make installation of the system easy, we tried to make the process of finding the
extrinsics fully automatic, using a similar approach as Alvarez et al. [16].

The outline of the approach is the following:

1. Generate a reference model of the pitch

38

Algorithm Min Max Mean
Nearest neighbor 4.1 5.1 4.2
Bilinear 7.4 7.8 7.4
Bicubic 47.9 55.3 48.3
Lanczos 240.1 245.4 240.7

Table 3.1: Speed comparison between the different interpolation methods (per frame). [32]

2. Detect lines of the pitch, as seen from the camera

3. Estimate the homography that maps the reference model to camera coordinate space,
based on corresponding lines, instead of points

4. Extract the pose, from the homography

In chapter 2.5, we discussed how to find a homography using corresponding points. For
this automatic approach, we will be using lines. In figure 3.9, we see an example of a camera
which does not have enough line intersections in its view, meaning we can not find four known
pitch points. It can identify three points along the center line, and one at the 16m box. No more
line intersections / corners are visible in the picture, but to estimate a homography which maps
between planes, the points need to identify a plane. When three out of four points lies on the
same line, then there is not enough information to estimate a plane. By identifying lines, and
representing them on the standard form Ax + By + C = 0, we can use the lines to form the
plane instead of the points.

(a1,b1,c1)(a1,b1,c1)

(a2,b2,c2)

(a3,b3,c3)

(a4,b4,c4)

Figure 3.9: Examples of detectable lines in the pitch highlighted manually

39

The reference model

First, we need to create the reference model, that is a real-world model of the pitch. As seen
in figure 2.7, the pitch dimensions can be anywhere from 45m×90m to 90m×120m. However,
some of the line intersections are fixed size (like the 16m box), and the rest have relative posi-
tions, which makes it possible to calculate the entire model based only on the width and height,
as parameters. Since the height and width of the pitch varies from pitch to pitch, we read the
height and width from a configuration file.

Since the number of lines on a pitch does not vary, the lines are hardcoded at the moment, but
adjusted by the width and height read from the configuration file. Every line is first represented
as two points p1 = (x1, y1) and p2 = (x2, y2), in which the line pass through. For instance, the
leftmost goal line (vertical line), will have the points p1 = (0, 0) and p2 = (0, pitchHeight).
The middle line will be have p1 = (pitchWidth/2, 0), and p2 = (pitchWidth/2, pitchHeight).
The 16m boxes are a bit more difficult, as they are fixed size, and centered. The line closest to
the pitch center of the 16m box, parallel to the goal line, have the points p1 = (16.5, pitchHeight−40.3

2
)

and p2 = (16.5, pitchHeight+40.3
2

). The rest of the lines are computed in a similar fashion. Finally,
they are converted to the standard form by the following equation:

A = (y1 − y2)
B = (x2 − x1)
C = (x1y2 − x2y1)

(3.4)

Unlike the slope-intercept form(y = mx + b), the standard form has the ability to represent
vertical lines. If we tried to represent the goal lines with the slope-intercept form, the closest
we would get is y = 0 for both, while in the standard form they are represented uniquely as
(A = h,B = 0, C = 0), and (A = h,B = 0, C = −pitchWidth× pitchHeight).

Line detection

The next step, is to automatically detect the lines in the pitch, as seen from the camera. OpenCV
got the HoughLines and HoughLinesP methods for identifying the lines. However, the func-
tions only work on binary image input. It treat everything as either a zero or a one, and it tries
to find lines consisting of consecutive pixels of the value one.

Since most of the picture has some kind of color value, running the function right away
would result in an extreme number of lines going everywhere. To only consider lines along
recognizable object borders, like the white lines, we first run an edge detection algorithm on
the images. The OpenCV implements this functionality in the function named Canny, using
the canny edge detection algorithm [22]. The function basically works by calculating the image
gradient for each point, and then links the gradient points to edges, if they are between two
certain threshold values. Apart from the input and output arguments, the Canny function has
the following parameters in OpenCV:

threshold1 Min threshold of what gradient to consider part of an edge. Smaller values allows
for edges expand, even if the gradient values are small. Too low value risks identifying
too much noise. We chose a value of 40. Further discussion of these threshold values
follows after the function description.

40

threshold2 Max threshold, in addition to specifying the minimum starting value of an gradient,
to be considered an edge. So to be considered an edge, it must start with at least the
threshold2 value, but edges being added can have values as low as minimum threshold1.
Too high value risks identifying too little, and too low risks finding too many edges. We
chose a value of 110.

apertureSize The size of the sobel kernel, which is used to compute the gradients. A size k
means a k× k kernel will be used, since a gradient must be calculated over some number
of pixels. A gradient (change of intensity and the direction of the change) makes no
sense if we are just considering one pixel. Larger kernels blurs the results, and might fail
on small objects, but will be more robust for naturally blurred edges, like the edge of a
rainbow. Since the white lines in the pitch will remain fairly sharp and at times small, if
far from the camera, we left the kernel size at the default value of 3.

L2gradient Specifies if the method should use a more accurate, but more computationally
intensive equation, to calculate the gradient. Since we only have to do this operation
once, and have no real-time constraint, we chose to set this parameter to true.

In figure 3.10, we see the input image, and the output image of the Canny algorithm. Note
that we have some false positives, or noise, in the pitch, and many edges are found in the
background, outside of the pitch. However as long as the edges do not form straight lines, it
does not matter, as we will apply the mentioned HoughLinesP function on the image as well,
to extract only the edges that form straight lines.

(a) Input image (b) Result of canny

Figure 3.10: The result of a canny operation

In figure 3.11, we see the result when threshold1 is set too low, and threshold2 is set too
high. Although we have set threshold1 quite low already, we see that setting it to even lower
values like 10, just produce more noise stemming from already detected edges. We also see
that, if we set threshold2 too high, there is no noise, but we have failed to detect all the edges
along the white lines in the pitch. We chose our threshold1 and threshold2 to give us a bit too
much, rather than too little, as we can filter the edges with other methods to reduce the number
of detected lines. As seen in figure 3.10, some of the lines are not consecutive, especially some
of the skewed lines. We found that by blurring the image with a 2×2 kernel, using the OpenCVs

41

(a) Canny with threshold1=10 (b) Canny with threshold2=400

Figure 3.11: Tweaking canny parameters

boxfilter function, we could make every white line thicker in every direction, thus increasing
the chances of detecting lines.

The next step is to detect the lines, based on the already detected edges, using theHoughLinesP
or HoughLines function in OpenCV. The main difference between the two functions is that
HoughLinesP is probabilistic, which means it is implemented to select points at random, and
the points it assigns to a line, can not be assigned to another line. Therefore, HoughLinesP
is not deterministic, and does not give the exact same result, for the same input. The functions
work on lines represented in the polar coordinate system. Thus, a line can be expressed as two
variables r describing the distance from origin, and θ describing the angle based on the x-axis:

y =

(
−cos θ

sin θ

)
x+

(r

sin θ

)
(3.5)

Rewriting with respect to r we get:

r = x ∗ cos θ + y ∗ sin θ (3.6)

By assuming the points x and y to be constant, and plotting the values when θ and r varies,
and we are plotting all the kinds of lines that pass through he given point (x, y), the result is a
sinusoid. By doing this multiple times, letting the points (x, y) be the edge-pixels in the input
image, we get several such sinusoids, and the sinusoids that intersect at the same point, in the θ
- r plot lies on the same line in the input image. Thus, the HoughLinesP detects lines by finding
such intersections in the graphs, where the edge points (x, y) in the input image, is put into the
line equation 3.6. Figure 3.12, shows the family of lines passing through the points (8, 6), (9, 4)
and (12, 3). For instance we see that the line with r = 10, and θ = 0.5, pass through the points
(8, 6) and (9, 4).

The OpenCV function HoughLinesP , got the following arguments:

image The 8bit input image, which we set to the output from the canny function

lines The output vector, returning all the lines found on the form of its two end points p0 =
(x0, y0), p1 = (x1, y1). Both points are concatenated into a 4-element vector

42

-15

-10

-5

 0

 5

 10

 15

 0 0.5 1 1.5 2 2.5 3

r

theta

(8*cos(x)) + (6*sin(x))
(9*cos(x)) + (4*sin(x))

(12*cos(x)) + (3*sin(x))

Figure 3.12: Plot of lines passing through the points (8, 6), (9, 4) and (12, 3)

rho The resolution of r in pixels. We chose to set it to 1, the highest resolution possible, as
speed is not really an issue at the calibration stage. This specifies how much to increase
r when checking for intersecting graphs. Higher resolution (lower number), yields more
accurate results.

theta The resolution of the θ in radians. We chose to set it to one degree(CV _PI/180).

threshold The number of line intersections to be considered a match. We found a value of 130
to almost always identify all the lines, and at the same time not detect too much noise.

minLineLength The minimum line distance in pixels. Lines of a shorter length are rejected.
This is somewhat tied to the threshold parameter, but we allow some line-gaps in be-
tween each points. We set the minimum length to 50 pixels, to filter out the small in-
significant edges, while still identifying all the white lines in the pitch, which will almost
always be more than 50 pixels, unless the camera is placed extremely far away or using
extreme camera angles.

maxLineGap The maximum amount of distance allowed between two points to still consider
it a consecutive line. We found a number of 3 pixels to be sufficient, since the edges of
the white lines are almost always consecutive.

Figure 3.13, shows an example of lines detected from Alfheim stadium. Unfortunately,
many of the lines detected are lines outside the pitch, for instance, numerous lines are detected

43

on the stands. Such a large number of lines outside the pitch is identified, that they will likely
impact our automatic calibration. Note that the lines in the background are not noise, they are
actual lines, and there is not much we can do with the parameters of HoughLinesP to improve
the result. We could increase the minLineLength parameter, but that would mean small lines,
or partial lines in the pitch would be discarded.

Figure 3.13: All detected lines returned by HoughLinesP

To reduce the number of lines, we need to somehow filter the set of detected lines. We do
this by filtering them based on color information, as we assume the pitch lines will always be
white. However, we use a somewhat lower value than 255, as we try to take into account that
there might be shadows, or other lighting conditions, that makes the lines look gray. In addition
to checking that the lines them selves are white, we also check that there are some green next
to the lines, on either of their sides. We found that checking the end points of the line is enough
to limit almost all false matches, but it could also be extended to check all points along the line
intersecting the two line end-points.

Note that the filtering as described in algorithm 1, is quite flexible, as it only looks at the
sum of the color channels for determining if a pixel is white, so if it would correctly identify the
line as white if it passed through a shaded area. Also, when checking if a pixel is green, we only
check if a pixels green component is larger than half of the red and green channel combined.

Ideally, we should calculate the normal of the detected line, and check for green pixels along
the normals, but the quick solution in algorithm 1 will work well, unless the image resolution
is so high that 10 pixels in every cardinal axis direction is no longer enough. However, since
the function is working on edges, we are extremely close to the green areas, so this scenario is
highly unlikely.

This is done for the two end-points of the line, and only if both points is found to have a
white pixel nearby, with green on both sides, do we consider the line to be a pitch line. In

44

Algorithm 1 Check if a line-point is close to a white pixel, with green side pixels
function ISPOINTVALID(point, image)

for x = −2→ 2 do
for y = −2→ 2 do

pixel← image[point.x+ x][point.y + y]
if pixel.red+ pixel.green+ pixel.green ≥ 450 then

rightP ixel← image[pixel.x+ 10][pixel.y]
leftP ixel← image[pixel.x− 10][pixel.y]
topP ixel← image[pixel.x][pixel.y + 10]
botP ixel← image[pixel.x][pixel.y − 10]
if right and lefts green component ≥ (red+ blue)/2 then return true
end if
if top and bots green component ≥ (red+ blue)/2 then return true
end if

end if
end for

end for
return false

end function

figure 3.14, we can see the lines that remains after filtering. Compared with figure 3.13, we see
that the lines in the background are gone, without loosing the lines we wanted from the pitch.

Finding the homography based on lines

To find the homography based on corresponding lines as described in 3.1.2, we use the computer
vision and numerical algorithm library gandalf, for the computation of lines instead of points,
as OpenCV does not have any implementations for this task. If we assume that the system
somehow knows which lines are corresponding, then we can compute the homography by the
function: gan_homog33_fit(aMatch, numLines,m33P). The aMatch parameter is an array
of structs representing corresponding lines, numLines is the number of corresponding lines
(detected lines, and lines from the reference model), and we are using 4 lines. The m33p
parameter is the output homography.

To get a sense of its correctness, we can draw the lines of the reference model, as seen in
figure 3.15. Then, we warp the drawn model using the computed homography, as described in
section 2.5. The result of warping the drawn reference model using the homography, should be
an image equal to the detected lines, both in terms of size, location, and orientation. Figure 3.16,
shows the original pitch (undistorted), and the result of reference model in figure 3.15, being
warped with the estimated homography.

