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ABBREVIATIONS 

Cfu   colony forming units 

DAEC   diffusely adherent E. coli 

E. coli  Escherichia coli

EAEC   enteroaggregative E. coli 

EHEC   enterohemorrhagic E. coli  

EIEC    enteroinvasive E. coli  

ENC   effective number of codons 

EPEC    enteropathogenic E. coli  

ETEC    enterotoxigenic E. coli 

ExPEC  extraintestinal pathogenic E. coli 

IBD    inflammatory bowel disease  

LT    heat-labile toxin  

MLST   multilocus sequence typing

PCR   polymerase chain reaction 

qPCR   quantitative PCR

ST    heat-stable toxin 

sHULK                high �max and low Ks
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INTRODUCTION 

Summary

The bacterial species Escherichia coli is still not fully characterized 

despite being one of the most thoroughly studied organisms. This 

thesis presents a deep characterization of E. coli strains in a cohort of 

infants and their mothers and extends current understanding of the 

ecology of this ubiquitous organism. The samples for this study were 

obtained from Trondheim, Norway, and allows for a much needed 

geographic perspective that makes it possible to link phylogenetic, 

ecological, and molecular data with a defined location. The initial 

nested case-control study was designed to examine the impact of 

bacterial community colonization on the development of atopic disease 

in a cohort of infants (Storrø et al., 2010; Storrø et al., 2011). 

Quantitative polymerase chain reaction (qPCR) was used to identify 

and quantify the microbial fecal composition of several classes of 

bacteria in the infants over time and this was matched with cytokine 

profile development. From this work it was found that early E. coli 

colonization in this cohort was linked to protection from atopy and that 

the mother was a likely source of the infant colonization (Rudi et al., 

2012). These findings, as well as the plethora of tools available for the 

study of E. coli led us to focus on this species and characterize its 

colonization patterns within this cohort of infants.  

 

This thesis develops methodology and then characterizes population 

structure and dynamics of E. coli colonization within the larger study 

framework. We first developed a simple and novel technique that 

allowed us to uncover limits on the diversity of colonizing strains and 

found evidence of transmission from the mothers to the infants (Paper 
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I). We placed these colonizing E. coli strains into a phylogenetic 

context and further placed these strains into overall E. coli diversity. 

This allowed us to understand and compare strains colonizing infants 

in a defined geographic area with the wider population structure of this 

species. Additional investigation found differences in growth 

characteristics of the E. coli strains that were either early or late 

colonizers of the infant gut (Paper II). In vitro competition studies 

revealed potential mechanisms that modulate strain competitive 

dynamics. Finally, through genome sequencing, we compared several 

phenotypic characteristics using differential gene content in order to 

determine enrichment profiles that may explain these traits (Paper 

III). Enrichment comparisons included: phylogenetic, pathogenic vs. 

commensal, growth rate, and early or late colonization. The signatures 

we found can be used for further investigations into genotype-

phenotype connections within E. coli strain ecology. Overall, we 

developed much needed insight into modern colonization patterns in a 

geographically defined cohort.  

Brief introduction to E. coli 

E. coli was first isolated from the feces of a newborn in 1885 by 

Theodor Escherich and is a gram negative, facultative anaerobic 

bacillus that is able to use glucose as a sole carbon source for growth 

(Escherich, 1989). It belongs to the Domain bacteria, Phylum 

Proteobacteria, Class �-Proteobacteria, Order Enterobacteriaceae, and 

Genus Escherichia of which there are seven members. The primary 

habitat is believed to be the animal gastrointestinal system, however, 

this should and has been extended to include extra-intestinal 

environments (Luo et al., 2011). The ease of culture and ubiquity of E. 

coli has lead to its usefulness as a molecular biology workhorse. 
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Extensive basic research using E. coli as a model organism has also 

afforded rare insight into the molecular mechanisms of its 

characteristics. Today, a Pubmed search for ‘Escherichia coli’ returns 

294,153 results. Much of this is basic research but a large part is 

devoted to the understanding of the pathogenic role of E. coli and the 

characteristics that drive this normally commensal organism towards 

pathogenesis (Kaper et al., 2004). Limited work has also looked into a 

probiotic role and the ability of some strains to directly protect the 

host from pathogens or modulate immune responses to help the host 

to maintain health (Fuller, 1989).  

 

E. coli is a diverse bacterial species and encompasses a large number 

of strains. The general diversity of E. coli lies mostly in commensal 

strains of the gut (Tenaillon et al., 2010). This diversity is typically 

divided into clades or groups A, B1, B2, D, and sometime including E 

and F (Jaureguy et al., 2008). Humans are thought to be mostly 

colonized by E. coli of the B2 and A groups while B1 derives from 

domesticated animals, although this depends some on the geography 

(Tenaillon et al., 2010).  

 

E. coli Genomics 

Much genomic information of E. coli has already been collected and 

Genbank has cataloged 60 chromosomal genomes and 346 scaffolds or 

contigs (as of this writing) with most of the sequencing effort directed 

toward pathogenic strains. The use of these full genomes has become 

important for understanding the role of differential gene content in 

determining a realized ecological niche (Luo et al., 2011). Previous 

comparative analysis of the genomes of 61 isolates (Lukjancenko et 

al., 2010) has further developed a new view of the E. coli community 
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structure that highlights diversity: at the genome level, on average, E. 

coli is only 20% core and 80% non-core. The limitations of MLST make 

consistent fine scale architecture of phylogeny difficult (Sahl et al., 

2012) while whole genome sequencing has offered accurate 

phylogenetic placement of the E. coli strains. 

 

The comparison of 61 genome-sequenced strains showed that the total 

genome sizes range from ~4.5 Mb to almost 6 Mb containing ~4,200-

~6,000 genes (Lukjancenko et al., 2010). The biological functions for 

many of these genes are still unknown. For example, from the 

genomes of the canonical K-12 MG1655 and derivative W3110 E. coli 

strains, 2,403 or 54% of the genes have known functions based on 

experimental data; 1,425 (32%) are genes that are only 

computationally predicted and the remaining 616 (14%) ‘genes’ are 

categorized as unknown (Riley et al., 2006). This data only represents 

a small fraction of the number of genes within the species. Due to its 

enormous genetic diversity, as little as 20% of the genome is common 

to all strains (Lukjancenko et al., 2010), and the core genome of E. 

coli as a species is estimated to be between 900 and ~2,000 genes 

whereas the pan-genome of all E. coli strains is estimated to be 

18,000 genes and growing as more strains are sequenced. 

 

E. coli in the human gastrointestinal system 

Commensal 

Advances in technology have changed our understanding of the 

microbial community inhabiting the gastrointestinal system (Zoetendal 

et al., 2004). Due to its ease of culture from the fecal samples, E. coli 

has long been thought to have a solid place in this large and complex 

community. However, 16S rRNA gene sequencing has since shown 
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that only about 10-50% of the gut microbial species are cultivable 

using current knowledge. Infants are born sterile and, under normal 

circumstances, E. coli is one of the early colonizing members 

(Bettelheim and Lennox-King, 1976). The neonatal gut is rich in 

oxygen and promotes the establishment of aerobic and facultative 

anaerobic organisms (Adlerberth, 2008). These deplete available 

oxygen and promote the growth of obligate anaerobic organisms which 

then come to dominate. Broad colonization patterns of the infant over 

time show Proteobacteria expand to maximal relative abundance at 

about four months (Koenig et al., 2011). In the mature community, E. 

coli is outnumbered by anaerobic bacteria by a factor of 100 to 10,000 

and constitutes only a small fraction (0.1%) of the relative abundance. 

Nevertheless, E. coli is the predominant facultative anaerobe in the 

gastrointestinal tract and adults carry about 108 cfu per gram of feces 

(Tenaillon et al., 2010). 

 

The ecological role of E. coli in the gut microbial community is less 

clear. We know little about the effects of E. coli presence on the 

community structure as a whole. Trosvik et al. (Trosvik et al., 2010a) 

addressed this issue in a simplified model gut system that included 

representatives of four of the main gut bacterial groups: Bacteriodes 

thetaiotaomicron, Bifidobacterium longum, Clostridium perfringens, 

and Escherichia coli. By following the experimental community over 

time, an interaction map of these groups was established showing that 

E. coli abundance was negatively affected by the abundances of C. 

perfringens and B. thetaiotaomicron (Figure 1).  
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Figure 1. Interaction map of four model bacteria species 

in a chemostat system. Reproduced from Trosvik et al. 

(Trosvik et al., 2010a) 

 

This seemed to follow some of the key patterns often observed in the 

actual gut environment as both of these classes of bacteria are 

extremely dominant in the mature gut. Dysbiosis of this normal 

relative abundance of these groups has been linked with diseases such 

as diabetes, inflammatory bowl diseases (IBD), allergy, and obesity 

(Frank et al., 2007; Giongo et al., 2011; Larsen et al., 2010; 

Turnbaugh et al., 2006). Specifically, decreases in Firmicutes 

(represented by Clostridium in the previous model community) and 

Bacteriodetes with a corresponding increase in Proteobacteria 

(represented by E. coli in the model) are associated with IBD. Others 

found increases in specific E. coli strains are associated with IBD 

(Baumgart et al., 2007). Since this work, there has been increased 

effort to understand the mechanism of the interaction between the 

host and bacteria and to characterize the strains associated with IBD 

(Chassaing et al., 2011; Kotlowski et al., 2007; Rolhion and Darfeuille-

Michaud, 2007; Sepehri et al., 2009).  
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Pathogenic E. coli 

In addition to being a well-known commensal, E. coli is also a 

pathogenic species that may cause fatal diseases. One of the first 

reported cases of E. coli causing disease is an outbreak of diarrhea 

among infants in 1935 (Merritt and Paige, 1935). The diarrhea-

inducing E. coli pathogens are divided into six classes depending on 

strain characteristics that result in distinct features in pathogenesis: 

enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC), 

enteropathogenic E. coli (EPEC), enteroaggregative E. coli (EAEC), 

enterohemorrhagic E. coli (EHEC), and diffusely adherent E. coli 

(DAEC) (Kaper et al., 2004; Todar, 2012). Extraintestinal pathogenic 

E.coli (ExPEC) infect a variety of other tissues outside the intestinal 

system but are related to both commensal and pathogens of the 

gastrointestinal tact as many of the factors that allow a strain to 

become virulent are also important as general fitness factors for 

gastrointestinal colonization (Pitout, 2012).  

 

Enterotoxigenic E. coli (ETEC) is an important cause of diarrhea in 

infants and travelers in underdeveloped countries of poor sanitation. 

The bacteria colonize the GI tract by means of fimbrial adhesion 

molecules, e.g. CFA I and CFA II, and are noninvasive, but cause 

pathology by producing one or more plasmid-encoded enterotoxins. 

Enterotoxins produced by ETEC include the LT (heat-labile) toxin 

and/or the ST (heat-stable) toxin. The LT enterotoxin has an 

enzymatic activity that is identical to that of the cholera toxin and 

binds to the same intestinal receptors that are recognized by the 

cholera toxin. ST causes an increase in cyclic GMP in host cell 

cytoplasm which in turn leads to secretion of fluid and electrolytes 

resulting in diarrhea.  
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Enteroinvasive E. coli (EIEC) closely resemble Shigella in their 

pathogenic mechanisms and clinical presentation they produce. The 

clinical symptoms resemble Shigella dysentery and include a 

dysentery-like diarrhea with fever. Like Shigella, EIEC are invasive 

organisms and they penetrate and multiply within epithelial cells of the 

colon causing widespread cell destruction. Unlike Shigella, they do not 

produce the shiga toxin, or the LT or ST toxins.  

 

Enteropathogenic E. coli (EPEC) induce a watery diarrhea similar to 

ETEC, but they do not possess the same colonization factors and do 

not produce ST or LT toxins. Rather, EPEC strains adhere to the 

intestinal mucosa through a complicated process and produces 

dramatic effects in the ultra-structure of the cells resulting in 

rearrangements of actin in the vicinity of adherent bacteria. The 

diarrhea and other symptoms of EPEC infections are probably caused 

by inflammatory responses of host cells to bacterial invasion and 

interference with normal cellular signal transduction, rather than by 

production of toxins. 

 

Enteroaggregative E. coli (EAEC) attach to tissue culture cells in an 

aggregative manner. The significance of EAEC strains in human 

disease is controversial but it has been associated with persistent 

diarrhea in young children. They resemble ETEC strains in that the 

bacteria adhere to the intestinal mucosa and cause non-bloody 

diarrhea without invading or causing inflammation. 

 

Enterohemorrhagic E. coli (EHEC) is represented by a single strain 

(serotype O157:H7), which causes a diarrheal syndrome distinct from 
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EIEC (and Shigella) in that there is copious bloody discharge and no 

fever. Pediatric diarrhea caused by this strain can be fatal due to acute 

kidney failure (hemolytic uremic syndrome [HUS]). The bacteria do not 

invade mucosal cells as readily as Shigella, but EHEC strains produce a 

toxin that is virtually identical to the Shiga toxin. The toxin plays a role 

in the intense inflammatory response produced by EHEC strains and 

may explain the ability of EHEC strains to cause HUS. 

 

Diffusely adherent E. coli (DAEC) induces a characteristic, diffuse 

pattern of adherence to HEp-2 cell monolayers, a human epithelial cell 

line derived from larynx carcinoma. DAEC express fimbrial adhesin 

molecules that bind receptors on the intestinal epithelial cells which in 

turn induce inflammatory responses and cytopathic effects. DAEC has 

been implicated in diarrhea in children over 1 years of age. 

 

Extraintestinal pathogenic E.coli (ExPEC) can cause pathologies in a 

several tissues in addition to infections of the intestine (Russo and 

Johnson, 2000). Some common targets of infection include the urinary 

tract, meninges and intra-abdominal areas and these infections are 

often accompanied by bacteremia. Although these strains have been 

previously claimed to be completely distinct from commensal strains, 

they have subsequently been shown to have overlapping properties 

with gastrointestinally colonizing E.coli (Diard et al., 2010; Le Gall et 

al., 2007). Examples of this overlap can be observed in cases such as 

when a urinary pathogenic E.coli strain lives commensally in the gut 

(Foxman, 2010), or the presence of virulence factors such as Type 1 

fimbrea (Nielubowicz and Mobley, 2010). Type 1 fimbrea are a well 

characterized virulence factor almost always found in human 

uropathogenic E. coli strains but also often found in intestinally derived 
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strains as well. On the genome level, ExPECs may exhibit a clearer 

distinction from commensal isolates than seen in comparisons of the 

broad category of pathogenic E.coli with commensal strains 

(Brzuszkiewicz et al., 2006; Chen et al., 2006; Moriel et al., 2010). 

However, this genetic distinction is related with the specific pathology 

and host history of the strain (Rasko et al., 2008; Touchon et al., 

2009) 

 

Importantly, although it has been well established that many types of 

E. coli can cause disease, the dividing line between pathogenic E. coli 

and commensal E. coli, as was seen in our genome analysis and will be 

discussed further, is blurry. Strains containing well-characterized 

virulence determinants such as the LEE pathogenicity island can be 

isolated from healthy individuals. In the clinical setting, the cause of 

an “infection” is attributed to a pathogenic strain because that is what 

was found in the patient’s stool sample. However, gastroenteritis can 

be caused by a myriad of agents (Alter et al., 2011; Wilhelmi et al., 

2003). 

 

Probiotic E. coli  

Even less well understood are the possibilities of E. coli as a probiotic. 

The role of a probiotic is threefold. A probiotic can protect the host 

from infection by a pathogen by direct competition for a particular 

niche. A probiotic can interact with the host to make the host less 

susceptible to infection or some other diseases. A probiotic can also 

protect one host, e.g. humans, from a pathogen by displacing that 

pathogen in a non-susceptible host, e.g. ruminants that carry the 

human pathogens as commensals. E. coli as a probiotic has been 
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involved in all three roles either alone or in some combination of these 

effects.  

 

The most studied probiotic E. coli is marketed under the name 

Mutaflor®. This strain, also called Nissle 1917 or DSM 6601, was 

isolated by Professor Alfred Nissle from a German soldier who 

remained healthy during an outbreak of Shigellosis during the First 

World War (Nissle , 1918). Since then, this strain has been used for 

addressing a variety of conditions and has been the subject of many 

studies (Pubmed search yields 146 hits). The long list of treatable 

conditions includes protection from other pathogens (Altenhoefer et 

al., 2004), maintaining remission or treatment of ulcerative colitis, 

irritable bowel syndrome, and constipation(Kruis et al., 1997; Kruis et 

al., 2004; Kruis et al., 2012). The ability of this strain to perform all of 

these functions seems to be a combination of itself being an effective 

colonizer that outcompetes other bacteria, the antimicrobial peptides it 

produces (Patzer et al., 2003) and the wide variety of stimulating 

interactions with the host immune system such as cytokine production, 

increased secretion of IgA, mucin and human �-defensin-2 induced by 

this strain (Jacobi and Malfertheiner, 2011). 

 

E. coli has also been linked to long term protection from allergy. In 

addition to the IMPACT study associated with this work (Rudi et al., 

2012) that found early colonization by E. coli in general protect later 

development of allergy, other studies have linked early colonization by 

a probiotic E. coli with allergy protection (Frank et al., 2007; Kim et 

al., 2005; Kocourkova et al., 2007; Lodinova-Zadnikova et al., 2003; 

Lodinova-Zadnikova et al., 2010; Penders et al., 2007; Weise et al., 

2011). The exact mechanism of this protection is not well understood 
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but the hygiene hypothesis suggesting that a lack of early childhood 

exposure to microorganisms increases susceptibility to allergies due to 

suppressed development of the immune system (Strachan, 1989), is 

an actively pursued hypothesis.  

 

The third source of protection that probiotic bacteria can afford is 

depletion of a pathogenic bacterial species in a separate host 

population. Cattle feedlots contain endemic populations of O157:H7 E. 

coli that are highly pathogenic to humans but benign to the cattle. 

Efforts have been made to outcompete these pathogenic populations 

with other species of E. coli in cattle (Schamberger et al., 2004; Zhao 

et al., 1998).  

 

Genomic comparative analysis of four different probiotic E. coli strains 

have found that that not surprisingly, they are more related to a non-

pathogenic commensal strain (K12) than to a pathogenic EHEC strain 

(Willenbrock et al., 2007). Importantly, no virulence genes were 

detected in the probiotic isolates apart from one hemolysin gene that 

in itself was not sufficient to characterize an isolate pathogenic. Each 

probiotic strain also contained ~100 unique genes not found in the 

control genomes (K12 and an O157:H7 EHEC strain) and a few of 

them were predicted to have general metabolic functions. A closer 

analysis will be needed to assess whether some of these genes may 

provide improved fitness for colonization for these probiotic strains.  

Ecological theory and the gut microbiota 

Our knowledge about the types of ecological interactions that occur 

between species in the gut is very limited. We also know little about 

the relative contribution of the bacterial-bacterial interaction and host-
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bacterial interactions (Costello et al., 2012). The ecological 

development of the gut microbiota and the control of its ultimate 

structure can be divided into three parts: initial colonization, host-

bacterial interaction, and bacterial-bacterial interactions. 

 

Initial colonization 

As human, we provide habitat for a set of distinct ‘microbiomes’ within 

an individual. Four proposed scenarios for colonization of these sites 

have been proposed: 

 

a) environmental selection: habitats with initially similar conditions 

select for similar assemblages. This could account for different 

bacterial assemblages in different body sites such as between the skin 

(aerobic) and intestine (anaerobic) as each habitat will select for 

organisms with distinct abilities. 

