

UNIVERSITY OF OSLO
Department of Informatics

8th International
Symposium on
Formal Aspects of
Component
Software
Prelinary Proceedings

Research Report 410

Farhad Arbab
and
Peter Csaba
Ölveczky
(editors)

ISBN 82-7368-372-9
ISSN 0806-3036

September 2011

Preface

This volume contains the preliminary proceedings of the 8th International Sym-
posium on Formal Aspects of Component Software (FACS 2011), held at the
Department of Informatics, University of Oslo, on September 14–16, 2011. FACS
2011 is the eighth event in a series of events founded by the International Insti-
tute for Software Technology of the United Nations University (UNU-IIST).

The objective of FACS is to bring researchers and practitioners of component
software and formal methods together in order to foster a deeper understanding
of reliable component-based systems development and their applications, us-
ing formal methods. The component-based software development approach has
emerged as a promising paradigm to cope with the complexity of present-day
software systems by bringing sound engineering principles into software engineer-
ing. However, many challenging conceptual and technological issues still remain
in component-based software development theory and practice. Moreover, the
advent of service-oriented computing has brought to the fore new dimensions,
such as quality of service and robustness to withstand inevitable faults, that re-
quire revisiting established component-based concepts in order to meet the new
requirements of the service-oriented paradigm.

FACS 2011 is concerned with how formal methods can be used to make
component-based and service-oriented software development succeed. Formal
methods have provided a foundation for component-based software by success-
fully addressing challenging issues such as mathematical models for components,
composition and adaptation, or rigorous approaches to verification, deployment,
testing, and certification. The symposium seeks to address the applications of
formal methods in all aspects of software components and services.

In the call for papers for FACS 2011, we solicited high-quality submissions
reporting on: original research contributions; applications and experiences; sur-
veys, comparisons, and state-of-the-art reports; and tools. We also solicited sub-
missions to the Doctoral Track of FACS 2011, in the form of two-page abstracts,
concisely describing PhD-work-in-progress, conveying related theme, context,
research questions, envisaged contributions, and partial results.

We received 46 submissions from 26 countries, out of which the program com-
mittee accepted 16 as regular papers, and, furthermore, conditionally accepted 4
additional papers. We received 9 submissions to the FACS 2011 Doctoral Track,
out of which we accepted 4. Each submission to FACS 2011 was reviewed by at
least 3 independent referees. In addition to the contributed papers, we consider
ourselves very fortunate that our program also includes invited talks by José
Meseguer, John Rushby, and Ketil Stølen.

Revised versions of accepted regular papers will appear in the post-proceedings
of FACS 2011 that will be published as a volume in Springer’s LNCS series. Ex-
tended versions of selected papers from the symposium will also appear in a
special issue of the Science of Computer Programming journal.

Many colleagues and friends have contributed to FACS 2011. First, we thank
the authors who submitted their work to FACS 2011 and who, by their contri-
butions and participation, make this symposium a high-quality event. We thank

I

the program committee members and their sub-reviewers for their timely and
insightful reviews as well as for their involvement in the post-reviewing discus-
sions. We are also grateful to the FACS Steering Committee for its guidance, to
the invited speakers, and, in particular, to Lucian Bentea for all his assistance
in organizing this event. Finally, we thank Andrei Voronkov for the excellent
EasyChair conference system, which made our job so much simpler, and the Re-
search Council of Norway and the Department of Informatics at the University
of Oslo for financially supporting the symposium.

September, 2011 Farhad Arbab
Peter Csaba Ölveczky

II

Symposium Organization

Program Chairs

Farhad Arbab (Leiden University and CWI)
Peter Csaba Ölveczky (University of Oslo)

Steering Committee

Zhiming Liu (coordinator) (IIST UNU, Macau)
Farhad Arbab (Leiden University and CWI)
Lúıs Barbosa (University of Minho)
Carlos Canal (University of Málaga)
Markus Lumpe (Swinburne University of Technology)
Eric Madelaine (INRIA, Centre Sophia Antipolis)
Peter Csaba Ölveczky (University of Oslo)
Corina Păsăreanu (NASA Ames)
Bernhard Schätz (fortiss GmbH)

Program Committee

Erika Ábrahám (RWTH Aachen University)
Farhad Arbab (CWI and Leiden University)
Christel Baier (Technical University of Dresden)
Lúıs Barbosa (Universidade do Minho)
Mihaela Bobaru (NASA/JPL)
Christiano Braga (Universidade Federal Fluminense)
Roberto Bruni (University of Pisa)
Carlos Canal (University of Málaga)
Frank De Boer (CWI)
Francisco Duran (University of Málaga)
Rolf Hennicker (Ludwig-Maximilians-Universität München)
Alexander Knapp (Augsburg University)
Zhiming Liu (IIST UNU)
Markus Lumpe (Swinburne University of Technology)
Eric Madelaine (INRIA, Centre Sophia Antipolis)
Sun Meng (Peking University)
Peter Csaba Ölveczky (University of Oslo)
Corina Păsăreanu (NASA Ames)
Frantǐsek Plášil (Charles University)
Gwen Salaün (Grenoble INP - INRIA)
Bernhard Schätz (fortiss GmbH)
Wolfram Schulte (Microsoft Research)

III

Nishant Sinha (NEC Labs, Princeton)
Marjan Sirjani (Reykjavik University)
Volker Stolz (University of Oslo)
Carolyn Talcott (SRI International)
Emilio Tuosto (University of Leicester)

IV

External Reviewers

Adam, Ludwig Khamespanah, Ehsan
Ardourel, Gilles Khosravi, Ramtin
Bauer, Sebastian Kofron, Jan
Baumeister, Hubert Komuravelli, Anvesh
Bertolini, Cristiano Lang, Frederic
Blech, Jan Olaf Lepri, Daniela
Chen, Zhenbang Lluch Lafuente, Alberto
Choppy, Christine Loup, Ulrich
Corzilius, Florian Malohlava, Michal
Dan, Li Melgratti, Hernan
Faber, Johannes Morisset, Charles
Guanciale, Roberto Nellen, Johanna
Helvensteijn, Michiel Ouederni, Meriem
Henrio, Ludovic Pfaller, Christian
Hölzl, Florian Poch, Tomas
Jaghoori, Mohammad Mahdi Ramalho, Franklin
Jansen, Nils Rodrigues, Genaina
Jezek, Pavel Sabouri, Hamideh
Jongmans, Sung Schlatte, Rudolf
Kemper, Stephanie Schäf, Martin
Keznikl, Jaroslav Verdejo, Alberto
Khakpour, Narges Vogler, Walter
Khalil, Maged

V

Table of Contents

Taming Distributed System Complexity through Formal Patterns 1
Jose Meseguer

Composing Safe Systems . 3
John Rushby

Components and Risk . 12
Ketil Stølen

Synthesis of Hierarchical Systems . 13
Benjamin Aminof, Fabio Mogavero and Aniello Murano

A Modal Specification Theory for Components with Data 31
Sebastian Bauer, Kim Guldstrand Larsen, Axel Legay, Ulrik Nyman
and Andrzej Wasowski

Evaluating the performance of model transformation styles in Maude 49
Roberto Bruni and Alberto Lluch Lafuente

Interactive Transformations from Object-Oriented Models to
Component-Based Models . 67

Li Dan, Xiaoshan Li, Zhiming Liu and Volker Stolz

Runtime Verification of Temporal Patterns for Dynamic
Reconfigurations of Components . 85

Julien Dormoy, Olga Kouchnarenko and Arnaud Lanoix

Timed Conformance Testing for Orchestrated Service Discovery 103
Jose Pablo Escobedo, Christophe Gaston and Pascale Le Gall

Realizability of Choreographies for Services Interacting Asynchronously . . 121
Gregor Gössler and Gwen Salaün

Networks of Real-Time Actors: Schedulability Analysis and Coordination 138
Mohammad Jaghoori, Ólafur Hlynsson and Marjan Sirjani

A Formal Model of Object Mobility in Resource-Restricted Deployment
Scenarios . 156

Einar Broch Johnsen, Rudolf Schlatte and Silvia Lizeth Tapia Tarifa

The Logic of XACML . 174
Carroline Dewi Puspa Kencana Ramli, Hanne Riis Nielson and Flem-
ming Nielson

A proof assistant based formalization of MDE components 192
Mounira Kezadri, Benôıt Combemale, Marc Pantel and Xavier Thiri-
oux

VI

Controlling an iteration-wise coherence in dataflow . 210
Sébastien Limet, Sophie Robert and Ahmed Turki

Learning from Failures: a Lightweight Approach to Run-Time
Behavioural Adaptation . 228

José Antonio Mart́ın, Antonio Brogi and Ernesto Pimentel

Analyzing Reconfigurable Component-Based Systems Using Attribute
Grammars . 245

Thomas Noll

Verifying Safety of Fault-Tolerant Distributed Components 263
Ameur-Boulifa Rabéa, Raluca Halalai, Ludovic Henrio and Eric Made-
laine

Reducing the Model Checking Cost of Product Lines Using Static
Analysis Techniques . 281

Hamideh Sabouri and Ramtin Khosravi

Bigraphical Modelling of Architectural Patterns . 298
Alejandro Sanchez, Luis Soares Barbosa and Daniel Riesco

A formal framework for coordinated simulation of heterogeneous
service-oriented applications . 316

Patrizia Scandurra, Elvinia Riccobene, Davide Brugali and Luca Gher-
ardi

Verifying Temporal Properties of Use-Cases in Natural Language 334
Viliam Simko, David Hauzar, Tomas Bures, Petr Hnetynka and Fran-
tisek Plasil

Connectors as Designs: the Time Dimension . 352
Meng Sun

A New Component Model for Highly Distributed Environments 370
Antoine Beugnard and Ali Hassan

A Rewriting-Logic-Based Tool for Object-Oriented Formal Modeling
and Analysis of Interacting Hybrid Systems . 373

Muhammad Fadlisyah

Formal Aspects of Component-Based Design of Embedded Real-Time
Systems . 376

Andrey Kruglyak

Analysis of Cooperating Systems by Refined Over-Approximations 379
Nils Semmelrock

VII

Taming Distributed System Complexity through
Formal Patterns

José Meseguer

University of Illinois at Urbana-Champaign

Many current and future distributed systems are or will be:

– real-time and cyber-physical
– probabilistic in their operating environments and/or their algorithms
– safety-critical, with strong qualitative and quantitative formal requirements
– reflective and adaptive, to operate in changing and potentially hostile envi-

ronments.

Their distributed features, their adaptation needs, and their real-time and prob-
abilistic aspects make such systems quite complex and hard to design, build and
verify, yet their safety-critical nature makes their verification essential. One im-
portant source of complexity, causing many unforeseen design errors, arises from
ill-understood and hard-to-test interactions between their different distributed
components.

Methods to tame and greatly reduce system complexity are badly needed.
System complexity has many aspects, including the complexity and associated
cost of:

– designing
– verifying
– developing
– maintaining and
– evolving

such systems.
The main goal of this talk is to propose the use of formal patterns as a way

of drastically reducing all the above system complexity aspects. By a ”formal
pattern” I mean a solution to a commonly occurring problem that is:

– as generic as possible, with precise semantic requirements for its parameters
– formally specified
– executable, and
– comes with strong formal guarantees.

This means that a formal pattern can be applied to a potentially infinite set
of concrete instances, where each such instance is correct by construction and
enjoys the formal guarantees ensured by meeting the semantic requirements of
the pattern’s parameters.

The overall vision is that distributed systems should be designed, verified,
and built by composing formal patterns that are highly generic and reusable and

1

come with strong formal guarantees. A large part of the verification effort is spent
in an up-front, fully generic manner, and is then be amortized across a potentially
infinite number of instances. As I will show through concrete examples, this can
achieve very drastic reductions in all aspects of system complexity, including the
formal verification aspect. It can lead to high-quality, highly reliable distributed
systems at a fraction of the cost required not using such patterns.

To develop formal patterns for distributed systems with features such as those
mentioned above an appropriate semantic framework is needed, one supporting:

– concurrency
– real time and probabilities
– distributed reflection and adaptation, and
– formal verification methods.

I will use rewriting logic as such a semantic framework, and will show in number
of examples its adequacy to specify and verify formal patterns of this nature.

2

Composing Safe Systems?

John Rushby

Computer Science Laboratory
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025 USA

Abstract. We consider component-based systems that must ensure crit-
ical properties such as safety. We describe the value of partitioning, and
of assumption synthesis, and suggest areas for further research.

1 Introduction

We build systems from components, but what makes something a system is that
its properties and behavior are distinct from those of its components. As engi-
neers and designers, we wish to predict and calculate the properties of systems
from those of their components and their interconnections, and we are quite suc-
cessful at doing this, most of the time. For many systems and properties, “most
of the time” is good enough: we can live with it if our laptop occasionally locks
up, our car doesn’t start, or our music player seems to lose our playlists. But
we will be considerably more aggrieved if our laptop catches fire, our car fails to
stop, or our music player loses the songs that we purchased. As we move from
personal systems to those with wider impact and from properties about normal
function to those that concern safety or security, so “most of the time” becomes
inadequate: we want those properties to be true all the time.

Often, properties that we want to be true “all the time” fail to be so, and sub-
sequent investigations generally reveal some unexpected interaction among the
system’s components. Thus, attempts to reason about the properties of systems
by combining or composing the properties of their components, while generally
successful for “most of the time” properties, are less successful for “all the time”
properties. It is for this reason that regulatory bodies examine only complete
systems (e.g., the FAA certifies only airplanes and engines) and not compo-
nents: they need to consider the behavior and possible interactions of multiple
components in the context of a specific system.

Now, although it is generally infeasible at present to guarantee critical “all the
time” properties by compositional (or “modular”) methods, it is a good research

? This work was supported by National Science Foundation Grant CNS-0720908. The
content is solely the responsibility of the author and does not necessarily represent
the official views of NSF.

3

topic to investigate why this is so, and how we might extend the boundaries of
what is feasible in this area. Safety, in the sense of causing no harm to the public,
is one of the most demanding properties, and so the motivation for the title of
this paper is to indicate a research agenda focussed on methods that might allow
certification of safety for complex systems by compositional means.

As mentioned, system safety failures and the attendant flaws in compositional
reasoning are generally due to unanticipated interactions among components.
These interactions can be classified into those that exploit a previously unantici-
pated pathway for interaction, and those that are due to unanticipated behavior
along a known interaction pathway. One way to control the first class of unantic-
ipated interactions is to use integration frameworks that restrict the pathways
available for component interactions; in avionics, this approach is called “parti-
tioning” and it is the topic of Section 2.

There are two complementary ways to deal with the second class of unan-
ticipated interactions: one is to design components that deal gracefully with
anything their environment can do to them; the other is to figure out what
each component can deal with, and to ensure that its environment does not
subject it to anything outside that space. These ways of trying to “anticipate
the unanticipated” are among the topics of Section 3, which mainly focuses on
assume/guarantee and methods for assumption synthesis. Brief conclusions are
provided in Section 4.

2 Partitioning

Aircraft are safe, yet employ many interacting subsystems, so the techniques they
employ are worthy of interest. Traditionally, the various avionics functions on
board aircraft were provided by fairly independent subsystems loosely integrated
as a “federated” system. This meant that the autopilot, for example, had its own
computers, replicated for redundancy, and so did the flight management system.
The two system would communicate though the exchange of messages, but their
relative isolation provided a natural barrier to the propagation of faults: a faulty
autopilot might send bad data to the flight management system, but could not
destroy its ability to calculate or communicate.

Modern aircraft employ Integrated Modular Avionics (IMA) where many
critical functions share the same computer system and communications net-
works, and so there is naturally concern that a fault in one function could prop-
agate to others sharing the same resources. Hence, the notion of “robust par-
titioning” has developed [11]: the idea is that applications that use the shared
resources should be protected from each other as if they were not sharing and
each had their own private resource.

The primary resources that require partitioning are communication and com-
putation: i.e., networks and processors. For networks, the concern is that a faulty
or malicious component will not adhere to the protocol and will transmit over
other traffic, or will transmit constantly, thereby denying good components the
ability to communicate. The only way to provide partitioning in the face of

4

these threats is to employ redundancy, so that components’ access to the net-
work is mediated by additional components that limit the rate or the times at
which communication can occur. Of course, these additional components and the
mechanisms they employ may themselves be afflicted by faults (e.g., transient
hardware upsets caused by ambient radiation), and so the design and assurance
of these partitioning network technologies are very demanding [14], but they are
now reasonably well understood and available “off the shelf.”

For processors, the concerns are that faulty or malicious processes will write
into the memory of other processes, monopolize the CPUs, or corrupt the pro-
cessor’s state. Partitioning against these threats can be provided by a strong
operating system or, more credibly, by a hypervisor or virtual machine environ-
ment; minimal hypervisors specialized to the partitioning function are known
as “separation kernels” [12] and, like partitioning networks, efficient and highly
assured examples are now available “off the shelf.”

Partitioning for the basic resources of communication and computation can
be leveraged to provide partitioning for additional resources synthesized above
them, such as file systems. A collection of partitioning resources may be config-
ured to specify quite precisely what software components are allocated to each
partition and what interactions are allowed with other components (the configu-
ration for an IMA is many megabytes of data). For some system-level properties,
for example certain notions of security, such configurations, which may be por-
trayed as box and arrow diagrams and formalized as “policy architectures” [1],
provide strong assurance.

sanitizer unclassifiedsecret

Fig. 1. A Partitioned System Configured to Support the System Purpose

The properties for which partitioning, on its own, provides adequate enforce-
ment and assurance are those that can be stated in terms of the absence of
information flow. As mentioned, certain security concerns are of this kind (e.g.,
“no flow from secret to unclassified”), but most properties also concern the
computations that take place in (some of) the partitions. For example, many
secure systems do allow flow from secret to unclassified provided the informa-
tion concerned is suitably “sanitized” by some function interposed in the flow,
as portrayed by the minimal policy architecture of Figure 1. The partitioning
configuration ensures the sanitizer cannot be bypassed, but we still require as-
surance that the sanitizer does its job. More complex properties, such as most
notions of safety, cannot be ensured by individual components; instead, they
emerge from the interactions of many—but partitioning eliminates unintended
interactions and allows us to focus on correctness of the intended interactions,
which is the topic of the next section.

5

3 Assumption Synthesis

If we suppose that “traditional software engineering” is able to develop systems
that work “most of the time” then it might be possible to turn these into systems
that work “all the time” by simply blocking the events or interactions that cause
failures, or by controlling the failures that are precipitated. These topics are ad-
dressed by a variety of techniques such as systematic exception handling [4],
anomaly detection [2], safety kernels [13] and enforceable security [18], and run-
time monitoring [6]. All these techniques merely reduce the frequency or severity
of failures (e.g., by turning “malfunction” or “unintended function” into “loss
of function”) rather than eliminate them. However, they can be very valuable in
systems with many layers of redundancy or fault management, since these often
cope very well with the “clean” failure of subsystems, but less well with their
misbehavior. Some aircraft systems employ “monitored architectures,” where a
very simple component monitors the system safety property and shuts down the
operational component if this is violated; these architectures can support rather
strong assessments of reliability [9].

To get from clean failures to true “all the time” systems by compositional
means, we need to be able to calculate the properties of the composed system
from those of its components; if the calculation is automated, then it can support
an iterative design loop: if the composed system does not satisfy the properties
required, then we modify some of the components and their properties and repeat
the calculation.

The established way to calculate the properties of interacting components
is by assume/guarantee reasoning [7]: we verify that component A delivers (or
guarantees) property p on the assumption that its environment delivers property
q, and we also verify that B guarantees q assuming p; then when A and B
are composed, each becoming the environment of the other, we may conclude
(under various technical conditions) that their composition A||B guarantees both
p and q. There is, however, a practical difficulty with this approach: if A and
B are intended for general use, they are presumably developed in ignorance of
each other, and it will require good fortune or unusual prescience that they
should each make just the right assumption and guarantee that they fit together
perfectly.

Shankar proposes an alternative approach [19] that treats assumptions as
abstract components; here, we establish that p is a property of A in the context
of an ideal environment E; if we can then show that B as a refinement of (i.e., a
component with fewer behaviors than) E, then the composition of A and B also
delivers p. This requires less prescience because we do not need to know about
B at the time we design A; we do, however, need to postulate a suitable E.

One interesting idea is to design A, then calculate E as the weakest environ-
ment under which we can guarantee that A delivers p. When A is a concrete
state machine, this can be done using L∗ learning [5]. Early in the design process,
however, we are unlikely to have developed A to the point where it is available as
a fully concrete design; in this case we can often perform assumption synthesis
interactively using infinite bounded model checking (inf-BMC)

6

control_out

errorflag
data_in

data_in
control_out

errorflag

m_data

ideal

d
is
tr
ib
u
to
r

ch
ec
k
er

controller

c_data

ideal_out

safe_out

fault

con_out

data_in

merror

cerror

mon_out
controller
(monitor)

assumptions

violation

Fig. 2. A Self-Checking Pair, and Additional Components Used in Analysis

Inf-BMC performs bounded model checking on state machines defined over
the theories supported by an SMT solver (i.e., a solver for Satisfiability Mod-
ulo Theories) [15]; these theories include equality over uninterpreted functions,
possibly constrained by axioms, so it is possible to specify very abstract state
machines. An example, taken from [16], is illustrated in Figure 2. Here, the goal
is to deduce the assumptions under which a self-checking pair works correctly.

Self-checking pairs are used quite widely in safety-critical systems to provide
protection against random hardware faults: two identical processors perform the
same calculations and their results are compared; if they differ the pair shuts
down (thereby becoming a “fail-stop” processor [17]) and some higher-level fault
management activity takes over. Obviously, this does not work if both processors
become faulty and compute the same wrong result. We would like to learn if
there are any other scenarios that can cause a self-checking pair to deliver the
wrong result; we can then assess their likelihood (for example, the double fault
scenario just described may be considered extremely improbable) and calculate
the overall reliability of this architecture.

The scenarios we wish to discover are, on one hand, the hazards to the design
and, on the other (i.e., when negated), its assumptions. At the system level,
hazard analysis is the cornerstone of safety engineering [8]; in component-based
design, assumption discovery—its dual—could play a similar rôle: it helps us
understand when it is safe for one component to become the environment for
another.

7

Because of its context (the environment of a self-checking pair really is the
natural environment, rather than another system), this example is closer to haz-
ard discovery than assumption synthesis—but since these are two sides of the
same coin, it serves to illustrate the technique. The idea is that the controller

and the monitor are identical fault-prone computers that compute some un-
interpreted function f(x); a distributor provides copies of the input x to
both computers and the results are sent to a checker; if the results agree, the
checker passes one of them on as safe out, otherwise it raises a fault flag. The
distributor as well as the two computers can deliver incorrect outputs, but
for simplicity of exposition the checker is assumed to be perfect (the checker
can be eliminated by having the controller and monitor cross-check their re-
sults). An ideal computer, identical to the others but not subject to failures,
serves as the correctness oracle, and an assumptions module, which operates
as a synchronous observer, encodes the evolving assumptions. In the figure, the
ideal and assumptions modules and their associated data are shown in red to
emphasize that these are artifacts of analysis, not part of the component under
design.

Initially, the assumptions are empty and we use inf-BMC to probe correctness
of the design (i.e., we attempt to verify the claim that if the fault flag is down,
then safe out equals ideal out). We obtain a counterexample that alerts us to a
missing assumption; we add this assumption and iterate. The exercise terminates
after the following assumptions are discovered.

1. When both members of the self-checking pair are faulty, their outputs should
differ (this is the case we already thought of).

2. When the members of the pair receive different inputs1 (i.e., when the dis-
tributor is faulty), their outputs should differ. There are two subcases here.

(a) Neither member of the pair is faulty. The scenario here is that instead
of sending the correct value x, the distributor sends y to one member of
the pair and z to another, but f(y) = f(z) (and f(y) 6= f(x)).

(b) One or both of the pair are faulty. Here, the scenario is the distributor
sends the correct value x to the faulty member, and an incorrect value y
to the nonfaulty member, but f(y) = f ′(x), where f ′ is the computation
of the faulty member.

3. When both members of the pair receive the same input, it is the correct
input.

Inf-BMC can verify that the self-checking pair works, given these four as-
sumptions, so our next task is to examine them.

Cases 1 and 2(b) require double faults and may be considered improbable.
Case 2(a) is interesting because it probably would not be discovered by finite
state model checking, where we do not have uninterpreted functions: instead,

1 Readers may wonder how a distributor, whose implementation could be as simple
as a solder joint connecting two wires, can change values; one possibility is it adds
resistance and drops the voltage: some receivers will see a weak voltage as a 1, and
others as a 0.

8

the usual way to analyze an “abstract” design is to provide a very simple “con-
cretization,” such as replacing f(x) by x+1. This case is also interesting because,
once discovered, it can be eliminated by modifying the design: simply cause each
member of the pair to pass its input as well as its output to the checker; since
both computers are nonfaulty, the inputs will be passed correctly to the checker,
which will then rise the fault flag because it sees that the inputs differ. That
leaves case 3 as the one requiring further consideration (which we do not pursue
here) by those who would use a self-checking pair.

This example has illustrated, I hope, how automated methods such as inf-
BMC can be used to help calculate the weakest assumptions required by a com-
ponent, and thereby support the design of systems in which components’ assumes
and guarantees are mutually supportive, without requiring prescience.

4 Conclusions

All fields of engineering build on components, and it is natural that computer
science should do the same. However, component-based systems can be rather
more challenging in computer science than in other fields because of the com-
plexity of interaction—unintended as well as in intended—that is possible. This
complexity of interaction becomes even more vexatious when we aim to develop
safety-critical and other kinds of system that must work correctly all the time.
(Perrow [10] would argue that unintended interactions and their enablers, “inter-
active complexity” and “tight coupling,” are the primary causes of disasters in all
engineering fields; however, computer systems generally have more complexity
of these kinds, even in normal operation, than those of other fields.)

Unintended interactions can be divided into those that deliver unintended be-
havior along intended pathways, and those that employ unintended pathways. I
have outlined techniques that can ameliorate these concerns. Partitioning aims
to eliminate unintended pathways for interaction in networks and processors
and higher-level resources built on these. Partitioning guarantees “preservation
of prior properties” when new components are added to an existing system; it
also seems sufficient, on its own, to guarantee certain kinds of information flow
security properties, and to simplify the assured construction of more complex
properties of this kind [3]. With unintended pathways controlled by partitioning,
we can turn to interactions along known pathways. Various techniques akin to
wrapping and monitoring can reduce bad inputs and outputs, but ultimately we
need to calculate the composed behavior of interacting components. Traditional
methods of assume/guarantee reasoning demand a degree of prescience to en-
sure that the assumes of one component are met by the guarantees of another,
designed in ignorance of it. One way to lessen this need for prescience is to derive
the weakest assumptions under which a component can deliver its guarantees,
and I sketched how inf-BMC can be used to help automate this process (which
is closely related to hazard analysis) very early in the design cycle.

Compositional design and assurance for critical systems that must function
correctly, or at least safely, all the time, are challenging and attractive research

9

topics. Further systematic examination and study of the methods and directions
I described could be worthwhile, but fresh thinking would also be welcome.