As we can see, the homography is quite accurate, as the warped model is definitely close to
the white lines in the original input image. However, if we take a look at the warped image in the
lower left corner, we see a part of the middle line. In the input image however, we can not see
it. Although the homography warps the image to approximately the right orientation, skew and
size, it is not accurate enough for a calibration where every pixel counts. The distance between
the observed points after warping, and the true projection (called the reprojection error), is a
common way to measure the accuracy of the warping, but since our reference model contains

45

Figure 3.14: Detected lines returned by HoughLinesP , filtered by color information

so few points, it makes little sense to use that approach here. But by simple visual inspection,
it is evident that the calculated homography is not accurate enough. In addition, the results of
the warping go completely off when using certain lines, while other lines work correctly. There
might be several reasons for this. If we look at figure 3.14, the line which is the furthest away
from the camera is very hard to estimate correctly, so the estimated line might be a bit off. The
barrel distortion might not removed entirely. More importantly, Hui Zeng et al. [54], showed
that line based homographies can perform worse, and produce less accurate homographies than
what point based estimation does, more specifically, when lines goes through, or close to, the
origin(0,0), the line based estimation becomes highly unstable. Our reference model has two
lines that pass through the origin.

Finding the corresponding lines

We have seen that we can compute a homography using corresponding lines, but that the ho-
mography is not accurate enough for our use. We will later look at another way of computing
the homography, but for completeness we will briefly cover the last step of the automatic line
based homography estimation. We have both estimated lines and reference model lines, but so
far we have assumed that we already know which lines corresponds to which. In reality, the
computer does not know.

The idea is to do like we did when checking the correctness of the warping. We warp the
reference model, and check the difference between the warped model, and the detected lines in
the image. We do this by going through every pixel in the detected lines, and find the closest

46

Figure 3.15: Reference model drawn

distance to a pixel which is not zero in the warped model. Thus we have a loss function:

f(H) =
∑
pi∈P

distance(H(pi), C)2

Note that we compute the square of the distance, in case of negative distance. Where P , is
the set of line pixels in the reference model, C is the set of pixels in the detected lines, and
the function distance finds the distance between the pixel-coordinates of the H(pi) and the
nearestpixel ∈ C.

Thus, a first step would be compute the homography H , by selecting every possible com-
bination of four detected lines, and four reference model lines, compute the loss function, and
select the minimum value. The number of lines detected in the input image varies, but we have a
number of roughly 20 detected lines, because the white lines are sometimes detected as a series
of smaller lines. The reference model we use has 17 lines. For simplicity, assume we only have
a low number of lines among the detected lines, say 9 lines. The total number of configurations
N , needing to be checked would be:

N = (17P4) ∗ (9P4) = 172730880

If we assume it only takes 1 millisecond to compute the homography, warp the model, and
compute the loss function, then it would still run for:

172730880

1000ms ∗ 60s ∗ 60m
= 47.98hours

However, as suggested by [15], the number of permutations can be drastically reduced, by
dividing the lines of the model into horizontal and vertical classes. The model has 10 horizontal
lines, and 7 vertical lines. The number of configurations would then become:

(2P10) ∗ (2P7) ∗ (4P9) = 90 ∗ 42 ∗ 3024 = 11430720

47

(a) Original image (b) Warped reference model

Figure 3.16: Result of warping the reference model

If we again assume only 1ms for the combined computations, it will take 3.17 hours. However,
our assumptions are way too low.

Operation Min Max Mean
findHomography 0.1 0.3 0.11
warpPerspective 21.6 38.5 21.9
calculateError 1.5 2.3 1.6

Table 3.2: Time spent on operations for each configuration-test (in milliseconds).

Table 3.2, shows the times for the various operations, that have to be performed for each
configuration. The homography calculation and warping is fairly well optimized already with
OpenCV. Our computation of the loss function has room for improvement, for instance by scal-
ing the two images prior to warping, however, reducing the image size means losing accuracy.

The automatic calibration using line detection has several advantages, like easier setup that
requires less human interaction. More importantly, using lines can make our camera setup more
flexible, as a line might be observable from a camera, while the line intersections might be out
of the view-range.

3.2.4 Point Based Extrinsics
We have seen how the automatic line based approach to estimating the homography was not
accurate enough in our case. Also, it took a considerable time to compute, even if we did some
optimizations. Since the number of configurations is too large without doing advanced checking
to limit both the detected lines, and reference model into lines, we chose to implement a more
manual point based estimation.

The way compute the homography is the same as in section 2.5. However, in the Bagadus
prototype, we found each corresponding point manually in an image editor for every camera,
mapped them to the corresponding points, and hardcoded them in the source code. For the point
based extrinsics, we chose to read the number of cameras from an input file, then sequentially

48

loop through every camera, and compute the homography mapping the real-world-coordinates
to the camera. This is done first by displaying an image from the camera, asking the user to input
the number of points he want to use, and then use the OpenCVs graphical user interface (GUI) to
register the (x, y) position of a mouse click in the window. Every click stores a point to a vector
of points, as seen by the camera. Then the user is shown a scaled model of the reference pitch,
with a number being displayed next to every line intersection. In the original reference model,
one pixel equals one meter, if drawn in its original size. However, this will be too little to be
displayed for a user in the GUI, thus we scale every point with a scale factor. As written earlier,
at least four points forming a rectangle are needed to estimate a homography, and additional
points generally increase the accuracy. After the homography is calculated, we warp the non-
scaled reference model using the homography, and superimpose warped reference model onto
the input image as seen from the camera, for visual inspection by the user. Figure 3.17, shows

Figure 3.17: Reference model warped and superimposed onto the image

the result of warping the reference model and merging it with the image from the camera, where
the red lines and white numbers are the warped reference model image. The more overlap the
lines and the reference model has, the better is the accuracy of the homography. If the user is
not happy with the accuracy, he is given the option to select new points until the homography is
accurate enough. In addition to displaying the image and warped model for visual inspection,
we also output the reprojection error of the points. However, note that this value is actually less
meaningful than the visual inspection. In a typical homography estimation, we would identify
perhaps somewhere between four to eight corresponding points. Assuming we only use four
points, the result is that a homography is estimated to fit those four points, and the reprojection
error will be zero. While that is true for those four points, the rest of the model might be off.
In general, the more points picked, and the more spread the points are, the more meaningful
the reprojection error will be. As another measure of accuracy, we compute the loss function

49

described in 3.2.3. However this is also not that useful, as it might contain larger errors, if some
detected lines not part of the white pitch lines are detected in the background. Further, it is
dependent on how many lines is detected, which varies.

Since the reference model use the same coordinate system as ZXY, we can find the mapping
between a player and the camera using the same homography we calculated in this section.

An automated improvement of accuracy

The points we choose might not be the optimal ones. Since we are using a simple point and
click GUI for selecting the points in the image, we might hit point (x1, y1), while the most
optimal point was for instance (x1 + 2, y1 − 1). Picking the slightly wrong pixel points affects
the accuracy more heavily if we use a few number of points, and if the points we select are
closer to each other. Figure 3.18, shows how a few points located close to each other creates
an inaccurate homography if the points chosen, are not accurate enough. The further from the
ideal point we deviate, the larger the error becomes, as the angle makes the two lines deviate.
The blue circles are the optimal points, and the dashed lines are how the optimal warped line
would look. The red circles are points chosen instead of their nearby optimal counterparts. As
seen, the further from the collection of points we get, the larger the reprojection error of the
horizontal lines becomes.

α

α

error

Figure 3.18: The effect of choosing the slightly wrong point coordinates

To improve the accuracy in this situation, we implemented an optional automatic improve-
ment of accuracy, by brute force testing every combination of pixels in a small area around each
point/pixel we selected with the point and click GUI. If we want to check a square of width and
height k, centered on every selected point, then for each point, we check we multiply the num-
ber of point configurations needed to check by k2, thus if we have n points, the total number of
configurations to check would be k2n. Since this number grows very fast as n increase, we keep
n = 4. This also makes sense, since n = 4 is the case when the method is the most vulnerable
to inaccurately selected points. To test if a combination of pixels is better than what we already
got, we use the same algorithm as we described to find the corresponding lines, in the automatic

50

line based method for finding a homography. The testing of the configurations of pixels is done
by eight nested for loops, like this:

Listing 3.1: Testing every configuration of pixels within a square centered around 4 original
points
f o r (i n t p1x=MIN_PIXEL ; p1x <= MAX_PIXEL ; p1x ++) {

f o r (i n t p1y=MIN_PIXEL ; p1y <= MAX_PIXEL ; p1y ++) {
f o r (i n t p2x=MIN_PIXEL ; p2x <= MAX_PIXEL ; p2x ++) {

f o r (i n t p2y=MIN_PIXEL ; p2y <= MAX_PIXEL ; p2y ++) {
f o r (i n t p3x=MIN_PIXEL ; p3x <= MAX_PIXEL ; p3x ++) {

f o r (i n t p3y=MIN_PIXEL ; p3y <= MAX_PIXEL ; p3y ++) {
f o r (i n t p4x=MIN_PIXEL ; p4x <= MAX_PIXEL ; p4x ++) {

f o r (i n t p4y=MIN_PIXEL ; p4y <= MAX_PIXEL ; p4y ++) {
v e c t o r < Po in t2d > p o i n t s L o c a l = c h o s e n P o i n t s ;
p o i n t s L o c a l [0] . x += p1x ;
p o i n t s L o c a l [0] . y += p1y ;
p o i n t s L o c a l [1] . x += p2x ;
p o i n t s L o c a l [1] . y += p2y ;
p o i n t s L o c a l [2] . x += p3x ;
p o i n t s L o c a l [2] . y += p3y ;
p o i n t s L o c a l [3] . x += p4x ;
p o i n t s L o c a l [3] . y += p4y ;

/ / p o i n t s L o c a l now have t h e c o n f i g u r a t i o n o f
t h e 4 p o i n t s t o check

/ / Do t h e t e s t f o r t h e p i x e l s here :
}

}
}

}
}

}
}

}

The reason for keeping the number of points, and the search distance k = (MAX_PIXEL−
MIN_PIXEL), to small numbers is evident by the number of nested for loops and complex-
ity. Given a constant search space k, we get the big-O notation T (n) = O(k2n). Inside the
loops, we calculate a temporary homography, warp the scaled reference model using the new
temporary homography, and calculate the loss function comparing the warped homography to
the detected lines in the camera, described earlier. If the loss function for the given pixel con-
figuration is less than what we already got, we save the points. If the loss function is larger than
the error we already have, we discard that configuration. The computation of homographies and
warping, is already heavily optimized OpenCV functions. To gain any further optimizations,
we would need to utilize the video card.

However, we can speed up the process of identifying the lines by choosing to warp the model
to the image as captured by the camera. This means we can do the line detection only once,

51

outside the nested for loops. We define a function findNearestP ixel(), for finding the closest
pixel pdetectedLines to a point pwarpedModel, which is not zero in the detected lines image. To find
the total deviation between the detected line pixels and the pixels of the reference model, the
easiest solution would be to loop through all the pixels in the detected lines image, and then run
the function findNearestP ixel(pdetectedLines) for every pixel, and sum the result. However,
this can be optimized a bit by storing the location of the points we find in the detected lines, in a
vector beforehand, so that we can avoid looping through all the zero-pixels in the detected lines
image. Also, while finding the sum of the total error, we can immediately discard the configu-
ration once the sum exceeds the error of our current configuration, enabling us to only calculate
the error for a subset of the total collection of points found in the detected lines. Algorithm 2,
shows how to calculate the loss function for the point configurations: Another step we can do

Algorithm 2 calculate point configuration total error
tmpError ← 0
for i = 0→ numberOfPointsDetected do

tmpError ← tmpError + findNearestP ixel(pointCollection[i], searchImage)
if tmpError ≥ currentError then

break loop
end if

end for

to optimize the computation of the loss function, is to reduce the number of points to check
among in the detected lines. We could check every point from line start, to line end, but it is a
bit excessive, and we gain very little accuracy. Bear in mind, that since the values from the loss
function is calculated with the same amount of points, namely numberOfPointsDetected, it
does not matter that much, if we remove some points in the detected lines, since all the lines
are compared to the same loss function. It is however, important to note that we can not reduce
every line to just two points (the beginning and end of a line). Doing this would mean that a
line with a length of 10 pixels would carry the same weight as a line of 100 pixels. So, it is a
question of speed versus accuracy, but if we choose the distance in between each point sample
to be a bit less than the smallest line we detect(we discard lines less than 100 pixels), then this
is no longer the case, although some accuracy with respect to the weight/effect of the detected
lines is lost at the very end of every line unless (lineLength%sampleFrequency = 0) or
sampleFrequency = 1.

Calculating the distance to the nearest pixel preferenceModel in the reference model, given the
pixel pdetectedLine (from now on pr and pd), can be done by checking every pixel in the warped
reference model, check if the location is not zero, calculate the distance

δ =

√
(pr.x− pd.x)2 + (pr.y − pd.y)2

and update it every time δ is less than what we have already found.
This is a quite naive approach, with complexity O(imageWidth ∗ imageHeight). A more

efficient approach could be to start looking near the pixel, then progressively expand in all
directions, stopping at first match. The worst-case is the same, but the average is better, but
depends largely on the computed homography. The algorithm we used in our implementation
was a simplified one, that gives some speed, at the expense of accuracy.