 

b) historical contingency: habitat does not control colonization, timing 

and order of colonization determine community structure. The same 

body site in different individuals provides similar habitat and would 

support similar communities so that difference in the communities is 

only determined by timing of exposure to different colonizers.  

 

c) random sampling: random draws from the species pool determine 

the final community. In contrast to Costello et al.,(Costello et al., 

2012) who find this may explain differences between monozygotic twin 

colonization, I would assert that this is less important except as 

embedded within the other scenarios or for extremely transient 

colonization. 
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d) dispersal limitation: local communities determine the population 

that the novel host has access to for colonization: In contrast to 

historical microbial theory that assumes “everything is everywhere and 

the environment selects” (O'Malley, 2007), this theory states that the 

available species pool for colonization is limited by local availability.  

 

Host-bacterial interactions 

Non-immune control 

The primary way that the gastrointestinal tract controls the bacterial 

community structure is by its physical parameters. A colonizing 

microbe has to survive the pH and digestive enzymes of the stomach 

and then the anaerobic environment maintained by the intestine. In 

addition, the intestine is a dynamic place with layers of viscous mucus 

and intestinal epithelial cells that are constantly turning over and being 

sloughed off. Finally, host diet affects bacterial community structure 

and host secreted nutrients can promote the growth of certain species 

(Garrido et al., 2012).  

 

Immune interactions 

The complete immune system requires stimulation by a colonizing 

microbiota for proper development (Hooper et al., 2012). In germ-free 

mice, gut-specific lymphoid structures, secretory IgA and CD8�� 

intraepithelial lymphocytes all fail to develop normally. One of the 

main goals of immune control over the microbial community is the 

containment of bacteria and related immune responses to the 

intestine, preventing their spread to systemic sites. Important tools 

include defensins, antimicrobial peptides secreted by the host, IgA 

secretion that binds to bacteria and prevents their crossing of the 

intestinal epithelium, and cytokines secreted by T cells and innate 
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lymphoid cells. Secreted anti-microbial proteins can not only keep the 

microbiota within confined locations, certain members such as the 

human �-defensin-5, can even shape the overall community 

composition. The intestinal immune system actively sample luminal 

bacteria content and produce protective secretory IgAs against 

commensals. In contrast, pathogenic bacteria penetrate to the 

systemic secondary lymphoid tissues and elicit a systemic immune 

response characterized by IgG production (Hooper et al., 2012). 

 

Interestingly, the commensals shape the host immune responses 

which in turn may affect susceptibility for infectious or autoimmune 

diseases. The most striking example is the dependence of one 

important pro-inflammatory T cell response known as the TH17 

response, on the presence of one particular commensal bacteria in the 

murine gut, the segmented filamentous bacteria (Gaboriau-Routhiau et 

al., 2009; Ivanov et al., 2009). Other examples include expansion of 

immune-modulating systemic Treg response by certain Clostridial 

strains (Ivanov et al., 2009), and induction of IL-10 by polysaccharide 

A of Bacteroides fragilis (Round et al., 2011). 

 

Bacterial-bacterial interactions  

In addition to the colonization and host forces determining the 

bacterial composition in the gut, bacterial-bacterial interactions among 

the trillions of bacteria and hundreds to thousands of species must 

contribute in shaping species content and relative abundance (Faust 

and Raes, 2012). Indeed, Trosvik and colleagues (Trosvik et al., 

2010b) showed that main group bacterial interactions during infant 

colonization could be predictive of later community structure.  
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Interactions between microorganisms can result in win-win, win-loss, 

or in rare cases a neutral relationship. Detecting these types of 

relationships within the complex ecosystem of the gut requires two 

complementary approaches. One requires studying the in situ 

relationships operating within the natural system such as performed by 

Trosvik (Trosvik et al., 2010b). The other is to apply well-controlled in 

vitro experiments that can parse out the specific relationships that are 

possible between members of the microbiota in simplified systems 

(Paper II).  

 

Most studies are designed to provide snapshots of the bacterial 

community profile among cohorts (Ley et al., 2006; Yatsunenko et al., 

2012). While these descriptive studies are creating a benchmark for 

understanding general diversity, they do not take into account the 

temporal variation inside individuals. We lack robust models of 

bacterial interactions in the human gut and an understanding of the 

consequences of these interactions on the bacterial community 

structure as a whole. This is mostly due to a deficit of data sets that 

are appropriate for rigorous statistical treatment. Thus far, the largest 

time series of gut colonization is daily sampling of two adult 

individuals, one for 15 months and the other for 6 months (Caporaso 

et al., 2011). Infant gut dynamics are notably more diverse than adult 

dynamics (Palmer et al., 2007). Despite this variation, as our group 

found, these dynamics can significantly influence the final stable 

community structure (Trosvik et al., 2010b). Another study has 

analyzed 60 samples collected over 2.5 years from a single infant 

(Koenig et al., 2011). They presented strong evidence that 

colonization patterns followed distinct stages and that it was seemingly 
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“nonrandom” and determined by ecological interactions. However, the 

nature of these interactions was left undescribed. 

 

In addition to work describing ecological profiles of microbial 

communities, there is a rich and long history of applying in vitro 

experiments using microorganisms to understand the basic principles 

that may generate these various structures (Gause, 1934). These 

experiments allow the investigator to operate with relatively short time 

scales, large populations and the opportunity for replication (Buckling 

et al., 2009). In our work, we have performed experiments using gut 

bacterial strains that have been isolated from human infants in order 

to generate models of interaction that can be used to understand more 

complex community structures.  

 

In vitro competition results that we observed in paper II invoke a 

relationship that we defined as sHULK, (high �max and low Ks) that 

would allow two strains to be competitively superior in different phases 

of the batch culture. The acronym derives from the Monod equation � 

= �maxs/(Ks+s)(monod, 1942) where the outcome of competition is 

determined by the maximum growth rate (�max) and the Monod 

constant (Ks), where Ks is the nutrient concentration at which a species 

has a growth rate of �max/2 (Figure 2). In the special case where one 

species has a higher �max while the other has a lower Ks, there exists a 

nutrient concentration (s) at which the growth rates are equal. Below 

that concentration, the species with the lower Ks will win, while higher 

concentrations favor the species with the higher �max. The exact value 

of s permitting coexistence is for practical reasons very difficult to 

achieve in a chemostat. In theory, and in contrast to a chemostat 

system, this relationship in conjunction with the fluctuating nutrient 
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levels inherent in a batch culture can be used to promote coexistence 

of strains on a single nutrient (Rainey et al., 2000; Stewart and Levin, 

1973).  

 

 

 

Figure 2. μ-s relationship of two organisms A and B. (a) 

Ks(A) < Ks(B) and μmax(A) > μmax(B), (b) Ks(A) < Ks(B) and 

μmax(A) < μmax(B). From (Veldkamp, 1970) 

 

These dynamics are a special case for pairs of species in which one 

(sometimes called a “gleaner”) has a higher growth rate at low 

nutrient concentrations and another (sometimes called an “exploiter” 

or “opportunist”) has a higher growth rate at high nutrient 

concentrations (Fredrickson and Stephanopoulos, 1981; Gottschal, 

1993). In fact, some experimental evidence does support this type of 

proposed interaction (Grover, 1997; Levin, 1972). However, much 

controversy still remains concerning the conditions that lead to 

coexistence (Abrams, 2004).  
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PAPERS 

Paper 1 

In the first part of the thesis we utilized a novel, growth-independent, 

direct typing approach to describe E. coli mother-to-child transmission 

and persistence within infants in a well-defined cohort. This technique 

has since been used to create strain resolved analysis of Bacteriodes 

fragilis in the same cohort (Bjerke et al., 2011). We then performed 

seven gene multilocus sequence typing (MLST) of 28 E. coli study 

isolates, three probiotic strains, eight Norwegian pathogenic isolates 

plus the 72 strains of the reference ECOR strain collection (Ochman 

and Selander, 1984), which added a phylogenetic framework to the 

direct sequencing data. We found that a type B2 subpopulation of the 

maternal E. coli strains was the main group transmitted to the infants 

and that the proportion of children carrying their mother’s strain 

decreased as the children aged. Using species richness estimates we 

also found a limited number of strains within the cohort compared with 

the total E. coli diversity, constraints on infant colonization, and that 

infant strain diversity levels increased towards maternal diversity 

levels over time. These results support the idea of ‘dispersal limitation’ 

having a strong effect on potential colonization patterns. This is 

supported by other work that found differences in initial E. coli 

colonization rates between vaginal and caesarean section delivered 

infants (Nowrouzian et al., 2003). 

 

The direct typing approach that we developed used a single gene to 

differentiate strains of E. coli. This gene was amplified directly from 

the stool samples and polymorphisms between the strains in this 

particular gene were used for quantification of relative abundance. 

However, this method does have limitations. First, strain differentiation 
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is dependent on polymorphisms in this single gene. In addition, the 

relative abundance measurement using sequencing reactions of this 

gene has an effective detections threshold of 10%. This means that we 

can determine fine scale relative abundance differences but not the 

log-fold differences that serial dilution techniques are better suited for 

measuring. Even in the world of high-throughput genomics, this 

technique still has inherent value that can be applied in a clinical 

setting. E. coli are of low relative abundance in the human gut 

microbiome and it will require high metagenomic coverage and 

extensive bioinformatic analysis in order to achieve strain resolution 

(Morowitz et al., 2011).  

 

Paper 2 

Very little is known about how biotic interactions influence community 

dynamics and the ecological processes that generate the establishment 

and maintenance of a normal microbial community in the human 

gastrointestinal tract. In this study we investigated isolates derived 

from one particular infant. These isolates were obtained from an infant 

at day ten, four months and two years of age. We used these strains 

and a simplified model microbiota to investigate intra-species 

competition and demonstrate that the colonization process on the 

strain level can be context dependent, in the sense that the outcome 

of intra-specific competition may be determined by the composition of 

the background community. Further experimentation outlined a 

possible mechanism by which strain preponderance may be modulated 

through biotic interactions with distantly related species.  

 

The intra-specific competitions generated two seemingly contradictory 

sets of observations that can be explained by two different models. We 
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observed two different competitive outcomes between the three 

strains studied. One strain (EDM106) had a shorter generation time at 

low nutrient levels than the other two strains (EDM116, EDM530) while 

at high nutrient levels EDM106 had a longer generation time than the 

other two. When EDM106 and EDM530 were inoculated together, 

EDM530 outcompeted EDM106 under high nutrient conditions whereas 

EDM106 outcompeted EDM530 under low nutrient conditions. 

However, when EDM106 and EDM116 were inoculated together in a 

high nutrient concentration regime they coexisted.  

 

Our results from the EDM106 and EDM530 strain competitions are 

consistent with the sHULK model for competition between organisms 

where one competitor has adapted to low resource and high stress 

environments whereas the other is optimized for rapid reproduction 

when resources are abundant. The inherent limitations of our model 

system make it all the more surprising that we found some of the 

same competitive outcomes that were observed in the gut 

environment. Additionally, genomic profiles of E. coli strains 

representing these differing ecological strategies provided clues for 

deciphering the genetic underpinnings of niche adaptation within a 

single species. Several pathways were identified in the genomes that 

could have influenced competitive outcomes and suggest further 

investigations to solidify a bridge between gene content and 

competitive outcomes in the natural environment. It is difficult to 

ascribe these results to particular genes or pathways because of the 

number of unique genes that are annotated as hypothetical proteins in 

each of the strains. However, we do provide genomic profiles of an 

ecological gleaner in comparison with two exploiter phenotypes.  
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The stabile co-existence and increased carrying capacity relative to 

EDM106 when EDM106 and EDM116 are co-cultured suggests that 

some form of cross-feeding is occurring. This invokes a second model 

that is based on the observed increase in carrying capacity of the co-

culture. If between-strain competition is weaker than within-strain 

competition there is a theoretical equilibrium point for coexistence. 

This state can be brought about by cooperative interactions like cross-

feeding, resulting in increased productivity in the co-culture. 

Additionally, the fact that these strains were found to coexist in the 

infant gut, as well as in co-culture suggests that they could occupy 

overlapping niches in their natural environment, and that the observed 

interaction is ecologically relevant. 

 

We also present evidence of context dependent competition in bacteria 

in Paper II, and we propose mechanisms that can promote this 

phenomenon. The previously described competition outcomes between 

EDM106 and EDM530 could be altered by the presence of Clostridia 

but not by the presence of Bacteriodes. We can easily envision two 

scenarios in an actual gut where one of the two E. coli strains 

outcompetes the other, depending who is dominating the background 

community (Clostridia or Bacteroides).  

 

When all of our competition results were taken together, we were able 

to replicate some of the outcomes of strain competition observed in 

the actual infant gut. This does not mean that these were the actual 

factors responsible for the outcomes in that complex environment. The 

large number of species and need for further information preclude 

definitive conclusions. Our findings however, do extend the role of 



29

ecological theory in understanding microbial systems and the 

conceptual toolbox for describing microbial community dynamics.  

  

Paper 3 

Together with Jan Egil Afset at NTNU, we sequenced twelve 

commensal and four pathogenic strains from the previously described 

cohort. We compared differential gene content in order to determine 

enrichment profiles that may explain phenotypic traits. We found 

signatures that relate to phylogeny, early vs. late colonization, 

pathogenicity, and growth rate characteristics that show comparable 

enrichments in biological processes but use different genetic elements. 

Embedded in the sequencing were two pairs of strains isolated from 

the same infant and that were clonally related. Genome sequencing 

revealed gene content and codon use changes that could be attributed 

to adaption to the host or other microbes. Methodological challenges 

included alleviating potential bias in our gene content comparisons 

between genomes due to fragmented assembly of the genomes by 454 

sequencing. 

 

There are three important categories of findings in this paper. The first 

is the gene content enrichment profiles for the individual phenotypic 

categories of: phylogeny, early vs. late colonization, pathogenicity, 

and growth rate. Additionally, we found genomic profiles that are 

associated with evolution towards a late colonizer using two lines of 

evidence. “Re-sequencing” of a strain that had been in an infant for 

four months showed that three genes that were present in the 

ancestral strain and that all belonged to the early enrichment genes, 

were lost from the evolved version. These genes included a tellurite 

resistance protein that has been linked to resisting host defense 
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(Morowitz et al., 2011; Taylor, 1999). Secondly, we observed an 

increased anaerobic generation time of the isolates of the same strain 

from the same infant four month later. In addition, the evolved 

EDM123c had an elevated genome-wide Effective number of codons 

(ENC) (and thus also �ENC) relative to the parent strain. This indicates 

a selection pressure for synonymous mutations toward reduced codon 

usage bias from the parent to the evolved strain. Reduced codon bias 

and growth rate have previously been associated with late gut 

colonization (Vieira-Silva and Rocha, 2010), suggesting that isolate 

EDM123c has in fact evolved toward a late colonizer profile. 

 

Lastly, and perhaps most importantly, we found that strains use 

different genetic elements to attain enrichments for similar biological 

processes. There were several instances where clear gene content 

enrichment profiles could be linked to specific phenotypes. When the 

lists of genes in these enrichment profiles were categorized into 

biological processes, strong similarities between the enrichments 

arose. This suggests that there could be strong selection towards a 

defined niche for E. coli in the human gut. Nevertheless, many genetic 

pathways are available to achieve this and fine scale specialization can 

still direct the evolution of strains. In contrast to previous studies of E. 

coli eco-genomics (Didelot et al., 2012; Lukjancenko et al., 2010; 

Rasko et al., 2008; Touchon et al., 2009), our isolates come from a 

population that is narrowly localized both temporally and 

geographically. This could result in reduced genetic diversity in our 

samples due to shared ancestry and increased exchange of genes 

through horizontal transfer (HGT) between strains. We were not 

particularly interested in HGT but we did see a substantially higher 

percentage of shared gene content (52.4%) than what has previously 
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been reported, as well as a smaller pan-genome, indicating that 

homogenizing forces are increasingly affecting genomic diversity on a 

local scale. The more homogenous genomic background, as seen in 

this work, could make it easier to tease out gene content signatures 

that are ecologically relevant. 

 

Future perspectives 

This thesis generates several lines of inquiry that can be useful for 

uncovering different aspects of E. coli’s natural history and ultimately 

be useful in a clinical and basic science perspective. We still do not 

understand the emergence of pathogenic E. coli from its commensal 

origins even though this is a much studied organism that accounts for 

billions in health care costs each year (Russo and Johnson, 2003). A 

larger understanding of commensal E. coli strains would shed light on 

the relationships between gene flow, genetic background, host 

susceptibility, population structure and how these relate to disease. 

Direct sequence typing and clinical diagnostics 

The direct sequencing methods developed in the first paper would 

facilitate rapid evaluation of infectious samples. Modern clinical 

practice still requires culture to identify bacteria in an infection. The 

well-known differences in cultivability of different species and strains 

within a species can bias the colony distribution growing on the plate. 

Further, it is likely that an individual is colonized by more than one 

strain of E. coli as we and others have reported (Nowrouzian et al., 

2003). This cultivability bias, in conjunction with multiple colonizing 

strains, makes it difficult to ascertain whether the strains that have 

been isolated accurately represent the true colonization pattern of the 
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patient. Direct typing using single-gene-polymorphisms offers a simple 

procedure for validating these culture results. 

 

The gene that we chose for direct sequence typing was malate 

dehydrogenase mdh for reasons outlined in the paper. Since 

publication of the paper, comparative genomics has found many other 

candidate genes that could be more informative with regard to 

increased diversity or phylogenetic accuracy (Sahl et al., 2012). As 

more genomes are sequenced, continued analysis of these will most 

likely find even more informative genes.  

 

Context dependence in microbial ecology 

Context-dependent competition most likely represents a general 

phenomenon where community composition at high taxonomic levels 

determines the outcomes of strain level colonization processes by 

remodelling the environment to become more permissive to some 

strains than others. In a system, such as the gut, where a high degree 

of exploitation competition takes place, the ability of keystone taxa to 

remodel the biotic environment may have profound effects on 

community structure. There are few, if any, concrete examples of 

context-dependent competition on a single trophic level as presented 

in Paper II. However, this phenomenon can have potentially dramatic 

effects on which bacteria will successfully establish and persist in the 

gastrointestinal system, and the principle should be equally applicable 

to other microbial ecosystems.  

 

Understanding the population ecology of gut bacteria and competition 

effects across phyla is important because of the growing use of 

antibiotics and probiotics without consideration of possible cascading 
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effects (Costello et al., 2012). Results from the second paper could 

lead to better understanding of important phenotypic characteristics 

that will lead to more effective probiotic choices, an increasingly 

important avenue of investigation with the rise of antibiotic resistance.  

In addition, we believe that extending competitions presented in the 

paper would lead to complex dynamics that could be modeled and 

further extend the theoretical understanding of bacterial competition.    

 

Gene-content profiles and genotype-phenotype mapping 

Even for the most well characterized genome (E.coli K-12) only half of 

the genes have a function defined by experimental evidence. The 

remaining genes have purely hypothetical functions or are completely 

undefined. The approach that we present in the third paper links gene 

sets with phenotypes which can serve as a starting platform for 

extending the known functions of genes and assigning functions to 

previously uncharacterized genes. A larger scale and more systematic 

approach that applies differential gene content profiling to a series of 

phenotypic responses to environmental conditions would relate the 

functional role of genes to ecological variables.   