References

1. Boettcher, C., DeLong, R., Rushby, J., Sifre, W.: The MILS component integration
approach to secure information sharing. In: 27th AIAA/IEEE Digital Avionics
Systems Conference. The Institute of Electrical and Electronics Engineers, St. Paul,
MN (Oct 2008) 3

2. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Com-
puting Surveys 41(3) (2009) 4

3. Chong, S., van der Meyden, R.: Using architecture to reason about information
security. Tech. rep., University of New South Wales (2009) 7

4. Cristian, F.: Exception handling and software fault tolerance. IEEE Transactions
on Computers C-31(6), 531–540 (Jun 1982) 4

5. Giannakopoulou, D., Pasareanu, C.S., Barringer, H.: Component verification with
automatically generated assumptions. International Journal on Automated Soft-
ware Engineering 12(3), 297–320 (2005) 4

6. Havelund, K.: Program Monitoring; Course material for part II of Caltech CS 119
(2008 May), available at http://www.runtime-verification.org/course/ 4

7. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Progr. Lang. Syst. 5(4), 596–619 (1983) 4

8. Leveson, N.G.: Safeware: System Safety and Computers. Addison-Wesley (1995) 5
9. Littlewood, B., Rushby, J.: Reasoning about the reliability of fault-tolerant systems

in which one component is “possibly perfect”. IEEE Transactions on Software
Engineering (2011), accepted for publication 4

10. Perrow, C.: Normal Accidents: Living with High Risk Technologies. Basic Books,
New York, NY (1984) 7

11. Requirements and Technical Concepts for Aviation, Washington, DC: DO-297: In-
tegrated Modular Avionics (IMA) Development Guidance and Certification Con-
siderations (Nov 2005), also issued as EUROCAE ED-124 (2007) 2

12. Rushby, J.: The design and verification of secure systems. In: Eighth ACM Sympo-
sium on Operating System Principles. pp. 12–21. Asilomar, CA (Dec 1981), (ACM
Operating Systems Review , Vol. 15, No. 5) 3

13. Rushby, J.: Kernels for safety? In: Anderson, T. (ed.) Safe and Secure Computing
Systems, chap. 13, pp. 210–220. Blackwell Scientific Publications (1989) 4

14. Rushby, J.: Bus architectures for safety-critical embedded systems. In: Henzinger,
T., Kirsch, C. (eds.) EMSOFT 2001: Proceedings of the First Workshop on Embed-
ded Software. Lecture Notes in Computer Science, vol. 2211, pp. 306–323. Springer-
Verlag, Lake Tahoe, CA (Oct 2001) 3

15. Rushby, J.: Harnessing disruptive innovation in formal verification. In: Hung, D.V.,
Pandya, P. (eds.) Fourth International Conference on Software Engineering and
Formal Methods (SEFM). pp. 21–28. IEEE Computer Society, Pune, India (Sep
2006) 5

16. Rushby, J.: A safety-case approach for certifying adaptive systems. In: AIAA In-
fotech@Aerospace Conference. American Institute of Aeronautics and Astronau-
tics, Seattle, WA (Apr 2009), aIAA paper 2009-1992 5

17. Schlichting, R.D., Schneider, F.B.: Fail-stop processors: An approach to designing
fault-tolerant computing systems. ACM Transactions on Computer Systems 1(3),
222–238 (Apr 1983) 5

10

18. Schneider, F.: Enforceable security policies. ACM Transactions on Information and
System Security 3(1), 30–50 (Feb 2000) 4

19. Shankar, N.: Lazy compositional verification. In: de Roever, W.P., Langmaack, H.,
Pnueli, A. (eds.) Compositionality: The Significant Difference (Revised lectures
from International Symposium COMPOS’97). Lecture Notes in Computer Science,
vol. 1536, pp. 541–564. Springer-Verlag, Bad Malente, Germany (Sep 1997) 4

11

Components and Risk

Ketil Stølen

SINTEF ICT, P.O. box 124 Blindern, 0314 Oslo, Norway
Department of Informatics, University of Oslo, Norway

{ketil.stolen}@sintef.no

Abstract. Risk analysis is an important tool to establish the apropri-
ate protection or safety level of a system. Unfortunately, the shifting
environment of components is not adequately addressed by traditional
risk analysis methods. Furthermore, the issue of risk is hardly addressed
within methods for component-based system development. This talk will
present challenges with respect to components and risk from three view-
points, namely an industrial viewpoint, a modelling viewpoint and a the-
oretical viewpoint. The presentation builds on the following publications
[3], [1] and [2].

References

1. Brændeland, G., Refsdal, A., Stølen, K.: Modular analysis and modelling of risk
scenarios with dependencies. J. Syst. Softw. 83(10), 1995–2013 (2010)

2. Brændeland, G., Refsdal, A., Stølen, K.: A denotational model for component-based
risk analysis. Research report 363, University of Oslo (2011)

3. Lund, M.S., Solhaug, B., Stølen, K.: Model-Driven Risk Analysis – The CORAS
Approach. Springer (2011)

12

Synthesis of Hierarchical Systems

Benjamin Aminofa, Fabio Mogaverob, and Aniello Muranob?

aHebrew University, Jerusalem 91904, Israel.
bUniversità degli Studi di Napoli “Federico II”, 80126 Napoli, Italy.

benj@cs.huji.ac.il {mogavero, murano}@na.infn.it

Abstract In automated synthesis, given a specification, we automatically cre-
ate a system that is guaranteed to satisfy the specification. In the classical tem-
poral synthesis algorithms, one usually creates a “flat” system “from scratch”.
However, real-life software and hardware systems are usually created using pre-
existing libraries of reusable components, and are not “flat” since repeated sub-
systems are described only once.
In this work we describe an algorithm for the synthesis of a hierarchical system
from a library of hierarchical components, which follows the “bottom-up” ap-
proach to system design. Our algorithm works by synthesizing in many rounds,
when at each round the system designer provides the specification of the cur-
rently desired module, which is then automatically synthesized using the initial
library and the previously constructed modules. To ensure that the synthesized
module actually takes advantage of the available high-level modules, we guide
the algorithm by enforcing certain modularity criteria.
We show that the synthesis of a hierarchical system from a library of hierarchi-
cal components is EXPTIME-complete for µ-calculus, and 2EXPTIME-complete
for LTL, both in the cases of complete and incomplete information. Thus, in all
cases, it is not harder than the classical synthesis problem (of synthesizing flat
systems “from scratch”), even though the synthesized hierarchical system may
be exponentially smaller than a flat one.

1 Introduction
Synthesis is the automated construction of a system from its specification. The ba-
sic idea is simple and appealing: instead of developing a system and verifying that it
is correct w.r.t. its specification, we use instead an automated procedure that, given a
specification, constructs a system that is correct by construction. The first formulation
of synthesis goes back to Church [7]; the modern approach to this problem was initiated
by Pnueli and Rosner who introduced linear temporal logic (LTL) synthesis [23], later
extended to handle branching-time specifications, such as µ-calculus [10].

The Pnueli and Rosner idea can be summarized as follows. Given sets ΣI and ΣO
of inputs and outputs, respectively (usually, ΣI = 2I and ΣO = 2O, where I is a set of
input signals and O is a set of output signals), we can view a system as a strategy
P : Σ∗I → ΣO that maps a finite sequence of sets of input signals into a set of output
signals. When P interacts with an environment that generates infinite input sequences,
it associates with each input sequence an infinite computation over ΣI ∪ΣO. Though
the system P is deterministic, it induces a computation tree. The branches of the tree

? Partially supported by ESF GAMES grant 4112 and Vigevani Project Prize 2010-2011.

13

correspond to external nondeterminism, caused by different possible inputs. Thus, the
tree has a fixed branching degree |ΣI |, and it embodies all the possible inputs (and
hence also computations) of P. When we synthesize P from an LTL specification ϕ, we
require ϕ to hold in all the paths of P’s computation tree. However, in order to impose
possibility requirements on P, we have to use a branching-time logic like µ-calculus.
Given a branching specification ϕ over ΣI ∪ ΣO, realizability of ϕ is the problem of
determining whether there exists a system P whose computation tree satisfies ϕ. Correct
synthesis of ϕ then amounts to constructing such a P.

In spite of the rich theory developed for system synthesis in the last two decades,
little of this theory has been reduced to practice. In fact, the main approaches to tackle
synthesis in practice are either to use heuristics (e.g., [13]) or to restrict to simple spec-
ifications (e.g., [22]). Some people argue that this is because the synthesis problem is
very expensive compared to model-checking [16]. There is, however, something mis-
leading in this perception: while the complexity of synthesis is given with respect to
the specification only, the complexity of model-checking is given also with respect to a
program, which can be very large. A common thread in almost all of the works concern-
ing synthesis is the assumption that the system is to be built “from scratch”. Obviously,
real-world systems are rarely constructed this way, but rather by utilizing many pre-
existing reusable components, i.e., a library. Using standard preexisting components is
sometimes unavoidable (for example, access to hardware resources is usually under the
control of the operating system, which must be “reused”), and many times has other
benefits (apart from saving time and effort, which may seem to be less of a problem
in a setting of automatic - as opposed to manual - synthesis), such as maintaining a
common code base, and abstracting away low level details that are already handled by
the preexisting components. Another reason that may also account, at least partially, for
the limited use of synthesis in practice, is the fact that synthesized systems are usually
monolithic and look very unnatural from the system designer’s point of view. Indeed,
in classical temporal synthesis algorithms, one usually creates a “flat” system, i.e., a
system in which sub-systems may be repeated many times. On the contrary, real-life
software and hardware systems are hierarchical (or even recursive) and repeated sub-
systems (such as sub-routines) are described only once. While hierarchical systems may
be exponentially more succinct than flat ones, it has been shown that the cost of solv-
ing questions about them (like model-checking) are in many cases not exponentially
higher [5, 6, 12]. Hierarchical systems can also be seen as a special case of recursive
systems [2, 3], where the nesting of calls to sub-systems is bounded. However, having
no bound on the nesting of calls gives rise to infinite-state systems, and this results in a
higher complexity.

In this work we provide a uniform algorithm, for different temporal logics, for the
synthesis of hierarchical systems (or, equivalently, transducers) from a library of hi-
erarchical systems, which mimics the “bottom-up” approach to system design, where
one builds a system by iteratively constructing new modules based on previously con-
structed ones1. More specifically, we start the synthesis process by providing the algo-
rithm with an initial library L0 of available hierarchical components (as well as atomic
ones). We then proceed by synthesizing in rounds. At each round i, the system designer
provides a specification formula ϕi of the currently desired hierarchical component,

1 While for systems built from scratch, a top-down approach may be argued to be more suitable,
we find the bottom-up approach to be more natural when synthesizing from a library.

14

which is then automatically synthesized using the currently available components as
possible sub-components. Once a new component is synthesized, it is added to the li-
brary to be used by subsequent iterations. We show that while hierarchical systems may
be exponentially smaller than flat ones, the problem of synthesizing a hierarchical sys-
tem from a library of existing hierarchical systems is EXPTIME-complete for µ-calculus,
and 2EXPTIME-complete for LTL. Thus, this problem is not harder than the classical
synthesis problem of flat systems “from scratch”. Furthermore, we show that this is
true also in the case where the synthesized system has incomplete information about
the environment’s input.

Observe that it is easily conceivable that if the initial library L0 contains enough
atomic components then the synthesis algorithm may use them exclusively, essentially
producing a flat system. We thus have to direct the single-round synthesis algorithm in
such a way that it produces modular and not flat results. The question of what makes
a design more or less modular is very difficult to answer, and has received many (and
often widely different) answers throughout the years (see [21], for a survey). We claim
that some very natural modularity criteria are regular, and show how any criterion that
can be checked by a parity tree automaton can be easily incorporated into our automata
based synthesis algorithm.
Related work The issues of specification and correctness of modularly designed sys-
tems have received a fair attention in the formal verification literature. Examples of
important work on this subject are [8, 17, 26, 27]. On the other hand, the problem
of automatic synthesis from reusable components, which we study here, has received
much less attention. The closest to our work is Lustig and Vardi’s work on LTL syn-
thesis from libraries of (flat) transducers [18]. The technically most difficult part of our
work is an algorithm for performing the synthesis step of a single round of the multiple-
rounds algorithm. To this end, we use an automata-theoretic approach. However, unlike
the classical approach of [23], we build an automaton whose input is not a computation
tree, but rather a system description in the form of a connectivity tree (inspired by the
“control-flow” trees of [18]), which describes how to connect library components in a
way that satisfies the specification formula. Taken by itself, our single-round algorithm
extends the “control-flow” synthesis work from [18] in four directions. (i) We consider
not only LTL specifications but also the modal µ-calculus. Hence, unlike [18], where
co-Büchi tree automata were used, we have to use the more expressive parity tree au-
tomata. Unfortunately, this is not simply a matter of changing the acceptance condition.
Indeed, in order to obtain an optimal upper bound, a widely different approach, which
makes use of the machinery developed in [6] is needed. (ii) We need to be able to handle
libraries of hierarchical transducers, whereas in [18] only libraries of flat transducers are
considered. (iii) A synthesized transducer has no top-level exits (since it must be able
to run on all possible input words), and thus, its ability to serve as a sub-transducer
of another transducer (in future iterations of the multiple-rounds algorithm) is severely
limited (it is like a function that never returns to its caller). We therefore need to ad-
dress the problem of synthesizing exits for such transducers. (iv) As discussed above,
we incorporate into the algorithm the enforcing of modularity criteria.

Recently, an extension of [18] appeared in [19], where the problem of Nested-Words
Temporal Logic (NWTL) synthesis from recursive component libraries has been inves-
tigated. NWTL extends LTL with special operators that allow one to handle “call and
return” computations [1] and it is used in [19] to describe how the components have
to be connected in the synthesis problem. We recall that in our framework the logic

15

does not drive (at least not explicitly) the way the components have to be connected.
Moreover, the approach used in [19] cannot be applied directly to the branching frame-
work we consider in this paper, as we recall that already the satisfiability problem for
µ-calculus with “call and return” is undecidable even for very restricted cases [4].

Due to lack of space some proofs are omitted and reported in a full version found at
the authors’ web page.

2 Alternating Tree Automata
Let D be a set. A D-tree is a prefix-closed subset T ⊆D∗ such that if x · c ∈ T , where
x ∈ D∗ and c ∈ D , then also x ∈ T . The complete D-tree is the tree D∗. The elements
of T are called nodes, and the empty word ε is the root of T . Given a word x = y · d,
with y ∈D∗ and d ∈D , we define last(x) to be d. For x ∈ T , the nodes x ·d ∈ T , where
d ∈ D , are the sons of x. A leaf is a node with no sons. A path of T is a set π ⊆ T
such that ε ∈ T and, for every x ∈ π, either x is a leaf or there is a unique d ∈ D such
that x ·d ∈ π. For an alphabet Σ, a Σ-labeled D-tree is a pair 〈T,V 〉 where T ⊆D∗ is a
D-tree and V : T → Σ maps each node of T to a letter in Σ.

Alternating tree automata are a generalization of nondeterministic tree automata
[20] (see [16], for more details). Intuitively, while a nondeterministic tree automaton
that visits a node of the input tree sends exactly one copy of itself to each of the sons of
the node, an alternating automaton can send several copies of itself to the same son.

An (asymmetric) Alternating Parity Tree Automaton (APT) is a tuple A = 〈Σ,D,Q,
q0,δ,F〉, where Σ, D , and Q are non-empty finite sets of input letters, directions, and
states, respectively; q0 ∈ Q is an initial state, F is a parity acceptance condition to be
defined later, and δ : Q×Σ 7→ B+(D×Q) is an alternating transition function, which
maps a state and an input letter to a positive boolean combination of elements in D×Q.
Given a set S ⊆D×Q and a formula θ∈B+(D×Q), we say that S satisfies θ (denoted
by S |= θ) if assigning true to elements in S and false to elements in (D×Q)\S , makes
θ true. A run of an APT A on a Σ-labeled D-tree T = 〈T,V 〉 is a (T×Q)-labeled IN-tree
〈Tr,r〉, where IN is the set of non-negative integers, such that (i) r(ε)= (ε,q0) and (ii) for
all y∈ Tr, with r(y) = (x,q), there exists a set S ⊆D×Q, such that S |= δ(q,V (x)), and
there is one son y′ of y, with r(y′) = (x ·d,q′), for every (d,q′) ∈ S . Given a node x of a
run 〈Tr,r〉, with r(x) = (z,q)∈ T×Q, we define last(r(y)) = (last(z),q). An alternating
parity automaton A is nondeterministic (denoted NPT), iff when its transition relation
is rewritten in disjunctive normal form each disjunct contains at most one element of
{d}×Q, for every d ∈D . An automaton is universal (denoted UPT) if all the formulas
that appear in its transition relation are conjunctions of atoms in D×Q.

A symmetric alternating parity tree automaton with ε-moves (SAPT) [14] does not
distinguish between the different sons of a node, and can send copies of itself only in
a universal or an existential manner. Formally, an SAPT is a tuple A = 〈Σ,Q,q0,δ,F〉,
where Σ is a finite input alphabet; Q is a finite set of states, partitioned into universal
(Q∧), existential (Q∨), ε-and (Q(ε,∧)), and ε-or (Q(ε,∨)) states (we also write Q∨,∧ =
Q∨ ∪Q∧, and Qε = Q(ε,∨) ∪Q(ε,∧)); q0 ∈ Q is an initial state; δ : Q×Σ→ (Q∪ 2Q) is
a transition function such that for all σ ∈ Σ, we have that δ(q,σ) ∈ Q for q ∈ Q∨,∧, and
δ(q,σ) ∈ 2Q for q ∈ Qε; and F is a parity acceptance condition, to be defined later. We
assume that Q contains in addition two special states ff and tt, called rejecting sink
and accepting sink, respectively, such that ∀a ∈ Σ : δ(tt,a) = tt,δ(ff,a) = ff. The
classification of ff and tt is arbitrary. Transitions from states in Qε launch copies of A

16

that stay on the same input node as before the transition, while transitions from states
in Q∨,∧ launch copies that advance to sons of the current node (note that for an SAPT
the set D of directions of the input trees plays no role in the definition of a run). When
a symmetric alternating tree automaton A runs on an input tree it starts with a copy in
state q0 whose reading head points to the root of the tree. It then follows δ in order to
send further copies. For example, if a copy of A that is in state q ∈ Q(ε,∨) is reading a
node x labeled σ, and δ(q,σ) = {q1,q2}, then this copy proceeds either to state q1 or to
state q2, and its reading head stays in x. As another example, if q∈Q∧ and δ(q,σ) = q1,
then A sends a copy in state q1 to every son of x. Note that different copies of A may
have their reading head pointing to the same node of the input tree. Formally, a run of
A on a Σ-labeled D-tree 〈T,V 〉 is a (T ×Q)-labeled IN-tree 〈Tr,r〉. A node in Tr labeled
by (x,q) describes a copy of A in state q that reads the node x of T . A run has to satisfy
r(ε) = (ε,q0) and, for all y ∈ Tr with r(y) = (x,q), the following hold:

– If q ∈ Q∧ (resp. q ∈ Q∨) and δ(q,V (x)) = p, then for each son (resp. for exactly
one son) x ·d of x, there is a node y · i ∈ Tr with r(y · i) = (x ·d, p).

– If q ∈ Q(ε,∧) (resp. q ∈ Q(ε,∨)) and δ(q,V (x)) = {p0,..., pk}, then for all i ∈ {0..k}
(resp. for one i ∈ {0..k}) the node y · i ∈ Tr, and r(y · i) = (x, pi);

A parity condition is given by means of a coloring function on the set of states.
Formally, a parity condition is a function F : Q→C, where C = {Cmin,...,Cmax} ⊂ IN
is a set of colors. The size |C| of C is called the index of the automaton. For an SAPT,
we also assume that the special state tt is given an even color, and ff is given an odd
color. For an infinite path π⊆ Tr of a run 〈Tr,r〉, let maxC(π) be the maximal color that
appears infinitely often along π. Similarly, for a finite path π, we define maxC(π) to be
the maximal color that appears at least once in π. An infinite path π ⊆ Tr satisfies the
acceptance condition F iff maxC(π) is even. A run 〈Tr,r〉 is accepting iff all its infinite
paths satisfy F . The automaton A accepts an input tree 〈T,V 〉 if there is an accepting
run of A on 〈T,V 〉. The language of A , denoted L(A), is the set of Σ-labeled D-trees
accepted by A . We say that an automaton A is nonempty iff L(A) 6= /0.

A wide range of branching-time temporal logics can be translated to alternating tree
automata (details can be found in [16]). In particular:

Theorem 1. [11, 16] Given a temporal-logic formula ϕ, it is possible to construct a
SAPT Aϕ such that L(Aϕ) is exactly the set of trees satisfying ϕ. Moreover, (i) if ϕ is a
µ-calculus formula, then Aϕ is an alternating parity automaton with O(|ϕ|) states and
index O(|ϕ|); and (ii) if ϕ is an LTL formula, then Aϕ is a universal parity automaton
with 2O(|ϕ|) states, and index 2.

3 Hierarchical Transducers
In this section, we introduce hierarchical transducers (alternatively, hierarchical Moore
machines), which are a generalization of classical transducers in which repeated sub-
structures (technically, sub-transducers) are specified only once. Technically, some of
the states in a hierarchical transducer are boxes, in which inner hierarchical transducers
are nested. Formally, a hierarchical transducer is a tuple K = 〈ΣI ,ΣO,〈K1,...,Kn〉〉,
where ΣI and ΣO are respectively non-empty sets of input and output letters, and for
every 1 ≤ i ≤ n, the sub-transducer Ki = 〈Wi,Bi, ini,Exiti,τi,δi,Λi〉 has the following
elements.

17

– Wi is a finite set of states. ini ∈Wi is an initial state2, and Exiti ⊆Wi is a set of
exit-states. States in Wi \Exiti are called internal states.

– A finite set Bi of boxes. We assume that W1,...,Wn,B1,...,Bn are pairwise disjoint.
– An indexing function τi : Bi → {i+ 1,...,n} that maps each box of the i-th sub-

transducer to a sub-transducer with an index greater than i. If τi(b) = j we say that
b refers to K j.

– A transition function δi : (
⋃

b∈Bi
({b} × Exitτi(b))∪ (Wi \ Exiti))× ΣI → Wi ∪Bi.

Thus, when the transducer is at an internal state u ∈ (Wi \Exiti), or at an exit e of
a box b, and it reads an input letter σ ∈ ΣI , it moves either to a state s ∈Wi, or to
a box b′ ∈ Bi. A move to a box b′ implicitly leads to the unique initial state of the
sub-transducer that b′ refers to.

– A labeling function Λi : Wi→ ΣO that maps states to output letters.

The sub-transducer K1 is called the top-level sub-transducer of K . Thus, for exam-
ple, the top-level boxes of K are the elements of B1, etc. We also call in1 the initial
state of K , and Exit1 the exits of K . For technical convenience we sometimes refer to
functions (like the transitions and labeling functions) as relations, and in particular, we
consider /0 to be a function with an empty domain. Note that the fact that boxes can
refer only to sub-transducers of a greater index implies that the nesting depth of trans-
ducers is finite. In contrast, in the recursive setting such a restriction does not exist.
Also note that moves from an exit e ∈ Exiti of a sub-transducer Ki are not specified
by the transition function δi of Ki, but rather by the transition functions of the sub-
transducers that contain boxes that refer to Ki. The exits of K allow us to use it as a sub-
transducer of another hierarchical transducer. When we say that a hierarchical trans-
ducer K = 〈ΣI ,ΣO,〈K1,...,Kn〉〉 is a sub-transducer of another hierarchical transducer
K ′ = 〈ΣI ,ΣO,〈K ′1 ,...,K ′n′〉〉, we mean that {K1,...,Kn} ⊆ {K ′2 ,...,K ′n′}. The size |Ki| of
a sub-transducer Ki is the sum |Wi|+ |Bi|+ |δi|. The size |K | of K is the sum of the
sizes of its sub-transducers. We sometimes abuse notation and refer to the hierarchical
transducer Ki which is formally the hierarchical transducer 〈ΣI ,ΣO,〈Ki,Ki+1,...,Kn〉〉
obtained by taking Ki to be the top-level sub-transducer.

Flat transducers A sub-transducer without boxes is flat. A hierarchical transducer
K = 〈ΣI ,ΣO,〈W, /0, in,Exit, /0,δ,Λ〉〉 with a single (hence flat) sub-transducer is flat, and
we denote it using the shorter notation K = 〈ΣI ,ΣO,〈W, in,Exit,δ,Λ〉〉. Each hierarchi-
cal transducer K can be transformed into an equivalent flat transducer K f = 〈ΣI ,ΣO,
〈W f, in1,Exit1,δf,Λf〉〉 (called its flat expansion) by recursively substituting each box
by a copy of the sub-transducer it refers to. Since different boxes can refer to the same
sub-transducer, states may appear in different contexts. In order to obtain unique names
for states in the flat expansion, we prefix each copy of a sub-transducer’s state by the
sequence of boxes through which it is reached. Thus, a state (b0,...,bk,w) of K f is a
vector whose last component w is a state in ∪n

i=1Wi, and the remaining components
(b0,...,bk) are boxes that describe its context. The labeling of a state (b0,...,bk,w) is de-
termined by its last component w. For simplicity, we refer to vectors of length one
as elements (that is, w, rather than (w)).3 Formally, given a hierarchical transducer

2 We assume a single entry for each sub-transducer. Multiple entries can be handled by dupli-
cating sub-transducers.

3 A helpful way to think about this is using a stack — the boxes b0,...,bk are pushed into the
stack whenever a sub-transducer is called, and are popped in the corresponding exit.

18

K = 〈ΣI ,ΣO,〈K1,...,Kn〉〉, for each sub-transducer Ki = 〈Wi,Bi, ini,Exiti,τi,δi,Λi〉 we
inductively define its flat expansion K f

i = 〈W f
i , ini,Exiti,δf

i ,Λf
i〉 as follows.

– The set of states Wi
f ⊆Wi ∪ (Bi× (

⋃n
j=i+1 Wj

f)) is defined as follows: (i) if w is a
state of Wi then w belongs to Wi

f; and (ii) if b is a box of Ki with τi(b)= j, and the
tuple (u1,...,uh) is a state in W f

j , then (b,u1,...,uh) belongs to Wi
f.

– The transition function δf
i is defined as follows: (i) If δi(u,σ) = v, where u ∈Wi, or

u = (b,e) with b∈Bi and e∈ Exitτi(b), then if v is a state, we have that δf
i(u,σ) = v;

and if v is a box, we have that δf
i(u,σ) = (v, inτi(v)). Note that (v, inτi(v)) is indeed

a state of W f
i by the second item in the definition of states above; and (ii) if b is

a box of Ki, and δf
τi(b)

((u1,...,uh),σ) = (v1,...,vh′) is a transition of K f
τi(b)

, then
δf

i((b,u1,...,uh),σ) = (b,v1,...,vh′) is a transition of K f
i .

– Finally, if u∈Wi then Λf
i(u) = Λi(u); and if u∈Wi

f is of the form u = (b,u1,...,uh),
where b ∈ Bi, then Λi(u) = Λf

τi(b)
(u1,...,uh).

The transducer 〈ΣI ,ΣO,〈K f
1 〉〉 is the required flat expansion K f of K . An atomic trans-

ducer is a flat transducer made up of a single node that serves as both an entry and an
exit. For each letter ς ∈ ΣO there is an atomic transducer Kς = 〈{p}, p,{p}, /0,{(p,ς)}〉
whose single state p is labeled by ς.