52

Listing 3.2: Calculate the distance to the nearest pixel not zero
double op t imizedLook (Mat &image , i n t x , i n t y) {

i n t add = 0 ;
i n t x S i z e = image . rows ;
i n t y S i z e = image . c o l s ;
double d i s t a n c e = x S i z e + y S i z e ;
whi le (t r u e) {

i f (image . a t <char >(min (x+add , xSize −1) , y) != 0) {
d i s t a n c e = min (add , xSize −1) ;
break ;

}

i f (image . a t <char >(max (0 , x−add) , y) != 0) {
d i s t a n c e = add ;
break ;

}

i f (image . a t <char >(x , min (ySize −1, y+add)) != 0) {
d i s t a n c e = min (add , ySize −1) ;
break ;

}

i f (image . a t <char >(x , max (0 , y−add)) != 0) {
d i s t a n c e = add ;
break ;

}

i f (image . a t <char >(min (xSize −1,x+add) , min (ySize −1, y+add))
!= 0) {

d i s t a n c e = s q r t (pow (min (add , xSize −1) , 2) + pow (min (ySize
−1, add) , 2)) ;

break ;
}

i f (image . a t <char >(min (x+add , xSize −1) , max (0 , y−add)) != 0)
{

d i s t a n c e = s q r t (pow (min (add , xSize −1) , 2) + pow (max (0 , add
) , 2)) ;

break ;
}

i f (image . a t <char >(max (x−add , 0) , min (y+add , ySize −1)) != 0)
{

d i s t a n c e = s q r t (pow (add , 2) + pow (min (ySize −1, add) , 2)) ;
break ;

}

53

i f (image . a t <char >(max (0 , x−add) , max (0 , y−add)) != 0) {
d i s t a n c e = s q r t (pow (add , 2) + pow (add , 2)) ;
break ;

}

add ++;

i f ((x−add < 0) && (x+add > xSize −1) && (y − add < 0) && (y
+ add > ySize −1)) {

break ;
}

}
re turn d i s t a n c e ;

}

By checking every direction from 0 to 360 degrees, with 45 degrees in between each line of
checks, we can eliminate a for loop, and replace it with eight if-tests. We do not need to
calculate the distance in x and y distance anymore, as the distance is increased only once in
each loop, and stays the same for all the if-tests. If we can not find a single matching pixel
in the image, due to a homography that is completely off, then the add variable will never be
updated, and we return the sum of the width and height of the image instead. This artificial
value is made, to avoid the special handling of when we can not find a pixel, as this would
introduce more if-tests and unnecessary branching. The reason this algorithm works, is because
the reference model consists of parallel and consecutive lines. If we test in eight directions, the
real distance will not stray too far from a full search.

Extracting the pose

Now that we have found a homography that is accurate enough, we can extract the camera pose
from the homography, as described in [16]. OpenCV has a function for calculating the pose,
called solvePnP . Its parameters are the two sets of corresponding points, the camera matrix,
and the distortion coefficients. The distortion coefficients was set to zero, since we undistorted
the image before picking corresponding points, so doing undistortion on them a second time
would produce wrong results. It does not extract the pose from the homography directly, al-
though it is possible. It calculates the pose, given our set of corresponding points, which we
used to compute the homography, minimizing the reprojection error, and in general does the
calculations all over again, but it is not a big problem, as this step is only done once during
initialization. And, having used the same corresponding points to calculate the homography
before, we know the points will produce a reasonable pose. The paper model depicted in 3.17,
is of course not up to scale to the real pitch. Dividing the width of the paper model (in centime-
ters) by the width of the actual pitch, we get 105/17.5 = 6. The model printed on the paper is
thus a scale of 6 less than the real model. A result of the solvePnP is shown in table 3.3.

The tvec is the translation vector, and the rvec is the rotation vector. If we divide the tvec
by the scale 1

6
, we get x = 0.33, y = −5.25 and z = 23.18. Measuring with a ruler, we find

23.18cm to fit perfectly measuring from the origin to the camera, and the same for the y=-5.25,
measuring from the origin. However, the x = 0.33 is not correct, as the correct value should

54

Vector x y z
Rvec -1.059 0.2415 0.1017
Tvec 2.033 -31.5175 139.131

Table 3.3: Pose estimation result

have been roughly 2cm, which might be because we are only using four to nine points for our
estimation. Further, there is some problems with the negative numbers, because we are working
with points in a plane, we have not really defined which way is up, and which way is down. This
makes the solvePnP give a less accurate pose, which will in turn affect our depth estimation.

3.2.5 Homography Based Rectification
Rectification is needed in stereo vision algorithms, where two cameras capture images from the
same scene. Since the epipolar lines change, when we change the relative pose between the two
cameras, an optimal solution would be to calibrate the cameras after they are mounted at the
soccer stadium. OpenCV provides a function for finding the pose by chessboard calibration,
but this can be very difficult, as the cameras are typically mounted on platforms, far above the
ground. Therefore, getting to them with chessboards are difficult.

The other function provided by OpenCV is stereoRectifyUncalibrated which estimates
two 3×3 homographies, that warps the images from the two cameras such that the epipolar lines
become horizontal. The stereoRectifyUncalibrated needs the fundamental matrix F , which
we can find using the function findFundamentalMat. It takes two arrays of corresponding
image points, and the method for computing the fundamental matrix. The choices are between
a 7point or 8point algorithm, or using an 8 point RANSAC algorithm.

We chose to use RANSAC, so that outliers have less impact on our estimation. Using
RANSAC, the eight points are iteratively selected randomly from our number of points, and F
is estimated, a reprojection error is calculated, and the F with the lowest reprojection error is
chosen. We set the RANSAC threshold to one, meaning any error greater than 1 pixel is con-
sidered an outlier. Once F is calculated, we can pass it to stereoRectifyUncalibrated, which
will return two homographies H1, and H2. The rectification can then be performed by warping
the left and right input image, using the two homographies returned by stereoRectifyUncali-
brated. Note that we are operating on images that have been corrected for distortions, using the
chessboard calibration in the lab.

To select which points should be passed as a parameter to stereoRectifyUncalibrated, we
first tried an implementation based on the GUI point selection, described in section 3.2.4.

As seen in figure 3.19, our two cameras are positioned parallel to the paper model of the
soccer pitch, with very little distance in between them. Images from these two cameras are
rectified, using a homography based rectification, based on eight to twelve selected points in
the pitch. Looking at the input images, it is intuitive that we will not need much rotation to
align the images in such a way that the epipolar lines are horizontal. But looking at the result of
the rectification depicted in figure 3.20, we see that while most of the illustrated epipolar lines
are horizontal, line 1 and 3 starting from the top are off, and you can see the bottom line as well
being a bit off. More importantly, both images are rotated significantly, which we see is not
necessary, by looking at the input images. We suspect that this is the result of having too few
points to put enough constraints on the computation of the homography, as well as inaccurately

55

picking points manually. This makes sense, as we can see that the typical locations where we
selected points, like the intersections of the white lines, is well rectified, while other points and
features are not.

(a) Input image1 (b) Input image2

Figure 3.19: Two images taken at the same scene from different views

Figure 3.20: Rectification of images based on picked points

SURF feature detection

To get a drastic increase in the amount of feature points, we can not expect the user to click
through them all in the GUI, as it will take an enormous amount of time, and it will be tedious
and error prone. We made use of the automatic Speeded Up Robust Features (SURF) [19]
feature detector, implemented in OpenCV. It is a blob detector, meaning that it detects areas
that contains different properties, such as intensity, or change in intensity. Since it works on

56

intensity, and not color information, we convert our images to grayscale, using OpenCVs cvt-
Color method. Next, we detect the feature points in both the images, that is, the areas which
stand out from the surrounding area, in terms of intensity, change in intensity etc. Typical
features detected are corners, edges, etc. The SURF class constructor, takes the parameter
hessianThreshold, which specifies the minimum Hessian to allow, which increase or decrease
the number of detected features in the images. The lower the number, the higher the number of
features detected. While mathematics behind the SURF algorithm is out of scope for this thesis,
a more in-depth explanation can be found at [19].

To get a potentially large number of points, we found hessianThreshold = 100 to be a
good value. Next we use the Fast Approximate Nearest Neighbor Search Library (FLANN) [39]
descriptor matcher in OpenCV, to automatically connect the feature points in each image, into
corresponding points, based on distance and similarities like intensity values. Figure 3.21,
shows two images with several features detected, and their correspondences.

Figure 3.21: Corresponding points detected by SURF

Looking at figure 3.22, the rectification now gives a result we expect, considering that the
two cameras are positioned parallel to the pitch, with the same heading, so that only a pure
translation separates them. Since the two images are close to being rectified already, many of
the false matches and outliers detected by the SURF algorithm can be easily spotted by looking
at the diagonal lines, or lines that have a large difference in the y coordinate. We can further
remove some of the outliers by manually looping through the corresponding points, check the
difference in y-coordinate and discard the pairs with ∆y > threshold. We set our threshold to
30 pixels. But there are still very few points in the actual pitch, which will be the case in a real
soccer pitch as well, because much of the pitch is just green grass, and the SURF algorithm can
not distinguish any features from the neighboring areas which is also just green grass.

57

Figure 3.22: The two input images rectified using the homography computed based on the
corresponding points found by SURF.

3.2.6 Chessboard Stereo Calibration

Using the automatic detection of chessboard corners, as described in 3.2.1, we can get as many
points as we want covering all parts of the image. However, the chessboard calibration we saw
earlier, was done for just one image. For calculating the relative pose between the two images,
we need to match the chessboard points in the two images to corresponding points. Of course, it
is then important that the images we take of the chessboard are synchronized. In our code base,
we have a program for recording synchronized video, but not for taking synchronized stereo
images.

Stereo grabber

To capture a stereo image using two cameras, capturing the image at the exact same point in
time, we created a small stereo grabber application. It uses a slightly modified version of the
code for capturing live streams, from the Bagadus pipeline. It automatically detect all cameras
connected, ask the user to input which two cameras should be used, and starts a thread for fetch-
ing data from each camera. The trigger box makes sure that frames are captured at the same
time, once every 30ms. The two threads keep a local frame count, and only put data into the
buffer when the old pair of images are processed. If the program processes them too slow, the
new frames are discarded. The main program converts each pair of images from YUV to RGB,
and use the GUI provided by OpenCV to display each frame in two separate windows, effec-
tively creating a live-video feed from the cameras, so that the user can see how the chessboard
is positioned in both the images, right away. By pressing space, synchronized images are saved
to disk in a directory specified by the user, with the name “FrameNumber_CameraName.bmp”,
where FrameNumber is a number running from 0 and upwards, so that multiple stereo images
can easily be taken by repeatedly pressing space. As with the chessboard calibration for intrin-
sics, we found the best results when rotating and translating the chessboard for between every
image capture. We tried to get all possible angles and positions of the chessboard, and doing at
least 20 stereo pair images.

58

Chessboard calibration

Using the stereo images captured by the stereo grabber, we can calculate the relative pose be-
tween the cameras. This is done using a modifed OpenCV example code, making use of the
function findChessboardCorners, described in 3.2.1, to detect the chessboard corners, thus
finding matching points in both stereo images. The image pair file names, chessboard width
and height, and intrinsics of the cameras are read from an XML configuration file.

We will be using the function stereoCalibrate to calculate the pose, as well as the fundamen-
tal and essential matrix. OpenCVs documentation states that stereoCalibrate is also capable of
calculating the intrinsics, but that such a high degree of freedom and image distortions, could
lead to less accurate results. Therefore, we calibrate each camera individually to get the intrin-
sics first, and then pass the intrinsics to the stereoCalibrate.

Besides the stereo images, object points, and output-arguments, it takes the following argu-
ments:

M1, M2 The camera matrices from the two cameras.

D1,D2 The distortion coefficients from the two cameras.

ImageSize We set it to the same as the input-image dimensions.

flags Various flags for how to compute the pose and intrinsics. Since we already have input
ready, we found CV_CALIB_USE_INTRINSIC_GUESS to give the least reprojection
error. It use the intrinsics already provided as a starting out and further improves upon it
using the images from the stereo grabber.

It returns the camera pose, expressed by a translation vector T and a rotation vector R.
Further, it returns the average reprojection error of all the points in the chessboards. These are
passed to the function stereoRectify, which along with the camera matrices, distortion coef-
ficients, returns two 3 × 3 rectification transforms for both cameras, along with the projection
matrices. These are written to an XML file, so that other parts of the system can use them.

Rectification

Unlike the rectification when using homographies, stereoRectify allows us to build lookup
maps, like those used for removing barrel distortion in section 3.2.2. Using the function ini-
tUndistortRectifyMap as described earlier, and in addition providing the rectification transfor-
mation returned by stereoRectify, and its corresponding projection matrix as the target camera
matrix, we can combine both the undistortion operation and rectification into one map.

3.3 Applications for the Bagadus Prototype

Some of the methods we have investigated in our calibration and initialization of the depth
estimation, can also easily be applied to the Bagadus prototype, to ease its cumbersome system
initialization.

59

3.3.1 Tracking Homography
The common real-world reference system used for all the cameras in section 3.2.4, is the same
as the ZXY reference system. This means that we have already found a way to calculate the
homography needed by the Bagadus system for mapping between the ZXY player tracking co-
ordinates, and the camera coordinate system. Thus, to find calculate the tracking homography,
we use the method described in section 3.2.4. The automatic generation of reference models
based on pitch size and width, and the use of a GUI to select points, showing the resulting ho-
mography instantly, as well as saving the resulting homography to a file using XML, drastically
reduce the time spent to calculate the homography. It also creates a more agile system adaptable
to change of camera setup.