 

Correlating IMPACT E. coli gene-content profiles to allergy protection   

Results from the third paper suggest using the same IMPACT sample 

collection for investigating colonizing E. coli gene content profiles for 

protection from allergy. Early colonization by E. coli was linked to 

protection from allergy but specific strains were not identified using 

the direct-sequencing method. By choosing appropriate samples for a 

case-control study design, we could that take into account E. coli gene 

repertoire to determine profiles and important genetic signatures for 

protection. 
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The era of ‘population genomics’ 

We and others have discovered (Lukjancenko et al., 2010) that 

phylogeny may not be an optimal predictor of important phenotypoic 

properties such as clinical manifestation. In paper III of this thesis 

pathogens were separated on two different deep branches whether  we 

used the core or pan-genome for tree construction. However, in the 

pan-genome tree some of the pathogens formed a tight cluster along 

with a commensal strain. This suggests that even though virulence can 

emerge from very different genomic backgrounds, there may still be 

gene content signatures that are predictive of virulence potential.  

Commensal isolates that carry the genomic signature of a pathogen 

could have increased potential for causing disease given the right set 

of circumstances. Adequete populations scale genomic monitoring of 

populations of commensal bacteria could provide a predictive 

framework for implenting preventive strategies. 
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1

Understanding the ecological processes that generate complex community structures 

may provide insight into the establishment and maintenance of a normal microbial 

community in the human gastrointestinal tract, yet very little is known about how 

biotic interactions influence community dynamics in this system. Here, we use 

natural strains of Escherichia coli and a simplified model microbiota to demonstrate 5 

that the colonization process on the strain level can be context dependent, in the 

sense that the outcome of intra-specific competition may be determined by the 

composition of the background community. These results are consistent with 

previous models for competition between organisms where one competitor has 

adapted to low resource and high stress environments whereas the other is 10 

optimized for rapid reproduction when resources are abundant. The genomic 

profiles of E.coli strains representing these differing ecological strategies provide 

clues for deciphering the genetic underpinnings of niche adaptation within a single 

species. Our findings extend the role of ecological theory in understanding microbial 

systems and the conceptual toolbox for describing microbial community dynamics. 15 

There are few, if any, concrete examples of context-dependent competition on a

single trophic level. However, this phenomenon can have potentially dramatic 

effects on which bacteria will successfully establish and persist in the 

gastrointestinal system, and the principle should be equally applicable to other 

microbial ecosystems. 20 

Subject Category: Microbial population and community ecology

Keywords: Escherichia coli/Resource competition/Intestinal colonization
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INTRODUCTION

Escherichia coli is a ubiquitous, albeit not abundant, member of the gastrointestinal (GI) 

microbiota (Tenaillon et al., 2010). Still, a healthy human will normally have more than 25 

one billion living in the intestine (Savageau, 1983; Touchon et al., 2009). In addition to 

acute infections, E.coli colonization of the gut has been consistently linked to the chronic 

condition inflammatory bowel disease (IBD) (Rhodes, 2007), implicating particular types 

of strains in its aetiology (Baumgart et al., 2007; Friswell et al., 2010; Kotlowski et al., 

2007; Sepehri et al., 2009). It has also been proposed that competition between strains 30 

may be important due to the positive effects of the E.coli Nissle 1917 strain in IBD

(Vejborg et al., 2011). The wide spectrum of relationships between E.coli and humans 

highlights the importance of understanding colonization on the strain level and linking 

this to the dynamics of higher taxa.  

35 

In theory, and in contrast to a chemostat system, the fluctuating nutrient levels inherent in 

a batch culture can be used to promote coexistence of strains on a single nutrient (Rainey 

et al., 2000; Stewart and Levin, 1973). These dynamics are a special case for pairs of 

species in which one (sometimes called a “gleaner”) has a higher growth rate at low 

nutrient concentrations and another (sometimes called an “exploiter” or “opportunist”) 40 

has a higher growth rate at high nutrient concentrations (Fredrickson and Stephanopoulos, 

1981; Gottschal, 1993). This relationship can be described in terms of the Monod 

������	
�����maxs/(Ks+s) (Monod 1949) where the outcome of competition is determined 

by the m�
�������	�����������max) and the Monod constant (Ks), i.e. the nutrient 
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�	
��
�����	
����������������������������	���������	���max /2. In the special case where 45 

	
������������������������max while the other has a lower Ks, there exists a nutrient 

concentration (s) at which the growth rates are equal. Below that concentration, the 

species with the lower Ks will win, while higher concentrations favor the species with the 

��������max. We will refer to this case of affairs as ‘species-pair with high umax and low 

Ks’ (sHULK). The exact value of s that in theory will permit coexistence is for practical 50 

reasons very difficult to achieve in a chemostat. In contrast, the parameter space is 

widened for possible coexistence in a serial batch culture system due to the dynamic 

nature of the nutrient environment. In fact, some experimental evidence does support this 

type of proposed interaction (Grover, 1997; Levin, 1972). However, much controversy 

still remains concerning the conditions that lead to coexistence (Abrams, 2004). Our use 55 

of this type of cyclical, or seasonal, system was due to its tractability and because the 

intestinal system most likely experiences nutrient pulsing (Johnson, 2000).

In the ecological literature, there is abundant evidence that interactions between pairs of 

species are dependent on the community context through indirect interactions with other 60 

species (Brown et al., 2001; Werner and Peacor, 2003). Such biotic interaction have been 

classified into two main types; density-mediated and trait-mediated indirect interactions 

(DMII and TMII respectively) (Abrams, 1995). The former describes the case where the 

density of one of a focal species pair is affected by a third party species, with effects 

cascading to the second of the pair. The latter pertains to a situation where a third species 65 

causes the interaction between a species pair to change due to phenotypic alterations. 

TMII has been documented in a number of experimental systems involving three trophic 
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levels (Wissinger and Mcgrady, 1993), as well as exploitative competitor pairs sharing 

either a common resource (Peacor and Werner, 1997) or predator (Relyea, 2000).

Although these studies focus on behavioral traits, the plastic phenotype also includes 70 

more subtle traits like changes in physiological state or gene expression.  

Experimental work demonstrating DMII has been carried out using host-parasite systems 

(Kiesecker and Blaustein, 1999) including exploitatively competing pairs of bacteria and 

their bacteriophages (Harcombe and Bull, 2005). The host-parasite system is analogous to 75 

the predator-prey system, consisting of two distinct trophic levels. However, much less is 

known about context-dependent interactions among guilds of organisms on one trophic 

level. This is especially true when it comes to the GI microbiota, although probiotic 

bacteria have been thought to compete for nutritional substrates and thus alter the 

microbial structure of the gut (Fuller, 1989).80 

Here, we present observations of E.coli strains isolated from a cohort of infants and a 

series of competition experiments with strains isolated over a two-year period from a 

single infant. Previous analysis of the fecal samples derived from this infant cohort 

discovered that E.coli colonization of the gut before the age of 1 year reduced the 85 

likelihood of IgE sensitization and that early colonization was likely to have originated 

from the mother (de Muinck et al., 2011; Rudi et al., 2012; Storro et al., 2011). Our 

ability to use unmodified strains that were isolated from a single infant for the 

competition experiments allows us to make some tentative connections to the intestinal 
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ecosystem. By measuring life history traits (Vasi et al., 1994) and conducting competition 90 

experiments using different serial transfer regimes, we demonstrate that colonization at 

the strain level may be explained by relatively simple models. However, our experiments 

also reveal a mechanism by which the E.coli colonization process may be dramatically 

changed through a dynamic nutrient environment and interaction with gut community 

members belonging to a different phylum. Specifically, we show that the relative 95 

abundance of members of Firmicutes and Bacteriodetes may have the potential to 

influence strain level competition in E.coli. The balance between Firmicutes and 

Bacteriodetes, has been linked to a number of diseases including type 1 and type 2 

diabetes, IBD, and obesity (Frank et al., 2007; Giongo et al., 2011; Larsen et al., 2010; 

Turnbaugh et al., 2006). Thus, insights into the colonization dynamics in the infant gut on 100 

high taxonomic levels (Trosvik et al., 2010b) and the potential to influence patterns on 

lower taxa are of potentially great value (Kau et al., 2011). Genomic comparison of the 

competing strains allows us to generate new hypotheses of specific genetic factors that 

contribute to the competitive phenotype of these bacteria in the serial transfer regime. 

Our results provide a specific illustration of the concept of context-dependent competition 105 

in bacteria on the same trophic level, where the outcome of competition between closely 

related strains during colonization can be determined by how the nutrient structure in the 

environment is modified by the established community.

Materials and Methods:110 

Strains, life history trait measurement and competitions
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Strains were obtained from the IMPACT cohort and all are described as part of that study 

except EDM530 (de Muinck et al., 2011). EDM530 was isolated after the previous study. 

The model background microbiota has been described elsewhere (Trosvik et al., 2010a).

Growth rates and competition experiments (see supplementary methods for details) were 115 

performed in Oxoid anaerobe basal broth, a medium designed to accommodate GI 

bacteria, unless otherwise stated. Growth rates were measured in triplicate by monitoring 

OD600 with a Bioscreen (Oy Growth Curves Ab Ltd, Finland). Carrying capacities were 

measured by freeze drying and weighing (see supplementary methods for details).

120 

Determination of co-existence of EDM106 and EDM116 in one year fecal sample

A 600 bp region of the mdh gene was sequenced directly from the DNA extracted from 

the fecal sample. From the electropherogram we identified mixed peaks in 7 positions 

that indicated two co-existing strains with one in lower abundance. Visual decomposition

of the mixed electropherogram into two sequences and subsequent alignment with the 125 

pure sequences of EDM116 and EDM106 found perfect identity for both subsequences. 

Multiple linear regression of the mixed spectrum against the strain unit spectra (see below) 

found relative abundances of 84% and 16% for EDM116 and EDM106 respectively (R-

squared=0.975, p<0.0001), providing evidence of the co-existence of these two strains in 

the one year sample.   130 

Sample processing and quantification of relative abundances
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DNA extraction, PCR amplification, and sequencing of mdh and 16s rRNA gene 

fragments were performed using previously described methods (Trosvik et al., 2007; de 

Muinck et al., 2011). The relative abundances of strains and species in the competitions 135 

were determined by multivariate decomposition of mixed mdh or 16SrRNA gene 

sequence electropherograms as previously described (Trosvik et al., 2007; de Muinck et 

al., 2011).

Bacteriocin screening and plasmid detection140 

All strains were subjected to a bacteriocin screen using the overlay method with each 

used both as an overlay and stab inoculate. Plasmid extraction from the three strains used 

in the competitions was carried out using the Promega (Madison, WI, USA) Wizard®

PlusSV Miniprep system and isolates were visualized on a gel.

145 

Proton nuclear magnetic resonance (HNMR) spectra

Samples were spun down at 12,000 rpm (13,400g) at 4ºC and the supernatant was 

removed and combined with potassium salts buffer at pH 7.4 and TSP as an internal 

standard. NMR spectra were obtained from a Bruker Avance 600 NMR spectrometer. 1d 

NOESY spectra were acquired with presaturation for water suppression. The spectra were 150 

referenced to the TSP signal at 0 ppm, baseline corrected and normalized to a constant 

sum of 1. Prior to PCA, the spectra were mean centered and scaled to unit variance. All 

statistical computations were carried out using R (R Development Core Team, 2011). 
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Genome sequencing and assembly155 

EDM530, EDM106, and EDM116 were sequenced using Roche 454 GS (FLX Titanium) 

pyrosequencing according to standard protocol. Number of contigs, median depth and 

N50 were 198, 17.5 and 1209, 585.8, 17.5 and 4007, and 864, 8.2 and 2714 for the strains, 

respectively. De Novo assembly was performed using Newbler v2.3 with default settings 

and contigs were annotated with RAST (Aziz et al., 2008). Characterization of shared and 160 

unique gene content was done by BLASTing all annotated genes of all strains against one 

another using 85% sequence identity and an e-value cutoff of <1e-25 for assignment of 

presence (see supplementary methods for details). Gene enrichment analysis and GO 

assignment were carried out using the Blast2GO software package (Conesa et al., 2005). 

All DNA sequences will be made available in Genbank and accession numbers will be 165 

provided.

RESULTS

Growth rate and colonization

In general, infant GI-bacterial species appear to have shorter generation times when 170 

compared with adult GI-bacterial species (Vieira-Silva and Rocha, 2010). This was 

attributed to faster growing organisms having an advantage during early colonization 

(Leveque C, 2003). We measured the generation times of 23 different E.coli isolates 

under aerobic and anaerobic growth conditions (Table S1) and found that low generation 
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times in aerobic culture have a tendency to coincide with early colonization (p=0.034, 175 

one-tailed Mann-Whitney U test) (Figure S1). That this effect was observed under 

aerobic but not anaerobic conditions (p=0.95) coincides with the aerobic environment 

thought to exist in the early infant gut (Adlerberth, 2008). Of note, no trade-off was found 

between anaerobic and aerobic growth rates for the collection of E.coli isolates. Instead, a 

significant positive correlation was found between maximal aerobic growth rate and 180 

maximal anaerobic growth rate (p<0.001)(Figure S2A). Further analysis revealed a strong 

relationship between an increase in anaerobic growth rate and difference between 

anaerobic and aerobic growth rates (p<0.001)(Figure S2C). One strain (EDM106) 

however, did not follow the strict relationship between anaerobic and aerobic growth 

rates and had a faster growth rate under anaerobic conditions than would have been 185 

expected (Figures S2A and S2B). EDM106 was an early colonizer of an infant and 

became a focus of further investigation.

Competition between strains isolated from an infant

We were curious about the effect of the above described aberrant growth rate 190 

characteristics on strain ecology in a competitive context. Also, in order to focus our

investigation on strain competitiveness during colonization, we looked more closely into 

the E.coli strain succession in the infant that harboured EDM106. Three different strains 

with no apparent clonal relationship, as determined from genome analysis (below), were 

isolated from samples collected at three different time points from the infant over a 195 

period of two years. These strains were the only three found in the infant over the two 
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year period as determined from mdh fragment amplification and sequencing as described 

in (de Muinck et al., 2011). A single strain was found at four days of age (EDM106), 

whereas EDM106 and EDM116 were found to coexist in the sample collected at one year 

of age (see materials and methods). At two years of age, both of these strains had been 200 

supplanted by EDM530. 

Despite the abnormally high growth rate of EDM106 under anaerobic conditions, when 

compared with the entire collection of isolates, EDM106 had a longer anaerobic 

generation time (56.50±0.30 min.; mean ±s.e. with n=3) relative to EDM116 (50.97±0.32 205 

min.; p < 0.01) and EDM530 (49.03±0.24 min.; p < 0.01, t-test). Thus, the final 

replacement event is in agreement with these measurements, assuming this is the main 

phenotype determining competition outcomes. Under aerobic conditions, EDM106 had a 

shorter generation time (38.12±0.35 min.) relative to both the EDM116 (40.98±0.49 min.; 

p < 0.01) and EDM530 (41.56±0.72 min.; p < 0.01) and thus, this strain fits the profile of 210 

an early colonizer with respect to aerobic growth rate (Adlerberth, 2008).

Pair-wise competition experiments found that both EDM116 and EDM106 were 

individually outcompeted by EDM530 (Figures S3A and S7). If all three strains were 

competed together, EDM530 dominated the cultures (Figure S3B). Bacteriocins are a 215 

commonly ascribed determinant of bacterial intra-specific competition. Due to their 

potential effect and the fact that bacteriocin genes were discovered in the genomes, a 

susceptibility screen was performed. No effect on the strains used in the competition 
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experiments was found. Plasmid transfer may also affect the the competition experiments. 

The increased coverage depth of several contigs relative to the rest of the contigs of a 220 

genome sequence showed plasmid carriage by EDM106 and EDM116 (Table S3). In 

contrast, EDM530 does not seem to carry plasmids. After five days of co-culture of 

EDM530 and EDM106, no plasmid was isolated from EDM530, indicating a lack of 

plasmid transfer. 

225 

The co-occurrence of EDM106 and EDM116 in the sample taken at one year of age is 

difficult to explain given the substantially different generation times of these strains in 

anaerobic conditions. Pair-wise competitions found that EDM106 and EDM116 were also 

able to coexist in culture at stable densities for a substantial amount of time under both 

one and two day transfer regimes (Figure S4). The sHULK relationship described above 230 

could explain the observed competition outcomes between these strains in the batch 

culture regime. Growth rate measurements at different nutrient concentrations showed 

that these strains do in fact have this kind of relationship (Figure S5). Additionally, the 

co-culture showed an increased carrying capacity relative to the one expected from 

combining the single strain carrying capacities (p = 0.024, one-sample t-test)(Figure 235 

S6A). The generation of isoclines using these carrying capacities and relative abundances 

of strains in the co-culture supports that a stable equilibrium point can be reached by 

EDM106 and EDM116 (Figure S6B). 
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EDM106 was outcompeted by EDM530 in serial batch culture. A series of competition 240 

experiments using different transfer times (12hours, 1day, 2days, 3days, and 

4days)(Figure S7) found the same outcome under all conditions. There was, however, a 

positive non-linear relationship between increased time spent in low nutrient competition 

and number of transfers to out-competition (R2=0.95). This was further investigated using 

long term stationary phase cultures in which EDM106 eventually did outcompete 245 

EDM530 (Figure S8), supporting the hypothesis that EDM106 is a “gleaner” whereas 

EDM530 is an “exploiter” or “opportunist”.

Competition between E.coli isolates in a model gut microbiota

In order to investigate whether the strain competitions would be influenced by the 250 

presence of a background community, we used a simplified model gut microbiota with 

species representing the four main phyla (Firmicutes, Bacteroidetes, Actinobacteria and 

Proteobacteria) inhabiting the human gut (Trosvik et al., 2010a). Clostridium perfringens,

Bacteroides thetaiotaomicron, and Bifidobacterium longum were inoculated into the 

batch culture system along with either EDM106 and EDM530 or EDM116 and EDM530. 255 

Species and E.coli strain dynamics were then followed over time. During the initial stages 

of the competition, E.coli strain dynamics remained consistent with previously described 

observations and continued as such for the competition between EDM116 and EDM530 

(Figure S9). However in the competitions between EDM 106 and EDM 530, EDM530 no 

longer continued on the trajectory towards dominance after day 10 (Figure 1 and Figure 260 

S10). Instead, EDM106 came to dominate. This change in E.coli strain competition 
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dynamics seemed to occur in conjunction with C.perfringens dominance in the batch 

culture. As a control experiment we attempted to manipulate the species dynamics of the 

system by allowing small amounts of air into the culture flasks. This resulted in partial 

inhibition of the anaerobes, allowing for increased dominance of E.coli (Figure S11).265 

Under these conditions we did not observe any modulation of the E.coli competitions. 

The effect of C.perfringens on strain competition was further investigated by reviving 

cryogenic stocks collected on day 10 of a competition between EDM106 and EDM530, 

and spiking these cultures with high doses of either C.perfringens or B.thetaiotaomicron

(Figures 2A and 2B). The competition trajectories remained unchanged in the 270 

competition inoculated with B.thetaiotaomicron. However, the competition trajectories 

reversed in the competition inoculated with C.perfringens indicating that C.perfringens

dominance is the causative factor of reversed trajectories.

Nutritional and metabolomic profiling of competitions275 

Investigation into potential reasons of altered strain competition outcomes by the addition 

of C.perfringens was begun by growing C.perfringens to saturation and then removing 

cells by filtration to create a spent rich medium that included any modulating factors 

released into the media. Repeating the E.coli strain competitions in 90/10, 50/50, or 10/90 

(spent/fresh) mediums did not produce any effects on competition outcomes (Figure S12).280 

However, using rich/minimal-salts medium proportions of 90/10, 50/50, and 10/90 (Table 

S2) did find a reversal of the trajectories in the low nutrient (10/90) competition (Figure 

3). HNMR spectra of the supernatants from these competitions identified differences 
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linked to the competition outcomes, suggesting a chemical underpinning of the 

observations (Figure S13). HNMR signal peaks of complex samples can be attributed to 285 

many different types of molecules and therefore definitive identification is difficult.