Run of a hierarchical transducer Consider a hierarchical transducer K with Exit1 =
/0 that interacts with its environment. At point j in time, the environment provides K
with an input σ j ∈ΣI , and in response K moves to a new state, according to its transition
relation, and outputs the label of that state. The result of this infinite interaction is a
computation of K , called the trace of the run of K on the word σ1 ·σ2 · · · . In the case
that Exit1 6= /0, the interaction comes to a halt whenever K reaches an exit e ∈ Exit1,
since top-level exits have no outgoing transitions. Formally, a run of a hierarchical
transducer K is defined by means of its flat expansion K f. Given a finite input word
v = σ1 · · ·σm ∈ Σ∗I , a run (computation) of K on v is a sequence of states r = r0 · · ·rm ∈
(W f)∗ such that r0 = in1, and r j = δf(r j−1,σ j), for all 0 < j ≤ m. Note that since K is
deterministic it has at most one run on every word, and that if Exit1 6= /0 then K may
not have a run on some words. The trace of the run of K on v is the word of inputs and
outputs trc(K ,v) = (Λf(r1),σ1) · · ·(Λf(rm),σm)∈ (ΣO×ΣI)

∗. The notions of traces and
runs are extended to infinite words in the natural way.

The computations of K can be described by a computation tree whose branches
correspond to the runs of K on all possible inputs, and whose labeling gives the traces
of these runs. Note that the root of the tree corresponds to the empty word ε, and its
labeling is not part of any trace. However, if we look at the computation tree of K as
a sub-tree of a computation tree of a transducer K ′ of which K is a sub-transducer,
then the labeling of the root of the computation tree of K is meaningful, and it corre-
sponds to the last element in the trace of the run of K ′ leading to the initial state of
K . Formally, given σ ∈ ΣI , the computation tree TK ,σ = 〈TK ,σ,VK ,σ〉, is a (ΣO×ΣI)-
labeled (W f × ΣI)-tree, where: (i) the root ε is labeled by (Λf(in1),σ); (ii) a node
y = (r1,σ1) · · ·(rm,σm) ∈ (W f × ΣI)

+ is in TK ,σ iff in1 · r1 · · ·rm is the run of K on
v = σ1 · · ·σm, and its label is VK ,σ(y) = (Λf(rm),σm). Thus, for a node y, the labels of
the nodes on the path from the root (excluding the root) to y are exactly trc(K ,v). Ob-
serve that the leaves of TK ,σ correspond to pairs (e,σ′), where e ∈ Exit1 and σ′ ∈ ΣI .

19

However, if Exit1 = /0, then the tree has no leaves, and it represents the runs of K over
all words in Σ∗I . We sometimes consider a leaner computation tree TK = 〈TK ,VK 〉 that
is a ΣO-labeled ΣI-tree, where a node y ∈ Σ+

I is in TK iff there is a run r of K on y. The
label of such a node is VK (y) =Λf(last(r))) and the label of the root is Λf(in1). Observe
that for every σ∈ ΣI , the tree TK can be obtained from TK ,σ by simply deleting the first
component of the directions of TK ,σ, and the second component of the labels of TK ,σ.

Recall that the labeling of the root of a computation tree of K is not part of any trace
(when it is not a sub-tree of another tree). Hence, in the definition below, we arbitrarily
fix some letter ρ ∈ ΣI . Given a temporal logic formula ϕ, over the atomic propositions
AP where 2AP = ΣO×ΣI , we have the following:

Definition 1. A hierarchical transducer K = 〈ΣI ,ΣO,〈K1,...,Kn〉〉, with Exit1 = /0, sat-
isfies a formula ϕ (written K |= ϕ), iff the tree TK ,ρ satisfies ϕ.

Observe that given ϕ, finding a flat transducer K such that K |= ϕ is the classic
synthesis problem studied (for LTL formulas) in [23].

A library L is a finite set of hierarchical transducers with the same input and output
alphabets. Formally, L = {K 1,...,K λ}, and for every 1 ≤ i ≤ λ, we have that K i =
〈ΣI ,ΣO,〈K i

1,...,K i
ni
〉〉. Note that a transducer in the library can be a sub-transducer of

another one, or share common sub-transducers with it. The set of transducers in L that
have no top-level exits is denoted by L= /0 = {K i ∈ L : Exiti

1 = /0}, and its complement
is L 6= /0 = L \L= /0.

4 Hierarchical Synthesis
In this section, we describe our synthesis algorithm. We start by providing the algorithm
with an initial library L0 of hierarchical transducers. A good starting point is to include
in L0 all the atomic transducers, as well as any other relevant hierarchical transducers,
for example from a standard library. We then proceed by synthesizing in rounds. At each
round i ≥ 0, the system designer provides a specification formula ϕi of the currently
desired hierarchical transducer K i, which is then automatically synthesized using the
transducers in Li−1 as possible sub-transducers. Once a new transducer is synthesized
it is added to the library, for use in subsequent rounds. Technically, the hierarchical
transducer synthesized in the last round as the output of the algorithm.

Input: An initial library L0, and a list of specification formulas ϕ1,...,ϕm
Output: A hierarchical transducer satisfying ϕm
for i = 1 to m do

synthesize K i satisfying ϕi using the transducers in Li−1 as sub-transducers
Li← Li−1∪{K i}

end
return K m

Algorithm 1: Hierarchical Synthesis Algorithm

The main challenge in implementing the above hierarchical synthesis algorithm is
of course coming up with an algorithm for performing the synthesis step of a single
round. As noted in Section 1, a transducer that was synthesized in a previous round
has no top-level exits, which severely limits its ability to serve as a sub-transducer of
another transducer. Our single-round algorithm must therefore address the problem of

20

synthesizing exits for such transducers. In Section 4.1, we give our core algorithm for
single-round synthesis of a hierarchical transducer from a given library of hierarchical
transducers. In Section 4.2, we address the problem of enforcing modularity, and add
some more information regarding the synthesis of exits. Finally, in Section 4.3, we
address the problem of synthesis with imperfect information.

4.1 Hierarchical Synthesis from a Library

We now formally present the problem of hierarchical synthesis from a library (that
may have transducers without top-level exits) of a single temporal logic formula. Given
a transducer K = 〈ΣI ,ΣO,〈K1,...,Kn〉〉 ∈ L= /0, where K1 = 〈W1,B1, in1, /0,τ1,δ1,Λ1〉,
and a set E ⊆W1, the transducer K E is obtained from K by setting E to be the set of
top-level exits, and removing all the outgoing edges from states in E. Formally, K E =
〈ΣI ,ΣO,〈〈W1,B1, in1,E,τ1,δ′1,Λ1〉,K2,...,Kn〉〉, where the transition relation δ′1 is the
restriction of δ1 to sources in W1 \E. For convenience, given a transducer K ∈ L 6= /0 we
sometimes refer to it as K Exit1 . For every K ∈L , we assume some fixed ordering on the
top-level states of K , and given a set E ⊆W1, and a state e ∈ E, we denote by idx(e,E)
the relative position of e in E, according to this ordering. Given a library L , and an upper
bound el ∈ IN on the number of allowed top-level exits, we let Lel = L 6= /0∪{K E : K ∈
L= /0 ∧ |E| ≤ el}. The higher the number el, the more exits the synthesis algorithm is
allowed to synthesize, and the longer it may take to run. As we show later, el should be
at most polynomial4 in the size of ϕ. In general, we assume that el is never smaller than
the number of exits in any sub-transducer of any hierarchical transducer in L . Hence,
for every K E ∈ Lel and every e ∈ E, we have that 1≤ idx(e,E)≤ el.

Definition 2. Given a library L and a bound el ∈ IN, we say that:

– A hierarchical transducer K = 〈ΣI ,ΣO,〈K1,...Kn〉〉 is 〈L ,el〉-composed if (i) for
every 2 ≤ i ≤ n, we have that Ki ∈ Lel; (ii) if w ∈W1 is a top-level state, then the
atomic transducer KΛ1(w) is in L .

– A formula ϕ is 〈L ,el〉-realizable iff there is an 〈L ,el〉-composed hierarchical trans-
ducer K that satisfies ϕ. The 〈L ,el〉-synthesis problem is to find such a K .

Intuitively, an 〈L ,el〉-composed hierarchical transducer K is built by synthesizing
its top-level sub-transducer K1, which specifies how to connect boxes that refer to trans-
ducers from Lel . To eliminate an unnecessary level of indirection, boxes that refer to
atomic transducers are replaced by regular states. Note that this also solves the technical
problem that, by definition, the initial state in1 cannot be a box. This is also the reason
why we assume from now on that every library has at least one atomic transducer. Note
that for each transducer K ′ ∈ L= /0 we can have as many as Ω(|K ′|)el copies of K ′
in Lel , each with a different set of exit states. In Section 4.2 we show how, when we
synthesize K , we can limit the number of such copies that K uses to any desired value
(usually one per K ′).

4 In practical terms, the exits of a sub-module represent its set of possible return values. Since
finite state modules are usually not expected to have return values over large domains (such as
the set of integers), we believe that our polynomial bound for el is not too restrictive.

21

Connectivity trees In the classical automata-theoretic approach to synthesis [23],
synthesis is reduced to finding a regular tree that is a witness to the non-emptiness of a
suitable tree automaton. Here, we also reduce synthesis to the non-emptiness problem of
a tree automaton. However, unlike the classical approach, we build an automaton whose
input is not a computation tree, but rather a system description in the form of a connec-
tivity tree (inspired by the “control-flow” trees of [18]), which describes how to connect
library components in a way that satisfies the specification formula. Specifically, given a
library L = {K 1,...,K λ} and a bound el ∈ IN, connectivity trees represent hierarchical
transducers that are 〈L ,el〉-composed, in the sense that every regular 〈L ,el〉-composed
hierarchical transducer induces a connectivity tree, and vice versa. Formally, a connec-
tivity tree T = 〈T,V 〉 for L and el, is an Lel-labeled complete ({1,...,el}×ΣI)-tree,
where the root is labeled by an atomic transducer.

Intuitively, a node x with V (x)=K E represents a top-level state q if K E is an atomic
transducer, and otherwise it represents a top-level box b that refers to K E . The label of
a son x · (idx(e,E),σ) specifies the destination of the transition from the exit e of b (or
from a state q, if K E is atomic — in which case it has a single exit) when reading σ.
Sons x · (i,e), for which i > |E|, are ignored. Thus, a path π = (i0,σ0) · (i1,σ1) · · · in a
connectivity tree T is called meaningful, iff for every j> 0, we have that i j is not larger
than the number of top-level exits of V (i j−1,σ j−1).

A connectivity tree T = 〈T,V 〉 is regular if there is a flat transducer M = 〈{1,...,el}
×ΣI ,Lel ,〈M,m0, /0,δT ,ΛT 〉〉, such that T is equal to the (lean) computation tree TM . A
regular connectivity tree induces an 〈L ,el〉-composed hierarchical transducer K , whose
top-level sub-transducer K1 is basically a replica of M (see the full version at the au-
thors’ web page for the reverse transformation). Every node m ∈ M becomes a state
of K1 if ΛT (m) is an atomic-transducer and, otherwise, it becomes a box of K1 which
refers to the top-level sub-transducer of ΛT (m). The destination of a transition from
an exit e of a box m, with ΛT (m) = K E , when reading a letter σ ∈ ΣI , is given by
δT (m,(idx(e,E),σ)). If m is a state, then ΛT (m) is an atomic transducer with a sin-
gle exit and thus, the destination of a transition from m when reading a letter σ ∈ ΣI ,
is given by δT (m,(1,σ)). For a box b of K1, let ΛT (b) = 〈ΣI ,ΣO,〈K(b,1),...K(b,nb)〉〉,
and denote by sub(b) = {K(b,1),...K(b,nb)} the set of sub-transducers of ΛT (b), and by
E(b) the set of top-level exits of ΛT (b). Formally, K = 〈ΣI ,ΣO,〈K1,...,Kn〉〉, where
K1 = 〈W1,B1,m0,τ1,δ1,Λ1〉, and:

– W1 = {w∈M : ∃ς∈ ΣO s.t. ΛT (w) = Kς}. Note that since the root of a connectivity
tree is labeled by an atomic transducer then m0 ∈W1.

– B1 = M \W1.
– The sub-transducers {K2,...,Kn}=

⋃
{b∈B1} sub(b).

– For b ∈ B1, we have that τ1(b) = i, where i is such that Ki = K(b,1).
– For w ∈W1, and σ ∈ ΣI , we have that δ1(w,σ) = δT (w,(1,σ)).
– For b∈B1, we have that δ1((b,e),σ) = δT (b,(idx(e,E(b)),σ)), for every e∈ E(b)

and σ ∈ ΣI .
– Finally, for w ∈W1 we have that Λ1(w) = ς, where ς is such that ΛT (w) = Kς.

From synthesis to automata emptiness Given a library L = {K 1,...,K λ}, a bound
el ∈ IN, and a temporal logic formula ϕ, our aim is to build an APT AT

ϕ such that AT
ϕ

22

accepts a regular connectivity tree T = 〈T,V 〉 iff it induces a hierarchical transducer
K such that K |= ϕ. Recall that by Definition 1 and Theorem 1, K |= ϕ iff TK ,ρ is
accepted by the SAPT Aϕ. The basic idea is thus to have AT

ϕ simulate all possible runs
of Aϕ on TK ,ρ. Unfortunately, since AT

ϕ has as its input not TK ,ρ, but the connectivity
tree T , this is not a trivial task. In order to see how we can solve this problem, we first
have to make the following observation.

Let T = 〈T,V 〉 be a regular connectivity tree, and let K be the hierarchical trans-
ducer that it induces. Consider a node u ∈ TK ,ρ with last(u) = ((b, inτ1(b)),σ), where
b is some top-level box, or state5, of K that refers to some transducer K E (note that
the root of TK ,ρ is such a node). Observe that the sub-tree T u, rooted at u, represents
the traces of computations of K that start from the initial state of K E , in the context of
the box b. The sub-tree prune(T u), obtained by pruning every path in T u at the first
node û, with last(û) = ((b,e), σ̂) for some e ∈ E and σ̂ ∈ ΣI , represents the portions of
these traces that stay inside K E . Note that prune(T u) is essentially independent of the
context b in which K E appears, and is isomorphic to the tree TK E ,σ (the isomorphism
being to simply drop the component b from every letter in the name of every node in
prune(T u)). Moreover, every son v (in TK ,ρ), of such a leaf û of prune(T u), is of the
same form as u. I.e., last(v) = ((b′, inτ1(b′)),σ

′), where b′ = δ1((b,e),σ′) is a top-level
box (or state) of K . It follows that TK ,ρ is isomorphic to a concatenation of sub-trees
of the form TK E ,σ, where the transition from a leaf of one such sub-tree to the root
of another is specified by the transition relation δ1, and is thus given explicitly by the
connectivity tree T .

The last observation is the key to how AT
ϕ can simulate, while reading T , all the

possible runs of Aϕ on TK ,ρ. The general idea is as follows. Consider a node u of TK ,ρ
such that prune(T u) is isomorphic to TK E ,σ. A copy of AT

ϕ that reads a node y of T
labeled by K E can easily simulate, without consuming any input, all the portions of
the runs of any copy of Aϕ that start by reading u and remain inside prune(T u). This
simulation can be done by simply constructing TK E ,σ on the fly and running Aϕ on it.
For every simulated copy of Aϕ that reaches a leaf û of prune(T u), (recall that last(û)
is of the form ((b,e), σ̂)), the automaton AT

ϕ sends copies of itself to the sons of y
in the connectivity tree, in order to continue the simulation on the different sub-trees
rooted at sons of û in TK ,ρ. The simulation of a copy of Aϕ that proceeds to a son
v = û ·((b′, inτ1(b′)),σ

′), where b′ is a top-level box (or state) of K , is handled by a copy
of AT

ϕ that is sent to the son z = y · (idx(e,E),σ′).
Our construction of AT

ϕ implements the above idea, with one main modification. In
order to obtain optimal complexity in successive rounds of Algorithm 1, it is important
to keep the size of AT

ϕ independent of the size of the transducers in the library. Unfor-
tunately, simulating the runs of Aϕ on TK E ,σ on the fly would require an embedding of
K E inside AT

ϕ . Recall, however, that no input is consumed by AT
ϕ while running such

a simulation. Hence, we can perform these simulations offline instead, in the process of
building the transition relation of AT

ϕ . Obviously, this requires a way of summarizing
the possibly infinite number of runs of Aϕ on TK E ,σ, which we do by employing the
concept of summary functions from [6].

5 Here we think of top-level states of K as boxes that refer to atomic transducers.

23

First, we define an ordering � on colors by letting c � c′ when c is better, from
the point of view of acceptance by Aϕ, than c′. Formally, c� c′ if the following holds:
if c′ is even then c is even and c ≥ c′; and if c′ is odd then either c is even, or c is
also odd and c ≤ c′. We denote by min� the operation of taking the minimal color,
according to �, of a finite set of colors. Let Aϕ = 〈ΣO×ΣI ,Qϕ,q0

ϕ,δϕ,Fϕ〉, let Aq
ϕ be

the automaton Aϕ using q ∈ Q as an initial state, and let C be the set of colors used
in the acceptance condition Fϕ. Consider a run 〈Tr,r〉 of Aq

ϕ on TK E ,σ. Note that if
z ∈ Tr is a leaf, then last(r(z)) = ((e,σ′),q), where q ∈ Q∨,∧ϕ (i.e., q is not an ε-state),
and e ∈ E. We define a function gr : E × ΣI ×Q∨,∧ϕ → C ∪ {a}, called the summary
function of 〈Tr,r〉, which summarizes this run. Given h ∈ E × ΣI ×Q∨,∧ϕ , if there is
no leaf z ∈ Tr, such that last(r(z)) = h, then gr(h) =a; otherwise, gr(h) = c, where
c is the maximal color encountered by the copy of Aϕ which made the least progress
towards satisfying the acceptance condition, among all copies that reach a leaf z ∈ Tr
with last(r(z)) = h. Formally, let paths(r,h) be the set of all the paths in 〈Tr,r〉 that end
in a leaf z ∈ Tr, with last(r(z)) = h. Then, gr(h) =a if paths(r,h) = /0 and, otherwise,
gr(h) = min�{maxC(π) : π ∈ paths(r,h)}.

Let Sf (K E ,σ,q) be the set of summary functions of the runs of Aq
ϕ on TK E ,σ. If

TK E ,σ has no leaves, then Sf (K E ,σ,q) contains only the empty summary function ε.
For g∈ Sf (K E ,σ,q), let g 6=a= {h∈E×ΣI×Q∨,∧ϕ : g(h) 6=a}. Based on the ordering�
we defined for colors, we can define a partial order � on Sf (K E ,σ,q), by letting g� g′

if for every h ∈ (E×ΣI ×Q∨,∧ϕ) the following holds: g(h) =a, or g(h) 6=a6= g′(h) and
g(h) � g′(h). Observe that if r and r′ are two non-rejecting runs, and gr � gr′ , then
extending r to an accepting run on a tree that extends TK E ,σ is always not harder than
extending r′ - either because Aϕ has less copies at the leaves of r, or because these
copies encountered better maximal colors. Given a summary function g, we say that a
run 〈Tr,r〉 achieves g if gr � g; we say that g is feasible if there is a run 〈Tr,r〉 that
achieves it; and we say that g is relevant if it can be achieved by a memoryless6 run
that is not rejecting (i.e., by a run that has no infinite path that does not satisfy the
acceptance condition of Aϕ). We denote by Rel(K E ,σ,q) ⊆ Sf (K E ,σ,q) the set of
relevant summary functions.

We are now ready to give a formal definition of the automaton AT
ϕ . Given a library

L = {K 1,...,K λ}, a bound el ∈ IN, and a temporal-logic formula ϕ, let Aϕ = 〈ΣO×
ΣI ,Qϕ,q0

ϕ,δϕ,Fϕ〉, let C = {Cmin,...,Cmax} be the colors in the acceptance condition of
Aϕ, and for K E ∈ Lel , let ΛE be the labeling function of the top-level sub-transducer of
K E . The automaton AT

ϕ = 〈Lel ,({1,...,el}×ΣI),(ΣI×Q∨,∧ϕ ×C)∪{q0},q0,δ,α〉, has
the following elements:

– For every K E ∈ Lel we have that δ(q0,K E) = δ((ρ,q0
ϕ,Cmin),K E) if K E is an

atomic transducer and, otherwise, δ(q0,K E) = false.
– For every (σ,q,c) ∈ ΣI ×Q∨,∧ϕ ×C, and every K E ∈ Lel, we have δ((σ,q,c),K E) =∨

g∈Rel(K E,σ,q)
∧

(e,σ̂,q̂)∈g6=a
⊕

σ′∈ΣI
((idx(e,E),σ′),(σ′,δϕ(q̂,(ΛE(e), σ̂)),g(e, σ̂, q̂))),

where
⊕

=
∧

if q̂ ∈ Q∧ϕ , and
⊕

=
∨

if q̂ ∈ Q∨ϕ .
– α(q0) =Cmin; and α((σ,q,c)) = c, for every (σ,q,c) ∈ ΣI×Q∨,∧ϕ ×C.

6 A run of an automaton A is memoryless if two copies of A that are in the same state, and read
the same input node, behave in the same way on the rest of the input.

24

The construction above implies the following lemma:

Lemma 1. AT
ϕ accepts a regular connectivity tree T = 〈T,V 〉 iff T induces a hierar-

chical transducer K , such that TK ,ρ is accepted by Aϕ.

Proof (sketch). Intuitively, AT
ϕ first checks that the root of its input tree T is labeled by

an atomic proposition (and is thus a connectivity tree), and then proceeds to simulate
all the runs of Aϕ on TK ,ρ. A copy of AT

ϕ at a state (σ,q,c), that reads a node y of T
labeled by K E , considers all the non-rejecting runs of Aq

ϕ on TK E ,σ, by looking at the
set Rel(K E ,σ,q) of summary functions for these runs. It then sends copies of AT

ϕ to
the sons of y to continue the simulation of copies of Aϕ that reach the leaves of TK E ,σ.

The logic behind the definition of δ((σ,q,c),K E) is as follows. Since every sum-
mary function g ∈ Rel(K E ,σ,q) summarizes at least one non-rejecting run, and it is
enough that one such run can be extended to an accepting run of Aϕ on the remainder
of TK ,ρ, we have a disjunction on all g ∈ Rel(K E ,σ,q). Every (e, σ̂, q̂) ∈ g6=a rep-
resents one or more copies of Aϕ at state q̂ that are reading a leaf û of TK E ,σ with
last(û) = (e, σ̂), and all these copies must accept their remainders of TK ,ρ. Hence, we
have a conjunction over all (e, σ̂, q̂) ∈ g 6=a.

A copy of Aϕ that starts at the root of TK E ,σ may give rise to many copies that
reach a leaf û of TK E ,σ with last(û) = (e, σ̂), but we only need to consider the copy
which made the least progress towards satisfying the acceptance condition, as captured
by g(e, σ̂, q̂). To continue the simulation of such a copy on its remainder of TK ,ρ, we
send to a son y · (idx(e,E),σ′) of y in the connectivity tree, whose label specifies where
K should go to from the exit e when reading σ′, a copy of AT

ϕ as follows. Recall that
the leaf û corresponds to a node u of TK ,ρ such that last(u) = ((b,e), σ̂) and b is a top-
level box of K that refers to K E . Also recall that every node in TK ,ρ has one son for
every letter σ′ ∈ ΣI . Hence, a copy of Aϕ that is at state q̂ and is reading u, sends one
copy in state q′ = δϕ(q̂,(ΛE(e), σ̂)) to each son of u, if q̂ ∈Q∧ϕ ; and only one such copy,
to one of the sons of u, if q̂ ∈ Q∨ϕ . This explains why

⊕
is a conjunction in the first

case, and is a disjunction in the second. Finally, a copy of AT
ϕ that is sent to direction

(idx(e,E),σ′) carries with it the color g(e, σ̂, q̂), which is needed in order to define the
acceptance condition. The color assigned to q0 is of course arbitrary.

The core of the proof uses a game based approach. Recall that the game-based
approach to model checking a flat system S with respect to a branching-time temporal
logic specification ϕ, reduces the model-checking problem to solving a game (called the
membership game of S and Aϕ) obtained by taking the product of S with the alternating
tree automaton Aϕ [16]. In [6], this approach was extended to hierarchical structures,
and it was shown there that given a hierarchical structure S and an SAPT A , one can
construct a hierarchical membership game GS ,A such that Player 0 wins GS ,A iff the
tree obtained by unwinding S is accepted by A . In particular, when A accepts exactly
all the tree models of a branching-time formula ϕ, the above holds iff S satisfies ϕ.
Furthermore, it is shown in [6] that one can simplify the hierarchical membership game
GS ,A , by replacing boxes of the top-level arena with gadgets that are built using Player 0
summary functions, and obtain an equivalent flat game G s

S ,A .
Given a regular connectivity tree T = 〈T,V 〉, that induces a hierarchical system K ,

we prove Lemma 1 by showing that the flat membership game G s
S ,Aϕ

, where S is a

25

hierarchical structure whose unwinding is the computation tree TK ,ρ, is equivalent to
the flat membership game GKT ,AT

ϕ
, of AT

ϕ and a Kripke structure KT whose unwinding

is T . Thus, Aϕ accepts TK ,ρ iff AT
ϕ accepts T . The equivalence of these two games

follows from the fact that they have isomorphic arenas and winning conditions. Conse-
quently, our proof of Lemma 1 is mainly syntactic in nature, and amounts to little more
then constructing the structures S and KT , constructing the game GS ,Aϕ , simplifying it
to get G s

S ,Aϕ
, and constructing the membership game GKT ,AT

ϕ
. The remaining technical

details can be found in the full version on the authors’ web page ut

We now state our main theorem.

Theorem 2. The 〈L ,el〉-synthesis problem is EXPTIME-complete for a µ-calculus for-
mula ϕ, and is 2EXPTIME-complete for an LTL formula (for el that is at most polyno-
mial in |ϕ| for µ-calculus, or at most exponential in |ϕ| for LTL).

Proof. The lower bounds follow from the same bounds for the classical synthesis prob-
lem of flat systems [15, 25], and the fact that it is immediately reducible to our problem
if L contains all the atomic transducers. For the upper bounds, since an APT accepts
some tree iff it accepts some regular tree (and AT

ϕ obviously only accepts trees which
are connectivity trees), by Lemma 1 and Theorem 1, we get that an LTL or a µ-calculus
formula ϕ is 〈L ,el〉-realizable iff L(AT

ϕ) 6= /0. Checking the emptiness of AT
ϕ can be

done either directly, or by first translating it to an equivalent NPT A ′Tϕ . For reasons that
will become apparent in subsection 4.2, we choose the latter. Note that the known algo-
rithms for checking the emptiness of an NPT are such that if L(AT

ϕ) 6= /0, then one can
extract a regular tree in L(AT

ϕ) from the emptiness checking algorithm [24]. The upper
bounds follow from the analysis given below of the time required to construct AT

ϕ and
check for its non-emptiness.

By Theorem 1, the number of states |Qϕ| and the index k of Aϕ is |Qϕ| = 2O(|ϕ|),
k = 2 for LTL, and |Qϕ|= O(|ϕ|), k = O(|ϕ|) for µ-calculus. The most time consuming
part in the construction of AT

ϕ is calculating for every (K E ,σ,q) ∈ (Lel ×ΣI ×Qϕ),
the set Rel(K E ,σ,q). Calculating Rel(K E ,σ,q) can be done by checking for every
summary function g ∈ Sf (K E ,σ,q) if it is relevant. Our proof of Lemma 1 also yields
that, by [6], the latter can be done in time O((|K| · |Qϕ|)k · (k+1)|E|·|Qϕ|·k). Observe that
the set Sf (K E ,σ,q) is of size (k+ 1)|E|, and that the number of transducers in Lel is
O(λ ·mel), where m is the maximal size of any K ∈ L . It follows that for an LTL (resp.
µ-calculus) formula ϕ, the automaton AT

ϕ can be built in time at most polynomial in the
size of the library, exponential in el, and double exponential (resp. exponential) in |ϕ|.