3.3.2 The Stitching Matrices
As described in chapter 2.6, the current homographies we use to warp the images from the
different cameras to a panorama image, was calculated by manually opening every image in
an image editor to find corresponding points, then hard coding them into a small program to
calculate the matrices, then those matrices were hardcoded into our prototype.

In section 3.2.4, we introduced a manual, yet faster way of finding the warp matrices for
the ZXY and real-world pitch coordinate system, to the camera coordinate system, using ho-
mographies. Since we already have much of the code needed to manually select corresponding
points in an image, we did some minor modifications to the UI, to allow easy generation of
the matrices needed for the panorama view. We already have a function for marking points of
interest like corners, edges, small objects and other features, by click on them in the UI. For
the generation of stitching matrices, we identify such points twice, once for each camera, as
opposed to when finding the ZXY matrix, where we clicked on features in one window, but
selected predetermined coordinates based on the pitch-model. Although selecting four points is
enough, more points will generally result in better accuracy. As before, the findHomography
function is used with the corresponding points, to find the homography. The program reads a
list of cameras from a configuration input file, assuming the cameras to be positioned in a line,
in the same order as in the list. The ID of which camera to be the “head camera”, to which all
the other cameras are warped.

However, there are a few problems, which we did not encounter for the pitch coordinate
to camera coordinate mapping. Namely, if there are more than two cameras, then each camera
must be mapped to a common plane, but unless the two cameras are neighbors, they do not have
any common pixels.

In figure 3.23, we set “camera 2” to be the head, meaning the other images will be warped
so that their coordinate spaces will fit the coordinate space of the head camera. We do this, by
first finding the warp matrices for every neighboring camera, which is straight forward: Use the
GUI to register mouse clicks, and show alternate images between the two cameras, allowing
the user to click on corresponding points, and use OpenCVs findHomography to estimate
the homography. In this way, we find the homographies 1-2, 3-2 and 4-3. Computing the
homography 4-2 is a bit trickier, since camera four and two have no overlap in their field of
view. However, we know how to get from camera four to three, and from three to two. We can
find the combined transformation matrix 4-2, by multiplying 4-3 and 3-2.

Another problem we encountered, was that when warping the points in the images, the
points in the left image in each pair, might get warped to negative coordinates, for instance a

60

1 2 3 4

head

1-2 4-33-2

4-2

Figure 3.23: Cameras are enumerated from 1 to 4. Each cameras field of view is showed as an
example. The arrows symbolize that we try to find a matrix that warps the image from its own
coordinate system to the target cameras. The blue squares are the matrices. Camera 2 is set as
the head

point like (5, 50) might get transformed to (−104, 50). Since we represent images with (0, 0)
being the lowest possible point in both axes, points with negative values are discarded, and
the resulting image will look cropped. We can find the resulting minimum x-axis after the
warp, by first calculating the homography, and applying the homography at the points p1 =
(0, 0), and p2 = (0, imageHeight). Applying the warping matrix is the same as a matrix
multiplication, as described in equation equation 2.2, on page 15. If the result of the warping
is p1w = (x1warped, y1warped), and p2w = (x2warped, y2warped), then the minimum value a
coordinate will get warped to is: xmin = min(x1warped, x2warped).

When we computed the warping matrices in the Bagadus prototype, the images was man-
ually padded with pixels, to extend the image width. This was resource demanding and time
consuming. Another way of solving the problem of negative warping coordinates, is to add
|xmin| to every point in the target image, and recalculate the matrix. Thus, we can skip the
padding operation, and automatically get the warping matrix, and the expected warping result,
by just selecting the corresponding points once.

Like when we find the ZXY matrix, we immediately show the warped result, quickly al-
lowing the user to judge if the results are good enough, or if new points need to be added. By
reading the list of cameras from the configuration file, and specifying the head by name, we can

61

easily calibrate a flexible amount of cameras, should more be added to the system. The warp
matrices are written to an XML file. However, we did not compute the areas of overlap, and
where to do the cut for the panorama, which must still be found manually. To make the list of
matrices complete, so that they can be read in a generic way, we also add the identity matrix I ,
for the head camera, as the head camera should not be warped, and IH = H .

Automation using SURF

Since we already had used SURF to find corresponding points, we investigate using SURF to
automate the process of finding the corresponding points, for finding the homographies needed
for the panorama warping. However, the cameras used for the panorama have varying angles, as
opposed to the stereo cameras, and the SURF algorithm find a large number of false correspon-
dences, as seen in figure 3.24. Figure 3.25, shows the result of warping the left-most image.

Figure 3.24: Finding corresponding points between two cameras for panorama generation pur-
poses

While the accuracy could be improved by asking the user to manually click in the GUI, to define
regions of interest, where the SURF-algorithm should operate, by doing so, the solution would
again be non-automatic.

We conclude that the manually selected points result in far more accuracy, at the expense
of time spent on the users part. However, since this must be done only once, with no time
constraints, the time it takes the user to click on the images is worth the gain in accuracy.
Figure 3.26, shows a panorama image of Alfheim stadium, warped using matrices generated by
our calibration tool.

3.4 Summary
We have seen how the internals of the camera like the focal length, principal point and lens affect
the results when capturing an image with a camera, especially the effects of barrel distortion
introduced by the lens. We have calculated the homographies needed for warping and creating
the panorama view. Both a manual point selection, and an automatic line detection approach
have been presented, for calculating the homography between the real-world coordinate system
of the pitch, and the pitch as viewed from a camera.

62

(a) Warped image (b) Target image

Figure 3.25: A failed attempt at warping to the target image, based on SURF points. Cropped
for display purposes

Figure 3.26: Panorama image warped using matrices generated by our calibration tool

We have presented a method for calculating the real-world pose of each individual camera,
with respect to the pitch origin (0, 0), using solvePnP . The automatic line based automatic
method was not accurate enough, in its current implementation. We have presented two methods
for rectifying images; one using an automatic approach, where we use the SURF algorithm
automatically detect corresponding points, and a manual method where we use a chessboard
pattern. We have also used features detected in the images to calculate the homographies needed
to map coordinates from ZXY system, to camera coordinates.

We have seen how we can use a chessboard to calibrate each camera, using OpenCVs func-
tions findChessboardCorners and calibrateCamera. With the cameras now calibrated, we
can perform the depth estimation, and in the next chapter, we look closer into challenges in this
area.

Chapter 4

Depth Estimation

With the intrinsics, and either the rectification homographies, or the extrinsics calculated, we
can perform depth estimation. In this chapter, we explain what a depth map is, discuss related
works, and explain the methods for calculating the depth maps, with focus on stereo vision.

4.1 Depth Maps
An image contains x × y pixels, and where the rows and columns make the two cardinal axes
of the local 2D coordinate system of the image. Figure 4.1 show an example of a 10× 5 image.

scanline

x

y

(0,0)

Figure 4.1: A digital raster image

The rows are sometimes referred to scanlines. The number of columns (along the x-line) is
sometimes referred to as the width of the image, and the number of rows (along the y-line) as
the height of the image. When a camera capture a scene, it projects the 3D world onto a 2D
plane, thus we loose a dimension. Objects with real-world coordinates (xworld, yworld, zworld)
get projected to (xcamera, ycamera), where the real-world coordinate system is usually different
from the camera coordinate system.

A depth map is an array of the same dimensions x × y as its corresponding x × y image,
where each element in the depth map denote the depth of the corresponding pixel in the image.
The depth can also be included in the image as an extra channel besides the colors. Note that

63

64

the depth values in the depth map is not equal to the depth of the real-world coordinates, the
depth values in the depth maps denote the distance between the point pictured, and the camera.
In figure 4.2, we see a depth map of a cube, illustrated as a grayscale image. The closer a value

(a) Original image [4] (b) Corresponding depth map [3]

Figure 4.2: A depth map illustrated as a grayscale image.

is to zero, the closer it is to the camera, and larger values are further away.

4.2 Applications
Depth maps have several applications. Although not the primary focus of this thesis, the free-
view application we discussed in chapter 2, is of particular interest for the Bagadus system.

Another application of depth maps is collision detection. There are many collision detection
systems for cars on the marked already [41], mostly based on active systems such as laser or
radar. By using stereo vision, it is possible to track multiple objects at the same time, and more
importantly to determine where they are located and how much space the objects occupy. A
pair of cameras could be mounted in front our at the back of a car, and the depth maps could
be used to determine when an object is closer than a threshold, in which case it could alarm the
driver.

Depth maps can also be used in robotics, where a robot could have a stereo camera pair
integrated to function as eyes. Besides capturing visual information from the scene, the robot
can use the camera pair to generate depth maps, and use the depth-maps to navigate in its
environment [40]. The information can be used for avoiding crashing into objects, simply
determine which object is currently the closest and prefer an interaction with this object.

4.3 Related Works
Jen-Shiun Chiang et al. [24] present a robot using stereo vision for the purposes of determining
the distance to the soccer ball. Sebastian Dröppelmann et al. [13] present a guide of how to
use the OpenCV library to generate depth maps, but does not present any numbers regarding
the speed of the operations.

65

Kazunori Umeda et al. [50] present a stereo matching algorithm based on subtracting the
background, thus focusing only on calculating the depth of the moving parts of the image. It is
similar to what we try to do, and they do it real-time with an FPS of 37, however they operate
on a 320× 240 pixel image. Our images have dimensions of 1294× 964, meaning we work on
images roughly 1̃6.24 times larger.

Kakuta et al. [38] use background subtraction to get a mask of only the moving parts, such
as a person walking, much like we aim to do. However, they estimate the depth using infor-
mation only from monocular video sequences, meaning they try to determine the depth using
information from images captured by a single camera in a single location, as opposed to our
goal of using stereo matching. To be able to estimate the depth from a single camera, they
assume the ground to be a flat plane, which is a valid assumption for our case as well, since we
are dealing with soccer pitches. The depth is calculated by the equation

D = Hcamera tan

(
π (Himage −Hbottom)

Himage

)
where Himage is the height of the image, Hcamera is the real-world distance to the ground-plane
from the camera, and Hbottom is the bottom of the foreground object. Thus, the point where the
foreground object touches the plane, in our scenario, the players feet, will be the depth of the
entire player. It is a simple and efficient solution, but if a player stands with his legs far apart,
only the leg closest to the camera is used for the depth of the entire player, and if two players
stand aligned in such a way that they overlap, both players will get the same depth value. This
is especially true for situations in close up soccer duels. We will instead implement a stereo
correspondence algorithm capable of detecting several depth values within the same object of
interest, to get more a more detailed depth map.

Banz et al. [18] implemented a high quality semi global stereo matching algorithm to run
on a field programmable gate array (FPGA), and ruled out use of the GPU since both GPU
and SIMD-processors had too high power consumption and achieved only 13 FPS on QVGA
images, meaning 320 × 240 pixel images. However our system will not use any specialized
hardware, so FPGAs are out of scope. Further, they operated on 640× 480 pixel images.

4.4 Stereo Vision
Stereo vision refers to two cameras capturing the scene from different viewpoints, and using
information from both cameras to estimate the depth of the pixels. The length of the line that
passes through the two image centers is called the baseline. The length between the cameras is
an approximation of the baseline. We will refer to the two cameras as the left and right camera,
as illustrated in figure 4.3. For the best results, the cameras should have the same orientation,
and the baseline should be orthogonal to the camera heading, or else the images must be scaled,
rotated, and translated so much that both the overlapping area between the cameras is decreased,
and the resolution is reduced, when rectifying the images to get horizontal epipolar lines.

4.4.1 Disparity
The basic principle behind stereo correspondence, is to find the corresponding pixels, or in some
cases, blocks of pixels, in each of the stereo images. For simplicity, we will from now on refer

66

baselineleft right

camera
heading

Figure 4.3: A stereo camera pair

to just blocks, where a block with a size of one is a pixel, although it is important to note that
far from all stereo algorithms operate on blocks, some only match pixels. For every block in
the left image, we search the right image for the corresponding block. The distance between
them is related to their depth, and is called disparity [21]. In general, the larger the disparity, the
closer the block will be to the camera. The vision of the human eye works in a similar fashion,
although humans also use visual clues in the scene to estimate depth. If you hold your thumb in
front of you, with only your left eye open and then quickly shut the left eye and open the right,
your thumb will appear to have moved to the left. Now, if you hold your thumb right next to
your eyes, you can see the disparity is much larger than when you hold it as far away as you
can. But to find a matching block in the right image can be a complex and time consuming
task. Luckily, the search for the matching block can be constrained. From chapter 3, we know
that the epipolar lines are horizontal after we have rectified the images, and we know that a
corresponding block in the right image lies either at the same location, or somewhere to the left
of the position in the left image. Thus, we can restrict the search for a corresponding block to
the same scanline, and to the left of the original position. If a block have position (x1, y) in the
left image, then the position in the right image will be (x2, y), where x1 ≥ x2. The disparity δ
would be: δ = x1 − x2.

In figure 4.4, we see a row of pixels from the left and right image of a stereo camera pair,
where the blue dots represent pixels. The set of matching pixel pairs M is M = {(1,0), (2,1),
(6,2), (7,3), (8,4), (10,9), (11,10)}. We can see that the pixels represent three objects in the
image, where the middle object is closer to the camera than the two others, as its pixels have a
disparity of 4, while the two objects to the left and right have disparities of 1.