We then performed competitions using high, intermediate, and low concentrations of 

glucose and peptone (Table S2), with the high nutrient regimes corresponding to the 

concentrations in the original rich medium to see if the reversal of competitive outcome 290 

was a result of strict density effects or related to specific compounds. EDM530 

dominated under all three scenarios with glucose as the sole carbon source (Figure S14), 

indicating that the reversal was not strictly due to density effects. However, a low 

concentration of peptone resulted in a change to the competition trajectory (p = 0.019, 

logistic mixed effects model, see supplementary methods)(Figure 4) suggesting a 295 

pathway by which the strain level competition may be modulated through ecological 

interaction with bacteria belonging to a completely different phylum. 

Genome comparisons

Genomes were sequenced as described in materials and methods. A general comparison 300 

of the annotated genomes of the three sequenced strains found a core genome of 3535 

genes (72% of the annotated total) that drops by 7.5% to 3271 genes if E.coli MG1655 

(K12) is included in the comparison (Figures S15 and S16). An enrichment comparison 

of some candidate pathways identified potential functional categories (discussed below) 

that could influence competition results (Figure 5 and Supplementary files). The large 305 
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differences in gene content strongly indicate that these strains do not have a recent clonal 

relationship

DISCUSSION

It would most likely be a question of “who gets there first” that determines the 310 

colonization pattern in the intestine. In most cases, it would be the mother who has first 

opportunity of exposing the fetus to the new microbiota. Still, growth rate has been 

previously linked to intestinal colonization (Vieira-Silva and Rocha, 2010), and we found 

a tendency of early colonizers to have a faster aerobic growth rate than late colonizers 

(Figure S1). Early colonizers of the infant gut are often a combination of aerobic and 315 

facultative anaerobic bacteria that use up the available oxygen and thus allow for the 

succession to obligate anaerobes which dominate the gut flora in the mature intestine 

(Adlerberth, 2008). The positive correlation between the aerobic and anaerobic 

generation times suggest that some strains are intrinsically more efficient at using 

nutrients than other strains regardless of whether they are in an aerobic or anaerobic 320 

environment (Figure S2A). The relationship discovered between the increase in minimal 

generation times and the difference between the anaerobic generation times and aerobic 

generation times (Figure S2C) suggests that metabolic efficiency reaches a plateau as a 

strain’s ‘intrinsic’ doubling time decreases. This could signal a physical constraint on 

efficient nutrient utilization that is independent of internal cellular machinery. 325 

Isolate competitions
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The maximal growth rates of the three strains used in competitions matched the 

previously described pattern of colonization with the faster growing strain under aerobic 

conditions isolated from an earlier sample. Despite different growth rates of two of the 330 

isolates (EDM106 and EDM116) stable co-existence was observed in both one and two 

day transfer regimes. These observations can be explained by two different models. The 

first model invokes the sHULK relationship which would allow the two strains to be 

competitively superior in different phases of the batch culture. This would be in 

accordance with our growth rate measurements (Figure S5), and is a previously reported 335 

mechanism for maintenance of coexistence (Rainey et al., 2000). The second model is 

based on the observed increase in carrying capacity of the co-culture. If between-strain 

competition is weaker than within-strain competition there is a theoretical equilibrium 

point for coexistence (Figure S6B). This state can be brought about cooperative 

interactions like cross-feeding, which is indicated in by the increased productivity in the 340 

co-culture (Figure S6A). Acetate cross-feeding has been reported to evolve readily in 

E.coli cultures (Treves et al., 1998), but from our data we cannot determine the exact 

nature of the interaction between EDM106 and EDM 116. Neither model excludes the 

other, but further experimentation is required for uncovering the mechanism of 

coexistence. However, the fact that these strains were found to coexist in the infant gut, 345 

as well as in co-culture suggests that they could occupy overlapping niches in their 

natural environment, and that the observed interaction is ecologically relevant. 

In contrast, competitions with EDM106 and EDM530 under several different transfer 

regimes were consistently dominated by EDM530 (Figure S7). We did find a strong 350 
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positive correlation between transfer rate and the number of transfers to outcompetition, 

and long term stationary cultures were dominated by EDM106 (Figure S8). These results 

fit a model where the exploiter gains ground during the log period of growth while the 

gleaner does so during stationary phase. When all the competition results are taken 

together, we were able to replicate the outcomes of strain competition observed in the 355 

actual infant gut but this does not mean that these were the actual factors responsible for 

the outcomes in that complex environment. 

Context dependant competitive effects

Competition between EDM106 and EDM530 in the model gut background found that the 360 

competitive trajectories of the strains changed as C.perfringens became dominant (Figure 

1), but this effect was not observed in the micro-aerophilic cultures (Figure S11). This 

indicates that the community structure of the surrounding species can modify the 

interaction between competing strains. While this may seem intuitive, examples of these 

types of interactions in bacterial systems are, to our knowledge, lacking.365 

The altered strain interactions in the presence of C.perfringens (and not 

B.thetaiotaomicron) suggested that the C.perfringens was modifying the environment 

through either resource consumption or by releasing a factor to which EDM530 was more 

susceptible (Figure 2A and 2B). The latter hypothesis was rejected after repeating the 370 

E.coli strain competitions in the presence of filtered supernatant failed to reverse the 

competition trajectories (Figure S10). HNMR spectroscopy also failed to identify any 



18

specific compound affecting the competitions. However, simply lowering the starting 

nutrient concentration resulted in the same change in competitive dynamics (Figure 3) as 

observed when C.perfringens was added to the medium. We were able to attribute this 375 

effect to peptone availability (Figure 4). These observations are in accordance with 

growth rate measurements that suggest a sHULK relationship between EDM106 and 

EDM530. They also suggest a concrete mechanism through which context dependent 

interactions can occur between organisms on one trophic level.

380 

Dogma dictates that organisms evolve towards maximal metabolic efficiency, but this 

does not explain how a metabolically effective organism can be at a disadvantage when a 

resource is abundant. However, a phenotype has been observed in several species of 

bacteria, including E.coli, showing growth inhibition in the presence of high 

concentrations of certain amino acids or combinations thereof (De et al., 1979). This may 385 

provide insight into reasons why high nutrient concentrations could affect the observed 

strain level competitive dynamics. C.perfringens is known to be able to drastically alter 

environments rich in amino acids because of enhanced proteolytic capabilities and high 

growth rates (Fonknechten et al., 2010; Shimizu et al., 2002). This may, in turn, change 

the intra-specific competitive interaction in favour of the low Ks strain rather than the 390 

high μmax strain.

It is difficult to classify the context-dependent interaction that we observed as either TMII 

or DMII. While the density effect of C.perfringens on the abundance of the two E.coli
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strains in co-culture is evident, the effect on the strain interaction does not seem to be 395 

density dependent (Figure S12). Rather the effect is mediated through an environmental 

intermediary. It stands to reason that this would alter the physiological state, and hence 

the phenotype, of the E.coli strains, possibly in a differential manner, but that is not 

something we can conclude based on our data. Even so it would be incorrect to call this 

strain competition strict TMII since there is no direct biotic link between the context-400 

dependent effect on E.coli and the intervening species. 

Genome comparison

Previous investigation into colonization determinants of E.coli strains has mostly focused 

on adhesins and other factors that mediate host interactions. This is understandable 405 

considering the importance of pathogenic E.coli in human health. However, gut bacteria 

reside in complex communities in which bacteria-bacteria interactions occur mainly 

through resource competition, and the term virulence deserves, and has begun to receive, 

a broader definition that includes metabolic capabilities (Brussow et al., 2004; Kamada et 

al., 2012). This is especially important in the case E.coli because commensal and 410 

pathogenic strains share so many genomic features (Rasko et al., 2008).

A general genome comparison of the three strains competed in this study found the 

number of genes in core genome, 72% of the annotated total, were well within the normal 

variance seen between E.coli genomes (Lukjancenko et al., 2010). Investigation into 415 

several gene pathways hypothesized to be important for competition in our model system 
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found differences between strains in peptide uptake and utilization, sugar uptake and 

utilization, and quorum sensing pathways (Supplementary files). EDM106 is enriched 

compared with EDM530 for small molecule and secondary metabolic processes (Figure 

5). This strain also encodes a unique putative oligo-peptide ABC transporter that could 420 

help explain the increased peptide affinity at low concentrations. Competition outcomes 

could also be influenced by strain specific differences in quorum sensing (Vendeville et 

al., 2005). EDM106 has the luxS gene for production of autoinducer-2, but lacks a 

functional suite of lsr genes for quorum response. ‘Signal blind’ mutants had been found 

to have higher fitness than their wild type parent strain when present as a minority 425 

(Diggle et al., 2007; Hibbing et al., 2010).  The relative enrichment of stress response 

genes of EDM106 (Figure 5) may help explain the advantage of EDM106 later in the 

competition, when toxic metabolic by-product concentrations are high, although further 

work would be required to make this claim.

430 

EDM530 is enriched for oxidation reduction processes relative to both EDM106 and 

EDM116 which probably relates to the high anaerobic growth rate relative to the other 

two strains (Figure 5). EDM530 also encodes several unique systems for transmembrane 

transport and catabolism of sugars, including the yihO gene encoding a glucuronide 

transporter. This transporter could have impacts on competition and colonization in the 435 

infant gut since glucuronide is a major carbon source for E.coli in the intestine (Chang et 

al., 2004; Miranda et al., 2004).



21

Strengths, limitations and concluding remarks

The inherent limitations of our model system make it all the more surprising that we 440 

found some of the same competitive outcomes that were observed in the gut environment. 

Several pathways were identified in the genomes that could have influenced competitive 

outcomes and could lead to further investigations to solidify a bridge between gene 

content and competitive outcomes in the natural environment. It is difficult to ascribe our 

results to particular genes or pathways, especially due to the number of unique genes that 445 

are annotated as hypothetical proteins in each of the strains. However, we do provide 

genomic profiles of an ecological gleaner in comparison with two exploiter phenotypes. 

We also present evidence of context dependent competition in bacteria, and we propose 

mechanisms that can promote this phenomenon. Understanding the population ecology of 

gut bacteria is of increasing importance with increased use of antibiotics and probiotics 450 

for therapeutic ends without knowledge of possible cascading effects (Costello et al., 

2012). 

Our observations offer a general mechanism by which the fine scale dynamics of 

microbial communities can be determined by biotic processes. In a system where a high 455 

degree of exploitation competition takes place on several taxonomic levels, the ability of 

keystone taxa to remodel the abiotic environment may have profound effects on 

community structure. In the present case we can easily envision two scenarios where one 

of the two E.coli strains outcompetes the other, depending who is dominating the 

background community (Clostridia or Bacteroides). Context-dependent competition most 460 
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likely represents a general phenomenon where community composition at high 

taxonomic levels determines the outcomes of strain level colonization processes by 

remodelling the environment to become more permissive to some strains than others. 

This suggests a mechanism by which temporal changes in a limiting nutrient 

concentration can promote coexistence by changing the competitive interactions between 465 

strains. Context-dependent competition may be especially important in the GI-system 

since it is subject to a pulse-like nutrient regime where key resources alternate between 

high and low concentrations. 
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Figure 1: Intra-specific competition is modulated by the resident background 

community. Percent relative abundances are plotted as a function of time for the 

competitions between C.perfringens (C.perf), B.thetaiotaomicron (B.tio), B. longum and 

E.coli strains EDM106 and EDM530. Experiments were carried out in duplicate. A. 695 

Relative E.coli strain abundances. B. Relative species abundances. After day ten, 

competitive strain trajectories change, coinciding with C.perfringens dominance. 

Figure 2A and 2B: Intra-specific competition is context dependent. One competition 

was inoculated with B.thetaiotaomicron (B.tio) (A and B) while the other was inoculated 700 

with C.  perfringens (C and D) at day 12 of the experiment. Experiments were carried out 

in duplicate. Top panels (A and C) show E.coli strain relative abundances. Bottom panels 

(B and D) show species relative abundances. Competition trajectories of strains EDM106 

and EDM530 reversed in the competition inoculated with C.perfringens relative to when 

the strains were alone or inoculated with B.thetaiotaomicron.705 

Figure 3: Strain competition outcomes are contingent on resource availability. After two days 

equilibration period in rich medium, aliquots were transferred into either 90/10 (A), 50/50 (B), 10/90 

(C) rich/minimal salts medium (see Table S2 and supplementary methods for details) and the 

competitions were continued under these conditions. Experiments were carried out in duplicate. 710 

Strain competition trajectories shift in the low nutrient competition (C). 
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Figure 4: Peptones can act as a mediator of context-dependent competition. Two independent 

strain competition experiments were performed in duplicate in flasks containing minimal salts 

medium and different concentrations of peptone (Table S2). All experiments were carried out in 715 

duplicate. For the experiments shown in (A-C), The revived stocks were allowed two days 

equilibration period in Oxoid anaerobe basal broth, aliquots were then transferred into 90/10 (A), 

50/50 (B), or 10/90 (C) peptone/minimal salts medium (A-C). Peptone concentration had a 

pronounced effect on the competition trajectories (p = 0.019, logistic mixed effects model). For 

experiments shown in (D-F), a separate stock culture with a low relative starting abundance of strain 720 

EDM530 was inoculated into flasks into 200/10 (D), 50/50 (E), or 20/80 (F) peptone/minimal salts 

medium. Peptone concentration had a pronounced effect on the competition trajectories.

Figure 5: Comparisons of gene enrichment between strains. Strains were compared 

for GO enrichment using the SEED categorization derived from ontology level 3 725 

biological process assignments using Blast2GO. Columns represent the six possible 

pairwise comparisons of EDM530, EDM106, and EDM116. (*)’s indicate the strain that 

is enriched for genes assigned to the biological process categories.    

730 
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Supplementary figures (1-16),

Supplementary Tables (1-3), 800 

& Supplementary Methods

805 

Supplementary Figure 1: Early colonizers have a tendency towards faster growth 
rates than later colonizers under aerobic conditions. 23 different E. coli strains were 
categorized as either early or late colonizers (see TABLE S1 for categorization) for 
comparison of growth rates in aerobic and anaerobic conditions. There was a tendency 
for early colonizers to have a shorter generation time than late colonizers in the aerobic 810 
environment (p = 0.03, one-tailed Mann-Whitney U test). 
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Supplementary Figure 2: Positive correlation between aerobic and aerobic growth 
rates. (A) A strong positive correlation is seen between aerobic and anaerobic growth 815 
rates. However, strain EDM106 (red) does not seem to follow the trend of the other 
strains. (B) This strain (red) deviates from the trend by more than two standard deviations 
and is due to a faster aerobic growth rate than should be for its anaerobic rate. (C) Even 
with this deviation, strain EDM106 and all the others show a strong relationship between 
anaerobic generation time and the difference between anaerobic and aerobic generation 820 
time. This indicates that fast growing strains are optimized for both conditions.
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830 
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840 

Supplementary Figure 3: Strain EDM530 dominates in competition with strain 
EDM116 as well as with the combination of strains EDM106 and EDM116. (A)845 
Strain EDM116 vs. EDM530. (B) Strain EDM106 vs. EDM116 vs. 530. Batch culture 
competitions were performed in Oxoid anaerobe basal broth. See supplementary methods 
for details. The two independent replicates are represented by solid circles and open 
triangles.
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Supplementary Figure 4: Strains EDM106 and EDM116 coexist in one day and two 870
day culture regimes. Batch culture competitions of strains EDM106 and EDM116 were 
performed in Oxoid anaerobe basal broth (rich medium). (A) One day tranfer regime. (B)
Two day transfer regime. The two independent replicates are represented by solid circles 
and open triangles.
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Supplementary Figure 5: Strain EDM106 has shorter generation times under low 
nutrient conditions than strain EDM116 and strain EDM530. Doubling times were 
measured for each of the three strains with different concentrations of Oxoid anaerobic 
basal broth medium (%medium) and minimal salts solution under anaerobic conditions.
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895 

Supplementary Figure 6: Increased carrying capacity in co-cultures of strains 900 
EDM106 and EDM116 facilitate co-existence (A) Carrying capacity of competitor 
strains in dry weight (grams) per 30ml medium (± s.e). The co-culture has a higher 
carrying capacity (p = 0.024, one sample t-test) than expected from combining the mean 
carrying capacities of the individual strains in the approximate proportions provided by 
the competition experiments (55% strain EDM106 and 45% strain EDM116 during co-905 
culture). (B) Isoclines of carrying capacities were calculated using the approximate 
proportions provided by competition experiments. The intersecting isoclines show a 
stability point for co-existence. Carrying capacities used in the model were 19.9grams for 
strain 106, 21.6grams for strain 116, and 21.8 grams for the co-culture of strains 
EDM106 and EDM116. 910 

915 
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Supplementary Figure 7: Strain EDM106 was dominated by strain EDM530 under 
four different transfer regimes. Cultures were transferred every 12 hours (A), 24 hours 
(B), 2 days (C) or 3 days (D). Batch culture competitions were performed in Oxoid 920 
anaerobe basal broth. The two independent replicates are represented by solid circles and 
open triangles.

925 
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Supplementary Figure 8: Long term stationary phase cultures of strains EDM 106 
and EDM530. Cultures were sampled for relative abundance measurement every two 
days but no fresh media was added to the cultures. The two independent replicates are 
represented by solid circles and open triangles.