We now analyze the time it takes to check for the non-emptiness of AT
ϕ . Recall that

for every η ∈ (Lel ×ΣI ×Qϕ), the set Rel(η) is of size at most (k+1)el , and thus, the
size of the transition relation of AT

ϕ is polynomial in |L | and |ϕ|, and exponential in el.
Checking the emptiness of AT

ϕ is done by first translating it to an equivalent NPT A ′Tϕ .
By [20], given an APT with |Q| states and index k, running on Σ-labeled D∗-trees, one
can build (in time polynomial in the descriptions of its input and output automata) an
equivalent NPT with (|Q| · k)O(|Q|·k) states, an index O(|Q| · k), and a transition relation
of size |Σ| · (|Q| · k)O(|D|·|Q|·k). It is worth noting that this blow-up in the size of the

26

automaton is independent from the size of the transition relation of AT
ϕ . By [16, 28], the

emptiness of A ′Tϕ can be checked in time |Σ| · (|Q| ·k)O(|D|·|Q|2·k2) (and if it is not empty,
a witness is returned). Recall that |Σ| = |Lel | = O(λ ·mel), and that |D| = el · |ΣI |. By
substituting the values calculated above for |Q| and k, the theorem follows. ut

Note that in Algorithm 1, it is conceivable that the transducer K i synthesized at
iteration i will be exponential (or even double-exponential for LTL) in the size of the
specification formula ϕi. At this point it is probably best to stop the process, refine the
specifications, and try again. However, it is important to note that even if the process
is continued, and K i is added to the library, the time complexity of the succeeding
iterations does not deteriorate since the single-round 〈L ,el〉-synthesis algorithm is only
polynomial in the maximal size m of any transducer in the library.

4.2 Enforcing Modularity

In this section, we address two main issues that may hinder the efforts of our single-
round 〈L ,el〉-synthesis algorithm to synthesize a succinct hierarchical transducer K .
The first issue is that of ensuring that, when possible, K indeed makes use of the
more complex transducers in the library (especially transducers synthesized in previous
rounds) and does not rely too heavily on the less complex, or atomic, transducers. An
obvious and most effective solution to this problem is to simply not have some (or all)
of the atomic transducers present in the library. The second issue is making sure that K
does not have too many sub-transducers, which can happen if it uses too many copies of
the same transducer K ′ ∈ L= /0, each with a different set of exits. We also discuss some
other points of interest regarding the synthesis of exits. We address the above issues by
constructing, for each constraint we want to enforce on the synthesized transducer K ,
an APT A , called the constraint monitor, such that A accepts only connectivity trees that
satisfy the constraint. We then synthesize K by checking the non-emptiness not of AT

ϕ ,
but of the product of AT

ϕ with all the constraints monitors. Note that a nondeterministic
monitor (i.e., an NPT) of exponential size can also be used, without adversely affecting
the time-complexity, if the product with it is taken after we translate the product of AT

ϕ
and the other (polynomial) APT monitors, to an equivalent NPT.

A simple and effective way to enforce modularity in Algorithm 1 is that once a trans-
ducer K i is synthesized in round i, one incorporates in subsequent rounds a monitor that
rejects any connectivity tree containing a node labeled by some key sub-transducers of
K i. This effectively enforces any transducer synthesized using a formula that refers to
atomic propositions present only in K i (and its disallowed sub-transducers) to use K i,
and not try to build its functionality from scratch. As to other ways to enforce mod-
ularity, the question of whether one system is more modular than another, or how to
construct a modular system, has received many, and often widely different, answers.
Here we only discuss how certain simple modularity criteria can be easily implemented
on top of our algorithm. For example, some people would argue that a function that has
more than, say, 10 consecutive lines of code in which no other function is called, is not
modular enough. A monitor that checks that in no path in a connectivity tree there are
more than 10 consecutive nodes labeled with an atomic transducer, can easily enforce
such a criterion. We can even divide the transducers in the library into groups, based on
how “high level” they are, and enforce lower counts on lower level groups. Essentially,
every modularity criterion that can be checked by a polynomial APT, or an exponential

27

NPT, can be used. Enforcing one context-free property can also be done, albeit with an
increase in the time complexity. Other non-regular criteria may be enforced by directly
modifying the non-emptiness checking algorithm instead of by using a monitor, and we
reserve this for future work.

As for the issue of synthesized exits, recall that for each transducer K ′ ∈ L= /0,
we can have as many as Ω(|K ′|)el copies of K ′ in Lel , each with a different set of
exit states. Obviously, we would not like the synthesized transducer K to use so many
copies as sub-transducers. It is not hard to see that one can, for example, build an NPT
of size O(|Lel |) that guesses for every K ′ ∈ L= /0 a single set of exits E, and accepts a
connectivity tree iff the labels of all the nodes in the tree agree with the guessed exits.
Note that after the end of the current round of synthesis, we may choose to add K ′E to
the library (in addition, or instead of K ′).

Another point to note about the synthesis of exits is that while a transducer K surely
satisfies the formula ϕi it was synthesized for, K E may not. Consider for example a
transducer K which is simply a single state, labeled with p, with a self loop. If we
remove the loop and turn this state into an exit, it will no longer satisfy ϕi = p∧X p
or ϕi = Gp. Now, depending on one’s point of view, this may be either an advantage
(more flexibility) or a disadvantage (loss of original intent). We believe that this is
mostly an advantage, however, in case it is considered a disadvantage, a few possible
solutions come to mind. First, for example if ϕi = Gp, one may wish for K to remain
without exits and enforce E = /0. Another option, for example if ϕi = p∧ X p, is to
synthesize in round i a modified formula like ϕ′i = p∧¬exit ∧X(p∧ exit), with the
thought of exits in mind. Yet another option is to add, at iterations after i, a monitor that
checks that if KE is the label of a node in the connectivity tree then ϕi is satisfied. The
monitor can check that ϕi is satisfied inside KE , in which case the monitor is a single
state automaton, that only accepts if E is such that KE |= ϕi (possibly using semantics
over truncated paths [9]); alternatively, the monitor can check that ϕi is satisfied in the
currently synthesized connectivity tree, starting from the node labeled by KE , in which
case the monitor is based on AT

ϕi
.

4.3 Incomplete Information

A natural setting that was considered in the synthesis literature is that of incomplete in-
formation [15]. In this setting, in addition to the set of input signals I that the system can
read, the environment also has internal signals H that the system cannot read, and one
should synthesize a system whose behavior depends only on the readable signals, but
satisfies a specification which refers also to the unreadable signals. Thus, the specifica-
tion is given with respect to the alphabet ΣI = 2I∪H , but the behavior of the system must
be the same when reading two letters that differ only in their H components. The main
source of difficulty is that a finite automaton cannot decide whether or not a computa-
tion tree is of a system that behaves in a way which is consistent with its partial view
of the input signals. However, since the automaton at the heart of our algorithm does
not run on computation trees, but rather on connectivity trees, handling of incomplete
information comes at no cost at all. All we have to do is to define the connectivity trees
to be Lel-labeled complete ({1,...,el}×2I)-trees, instead of ({1,...,el}×2I∪H)-trees to
ensure that the synthesized transducer behaves in the same way on input letters that dif-
fer only in their hidden components (this of course implies that the expression

⊕
σ′∈ΣI

28

in the transition function of AT
ϕ becomes

⊕
σ′∈2I). Thus, our algorithm solves, with the

same complexity, also the hierarchical synthesis problem with incomplete information.

5 Discussion
We presented an algorithm for the synthesis of hierarchical systems which takes as input
a library of hierarchical transducers and a sequence of specification formulas. Each for-
mula drives the synthesis of a new hierarchical transducer based on the current library,
which contains all the transducers synthesized in previous iterations together with the
starting library. The main challenge in this approach is to come up with a single-round
synthesis algorithm that is able to efficiently synthesize the required transducer at each
round. We have provided such an algorithm that works efficiently (i.e., not worst than
the corresponding one for flat systems) and uniform (i.e., it can handle different tem-
poral logic specifications, including the modal µ-calculus). In order to ensure that the
single-round algorithm makes real use of previously synthesized transducers we have
suggested the use of auxiliary automata to enforce modularity criteria. We believe that
by decoupling the process of enforcing modularity from the core algorithm for single-
round synthesis we gain flexibility that allows one to apply different approaches to
enforcing modularity, as well as future optimizations to the core synthesis algorithm.

References
[1] R. Alur,M. Arenas,P. Barceló, K. Etessami,N.Immerman, and L. Libkin, First-

Order and Temporal Logics for Nested Words. In Logical Methods in Computer
Science, vol. 4, 2008.

[2] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. W. Reps, and M. Yan-
nakakis. Analysis of recursive state machines. ACM Trans. Program. Lang. Syst.,
27(4):786–818, 2005.

[3] R. Alur, S. Chaudhuri, K. Etessami, and P. Madhusudan. On-the-fly reachability
and cycle detection for recursive state machines. In TACAS’05, LNCS 3440, pages
61–76, 2005.

[4] R. Alur, S. Chaudhuri, and P. Madhusudan. A fixpoint calculus for local and global
program flows, In POPL’06, ACM, pages 153–165, 2006.

[5] R. Alur and M. Yannakakis. Model checking of hierarchical state machines. ACM
Trans. Program. Lang. Syst., 23(3):273–303, 2001.

[6] B. Aminof, O. Kupferman, and A. Murano. Improved model checking of hierar-
chical systems. In VMCAI’10, LNCS 5944, pages 61-77. Springer, 2010

[7] A. Church. Logic, arithmetics, and automata. In Proc. International Congress of
Mathematicians, 1962, pages 23–35. institut Mittag-Leffler, 1963.

[8] L. de Alfaro and T. A. Henzinger. Interface-based design. In Engineering Theories
of Software-intensive Systems. NATO Science Series: Mathematics, Physics, and
Chemistry, 195, pages 83–104. Springer, 2005.

[9] C. Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. McIsaac, and D. Van Campenhout.
Reasoning with temporal logic on truncated paths. In CAV’O3, LNCS 2725:(27–
39), 2003.

[10] E.A. Emerson. Temporal and modal logic. In J. Van Leeuwen editor, Handbook of
Theoretical Computer Science, Vol. B, chap. 16, pages 997–1072. Elsevier, MIT
Press, 1990.

29

[11] E.A. Emerson and C. Jutla. Tree automata, µ-calculus and determinacy. In
FOCS’91, pages 368–377, 1991.

[12] S. Göller and M. Lohrey. Fixpoint logics on hierarchical structures. In
FSTTCS’05, LNCS 3821, pages 483–494. Springer, 2005.

[13] D. P. Guelev, M. D. Ryan, and P. Y. Schobbens. Synthesising features by games.
Electr. Notes Theor. Comput. Sci., 145:79–93, 2006.

[14] D. Janin and I. Walukiewicz. Automata for the modal µ-calculus and related re-
sults. In MFCS’95, LNCS 969, pages 552–562. Springer-Verlag, 1995.

[15] O. Kupferman and M.Y. Vardi. µ-calculus synthesis. In MFCS’00, LNCS
1893:(497–507).

[16] O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. J. of the ACM, 47(2):312–360, 2000.

[17] R. Lanotte, A. Maggiolo-Schettini, and A. Peron. Structural model checking for
communicating hierarchical machines. In MFCS, pages 525–536, 2004.

[18] Y. Lustig and M. Y. Vardi. Synthesis from component libraries. In FOSSACS’09,
LNCS 5504, pages 395–409. Springer, 2009.

[19] Y. Lustig and M. Y. Vardi. Synthesis from Recursive-Components libraries. In
GandALF’11, EPTCS 54, pages 1–16, 2011.

[20] D.E. Muller and P.E. Schupp. Alternating automata on infinite trees. J. of Theor.
Comp. Sc., 54:267–276, 1987.

[21] Peter Müller. Modular specification and verification of object-oriented programs.
Springer-Verlag, 2002.

[22] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive designs. In VMCAI’06,
LNCS 3855, pages 364–380. Springer, 2006.

[23] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL’89,
pages 179–190. ACM Press, 1989.

[24] M.O. Rabin. Weakly definable relations and special automata. In Proc. Symp.
Math. Logic and Foundations of Set Theory, pages 1–23. North Holland, 1970.

[25] R. Rosner. Modular Synthesis of Reactive Systems. PhD thesis, Weizmann Insti-
tute of Science, 1992.

[26] J. Sifakis. A framework for component-based construction extended abstract. In
SEFM’05, pages 293–300. IEEE Computer Society, 2005.

[27] S. Bliudze and J. Sifakis. Synthesizing Glue Operators from Glue Constraints for
the Construction of Component-Based Systems. In SC’11, LNCS 6708, pages
51–67. Springer, 2011.

[28] T. Wilke. Alternating tree automata, parity games, and modal µ-calculus. Bull.
Soc. Math. Belg., 8(2), 2001.

30

A Modal Specification Theory
for Components with Data?

Sebastian S. Bauer1,2, Kim G. Larsen2, Axel Legay3,
Ulrik Nyman2, and Andrzej Wąsowski4

1 Institut für Informatik, Ludwig-Maximilians-Universität München, Germany
2 Department of Computer Science, Aalborg University, Denmark

3 INRIA/IRISA, Rennes, France
4 IT University of Copenhagen, Denmark

Abstract. Modal specification is a well-known and widely used formalism used
as an abstraction theory for transition systems. Modal specifications are transi-
tion systems equipped with two types of transitions: must-transitions that are
mandatory to any implementation, and may-transitions that are optional. The
duality of transitions allows to develop a unique approach for both logical and
structural compositions, and eases the step-wise refinement process for building
implementations.
We propose Modal Specifications with Data (MSD), the first modal specification
theory with explicit representation of data. Our new theory includes all the essential
ingredients of a specification theory. As MSD are by nature potentially infinite-
state systems, we propose symbolic representations based on effective predicates.
Our theory serves as a new abstraction-based formalism for transition systems
with data.

1 Introduction

Modern IT systems are often large and consist of complex assemblies of numerous
reactive and interacting components. The components are often designed by independent
teams, working under a common agreement on what the interface of each component
should be. Consequently, the search for mathematical foundations which support compo-
sitional reasoning on interfaces is a major research goal. A framework should support
inferring properties of the global implementation, designing and advisedly reusing
components.

Interfaces are specifications and components that implement an interface are under-
stood as models/implementations. Specification theories should support various features
including (1) refinement, which allows to compare specifications as well as to replace a
specification by another one in a larger design, (2) structural composition, which allows
to combine specifications of different components, (3) logical conjunction, expressing
the intersection of the set of requirements expressed by two or more specifications, and

? Work supported by the German Academic Exchange Service (DAAD), grant D/10/46169, by
an “Action de Recherche Collaborative” ARC (TP)I, by MT-LAB, VKR Centre of Excellence,
and by the EU project ASCENS, 257414.

31

last (4) a quotient operator that is dual to structural composition and allows synthesizing
a component from a set of assumptions.

Among existing specification theories, one finds modal specifications [1], which are
labeled transition systems equipped with two types of transitions: must-transitions that
are mandatory for any implementation, and may-transitions which are optional for an
implementation. Modal specifications are known to achieve a more flexible and easy-to-
use compositional development methodology for CCS [2], which includes a considerable
simplification of the step-wise refinement process proposed by Milner and Larsen. While
being very close to logics (conjunction), the formalism takes advantage of a behavioral
semantics allowing for easy composition with respect to process construction (structural
composition) and synthesis (quotient). However, despite the many advantages, only a few
implementations have been considered so far. One major problem is that contrary to other
formalisms based on transition systems, there exists no theory of modal specification
equipped with rich information such as data variables.

In this paper, we add a new stone to the cathedral of results on modal specifications
[3, 4], that is we propose the first such theory equipped with rich data values. Our
first contribution is to design a semantical version of modal specifications whose states
are split into locations and valuations for possibly infinite-domain variables. For every
component, we distinguish between local variables, that are locally controlled by the
component, and uncontrolled variables that are controlled by other components and
can be accessed, but not modified. Combining variables with sets of actions labeling
transitions offers a powerful set of communication primitives that cannot be captured
by most existing specification theories. We also propose a symbolic predicate-based
representation of our formalism. We consider effective predicates that are closed un-
der conjunction, union, and membership—classical assumptions in existing symbolic
theories (e.g. [5]). While the semantic level is possibly infinite-state, the syntactical
level permits us to reason on specifications just like one would with the original modal
specifications, but with the additional power of rich data.

Continuing our quest, we study modal refinement between specifications. Refinement,
which resembles simulation between transition systems, permits to compare sets of
implementations in a syntactic manner. Modal refinement is defined at the semantic
level, but can also be checked at the symbolic level. We propose a predicate abstraction
approach that simplifies the practical complexity of the operation by reducing the
number of states and simplifying the predicates. This approach is in line with the work
of Godefroid et al. [6], but is applied to specification-based verification rather than to
model checking.

We then propose definitions for both logical and structural composition, on the level
of symbolic representations of specifications. These definitions are clearly not direct
extensions of the ones defined on modal specifications as behaviors of both controlled
and uncontrolled variables have to be taken into account. As usual, structural composition
offers the property of independent implementability, hence allowing for elegant step-
wise refinement. In logical composition, two specifications which disagree on their
requirements can be reconciled by synthesizing a new component where conflicts have
been removed. This can be done with a symbolic pruning of bad states, which terminates
if the system is finite-state, or if the structure of the transition system induced by the

32

specification relies, for instance, on a well-quasi order [7]. Finally, we also propose a
quotient operation, that is the dual operation of structural composition, which works for
a subclass of systems, and we discuss its limitation. This operator, absent from most
existing behavioral and logical specification theories, allows synthesizing a component
from a set of assumptions.

In Sect. 2 we introduce modal specifications with data and their finite symbolic
representations, refinement, an implementation relation and consistency. In Sect. 3 we
define the essential operators of every specification theory, that is parallel composition,
conjunction and quotient. For verification of refinement between infinite-state specifica-
tions we propose in Sect. 4 an approach based on predicate abstraction techniques. We
summarize related works in Sect. 5 and conclude in Sect. 6.

Acknowledgment. We would like to thank Rolf Hennicker for valuable comments on
a draft of the paper.

2 Modal Specifications with Data

We will first introduce specifications which are finite symbolic representations of modal
specifications with data. We will then propose modal refinement and derive an imple-
mentation relation and a consistency notion.

In the following, P(M) denotes the powerset ofM , P≥1(M) = P(M)\{∅}, and
the union of two disjoint sets is denoted by M]N , which is M ∪N with M ∩N = ∅.

Let V be a fixed set of variables, each variable ranging over a fixed domain D.
For a given subset V ⊆ V, a data state s over V is a mapping s : V → D. If V =
{x1, x2, . . . , xn} and d1, d2, . . . , dn ∈ D, we write [x1 7→ d1, x2 7→ d2, . . . , xn 7→ dn]
for the data state s which maps every xi to di, for 1 ≤ i ≤ n. We write JV K for the
set of all possible data states over V . For disjoint sets of variables V1 and V2 and data
states s1∈JV1K and s2∈JV2K, the operation (s1 · s2) composes the data states resulting
in a new state s = (s1 · s2) ∈ JV1] V2K, such that s(x) = s1(x) for all x ∈ V1 and
s(x) = s2(x) for all x ∈ V2. This is naturally lifted to sets of states: if S1 ⊆ JV1K and
S2 ⊆ JV2K then (S1 · S2) = {(s1 · s2) | s1 ∈ S1, s2 ∈ S2} ⊆ JV1] V2K.

Like in the work of de Alfaro et al. [8] we define specifications with respect to an
assertion language allowing suitable predicate representation. Given a set V of variables,
we denote by Pred(V) the set of first-order predicates with free variables in V ; we
assume that these predicates are written in some specified first-order language with
existential (∃) and universal (∀) quantifiers and with interpreted function symbols and
predicates; in our examples, the language contains the usual arithmetic operators and
boolean connectives (∨,∧,¬,⇒). Syntactic equality of predicates is written with the
symbol ≡. Given a set of variables V we denote by (V)′ an isomorphic set of ’primed’
variables from V : so if x ∈ V then (x)′ ∈ (V)′. We use this construction to represent
pre- and post-values of variables. A variable (x)′ ∈ (V)′ represents the next state value
of the variable x ∈ V . Given a formula ϕ ∈ Pred(V) and a data state s ∈ JV K, we
write ϕ(s) if the predicate formula ϕ is true when its free variables are interpreted as
specified by s. Given a formula ψ ∈ Pred(V1] (V2)

′) and states s1 ∈ JV1K, s2 ∈ JV2K,
we often write ψ(s1, s2) for ψ(s1 · t2) where t2 ∈ J(V2)′K such that t2((x)′) = s2(x)
for all x ∈ V2. Given a predicate ϕ ∈ Pred(V), we write (ϕ)′ ∈ Pred((V)′) for the

33

predicate obtained by substituting x with (x)′ in ϕ, for all x ∈ V . We write JϕK for the
set {s ∈ JV K | ϕ(s)} which consists of all states satisfying ϕ ∈ Pred(V) (for predicates
with primed and unprimed variables), and ϕ is consistent if JϕK 6= ∅. We write ∃V ϕ
meaning existential quantification of ϕ over all variables in the set V , and similar for
universal quantification. Finally, for a predicate ψ ∈ Pred(V1] (V2)

′), we write ◦ψ for
∃(V2)′ψ, and ψ◦ for ∃V1ψ.

Our theory enriches modal automata with variables. Specifications not only express
constraints on the allowed sequences of actions, but also their dependence and effect on
the values of variables. Like in the loose approach of modal specifications [1] which
allows under-specification using may and must modalities on transitions, we allow loose
specification of the effects of actions on the data state. From a given location and a given
data state, a transition to another location is allowed to lead to several next data states.
Unlike in modal specifications, variables are observable in our framework, allowing for
modeling shared variable communication.

A signature Sig = (Σ,V L, V G) determines the alphabet of actions Σ and the set
of variables V = V L] V G of an interface. The variables in V L are local (controlled)
variables, owned by the interface and visible to any other component. V G contains the
uncontrolled variables owned by the environment, which are read-only for the interface.

Specifications are finite modal transition systems where transitions are equipped with
predicates. A transition predicate ψ ∈ Pred(V] (V L)′) relates a previous state, deter-
mined by all controlled and uncontrolled data states, with the next possible controlled
data state.

Definition 1. A specification is a tuple A = (Sig ,Loc, `0, ϕ0, E♦, E�) where Sig =
(Σ,V L, V G) is a signature, Loc is a finite set of locations, `0 ∈ Loc is the initial
location, ϕ0 ∈ Pred(V L) is a predicate on the initial local state, and E♦, E� are finite
may- and must-transition relations respectively:

E♦, E� ⊆ Loc ×Σ × Pred(V] (V L)′)× Loc.

Given a specification A, locations `, `′ ∈ Loc, and action a ∈ Σ, we refer to the set of
transition predicates on may-transitions by Maya(`, `′) = {ψ | (`, a, ψ, `′)∈E♦} and
on must-transitions by Musta(`, `′) = {ψ | (`, a, ψ, `′)∈E�}.
Example 1. Consider a specification of a print server, shown in Fig. 1. Must-transitions
are drawn with solid arrows and may-transitions with dashed ones. Every solid arrow
representing a must-transition has an implicit may-transition shadowing it which is not
shown. Every transition is equipped with a transition predicate over unprimed variables,
referring to the pre-state, and primed variables, referring to the poststate. The print server
receives new print jobs (newPrintJob), stores them and assigns them either a low
or high priority; the numbers of low and high priority jobs are modeled by controlled
variables l and h, respectively; l and h are natural numbers. A job with low priority can
also be reclassified to high priority (incPriority). The printer server can send (send)
a job to a printer, and then wait for the acknowledgment (ack). In state `1, if there is a
job with high priority and the uncontrolled boolean variable priorityMode is true, then
there must be a send transition. The specification is loose in the sense that if a second
print job is received in state `1, then the behavior is left unspecified.

34

[l + h = 0]
`0 `1 `2

`3

newPrintJob
[(l)′ + (h)′ = 1]

incPriority
[l = 1 ∧ (l)′ = 0 ∧ (h)′ = 1]

send [l + h = 1 ∧ (l)′ + (h)′ = 0]

send
[h = 1 ∧ priorityMode ∧ (h)′ = 0]

ack [(l)′ = 0 ∧ (h)′ = 0]

newPrintJob
send
newPrintJob
incPriority
ack

Fig. 1. Abstract specification P of a print server.

We now define the kind of transition systems which will be used for formalizing the
semantics of specifications. A specification is interpreted as a variant of modal transition
systems where the state space is formed by the cartesian product Loc × JV LK, i.e. a
state is a pair (`, s) where ` ∈ Loc is a location and s ∈ JV LK is a valuation of the
controlled variables. To motivate the choice of the transition relations in the semantics
of specifications, we first describe the intended meaning of may- and must-transitions.

A may-transition (`, a, ψ, `′) ∈ E♦ in the specification expresses that in any im-
plementation, in any state (`, s) and for any guard g ∈ JV GK (that is a valuation of
uncontrolled variables V G) the implementation is allowed to have a transition with
guard g and action a to a next state (`′, s′) such that ψ(s · g, s′). The interpretation of a
must-transition (`, a, ψ, `′)∈E� is a bit more involved: Any implementation, in state
(`, s), and for any guard g ∈ JV GK, if there is a valuation s′ ∈ JV LK such that ψ(s ·g, s′),
then the implementation is required to have a transition from state (`, s) with guard g
and action a to at least some state t′ such that ψ(s · g, t′). The requirement expressed
by must-transitions cannot be formalized by standard modal transition systems, but
fortunately, a generalization called disjunctive modal transition systems introduced in
[9] can precisely capture these requirements. May-transitions target (as usual) only one
state, but must-transitions branch to several possible next states (thus must-transitions
are hypertransitions), with an existential interpretation: there must exist at least one
transition with some target state which is an element from the set of target states of the
hypertransition.

Definition 2. A modal specification with data (MSD) is a tuple

S = (Sig ,Loc, `0, S0,−−→♦,−−→�)

where Sig , Loc, `0 are like in Def. 1, S0 ⊆ JV LK is a set of initial data states, and
−−→♦,−−→� ⊆ Loc × JV LK× JV GK×Σ × (Loc ×P≥1(JV LK)) are the may- (♦) and
must- (�) transition relations such that every may-transition targets a single state: if
(`, s, g, a, (`′, S′)) ∈ −−→♦ then |S′| = 1.

A state (`, s) ∈ Loc × JV LK is called syntactically consistent iff targets reachable
by must-transitions are also reachable by may-transitions: if (`, s, g, a, (`′, S′)) ∈−−→�
then (`, s, g, a, (`′, {s′})) ∈−−→♦ for all s′ ∈ S′. S is syntactically consistent iff all
states are syntactically consistent, and the set of initial data states is nonempty, i.e.
S0 6= ∅.

35

(`0, [l 7→ 0, h 7→ 0])

(`1, [l 7→ 1, h 7→ 0])

(`1, [l 7→ 0, h 7→ 1])

. . .

. . .

[prio
rityM

ode 7→
true

]

new
Print

Job

[priorityMode 7→ false]newPrintJob

Fig. 2. Excerpt of the semantics of the abstract print server specification.

May-transitions (`, s, g, a, (`′, S′)) ∈ −−→♦ are often written (`, s)
g a−−→♦ (`′, S′), and

similarly for must-transitions.
We can now define formally how a specification translates to its semantics in terms

of an MSD. As already described above, the semantics of a may-transition of the specifi-
cation is given by the set of may-transitions pointing to single admissible target states,
and a must-transition gives rise to (must-)hypertransitions targeting all the admissible
poststates.