4.4.2 Matching

We have seen how we can determine the disparity, by matching a block in the left image with a
block in the right. The matching is partially done by comparing color or intensity of the pixels in

67

Left:

Right:

0 12

Figure 4.4: Disparity from a left and right stereo camera pair image. The blue dots represents
pixels, and the lines connecting them means the pixels match.

each image, where a similar value indicates they might be a corresponding pair. Unfortunately,
finding the matching pixels is difficult, even with a limited search space. For instance, if the
objects in the scene are reflective, the two cameras might capture a different color or intensity
value for the same object. An extreme case of this is a mirror, which will look very different
depending on the position of the camera. Different camera settings could also affect the overall
intensity values captured by a camera, although the color corrector mentioned in section 2.9.2,
could correct for some of these differences.

Figure 4.5, shows a problem that occurs when an object is visible in one camera but not
visible in the other camera, because its view is blocked by some object in the scene. This is
known as occlusion. There is no solution for this problem, as there are simply no corresponding
pixels, but the problem must be detected and handled in the best possible way, for instance by
trying to estimate the disparity values instead, or by not assigning depth values at all.

Another problem regarding matching blocks, is that when both the left and the right image
contain large surfaces without textures, it becomes impossible to match one block to the other.
For instance, if both cameras are aimed at a large smooth white table that occupies large parts
of the image plane, then it becomes impossible to determine which blocks are corresponding
pairs.

4.4.3 Calculating the Depth
The output of the stereo correspondence algorithms is not the depth of the pixels, but the dispar-
ities. Although they are not equal, they are correlated, as a large disparity value means a small
depth value - the disparity is inversely proportional to the depth. A depth can be calculated from
its correlating disparity value, using triangulation [33]:

Z =
fT

d
(4.1)

where Z is the depth, f is the focal length and T is the baseline.

4.4.4 Algorithms
There are several stereo correspondence algorithms. They differ mostly in the way they solve
these problems in section 4.4.2. Some well known stereo correspondence algorithms:

68

Occluded area

Left Right

Figure 4.5: Two cameras capturing the same scene from different viewpoints. The building
obstructs parts of the view for the right camera

• Block Matching (BM) [48]

• Semi-Global Block Matching(SGBM) [35]

• Belief Propagation (BP) [29]

• Constant Space Belief Propagation [52]

• Graph Cuts [36]

The algorithms we will apply are based on block matching.

4.5 Quality Assessment
To give a quantified number of the accuracy of the algorithms, we have to know the real depth
values of the objects, or a disparity map where the disparities are known to be true beforehand,
usually because they are hand drawn. These disparity maps are known as ground truth.1 Thus,
when testing new algorithms, or implementing new algorithms, these data sets are very useful
as we can compare the results of the stereo vision algorithms to the ground truth, and get an

1Several such sets with ground truth can be found at http://vision.middlebury.edu/stereo/
data/

69

accurate quantified error, like how many percent of the pixels were given a correct disparity
value.

Since we do not implement any new algorithms, running these standard data sets will be of
limited use for us, as the correctness and accuracy of the existing algorithms are well explored,
and readily available in other works. For instance, Kjetil [28] performed several tests against
ground truth data sets, and measured both the accuracy and the speed of the algorithms. We can
see from his results, that the BM and SGBM algorithms have potential to be real-time, but that
BM has a high percentage of disparity errors. Instead, we will look at how some of the more
common algorithms perform, applied to our own data sets.

Operation FPS average error (%)
BM on CPU 45 28.4
BM on GPU 43 41.6
SGBM on CPU 13 12.3
BP on GPU 1 10.8
CSBP on GPU 0.15 10.4

Table 4.1: Frame per seconds for a 320 × 240 image set [28]. Upload and download times for
the GPU is included. The average error is calculated by comparing the disparity of running the
algorithm, to the ground truth for four different data sets

4.6 Implementation
There are several implementations of the stereo correspondence algorithms, but we will use
OpenCVs library. Since this part is done online in our pipeline-model, these operations can not
spend more than 33.33ms of processing-time, as we need to deliver 30FPS. We will measure
each process that can be pipelined, or parallelized, individually.

4.6.1 PreProcessing
Before we can run the stereo algorithms, the input images from the cameras need some prepro-
cessing, such as removing geometrical distortions, rectification, and so on.

Rectification

If we use the chessboard calibration from chapter 3, the next step is to apply the rectification
based on the rectification maps we generated in section 3.2.6, to make the epipolar lines hor-
izontal. Further, the rectification mappings were combined with the maps for correcting lens
distortion, allowing both operations to be done using the same mapping. Also, these mappings
can be applied to every frame no matter if the scene changes or not, as the rectification mappings
are only dependent on the relative pose between the cameras and the intrinsics. To apply the
mappings, we use the function remap as described earlier in section 3.2.2, with its performance
listed in table 4.2.

If we chose to use the homography based rectification, then the rectification is done by
warping the left and right image using warpPerspective, with the computed homographies

70

for the left and right image, respectively. In addition, we have to do the remapping operation
using the maps for correcting geometrical distortions, discussed in section 3.2.2. As seen in
table 4.2, it takes 48.9ms to warp both left and right image, which is longer than our real-time
constraint, however, we can devote 1 core to each left and right image. But, running a remap to
correct the geometrical distortion, and using the warpPerspective function is slower and creates
unnecessary load on the CPU, compared with the rectification method where rectification and
geometrical correction is combined into one map.

Grayscale conversion

Before we can apply the stereo correspondence algorithms, we have to convert the images to
grayscale. Most stereo correspondence algorithms work on grayscale values, because it is less
expensive to compute the weights, as we can compare one channel instead of three, for every
pixel. Even algorithms that usually accept color values, simply calculate the matching cost as
the mean of the three color channels. To some extent, using grayscale images can even yield
more robust matching, as the mean value change less due to lighting conditions and so on [20].
The conversion to grayscale is done by the OpenCV function cvtColor, with the processing
time listed in table 4.2.

Flipping

As suggested by Kjetil Endal [28], OpenCVs stereo correspondence algorithms do not return
any disparity map for the right camera, only the left one. To have OpenCV calculate a disparity
map for the right camera as well, we have several options. We can swap the left and right
image, and use a negative disparity, but this is not allowed in all the stereo correspondence
implementations in OpenCV. A more elegant solution, is to flip the two images around the
vertical axis, and pass the flipped right image as the left, and the flipped left image as the right.
Thus, the flipping operation becomes part of the preprocessing for generating a disparity map
for the right camera. This is done by the function flip, and is done well within real-time, as seen
in table 4.2. The flip operation is seen in figure 4.6, which shows two images being flipped, with
two features marked by red points. We see that the flip operation does not change the disparity,
which is 10, both before and after the flip operation.

Operation Min Max Mean
flip 1.2 2.2 1.2
remap (nearest) 9.3 14.0 9.6
remap (linear) 16.2 18.5 16.5
cvtColor 2.7 4.1 2.8
warpPerspective 47.3 50.1 48.9

Table 4.2: Preprocessing operations executed on both left and right image, averages over 100
frames, measured in milliseconds on one core

71

flip

X1 = 832 X2 = 823

X2 = 447X1 = 457

Figure 4.6: Flipping the input images to calculate the disparity for the right image

4.6.2 Disparity Calculation
The data sets available for download with ground truth, are usually already rectified. We will
apply the BM and SGBM algorithm at our data set calibrated at our lab, for full control of the
cameras and calibration, and a data set taken at Alfheim stadium to test the accuracy of the
algorithms in outdoor lighting conditions, and long distances.

Block matching

We run the BM algorithm on our data sets by using the StereoBM class in OpenCV. The BM is a
local matching algorithm, taking only into account the matching costs in the block it is working
on, and uses a sliding window, with the matching cost being the sum of absolute differences
(SAD) of the pixels inside the window, and then match it to the window-costs of the other
image.

When initializing an object of the StereoBM class, we must pass some parameters that fine
tunes the algorithm. Those are:

preset A flag that can be set to either CV_STEREO_BM_BASIC,CV_STEREO_BM_FISH_EYE
or CV_STEREO_BM_NARROW. They are supposed to specify the whole set of pa-

72

rameters for the algorithm based on the type of lens you are using. We set ours to
FISH_EYE_PRESET, since we are using wide angle lenses. When downloading the
OpenCV source code and examining the code however, it seems this is not yet imple-
mented properly and the choice for the preset does not matter as of OpenCV version
2.4.2 .

ndisparities The max disparity value. The minimum value is 0 by default, so the search range
will be from 0 to ndisparities. As seen in section 4.4.3, the max disparity depends on
the baseline and the distance the objects in the scene have to the baseline. In an indoor
environment such as our lab, and a camera setup with a baseline of a few centimeters, a
value of 80 was enough.

SADWindowSize The SADWindowSize×SadWindowSize size of blocks matched by the al-
gorithm. It should be an odd number, since the center of the block is centered at the
current pixel. A larger window-size increases the chances of finding the correct corre-
spondences. Since the sum of absolute differences are computed over a larger area, then
the chance are larger that some pixel values with unique values will be inside the win-
dow. The downside of a large window size, is that a single disparity is assigned to every
block. Thus, large blocks introduce greater errors when they are centered on object edges
of different depth, where half of the block will be within the correct object, and half
will be outside of it, giving the areas outside wrong disparity. The optimal block size
depends largely on the size of the objects in the scene, where small objects should have
corresponding small window sizes.

Figure 4.7, shows the rectified images taken from our lab. Figure 4.8a, shows the BM
algorithm with SADWindowSize = 7. Its performance is listed in table 4.3. The BM algorithm
manages to find correspondences for areas with much unique texture, like the human face, and
along object borders. However, it has a difficult time finding correspondences for large objects
with a constant color, like the floor, and our clothes. The large, black areas in the disparity
map, means the BM algorithm was not able to find any correspondence, and the blocks are not
assigned any depth. It could also mean the objects have a distance of “infinity”, like the sky, but
the floor in our lab is clearly not at infinity. Figure 4.8b, shows the results when using a larger
window size, SADWindowSize= 21, where the depth is identified for a larger number of pixels,
with less false correspondences on the floor, but at the expense of assigning the areas around
the objects with the wrong correspondence values. For instance the areas between our legs are
all assigned the same depth value, even though in reality there is a gap into the background in
between.

Semi-global block matching

We run the SGBM algorithm on our data sets by using the StereoSGBM class in OpenCV.
Unlike BM, SGBM use a global optimization for finding the correct correspondences. The
implementation in OpenCV aggregates cost over windows, in the same way as the BM im-
plementation. However, in addition it saves the costs, and applies a global optimization by
minimizing an energy function based on the change in disparity:

E(D) =
∑
p

C (p,Dp) +
∑
q∈Np

P1T [|Dp −Dq| = 1] +
∑
q∈Np

P2T [|Dp −Dq| > 1]

 (4.2)

73

The first term, is the normal matching cost of the blocks compared to the alternatives in the
right image, just as in the BM algorithm. The second term adds a small penalty P1, for every
neighboring pixel that have a change of one disparity, permitting small adaptations in disparity,
such as slanted objects. The third term adds a larger penalty P2, for every neighboring pixel
that have a larger change of disparity than one, preserving object borders. This function should
ideally be applied in 2d, to every pixel. However, to obtain an efficient implementation, they
are instead calculated along five to eight paths from the image edges and to the block we are
considering, as in the loss function discussed in section 3.2.4.

When initializing an object of the StereoSGBM class, we must pass some parameters that
fine tunes the algorithm. It takes the same parameters as the stereo matching class, with the
addition of the minimum disparity, and some optional parameters:

SADWindowSize The matched block size, similar to the SADWindowSize described in the
block matching function. Unlike the BM algorithm, SGBM allows SADWindowSize to
be set to one, meaning pixel-wise matching instead of block matching.

numDisparities This is the max disparity number, as described in the function block matching
function.

minDisparity The minimum disparity, as with the maximum disparity, this value depends on
the baseline and distance to the objects in the scene. A value of zero is a safe choice,
allowing objects at the distance of infinity.

Among optional parameters, we have P1 and P2, corresponding to the weights in equa-
tion 4.2, giving weights for small and larger disparity changes, respectively. fullDP, is a flag
being set, if we want to compute equation 4.2 for eight directions instead of just five, increasing
computation time and memory usage, turned off by default. A few other parameters controls
post-processing and preprocessing, such as excluding small regions with the same disparity, ef-
fectively regarding it as noise. We chose to use the default settings, as they gave the best visual
result, and the players in our Alfheim data set are very small, sometimes only a few pixels wide,
so it is difficult to exclude small regions without affecting the players.

Figure 4.9, shows the results of SGBM in our lab data set, and table 4.3 show its perfor-
mance.

4.6.3 Post-Processing

After the disparity maps have been calculated, there are a few steps needed in order to calcu-
late a disparity map. An optional step, which we will cover in chapter 5, is filling in gaps in
the disparity map where there are no assigned value, for instance with an estimate based on
neighboring disparity values. To align the disparity map with the camera pixels, we must remap
the disparity map back to the original camera coordinate space, which can be done by applying
the same remap function, but using the inverse of the rectification mapping. We saw in sec-
tion 4.4.3, that the disparity maps are inversely proportional to the depth maps, and that a depth
maps can be computed by applying equation 4.1.