930 
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Supplementary Figure 9: The presence of a background flora does not change the 
outcome of competition between strains EDM116 and EDM530. Competition between 
C. perfringens (C.perf), B.thetaiotaomicron (B.tio) , B.longum and E.coli strains 
EDM116 and EDM530. Each experiment was performed in duplicate. (A) E. coli strain 955 
competition trajectories. (B) Relative species abundances at corresponding time-points. 
Batch culture competitions were performed in Oxoid anaerobe basal broth. The two 
independent replicates are represented by solid circles and open triangles.
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Supplementary Figure 10:  Replicate of experiment presented in Figure 1: Intra-
specific competition is modulated by the resident background community. Percent 980 
relative abundances are plotted as a function of time for the competitions between 
C.perfringens (C.perf), B.thetaiotaomicron (B.tio), B.longum and E.coli strains EDM106 
and EDM530. Experiments were carried out in duplicate. (A) Relative E.coli strain 
abundances. (B) Relative species abundances. After day ten, competitive strain 
trajectories change, coinciding with C.perfringens dominance.  The two independent 985 
replicates are represented by solid circles and open triangles.
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Supplementary Figure 11: Micro-aerophilic conditions increase E.coli
predominance in the model microbiota, resulting in unmodulated  E.coli strain 
competition trajectories. Percent relative abundances are plotted as a function of time 
for the competitions between C.perfringens (C.perf), B.thetaiotaomicron (B.tio), 1010 
B.longum and E.coli strains EDM106 and EDM530. Experiments were carried out in 
duplicate. (A) Relative E.coli strain abundances. (B) Relative species abundances. After 
day ten, competitive strain trajectories change, coinciding with C.perfringens dominance. 
The two independent replicates are represented by solid circles and open triangles.
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Supplementary Figure 12: Spent medium from a C. perfringens culture did not 1035 
affect competition between strains EDM106 and EDM530. Investigation into potential 
factors released into the media was performed by growing C. perfringens to saturation in 
Oxoid anaerobic basal broth and then removing cells by filtration to create a spent rich 
medium. (A) 90/10, (B) 50/50, or (C) 10/90 (spent/fresh) medium proportions were then 
used for the E.coli strain competitions. The two independent replicates are represented by1040 
solid circles and open triangles.
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Supplementary Figure 13: Competitions in low nutrient media produce qualitatively 1045 
different media than more concentrated media. PCA of normalized HNMR spectra of 
competition time points in 90/10, 50/50, 10/90 minimal salts (W)/ Oxoid anaerobic basal 
broth (rich medium). Clustering differentiates the spectra of the 10/90 and 50/50 (W)/rich 
medium competition supernatants compared with 90/10 medium. 
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Supplementary Figure 14: Strain EDM106 and EDM530 competition trajectories 
remain unchanged at different levels of glucose availability. Minimal salts medium 
with different amounts of glucose as the sole carbon source was used for the competitions 
(Table S2). Revived frozen stocks from day 10 of strain EDM106 and strain EDM530 1075 
competition were used to start the competition. After two days equilibration in Oxoid 
anaerobic basal broth (rich medium), aliquots were transferred into either (A) 90/10, (B)
50/50 or (C) 10/90 glucose/minimal salts medium, relative to the amount of glucose in 
the rich medium (table S2). The two independent replicates are represented by solid 
circles and open triangles.1080 
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Supplementary Figure 15: Comparison of gene content between strains. The three 1085 
strains had totals of 4,192 genes (S106), 4,237 genes (S116) and 4113 genes (S530). The 
relative percents of unique genes found S106 with the largest (9.7%), 6.6% for S116, and 
S530 had the least (4.7%). Core genes represented 72% of the annotated total. See 
Supplementary files for listings of non-core gene annotations.
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1090 

Supplementary Figure 16: Comparison of gene content between strains. The three 
strains had totals of 4,192 genes (S106), 4,237 genes (S116) and 4113 genes (S530). The 
relative percents of unique genes found S106 with the largest (9.7%), 6.6% for S116, and 
S530 had the least (4.7%). Core genes represented 72% of the annotated total.1095 
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Isolate Age at Colonization
number sampling Aero s.e Anaero. s.e. Catagory

EDM24 7 days 39.91 0.1369 48.71 0.6465 Early*
EDM123 4 months 40.75 0.5328 55.75 1.116 Late
EDM530 2 years 41.56 0.7187 49.03 0.2424 Late
EDM124 8-10 days 38.12 1.082 49.98 1.79 Early
EDM70 10 days 39 0.3685 53.86 0.1729 Early*
EDM71 10 days 39.57 0.4597 54.54 0.4518 Early*
EDM49 4 days 40.62 0.3767 55.21 0.2947 Early
EDM1.2 10 days 40.13 0.4572 52.56 0.3634 Early
EDM111 1 year 46.85 0.1906 63.99 0.5959 Late
EDM130 10 days 39.72 0.4042 53.88 0.3736 Early
EDM3 1 year 39.1 0.2759 50.32 0.3407 Late
EDM51 7 days 41.13 0.1506 50.92 0.8549 Early
EDM10 1 year 42.45 0.6447 52.04 0.7133 Late
EDM6 11 days 38.18 0.2411 51.57 0.6825 Early
EDM21 2 years 41.11 0.2318 56.91 0.1064 Late*
EDM5 1 year 42.74 0.5692 52.34 0.4431 Late
EDM101 11 days 41.97 0.6982 57.15 0.1964 Early
EDM69 2 years 42.83 0.1181 57.58 1.319 Late*
EDM11 1 year 38.26 0.5393 45.57 0.4071 Late
EDM131 1 year 38.61 0.1038 51.71 1.342 Late
EDM16 7 days 39.17 0.1958 48.26 0.128 Early*
EDM110 1 year 40.66 0.5612 51 0.4244 Late
EDM116 1year 40.98 0.4935 50.97 0.3206 Late*
EDM106 4 days 38.12 0.3495 56.5 0.3043 Early
EDM103 4 days 40.91 0.1273 54.05 0.4431 Early
EDM108 1 year 41.28 0.4512 53.51 0.8802 Late*
EDM118 4 days 39.93 0.3581 50.94 0.6398 Early

1100 

Supplementary Table 1: Table of isolates examined in this study with growth rates 
and standard errors. Colonization categorization is also listed in the final column. 
Strains isolated before the first two weeks of are categorized as early colonizer strains 
and strains isolated after two weeks of age are categorized as late colonizers. The isolates 1105 
marked with an asterisk in the Category column have a sister isolate from the same 
sample. Means of the two independent growth rate measurements were used for testing.

1110 

1115 
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Supplementary Table 2:  Table of media preparations used for the competitions. 
Formula show the complete recipe Oxoid anaerobic basal broth and the columns show the 
recipe for 200%, 90%, 50%, 20% and 10% concentrations. The competitions with 1120 
glucose or peptone as sole carbon sources were used proportions relative to the complete 
Oxoid anaerobic basal broth. Peptone broths A-C used Bacto™ Peptone from BD 
Biosciences. Peptone broths D-F used Fluka peptone from Sigma-Aldrich.

Media Preparations
Oxiod anaerobic Glucose Peptone (A-C) Peptone (D-F)

100 % 90 % 50 % 10 % 90 % 50 % 10 % 90 % 50 % 10 % 200 % 90 % 20 %

Typical Formula* gm/litre gm/litre gm/litre gm/litre gm/litre gm/litre gm/litre gm/litre gm/litre gm/litre gm/litre gm/litre gm/litre
Peptone 16 14.4 8 1.6 14.4 8 1.6 32 14.4 3.2

Yeast extract 7 6.3 3.5 0.7

Sodium chloride 5 4.5 2.5 0.5
Starch 1 0.9 0.5 0.1
Dextrose 1 0.9 0.5 0.1 0.9 0.5 0.1

Sodium pyruvate 1 0.9 0.5 0.1
Arginine 1 0.9 0.5 0.1

Sodium succinate 0.5 0.45 0.25 0.05

L-cysteine HCl 0.5 0.45 0.25 0.05

Sodium 
bicarbonate 0.4 0.36 0.2 0.04

Ferric 
pyrophosphate 0.5 0.45 0.25 0.05
Haemin 0.005 0.0045 0.0025 0.0005
Vitamin K 0.0005 0.00045 0.00025 0.00005

Sodium 
thioglycollate 0.5 0.45 0.25 0.05

Dithiothreitol 1 0.9 0.5 0.1

7 g/L KH2PO4 7 7 7 7 7 7 7 7 7

2 g/L K2HPO4 2 2 2 2 2 2 2 2 2

1 g/L (NH4)2SO4 1 1 1 1 1 1 1 1 1

50 mg/L MgSO4 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

basal broth (rich media)
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1125 

Contig 
Contig nr. Length depth Best BLAST score

Strain 106 542 1527 433.9 E.coli plasmid pKL1, pO26-S1, pMG828-1, pSERB2 RepA and DfrA genes
584 7968 162.4 E.coli SMS-3-5 plasmid pSMS35_8, pKY1 (from S.sonnei) cea, immunity protein (imm), kil genes, pColE1-EC39
585 4078 137.3 E.coli SE11 pSE11-6 DNA, SMS-3-5 pSMS35_4, pIGWZ12, pMG828-2, O111:H- str. 11128 pO111_4
563 1672 61.1 16s rRNA gene
380 3245 58.9 23S rRNA gene

Strain 116 428 738 212.8 InsAB' transposase,   IS1 protein InsA, IS1 protein InsB, plasmid associated
863 4233 84.8 Associated with plasmids in Klebsiella, Salmonella, E.coli and Shigella, poor query coverage
862 5512 80.7 E.coli pECO29, Salmonella enteritidis serovar Enteritidis pC

444 2410 73.1 E.coli UM146 plasmid pUM146, E.coli strain CFT073 pathogenicity island II
412 2454 59.1

yp p , , g , yp
protein

795 1472 58.3 16S rRNA gene
464 3238 52.5 23S rRNA gene, 5S rRNA gene

Strain 530 75 1286 145.1 transposase IS116/IS110/IS902 family protein
93 3103 126.2 23S rRNA gene

163 1683 117 16S rRNA gene
42 767 68.9 IS1 insertion element
81 1010 67.9  transposase IS3/IS911 family protein
74 472 65.2 rshA, possible capsular biosynthesis1130 

Supplementary Table 3: Listing of high depth contigs from the genome sequencing.

1135 

1140 
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Supplementary Methods:

Batch culture competitions

All competition experiments were carried out in 100ml flasks containing 90ml of medium 1145 
and a water trap to allow gas to escape but kept the flasks anaerobic after the oxygen in 
the head space was consumed. The only exception to this protocol was the experiment 
shown in Supplementary Figure 11, where we attempted to give E.coli more of a 
competitive advantage relative to the background flora. In this experiment the water traps 
were emptied in order to allow small amounts of oxygen to enter the flasks. Flasks were 1150 
incubated at 125rpm and 37ºC. Oxoid anaerobic basal broth was either prepared fresh or 
boiled in a water bath for at least ten minutes to de-gas the media. A typical experiment 
(2 replicates) used 90 ml of media per replicate for each time point. Mostly, 500ml 
batches of media were prepared but sometimes as much as 1 liter was made. This 
required many separate batches of media to be used throughout most of the individual 1155 
experiments and also across the entire study. At the beginning of each of the competition 
experiments, initial inocula were diluted into each of the replicate flasks. Thereafter, 
100μl of the cultures were transferred to flasks containing fresh medium. This procedure 
established two independent but parallel series of competition time points. The 
competitions of strain EDM106 and strain EDM530 presented in figures 2A, 2B, 3, 4, S9, 1160 
and S12, are continued from revived frozen stocks from day 10 of the two day strain 
EDM106 and strain EDM530 competition presented in figure S6. Aliquots were revived 
and continued for two days in complete Oxoid anaerobic basal broth before individual 
competition treatments were performed. Long term stationary phase cultures used the 
same conditions as described above, except that no transfers to fresh medium was carried 1165 
out and medium was not replenished after inoculation. The peptone media experiments 
were conducted using different concentrations of peptone and the individual experiments 
were performed using two different brands of peptone media. Experiments shown in 
Figure 4A-C were conducted using Bacto™ Peptone manufactured by BD Biosciences. 
Experiments shown in Figure 4D-F were conducted using Fluka peptone from Sigma-1170 
Aldrich. Both types of peptone are enzymatic digests of animal protein. 

Measurement of medium carrying capacity

Strains were grown to saturation (16hour culture) in Oxoid anaerobic basal broth. 90ml of 
culture was separated into three 50ml conical vials with perforated tops of 30ml each and 1175 
freeze dried. After freeze drying, all tubes were allowed to equilibrate to atmospheric 
moisture levels for 1week before weighing. The t.test that is presented is of strain 
EDM106 against the EDM106/EDM116 mixed culture.
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Mixed effects modeling1180 

The mixed effects model was fitted using the nlme package for R. Logit-transformed 
proportions were modeled as a function of the interaction of time and treatment (peptone 
concentration) assuming non-random intercepts and fitting a first-order continuous 
autoregressive process in the errors. The test was done for unequal slopes of strain 
proportions between the low (1.6 g/L) and high (16 g/L) peptone competitions.1185 

Characterization of shared and unique gene content

Due to the large number of contigs, determination of gene presence included additional 
processing steps (manuscript in preparation). Briefly, in order to recover genes split into 1190 
separate contigs or genes that did not receive an annotation from RAST due to 
sequencing errors, we carried out an additional blast search using annotations of sixteen 
E.coli genomes. If any annotated gene was found in a subset of the genome collection, 
this was re-BLASTed against the raw assemblies of the strains not included in that subset. 
Re-assignment of the recovered sequence to the annotation required 90% identity and an 1195 
e-value of <1e-25. Genes with redundant functional RAST assignments were collapsed 
into one single assignment prior to further analysis.
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Abstract�

�

Background:�Despite�being�one�of�the�most�intensely�studied�model�organisms,�many�questions�still�

remain�about�the�evolutionary�biology�and�ecology�of�Escherichia�coli.�An�important�step�toward�

achieving�a�more�complete�understanding�of�E.coli�biology�entails�elucidating�relationships�between�

gene�content�and�adaptation�to�the�ecological�niche.��

�

Results:�Here,�we�present�genome�comparisons�of�16�E.coli�strains�that�represent�commensals�and�

pathogens�isolated�from�infants�during�a�specific�time�period�in�Trondheim,�Norway.�Using�

differential�gene�content,�we�characterized�enrichment�profiles�of�the�collection�of�strains�relating�to�

phylogeny,�early�vs.�late�colonization,�pathogenicity�and�growth�rate.�We�found�clear�gene�content�

distinction�relating�the�various�grouping�criteria.�We�also�found�that�categories�of�strains�use�

different�genetic�elements�for�similar�biological�processes.�The�sequenced�genomes�included�two�

pairs�of�strains�where�each�pair�was�isolated�from�the�same�infant�at�different�time�points.�One�pair,�

in�which�the�strains�were�isolated�four�months�apart,�showed�maintenance�of�an�early�colonizer�

genome�profile�but�also�gene�content�and�codon�usage�changes�toward�the�late�colonizer�profile.��

�

Conclusions:�Our�results�indicate�a�general�pattern�where�alternative�genetic�pathways�lead�toward�a�

consistent�ecological�role�for�E.coli�as�a�species.�Within�this�framework�however,�we�saw�selection�

shaping�the�coding�repertoire�of�E.coli�strains�toward�distinct�ecotypes�with�different�phenotypic�

properties.�
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�

Background�

Awareness�of�the�importance�of�the�gut�microbial�colonization�for�human�health�is�growing�as�

numerous�links�with�a�multitude�of�diseases�are�being�discovered�[1].�Recent�advances�in�sequencing�

technology�have�generated�massive�amounts�of�data�but�much�remains�to�be�understood�about�the�

processes�important�for�maintaining�a�healthy�community�structure.�E.coli,�as�well�as�being�a�much�

studied�model�organism,�is�an�important�and�ubiquitous�member�of�the�human�gut�microbial�

community.�Although�E.coli�constitutes�only�a�small�fraction�of�the�total�gastrointestinal�microbiota,�

it�has�a�wide�spectrum�of�potential�interactions�with�the�human�host,�ranging�from�probiotic�to�

commensal�and�on�to�pathogenic�[2].�

�

As�one�of�the�most�intensely�studied�organisms,�much�genomic�information�on�this�species�has�

already�been�collected.�Genbank�has�cataloged�60�complete�chromosomal�genomes�and�346�draft�

genomes�(at�the�time�of�writing).�However,�most�of�the�sequencing�effort�has�been�directed�toward�

pathogenic�E.coli�strains.�Previous�comparative�analysis�of�the�genome�sequences�of�61�isolates�has�

helped�develop�the�new�view�of�the�E.coli�genetic�landscape�which�highlights�diversity�at�the�genome�

level�[3].�A�typical�E.coli�strain�carries�between�4,000�and�5,500�genes.�On�average,�an�E.coli�strain�

will�share�about�40%�of�these�with�all�other�members�of�the�species,�while�the�remainder�forms�part�

of�the�pan�genome�[4,5].�Following�these�approaches,�differential�gene�content�between�strains�is�

thought�to�subdivide�E.coli�into�ecological�classes�that�may�be�more�biologically�informative�than�

traditional�phylogenetic�categorization�based�for�example�on�Multi�Locus�Sequence�Typing�(MLST).�

Use�of�full�genomes�and�subsequent�gene�content�profiling�has�thus�become�important�for�

understanding�the�role�of�genome�contents�for�defining�a�realized�ecological�niche�[6].��

��
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This�work�is�the�continuation�of�a�deep�characterization�of�E.coli�strains�isolated�from�a�cohort�of�

infants�and�their�mothers�in�Trondheim,�Norway.�The�original�study�design�was�a�nested�case�control�

format�created�to�examine�the�impact�of�whole�gut�microbial�colonization�on�the�development�of�

atopic�disease�[7,8].�In�this�original�characterization�of�the�cohort,�qPCR�was�used�to�identify�and�

quantify�the�microbial�fecal�composition�of�several�classes�of�bacteria�and�these�data�were�matched�

with�cytokine�profile�development.�From�this,�it�was�observed�that�early�E.coli�colonization�was�

linked�to�protection�from�atopy�and�the�mother�was�found�to�be�a�likely�source�of�the�infant�

colonization�[9].�We�have�previously�characterized�the�E.coli�colonization�pattern�of�a�sub�cohort�of�

this�larger�study,�85�infants�and�their�mothers,�and�found�limits�on�the�diversity�of�strains�and�further�

evidence�of�transmission�from�the�mothers�to�the�infants�[10].�Deeper�characterization�placed�these�

strains�into�a�phylogenetic�context�of�the�larger�E.coli�diversity.��

�

Here,�we�built�upon�these�earlier�observations�using�whole�genome�sequencing.�We�compare�the�

genomic�content�of�strains�with�different�phylogenetic,�pathogenic�vs.�commensal,�growth�rate�and�

early�vs.�late�colonization�characteristics�in�order�to�determine�enrichment�profiles�that�may�explain�

these�ecological�traits.�The�signatures�that�were�observed�can�be�used�for�further�investigations�into�

genotype�phenotype�mapping�within�the�context�of�ecological�adaptation�and�for�investigating�the�

role�of�the�many�hypothetical�proteins�that�we�found�differentiating�the�groups.�The�collection�of�

strains�that�were�used�for�this�analysis�offer�insight�into�a�temporally�and�geographically�coherent�

population�of�gut�colonizing�E.coli,�with�additional�context�afforded�by�our�previous�characterizations�

of�these�strains�[10].��Methodological�challenges�that�were�addressed�included�developing�a�strategy�

for�compensating�for�incomplete�assembly,�small�sequencing�errors,�and�potential�loss�of�genetic�

information�derived�from�genomes�sequenced�by�454�single�end�shotgun�sequencing.�Dealing�with�

incompletely�assembled�draft�genomes,�as�we�have�done,�may�become�less�problematic�for�single�

isolate�analysis�as�assembly�algorithms�and�sequencing�technologies�progress.�However,�costs�may�
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hinder�coverage�for�large�collections�of�isolates�and�also�for�complex�samples�such�as�the�soil�or�

mammalian�gut,�which�at�minimum�contains�several�hundred�genomes�[11,12].�

�

Results�

Methodological�challenges�

454�sequencing�of�the�16�genomes�yielded�coverage�levels,�the�median�number�of�times�that�a�

specific�genomic�position�is�included�in�a�sequencing�read,�ranging�from�7.55�to�20.1�(Table�1).�Good�

coverage�is�crucial�to�aid�assembly�of�the�reads�into�as�few�contigs�as�possible.�This�was�indicated�in�

our�data�by�the�significant�decrease�of�contig�numbers�as�the�median�coverage�depth�increased�

(R2=0.69,�p<0.0001,�Figure�S1A�in�Additional�file�1).�However,�there�was�a�plateau�at�about�13x�

coverage,�above�which�that�trend�subsided.�We�also�found�a�strong�positive�correlation�between�the�

number�of�RAST�annotated�genes�per�base�in�a�genome�and�the�number�of�contigs�in�the�assembly�

(R2=0.52,�p=0.0017)�(Figure�S1B�in�Additional�file�1).�Furthermore,�there�was�an�even�stronger�trend�

for�mean�annotated�gene�length�to�decline�as�assemblies�became�more�fragmented�(R2=0.94,�

p<0.000001,�Figure�S1C�in�Additional�file�1).�This�indicated�that�partial�gene�sequences�were�more�

often�retrieved�from�the�more�fragmented�assemblies.�The�main�cause�of�this�phenomenon�was�

genes�being�split�onto�two�different�contigs�due�to�reduced�coverage�at�contig�edges�in�low�read�

depth�assemblies�(Figure�S1D�in�Additional�file�1),�or�small�sequencing�errors,�usually�in�

homopolymer�tracts�(a�known�shortcoming�of�pyrosequencing),�producing�spurious�frame�shifts�in�

the�coding�sequence.�Both�of�these�causes�can�result�in�coding�sequences�being�un�annotated�by�

RAST.�To�circumvent�this�issue,�we�applied�an�additional�gene�recovery�step�which�resulted�in�a�

positive�relationship�between�the�number�of�BLAST�hits�retrieved�and�the�number�of�contigs�in�an�

assembly�(R2=0.57,�p=0.0008,�Figure�S1E�in�Additional�file�1),�with�a�total�of�8,322�genes�being�

recovered�from�all�the�strains�combined.�Following�this�curation�of�the�genome�annotations,�we�re�

examined�the�bias�in�the�relationship�between�the�number�of�annotated�genes�per�base�and�the�
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number�of�contigs�and�found�that�the�pre�treatment�bias�had�been�completely�removed�(R2=0.0001,�

p=0.97,�Figure�S1F�in�Additional�file�1).�This�information,�and�the�continued�strong�correlation�

(R2=0.92)�between�the�number�of�gene�families�and�genome�size�(Figure�S1G�in�Additional�file�

1)�suggest�that�the�updated�annotations�were�correct.�One�outlier�(JEA297p)�showed�a�different�

gene�density�than�the�other�strains,�and�will�be�discussed�below.�

�

Phylogenetic�and�gene�content�comparisons�

Comparative�analysis�of�the�genomes�content�revealed�that�52.4%�of�the�genes�are�shared�by�our�16�

genomes�(Figure�1).�However,�inclusion�of�strain�MG1655�(K12)�reduced�the�proportion�of�shared�

genes�to�50.2%.�This�is�higher�than�results�reported�by�other�studies�[3,5]�and�could�be�attributed�to�

the�localized�sampling�of�our�E.coli�population.�The�pan�genome�of�our�16�strains�includes�6,152�gene�

families,�which�increases�only�to�6,181�when�K12�is�included�(Figure�2).�The�structure�of�the�

dendrograms�generated�from�the�genome�collection�were�comparable�whether�we�used�homology�in�

the�core�genome�or�gene�content�differences�to�determine�their�relationships,�with�the�deepest�

subdivision�being�between�the�clades�denoted�1�and�2�(Figures�3A�and�3B).�E.coli�that�colonize�

humans�are�generally�grouped�into�the�four�phylogroups;�A,B1,B2�and�D�[2].�Here�clade�2�contained�

the�strains�previously�categorized�into�the�B2�phylogroup�whereas�members�of�clade�1�belonged�to�

phylogroups�A,�B1�and�D.�The�next�subdivision�in�the�ClonalFrame�tree�(Figure�3A)�was�to�separate�

JEA297p�from�the�rest�of�clade�1,�whereas�the�gene�content�tree�(Figure�3B)�further�divided�the�

phylogeny�into�four�subclades.�One�of�these�four�subclades�contains�three�of�the�four�pathogens�

(JEA124p,�JEA179p�and�JEA297p)�despite�the�complete�phylogenetic�unrelatedness�of�these�strains�

(Figure�3A).�This�clade�also�included�a�commensal�strain�(EDM116c)�which�was�not�related�to�the�

pathogens�according�to�the�ClonalFrame�core�phylogeny,�but�contained�a�pathogenicity�island�and�

some�of�the�genetic�profile�of�a�pathogen�(Figure�6).�
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�

Gene�content�enrichment�analysis�using�the�split�between�clades�1�and�2�to�define�the�groupings�

(criteria�I;�Table�2)�found�305�genes�(Additional�files�files�2�and�3)�differentiating�the�clades�with�

several�of�the�gene�sets�falling�into�the�same�biological�process�categories�(Figure�4,�Figure�10).�A�

relatively�even�distribution�of�genes�(~150)�were�associated�with�each�clade,�and�the�level�of�

enrichment�of�the�clades�was�significantly�higher�than�expected�by�chance�(p<0.0001;�permutation�

test;�Figure�S2�in�Additional�file�1).�Both�clades�are�enriched�for�different�cell�adhesion�proteins�while�

clade�1�is�differentially�enriched�for�several�additional�iron�acquisition�proteins�including�an�

additional�hemoglobin�receptor,�hemin�transport�protein,�and�yersiniobactin�siderophore�system.�

Clade�2�is�differentially�enriched�for�small�molecule�usage�including�an�alternative�pathway�for�

obtaining�nitrogen�from�cyanate,�aromatic�compound�decomposition�and�resistance�to�potential�

toxins�such�as�arsenic.��

�

Pathogen�and�commensal�comparisons�

Identifying�the�genetic�elements�that�differentiate�commensal�and�pathogenic�strains�is�extremely�

important.�Multiple�correspondence�analysis�(see�methods)�of�the�sequenced�genomes�highlighted�

differences�between�two�groups�of�strains�separated�on�the�first�axes,�matched�the�previously�

described�cladistic�structure�(Figure�5),�and�showed�a�clustering�of�some�of�the�pathogenic�strains�

using�an�overall�similarity�profile�despite�the�categorical�phylogenetic�differences�between�the�

strains.�We�began�by�exploring�the�most�strict�criteria�of�group�differentiation;�where�a�gene�would�

have�to�be�in�100%�of�the�pathogenic�strains�and�not�found�in�the�commensal�group�and�vice�versa.�

Surprisingly,�this�approach�only�identified�a�few�chaperone�genes.�Relaxing�the�criteria�(criteria�II,�

Table�2)�still�yielded�only�33�genes�enriched�in�the�commensal�group�but�164�in�the�pathogenic�

enrichment�(Figure�6,�Additional�files�4�and�5).�The�probabilities�of�the�commensal�and�pathogenic�

enrichments�to�happen�by�chance�were�equal�to�p=0.18�and�p=0.02�respectively�(permutation�test;�
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Figure�S3�in�Additional�file�1).�Most�of�the�commensal�group�gene�enrichments�were�either�related�to�

fatty�acid�metabolism�or�sugar�utilization�pathways.��

�

A�noticeable�contributor�to�the�pathogen�enrichment�was�the�pathogenicity�island�carrying�the�type�

III�secretion�system�(T3SS)�and�several�effecter�molecules�associated�with�it.�BLASTing�the�large�

contig�sequences�generated�from�the�Newbler�assemblies�against�a�complete�enterocyte�effacement�

pathogenicity�island�(LEE)�(35,624bp)�[13]�revealed�significant�identity�for�many�of�the�strains�(Table�

S1�in�Additional�file�1).�All�four�pathogenic�strains,�two�commensal�isolates�from�the�EPEC�study,�and�

one�commensal�isolate�from�the�IMPACT�study�contained�the�pathogenicity�island�[10,14].�Categories�

that�were�enriched�in�the�pathogenic�grouping�relative�to�the�commensal�grouping�included�both�

nitrogen�and�primary�metabolic�processing�(Figure�10).��Not�surprisingly,�since�the�pathogenic�strains�

were�initially�selected�based�on�the�presence�of�the�intimin�eae�gene,�and�therefore�belonged�to�

pathotype�enteropathogenic�E.coli�(Table�1),�intimin�enrichment�was�also�observed�in�the�pathogenic�

grouping.��

�

Growth�rate�comparisons�

Plotting relationships between the anaerobic generation times and the ratio of anaerobic to 

aerobic generation times of isolates showed a strong positive correlation (Figure 7). 

Highlighting strains from which we have genome sequences showed three clusters that we 

then defined as fast, medium and slow growers. Evaluation of growth rate clustering, using a 

relatively complicated enrichment test due to the differences in numbers of strains in each of 

the groups (criteria III, Table 2), saw strong gene content distinction between the fast group 

(group of two) and slow group (group of four) with p-values of the gene content profile 

amounts equal to 0.09 and 0.04 respectively (Figure S4 in Additional file 1). The strains with 
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the medium growth rate (group of four) did not have a significant (p=0.56) number of 

distinguishing genes . Enrichment profiles of the fast, medium and slow groups showed 

overrepresentation of 227, 47 and 324 gene families, respectively (Figure 8, Additional files 

6-8). Relative GO category enrichment in the slow group included primary metabolic process, 

nitrogen metabolism and macromolecular processes plus several genes important for iron 

uptake and utilization (Figure 10). The fast growing group was uniquely enriched for several 

GO categories including response to chemical stimuli and cell wall organization. The medium 

growth rate group seemed split between the slow and fast growers but the majority of genes 

enriched in this group were phage related.  

 

Early vs. late colonizer comparisons 

In this collection of strains we categorized a strain as an early colonizer if the strain was 

isolated from an infant within the first two weeks of life. These strains have a higher 

likelihood of coming from the mother than isolates from later age categories. Late colonizer 

strains were isolated from infants aged four months to two years. Comparison between the 

early colonizer and late colonizer strains found 416 genes that were differentially enriched 

between the two groups (criteria IV, Table 2, Figure 9, Additional files 9 and 10). One of the 

late colonizer strains was an early colonizer strain that had remained in the infant for four 

months (see below), this strain was considered an early colonizer and the enrichment criteria 

were modified to minimize bias. The 6 early colonizers and the 6 late colonizers had gene 

content profiles with p-values equal to 0.02 and 0.05 respectively (Figure S5 in Additional file 

1). Early colonizers were distinguished by 238 genes including capsular genes, fimbrial genes, 

yersiniabactin and other iron uptake systems as was seen in the cladistic enrichment. 

Additionally, we found enrichment for type four pili, required for localized adherence and 

auto-aggregation phenotypes [15]. Late colonizer strains were distinguished by 178 genes 
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including GO category biological enrichment for oxidation reduction processes and response 

to chemical stimuli (Figure 10). 

 

Codon usage bias and generation times 

Codon usage bias in highly expressed genes has been found to be a strong predictor of 

maximal growth rate in prokaryotes [16]. In order to investigate this relationship in our data 

we looked at correlations between our effective number of codons (ENC) estimates and 

growth rates under aerobic and anaerobic conditions. Mean genome wide ENC for the 10 

EDM strains was 49.044±0.182, while mean ENC for ribosomal protein genes was 

35.790±0.052. Mean generation times were 40.3±1.2 min. and 52.7±3.0 min. under aerobic 

and anaerobic conditions, respectively. We first looked at the relationship between whole 

genome ENC and growth rate. We found a positive correlation (two-sided Spearman 

correlation �=0.71, p-value=0.03) with anaerobic growth rate (Figure S6A in Additional file 

1), but no significant relationship with aerobic growth rate (�=0.05, p-value=0.89). This result 

indicated that faster growing isolates tend to have more pronounced overall codon bias. As 

expected the within species variation in ENC for ribosomal protein genes was minimal and no 

relationship could be found between this index and growth rates. Also due to a lack of 

variation in ribosomal protein ENC the relationships between �ENC and growth rates were 

essentially the same as the genome wide correlations (�=0.72, p-value=0.02 and �=0.26, p-

value=0.47 for anaerobic and aerobic generation times, respectively) (Figure S6B in 

Additional file 1). 

�

Strain�evolution�in�the�infant�gut�

Two�pairs�of�strains�from�two�infants�(child�1891�and�1360,�Table�1)�were�isolated�at�two�different�

time�points�and�had�matching�MLST�profiles.�The�strains�were�isolated�at�four�and�eleven�days�of�age�
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(EDM49c�and�EDM101c)�and�at�ten�days�and�four�months�(EDM1c�and�EDM123c)�of�age�respectively.�

The�isolates�from�the�same�child�had�almost�identical�genome�contents�(Figure�2)�and�were�

subjected�to�closer�scrutiny�in�order�to�shed�light�upon�the�selective�pressures�in�a�novel�infant�gut�

environment.�The�earlier�isolate�in�each�pair�was�thus�defined�as�“the�parent�strain”�and�the�later�as�

“the�evolved�strain”.��

��

Both�genome�content�and�codon�usage�indicated�strain�evolution�in�the�infant�gut�from�an�early�

colonizer�to�late�colonizer�phenotype.�From�the�EDM49c�and�EDM101c,�only�three�genes,�possibly�

phage�related,�were�found�in�the�parent�strain�but�not�in�the�evolved�strain,�and�no�genes�were�

unique�to�the�evolved�strain�relative�to�the�parent�strain.�From�EDM1c�and�EDM123c,�16�genes�were�

found�in�the�parent�strain�that�were�not�in�the�evolved�strain�and�13�genes�were�found�in�the�

evolved�strain�not�in�the�parent�strain�(Additional�files�11�and�12).�Interestingly,�three�of�the�genes�

unique�to�the�parent�strain�were�also�called�in�the�early�colonization�enrichment�list�whereas�none�of�

the�genes�unique�to�the�parent�strain�were�found�in�the�list�of�genes�from�the�late�colonization�

enrichment.�The�three�genes�that�were�matched�to�the�genes�in�the�early�enrichment�list�were�GO�

categorized�as�a�type�f�conjugative�transfer�system�pilin�chaperone,�hypothetical�protein�c4302�

[uropathogenic,�E.coli�CFT073,�NC_004431.1]�and�a�tellurite�resistance�protein�with�transposon�

elements�encoded�nearby.�Other�genes�unique�to�the�evolved�strain�relative�to�the�parent�strain�

included�a�mercury�resistance�operon�that�has�evidence�of�being�carried�on�the�transposon�Tn21.�

Genome�wide�ENC�and��ENC�comparison�of�EDM1c�and�EDM123c�found�reduced�codon�bias�in�the�

evolved�strain�(Figure�S6A�and�B�in�Additional�file�1).�

�

Discussion�

Genome�analysis�methods�
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The�methodological�challenges�we�addressed�in�order�to�generate�the�genotype�phenotype�profiles�

presented�in�this�work�require�some�discussion.�The�454�pyrosequencing�single�end�shotgun�data�

presented�difficulties�that�would,�in�several�cases,�not�have�been�ameliorated�by�increasing�the�

sequencing�coverage�(Figure�S1D�in�Additional�file�1).�This�is�partly�due�to�the�intrinsic�variability�of�

E.coli�genomic�content,�which�made�it�impossible�to�rely�on�reference�based�assembly�and�

necessitated�the�use�of�de�novo�assembly�methods,�but�also�because�of�the�relatively�error�prone�

nature�of�the�technology.�Alternative�sequencing�technologies�or�laborious�and�costly�paired�

end/mate�pair�DNA�sample�preparation�would�have�been�required�to�reduce�the�number�of�contigs.�

However,�the�single�end�shotgun�approach�offers�a�number�of�advantages�due�to�its�simplicity�and�

lower�cost�compared�with�paired�end�library�preparation�[17].�Furthermore,�even�though�

improvements�in�sequencing�technologies�will�help�genome�assembly�of�bacterial�isolates�due�to�

increased�read�length,�sequencing�of�complex�mixtures�of�bacteria�such�as�gut�or�soil�communities�

will�continue�to�face�some�of�the�same�challenges�that�we�have�addressed.�The�additional�post�

annotation�search�step�employed�in�this�study�appears�to�have�alleviated�some�of�the�biases�

introduced�by�an�imperfect�assembly�(Figure�S1�in�Additional�file�1).�

�

Pathogens�vs.�commensals�

The�factors�that�distinguish�a�pathogenic�from�a�commensal�E.coli�remain�contentious.�Previous�

studies�have�failed�to�come�up�with�pathovar�specific�genomic�cores�for�strains�classified�as�

enteropathogenic�or�enterotoxigenic�E.coli�(EPEC�and�ETEC,�respectively)�[18,19],�but�there�have�

been�studies�reporting�specific�gene�content�profiles�in�extraintestinal�pathogenic�E.coli�(ExPEC)�

[20,21].�However,�recent�work�indicates�that�many�of�these�genes�are�primarily�associated�with�gut�

colonization�and�that�virulence�is�an�incidental�by�product�of�commensalism�[22,23].�In�our�case,�

using�strict�100%�presence/absence�as�an�enrichment�criterion�failed�to�detect�genes�that�separated�

commensals�and�pathogens�(all�four�pathogenic�strains�were�EPEC).��
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Relaxing�the�criteria�resulted�in�a�significant�set�of�164�genes�that�were�preferentially�found�in�the�

pathogenic�group,�but�there�was�substantial�gene�overlap�with�commensal�strains.�The�33�genes�

enriched�in�the�commensal�group�may�represent�a�small�part�of�the�wide�variety�of�genes�necessary�

to�be�a�successful�colonizer.�The�weak�commensal�signature,�compared�with�the�pathogenic�one,�

suggests�that�the�term�commensal�may�not�be�a�meaningful�descriptor�in�a�phenotypic�or�

evolutionary�context�as�our�analyses�identified�‘pathogen�like’�commensals�(e.g.�commensal�isolate�

EDM16c�is�closer�to�the�pathogenic�isolates�when�it�comes�to�functional�genetic�profile�than�it�is�to�

the�other�commensals�(Figures�3�&�6))�which�may�suggest�a�virulence�potential�of�certain�commensal�

strains.�This�is�especially�highlighted�by�the�large�pathogenicity�island�carrying�the�TTSS�which�was�

shared�by�all�the�pathogenic�strains�and�a�subset�of�the�commensals�(Table�S1).�Recent�work�has�

shown�that�this�system�is�important�for�bacterial�competition�in�the�gut�in�addition�to�its�role�in�host�

interactions�[24].��If�virulence�is�indeed�an�accidental�by�product�of�adaptation�to�the�gut�

environment�it�would�explain�why�it�is�hard�to�find�a�non�clinical�distinction�between�pathogenic�and�

commensal�strains,�as�virulence�may�rather�be�a�matter�of�context�and�opportunism�[25].�Thus,�

genomic�signatures�may�nevertheless�identify�strains�that�have�greater�capacity�to�make�the�

transition�from�commensalism�to�virulence,�and�could�thus�aid�in�designing�preventive�strategies.�

�

Minimal�generation�time�

Growth�rate�is�a�phenotype�with�quintessentially�complex�genetic�underpinnings,�and�can�hardly�be�

ascribed�to�specific�genes�or�alleles.�Insight�into�the�mechanisms�underlying�growth�rate�differences�

is�highly�desirable�as�it�is�related�to�other�phenotypes�of�fundamental�importance,�such�as�virulence�

[26].�Minimal�generation�time�in�a�study�comparing�214�bacterial�and�archaeal�species�was�found�to�

correlate�with�genomic�features�such�rRNA�and�tRNA�copy�number�and�codon�usage�bias�[16].�
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However,�minimal�generation�times�were�found�to�vary�considerably�within�the�E.coli�isolates�in�our�

collection,�even�though�these�particular�features�were�similar�among�our�isolates.�

We�could�not�find�any�significant�correlation�between�generation�time�and�rRNA�and�tRNA�copy�

number�(results�not�shown),�and�codon�usage�bias�was�also�found�to�be�a�poor�predictor�of�aerobic�

generation�time.�Surprisingly,�it�correlated�strongly�with�anaerobic�generation�time.��

�

In�contrast�to�the�study�by�Vieira�Silva,�we�found�a�positive�correlation�between�generation�time�and�

codon�usage�bias�in�highly�expressed�genes�(�ENC).�This�result�is�not�necessarily�in�conflict�with�

previous�findings,�as�it�may�be�explained�by�the�fact�that�we�were�looking�at�strain�level�rather�than�

species�level�relationships.�Specifically,�in�contrast�to�the�previous�work�covering�many�diverse�

species,�the�ribosomal�protein�genes�were�extremely�conserved�and�the�spread�of�ENC�values�for�this�

set�of�sequences�was�less�than�a�third�of�what�was�observed�for�genome�wide�ENC.�Whole�genome�

bias�dominated�our�analysis�and�gave�rise�to�the�interpretation�that�a�narrower�general�codon�usage�

profile�is�associated�with�shorter�anaerobic�generation�times.�It�is�noteworthy�that�this�relationship�

did�not�hold�for�aerobic�growth.�At�face�value�it�may�seem�paradoxical�that�codon�usage�

specialization�should�be�more�important�under�anaerobic�conditions�when�translation�efficiency�is�

presumably�less�of�a�limiting�factor�than�under�intrinsically�faster�aerobic�growth.�One�explanation�

for�this�could�be�that�gut�adapted�E.coli�are�primarily�selected�for�anaerobic�growth�properties�as�the�

gut�community�matures�and�that�aerobic�growth�leaves�comparatively�little�systemic�imprint�on�their�

genomes.�Even�though�we�found�a�significant�correlation�between�aerobic�and�anaerobic�generation�

time�(R2=0.41,�p<0.001),�we�found�and�even�stronger�correlation�between�anaerobic�generation�time�

and�anaerobic�to�aerobic�generation�time�ratio�(R2=0.51,�p<0.0001),�suggesting�that�slow�anaerobic�

growth�entails�disproportionally�fast�aerobic�growth,�and�that�the�genomic�bases�for�these�two�

modes�of�growth�might,�at�least�in�part,�be�uncoupled.�This�interpretation�is�supported�by�the�fact�

that�codon�usage�bias�correlated�with�anaerobic�but�not�aerobic�growth�rates.�It�would�be�interesting�
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to�compare�these�results�with�environmentally�adapted�E.coli�isolates�[6,27]�and�discern�if�the�

genomic�imprint�of�aerobic�growth�might�be�more�visible.�

��

Gene�content�analysis�represents�an�entirely�different�approach�to�investigating�the�genomic�basis�of�

differential�generation�time,�and�one�that�would�not�be�appropriate�for�inter�species�comparisons.�

The�fact�that�our�E.coli�isolates�are�closely�related,�as�witnessed�by�the�shared�genomic�core,�yet�

display�relatively�high�variation�in�generation�time�begs�the�question�of�whether�there�are�signatures�

of�coding�potential�that�relate�to�this�phenotypic�diversity.�To�our�knowledge,�the�results�presented�

here�are�the�first�attempt�at�correlating�growth�rate�phenotype�with�differential�gene�content.�Even�

though�the�small�sample�sizes�warrant�some�caution�in�interpreting�the�results,�the�gene�profiles�of�

the�fast�and�slow�growing�groups�are�quite�unlikely�to�have�arisen�by�chance.�It�is�also�noteworthy,�

albeit�perhaps�not�surprising,�that�the�intermediate�group�failed�to�produce�a�significant�enrichment�

profile�and�that�differences�are�only�visible�when�comparing�the�extremes.�

�

Relative�enrichment�in�the�slow�group�(324�genes)�compared�to�the�fast�growing�group�(227�genes)�

found�that�many�of�the�same�GO�categories�were�enriched�but�the�slow�growing�group�had�a�greater�

enrichment�in�several�metabolic�processes,�including�nitrogen,�macromolecular,�and�several�genes�

important�for�iron�uptake�and�utilization�(Figure�10).�In�contrast,�the�fast�growers�had�a�larger�

relative�enrichment�for�genes�involved�in�response�to�chemical�stimuli�and�cell�wall�organization.�

Perhaps,�this�represents�an�ability�to�quickly�adapt�to�changes�in�the�environment.�The�fact�that�we�

observed�relatively�clear�gene�content�signatures�in�both�the�fast�and�slow�groups�may�reflect�an�

evolutionary�trade�off�between�short�minimal�generation�time�and�scavenging�potential.�

Copiotrophic,�fast�growing�bacteria�tend�to�have�low�affinity�transporters�typically�representing�an�

adaptation�towards�“feast”�conditions,�resulting�in�reduced�competitiveness�during�nutrient�

starvation�[28].�Slow�growers,�on�the�other�hand,�tend�to�have�high�affinity�transporters,�making�
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them�competitive�in�low�nutrient�environments,�while�at�the�same�time�making�them�susceptible�to�

saturation�or�toxic�effects�when�resources�are�plentiful�[29].�This�interpretation�is�further�supported�

by�the�enhanced�presence�of�scavenging�associated�genes�in�our�slow�growing�isolates.��

�

Early�and�late�colonization�

The�infant�gut�environment�is�temporally�dynamic�in�terms�of�reduction�potential,�nutrient�

availability,�immune�function�and�the�structure�of�the�resident�microbial�community�[30,31].�The�

infant�gut�microbiome�has�been�found�to�undergo�a�smooth�increase�in�phylogenetic�diversity�over�

the�first�few�years,�while�broad�scale�taxonomic�patterns�are�characterized�by�abrupt�events,�

eventually�conforming�to�a�mature�profile�[32].�The�same�study�found�concomitant�changes�in�

metagenomic�content�indicating�that�the�community�as�a�whole�is�responding�to�a�changing�

environment.�Selection�pressures�faced�by�members�of�the�gut�microbiota�may�therefore�differ�

widely�between�the�earlier�and�later�stages�of�infancy.�This�pressure�is�reflected�in�the�reduced�

relative�abundance�of�E.coli�in�the�mature�microbiota�relative�to�the�infant�gut�community�[31,33]�

and�suggests�that�strains�present�at�different�stages�of�development�could�differ�widely�in�their�

characteristics.�Dramatic�changes�in�the�gut�microbiota�of�pregnant�women�have�also�been�shown�

from�the�first�to�third�trimester,�resulting�in�increased�abundances�of�Proteobacteria�and�

Actinobacteria�and�reduced�taxonomic�richness�[34];�a�community�state�more�reminiscent�of�the�

infant�gut�structure.�The�mother�may�somehow�prime�the�gut�microbiota�with�a�qualitatively�

different�environment�in�preparation�for�transfer�to�the�infant.��

�

Both�early�and�late�colonizers�had�significant�differential�gene�content�profiles�(178�and�238�gene�

families�respectively).�We�found�that�early�colonizers�were�enriched�for�type�IV�secretion�system�and�

fimbrial�genes�that�are�important�for�attachment�and�interaction�with�the�host.�This�group�also�had�
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an�increased�presence�of�colicin�resistance�genes,�which�may�reflect�the�importance�of�competition�

with�bacteria�of�the�same�or�closely�related�species�is�in�the�low�diversity�conditions�of�the�early�gut�

environment.�Furthermore,�we�found�an�increased�number�of�genes�involved�in�biosynthetic�

processes�in�the�early�colonizer�group.�This�could�also�be�an�adaptation�to�low�diversity�conditions�

where�production�of�secondary�metabolites�and�secreted�growth�factors�is�potentially�limited.�The�

late�colonizers�were�enriched�for�resistance�to�toxins�such�as�arsenate�and�cyanate.�This�could�

indicate�the�importance�of�these�pathways�for�survival�in�the�complex�ecosystem�of�the�mature�gut.��

�

Evolution�towards�a�late�colonizer�genomic�profile�

There�is�ample�evidence�that,�given�some�selective�regime,�microbial�evolution�in�the�laboratory�can�

be�exceedingly�rapid�[35].�A�few�studies�have�documented�the�evolution�of�pathogenic�bacteria�in�

infected�individuals�[36,37]�but�reports�of�real�time�evolution�in�natural�environments�remain�scarce,�

and�to�our�knowledge�there�are�no�such�studies�focusing�on�bacteria�of�the�human�gut.�Isolate�

EDM123c�was�categorized�as�a�late�colonizer�due�to�the�fact�that�it�was�isolated�from�an�infant�at�

four�months�of�age.�EDM123c�is�by�all�probability�clonally�descended�from�EDM1c�which�had�

colonized�that�same�infant�already�at�10�days�after�birth.�Since�this�strain�had�spent�nearly�four�

months�in�the�infant�gut�during�an�environmental�transition�period,�we�hypothesized�that�selection�

would�push�it�toward�a�late�colonizer�genomic�profile.�There�are�two�lines�of�evidence�to�suggest�that�

this�is�the�case.�First,�three�of�the�genes�that�were�present�in�the�ancestral�strain�but�lost�from�the�

evolved�version�matched�genes�in�the�early�enrichment�list.�This�list�included�a�tellurite�resistance�

protein�which�has�been�linked�to�resisting�host�defense�[38,39].�Further�experimentation�is�necessary�

to�fully�characterize�the�effect�of�these�particular�genes�on�early�colonizing�ability�and�possible�

reasons�for�negative�selection�in�a�more�mature�microbiota.�Secondly,�we�observed�an�increased�

anaerobic�generation�time�from�isolate�EDM1c�(52.6±0.4�min.)�to�EDM123c�(55.8±1.1�min.).�

Interestingly,�EDM123c�also�had�and�elevated�genome�wide�ENC�(and�thus�also��ENC)�(Figure�S6�in�
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Additional�file�1)�relative�to�the�parent�strain.�This�indicates�that�from�the�parent�to�the�evolved�

strain�there�has�been�selection�for�synonymous�mutations�pushing�the�strain�toward�reduced�codon�

usage�bias.�Reduced�codon�bias�and�growth�rate�have�previously�been�associated�with�late�gut�

colonization�[16],�indicating�that�isolate�EDM123c�has�in�fact�evolved�toward�a�late�colonizer�profile.�

�

Given�the�close�relatedness�between�EDM1c�and�EDM123C,�as�witnessed�by�both�sequence�similarity�

and�gene�content�(Figure�3),�there�can�be�little�doubt�that�these�isolates�are�clonally�related,�and�

genomic�differences�are�probably�due�to�evolution�taking�place�in�the�gut.�Indeed�the�other�pair�of�

parental�(EDM49c)�and�evolved�(EDM101c)�strains�displayed�practically�no�divergence�in�gene�

content�or�codon�usage�bias,�probably�due�to�the�fact�that�they�were�isolated�only�7�days�apart.�We�

cannot�discount�the�possibility�that�clonally�related�strains�were�introduced,�outcompeted�and�then�

re�introduced�at�a�later�time.�In�this�case�at�least�part�of�any�evolution�taken�place�would�have�done�

so�in�a�different�environment.�In�the�case�of�EDM123c,�however,�we�feel�that�this�is�an�unlikely�

scenario�since�adaptation�took�the�direction�predicted�if�the�isolate�had�evolved�in�a�maturing�infant�

gut.�

�

Cross�category�enrichment�comparisons�

Even�though�the�different�enrichment�comparisons�were�fruitful�for�understanding�functional�

categories,�using�this�information�across�the�different�comparisons�gave�a�better�and�more�nuanced�

view.�The�main�clade�comparisons�are�very�informative�as�they�link�a�strain's�evolutionary�history�to�a�

measure�of�functional�differentiation�which�can�help�define�its�ecological�niche.�For�example,�all�early�

colonizers�except�EDM16c�(which�had�an�atypical�gene�content�profile�for�an�early�colonizer)�belong�

to�clade2.�The�late�colonizers�all�belong�to�clade1�except�EDM123c,�which�is�the�evolved�EDM1c�and�

thus�an�atypical�late�colonizer.�Thus�there�appears�to�be�a�phylogenetic�split�defining�these�ecological�
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categories,�and�this�split�is�reinforced�by�disparate�gene�content.�Also,�three�of�four�pathogens�group�

to�clade1�which�is�comprised�solely�of�B2�isolates,�a�group�known�to�be�pathogen�rich�[2].�

Furthermore,�and�in�contrast�with�the�core�genome�phylogeny,�the�pan�genome�phylogeny�places�

the�commensal�strain�EDM116c�within�the�same�subclade�as�these�three�pathogens�(Figure�3).�One�

could�speculate�that�although�EDM116c�is�an�ostensibly�asymptomatic�isolate,�its�genetic�makeup�is�

such�that�given�the�right�circumstances�it�may�cause�symptoms�similar�to�known�EPEC�strains.�The�

pathogenic�isolate�JEA242p,�on�the�other�hand,�is�placed�within�the�otherwise�exclusive�commensal�

clade�2,�demonstrating�that�virulence�can�emerge�from�quite�different�genomic�backgrounds.��

�

The�two�isolates�classified�as�fast�growing�in�this�sample�set�of�genome�sequenced�strains�were�both�

late�colonizers�(thus�belonging�to�clade1)�while�early�colonizers�in�this�set�tended�to�be�slow�growing�

(within�clade2),�but�with�disproportionally�short�aerobic�relative�to�anaerobic�generation�times�

(Figure�7).�This�trend�is�not�consistent�with�a�previous�study�[16],�but�the�disagreement�is�most�likely�

attributable�to�sampling�bias.�Nevertheless�some�interesting�associations�emerged�when�making�

cross�grouping�comparisons.�Comparing�the�similarities�in�the�gene�content�enrichments�between�all�

groupings�found�that�the�combined�clade1�late�fast�and�clade2�early�slow�designations�shared�the�

most�(57�and�49�respectively;�Additional�files�13�and�14)�(Figure�S7�in�Additional�file�1).�Unique�

phosphotransferase�system�(PTS)�were�enriched�in�each�cross�category�grouping�which�are�thought�

to�enhance�sugar�utilization�in�general�and�possible�bacterial�uptake�of�sugars�from�breast�milk�[40].�

A�similar�general�differential�gene�content�profile�was�seen�between�the�same�combined�groups�in�

glycosyl�transferases�and�glycosyl�hydrolase�genes�which�are�important�for�obtaining�nutrients�from�

the�host�and�correct�“assembly�of�a�microbiota”�[41].�The�combined�clade2�early�slow�group�further�

encoded�arylsulfate�sulfotransferase,�which�has�been�claimed�to�play�a�role�in�the�detoxification�of�

phenolic�compounds�[42].�On�the�other�hand,�a�gamma�aminobutyrate�utilization�gene�was�enriched�

in�the�combined�clade1�late�fast�group.�This�polyamine�utilization�gene�has�roles�in�proliferation�
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under�stressful�conditions�and�utilization�of�alternative�sources�of�carbon�and�nitrogen,�which�could�

be�an�adaptation�to�the�difficult�conditions�of�a�mature�gut�microbiota�[43,44].�Lastly,�the�clade1�

late�fast�group�showed�enrichment�for�the�hydrogenase�4�operon,�which�is�important�in�anaerobic�

growth�[45].�These�cross�category�comparisons�provide�a�tentative�link�between�the�evolutionary�

history�and�functional�phenotypes�of�our�isolates�where�the�two�main�branches�of�the�core�and�pan�

genome�phylogenies�may�represent�adaptive�paths�leading�toward�distinctive�ecological�properties.��

�

Conclusions�

This�study�addresses�the�role�of�gene�repertoire�in�bacterial�niche�ecology,�including�the�genomic�

bases�of�phenotypes�that�are�not�directly�linked�with�pathogenicity.�This�aspect�of�E.coli�ecology�has�

not�been�thoroughly�explored,�but�may�shed�light�on�the�evolutionary�history�of�the�species�[6].�The�

relatively�small�sample�size�and�need�for�further�molecular�work�precludes�definitive�conclusions�

regarding�relationships�between�the�array�of�genetic�pathways�and�specific�phenotypes.�However,�

our�results�indicate�a�general�pattern�where�alternative�genetic�pathways�lead�toward�a�consistent�

ecological�role�for�E.coli�as�a�species�(Figure�10).�Within�this�framework�however,�we�saw�selection�

shaping�the�coding�repertoire�of�E.coli�strains�toward�distinct�ecotypes�with�different�phenotypic�

properties.�Additionally,�the�profiles�we�present�should�lead�to�further�investigation�and�may�lend�

insight�into�the�biological�roles�of�genes�whose�previously�assigned�biological�function�is�incomplete�

and�also�for�the�large�number�of�hypothetical�proteins�that�were�outlined�using�this�method.�

�

In�contrast�to�previous�studies�of�E.coli�eco�genomics�[3,5,18,46]�our�isolates�come�from�a�population�

that�is�narrowly�localized�both�temporally�and�geographically.�This�could�entail�reduced�genetic�

diversity�due�to�shared�ancestry�and�increased�exchange�of�genes�through�horizontal�transfer�(HGT)�

between�strains.�Although�the�present�study�was�not�in�particular�concerned�with�HGT�we�did�see�a�
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substantially�higher�percentage�of�shared�gene�content�(52.4%)�than�what�has�previously�been�

reported,�as�well�as�a�smaller�pan�genome,�indicating�that�homogenizing�forces�are�increasingly�

effecting�genomic�diversity�on�a�local�scale.�Nevertheless�there�were�several�instances�where�

relatively�clear�gene�enrichment�profiles�could�be�linked�to�specific�phenotypes�and�ecological�

characters.�Due�to�the�disparate�nature�of�E.coli�genomes�identification�of�such�gene�suites�might�be�

impeded�if�similar�phenotypes�can�arise�through�different�mechanisms�and�evolutionary�histories,�as�

is�the�case�with�clinical�phenotypes�of�many�pathogenic�E.coli�[5].�A�more�homogenous�genomic�

background,�as�seen�in�this�work,�could�make�it�easier�to�tease�out�gene�content�signatures�that�are�

ecologically�relevant.�

�

Material�and�Methods�

Strains�and�culture�conditions�

The�bacterial�strains�used�in�this�study�have�been�previously�described�in�[10,47]�and�(de�Muinck�et�

al.,�manuscript�submitted)�(Table�1).�Six�strains�were�selected�for�genome�sequencing�from�[47]�

because�they�were�eae�positive�and�represented�the�previously�reported�diversity�of�phylogenetic�

groups.�Two�of�these�strains�were�from�healthy�children�while�four�were�isolated�from�children�with�

diarrhea�and�these�isolates�were�further�classified�as�enteropathogenic�E.coli�(EPEC).�A�further�ten�

strains�were�selected�from�[10],�all�of�which�were�isolated�from�healthy�children.�All�strains�were�

grown�to�saturation�in�LB�media�and�DNA�extraction�was�performed�using�the�DNeasy�kit�from�

Qiagen.��

�

Genome�sequencing�and�annotation�
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DNA�was�single�end�shotgun�sequenced�using�Roche�454�GS�(FLX�Titanium)�pyrosequencing.�

Sequences�have�been�deposited�in�the�EMBL�EBI�Sequence�Read�Archive.�Accession�numbers�are�

listed�in�Table�1.�De�novo�assembly�was�performed�using�Roche's�program�Newbler�v2.3�(performed�

at�the�freely�available�Bioportal�computing�service,�http://www.bioportal.uio.no).�Annotation�was�

done�using�RAST�version�4.0�[48].�The�RAST�annotated�genes�of�each�of�the�genomes�were�BLASTed�

[49]�against�all�the�other�annotated�genomes�using�criteria�of�85%�identity�and�an�e�value�of�less�

than�1x10^�25�to�signify�a�gene�match.�Due�to�the�large�number�of�contigs,�determination�of�gene�

presence�included�additional�processing�steps�to�recover�genes�split�into�separate�contigs�or�genes�

that�were�not�included�in�the�annotation.�Briefly,�we�used�the�complete�set�of�annotated�genes�from�

all�of�the�genomes�as�a�reference�pool.�If�a�gene�in�the�reference�pool�was�not�found�in�all�of�the�

analyzed�genomes,�the�longest�copy�of�the�gene�was�re�BLASTed�against�the�Newbler�assemblies�of�

each�of�the�genomes�in�which�the�gene�was�initially�not�found.�This�gene�was�then�added�to�the�

annotation�of�a�genome�if�a�partial�hit�was�found�that�was�at�least�90%�identical�and�an�e�value�of�

less�than�1x10^�25.�Genes�were�grouped�as�a�family�if�they�matched�with�the�BLAST�criteria�just�

mentioned,�or�if�they�received�identical�functional�annotations�from�RAST.��

�

Core�genome�phylogeny�and�pan�genome�tree�

A�multiple�alignment�of�the�de�novo�genome�assemblies�was�performed�using�progressiveMauve�

version�2.3.0�[50].�The�regions�shared�by�all�genomes�were�then�extracted�and�used�to�generate�a�

phylogenetic�tree�using�ClonalFrame�version�1.2�[51].�In�addition�to�this�phylogeny�based�on�the�core�

genome,�we�constructed�a�tree�based�on�the�pan�genome�as�follows:�a�gene�content�matrix�

consisting�of�1s�and�0s�was�constructed�where�the�columns�correspond�to�the�different�strains�and�

the�rows�to�different�gene�families.�An�entry�of�1�means�presence�of�a�gene�family�in�a�given�strain,�

whereas�a�0�means�absence.�This�matrix�was�used�for�calculation�of�Manhattan�distances�between�
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strains,�which�were�then�used�for�hierarchical�clustering�in�order�to�construct�the�pan�genome�tree.�

These�computations�were�done�using�R�[52].��

��

Gene�family�enrichment�analysis�

Enrichment�for�gene�families�was�found�using�the�gene�content�matrix�described�above,�combined�

with�previous�knowledge�of�the�isolates.�Isolates�were�grouped�according�to�phenotypic�or�

phylogenetic�criteria�and�then�gene�families�overrepresented�in�one�group�relative�to�others�were�

counted�in�the�matrix.�Group�sizes�and�cutoff�values�used�to�define�overrepresentation�are�shown�in�

Table�2.�Results�were�plotted�as�heat�maps�in�R.�To�assess�the�statistical�significance�of�these�results,�

we�designed�a�permutation�test�in�which�we�used�the�same�group�sizes�as�above�but�assigned�group�

membership�randomly�according�to�a�combinatorial�scheme.�This�procedure�produces�the�numerical�

distribution�of�gene�family�enrichments�for�all�possible�combinations�of�group�members�given�some�

fixed�set�of�group�sizes�and�enrichment�criteria,�with�which�our�results�could�be�compared.�This�

procedure�provides�an�indication�of�whether�our�results�could�arise�from�random�associations,�

although�the�limited�strain�sample�means�that�subtle�associations�may�go�undetected.�P�values�for�

our�focal�enrichments�were�derived�from�the�computed�distributions�as�the�empirical�probability�of�

observing�an�enrichment�of�equivalent�or�higher�rank.�Genes�enriched�in�each�of�the�groups�and�

cross�category�comparisons�are�listed�in�Additional�files�2�10�,13�and�14.�

�

Multiple�correspondence�analysis�

Multiple�correspondence�analysis�was�carried�out�as�described�by�Nenadic�and�Greenacre�using�

singular�value�decomposition�of�the�scaled�gene�content�indicator�matrix�[53].�

�
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Enrichment�for�biological�processes�and�re�annotation�of�enriched�genes�

The�lists�of�genes�generated�by�the�gene�family�enrichment�analysis�and�found�to�be�overrepresented�

within�each�of�the�categories�were�used�to�generate�the�biological�process�scores�using�Blast2GO�

(www.Blast2GO.com)�[54].�This�software�annotates�coding�sequences�and�assigns�them�to�gene�

ontology�(GO)�categories.�Blast2GO�gene�annotations�of�enriched�and�unique�gene�sets�can�be�found�

in�Additional�files�11,�12�and�15�23.�

�

Codon�usage�bias�analysis�

Genome�wide�codon�usage�tables�were�computed�from�the�annotated�coding�sequences�for�each�

strain.�Codon�usage�for�highly�expressed�genes�was�computed�from�the�54�ribosomal�protein�gene�

sequences�extracted�from�the�annotation�of�each�EDM�strain.�Effective�number�of�codons�(ENC)�was�

computed�according�to�the�method�of�Wright�[55].�This�provides�a�metric�for�the�evenness�of�codon�

usage�with�smaller�values�indicating�a�bias�toward�more�specialized�codon�usage�while�higher�values�

signify�more�uniform�usage.�The�index�of�bias�in�highly�expressed�genes,��ENC,�was�computed�as�the�

scaled�difference�between�genome�wide�ENC�and�highly�expressed�gene�(ribosomal�protein�gene)�

ENC�[16].�We�did�not�apply�correction�for�differential�G+C�content�in�our�ENC�calculations�as�this�did�

not�vary�significantly�across�genomes.�

�

Abbreviations�

BLAST:�basic�local�alignment�search�tool;�ENC:�effective�number�of�codons;�EPEC:�enteropathogenic�

E.coli;�GO:�gene�ontology;�HGT:�horizontal�gene�transfer;�MLST:�Multi�Locus�Sequence�Typing;�PTS:�

phosphotransferase�system;�RAST�:�rapid�annotations�using�subsystems�technology�

�
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Table�1.�List�of�strains�used�in�this�study�with�corresponding�genome�information.���
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ID� child� Clinical�� Age�at�� Phylogenetic� Nr.�� Median� Colonization� Accession�

(alt.�ID)� number� condition� Sampling� group� contigs� coverage� Category� Number�

EDM1c� 1360� Healthy� 10days� B2� 712� 7,55� early� EMBL:ERS155053�

EDM3c� 1360� Healthy� 1year� B1� 306� 12,4� late� EMBL:ERS155049�

EDM16c� 1870� Healthy� 7days� B1� 204� 13,75� early� EMBL:ERS155051�

EDM70c� 1997� Healthy� 10days� B2� 562� 8,5� early� EMBL:ERS155055�

EDM49c� 1891� Healthy� 4days� B2� 163� 14,5� early� EMBL:ERS155056�

EDM101c� 1891� Healthy� 11days� B2� 169� 16� early� EMBL:ERS155057�

EDM106c� 123� Healthy� 4days� B2� 585� 8� early� EMBL:ERS155058�

EDM116c� 123� Healthy� 1year� A� 864� 8,2� late� EMBL:ERS155052�

EDM123c� 1360� Healthy� 4months� B2� 669� 8,5� late� EMBL:ERS155054�

EDM530c� 123� Healthy� 2years� NA� 198� 17,5� late� EMBL:ERS155050�

JEA117c�(Trh9)*� 117c� Healthy� 1year� B2� 284� 10,1� late� EMBL:ERS178156�

JEA242p�(Trh52)*� 242p� Diarrhoea� 3years� B2� 140� 13,2� NC� EMBL:ERS178157�

JEA297p�(Trh58)*� 297p� Diarrhoea� 2years� D� 521� 11,1� NC� EMBL:ERS178158�

JEA179p�(Trh39)*� 179p� Diarrhoea� 4years� B1� 848� 7,8� NC� EMBL:ERS178159�

JEA160c�(Trh12)*� 160c� Healthy� 2years� A� 188� 20,1� late� EMBL:ERS178160�

JEA124p�(Trh29)*� 124p� Diarrhoea� 2years� A� 800� 8,9� NC� EMBL:ERS178161�

c�=�commensal�isolate,�isolated�from�healthy�child� � � � � �

p�=�pathogenic�isolate,�isolated�from�child�with�diarrhoea� � � � � �

*�Isolation�based�on�positive�PCR�analysis�for�intimin�gene�eae.� � � � � �

NC=not�categorized� � � � � � � � �

The�genome�assembly�statistics�are�results�of�Newbler�de�novo�assembly.�The�colonization�
categorizations�are�the�ones�used�for�gene�enrichment�comparison�between�early�and�late�colonizers.�
Alternative�strain�IDs�are�from�[47].�

�

�

�

�

�

Table�2.�Criteria�used�for�gene�enrichment�analyses.�
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Sorting�criteria� Focal�group�(nr.�strains)�
Gene�presence�
in�focal�group�

Gene�absence�in�
non�focal�group�

Clade1�(8)� �7� �7�
Criteria�I,�cladistic�comparison�

Clade2�(8)� �7� �7�

Pathogen�(4)� �3� �9�Criteria�II,�pathogen/�commensal�
comparison� Commensal�(12)� �9� �3�

Fast�(2)� 2� �6�

Medium�(4)� �3� �4�
Criteria�III,�growth�rate�

comparison�

Slow�(4)� �3� �4�

Early�(6)� ��5� �4�Criteria�IV,�colonization�time�
comparison� Late�(6)� �4� �5�

Criteria I: Criteria used for discriminating cladistic gene content enrichments. Each of the two clades contained 
8 strains and enrichment required a gene to be present in at least 7 strains of one clade (focal group) while 
being absent from at least 7 strains in the other clade (non-focal group). 
Criteria II: Criteria used for discriminating pathogen vs. commensal gene content enrichments. Since the two 
groups are of unequal size, a pathogen enriched gene had to present in at least 3 of 4 pathogenic strains and 
absent from at least 9 of 12 commensal strains. A commensal enriched gene had to be present in at least 9 of 12 
commensal strains and absent from at least 3 of 4 pathogenic strains. 
Criteria III: Criteria used for discriminating growth rate related gene content enrichments. The three growth 
rate categories (slow, medium and fast) contained 2,4, and 4 strains respectively. For a gene to be considered 
enriched in the fast category, a gene had to be preset in both fast strains and absent from at least 6 of 8 of the 
combined slow and medium strains. For a gene to be considered enriched in the medium  category, a gene had 
to be preset in at least 3 of 4 medium strains and absent from at least 4 of 6 of the combined slow and fast 
strains. For a gene to be considered enriched in the slow category, a gene had to be present in at least 3 of 4 
slow strains and absent from at least 4 of 6 of the combined medium and fast strains.  
Criteria�IV:�Criteria�used�for�discriminating�early�vs.�late�colonizer�gene�content�enrichments.�The�two�groups�
contain�6�strains�each.�Since�one�of�the�strains�in�the�early�group�was�also�isolated�in�the�late�group�(EDM123c).�
An�asymmetrical�enrichment�profile�was�designed�which�required�an�early�enriched�gene�to�be�present�in�at�
least�5�of�6�early�strains�and�absent�in�at�least�4�of�6�late�strains.�A�gene�enriched�in�the�late�colonizer�group�had�
to�be�present�in�at�least�4�of�6�late�strains�and�absent�from�at�least�5�of�6�early�strains.�

�

�

�

�

�

�

Figure�legends:�

�
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Figure�1:�Overview�of�relative�and�cumulative�proportions�of�genes�as�the�number�of�included�
genomes�increases.�Bright�and�dark�bars�show�relative�and�cumulative�proportions,�respectively.�All�
duplicated�gene�annotations�were�removed�for�this�analysis.�Less�than�20%�of�annotated�genes�are�
unique�to�one�strain�and�while�52.4%�are�common�to�all.�

�

Figure�2:�Heat�map�of�total�gene�content�comparisons.�Gene�presence�is�shown�in�blue�and�gene�
absence�in�yellow.�The�number�of�genes�is�depicted�on�the�x�axis.�Strains�are�listed�in�the�order�
following�hierarchical�clustering�created�using�a�Manhattan�distance�matrix�based�on�the�gene�
presence/absence�gene�content�matrix.���

�

Figure�3:�Comparison�of�genome�trees�generated�by�core�and�pan�genomes.�A.�The�core�genome�
phylogeny�was�created�using�ClonalFrame.�B.�Pan�genome�tree�generation�was�created�using�a�
Manhattan�distance�matrix�based�on�the�gene�presence/absence�gene�content�matrix.�The�scale�
below�the�pan�genome�tree�indicates�Manhattan�distances.�Both�methods�separated�the�strains�into�
two�main�clades�(1�and�2).�

�

Figure�4:�Gene�content�enrichment�comparing�main�clades�1�and�2.�Enrichment�analysis�was�carried�
out�using�criteria�I�(Table�2).�The�distribution�of�possible�strain�group�permutations�is�presented�in�
Figure�S2.��

�

Figure�5:�Multiple�correspondence�analysis�of�the�gene�content�matrix.�The�plot�shows�principal�
coordinates�along�the�two�main�components.�Each�point�on�the�graph�represents�a�gene�and�the�
color�of�the�point�relates�the�number�of�genomes�in�which�it�is�present.�The�positions�of�the�genome�
labels�represent�the�relative�distances�of�the�genomes�along�the�respective�components.�

�

Figure�6:�Gene�content�profiles�of�pathogenic�and�commensal�strains.�Enrichment�analysis�was�
carried�out�following�criteria�II�(Table�2).�164�genes�(p=�0.02)�were�found�to�be�enriched�in�the�
pathogenic�group�while�only�33�genes�(p=0.18)�were�enriched�in�the�commensal�group.�The�
complete�distributions�of�possible�gene�enrichments�are�presented�in�Figure�S3.�

�

Figure�7:�Ratio�of�anaerobic/aerobic�generation�times�related�to�anaerobic�generation�times�of�
IMPACT�isolates�(de�Muinck�et�al.�submitted).�Circled�strains�are�the�ones�for�which�we�present�
genome�sequences�in�this�study.�Blue�circled�strains�are�categorized�as�fast�growers,�green�have�a�
medium�growth�rate,�and�red�circled�strains�are�slow�growing�strains.�R2=0.51,�p<0.0001.�

�
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Figure�8:�Gene�content�profiles�of�slow,�medium�and�fast�growing�strains.�Enrichment�analysis�was�
carried�out�using�criteria�III�(Table�2).�The�fast�category�had�227�(p=0.09)�genes�enriched.�The�
medium�growth�rate�category�had�only�46�(p=0.56)�genes�enriched�while�the�slow�category�had�324�
(p=0.04)�genes.�Distributions�of�possible�enrichment�profiles�are�shown�in�Figure�S4.���

�

Figure�9:�Gene�content�enrichment�profiles�of�early�and�late�colonizer�strains.�Enrichment�analysis�
was�carried�out�using�criteria�IV�(Table�2).�Both�early�and�late�colonizers�show�significant�enrichments�
(p=0.02�and�p=0.05,�respectively).�The�complete�distributions�of�possible�enrichment�profiles�are�
shown�in�Figure�S5�in�Additional�file�1.�EDM1c�is�an�early�colonizer�that�is�clonally�related�to�the�late�
colonizer�EDM123c.�EDM123c�maintains�the�early�colonizer�genomic�profile�but�has�lost�genes�found�
in�the�early�colonizer�profile.�

�

Figure�10:�General�comparison�of�the�enrichment�profiles�of�the�strain�categories.�Each�column�is�
created�from�the�gene�enrichment�list�for�each�grouping�(Additional�files�15�23).�Each�list�of�gene�
sequences�was�evaluated�for�ontology�level�3�biological�process�categorization�using�Blast2GO�for�
SEED�assignments.�The�coloring�scheme�corresponds�to�enrichment�scores�assigned�by�Blast2GO.�
Grouping�categories�are�shown�on�the�x�axis,�and�the�different�comparisons�are�separated�by�white�
lines.�Enrichment�comparisons�were�performed�between�clade1�and�clade2;�pathogen�and�
commensal;�slow,�medium�and�fast�growth�rates;�early�and�late�colonization.�The�color�key�indicates�
the�enrichments�scores�for�the�biological�processes.���

�
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Supporting information: Supplementary table 1. Supplementary figures 1-7. 
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Table S1: Evaluation of genome sequenced strains for the presence of the enterocyte 
effacement pathogenicity island. The complete 35,624 base pair LEE pathogenicity island of 
E.coli strain E2348/69 (AF022236.1) was BLASTed against each of the genome assemblies. 
Strains not included in the table showed no significant identity. The lengths of the sequences 
found in the genome of each strain with greater than 90% identity were summed and the 
percent of the summed length was compared with the complete 35,624 base pair length of the 
pathogenicity island. 
 

 
percent of 
total 

 
alignment 
length 

Strain ID >90% identity 
EDM116c 98% 
JEA117c 96% 
JEA160c 94% 
JEA179p 93% 
JEA242p 99% 
JEA297p 74%,88%* 
JEA124p 49%,88%* 

 *80%identity

 
 threshold 

value
 
 
*the same comparison was repeated for some strains using a reduced identity threshold of 
80%. 
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Figure S1: A. Decrease in the number of contigs in an assembly as the depth of coverage 
increases (R2=0.69, p<0.0001). B. Relationship between the number of contigs in an assembly 
and the number of annotated sequences (R2=0.52, p=0.0017). C. Decrease in the average 
annotated sequence length relative to the number of contigs in an assembly (R2=0.94, 
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p<0.0001). D. Relationship between the median assembly read depth and the ratio of the 
median depth of the contigs to the median depth of the contig edges. Edge contig read depths 
were estimated from the outermost 1% of the total length on either side of all contigs of at 
least 1000 base pairs within each assembly. E.  Relationship between the number of contigs in 
an assembly and the number of partial genes retrieved from re-BLASTing annotated 
sequences against the complete genome assemblies (R2=0.57, p=0.0008). F. Relationship 
between coverage depth and number of genes after the additional processing steps 
(R2<0.0001, p=0.97). G. Correlation between the number of gene families and genome size 
(R2=0.92, p<0.0001). 
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Figure S2: Distribution of possible gene content enrichment profiles using the cladistic 
enrichment criteria (criteria I, Table 2). ‘Groups of 8’ describes the number of strains in each 
category and the numbers of shared genes are shown on the bottom axis. The red and green 
lines show the number of shared genes in clade1 (151) and clade2 respectively (154). The 
cladistic grouping had the most significant (p<0.0001) distribution of the tested categories. 
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Figure S3: Distribution of possible gene content enrichment profiles using permutations of 
the groupings described by criteria II (Table2). The number of genes in an enrichment profile 
is shown on the y-axis. ‘Groups of 4’ corresponds to the sorting criteria used for pathogens 
(red line). ‘Groups of 12’ corresponds to the sorting criteria for the commensals (green line). 
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Figure S4: Distribution of possible gene content enrichment profiles of the growth rate 
groupings described by criteria III (Table2). ‘Groups of 2’ corresponds to the sorting criteria 
used for fast growers (red line). ‘Groups of 4’ corresponds to the sorting criteria used for the 
medium (green line) and slow growers (blue line). 
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Figure S5: Distribution of possible gene content enrichment profiles of the early and late 
colonizer groupings described by criteria IV (Table2). The top panel ‘Groups of 6’ 
corresponds to the sorting criteria used for early colonizers (red line). The bottom panel 
‘Groups of 6’ corresponds to the sorting criteria used for the late colonizers (green line). The 
use of two panels is due to the different distributions produced by the asymmetric sorting 
criteria used for the two gene content enrichment categories. 
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Figure S6: Plots of codon usage bias vs. aerobic (red dots) and anaerobic (black dots) 
generation times. A. Genome wide codon usage bias (ENCall). B. Codon usage bias in highly 
expressed genes (�ENC), represented by 54 ribosomal protein genes. Dashed lines are linear 
regression fits. The parent (EDM1c) and evolved (EDM123c) isolates separated by 4 months 
are marked with green rings. 
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Figure S7: Number of genes enriched across grouping categories. All possible comparisons 
between main clade provenance, time of colonization, growth rate and pathogenicity are 
represented on the x-axis with selected outcomes labelled above the bars. The y-axis shows 
the number of Blast2GO annotated genes that are common to two or more categories. Blue 
bars are pairwise comparisons. Red bars are three-way comparisons. Yellow bars are four-
way comparisons.  

 





<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