Definition 3. The semantics of a specification A = (Sig ,Loc, `0, ϕ0, E♦, E�) is given
by the MSD 〈A〉sem = (Sig ,Loc, `0, S0,−−→♦,−−→�) where S0 = Jϕ0K and the transi-
tion relations are defined as follows. For each `, `′ ∈ Loc, s, s′ ∈ JV LK, g ∈ JV GK, and
a ∈ Σ:

i. If (`, a, ψ, `′)∈E♦ and ψ(s · g, s′) then (`, s)
g a−−→♦ (`′, {s′}),

ii. If (`, a, ψ, `′)∈E� and ψ(s · g, s′) then (`, s)
g a−−→� (`′, {t′ ∈ JV LK | ψ(s · g, t′)}).

A specification A is called syntactically consistent iff its semantics 〈A〉sem is syntacti-
cally consistent. In the following we will always assume that specifications and MSD
are syntactically consistent.

Example 2. An excerpt of the semantics of our abstract specification of the print server
(see Fig. 1) can be seen Fig. 2. As before, we draw must-transitions with a solid arrow,
and has an implicit set of may-transitions shadowing it which are not shown, i.e. for
each target (`, S′) of a must-transition and each s ∈ S′ there is a may-transition with the
same source state and with target state (`, {s}).

The first must-transition (`0,newPrintJob, (l)′ + (h)′ = 1, `1)∈E� of the print
server specification gives rise to the transitions shown in Fig. 2. Any new print job must
be stored in either l or h but which one is not yet fixed by the specification. Thus in the
semantics this is expressed as a disjunctive must-transition to the unique location `1 and
the next possible data states [l 7→ 1, h 7→ 0] and [l 7→ 0, h 7→ 1].

A refinement relation allows to relate a concrete specification with an abstract
specification. Refinement should satisfy the following substitutability property: If A
refines B then replacing B with A in a context C[·] gives a specification C[A] refining
C[B]. Refinement will be a precongruence, i.e. it is compatible with the structural and
logical operators on specifications in the above sense.

Our definition of refinement is based on modal refinement [10, 9] for (disjunctive)
modal transition systems, where the may-transitions determine which actions are permit-
ted in a refinement while the must-transitions specify which actions must be present in a
refinement and hence in any implementation. We adapt it with respect to data states.

36

(`′′0 , s0) (`′′1 , s1)

g1 a

g3 c

R

(`′0, s0) (`′1, s1)

(`′1, s2)
S g1

a
g4 d

g3 c

(`0, s0)

(`0, s1)

(`1, s1)

(`1, s2)

T g1
a

g2 b

g4 d

g3 c

Fig. 3. Successive refinement of an MSD T.

Example 3. We motivate our adaption of modal refinement to take into account data
states with the help of a small example shown in Fig. 3. We draw may-transitions with
a dashed arrow, and must-transitions with a solid arrow. Every must-transition has an
implicit set of may-transitions shadowing it which are not shown. The MSD T (to the
right) has two initial states, both having `0 as the initial location. The must-transition
starting from (`0, s0) expresses that in any implementation there must be a transition
leading to at least one of the states (`1, s1) and (`1, s2). The MSD T can be refined
to the MSD S (by dropping one may-transition and turning one may-transition to a
must-transition), and then S is refined by the MSD R, by refining the must-transition
(`′0, s0, g1, a, (`

′
1, {s1, s2})) in S to the must-transition (`′′0 , s0, g1, a, (`

′′
1 , {s1})) in R,

and by strengthening the transition with guard g3 and action c to a must-transition.

Definition 4. Let T1 = (Sig ,Loc1, `
0
1, S

0
1 ,−−→♦,1,−−→�,1) and T2 = (Sig ,Loc2, `

0
2,

S0
2 ,−−→♦,2,−−→�,2) be MSD over the same signature Sig = (Σ,V L, V G). A relation
R ⊆ Loc1 × Loc2 × JV LK is a refinement relation iff for all (`1, `2, s) ∈ R:

i. Whenever (`1, s)
g a−−→♦,1 (`′1, {s′}) then there exists (`2, s)

g a−−→♦,2 (`′2, {t′}) such
that s′ = t′ and (`′1, `

′
2, s
′) ∈ R.

ii. Whenever (`2, s)
g a−−→�,2 (`′2, S

′
2) then there exists (`1, s)

g a−−→�,1 (`′1, S
′
1) such that

S′1 ⊆ S′2 and (`′1, `
′
2, s
′) ∈ R for all s′ ∈ S′1.

We say that T1 refines T2, written T1 ≤sem T2, iff S0
1 ⊆ S0

2 and there exists a
refinement relation R such that for any s ∈ S0

1 also (`01, `
0
2, s) ∈ R. A specification A1

refines another specification A2, written A1 ≤ A2, iff 〈A1〉sem ≤sem 〈A2〉sem.

The refinement relation is a preorder on the class of all specifications. Refinement
can be checked in polynomial time in the size of the state space of the MSD (for variables
with finite domains). In general the domain may be infinite, or prohibitively large, so in
Sect. 4 we revisit the question of refinement checking using abstraction techniques.

Example 4. The semantics of our abstract print server specification, shown in Fig. 2, can
be refined as shown in Fig. 4. Now, both must-transitions point to the location `1 with
the data state [l 7→ 1, h 7→ 0] which means that any new incoming print job is assigned a
low priority, independent of the uncontrolled variable priorityMode.

An MSD for which the conditions (1) −−→♦ = −−→� and (2) |S0| = 1 are satisfied,
can be interpreted as (an abstraction of) an implementation: there are no design choices
left open as (1) all may-transitions are covered by must-transitions and (2) there is only
one initial data state possible. Any MSD for which the conditions (1) and (2) are satisfied,
is called transition system with data (TSD) in the following. Note that TSD cannot be

37

(`0, [l 7→ 0, h 7→ 0])

(`1, [l 7→ 1, h 7→ 0])

(`1, [l 7→ 0, h 7→ 1])

. . .

. . .

[priorit
yMode 7→ true]

newPrintJo
b

[priorit
yMode 7→ false]

newPrintJo
b

Fig. 4. Refinement of the MSD shown in Fig. 2.

strictly refined, i.e. for any TSD I and any MSD S with the same signature, S ≤sem I
implies I ≤sem S.

An implementation relation connects specifications to implementations (given as
TSD) satisfying them. We can simply use refinement as the implementation relation.
Given a specification A and some TSD I, we write I |= A for I ≤sem 〈A〉sem, so our
implementation I is seen as the model which satisfies the property expressed by the
specification A. Now the set of implementations of a specification is the set of all its
refining TSD: given a specification A, we define Impl(A) = {I | I |= A}.

Our implementation relation |= immediately leads to the classical notion of consis-
tency as existence of models. A specification A is consistent iff Impl(A) is non-empty.
Consequently, as modal refinement is reflexive, any specification A for which 〈A〉sem is
a TSD, is consistent.

By transitivity, modal refinement entails implementation set inclusion: for specifica-
tions A and B, if A ≤ B then Impl(A) ⊆ Impl(B). The relation Impl(A) ⊆ Impl(B)
is sometimes called thorough refinement [11]. Just like for modal transition systems,
thorough refinement does not imply modal refinement in general [12]. To establish equiv-
alence we follow [13] by imposing a restriction on B, namely that it is deterministic. An
MSD is deterministic if

(1) if (`, s, g, a, (`′, S′)), (`, s, g, a, (`′′, S′′)) ∈−−→� then (`′, S′) = (`′′, S′′),
(2) if (`, s, g, a, (`′, S′)), (`, s, g, a, (`′′, S′′)) ∈−−→♦ ∪ −−→� then `′ = `′′.

A specification B is deterministic, if the MSD 〈B〉sem is deterministic. Note that for
may-transitions, determinism only requires that for the same source state, guard and
action, the transition leads to a unique next location. The reason why this is sufficient is
that modal refinement explicitely distinguishes states by their data state part: two states
(`, s) and (`′, s′) can only be related if their data state parts s, s′ coincide.

Now, turning back to the relationship of modal refinement and inclusion of imple-
mentation sets (thorough refinement), we can prove the following theorem. Under the
restriction of determinism of the refined (abstract) specification we can prove complete-
ness of refinement. This theorem effectively means that modal refinement, as defined for
MSD, is characterized by set inclusion of admitted implementations.

Theorem 1. Let A and B be two specifications with the same signature such that B is
deterministic. Then A ≤ B if and only if Impl(A) ⊆ Impl(B).

3 Compositional Reasoning

In this section we propose all the essential operators on specifications a good specification
theory should provide. We will distinguish between structural and logical composition.

38

Structural composition mimics the classical composition of transition systems at the
specification level. Logical composition allows to compute the intersection of sets of
models and hence can be used to represent the conjunction of requirements made on an
implementation. Furthermore we will introduce a quotient operator which is the dual
operator to structural composition.

From now on, we assume that for any two specifications with the signatures Sig1 =
(Σ1, V

L
1 , V

G
1) and Sig2 = (Σ2, V

L
2 , V

G
2), respectively, we can assume that Σ1 = Σ2

and V L1] V G1 = V L2] V G2 . This is not a limitation, as one can apply the constructions
of [4] to equalize alphabets of actions and sets of variables.

Parallel composition. Two specifications A1 and A2 with Sig1 = (Σ1, V
L
1 , V

G
1),

Sig2 = (Σ2, V
L
2 , V

G
2), respectively, are composable iff V L1 ∩ V L2 = ∅. Then their

signatures can be composed in a straightforward manner to the signature

Sig1 ‖ Sig2 = (Σ1, V
L
1 ∪ V L2 , (V G1 ∪ V G2) \ (V L1 ∪ V L2))

in which the set of controlled variables is the union of the sets of controlled variables
of A1 and A2, and the set of uncontrolled variables consists of all those uncontrolled
variables of A1 and A2 which are controlled neither by A1 nor by A2.

Definition 5. Let A1 and A2 be two composable specifications. The parallel composi-
tion of A1 and A2 is defined as the specification

A1 ‖ A2 = (Sig1 ‖ Sig2,Loc1 × Loc2, (`
0
1, `

0
2), ϕ

0
1 ∧ ϕ0

2, E♦, E�)

where the transition relations E♦ and E� are the smallest relations satisfying the rules:

1. if (`1, a, ψ1, `
′
1)∈E♦,1 and (`2, a, ψ2, `

′
2)∈E♦,2 then

((`1, `2), a, ψ1 ∧ ψ2, (`
′
1, `
′
2))∈E♦,

2. if (`1, a, ψ1, `
′
1)∈E�,1 and (`2, a, ψ2, `

′
2)∈E�,2 then

((`1, `2), a, ψ1 ∧ ψ2, (`
′
1, `
′
2))∈E�.

Composition of specifications, similar to the classical notion of modal composition
for modal transition systems [10], synchronizes on matching shared actions and only
yields a must-transition if there exist corresponding matching must-transitions in the
original specifications. Composition is commutative (up to isomorphism) and associative.
Our theory supports independent implementability of specifications, which is a crucial
requirement for any compositional specification framework [14].

Theorem 2. Let A1,A2,B1,B2 be specifications such that A1 and B1 are composable.
If A1 ≤ A2 and B1 ≤ B2, then A1 ‖ B1 ≤ A2 ‖ B2.

The analog of parallel composition on the level of specifications is parallel com-
position ‖sem on the level of MSD which is a straightforward translation of the above
symbolic rules. In fact one can prove that both parallel compositions ‖ and ‖sem are
equivalent, i.e. that 〈A1 ‖ A2〉sem = 〈A1〉sem ‖sem 〈A2〉sem for any two composable
specifications A1,A2.

39

Remark 1. Interface theories based on transition systems labeled with input/output ac-
tions usually involve a notion of compatibility, which is a relation between interfaces
determining whether two components can work properly together. Since the present the-
ory does not have a notion of input/output it is enough to require that two components are
composable, i.e. that their local variables do not overlap. A pessimistic input/output com-
patibility notion has been proposed in our previous work [15]. Optimistic input/output
compatibility based on a game semantics allows computing all the environments in
which two components can work together. Following our recent works in [16, 4], one
can enrich labels of transitions in the present theory with input and output and apply the
same game-based semantics in order to achieve an optimistic composition.

Syntactical consistency. Our next two specification operators, conjunction and quotient,
may yield specifications which are syntactically inconsistent, i.e. either there is no legal
initial data state or there are states with a must-transition but without corresponding
may-transition.

In general, given a specification A, syntactic consistency implies consistency, i.e.
Impl(A) 6= ∅, but in general, the reverse does not hold. However, every consistent
specification can be “pruned” to a syntactically consistent one, by pruning backwards
from all syntactically inconsistent states, removing states which have to reach some of
the “bad” states. Pruning will be shown to preserve the set of implementations.

For a specification A = (Sig ,Loc, `0, ϕ0, E♦, E�), the pruning (or reduction) of
A, denoted by ρ(A), is done as follows. Let B : Loc → Pred(V L) be a mapping
of locations to predicates over the local variables. We define a predecessor operation,
iteratively computing all states that are forced to reach a “bad” state. Define a weakest
precondition predicate, for ψ ∈ Pred(V] (V L)′), ϕ ∈ Pred(V L), by

wpψ[ϕ] ≡ ∃V G.◦ψ ∧ (∀(V L)′.ψ ⇒ (ϕ)′) (1)

which computes the largest set of local states such that there exists an uncontrolled state
g ∈ JV GK such that ψ maps to at least one next state, and all next states satisfy ϕ. Then

predec(B)(`) ≡ B(`) ∨∨a∈Σ,`′∈Loc,ψ∈Musta(`,`′) wpψ[B(`′)]

and predec0(B) ≡ B, predecj+1(B) ≡ predec(predecj(B)) for j ≥ 0, and then finally
predec∗(B) ≡ ⋃j≥0 predecj(B). Define bad : Loc → Pred(V L), for any ` ∈ Loc, by

bad(`) ≡
∨

a∈Σ,`′∈Loc,ψ∈Musta(`,`′)

∃V G.◦ψ ∧

∀(V L)′.ψ ⇒

∧

ψ′∈Maya(`,`′)

¬ψ′

and thus bad(`) is satisfied by a valuation s ∈ JV LK iff there is a must-transition for
which no choice of the next data state is permitted by the may-transitions.

In general, for infinite-domain variables, the computation of predec∗(bad) may
not terminate. In [7], it was shown that reachability and related properties in well-
structured transition systems with data values, that are monotonic transition systems with
a well-quasi ordering on the set of data values, is decidable. This result can be used for
specifications with infinite-domain variables to show that under these assumptions, there

40

is some j ≥ 0 such that for all ` ∈ Loc, Jpredecj(bad)(`)K = Jpredecj+1(bad)(`)K. In
the following, for the specification operators conjunction and quotient (which may result
in a syntactically inconsistent specification and hence need to be pruned) we assume that
such a j ≥ 0 exists.

The pruning ρ(A) of A is defined if ϕ0 ∧ ¬predecj(bad)(`0) is consistent; and
in this case, ρ(A) is the specification (Sig ,Loc, `0, ϕ0 ∧ ¬predecj(bad)(`0), Eρ♦, E

ρ
�)

where, for χgood = ¬predecj(bad),

Eρ♦ =
{
(`1, a, χgood(`1) ∧ ψ ∧ (χgood(`2))

′, `2) | (`1, a, ψ, `2)∈E♦
}
,

Eρ� =
{
(`1, a, χgood(`1) ∧ ψ ∧ (χgood(`2))

′, `2) | (`1, a, ψ, `2)∈E�
}
.

Crucially the pruning operator has the expected properties:

Theorem 3. Let A be a deterministic, possibly syntactically inconsistent specification.
Then ρ(A) is defined if and only if A is consistent. And if ρ(A) is defined, then

1. ρ(A) is a specification (hence syntactically consistent),
2. ρ(A) ≤ A,
3. Impl(A) = Impl(ρ(A)), and
4. for any specification B, if B ≤ A, then B ≤ ρ(A).

Logical composition. Conjunction of two specifications yields the greatest lower bound
with respect to modal refinement. Syntactic inconsistencies arise if one specification
requires a behavior disallowed by the other.

Definition 6. Let A1 and A2 be two specifications with the same signature Sig . The
conjunction of A1 and A2 is defined as the possibly syntactically inconsistent specifica-
tion

A1 ∧A2 = (Sig ,Loc1 × Loc2, (`
0
1, `

0
2), ϕ

0
1 ∧ ϕ0

2, E♦, E�)

where the transition relations E♦, E� are the smallest relations satisfying the rules, for
any `1 ∈ Loc1, `2 ∈ Loc2, a ∈ Σ,

1. If (`1, a, ψ1, `
′
1)∈E♦,1, (`2, a, ψ2, `

′
2)∈E♦,2, then

((`1, `2), a, ψ1 ∧ ψ2, (`
′
1, `
′
2))∈E♦,

2. If (`1, a, ψ1, `
′
1)∈E�,1, then

((`1, `2), a, ψ1 ∧ (
∨
ψ2∈Maya

2 (`2,`′2)
ψ2), (`

′
1, `
′
2))∈E�,

3. If (`2, a, ψ2, `
′
2)∈E�,2, then

((`1, `2), a, ψ2 ∧ (
∨
ψ1∈Maya

1 (`1,`′1)
ψ1), (`

′
1, `
′
2))∈E�,

4. If (`1, a, ψ1, `
′
1)∈E�,1 then

((`1, `2), a,
◦ψ1 ∧

(
∀(V L)′.ψ1 ⇒

∧
ψ2∈M ¬ψ2

)
, (`′1, `2))∈E�,

where M =
⋃
`′2∈Loc2

Maya2 (`2, `
′
2),

5. If (`2, a, ψ2, `
′
2)∈E�,2 then

((`1, `2), a,
◦ψ2 ∧

(
∀(V L)′.ψ2 ⇒

∧
ψ1∈M ¬ψ1

)
, (`1, `

′
2))∈E�,

where M =
⋃
`′1∈Loc1

Maya1 (`1, `
′
1).

41

The first rule composes may-transitions (with the same action) by conjoining their
predicates. Rule (2) and (3) express that any required behavior of A1 (A2 resp.), as long
as it is allowed by A2 (A1 resp.), is also a required behavior in A1 ∧A2. Rules (4) and
(5) capture the case when a required behavior of A1 is not allowed by A2. Conjunction
is commutative and associative.

Refinement is a precongruence with respect to conjunction for deterministic specifi-
cations. Moreover, under the assumption of determinism, the conjunction construction
yields the greatest lower bound with respect to modal refinement:

Theorem 4. Let A, B, C be specifications with the same signature and let A and B be
deterministic. If A ∧B is consistent then

1. ρ(A ∧B) ≤ A and ρ(A ∧B) ≤ B,
2. C ≤ A and C ≤ B implies C ≤ ρ(A ∧B),
3. Impl(ρ(A ∧B)) = Impl(A) ∩ Impl(B).

Quotient as the dual operator to structural composition. The quotient operator allows
factoring out behaviors from larger specifications. Given two specifications A and B the
quotient of B by A, in the following denoted B A, is the most general specification
that can be composed with A and still refines B.

In the following, we assume for the signatures SigA = (Σ,V LA , V
G
A) and SigB =

(Σ,V LB , V
G
B) that V LA ⊆ V LB . The signature of the quotient B A is then SigBA =

(Σ,V LBA, V
G
BA) with V LBA = V LB \ V LA and V GBA = V GB ∪ V LA . Note that, as said

before, we restrict ourselves to the case where V LA] V GA = V LB] V GB .
It is unknown if in our general model of specifications a finite quotient exists.

For specifications involving variables with finite domains only, a semantic quotient
operation can be defined, which works on the (finite) semantics of A and B. As already
noticed in previous works, e.g. [17], non-determinism is problematic for quotienting,
and thus specifications are assumed to be deterministic. In our case, even when assuming
deterministic specifications, the non-determinism with respect to the next local data state
is still there: thus the quotient B A, when performing a transition, does not know the
next data state of A. However, due to our semantics, in which transitions are guarded by
uncontrolled states, the quotient can always observe the current data state of A. This
extension of the usual quotient can be shown that it satisfies the following soundness and
maximality property: Given MSD S and T such that S is deterministic and T sem S is
consistent, and assume a semantic pruning operator ρsem which is the straightforward
translation of pruning ρ to the semantic level. Then X ≤sem ρsem(Tsem S) if and only
if S ‖sem X ≤sem T for any MSD X.

Now our goal is to compute the quotient at the symbolic level of specifications. We do
this for a restricted subclass of specifications in which each occurring transition predicate
ψ is separable, meaning that ψ is equivalent to ◦ψ ∧ ψ◦. Although this might seem
as a serious restriction, we can often transform the transition systems with transition
predicates of the form (x)′ = x + 1 to a transition system with transition predicates
which are separable and keep the same set of implementations. For instance, if we know
that there are only finitely many possible values v1, . . . , vn for x in the current state,
we can “unfold” the specification and replace the transition predicates (x)′ = x+ 1 by
(x)′ = vi, for 1 ≤ i ≤ n.

42

The symbolic quotient introduces two new locations, the universal state (univ) and
an error state (⊥). In the universal state the quotient can show arbitrary behavior and
is needed to obtain maximality, and the error state is a syntactically inconsistent state
used to encode conflicting requirements. The state space of the quotient is given by
LocB × LocA × Pred(V LA), so every state stores not only the current location of B and
A (like in [17]) but includes a predicate about the current possible data states of A. For
notational convenience, for ϕ ∈ Pred(V1] V2) and ϕ1 ∈ Pred(V1), we write ϕ ϕ1

for (∀V1.ϕ1 ⇒ ϕ) ∈ Pred(V2).

Definition 7. Let A and B be two specifications such that V LA ⊆ V LB . The quotient
of B by A is defined as the possibly syntactically inconsistent specification BA =
(SigBA, (LocB×LocA× Pred(V LA)) ∪ {univ,⊥}, (`0B, `0A, ϕ0

A), ϕ0
B ϕ0

A, E♦, E�)
where the transition relations are given by, for all a ∈ Σ and all ξA ∈ Pred(V LA),

1. if (`B, a, ψB, `
′
B)∈E♦,B and (`A, a, ψA, `

′
A)∈E♦,A, then

((`B, `A, ξA), a, ξA ∧ ◦ψB ∧ ◦ψA ∧ (ψ◦B ψ◦A), (`′B, `
′
A, ψ

◦
A))∈E♦,

2. if (`B, a, ψB, `
′
B)∈E�,B and (`A, a, ψA, `

′
A)∈E�,A, then

((`B, `A, ξA), a, ξA ∧ ◦ψB ∧ ◦ψA ∧ (ψ◦B ψ◦A), (`′B, `
′
A, ψ

◦
A))∈E�,

3. if (`B, a, ψB, `
′
B)∈E�,B and (`A, a, ψA, `

′
A)∈E�,A, then

((`B, `A, ξA), a, ξA ∧ ◦ψB ∧ ◦ψA ∧ ¬(ψ◦B ψ◦A),⊥)∈E�,
4. if (`B, a, ψB, `

′
B)∈E�,B, then

((`B, `A, ξA), a, ξA ∧ ◦ψB ∧ ¬(
∨
ψA∈M

◦ψA),⊥)∈E�
where M =

⋃
`′A∈LocA

MustaA(`A, `
′
A),

5. ((`B, `A, ξA), a,¬ξA, univ)∈E♦,
6. ((`B, `A, ξA), a, ξA ∧ ¬(

∨
ψA∈M

◦ψA), univ)∈E♦
where M =

⋃
`′A∈LocA

MayaA(`A, `
′
A),

7. (univ, a, true, univ)∈E♦,
8. (⊥, a, true,⊥)∈E�.

Rules (1) and (2) capture the cases when both A and B can perform a may- and must-
transition, respectively. Rules (3) and (4) capture any inconsistencies which can arise if
for a must-transition in B there is no way to obtain a must-transition by composition
of the quotient with A. In order to obtain maximality, we add a universal state univ in
which the behavior of the quotient is not restricted (rules (5)–(7)). Finally, the rule (8)
makes the error state syntactically inconsistent.

Since we only have finitely many transition predicates ψA in A, and they are all
separable, the set of locations (LocB×LocA× ({ψ◦A | ψA occurring in A}∪{ϕ0

A}))∪
{univ,⊥} of BA is also finite. Thus we can construct the symbolic quotient in a finite
number of steps, starting in the initial state (`0B, `

0
A, ϕ

0
A), and iteratively constructing

the transitions. Soundness and maximality of the quotient follows from the following
theorem.

Theorem 5. Let A and B be specifications such that V LA ⊆ V LB , all transition predicates
of A and B are separable, A is deterministic and B A is consistent. Then for any
specification C such that SigC = SigBA, C ≤ ρ(B A) if and only if A ‖ C ≤ B.

43

[l + h = 0]
`′0 `′1

newPrintJob
[(l)′ = l + 1 ∧ (h)′ = h]

incPriority
[l > 0

∧ (l)′ = l − 1
∧ (h)′ = h+ 1]

ack [(l)′ = l ∧ (h)′ = h]

send
[l + h > 0
∧ (priorityMode ∧ h > 0 =⇒ (h)′ = h− 1 ∧ (l)′ = l)
∧ (¬(priorityMode ∧ h > 0) =⇒ ((h)′ = h− 1 ∧ (l)′ = l)

∨ ((l)′ = l − 1 ∧ (h)′ = h))]

Fig. 5. Refined print server specification Q.

4 Predicate Abstraction for Verification of Refinement

We now switch our focus to the problem of deciding whether a specification A refines
another specification B (which reduces to checking 〈A〉sem ≤sem 〈B〉sem). As soon
as domains of variables are infinite, 〈A〉sem and 〈B〉sem may be MSD with infinitely
many states and transitions. In this case, this problem is known to be undecidable in
general. Thus we propose to resort to predicate abstraction techniques [18]. Given two
specifications A and B we derive over- and under-approximations Ao and Bu which
are guaranteed to be finite MSD. Then, we show that Ao ≤sem Bu implies A ≤ B.

Example 5. Fig. 5 shows a print server specification Q which we will show is a re-
finement of the abstract specification P in Fig. 1. The behavior of the print server is
now fixed for any number of print jobs. Moreover, the send transition has been refined
such that depending on the priority mode (provided by the environment of the print
server) a job with high priority (in case priorityMode is true) or a job with low priority
(otherwise) is chosen next.

Given a specification A = (Sig ,Loc, `0, ϕ0,−−→♦,−−→�) with Sig = (Σ,V L,
V G), we partition the local state space and the uncontrolled state space using finitely
many predicates φ1, φ2, . . . , φN ∈ Pred(V L) and χ1, χ2, . . . , χM ∈ Pred(V G). We
fix these predicates in the following to simplify the presentation. The signature of the
abstraction is then given by Sigabstr = (Σ,V Labstr , V

G
abstr), where V Labstr = {x1, x2,

. . . , xN} and V Gabstr = {y1, y2, . . . , yM}. All variables xi, yj have Boolean domain. A
variable xi (yj) encodes whether the predicate φi (χj) holds or not.

Any abstract state ν ∈ JV Labstr K is a conjunction of predicates
∧N
i=1 φ

ν(xi)
i , where

φ
ν(xi)
i =φi if ν(xi)=1, else φν(xi)

i =¬φi. Further, a set of abstract states N⊆JV Labstr K
corresponds to

∨
ν∈N ν. Similarly for any ω∈JV Gabstr K and for M⊆JV Gabstr K.

The transition relation of the over-approximation expands the allowed behaviors
and limits the required behaviors. Dually, the under-approximation will further re-
strict the allowed behavior and add more required transitions. In other words, over-
approximation is an existential abstraction on may-transitions and universal abstraction
on must-transitions; dually for the under-approximation.