74

4.7 Comparison
Comparing the SGBM and BM algorithms in figure 4.8, and figure 4.9, we see that SGBM is
able to match, and assign a depth value to more pixels than BM. However, SGBM is more prone
to noise in areas with a large constant value without distinct texture, such as the white floor in
our lab.

Operation Min Max Mean Average FPS
SGBM 336.6 361.1 338.6 2.9
BM 65.1 73.6 65.7 15.2

Table 4.3: Time measured in milliseconds for stereo matching algorithms applied at our 1280×
960 pixels data set, using a window size of 11 and a disparity range of 80. Time measured by a
sample of 100 frames.

The times spent in milliseconds for the SGBM, and BM algorithms are listed in table 4.3.
While the BM algorithm is faster, it produces less accurate results as seen from both table 4.1,
and our test data from the lab. Both algorithms are capable of processing several frames per
second, with BM 15.2FPS and SGBM 2.9FPS.

4.8 Importance of Rectification
As we have described in section 4.4, the calibration of the system is important for the correctness
of the depth map, as the stereo correspondence algorithms limit their search to the epipolar lines,
which the rectification should map to the scanlines of the image. If the rectification mapping is
wrong, then pixels will not get matched correctly, because the corresponding pixels are mapped
to a different scanline. A wrong rectification mapping might also skew, or scale the images, so
that the disparity becomes incorrect.

Figure 4.10, shows how the lab data set looks using the homography rectification based on
automatic detection of corresponding points, using SIFT, as described in section 3.2.5. We see
that rectification have a large impact on the accuracy of the stereo correspondence algorithms,
and we will be using chessboard calibration for our rectifications, as the automatic homography
based method, are not accurate enough for good quality depth maps, in our current implemen-
tation.

4.9 Summary
An overview of some of the more common stereo correspondence algorithms have been pre-
sented, with the BM and SGBM algorithms being our main focus, as they have potential to go in
real-time. We have presented a list of preprocessing steps needed for the stereo correspondence,
among them are converting the images to grayscale, rectification, and optionally, flipping and
swapping the left and right image, to calculate the disparity map for the right camera.

We have seen how an incorrectly rectified image greatly affects the accuracy of the stereo
correspondence algorithms, with our rectification based on the chessboard being the most reli-
able.

75

We have seen how to calculate the disparity for an entire image, using the stereo correspon-
dence algorithms SGBM and BM. We have compared the results of some of the more common
stereo correspondence algorithms from both previous works, and using our own rectifications
and data sets, concluding that both BM and SGBM have potential to run real-time, with further
optimizations. Assuming that the depth maps will be used for the free-view application, we can
assume that only the depth of the players is needed. Thus, applying the stereo correspondence
algorithms to a real soccer scenario, remains. In the next chapter we will look into testing the
system at a soccer scenario, and investigate optimizations.

76

(a) Left rectified image

(b) Right rectified image

Figure 4.7: Rectified images from our lab

77

(a) Block matching with SADWindowSize = 7

(b) Block matching with SADWindowSize = 21

Figure 4.8: Block matching results with different window size

78

Figure 4.9: SGBM with SADWindowSize=21

(a) Correctly rectified (b) Incorrectly rectified

Figure 4.10: The difference between a correct rectification 4.10a and a wrong rectification 4.10b

Chapter 5

Optimization of the Depth Estimation

In chapter 4, we investigated BM and SGBM, two relatively fast stereo matching algorithms
with respect to getting a good quality depth map in real-time. Both algorithms spent more
than 33.3ms on the entire image, but they have potential to be real-time. Also, we observe that
the SGBM might introduce noise in textureless areas, and that both algorithms fail to assign a
disparity value to absolutely all pixels.

The algorithms were tested in our lab to get an optimal lighting and calibration environment.
To improve the quality and performance of the disparity, we will also apply background sub-
traction [49]. To check how the algorithms perform in practice when applied to soccer games,
we deployed a test system at Alfheim Stadium.

5.1 Camera Setup
The data set we captured in the lab only had a few meters of distance to the camera, and our
baseline was just a couple of centimeters. At Alfheim stadium, the distances can be more than
100 meters, and as we saw from equation 4.1, the further away from the baseline, the lower the
disparity will be. It is therefore important to increase the length of the baseline accordingly,
to avoid that the disparity will be so low that it is not detectable. For our test data at Alfheim
stadium we used a baseline of about 0.7m.

We used the same kind of lens that the current Bagadus pipeline uses, the Kowa 3.5mm wide
angel lenses. We could not use the cameras already mounted for the Bagadus system, as they
are both difficult to calibrate once mounted on the platform, and their angles with little overlap
makes them unfit for stereo vision. Also, because we had limited time to capture the dataset,
and limited equipment for mounting cameras at floating platforms etc., we did not spend much
time to find optimal mounting points for the cameras. Instead we mounted the cameras at the
back of the stands, purely for testing purposes. Thus, our cameras are not in a ideal position,
meaning we get a lower resolution in the area of interest, such as the players, compared to how
many pixels a player is represented with using the existing camera setup.

For calibration, we used the chessboard method, described earlier in section 3.2.6. However,
since we mounted the cameras outside, we also had to perform the chess calibration outside.
We used a chessboard pattern printed on a paper, as we did in the lab. However, we discovered
several problems with this approach. The biggest challenge was that the paper curled up due to
the changes in temperature, wind and most importantly humidity. This makes the chessboard
pattern calibration less accurate. To reduce the effect of the wind and humidity, we wrapped the

79

80

paper in a clear envelope. However, the humidity still had some effect, and the surface of the
clear envelope had a reflective property. As you can see from figure 5.1, we have some curling

Figure 5.1: Chessboard pattern on printed paper wrapped in a clear envelope. Some reflection
and curling of the paper introduce problems for the automatic calibration

of the paper, some reflections due to the clear envelope, and the chessboard pattern lacks a
wide white border, which is required by the algorithm. The lacking white border was solved by
adding it manually in an image editor afterwards, but the reflections and curling could not be
undone easily. The chessboard calibration algorithms only recognized 15 out of the 40 image
pairs we captured for stereo calibration.

In future experiments, we would suggest either printing the chessboard pattern on a large
white laminate surface, with at least a few centimeters of white border on all sides of the chess-
board pattern. However, a laminate surface might also have some reflective properties, so the
best would be an actual white chessboard in a non-reflective material. Non-reflective laminate
might also work, but it is important to use materials that does not distort the colors of the chess-
board pattern. Since the baseline is so large, we need to hold the chessboard at a further distance
to cover more of the overlapping areas in the two cameras, thus a larger chessboard pattern will
increase the accuracy, so we also recommend at least printing in the A3 size.

An example frame pair of the data set captured at Alfheim is pictured in figure 5.2, where
the cameras heading is orthogonal to the length of pitch, with the cameras having a baseline of
roughly 0.7m. In other words, these are an example our input images from our stereo camera
setup. As we observe, the camera depicted in figure 5.2b, is located a bit further to the right, as
the vertical support beam to the right in the images, is located further to the left, compared to

81

the left camera image in figure 5.2a. We also observe that the support beams disparity is larger
than the disparity of the players and white lines in the pitch, as the support beam is closer to the
camera.

(a) Left input image after rectification

(b) Right input image after rectification

Figure 5.2: The Alfheim data set

82

5.2 Background Subtraction

Background subtraction is a technique in computer vision used to extract the foreground of
an image from its background, where the foreground typically consists of objects of interest,
which should be used for further processing. Examples of foregrounds might be humans, cars,
animals, etc. The foreground is extracted from the background using a mask of the same di-
mensions as the input image, where for instance a non-zero value represents foreground and a
zero represents background. Some background subtraction algorithms such as Zivkovic [55],
also detects shadows, and assign a special value for them.

There are several ways to extract the foreground, some of the more simplistic methods
include methods like frame differencing, finding the difference between the values of a given
pixel between two frames. If the absolute difference in pixel value is above a threshold, it is
considered to be foreground. However, this simple method has several shortcomings. It only
works if the background is entirely static, and the foreground is moving constantly.

We will use the work of [49], which has investigated how the Zivkovic background subtrac-
tion model [55] can be applied to the Bagadus system, and how to integrate it with the ZXY
player tracking system to reduce noise, by only selecting small regions around the players coor-
dinates and, performing the background subtraction on those. It is a more complex background
subtraction algorithm, based on the Gaussian Mixture Model [55], however, it runs in real-time
and is capable of detecting shadows as well as foreground. The algorithm learns over time,
thus it needs to process a few frames before it correctly estimates what is background and what
is foreground. Figure 5.3, shows the Zivkovic background subtraction applied at our data set
captured at Alfheim stadium.

5.3 Improving the Quality

When applying the SGBM algorithm to figure 5.2, we get much noise in the image, as seen
in figure 5.4. We can also see that, not all the blocks are given a disparity value, because the
matching algorithm can not find any matching block. Using background subtraction, we can
obtain a mask containing only the player-pixels, and extract the depth for the players only. As
discussed in section 2.9, we only need the depth of the players, as a more simple 3D model can
represent the static planes of the stadium. By extracting only the players, the noise is filtered
out, as the noise is typically located in large almost textureless areas, such as the green grass.
When extracting the depth values from the masks, we also check if the depth values. If the depth
is zero, meaning it has not been assigned any value, we perform a simple gap filling technique,
by keeping track of the last valid depth within the mask, and replacing the zero values with
the last known depth. See algorithm 3, for the details of the infilling and extraction of pixels.
Figure 5.5, shows the disparity map of figure 5.4, after extracting the foreground and performing
infilling.

When running algorithm 3, on 100 images, we measured the mean, maximum and minimum
times to be 3ms, which far below our real-time constraint of 33.33ms.

83

(a) Left camera input

(b) Background subtraction results

Figure 5.3: The results of applying the Zivkovic background subtraction

5.4 Towards Real-Time

We have seen in chapter 4, how the stereo correspondence algorithms do not run in real-time.
When looking at the stereo correspondence algorithms in OpenCV, we see that they are already
optimized for single instruction, multiple data (SIMD) instructions. As discussed in section 1.3,
to further optimize the algorithms, we would need to investigate parallelizing them on the GPU,
but this is out of scope for this thesis.

5.4.1 The Idea

To increase the performance of the stereo matching, we will instead try to limit the search space
for the stereo matching algorithms. Since we are only interested in the depth of the players, we

84

Figure 5.4: SGBM applied at Alfheim stadium.

Algorithm 3 Extracting foreground and infilling
function EXTRACTFOREGROUND(foreground, dispMap, imgWidth, imgHeight)

lastDisp← 1
for y = 0→ imgHeight do

for x = 0→ imgWidth do
if foreground[x][y] = 0 or dispMap[x][y] = shadow then

dispMap[x][y]← 0
else if dispMap[x][y] = 0 then

dispMap[x][y]← lastDisp
else

lastDisp← dispMap[x][y]
end if

end for
end for

end function

can only focus on those. We can also return the depth of the ball, but only if it is located near a
player. If we want to make sure we always return the depth of the ball, we would need a way to
track the ball, such as using SURF and movement estimation.

85

Figure 5.5: The disparity map after infilling and removing the background

There are two ways to limit the search space for the stereo correspondence functions. One
is to modify the algorithms, to make them accept a foreground mask as an input parameter,
thus only considering the foreground when searching for matches. The other is to split a larger
image into smaller regions of interest, and only consider these.

The former is the more efficient, in the sense that it only considers the foreground masks.
However, the SGBM algorithm calculates the depth by aggregating paths through the image,
making it difficult to implement such a feature. Also, the entire image still has to be considered,
so using this method means we can not parallelize the operation.

The latter is easier to implement, and allow us to parallelize the disparity estimation by
looking at each region of interest separately, where such a region can be small sub-images
extracted and processed separately. The problems with this approach are finding the regions
of interest. Also, the disparity estimation is often noisy at the end of the image, as there are
less paths that pass through the border-pixels in the case of the SGBM algorithm, and that the
leftmost pixels in the right image will not have any corresponding pixels due to the disparity.

Although the two methods are not mutually exclusive, we will focus on the latter.

86

5.4.2 Finding the Region of Interest
To find the region of interest, we use the ZXY sensor data from the players. To calculate
the homography used for the ZXY → cameraCoordinate mapping, we use the approach
explained in chapter 3. When we have the homography, the mapping is done by a simple matrix
multiplication, as described in section 2.5. Because the ZXY system mounted at Alfheim might
have up to 1m of error margin, we set the mapped ZXY coordinates to the center of the bounding
box, and set the box width and height to 220 pixels. Further, because the players close to the
camera appear larger, while players further away appear smaller, we also scale the size of the
bounding box depending on the distance between the player and the camera, which can also
be computed given the ZXY coordinate and the location of the camera. Typically the cameras
heading will be perpendicular to one of the pitch lines, and the depth scaling will be:

scale = playerPositiony × shrinkFactor
where the width and height of the bounding box is multiplied with scale. The shrink_factor is a
constant, and depends on the position of the camera. The bounding boxes depicted in this thesis
used a shrinkFactor of 0.0021.