Formally, the over-approximation Ao of A is defined by the finite TSD (Sigabstr ,
Loc, `0, S0

abstr ,−−→♦,abstr ,−−→�,abstr), where the initial abstract state contains all par-
titions overlapping with concrete initial states S0

abstr = {ν ∈ JV Labstr K | ∃V L.ν ∧ ϕ0},

44

and the abstract transition relations are derived as follows. For all `, `′ ∈ Loc, a ∈ Act,
ν, ν̇ ∈ JV Labstr K, ω ∈ JV Gabstr K,

i. If ∃V.∃(V L)′.ν ∧ ω ∧ (
∨
ψ∈Maya(`,`′) ψ) ∧ (ν̇)′, then (`, ν)

ω a−−→♦,abstr (`′, {ν̇}),
so there is a may-transition between partitions in the abstraction if there was a
may-transition between any states in these partitions in the concrete system.

ii. Whenever, for some N ⊆ JV Labstr K, the predicate

∀V.ν ∧ ω ⇒ ∨
ψ∈Musta(`,`′)

◦ψ ∧ (∀(V L)′.ψ ⇒ (N)′) (2)

is true andN is minimal with respect to this property, then (`, ν)
ω a−−→�,abstr (`′, N).

For the under-approximation Bu of B, we assume that every transition predicate ψ on a
must-transition must be separable (see page 12). Moreover, in order to soundly capture
must-transitions, we must be able to exactly describe the target set of (concrete) local
states by a union of abstract states; so for any (`, a, ψ, `′) ∈ E�,B, there exists a set
N ⊆ JV Labstr K such that ∀(V L)′. ψ◦⇔ (N)′. The under-approximation Bu is the finite
TSD (Sigabstr ,Loc, `

0, S0
abstr ,−−→♦,abstr, −−→�,abstr), where S0

abstr = {ν ∈ JV Labstr K |
∀V L.ν ⇒ ϕ0}, and for all `, `′∈Loc, a∈Act, ν, ν̇∈JV Labstr K, ω ∈ JV Gabstr K,

i. If ∀V.∀(V L)′.ν ∧ ω ∧ (ν̇)′ ⇒ ∨
ψ∈Maya(`,`′) ψ then (`, ν)

ω a−−→♦,abstr (`′, {ν̇}),
ii. For every (`, a, ψ, `′)∈E�,, if ∃V.ν∧ω∧ ◦ψ, then (`, ν)

ω a−−→�,abstr (`′, N) where
N ⊆ JV Labstr K such that ∀(V L)′.ψ◦ ⇔ (N)′.

Correctness of the abstraction follows from the following theorem.

Theorem 6. Ao ≤sem Bu implies A ≤ B.

Example 6. Fig. 6 and Fig. 7 are over- and under-approximations of Q and P, re-
spectively. The MSD represent abstractions w.r.t. the predicates φ0,0 ≡ h = l = 0,
φ0,1 ≡ l = 0 ∧ h = 1, φ1,0 ≡ l = 1 ∧ h = 0, and φ>1 ≡ h + l > 1 for the
controlled variables l and h, and ω1 ≡ priorityMode, ω2 ≡ ¬priorityMode for the
uncontrolled variable priorityMode. Note that all transition predicates in P are separa-
ble, and all possible (concrete) poststates can be precisely captured by the predicates
φ0,0, φ0,1, φ1,0, φ>1. For better readability we have omitted most of the guards ω1,
ω2, i.e. every transition without guard stands for two transitions with the same action,
source and target state(s), and with ω1 and ω2 as guard, respectively. Moreover, the state
(`3, φ0,0 ∨ φ0,1 ∨ φ1,0 ∨ φ>1) is a simplified notation which represents all the states
(`3, φ) with φ ∈ {φ0,0, φ0,1, φ1,0, φ>1} and all may-transitions leading to it lead to each
of the states, and the may-loop stands for all the transitions between each of the states.
Obviously, Qo ≤sem Pu, and from Thm. 6 it follows that Q ≤ P.

Even though this abstraction technique requires separability of predicates, it is
applicable to a larger set of specifications. Sometimes, as already described in the
previous section, transitions with non-separable predicates can be replaced by finite sets
of transitions to achieve separability, without changing the semantics of the specification.
Automatic procedures for generation of predicates are subject of future work. Finally,
our abstraction also supports compositional reasoning about parallel composition in the
following sense:

45

(`0, φ0,0)

(`1, φ0,1)

(`1, φ1,0)

(`2, φ0,0)

(`3, φ0,0 ∨ φ0,1 ∨ φ1,0 ∨ φ>1)

newPrintJob
incPriority
send
ack

newPrintJob
incPriority

send

ω1 send
send

ack

new
Pr

int
Job

new
Prin

tJo
b

Fig. 6. Under-approximation Pu.

(`′0, φ0,0)

(`′0, φ0,1)

(`′0, φ1,0)

(`′1, φ0,0)

(`′0, φ>1)

(`′1, φ>1) (`′1, φ0,1)

(`′1, φ1,0)
newPrintJob

incPriority

send

send

ack

new
Pr

int
Job

new
Prin

tJo
b

sen
dack

send

send

newPrintJob

ack ack

incPriority

Fig. 7. Over-approximation Qo.

Theorem 7. Let A and B be two composable specifications, and V GA‖B=(V GA ∪V GB)r
(V LA] V LB). Let EA ⊆ Pred(V LA), EA ⊆ Pred(V LB), and F ⊆ Pred(V GA‖B) be sets of
predicates partitioning the respective data states.

A is approximated w.r.t. EA for V LA , and EB ∪ F for V GA = V GA‖B] V LB and
similarly, B is approximated w.r.t. EB and EA ∪ F . Finally, A ‖ B is approximated
w.r.t. EA ∪EB for V LA‖B = V LA] V LB , and F for V GA‖B. We assume that each predicate,
in any abstraction of A, B, or A ‖ B, are encoded with the same variable.

Then (A ‖B)o ≤sem Ao ‖sem Bo, and Au ‖sem Bu ≤sem (A ‖B)u.

This result allows reusing abstractions of individual components in a continued develop-
ment and verification process. For instance, if we want to verify A ‖ B ≤ C then we
can compute (or reuse) the less complex abstractions Ao and Bo. Thm. 7 implies then
that from Ao ‖sem Bo ≤sem Cu we can infer A ‖ B ≤ C.

5 Related work

The main difference to related approaches based on modal process algebra taking data
states into account, e.g. [19] is that they cannot naturally express logical and structural
composition in the same formalism. A comparison between modal specifications and

46

other theories such as interface automata [20] and process algebra [2] can be found in [3].
In [8], the authors introduced sociable interfaces, that is a model of I/O automata [21]
equipped with a data and a game-based semantics. While their communication primitives
are richer, sociable interfaces do not encompass any notion of logical composition and
quotient, and their refinement is based on an alternating simulation.

Transition systems enriched with predicates are used, for instance, in the approach
of [22, 23] where they use symbolic transition systems (STS), but STS do not support
modalities and loose data specifications as they focus more on model checking than on
the (top down) development of concurrent systems by refinement.

In [15] modal I/O automata has been extended by pre- and postconditions viewed as
contracts, however, only semantics in terms of sets of implementations have been defined
(implementations with only input actions correspond to our TSD). Modal refinement
as defined in [15] is coarser than in this paper, and moreover, neither conjunction nor a
quotient operation are defined.

6 Conclusion

We have proposed a specification theory for reasoning about components with rich
data state. Our formalism, based on modal transition systems, supports: refinement
checking, consistency checking with pruning of inconsistent states, structural and logical
composition, and a quotient operator. We have defined symbolic representations of the
operators and have shown that they are equivalent to the semantic definitions—this
allows for automatic analysis of specifications. We have also presented a predicate
abstraction technique for modal specifications with data. We believe that this work is a
significant step towards practical use of specification theories based on modal transition
systems. The ability to reason about data domains permits the modeling of industrial
case studies.

In the future, we intend to develop larger case studies. Furthermore, we would like
to extend the formalism with more complex communication patterns and to investigate
in which cases we can still obtain all the operators on specifications, in particular the
quotient operator. We are also planning to implement the theory in the MIO Workbench
[24, 25, 26], a verification tool for modal input/output interfaces.

References

[1] Larsen, K.G.: Modal specifications. In Sifakis, J., ed.: Automatic Verification Methods for
Finite State Systems. Volume 407 of Lecture Notes in Computer Science., Springer (1989)

[2] Milner, R.: A Calculus of Communicating Systems. Volume 92 of Lecture Notes in Computer
Science. Springer (1980)

[3] Nyman, U.: Modal Transition Systems as the Basis for Interface Theories and Product Lines.
PhD thesis, Department of Computer Science, Aalborg University (October 2008)

[4] Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.: Modal inter-
faces: unifying interface automata and modal specifications. In Chakraborty, S., Halbwachs,
N., eds.: EMSOFT, ACM (2009)

[5] Abdulla, P.A., Bouajjani, A., d’Orso, J.: Monotonic and downward closed games. J. Log.
Comput. 18(1) (2008) 153–169

47

[6] Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-based model checking using modal
transition systems. In: CONCUR. (2001) 426–440

[7] Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: Algorithmic analysis of programs with
well quasi-ordered domains. Inf. Comput. 160(1-2) (2000) 109–127

[8] de Alfaro, L., da Silva, L.D., Faella, M., Legay, A., Roy, P., Sorea, M.: Sociable interfaces.
In Gramlich, B., ed.: FroCos. Volume 3717 of Lecture Notes in Computer Science., Springer
(2005) 81–105

[9] Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In: LICS, IEEE
Computer Society (1990) 108–117

[10] Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, IEEE Computer Society
(1988) 203–210

[11] Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wasowski, A.: Complexity of decision
problems for mixed and modal specifications. In: FoSSaCS 2008. Volume 4962 of Lecture
Notes in Computer Science., Springer (2008) 112–126

[12] Larsen, K.G., Nyman, U., Wąsowski, A.: On modal refinement and consistency. In Caires,
L., Vasconcelos, V.T., eds.: CONCUR. Volume 4703 of Lecture Notes in Computer Science.,
Springer (2007) 105–119

[13] Benes, N., Kretínský, J., Larsen, K.G., Srba, J.: On determinism in modal transition systems.
Theor. Comput. Sci. 410(41) (2009) 4026–4043

[14] de Alfaro, L., Henzinger, T.A.: Interface theories for component-based design. In: Embedded
Software, First International Workshop, EMSOFT 2001, Tahoe City, CA, USA, October,
8-10, 2001, Proceedings. Volume 2211 of Lecture Notes in Computer Science., Springer
(2001) 148–165

[15] Bauer, S.S., Hennicker, R., Wirsing, M.: Interface theories for concurrency and data. Theor.
Comput. Sci. (2011) To appear.

[16] Larsen, K.G., Nyman, U., Wąsowski, A.: Modal I/O automata for interface and product line
theories. In Nicola, R.D., ed.: ESOP. Volume 4421 of Lecture Notes in Computer Science.,
Springer (2007) 64–79

[17] Raclet, J.B.: Residual for component specifications. Electr. Notes Theor. Comput. Sci. 215
(2008) 93–110

[18] Graf, S., Saïdi, H.: Construction of abstract state graphs with pvs. In Grumberg, O., ed.:
CAV. Volume 1254 of Lecture Notes in Computer Science., Springer (1997) 72–83

[19] van de Pol, J., Espada, M.V.: Modal Abstractions in µCRL. In Rattray, C., Maharaj, S.,
Shankland, C., eds.: AMAST. Volume 3116 of Lecture Notes in Computer Science., Springer
(2004) 409–425

[20] de Alfaro, L., Henzinger, T.A.: Interface automata. SIGSOFT Softw. Eng. Notes 26
(September 2001) 109–120

[21] Lynch, N., Tuttle, M.R.: An introduction to Input/Output automata. CWI-quarterly 2(3)
(1989)

[22] Fernandes, F., Royer, J.C.: The STSLib project: Towards a formal component model based
on STS. Electr. Notes Theor. Comput. Sci. 215 (2008) 131–149

[23] Barros, T., Ameur-Boulifa, R., Cansado, A., Henrio, L., Madelaine, E.: Behavioural models
for distributed fractal components. Annales des Télécommunications 64(1-2) (2009) 25–43

[24] Bauer, S.S., Mayer, P., Schroeder, A., Hennicker, R.: On weak modal compatibility, refine-
ment, and the mio workbench. In Esparza, J., Majumdar, R., eds.: TACAS. Volume 6015 of
Lecture Notes in Computer Science., Springer (2010) 175–189

[25] Bauer, S.S., Mayer, P., Legay, A.: MIO Workbench: A Tool for Compositional Design with
Modal Input/Output Interfaces. In: Automated Technology for Verification and Analysis
(ATVA 2011). (2011) Accepted for publication.

[26] MIO Workbench: http://www.miowb.net/

48

Evaluating the performance of model
transformation styles in Maude?

Roberto Bruni1 and Alberto Lluch Lafuente2

1 Department of Computer Science, University of Pisa, Italy
2 IMT Institute for Advanced Studies Lucca, Italy

Abstract. Rule-based programming has been shown to be very successful
in many application areas. Two prominent examples are the specification
of model transformations in model driven development approaches and
the definition of structured operational semantics of formal languages.
General rewriting frameworks such as Maude are flexible enough to
allow the programmer to adopt and mix various rule styles. The choice
between styles can be biased by the programmer’s background. For
instance, experts in visual formalisms might prefer graph-rewriting styles,
while experts in semantics might prefer structurally inductive rules. This
paper evaluates the performance of different rule styles on a significant
benchmark taken from the literature on model transformation. Depending
on the actual transformation being carried out, our results show that
different rule styles can offer drastically different performances. We point
out the situations from which each rule style benefits to offer a valuable
set of hints for choosing one style over the other.

1 Introduction

Many engineering activities are devoted to manipulate software artifacts to
enhance or customize them, or to define their possible ordinary evolutions and
exceptional reconfigurations. The concept of model as unifying software artifact
representation has been promoted as a means to facilitate the specification of
such activities in a generic way. Many dynamic aspects can be conceived as model
transformations : e.g. architectural reconfigurations, component adaptations, soft-
ware refactorings, and language translations. Rule-based specifications have been
widely adopted as a declarative approach to enact model-driven transformations,
thanks to the intuitive meaning and solid foundations offered by rule-based
machineries like term [1] and graph rewriting [2].

Recently we have investigated the possibility to exploit the structure of mod-
els to enhance software description and to facilitate model transformations [3,
4]. Indeed, many domains exhibit an inherently hierarchical structure that can
be exploited conveniently to guarantee scalability. We mention, among others,
nested components in software architectures and reflective object-oriented sys-
tems, nested sessions and transactions in business processes, nested membranes

? Work supported by the EU Project ASCENS and the Italian MIUR Project IPODS.

49

in computational biology, composition associations in UML-like modeling frame-
works, semi-structured data in XML-like formats, and so on. Very often such
layering is represented in a plain manner by overlapping the intra- and the
inter-layered structure. For instance, models are usually formalised as flat object
configurations (e.g. graphs) and their manipulation is studied with tools and
techniques based on rewriting theories that do not fully exploit the hierarchical
structure. On the other hand, an explicit treatment of the hierarchical structure
for specifying and transforming model-based software artifacts is possible. As a
matter of fact, some layering structures (like composition relations in UML-like
languages) can be conveniently represented by an explicit hierarchical structure
enabling then hierarchical manipulations of the resulting models (see e.g. [3, 4]).

We have investigated such issues in previous work [3] proposing an approach
analogous to the russian dolls of [5, 6], where objects can be nested within
other objects. In this view, structured models are represented by terms that
can be manipulated by means of term-rewrite techniques like conditional term
rewriting [1]. In [3] we compared the flat representation against the nested one,
showing that they are essentially equivalent in the sense that one can bijectively
pass from one to the other. Each representation naturally calls for different rule
styles and the comparison in [3] mainly addressed methodological aspects, leaving
one pragmatical issue open: how to decide in advance which approach is more
efficient for actually executing a model transformation?

We offer an answer to this question in this paper. We have selected two
prominent approaches to model transformation. The first one is archetypal of the
graph-transformation based model-driven community and follows the style of [7].
The second one is quite common in process calculi and goes along the tradition
of Plotkin’s structural operational semantics, as outlined in [3]. Both approaches
can be adopted in flexible rule-based languages like Maude [8] (the rewriting logic
based language and framework we have chosen). In order to obtain significant
results we have implemented three test cases widely used in the literature: the
reconfiguration of components that migrate from one location to another one,
the transformation of class diagrams into relational schemas, and the refactoring
of class diagrams by pulling up attributes. As a byproduct we offer a novel
implementation of these three classical transformations based on conditional
rules. Indeed, such style of programming model transformations has not been
proposed by other authors, as far as we know.

Our experimental results stress the importance of choosing the right transfor-
mation style carefully to obtain the best possible performance. We point out some
features of the examples that impact on the performance of each rule format,
thus providing the programmer with a set of valuable guidelines for programming
model transformations in expressive rule-based frameworks like Maude.

Synopsis. § 2 presents a graph-based algebraic representation of models as
nested object collections and describes rewrite rule styles for implementing model
transformations in Maude. § 3 presents some enhancements that can be applied
to the transformation styles. § 4 describes our benchmark. § 5 presents the
experimental results. § 6 concludes the paper.

50

2 Preliminaries

In this section we illustrate the two key model transformation paradigms
and the Maude notation we shall exploit in the rest of the paper over a basic
example of transformation, namely from trees to list. A classical approach would
provide ad-hoc data structures for trees and lists and an ad-hoc algorithm for
implementing the transformation. Model driven approaches, instead, consider a
common representation formalism for both data structures and a generic transfor-
mation procedure that acts on such formalism. In our setting, the representation
formalism for models are collections of attributed objects and the transformation
procedure is based on rewrite rules.

The Maude language already provides some machinery for this purpose, called
object-based configurations [8], which we tend to follow with slight modifications
aimed to ease the presentation. More precisely we represent models as nested
object collections [3] (following an idea originally proposed in [5] and initially
sketched in [6]), which can be understood as a particular class of attributed,
hierarchical graphs. We then implement transformations as sets of rewrite rules.

Rewriting Logic and Maude. Maude modules describe theories of rewriting
logic [1], which are tuples 〈Σ,E,R〉 where Σ is a signature, specifying the basic
syntax (function symbols) and type machinery (sorts, kinds and subsorting) for
terms, e.g. model descriptions; E is a set of (possibly conditional) equations,
which induce equivalence classes of terms, and (possibly conditional) membership
predicates, which refine the typing information; R is a set of (possibly conditional)
rules, e.g. model transformations.

The signature Σ and the equations E of a rewrite theory form a membership
equational theory 〈Σ,E〉, whose initial algebra is denoted by TΣ/E . Indeed, TΣ/E
is the state space of a rewrite theory, i.e. states (e.g. models) are equivalence
classes of Σ-terms modulo the least congruence induced by the axioms in E
(denoted by [t]E or t for short). Sort declarations takes the form sort S and
subsorting (i.e. subtyping) is written subsort S < T. For instance, the sort of
objects (Obj) is a subsort of configurations sort Configuration as declared by
subsort Obj < Configuration.

Operators are declared in Maude notation as op f : TL -> T [As] where
f is the operator symbol (possibly with mixfix notation where underscores
stand for argument placeholders), TL is a (possibly empty, blank separated) list
of domain sorts, T is the sort of the co-domain, and As is a set of equational
attributes (e.g. associativity, commutativity). For example, object configurations
(sort Configuration) are constructed with operators for the empty configuration
(none: -> Configuration), single objects (via subsorting) or the union of con-
figurations, denoted with juxtaposition (: Configuration Configuration

-> Configuration [assoc comm id:none]), declared to be associative, com-
mutative and to have none as its identity operator (i.e. they are multisets).

Each object represents an entity and its properties. Technically, an object is
defined by its identifier (of sort Oid), its class (of sort Cid) and its attributes (of

51

sort AttSet). Objects are built with an operation < : | > with functional
type Oid Cid AttSet -> Obj. Following Maude conventions, we shall use quoted
identifiers like ’a as object identifiers, while class identifiers will be defined by
ad-hoc constructors. In our running example we use the constants Node and Item

of sort Cid to denote the classes of tree nodes and list items, respectively.
The attributes of an object define its properties and relations to other ob-

jects. They are basically of two kinds: datatype attributes and association ends.
Datatype attributes take the form n: v, where n is the attribute name and v

is the attribute value. For instance, in our running example we shall consider a
natural attribute value (sort Nat), representing the value of a node or item. A
node with identifier ’a and value 5 is denoted by < ’a : Node | value: 5 >.

Relations between objects can be represented in different ways. One typical
approach is to use a pair of references (called association ends in UML terminol-
ogy) for each relation. So if an object o1 is in relation R with object o2 then o1

is equipped with a reference to o2 and vice versa. In our case this is achieved
with attributes of the form R: O2 and opp(R): O1 where R indicates the relation
name and O1, O2 are sets of object identifiers (sort OidSet). Association ends
of the same relation within one object are grouped together (hence the use of
identifier sets as domain of association attributes). In our example we have two
relations left and right between a node and its left and right children, and
one relation next between an item of the list and the next one. Clearly, the
opposite relations of left, right and next are the parent and previous relations.
As an example of a pair of references consider a node < ’a : Node | value: 5

, left: ’b > and its son < ’b : Node | value: 3 , opp(left): ’a >. Of
course an object can be equipped with any number of attributes. Actually, the
attributes of an object form a set built out of singleton attributes, the empty set
(none) and union set (denoted with ,).

The following simple configuration represents a tree with three nodes.

< ’a : Node | value: 5 , left: ’b , right: ’c >

< ’b : Node | value: 3 , opp(left): ’a >

< ’c : Node | value: 7 , opp(right): ’a >

Operation << >> : Configuration -> Model wraps a configuration into
a model.

Functions (and equations that cannot be declared as equational attributes)
are defined by a set of confluent and terminating conditional equations of the
form ceq t = t’ if c, where where t, t’ are Σ-terms, and c is an application
condition. When the application condition is vacuous, the simpler syntax eq t =

t’ can be used. For example, an operator op size : Configuration -> Nat

for measuring the number of objects in a configuration is inductively defined
by equations eq size(none) = 0 and eq size(O C) = 1 + size(C) (with O, C
being variables of sort Obj, Configuration, respectively). Roughly, an equational
rule can be applied to a term t’’ if we find a match m (i.e. a variable substitution)
for t at some place in t’’ such that m(c) holds (i.e. c after the application of the
substitution m evaluates to true). The effect is that of substituting the matched
part with m(t’). For example, calculating the size of the above tree is done by

52

reducing size(< ’a : Node | value: 5 , left: ’b , right: ’c > < ’b :

Node | value: 3 , opp(left): ’a > < ’c : Node | value: 7 , opp(right):

’a >) to 1 + size(< ’b : Node | value: 3 , opp(left): ’a > < ’c : Node

| value: 7 , opp(right): ’a >), then to 2 + size(< ’c : Node | value:

7 , opp(right): ’a >) and finally to 3.

Structured models. A nested object collection allows objects to have container
attributes, i.e. configuration domain attributes. While in a plain object collection a
containment relation r between two objects o1 and o2 is represented by exploiting
a pair of association end attributes r and opp(r), now o2 is embedded into o1

by means of the container attribute r. For instance, the above tree becomes

< ’a : Node | value: 5 ,

left: < ’b : Node | value: 3 > ,

right: < ’c : Node | value: 7 > >

The hierarchical structure of models forms a tree. The two approaches that
we have described differ essentially in the way we represent such a tree. Indeed,
flat and nested representations are in bijective correspondence, i.e. for each flat
object collection we can obtain a unique nested collection and vice versa as shown
in [3], so that we can pass from one to the other as we find more convenient for
specific applications or analyses.

Transformations as sets of rewrite rules. Transformations can be defined by means
of rewrite rules, which take the form crl t => t’ if c, where t, t’ are Σ-terms,
and c is an application condition (a predicate on the terms involved in the rewrite,
further rewrites whose result can be reused, membership predicates, etc.). When
the application condition is vacuous, the simpler syntax rl t => t’ can be
used. Matching and rule application are similar to the case of equations with the
main difference being that rules are not required to be confluent and terminating
(as they represent possibly non-deterministic concurrent actions rather than
functions). Equational simplification has precedence over rule application in order
to simulate rule application modulo equational equivalence.

SPO transformations. The need for visual modelling languages and the graph-
based nature of models have contributed to the success of graph transformation
approaches to model transformations. In such approaches, transformations are
programmed in a declarative way by means of a set of graph rewrite rules.
The transformation style that we consider here is based on the algebraic graph
transformation approach [2]. The main idea is that each rule has a left-hand
side and a right-hand side pattern. Each pattern is composed by a set of objects
(nodes) possibly interrelated by means of association ends (edges). A rule can
be applied to a model whenever the left-hand side can be matched with part of
the model, i.e. each object in the left-hand side is (injectively) identified with an
object and idem for the association ends. The application of a rule removes the
matched part of the model that does not have a counterpart in the right-hand
side and, vice versa, adds to the model a fresh copy of the right-hand side part

53

that is not present in the left-hand side. Items in common between the left-hand
side and the right-hand side are preserved during the application of the rule.
Very often, rules are equipped with additional application conditions, including
those typical of graph transformation systems (e.g. to avoid dangling edges) and
its extensions like Negative Application Conditions (NACs).

In our setting, this means that rules have in general the following format:

crl << lhs conf1 >> => << rhs conf1 >> if applicable(lhs conf1) .

where lhs and rhs stand for the rule’s left- and right-hand side configurations,
conf1 as the context in which the rule will be applied, and applicable is the
boolean function implementing the application condition. Simpler forms are
possible, e.g. in absence of application conditions the context is not necessary
and rules take the form: rl lhs => rhs .

In our running example the transformation rules basically take a node x and
its children y and z and puts them in some sequence, with x before y and z. This
rule might introduce branches in the sequence that are solved by appropriate
rules. A couple of rules are needed to handle some special cases, like x being the
root or a node that has already been put in the list (in the middle, tail or head).
Let us show one of the basic rules (the rest of the rules are very similar):

rl [nodeToItem]

<< < x : Node | value: vx , left: y , right: z , next: u , Ax >

< y : Node | value: vy , op(left): x, Ay >

< z : Node | value: vz , op(right): x, Az >

< u : Node | value: vu , op(next): x, Au >

conf1 >> =>

<< < x : Item | value: vx , next: y , Ax>

< y : Node | value: vy , op(next): x, next: z , Ay >

< z : Node | value: vz , op(next): y, next: u , Ay >

< u : Node | value: vu , op(next): z, Au >

conf1 >> .

SOS transformations. We now describe transformation rules in the style of
Structural Operational Semantics [9] (SOS). The basic idea is to define a model
transformation by structural induction, which in our setting basically amounts
to exploiting set union and (possibly) nesting.

We recall that SOS rules make use of labels to coordinate rule applications.
We first present the implementation style of SOS semantics in rewriting logic as
described in [10] and then present our own encoding of SOS which provides a
more efficient implementation, though circumscribed to some special cases.

The approach of [10] requires to enrich the signatures with sorts for rule labels
(Lab), label-prefixed configurations LabConfiguration, and a constructor { } :

Lab Configuration => LabConfiguration for label-prefixed configurations. In
addition, rule application is allowed at the top-level of terms only (via Maude’s
frozen attribute [11]) so that sub-terms are rewritten only when required in the
premise of a rule (as required by the semantics of SOS rules). With this notation

54

a term {lab1}conf1 represents that a configuration conf1 has been obtained
after application of a lab1-labelled rule.

One typical rule format in our case allows us to conclude a transformation
lab1 for a configuration made of two parts conf1 and conf2 provided that each
part can respectively perform some transformation lab2, lab3:

crl conf1 conf2 => {lab3} conf3 conf4

if conf1 => {lab1} conf3

/\ conf2 => {lab2} conf4 .

Typically, the combination of labels will follow some classical form. For
instance, with Milner-like synchronisation, lab1, lab2 can be complementary
actions, in which case lab3 would be a silent action label. Instead, Hoare-like
synchronisation would require lab1, lab2 and lab3 to be equal.

Consider now a hierarchical representation of models based on nested object
collections. In this situation we need rules for dealing with nesting. Typically, the
needed rule format is the one that defines the transformation lab1 of an object
oid1 conditional to some transformation lab2 of one of its contents c:

crl < oid1 : cid1 | c: conf1 , attSet1 > =>

{lab1} < oid1 : cid1 | c: conf2 , f(attSet1) >

if conf1 => {lab2} conf2 .

Such rules might affect the attributes of the container object (denoted with
function f) but will typically not change the object’s identifier or class. More
elaborated versions of the above rule are also possible, for instance involving
more than one object or not requiring any rewrite of contained objects.

In our running example we have the following rule that transforms a tree
provided that its subtrees can be transformed into lists

crl [root] : < x : Node | value: vx , left: leftTree , right: rightTree >

=> {toList}

list1

< tail : Item | value: vt, next: x , opp(next): y >

< x : Item | value: vx , opp(next): tail , next: head >

< head : Item | value: vh, opp(next): x , next: z >

list2

if leftTree => {toList} list1 < tail : Item | value: vt , opp(next): y >

/\ rightTree => {toList} < head : Item | value: vh , next: z > list2 .

Note that head and tail of the transformed sublists are identified by the lack
of next and opp(next) attributes. Rules are also needed to handle leafs:

rl [root] : < x : Node | value: vx > => {toList} < x : Node | value: vx > .

Finally, rules are needed to close the transformations at the level of models.
Such rules have the following format:

crl << conf1 >> => << conf2 >> if conf1 => {lab1} conf2 .

In our example the rule would be

crl << conf1 >> => << conf2 >> if conf1 => {toList} conf2 .

55

3 Enhanced SOS implementation

While performing our preliminary experiments we discovered a more efficient
way to encode SOS rules in rewriting logic that we call SOS*.

The most significant improvement applies to those cases in which the labels
of the sub-configurations are known in advance. As a matter of fact this was
the case of all test cases we consider in the next section. The idea is to put the
labels on the left-hand side of rules as a sort of context requiring the firing of
transformations with such label. In other words, we pass from post- to pre-rule
applicability checks.

As a more general example the above rule scheme becomes now:

crl {lab3} conf1 conf2 => conf3 conf4

if {lab1} conf1 => conf3

/\ {lab2} conf2 => conf4 .

The main difference is that now lab2 and lab3 are known in advance and
not obtained as a result of the conditional rewrites. A notable example where
this alternative encoding cannot be immediately applied are the semantics of
process calculi where synchronisation rules do not know in advance which signals
are ready to perform their subprocesses.

Another slight improvement is the object-by-object decomposition of object
collections instead of the one based on a pair of subsets presented above. For
example the above rule scheme becomes:

crl {lab1} obj1 conf2 => obj3 conf4

if {lab2} obj1 => obj3

/\ {lab3} conf2 => conf4 .

A more significant improvement is that in some cases we allow to contextualise
rules at any place of a term. We recall that in a SOS derivation this is typically
achieved by rules that lift up silent (e.g. τ -labelled) actions. Technically this is
essentially achieved by declaring as frozen the labelling operator { } only. This
allows to apply rules to transform a sub-configuration at any level of the nesting
hierarchy. That is, SOS rules like the ones for lifting silent actions across the
nesting hierarchy like

crl < oid1 : cid1 | c: conf1 , attSet1 > =>

{tau} < oid1 : cid1 | c: conf2 , attSet1 >

if conf1 => {tau} conf2 .

or rules to lift silent actions among object configurations at the same level of the
hierarchy like

crl {tau} obj1 conf2 => obj3 conf2

if {tau} obj1 => obj3 .

are not necessary in the SOS* style.

56

Fig. 1. An instance of the model reconfiguration test case

Fig. 2. An SPO rule (left) and a SOS rule (right) for architectural reconfiguration.

4 Benchmark

Our benchmark consists of three test cases selected from the literature as archetyp-
ical examples of model reconfigurations, transformations and refactorings. In the
following we describe the main features of each test case, emphasizing the most
relevant details. For the full description of the test cases we refer to the source
code of our implementation [12] or to the indicated references.

Architectural reconfiguration. The first test case we consider is the typical re-
configuration scenario in which some components must be migrated from one
compromised location to another one. Many instances of this situation arise in
practice (e.g. clients or jobs that must be migrated from one server to another
one). Some instances of this scenario can be found e.g. in [7, 13]. In what follows
we consider a scenario in which components can be nested within each other.
Components within an unsafe component x must be migrated into an uncle
component y with the additional requirement of changing their status according

57

Fig. 3. An instance of the model translation test case

to the status of their new container y. Figure 1 depicts one possible instance of
the scenario.3

The most significant SPO rule4 is depicted on the left of Fig. 2. It takes
an unsafe component and a safe component that are neighbours (they have a
common container) and moves the component inside the compromised component
one to the safe one while changing its status. More rules are needed (for instance
for considering top-level rooms without containers) and some of them have
application conditions. As a consequence, the applicability of those rule requires
to check the whole model and there is no predefined order on which rules to apply
first. The safe system (the system without components in need of evacuation) is
reached when no more transformation rules are applicable. For instance, Fig. 1
shows a possible match for the SPO rule. The effect of applying the SPO rule
will be to move the normal component under the unsafe one to its new location
(under the safe component) while changing its status into safe.

On the right of Fig. 2 instead we the see the main SOS rule: all the components
c1 contained in a unsafe component are evacuated into a safe neighbor component,
while changing their status inductively (via to(s1)-labelled rules). Figure 1 shows
a possible instance of the SOS rule. The effect of the SOS rule will be to migrate
the two normal components contained in the unsafe component to the safe
component while changing their status (in addition the unsafe component is
removed).

Model translation. Our second test case is the classical translation of class
diagrams into relational database schemes (a description can be found in [14]).
The main idea is that classes are transformed into tables and their attributes

3 The figures in the paper follow an intuitive UML-like notation, with boxes for objects
and arrows for references. We prefer to use this intuitive notation to sketch the
scenarios, leaving the detailed Maude implementation [12] for interested readers.

4 The big encircled arrow separates the rule’s left- and right-hand side. Object identifiers
are dropped for the sake of clarity and are to be identified by their spatial location.

58

Fig. 4. An SPO rule (left) and a SOS rule (right) for model translation

Fig. 5. An instance of the model refactoring test case

into columns of the tables. Associations between classes are transformed into
auxiliary tables with foreign keys from the tables corresponding to the associated
classes. Figure 3 depicts one possible instance of the scenario.

Figure 4 sketches two illustrative transformation rules. The SPO rule trans-
forms a class (belonging to a package) into a table (within the corresponding
schema). It also creates a primary key and the corresponding column for the
table. A negative application condition forbids the application of the rule in
case the table already exists. The, let us say, corresponding rule in SOS format
transforms a class into a table provided that its attributes are transformed into
columns and its association ends are properly collected. An auxiliary object is
used as a container where to put association ends of the same relation in the
same context so that they can be transformed properly by another rule.

Refactoring. The example of model refactoring we consider is the classical
attribute pull-up as described in [15]. The main idea is very simple: if all the
subclasses of a class c declare the same attribute, then the attribute should be
declared at c only. This preserves the semantics of the diagram (as the sub-classes
will inherit the attribute) while simplifying it by removing redundancies. Figure
5 depicts one possible instance of the scenario.

59

Fig. 6. An SPO rule (left) and a SOS rule (right) for model refactoring

Figure 6 depicts two illustrative transformation rules. The SPO rule pulls an
attribute up provided that it is not annotated as missing by another class (a set
of rules takes care of creating such annotations). The SOS rule instead pulls the
attribute up provided that all sibling sub-classes agree to pull it up.

5 Experiments

This section presents our experimental results. Experiments were run on an
Ubuntu Linux server equipped with Intel Xeon 2.67GHz processors and 24GB
of RAM. Each experiment consists on the transformation of instances of a test
case using the discussed representation and transformation styles. Instances are
automatically generated with the help of parameterizable instance generators that
allow us, for instance, to scale up the instances to check scalability of the various
approaches. For each experiment we have recorded the number of rewrites and
the running time (not always proportional), put in the y-axis of separate plots.
Each experiment is performed for an increased size factor that typically makes
the model grow exponentially. The x-axis corresponds to the size of the instance
in terms of overall number of objects. The timeout for the experiments is of an
hour. We do not present results for instances larger than those where at least
one of the techniques already times out (which is denoted by the interruption of
the plot).

The goal of the experiments is to collect evidence of performance differences,
draw hypotheses about the causes of those differences and validate our hypotheses
with further experiments. Our benchmark consists of the three test cases presented
in Section 4. The code for replicating our experiments is available at [12].

5.1 SOS vs SOS*

1st experiment. We start testing the impact of our improvement encoding of
SOS (SOS*) with a basic set of instance generators. The generator for the
reconfiguration test cases has a single parameter which is the depth of the

60

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 0 50 100 150 200 250 300

Rewrites

SOS*

SOS

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300

Running time (in seconds)

SOS*
SOS

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 0 500 1000 1500 2000 2500

Rewrites

SOS*

SOS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 500 1000 1500 2000 2500

Running time (in seconds)

SOS*
SOS

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 0 20 40 60 80 100 120 140 160 180 200

Rewrites

SOS*

SOS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100 120 140 160 180 200

Running time (in seconds)

SOS*
SOS

Fig. 7. SOS vs SOS* in reconfiguration (top), translation (middle), pullup (bottom).

component containment tree, i.e. for a given natural number n, it generates
a binary tree of depth n. The grandfathers of leafs have exactly one unsafe
component and one safe component as children. All other components are normal.
Figure 1 sketches one such instance. The parameter of the instance generator for
the model transformation case is the branching factor of the containment tree, i.e.
given for a given natural number n, it generates a UML domain with n packages,
each containing 2n classes, each containing n attributes and n associations.
The i-th association of class c with c even (resp. odd) has as opposite the i-th
association of class c + 1 (resp. c − 1). So-built domains have n packages, 2n2

classes and n3 association pairs (cf. Fig. 3).
The instance generator for the refactoring test case produces binary trees of

class hierarchies. Hence, each class has two sub-classes. In addition each sub-class
has one local attribute (that will not be pulled up) and one (non-local) attribute

61

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 50 100 150 200 250 300

Rewrites

SOS*

SOS

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250 300

Running time (in seconds)

SOS*
SOS

Fig. 8. SOS vs SOS*: effect of disabling new attempts.

inherited from its parent. The topmost class has only one local attribute and one
(non-local) attribute (cf. Fig. 5).

The results of Fig. 7 show a clear superiority of SOS* in most cases. The only
exception is the model translation test case. We argue that there are two reasons.
First, SOS* allows to contextualise some reconfigurations at an arbitrary level of
the nesting hierarchy while SOS has to derive the reconfiguration at the top level
by lifting up silent rewrite steps. The second reason is that SOS* performs less
transformation attempts as it does not try rules that have unnecessary labels.

The reconfiguration test case is a perfect example for both issues. First,
regarding the free contextualisation of top SOS* rules we observe that in the
considered instances the rule can be applied at the bottom of the term, while
the SOS rules require in addition to lift the application of such rule up to the
root. In addition, determining whether a transformation can be carried out
can be determined by the non-applicability of rules in the SOS* case, while in
the SOS case requires to perform many unsuccessful transformation attempts.
In the model translation both styles are essentially equivalent as the top rule
must necessarily apply at the top of the term representing the model and after
transformation the rules are deactivated as the necessary patterns disappear.

2nd experiment. In order to validate the first hypothesis we have performed
experiments where safe components do not accept reconfigurations. In addition
a component whose sub-components are safe becomes safe. This does not only
disable reconfigurations after a migration but also prevents reconfiguration at-
tempts. The results are depicted in Fig. 8 where it can be seen that now SOS
scales better since the number of rewrite attempts for silent transitions is reduced
(safe components and their containment are not checked for reconfiguration).

3rd experiment. Another improvement of SOS* regards the top-down imposition
of labels in rewrite conditions. In order to validate the effect of top-down enact-
ing of transformations we have conducted further experiments with the model
reconfiguration test case with a different instance generator: now the root is a
normal component, the two sons of the root are an unsafe and a safe component
that contain a fixed number components, each able to change into safe plus

62

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 1 2 3 4 5 6 7 8

Rewrites

SOS*

SOS

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7 8

Running time (in seconds)

SOS*
SOS

Fig. 9. SOS vs SOS*: effect of increasing the number of enabled actions.

any status of a set of size n, the parameter of the generator. So, for n = 0, the
components to be migrated are able to change into safe, for n = 1 they are ready
to change into safe and another status, and so on. The results of such experiment
are depicted in Fig. 9.

As expected the SOS* transformation is not affected as n increases. Indeed,
the SOS* transformation rules will call for a transformation into safe, while in
the SOS transformation all possible status changes will be attempted. As a result
the computational effort of SOS transformations blows up with the increase of n.

5.2 SPO vs SOS*

In this set of experiments we compare the SPO approach against the SOS* one.

1st experiment. We start with the first set of instance generators used in §5.1.
The results of Fig. 10 show that SOS* is superior in the reconfiguration

test case only. The situation can be roughly explained as follows: matching the
migration rule consists on finding a subtree whose root is a component having
two subtrees: one having a unsafe component as root and one having a safe one
as root. In the SPO case the tree is not parsed: indeed we are given a graph and
have to check all possible subsets of nodes to see if they constitute indeed a tree.
Instead in the SOS case the tree is already parsed (the parsing is a term of the
hierarchical representation) which enormously facilitates rule matching (recall
that matching amounts to subgraph isomorphism which is NP-complete). As a
consequence, the SPO transformation involves more unsuccessful rule attempts
and this is the main reason of the drastic difference in running time (and not in
number of effective rewrites).

In the rest of the test cases SPO performs better. This is particularly evident in
the refactoring test case where the performance of SOS* degenerates mainly due
to the lack of a smart transformation strategy. Indeed it can happen that a pull
up has to be attempted at some class every time one of the terms corresponding
to one of the subclasses changes. Clearly applying rules bottom up would result
in better results but this would require a more cumbersome implementation.

63

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 0 50 100 150 200 250 300

Rewrites

SOS*

SPO

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200 250 300

Running time (in seconds)

SOS*
SPO

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 500 1000 1500 2000 2500

Rewrites

SOS*

SPO

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 500 1000 1500 2000 2500

Running time (in seconds)

SOS*
SPO

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 0 50 100 150 200 250 300 350 400

Rewrites

SOS*

SPO

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200 250 300 350 400

Running time (in seconds)

SOS*
SPO

Fig. 10. SPO vs SOS* in reconfiguration (top), translation (middle), pullup (bottom).

We focus now on the transformation test case were we see that SPO performs
only slightly better. There are various reasons. First, the structure of the model
is rather flat. Indeed the hierarchy is limited to a fixed depth as packages contain
classes, classes contain only attributes and associations. So containment trees are
of depth 3. In addition, association pairs have to be lifted to the top level in the
SOS* transformation since the transformation rule that translates them needs
them to be in a common context. This involves an overhead that makes SOS*
exhibit a worse performance.

2nd experiment. In order to check the impact of such overhead we have performed
an additional experiment in which the instances have no associations at all.
Figure 11 shows the results were we see how SOS* is the winner this time
confirming our hypothesis.

64

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 200 400 600 800 1000 1200

Rewrites

SOS*

SPO

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000 1200

Running time (in seconds)

SOS*
SPO

Fig. 11. SPO vs SOS*: effect of removing associations.

6 Conclusion

We have presented an empirical evaluation of the performance of two transforma-
tion styles that are very popular in rule-based programming and specification.
For instance, in the process algebra community they essentially correspond to
the rule formats used for specifying reduction and transition label semantics.

We have focused on model transformations and as a result of our experience
we have obtained a set of hints that could be useful for future development of
model transformations (or other kind of rule-based specifications) in Maude or
to enhance the existing ones (e.g. [19]). We think that it might be worth to
investigate to which extent our experience can be exported to other rule-based
frameworks like CafeOBJ [16], Stratego [17] or XSLT [18] with a particular
attention to model transformation frameworks such as MOMENT2-MT [19],
ATL [20], Stratego/XT [21], and SiTra [22]. To this aim one should also clarify
the influence of Maude’s matching and rewriting strategies in the obtained
performances. The study could also be enlarged to other rule styles or alternative
implementations of SOS in Maude (e.g. [23, 24]). Another interesting aspect to be
investigated is to understand if and how strategy languages (c.f. [23]) or heuristics
(c.f. [25]) can be exploited to appropriately guide the model transformation process
in the most convenient way.

It is worth to remark that the aim of the paper is not to compare the
performance of transformation tools as done in various works and competitions [26,
27]. Rather we assume the point of view of a transformation programmer, which is
given a fixed rule-based tool and can only obtain performance gains by adopting
the appropriate programming style.

Even if we have focused fundamentally on deterministic transformations
many cases (e.g. reconfigurations) are inherently non-deterministic. This gives
rise to a state space of possible configurations, whose complexity and required
computational effort is clearly influenced by the chosen rule style (evidenced as
well by experiments not presented here).

65

References

1. Meseguer, J.: Conditional rewriting logic as a united model of concurrency. Theo-
retical Computer Science 96 (1992) 73–155

2. Rozenberg, G., ed.: Handbook of Graph Grammars. World Scientific (1997)
3. Bruni, R., Lluch Lafuente, A., Montanari, U.: On structured model-driven trans-

formations. International Journal of Software and Informatics (IJSI) 2 (2011)
4. Boronat, A., Bruni, R., Lluch-Lafuente, A., Montanari, U., Paolillo, G.: Exploiting

the hierarchical structure of rule-based specifications for decision planning. In:
International Joint Conference on Formal Techniques for Distributed Systems
(FMOODS/FORTE’10). Volume 6117 of LNCS., Springer (2010)

5. Meseguer, J., Talcott, C.: Semantic models for distributed object reflection. In
Magnusson, B., ed.: 16th European Conference on Object-Oriented Programming
(ECOOP’02). Volume 2374 of LNCS. Springer (2002) 1–36

6. Meseguer, J.: A logical theory of concurrent objects. In: International Conference
on Object Oriented Programming Systems Languages and Applications (OOP-
SLA/ECOOP’90). (1990) 101–115

7. Boronat, A., Meseguer, J.: An algebraic semantics for MOF. In: International
Conference on Fundamental Aspects of Software Engineering (FASE’08). Volume
4961 of LNCS., Springer (2008) 377–391

8. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.L.: All About Maude. Volume 4350 of LNCS. Springer (2007)

9. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic
and Algebraic Programming 60-61 (2004) 17–139

10. Verdejo, A., Mart́ı-Oliet, N.: Executable structural operational semantics in Maude.
Journal of Logic and Algebraic Programming 67 (2006) 226–293

11. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theoretical Computer Science 360 (2006) 386–414

12. http://dl.dropbox.com/u/2271084/facs2011.zip.
13. Bruni, R., Lluch Lafuente, A., Montanari, U., Tuosto, E.: Style based architectural

reconfigurations. Bulletin of the European Association of Theoretical Computer
Science (EATCS) 94 (2008) 161–180

14. Boronat, A., Knapp, A., Meseguer, J., Wirsing, M.: What is a Multi-Modeling
Language? In: WADT’08. Volume 5486 of LNCS., Springer (2009) 71–87

15. Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer, G., Weiss, E.: EMF
model refactoring based on graph transformation concepts. In: 3rd Workshop on
Software Evolution through Transformations. Volume 3., ECEASST (2006)

16. CafeObj, http://www.ldl.jaist.ac.jp/cafeobj/.
17. Stratego, http://www.program-transformation.org/Stratego/.
18. XSLT, http://www.w3.org/TR/xslt20/.
19. MOMENT2-MT: www.cs.le.ac.uk/people/aboronat/tools/moment2-gt/.
20. ATL, http://www.eclipse.org/atl/.
21. StrategoXT, http://strategoxt.org/.
22. SiTra, http://www.cs.bham.ac.uk/~bxb/SiTra.html.
23. Braga, C., Verdejo, A.: Modular structural operational semantics with strategies.

ENTCS 175 (2007) 3–17
24. K Framework, http://fsl.cs.uiuc.edu/index.php/K.
25. Kessentini, M., Sahraoui, H., Boukadoum, M., Omar, O.: Search-based model

transformation by example. Software and Systems Modeling (2010) 1–18
26. Rewrite engines competition, www.lcc.uma.es/~duran/rewriting_competition/.
27. Graph Transformation Contest, http://fots.ua.ac.be/events/grabats2008/.

66

Interactive Transformations from Object-Oriented
Models to Component-Based Models

Dan Li1?, Xiaoshan Li1, Zhiming Liu2, and Volker Stolz2,3

1 Faculty of Science and Technology, University of Macau, China
2 UNU-IIST, Macau, China

3 Dept. of Informatics, University of Oslo, Norway

Abstract. Consider an object-oriented model with a class diagram, and a set of
object sequence diagrams, each representing the design of object interactions for
a use case. This article discusses how such an OO design model can be automat-
ically transformed into a component-based model for the purpose of reusability,
maintenance, and more importantly, distributed and independent deployment. We
present the design and implementation of a tool that transforms an object-oriented
model to a component-based model, which are both formally defined in the rCOS
method of model driven design of component-based software, in an interactive,
stepwise manner. The transformation is designed using QVT Relations and im-
plemented as part of the rCOS CASE tool.

Keywords: Model-driven development, OO design model, sequence diagram,
component model, model transformation, QVT

1 Introduction

In the rCOS [3, 12] model-driven design of component-based software, the model of
the requirements is represented in a component-based architecture. Each use case is
modeled as a component in the requirements model. The interface of the component
provides methods through which the actors of the use case interact with the compo-
nent. The functionality of each method m() of the interface is specified by pre- and
post-conditions m(){pre ` post}, and the order of the interactions (called the use-case
protocol) between the actors and the component as a set of traces of method invocations,
graphically represented by a UML sequence diagram. One component may have a re-
quired interface through which it uses the provided methods of other components. The
linkages (dependency) between components forms a static component-based structure
modeled as a component diagram. The types of the variables of the components, i.e. its
objects and data, are modeled by a UML class diagram, that has a textual counterpart
specification in rCOS. Therefore the model of the component-based architecture of the
requirements consists of a model of the component-based static structure (graphically
represented as a UML component diagram), a class model (graphically a class dia-
gram), an interaction protocol (graphically a sequence diagram for each component),
and a specification of the data functionality of the interface methods.

? On leave from Guizhou Academy of Sciences, Guizhou, China.

67

In the design, the functionality specification of the interface methods of each com-
ponent is then refined by decomposition and assignment of responsibilities to objects
of the component, obtaining an OO model of object interactions represented by an ob-
ject sequence diagram. This object sequence diagram refines the sequence diagram of
the component (use case). For the purpose of reusability, maintenance, and more im-
portantly, distributed and independent deployment (third party composition) [19], the
OO model is abstracted to a model of interactions of components, that is graphically
represented as a component sequence diagram defined in the UML profile for rCOS.

This paper presents the design and implementation of a tool for the transforma-
tion of a model of object interaction to a model of component interaction. The tool
requires user interactions. In each step of interaction, the users decide which objects
will be turned into a component, then the tool automatically performs the model trans-
formation. However, we need to define the criteria for the selection of objects to form
a component as the validity conditions of the selection. The tool automatically checks
the validity, and the transformation of the sequence diagram is carried out if selection
passes the check. The transformation also automatically and consistently transform the
static structure and reactive behavior (state machine diagram), obtaining a model of
component-based design architecture, that correctly refines the component-based ar-
chitecture of the requirements.

Through a finite number of transformation steps with valid selection on the OO
model of each component in the model of requirements, the object sequence diagram
is transformed to a component sequence diagram in which the lifelines represent only
components. Also, a complete component diagram is generated with the interface proto-
cols as sets of traces and the reactive behavior modeled by state machine diagrams of the
components. The transformations of the OO design of all components thus, one by one,
obtain a correct refinement of the model of requirements architecture to a component-
based design architecture in which each component in the requirements is a composition
of a number of components.

The semantic correctness of the transformation and consistency among the different
resulting views (diagrams) can be reasoned about within the rCOS framework. The tool
is not only applicable in a top-down design process. If object-interaction models can be
obtained from packages (modules) of OO programs, the tool can be used to transform
OO programs to components, at least on the modeling level. An extension would be
required to transform existing source code within a transformation step.

The paper is organized as follows. We start in Section 2 to discuss the concepts
of rCOS model to facilitate the definition of the transformation. We present the major
principles of the transformation in Section 3, and describe the implementation of the
transformation tool. Section 4 shows how the transformation be applied to a case study.
Our conclusions and the related work of this paper are discussed in Section 5.

2 UML Profile of rCOS Models

rCOS provides a notation and an integrated semantic theory to support separation of
concerns and allows us to factor a system model into models of different viewpoints [3,
12]. The formal semantics and refinement calculus developed based on it are needed for

68

the development and use of tools for model verification and transformations. The aim of
the development of rCOS tools is to support a component-based software development
process that is driven by automatic model transformations. The model transformations
implement semantic correctness preserving refinement relations between models at dif-
ferent level of abstraction. It is often the case that the models before and/or after a
transformation need to be verified or analyzed, and in that case verification and analysis
tools are invoked. The rCOS project focuses on tool development for model transfor-
mations, and this paper in particular is about the transformation from object-oriented
design models to component-based design models.

UML Profiles [15] are a mechanism to support extending and customizing standard
UML. This mechanism is carried out by defining stereotypes, tagged values and ad-
ditional constraints. Through such a UML profile, rCOS models can be supported by
standard UML infrastructure and CASE tools, minimizing the effort to develop a new
tool, and meeting the requirements for standardization and interoperability.

The rCOS development process involves the following models:

1. The requirements model includes a component diagram, a conceptual class dia-
gram in which classes do not have methods, and a set of sequence diagrams. They
all have their formal rCOS textual counter parts. Also, each method of the provided
interface has a pre- and post-condition specification. The sequence diagrams are
component sequence diagrams in which the lifelines are components, and interac-
tions are inter-component interactions.

2. Each component in the requirements model go through an OO design phase and its
sequence diagram is refined into an object sequence diagram in which each lifeline
is an object, and interactions are intra-object interactions within the component.
The conceptual class diagram in the requirements model is also refined into a de-
sign class diagram in which methods for the intra-object interactions of the object
sequence diagrams are assigned to the classes.

3. Then each OO sequence diagram of a component in the previous stage is abstracted
to a component sequence diagram; thus the component is decomposed into a com-
position of a number of components. After the abstraction transformation is done
for all components of the requirements model, the component-diagram of the re-
quirements is refined to another component diagram with more hierarchical com-
ponents being introduced.

Note that the transformation described here is not limited to rCOS models—rather,
rCOS just prescribes the wellformedness of the input models, and the semantics of the
communication model that will be preserved through the transformation. We refer to
our publications [3,12] for detailed discussions. The rCOS class model is rather a UML
standard class model. In the rest of this section, we define the metamodels of rCOS
components and sequence diagrams.