Figure 5.6: Bounding boxes illustrated for two players (not all). Cropped for display purposes

Note how the bounding boxes in figure 5.6 cuts through the neighboring players. To decrease
the chances of having a bounding box cut through a player if two players stand near each other,
which might result in wrong disparity values along the edges, we implemented an optional
algorithm to combine the bounding boxes of players if they get too close to each other, as seen
in algorithm 4.

Because the bounding box sizes are dynamic, both due to the scaling, and possible multi-
ple bounding boxes combining into one, the threshold is in reality set to 1

5
of the box-width,

allowing some overlap before they merge:

threshold = max(boxA.width, boxB.width)−min(boxA.width, boxB.width)/5)

Because combining two bounding boxes might end up increasing the bounding box dimen-
sions into a third bounding box, we run the mergeBoxes function in a loop until it returns false.
Figure 5.7 shows all players being tracked, and a bounding box drawn around each cluster of
players.

87

Algorithm 4 Combining bounding boxes
function MERGEBOXES(boxes, threshold)

foundBox← false
for all boxA ∈ boxes do

for all boxB ∈ boxes do
if boxA = boxB then continue
end if
if |boxAx − boxBx| < threshold and |boxAy − boxBy| < threshold then

boxAwidth ← max(boxAwidth + boxAx, boxBwidth + boxBx)
boxAheight ← max(boxAheight + boxAy, boxBheight + boxBy)
boxAx ← min(boxAx, boxBx)
boxAy ← min(boxAy, boxBy

boxAwidth ← boxAwidth − boxAx

boxAheight ← boxAheight − boxAy

boxes← boxes− boxB
foundBox← true

end if
end for

end for
return foundBox

end function

Figure 5.7: Boxes combined

5.4.3 Splitting Bounding Boxes

The point of using bounding boxes is to reduce the large single image into several smaller
images with less complexity, which can then be calculated in parallel. How large a bounding
box can be before its corresponding disparity map is calculated depends on the hardware of the

88

system, and the algorithms used. In section 5.4.4, we will test the box sizes against our current
hardware.

Figure 5.8: Splitting bounding boxes

If the players are roughly equally distributed along the pitch, the bounding boxes might
combine into a single large one, and we gain little from dividing the image into bounding box
clusters. However, this happens quite rarely, and in the cases this happens, we solve it by
checking if a bounding box is larger than a threshold (which size depends on how large sub-
images we are able to process in real-time). If the bounding box is larger than this threshold,
we try to split the bounding box, by checking the corresponding foreground mask from the
background subtracter. Figure 5.8, shows an example of bounding boxes that are too large, and
split into smaller ones.

The splitting operation is performed by looping through all the pixels in a vertical line,
starting at the lower middle of the bounding box. If the pixels along the line hits more than a
given threshold of foreground mask pixels (we set it to three pixels, to tolerate some noise), the
algorithm moves four pixels to the right and tries the next vertical line. Because this check is
expensive, it is only performed on the bounding boxes that are larger than the threshold. When
extracting the images from the bounding boxes for separate processing, it is important to copy
the exact same rectangle position and dimensions, so that we do not alter the disparity in the
sub-image.

5.4.4 Results
Although we have not implemented a complete depth estimation pipeline which integrates all
the individual components, we test them separately. By using a previously recorded game
with corresponding ZXY data, we can test the combining and splitting of bounding boxes.
Combining and splitting the bounding boxes take a mean time of only 1.2ms, when calculating
the bounding boxes for 18 players, seen in figure 5.8.

Figure 5.9, shows the rectified input-images, the sub-images, and the resulting disparity
map corresponding to the sub-images. The extracted sub-images are illustrated as the bright

89

(a) Left input image (b) Right input image

(c) Resulting disparity map.

Figure 5.9: Calculating the disparity for a sub-image. The disparity map of figure 5.9c is scaled
for display purposes.

Operation on image Min Max Mean
SGBM on 180×984 28.3 28.7 28.5
SGBM on 442×331 31.7 35.6 32.0
BM on 960×720 29.8 32.2 30.2

Table 5.1: Speed of stereo correspondence algorithms on sub-images of different size, with time
measured in milliseconds

boxes in the middle of the input-images (5.9a and 5.9b. Each such pair of boxes can then be
processed in parallel. The resulting disparity map, before infilling and background subtraction
is performed, is shown in figure 5.9c. We see that the disparity map correctly identifies the two
running players, and the stands in the background, with the objects closer to the camera having
a slightly higher disparity than those further back.

With the images split into sub-images, we measure the time it takes to compute the depth
map for sub-images of different sizes. Table 5.1, shows the processing time of the stereo cor-
respondence algorithms, applied to different sizes of sub-images, which all performs below our
real-time limit. We notice that with our current hardware and stereo correspondence algorithms,
we can calculate the disparity for sub-images with sizes up to 442 × 331 pixels using SGBM,
and sizes up to 960× 720, using the less accurate BM.

As we see, the computation of the bounding boxes is within our real-time constraint, and
can be parallelized and executed in a pipeline. When the computation is finished, the results can

90

be copied back onto an initially zero filled disparity map, at the same location as from where it
was taken in the original rectified input image.

5.5 Correctness

We can see from the image in figure 5.5, that a few noisy pixels are present around the edge
of one of the players. This is because the foreground mask from the background subtracter in
this case also covered a small part of the pitch, where the stereo vision algorithms fail to find
corresponding pairs. However, [49] have demonstrated that it is possible to get a very accurate
background subtraction at Alfheim stadium, in his thesis, so the accuracy of the background
subtraction can possibly be increased, by using more fine tuned parameters for the background
subtracter. Noise can also be filtered out by a smoothness function, or simply by rejecting very
high disparity values. But overall there is not much noise in our results.

Figure 5.10, shows two different frames and their disparity estimation, converted to a grayscale
image for display purposes. The left player in image 5.10a, has a grayscale value of 58, while
the right player has a grayscale value of 50, which is consistent with the leftmost player being
closer to the camera. In figure 5.11a, we see that the closest player is given a higher value, but
the disparity is not accurate, as the change of disparity happens approximately on the closest
players head. However, this happens to all pixels in the area, and is most likely a result of the
inaccurate calibration we described in section 5.1.

(a) Input (b) Disparity correctly estimated

Figure 5.10: Disparity comparison of the Alfeim data set

(a) Input (b) Inaccurate disparities

Figure 5.11: Disparity comparison of the Alfeim data set

91

5.6 Summary
In this chapter, we have applied the stereo matching algorithms from chapter 4, to a data set
captured at Alfheim stadium. However, while setting up and calibrating the camera setup at
Alfheim stadium, we noticed some flaws with our current calibration equipment, that affected
the end result, as only 15 out of 40 calibration images was recognized by the findChessBoard
algorithm. We thus discussed ways to improve the chessboard pattern calibration, in an outdoor
environment, by using laminate.

Since the system is intended for a soccer scenario, we have applied a background subtraction
algorithm to the data set, used to filter out the noise in the pitch, and only extract the depth values
from the players, as well as infilling depth values where the algorithm fails to find corresponding
blocks. Also, we showed that the stereo vision algorithms managed to distinct the depth of two
players with a few meters distance, despite the long distance they had to the stereo cameras. For
more accuracy, better cameras or lenses are required to increase the number of pixels per square
meter.

However, the stereo vision algorithms do not run in real-time. Thus, the ZXY tracking
system was used to divide the image into several sub-images, by extracting sub-images from
bounding boxes centered around the ZXY-coordinates of the players. The sub-images can
be then processed independently by the stereo correspondence algorithms. By combining the
bounding boxes that are too close to each other, we avoid sub-images cutting through another
player. Using the background subtraction foreground mask, we can also split the bounding
boxes that are too large to run in real-time, into smaller bounding boxes. We have also showed
that the disparity sub-images can be computed in real-time. Thus, the computation of the sub-
images can be done in parallel.

92

Chapter 6

Conclusion

In this chapter, we summarize our work, present our contributions, and finally look at future
improvements that can be done.

6.1 Summary
In this thesis, we have presented an overview of the old Bagadus system, and presented a new
version of the system, which runs in real-time on a single machine with commodity hardware,
making use of both the GPU and CPU, as described in chapter 1. The Bagadus system lacks
a free-view system, which depends on a depth map corresponding to every video frame, to be
able to select the correct pixels to render.

The depth maps in turn depends on the cameras to be perfectly aligned, which is close to
impossible to achieve. Therefore, it is important to calibrate the cameras, perform undistortion
and rectification on the input images, before the depth maps are computed. We investigated
using automatic detection of lines to automate the calibration process, and to be able to use
the information a line represents, even in the cases when there are no visible line intersections
(corners) along that line. We also created a point based approach, where the user must manually
click on the points he wants to mark.

For the rectification, we also implemented a chessboard based calibration, including an easy
to use application for taking stereo images. We found that only the chessboard based calibration
produces a rectification mapping accurate enough for quality disparity estimation.

The calibration of the existing Bagadus system is improved, by applying the methods used
for the calibration in the depth estimation pipeline, to the similar problems of the Bagadus
system. This includes finding the intrinsics needed for removing geometrical distortions, finding
the homography needed to map the ZXY coordinate space to the cameras coordinate spaces, and
finding the matrices needed for warping the images from all cameras onto a common plane for
panorama stitching.

We also explain the theory of stereo correspondence and depth estimation. Using the map-
pings calculated during the camera calibration, we can rectify the images to make the epipolar
lines horizontal along the image scanlines, as desired by the stereo correspondence algorithms.
We compare the performance of some of the more common stereo correspondence algorithms
from earlier works, and test SGBM and BM, the two most promising algorithms, on our own
data sets to check that the calibration is sufficient. All the independent steps such as rectifica-
tion, converting to grayscale, etc., are done in real-time.

93

94

We have also tested our calibration system and stereo correspondence algorithms on a data
set captured at Alfheim stadium, to investigate how our system performs over long distances.
Assuming that the depth estimation will be used for free-view purposes, we can focus on ob-
taining the players, as the rest of the pitch can be modeled as simple planes in a 3D model. The
system manage to identify the depth of two players standing a few meters apart, but to get a
disparity map with higher depth resolution, a higher resolution camera or a lens giving more
pixels per square meter is required.

By applying background subtraction, we can identify the players and extract only their
depth, effectively filtering out the noisy parts of the pitch, as well as infilling depth values
in the foreground masks to make sure there are no gaps in the disparity map.

Using the ZXY system, we can see how to create bounding boxes around each player, and
combine them to avoid the bounding boxes from cutting through a nearby player. By using the
foreground mask from the background subtracter, we can split bounding boxes that may be too
large for the disparity calculation to perform real-time. We test the BM and SGBM algorithms
on the sub-images extracted from the bounding boxes to show how large individual boxes we
can be without the processing time exceeding our real-time constraint. Thus, by splitting the im-
age into bounding boxes into multiple such bounding boxes which can be processed in parallel,
the disparity calculation is performed within our real-time constraint.

6.2 Main Contributions

As discussed in section 1.2, we wanted to investigate real-time depth map generation for a soc-
cer scenario, using less computationally expensive algorithms, than [44] used for their system.
Also, we wanted to improve the initialization of the current Bagadus system, by applying the
calibration steps from the depth map pipeline. We approached this problem, by implementing
a prototype, and measuring its performance. To make sure the system works in a real soccer
scenario over longer distances, we tested the prototype at Alfheim stadium.

The Bagadus system is lacking a free-view functionality, thus, a short overview of the free-
view application is presented. For the free-view to be able to render the scene correctly, it needs
the frames of the nearby real cameras, with corresponding depth maps. Therefore, a pipeline for
depth estimation is presented, and its individual components are implemented and measured,
with every single component running in real-time.

Because the depth estimation will be applied to a soccer scenario, it is tested both in the lab,
and on a soccer stadium. When testing the system at the soccer stadium, we prove the systems
capability to estimate the depth of players in the pitch, with players closer to the camera having
a higher disparity than players further back. Because the disparity decreases over distances, we
compensate for this by increasing the distance between the cameras. By splitting the original
image into sub-images centered around the players, we show that the individual depth maps is
calculated at 32ms, within our real-time constraint, for sub-images of sizes up to roughly 442 ×
331 pixels. We show that the players depth can be estimated with an accuracy of roughly few
meter. To increase the accuracy of the depth estimation, a lens that gives more pixels per square
meter, or a higher resolution camera, is required.

Many of the tasks performed when calibrating the depth estimation pipeline, such as homog-
raphy the computations, are very similar to what we need for calibrating the existing Bagadus
system. Therefore, we implemented an application for calibrating the Bagadus system, includ-

95

ing calculating the intrinsics for correcting geometrical distortion, the ZXY to camera coordi-
nate system mapping, and the homographies for the panorama stitching.

6.3 Future work

We have taken several data sets with multiple cameras, and the calibration tools were impor-
tant for setting up the system quickly. The manual calibration approach was robust, but a bit
more time consuming. However, for a large scale system with as much as 20 to 50 cameras
distributed around the stadium, our manual approach will require a lot of time, thus it can be
worth investigating how to improve the automatic line detection perform as well as our manual
point based selection.

The automatic line based approach for estimating the homography can perform better, by
trying to classify the detected lines into vertical and horizontal lines as well. The inaccuracy
introduced because our model have lines passing close to the origin, might be corrected for
by translating the model and detected lines, so that the lines do not pass through the origin
anymore. Should the automatic detection of lines include too many false positives, the color
check algorithm can be extended to checking the colors for all parts of the line instead of just
checking the endpoints.

The calibration tools include a point and click GUI to identify matching points in between
images, to calculate the homographies needed for warping the images onto a common plane for
stiching. However, the stitch seam must be done in an area where the two images overlap, but
our application does not calculate the overlap area. At the moment, the overlap area is found by
aligning the images in an image editor and manually calculating the overlap areas. It could be
made easier by asking the user to manually select the overlapping region by point and click in
a similar fashion.

Also, we demonstrated that the SURF based rectification can be unreliable. To improve
the automatic homography based rectification based on SURF, a more robust matching method
must be applied, and regions of interest can be used to select which areas to search within.

When processing our data set captured at Alfheim, we saw that the calibration images of the
chessboard was not sufficient, as only 15 out of 40 images were recognized by the calibration
algorithm. A better calibration is needed for a quality depth map for our data set captured
at Alfheim stadium. To obtain a reliable chessboard calibration in an outdoor environment,
a black and white chessboard in a non-reflective material should be used, and it is vital that
there is at least a few centimeters thick white border around the chessboard pattern, or else
OpenCVs findChessboardCorners can not locate the chessboard. To get a disparity map with
higher resolution, a better lens or a higher resolution camera is needed.

The disparity estimation it self can be made real-time using either BM, or SGBM. To of-
fload the CPU and get more efficient disparity estimation, the SGBM and BM methods can be
implemented on the GPU, allowing us to tolerate larger bounding boxes (see section 5.4), be-
fore attempting to split them. Also, the stereo correspondence algorithms could be modified to
only calculate and check the pixels marked as foreground to speed up the estimation. Since the
disparity error at the boundaries of the bounding boxes are usually just a few pixels large, and
could be smoothed out as a post-processing step. If the accuracy needed by the free-viewer is
not too large, the disparity calculation could be performed per bounding box without combining
them.

96

We have implemented and tested the individual parts of the depth estimation pipeline, but
the parts are not fully integrated. The individual steps must be pipelined and parallelized using
threads, using the same pipelining approach as the new Bagadus video pipeline. In particular,
every bounding box should run in its own thread, where every thread share a common, initially
empty disparity map, where every thread copies its bounding box to the common disparity
map, at the same location as the original bounding box was. The free-view system can then be
implemented using the depth maps generated by our pipeline.

Appendix A

Accessing the Source Code

The source code for the Bagadus system, including what is described in this thesis, can be found
at https://bitbucket.org/mpg_code/bagadus. To retrieve the code, run git clone
git@bitbucket.org:mpg_code/bagadus.git.

97

98

Bibliography

[1] Basler. http://www.baslerweb.com/products/ace.html. Accessed:
05/03/2013.

[2] Camargus - premium stadium video technology inrastructure. http://www.
camargus.com. Accessed: 02/03/2013.

[3] Cubic frame stucture and floor depth map. http://en.wikipedia.org/
wiki/File:Cubic_Frame_Stucture_and_Floor_Depth_Map.jpg. Ac-
cessed: 09/04/2013.

[4] Cubic structure. http://en.wikipedia.org/wiki/File:Cubic_
Structure.jpg. Accessed: 09/04/2013.

[5] iad - information access disruptions. http://iad.ndlab.net/. Accessed:
16/04/2013.

[6] Interplay sports. http://www.interplay-sports.com. Accessed: 02/03/2013.

[7] Opencv. http://opencv.org/. Accessed: 09/03/2013.

[8] Prozone. http://www.prozonesports.com. Accessed: 28/02/2013.

[9] Stats technology. http://www.sportvu.com/football.asp. Accessed:
01/03/2013.

[10] Verdione. http://www.verdione.org/. The official website at the time of de-
livery is down. Google cache: http://webcache.googleusercontent.com/
search?q=cache:http://verdione.org/.

[11] x264 video encoder. http://www.videolan.org/developers/x264.html.
Accessed: 09/03/2013.

[12] Zxy sport tracking. http://www.zxy.no. Accessed: 28/02/2013.

[13] Stereo vision using the opencv library. http://tjpstereovision.googlecode.
com/hg-history/551f9b6e2e9549337e7c26b4bac6a9a69a6c509c/
doc/verslag.pdf, June 2010.

[14] F. Albregtsen and G. Skagestein. Digital representasjon: av tekster, tall, former, lyd, bilder
og video. Unipub, 2007.

[15] Luis Alvarez. Private email correspondence, 2013.

99

100

[16] Luis Alvarez, Luis Gomez, Pedro Henriquez, and Luis Mazorra. Automatic camera pose
recognition in planar view scenarios. In Luis Alvarez, Marta Mejail, Luis Gomez, and
Julio Jacobo, editors, Progress in Pattern Recognition, Image Analysis, Computer Vision,
and Applications, volume 7441 of Lecture Notes in Computer Science, pages 406–413.
Springer Berlin Heidelberg, 2012.

[17] C. Banz, H. Blume, and P. Pirsch. Real-time semi-global matching disparity estimation
on the gpu. In Computer Vision Workshops (ICCV Workshops), 2011 IEEE International
Conference on, pages 514–521, 2011.

[18] C. Banz, S. Hesselbarth, H. Flatt, H. Blume, and P. Pirsch. Real-time stereo vision system
using semi-global matching disparity estimation: Architecture and fpga-implementation.
In Embedded Computer Systems (SAMOS), 2010 International Conference on, pages 93–
101, 2010.

[19] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up robust fea-
tures (surf). Comput. Vis. Image Underst., 110(3):346–359, June 2008.

[20] Luca Benedetti, Massimiliano Corsini, Paolo Cignoni, Marco Callieri, and Roberto
Scopigno. Color to gray conversions in the context of stereo matching algorithms: An
analysis and comparison of current methods and an ad-hoc theoretically-motivated tech-
nique for image matching. Mach. Vision Appl., 23(2):327–348, March 2012.

[21] S. Birchfield and C. Tomasi. Depth discontinuities by pixel-to-pixel stereo. In Computer
Vision, 1998. Sixth International Conference on, pages 1073–1080, 1998.

[22] John Canny. A computational approach to edge detection. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, PAMI-8(6):679–698, 1986.

[23] chandler. Football pitch metric and imperial. http://en.wikipedia.org/wiki/
File:Football_pitch_metric_and_imperial.svg. Accessed: 10/03/2013.

[24] Jen-Shiun Chiang, Chih-Hsien Hsia, Hung-Wei Hsu, and Chun-I Li. Stereo vision-based
self-localization system for robocup. In Fuzzy Systems (FUZZ), 2011 IEEE International
Conference on, pages 2763–2770, 2011.

[25] D. E. Comer, David Gries, Michael C. Mulder, Allen Tucker, A. Joe Turner, and Paul R.
Young. Computing as a discipline. Commun. ACM, 32(1):9–23, January 1989.

[26] J. Martin D. Mills, U. Delaware. Network Time Protocol Version 4: Protocol and Algo-
rithms Specification. RFC 5905, RFC Editor, June 2010.

[27] Aram Dulyan. Shutter speed in greenwich. http://en.wikipedia.org/wiki/
File:Shutter_speed_in_Greenwich.jpg. Accessed: 07/03/2013.

[28] Kjetil Endal. A pipeline for high-quality free-viewpoint video. Master’s thesis, University
of Oslo, Norway, 2011.

[29] P.F. Felzenszwalb and D.P. Huttenlocher. Efficient belief propagation for early vision. In
Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004
IEEE Computer Society Conference on, volume 1, pages I–261–I–268 Vol.1, 2004.

101

[30] Ian Parberry Fletcher Dunn. 3D Math Primer for Graphics and Game Development.
Wordware, 2002.

[31] R. Gusella and S. Zatti. The accuracy of the clock synchronization achieved by tempo in
berkeley unix 4.3bsd. Software Engineering, IEEE Transactions on, 15(7):847 –853, jul
1989.

[32] Pål Halvorsen, Simen Sægrov, Asgeir Mortensen, David K. C. Kristensen, Alexander
Eichhorn, Magnus Stenhaug, Stian Dahl, Håkon Kvale Stensland, Vamsidhar Reddy Gad-
dam, Carsten Griwodz, and Dag Johansen. Bagadus: An integrated system for arena
sports analytics - a soccer case study. In Proceedings of the International Conference on
Multimedia Systems (MMSys), pages 48–59, Feb/March 2013.

[33] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, ISBN: 0521540518, second edition, 2004.

[34] Espen Oldeide Helgedagsrud. Efficient implementation and processing of a real-time
panorama video pipeline with emphasis on dynamic stitching. Master’s thesis, Univer-
sity of Oslo, Norway, 2013.

[35] H. Hirschmuller. Stereo processing by semiglobal matching and mutual information. Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on, 30(2):328–341, 2008.

[36] Li Hong and G. Chen. Segment-based stereo matching using graph cuts. In Computer Vi-
sion and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer
Society Conference on, volume 1, pages I–74–I–81 Vol.1, 2004.

[37] Dag Johansen, Magnus Stenhaug, Roger Bruun Asp Hansen, Agnar Christensen, and Per-
Mathias Høgmo. Muithu: Smaller footprint, potentially larger imprint. In Proceedings of
the IEEE International Conference on Digital Information Management (ICDIM), pages
205–214, August 2012.

[38] Tetsuya Kakuta, Lu Boun Vinh, Rei Kawakami, Takeshi Oishi, and Katsushi Ikeuchi.
Detection of moving objects and cast shadows using a spherical vision camera for outdoor
mixed reality. In Proceedings of the 2008 ACM symposium on Virtual reality software and
technology, VRST ’08, pages 219–222, New York, NY, USA, 2008. ACM.

[39] Marius Muja and David G. Lowe. Fast approximate nearest neighbors with automatic
algorithm configuration. In International Conference on Computer Vision Theory and
Application VISSAPP’09), pages 331–340. INSTICC Press, 2009.

[40] Don Murray and Jim Little. Using real-time stereo vision for mobile robot navigation. In
Autonomous Robots, page 2000, 2000.

[41] S. Nedevschi, A. Vatavu, F. Oniga, and M. M Meinecke. Forward collision detection
using a stereo vision system. In Intelligent Computer Communication and Processing,
2008. ICCP 2008. 4th International Conference on, pages 115–122, 2008.

[42] Arne Nordmann. Epipolar geometry. http://en.wikipedia.org/wiki/File:
Epipolar_geometry.svg. Accessed: 04/04/2013.

102

[43] Mikkel Næss. Efficient implementation and processing of a real-time panorama video
pipeline with emphasis on color correction. Master’s thesis, University of Oslo, Norway,
2013.

[44] N. Papadakis, A. Baeza, I. Rius, X. Armangué, A. Bugeau, O. D’Hondt, P. Gargallo,
V. Caselles, and S. Sagàs. Virtual camera synthesis for soccer game replays. In Visual
Media Production (CVMP), 2010 Conference on, pages 97 –106, nov. 2010.

[45] Pbroks13. Pinhole-camera. http://en.wikipedia.org/wiki/File:
Pinhole-camera.svg. Accessed: 18/03/2013.

[46] Simen Sægrov, Alexander Eichhorn, Jørgen Emerslund, Håkon Kvale Stensland, Carsten
Griwodz, Dag Johansen, and Pål Halvorsen. Bagadus: An integrated system for soccer
analysis (demo). In Proceedings of the International Conference on Distributed Smart
Cameras (ICDSC), October 2012.

[47] Simen Sægrov. Bagadus: next generation sport analysis and multimedia platform using
camera array and sensor networks. Master’s thesis, University of Oslo, Norway, 2012.

[48] Tangfei Tao, Ja Choon Koo, and Hyouk-Ryeol Choi. A fast block matching algorthim for
stereo correspondence. In Cybernetics and Intelligent Systems, 2008 IEEE Conference on,
pages 38–41, 2008.

[49] Marius Tennøe. Efficient implementation and processing of a real-time panorama video
pipeline with emphasis on background subtraction. Master’s thesis, University of Oslo,
Norway, 2013.

[50] Kazunori Umeda, Yuuki Hashimoto, Tatsuya Nakanishi, Kota Irie, and Kenji Terabayashi.
Subtraction stereo: a stereo camera system that focuses on moving regions. pages 723908–
723908–11, 2009.

[51] Bart van Andel. Image rectification. http://en.wikipedia.org/wiki/File:
Epipolar_geometry.svg. Accessed: 04/04/2013.

[52] Qingxiong Yang, Liang Wang, and N. Ahuja. A constant-space belief propagation algo-
rithm for stereo matching. In Computer Vision and Pattern Recognition (CVPR), 2010
IEEE Conference on, pages 1458–1465, 2010.

[53] Ylebru. Birapport et projection. http://en.wikipedia.org/wiki/File:
Birapport_et_projection.png. Accessed: 14/03/2013.

[54] Hui Zeng, Xiaoming Deng, and Zhanyi Hu. A new normalized method on line-based
homography estimation. Pattern Recogn. Lett., 29(9):1236–1244, July 2008.

[55] Zoran Zivkovic and Ferdinand van der Heijden. Efficient adaptive density estimation per
image pixel for the task of background subtraction. Pattern Recogn. Lett., 27(7):773–780,
May 2006.