2.1 The metamodel of rCOS components

The component model is an essential part of rCOS. Its metamodel is defined by a UML
profile diagram shown in Fig. 1, in where an element in the light yellow box represents a

69

<<stereotype>>

RCOSSequenceDiagram

<<stereotype>>

ComponentModel

[Package]

ComponentRealization

<<stereotype>>

ProcessComponent

InterfaceRealization

<<stereotype>>

ServiceComponent

<<stereotype>>

RCOSComponent

[Component]

<<stereotype>>

ContractInterface

<<stereotype>>

ContractInterface

[Interface]

<<stereotype>>

DesignOperation

Usage

<<stereotype>>

Protocol

[Package]

<<stereotype>>

Composition

[Dependency]

StateMachine

Collaboration

Class

Operation
CallEvent

Interface
0..*

0..*

0..*

+operation

0..*

+protocol

0..*

+interface

0..1

+realization 0..*

+ownedBehavior

+/provided 0..1
+supplier

+client

0..1

0..*

+client

+contract

+/required

0..1

+supplier

+ownedOperation 0..*

+realizingClassifier1

0..*
+client

0..*

0..*

0..1

+supplier

Fig. 1. The metamodel of rCOS component model

stereotype of rCOS, and the ones in the dark yellow boxes are standard UML metamodel
elements. In the metamodel, an rCOS component model consists of:

– ContractInterface: Extended from UML Interface, a contract interface provides an
interaction point for a component, and defines the static portion of a rCOS interface
contract. DesignOperations specify the static functionality of an operation. It is
defined as an rCOS design in the form of pre ` post . An rCOS Field, which is
not shown in the figure explicitly, is implemented as a UML Property of a contract
interface. (For ease of layout of the diagram, the same ContractInterface element
appears twice in Fig. 1.)

– Protocol: A contract interface has a Protocol that specifies the traces of invocations
to the Operations of the Interface of the contract interface. A protocol contains a
StateMachine, a Collaboration and a set of CallEvents. A call event is an invocation
of an operation of the contract interface, resulting in the execution of the called
operation. Especially, here a Collaboration owns a UML Interaction defined as a
RCOSSequenceDiagram, whose metamodel is given in the next subsection.

– RCOSComponent: There are two kinds of components in rCOS, ServiceCom-
ponents and ProcessComponents. A service component, for short a component
here, provides services to the environments through its provided interfaces, and re-
quires services from other components through it required interfaces. rCOS defines
separate contracts for the provided interface and required interface of a compo-
nent. Thus, the metamodel defines one provided contract interface, and optionally
a required contract interface.

70

– We realize the connection between a component and its provided interface using
a UML InterfaceRealization. A UML Usage, a specialized Dependency relation-
ship, is used to link a required interface to its owner component. In addition, we
define a stereotype Composition, which is also an extension of UML dependency,
to plug a provided interface of a component to a required interface of another com-
ponent (here, rCOS component operations do not translate naturally to UML com-
ponent composition). Furthermore, a component may be realized by a set of classes
through ComponentRealizations.

2.2 Metamodel of rCOS sequence diagrams

+interactionOperator : CombineType

CombinedFragment

<<stereotype>>
ComponentSequenceDigram

<<stereotype>>
ObjectSequenceDiagram

<<stereotype>>
RCOSSequenceDiagram

[Interaction]

InteractionFragment

ConnectableElement

+value : String

InteractionConstraint

MessageOccurrence

break
loop
opt
alt

<<enumeration>>

CombineType

InteractionOperand

BehaviorExecution

Component

Message
Lifeline

Actor

Operation

{ordered}{ordered}

{ordered}

CallEvent

Interface

Property

Class

+event

+coveredBy 1..*

+covered 1..*

+message

1..*

+sendEvent

+message

+fragment1..*
+receiveEvent

+message.

+lifeline

2..*

+start +finish

+fragment 1..*

+operation

+represents

+guard 0..1

+operand 1..2

+type

Fig. 2. Metamodel of rCOS sequence diagram

Fig. 2 shows the metamodel of rCOS sequence diagrams. It conforms to the interac-
tion metamodel provided by OMG [15]. In the metamodel, a UML Interaction contains
a number of Lifelines, and a set of Messages.

A message specifies a communication from a sender lifeline to a receiver lifeline.
It has a sendEvent and receiveEvent which express the MessageOccurrences along the
lifelines, appearing in pairs. A message occurrence represents the synchronous invoca-
tion of an operation. The BehaviorExecution (green segment of a lifeline in the later
diagrams) represents the duration of an operation, and plays no role in our models (yet
it is an artefact from the graphical editor).

rCOS has two kinds of sequence diagrams, object sequence diagrams and compo-
nent sequence diagrams. A lifeline may represent an actor, an object (of a particular
class), or a component. When a lifeline represents an object or a component, we call it
object lifeline or component lifeline. A CombinedFragment represents a nested block
that covers lifelines and their messages to express flow of control, such as an alternative

71

block (alt) or an iteration block (loop), with their attached boolean guard conditions.
Sequence diagrams here do not express recursion.

The two kinds of sequence diagrams are needed to combine both OO design and
component-based design in rCOS. The abstract stereotype RCOSSequenceDiagram
has subtypes of ObjectSequenceDiagram and ComponentSequenceDiagram, that
satisfy the following well-formed conditions, respectively.

1. ObjectSequenceDiagram:
– There is one lifeline representing an Actor, and all other lifelines represent

objects or components.
– Messages are synchronous calls to an operation provided by the type of the

target lifeline, or a constructor/create messages.
– A message flow starts with a message from the actor to a single component,

from components to components or objects, or from objects to objects, but
never from objects to components.

Therefore, and object-sequence diagram can contain both component and object
lifelines, and thus also serves as an intermediate data structure for the transforma-
tions, until all objects have been transformed.

2. ComponentSequenceDiagram:
– One lifeline represents an Actor, and all other lifelines represent components.
– All receive events occur on the lifelines representing components.
– Each message is a method call to an operation defined in the provided interfaces

of the component represented by the target lifeline.
– There should be a composition relation between two component if there is a

message between them in a sequence diagram.
– No create messages exists in the diagram.

The static semantics, i.e. well-formedness of the rCOS sequence diagrams, including
the above conditions, is defined by a set of OCL rules in the rCOS CASE tool. These
rules are used to automatically check the well-formedness conditions and the structural
consistency of the UML model: for example, the object creation event on a lifeline must
precede all other events on the lifeline, and a fragment must include both the sender and
the receiver of any event occurring in the fragment.

rCOS also has a dynamic model represented by state diagrams. The metamodel
of state diagrams is largely the same as the labelled transition systems provided by
standard UML state diagrams, where guarded transitions are again linked to interface
methods. We leave the metamodel definition out of this paper.

3 Transformation from Object- to Component Sequence Diagrams

We now describe the interactive transformations from an object sequence diagram to a
component sequence diagram. The transformations start with an object sequence dia-
gram and a design class diagram. Through a number of steps of interactions between
the user and the tool, they generate a component sequence diagram, a component se-
quence diagram, and the protocols of the provided interface and required interface of
each component in the component diagram. In each step, the user selects a set of object

72

lifelines that she intends to make into a component. The tool will check the validity
conditions for this set to form a component. If the selection passes the check, the tool
combines the selected object lifelines into a component lifeline, adding a component
to the component diagram, and generates the protocols for the component. We describe
the principles of the selection and the validity of selection, as well as the generation of
a component from the selected lifelines below. As the UML metamodel especially for
sequence diagrams is quite verbose as shown in the previous section, we use an alter-
nate, more concise representation here (at the cost of not having established the formal
correspondence between the two levels).

3.1 Selection of object lifelines

First, one object lifeline is designated as the controller object of the selection by the
user. The principles for picking such a control object not only depend on checkable
conditions of the object but also on design considerations of reusability, maintainabil-
ity, and organization of the system being modeled. The major checkable condition is
that this object should be a permanent object in the sequence diagram. This means it
should have existed before the start of the execution of the sequence diagram (speci-
fied by the precondition of the first message), and it will not be destroyed during the
execution (rCOS does not have destructor methods). This also includes software ob-
jects representing the control of physical devices, such as barcode readers, controllers
of printers, lights, and operating system objects, such as the system clock.

Then the selection of further objects should be made by the user with consideration
of the following conditions and principles:

1. any object lifeline that is a receive end of a creation event from a lifeline that is
already included in the selection must be selected,

2. the objects in the selection must be strongly connected, i.e. for any lifeline ` in the
selection there is at least one message path from the controller object to `,

3. consider low coupling and high cohesion principle that the selected lifelines have
more intensive interaction with each other than with lifelines outside the selection.

4. lifelines that represent objects which will be deployed on different nodes of a dis-
tributed system should not be included in the same selection.

The first two conditions are must condition and can be easily checked, as discussed
in the next sub-section. The third condition is a desirable principle, and the fourth is a
platform dependent condition. The latter two can never lead to an inconsistent model,
but to a model that does not capture the intentions correctly, and a detailed discussion
of them is out the scope of the paper.

3.2 Validating the lifeline selection

Given an object sequence diagram D, we define some notations for the describing
the validation of a selection. We use D.lines to denote the set of all lifelines of D,
D.messages the set of messages, and messages in D.messages are represented bym[`i, `j]
for an invocation of m of `j from `i. create-messages indicate constructor invocation.

73

Let D.selection ⊆ D.lines be a selection, and `c the designated controller object,
and define D.rest = D.lines−D.selection. Further, we define

IntraM = {m[`i, `j] : `i, `j ∈ D.selection} Intra-message among
the selected lifelines

InM = {m[`i, `j] : `i ∈ D.rest ∧ `j ∈ D.selection} Incoming messages
to selected lifelines

OutM = {m[`i, `j] : `i ∈ D.selection ∧ `j ∈ D.rest} Outgoing messages
from selected lifelines

OutsideM = {m[`i, `j] : `i, `j ∈ D.rest} Messages outside
the selected lifelines

A lifeline ` in sequence diagram D can be either an object lifeline, denoted by type(`) =
Class, or a component lifeline, denoted by type(`) = Component. Now we define the
conditions below for checking the validity of a selection.

1. All lifelines selected must be object lifelines

∀` ∈ D.selection · type(`) = Class

2. The controller object `c must be a permanent object. This is done by checking it is
not on the receive end of an object creation message.

∀` ∈ D.lines · (create[`, `c] 6∈ D.messages)

3. The transformation starts with those lifelines that directly interact with the ac-
tor, then those directly receiving message from the lifelines that have been made
into component lifelines. Therefore any incoming message to the current selection
should be from either the actor or a component lifeline

∀m[`i, `j] ∈ InM · (type(`i) = Actor ∨ type(`i) = Component)

4. Creation messages can only be sent between lifelines inside the selection or be-
tween objects outside the selection

∀`i, `j ∈ D.lines · (create[`i, `j] ∈ IntraM ∨ create[`i, `j] ∈ OutsideM)

5. Any incoming message to the selection is received either by the controller object
or by a lifeline which has a direct path of message from the controller object

∀m[`i, `j] ∈ InM · (`j = `c ∨ ∃m[`c, `j] ∈ IntraM)

6. The lifelines of the selection must be strongly connected, meaning that for any
selected lifeline `, there must be a path of messages from the controller object

m[`c, `1],m1[`1, `2], . . . ,mi[`i, `]

Notice that Conditions 4&6 are closure properties required of the section, and that the
initial object-sequence diagram of a use case in rCOS always has a use case controller
object that satisfies Conditions 2,3&5. Using induction on the number of lifelines, these
conditions all together ensures existence of a valid selection for any well-formed se-
quence diagram that contains object lifelines. Every OO sequence diagram can be trans-
lated into the trivial component sequence diagram which internalises all object lifelines
into the controller.

74

3.3 Generating a component from selected lifelines

If the selection passes the validity checking, the transformation will be executed to
generate the target models, otherwise an error message is fed back to the tool user. The
transformation is specified in the QVT relational notation (see Section 3.4). For the
understandability to the formal specification community, we describe the specification
in terms of the relation between the source model and the target model, similar to the
pre- and postcondition specification of a program.

Given a source sequence diagram D, that is an object sequence diagram, and a valid
selection D.selection, let D’ denote the target sequence diagram of one step of the trans-
formation. For a lifeline ` in D (or D’), we use op(`,D) (respectively op(`,D’)) to de-
note the set of method names of the type class of ` in D (respectively D’), type(`,D) the
type of the lifeline ` in D (respectively type(`,D’) in D’), and pIF the provided interface
of the component that ` represents if the type of ` is a component. For a component life-
line ` in D (or D’), rIF denotes the its required interface. We now describe the relation
between D and D’ as the conjunction of the following predicates.

1. The controller object `c in D is changed to a component lifeline in D’

`c ∈ D.selection ∧ type(`c, D) = Class
∧ `c ∈ D′.lines ∧ type(`c, D′) = Component

2. An incoming message to the selection in D becomes an invocation to the interface
methods of `c in D’

∀m[`i, `j] ∈ InM · (m[`i, `c] ∈ D’.messages ∧m ∈ pIF(`c))

Notice that the order of the messages and fragments are not to be changed.
3. All the intra-object interactions in the selection in D are collapsed, more precisely

hidden inside the component `c

∀m[`i, `j] ∈ IntraM · (`i, `j 6∈ D’.lines ∧m[`i, `j] 6∈ D’.messages)

4. All the outgoing messages from the selection become outgoing messages from the
component that `c represents in D′, with the order and fragments preserved, and
they become the required methods of the component

∀m[`i, `j] ∈ OutM · (m[`c, `i] ∈ D’.messages ∧m ∈ rIF(`c))

5. No lifelines and messages outside the selection are changed

∀m[`i, `j] ∈ OutsideM · (m[`i, `j] ∈ D’.messages)

From the definition of the resulting sequence diagram D’, its static counterparts, the
components can be defined. The change for the component diagram can be specified in
a similar way. The protocols of the provided interface pIF(`c) and the required interface
rIF(`c) of the newly constructed component `c in D’ will be generated.

Next, we give an intuition into how the relations defined above can be directly put
to use through QVT-Relations.

75

3.4 Implementation of the transformation

The object sequence diagram to component sequence diagram transformation is imple-
mented through the QVT Relations language using the QVTR-XSLT tool we recently
developed [10]. The MOF 2.0 Query/View/Transformation (QVT) [14] is a model trans-
formation standard proposed by OMG. QVT has a hybrid declarative/imperative nature.
In its declarative language, called QVT Relations (QVT-R), a transformation is defined
as a set of relations between the elements of source metamodels and target metamodels.
QVT-R has both textual and graphical notations, and the graphical notation provides a
concise, intuitive way to specify transformations.

The QVTR-XSLT tool supports the graphical notation of QVT-R. It provides a
graphical editor in which a transformation can be specified using the graphical syn-
tax, and a code generator that automatically generates executable XSLT [21] programs
for the transformation. The tool supports in-place transformations so we can focus on
defining rules only for the parts of a model we want to change. Multiple input and
output models are also supported in the tool.

<<Relation>>

ObjToComLifeline

{when=LifelineToCom(lfl,com);}

<<Domain>>

seq : Interaction

com : Component

name = "propnm"

xmi:id = "propid"

 : Property

name = "propnm"

xmi:id = "propid"

 : Property

<<Domain>>

tseq : Interaction

name = "lflnm"

xmi:id = "lflid"

 : Lifeline

name = "lflnm"

xmi:id = "lflid"

lfl : Lifeline

lifeline

ownedAttribute

represents

represents

lifeline

type

Fig. 3. An example of a QVTR relation

In the graphical notation, a relation defines how two object diagrams, called domain
patterns, relate to each other. Fig. 3 illustrates an example QVT relation in graphical
notation which specifies the generation of a component lifeline from an object lifeline.
Starting from the root object seq tagged with label �Domain�, the source domain
pattern (left part) of the relation consists of a Lifeline lfl with its representing Property
under the seq. The target domain pattern (right part) has a similar structure. The patterns
are used for structural matching in the source- and target model, respectively.

When the relation is executed, the source domain pattern is searched in the source
model. If a match is found, the lifeline and the property are bound to instances of source

76

model elements. The target domain pattern of the relation acts as a template to create
objects and links in the target model. In this example, the target domain pattern creates a
lifeline object and a property object. Both objects own a name and an xmi:id attributes.
These two attributes get values from the corresponding model instances bound by the
source domain pattern. Moreover, the property object of the target model has now the
association type set to the component com, which is bound (and possible created) by
invoking relation LifelineToCom in the when clause. These clauses specify additional
matching conditions and can either refer to other relations, or OCL expressions.

At the implementation level, a complete model consists of a UML model and a
DI (diagram interchange) [13] model. The former contains the abstract syntax infor-
mation that is described in Section 2, and it is stored in Eclipse Modeling Frame-
work (EMF) XMI format, which is supported by many UML CASE tools. The latter
contains the layout information in the form of UML 2.0 Diagram Interchange stan-
dard [13]. In fact, these two models are technically separate models and saved in differ-
ent XML files. When the UML model is modified by the transformation, the DI model
must be synchronously updated in order to correctly display the corresponding dia-
grams. The changes to the DI model are also specified using QVT-R, and transformed
by the QVTR-XSLT tool. The resulting diagrams for the case study are the result of
those transformations after minimal visual cleanup. The transformation is specified by
three transformation models. In total, they contain 105 relations, and 45 functions and
queries. About 6300 lines of XSLT code are generated for the implementation of the
transformation.

To support the rCOS methodology, we have developed a CASE tool [4] with graph-
ical interfaces for designing use cases, classes, component-, sequence- and state dia-
grams, and the syntactic consistency among these views can be checked. The tool is
implemented as an Eclipse-plugin on top of the Eclipse Graphical Modelling Frame-
work and TOPCASED [16]. We have integrated the XSLT programs of the transfor-
mation into the user interface of the tool. A user can select a group of lifelines from
the interface, and then the XSLT transformation programs are invoked by the tool with
these lifelines as parameters. If these lifelines are allowed to become a component,
the transformation is executed and the user interface will be automatically refreshed to
show the transformation results.

4 Case Study

The Common Component Modelling Example (CoCoME) [3, 17] describes a trading
system that is typically used in supermarkets. This case study deals with the various
business processes, including processing sales at a cash desk, handling payments, and
updating the inventory. The system maintains a catalog of product items, as well as the
amount of each item available. It also keeps the historical records of sales; each of them
consists of a number of line items, determined by the product item and the amount sold.

At the end of the object-oriented design stage, we get a design model which con-
tains a set of design class diagrams and object sequence diagrams. Fig. 4 shows a sim-
plified version of the design class diagram for the CoCoME example, where the class
CashDesk is the control class. Fig. 5 depicts the object sequence diagram of use case

77

Fig. 4. The design class model of CoCoME

Fig. 5. The object sequence diagram of usecase process sale

process sale, which describes the check out process: a customer takes the products she
wants to buy to a cash desk, the cashier records each product item, and finally the
customer makes the payment. Applying the transformations discussed in the previous
sections, we transform the object sequence diagram into an rCOS component sequence
diagram in a stepwise, incremental manner. Meanwhile the object model automatically
evolves to a component-based model.

78

The object sequence diagram of Fig. 5 consists of seven lifelines. The leftmost life-
line is the Actor, and followed by lifelines L CashDesk, L Sale, L LineItem, L Store,
L Item and L Pay, representing objects of class CashDesk, Sale, LineItem, Store, Item
and Payment, respectively. Based on our interpretation of the case study, we decide to
apply the transformation three times.

The first step deals with the lifeline L CashDesk, which is directly interacting with
the actor. Since lifeline L Sale is created by L CashDesk, and L LineItem is created by
L Sale, they have to be in the same component. As shown in Fig. 6, we select these three
lifelines from the sequence diagram, set L CashDesk as the controller object (main life-
line in the figure), and transform them into a service component COM L CashDesk. The
component has a provided interface ConInter L CashDesk and a required interface RIn-
ter L CashDesk. The resulting sequence diagram is shown in Fig. 8, in which lifeline
L CashDesk now represents the new component, and lifelines L Sale and L LineItem,
along with their internal messages, are removed from the diagram.

Fig. 6. Select lifelines Fig. 7. Validation error message

As we mentioned before, the tool will check whether the selected lifelines can be
transformed to a component, and provides an error message if the selection is not valid.
For instance, if we choose lifelines L Sale, L Store and L Item to become a component,
the tool will display an error message, as shown in Fig. 7.

For the second transformation, we select the lifelines L Store and L Item from the
sequence diagram of Fig. 8, and indicate L Store as the controller object. Since class
Store is composed with class Item, the transformation is allowed, and the two lifelines
are transformed into a service component COM L Store.

As the result of the second transformation, the lifeline L Store now represents the
component COM L Store. Accordingly, the component diagram is changed, where the
provided interface ConInter L Store is plugged to the required interface RInter L Cash
Desk (we only show the final resulting component diagram later in Fig. 11).

For each generated component, we also generate an rCOS protocol, which consists
of a sequence diagram and a state diagram, for its provided interface. The protocol
for component COM L Store is shown in Figs. 9 & 10. The left part of the sequence
diagram in Fig. 9 specifies the interactions of the component with its environment (rep-
resented by a fresh actor), and the right part defines the interactions between the com-

79

Fig. 8. The sequence diagram after the first transformation

ponent and its internal objects. We notice that a message originally sent from a non-
selected lifeline and received by another selected lifeline, such as the getPrice message
in Fig. 5, now becomes two messages. The first getPrice message is received by the
component COM L Store, and then delegated to the original receiving lifeline L Item
using the second getPrice message.

Fig. 9. Sequence diagram of COM L Store Fig. 10. State diagram of COM L Store

In the third transformation, we turn L Pay, the only object lifeline left, into compo-
nent COM L Pay. Thus we get the final component diagram shown in Fig. 11, which

80

Fig. 11. Final component diagram of the CoCoME example

depicts the relationships among the three components of the model. We obtain the final
component sequence diagram, in which all lifelines represent components, except the
one representing the actor (see Fig. 12), fulfilling the structural well-formedness rules
of component sequence models as discussed in Section 2.

Through applying the object sequence diagram to component sequence diagram
transformation three times, we have successfully developed the design model of Co-
CoME into a component model. The component model includes component sequence
diagrams and component diagrams to define the relationship of components. Each com-
ponent has its provided/required interfaces, as well as a protocol, that consists of a se-
quence diagram and a state diagram, to define the behaviors of the component.

Fig. 12. Final rCOS component sequence diagram for usecase process sale

81

5 Conclusion

A major research objective of the rCOS method is to improve the scalability of seman-
tic correctness preserving refinement between models in model-driven software engi-
neering. The rCOS method promotes the idea that component-based software design
is driven by model transformations in the front end, and verification and analysis are
integrated through model transformations.

As nearly all existing component-based technologies are realized in object-oriented
technologies, most design processes start with an OO development process and then at
the end of the process an OO design is directly implemented by using a component-
based technology, such .COM or .NET. It is often the case that an OO program is devel-
oped first and then it is transformed into component software. Our approach improve
this practice by allowing a component-based model of the requirements, and a seamless
combination of OO design and component-based design for each components in the re-
quirements. The combination is supported by the interactive transformations from OO
design to component-based design presented in this paper, in a stepwise and composi-
tional manner. This allows the object-oriented and component-based design patterns to
be used in the OO design and captured in the specification of the transformation.

In the tool implementation, the transformation is specified in a subset of the graph-
ical QVT Relations notation. The correct implementation of the interactive transforma-
tion requires the definition of a UML profile of the abstract syntax of the rCOS model
that is presented in the paper. The QVT specification of the transformation is automati-
cally transformed to an executable XSLT program, that can be run through an Eclipse-
plugin. The presented technique and tool can be combined with reverse engineering
techniques for transformation of OO programs into component-based programs.

5.1 Related work

As a natural step of model driven development, object-oriented models are further
evolved to component-based models to get the benefits of reusability, maintenance,
as well as distributed and independent deployment. Surveys of approaches and tech-
niques for identification reusable components from object-oriented models can be found
in [2,20]. Based on the principle of “high cohesion and low coupling”, researchers try to
cluster classes into components. The basic ideas are: calculate the strength of semantics
dependencies between classes and transform them into the form of weighted directional
graph, then cluster the graph using graph clustering or matrix analysis techniques [20].
Using clustering analysis, components with high cohesion and low coupling are ex-
pected to be obtained in order to reduce composition cost.

Particularly, since use cases are applied to describe the functionality of the system,
the work of [18] focuses on applying various clustering methods to cluster use cases
into several components. In [6], the static and dynamic relationships between classes
are used for clustering related classes in components, where static relationship mea-
sures the relationship strength, and dynamic relationship measures the frequency of
message exchange at runtime. COMO [9] proposed a method which measures inter-
class relationships in terms of create, retrieve, update and delete (CRUD) operations
of model elements. It uses dynamic coupling metric between objects to measure the

82

potential number of messages exchanged. All above approaches are based on clustering
algorithms, which makes them much different from our approach, where transforma-
tions are applied at the design stage by a human.

Identifying reusable components from object-oriented models was considered to be
one of the most difficult tasks in the software development process [6]. Most exist-
ing approaches just provide general guidelines for component identification. They lack
more precise criteria and methods [5]. Because of the complexity of source information
and the component model itself, it is not advisable for component designers to man-
ually develop component-based models from object-oriented models [20]. Alas, there
are almost no (semi)-automatic tools to help designers in the development process [18].
The work of the paper makes a useful attempt to address this problem, and provide a
tool supporting.

Sequence diagrams have of course already been used informally in UML-based
modeling since their conception. Recently, [7] presents a rigorously defined variant
called “Life Sequence Charts” with tool support to use them for system design. The
focus there is however not on component modeling, but giving a formal semantics to
sequence charts for synthesis.

In [3], we have studied this top-down development process, carried out by hand,
for the CoCoME case study. Our process is motivated by an industrial CASE tool,
MASTERCRAFT [11]. There, the focus is on the design and refinement of the relational
method specifications using the rCOS language [8, 22].

5.2 Future work

There are still many challenges in the automation of model transformations, especially
on the level of method specifications, such as applying the expert pattern in the object-
oriented design stage. It is not enough to only provide a library of transformations, but
more importantly, the tool should provide guiding information on which rule is to be
used [12]. Since our methodology (unsurprisingly) coincides with textbook-approaches
to design of OO- and component software, we hope that the tool can also become a
foundation for education in software engineering. It should guide the user through the
different stages with recommendations, e.g. where detail should be added to the model,
or where refinement is necessary. Based on metrics, the tool could also propose concrete
transformation parameters. It is also difficult to support consistent and correct reuse of
existing components when designing a new component. We will continue working in
this direction to overcome these challenges.

The rCOS Modeler that implements the transformations discussed here can be down-
loaded together with examples from http://rcos.iist.unu.edu.

Acknowledgements Partially supported by the ARV and GAVES grants of the Macau Science
and Technology Development Fund, and the Guizhou International Scientific Cooperation Project
G[2011]7023 and GY[2010]3033.

83

References

1. F. Arbab and M. Sirjani, editors. Fundamentals of Software Engineering (FSEN 2009),
volume 5961 of Lecture Notes in Computer Science. Springer, 2010.

2. D. Birkmeier and S. Overhage. On Component Identification Approaches - Classification,
State of the Art, and Comparison. In CBSE’09, pages 1–18, 2009.

3. Z. Chen, Z. Liu, A. P. Ravn, V. Stolz, and N. Zhan. Refinement and verification in
component-based model driven design. Sci. Comput. Program., 74(4):168–196, 2009.

4. Z. Chen, C. Morisset, and V. Stolz. Specification and validation of behavioural protocols in
the rCOS modeler. In Arbab and Sirjani [1], pages 387–401.

5. M. Choi and E. Cho. Component Identification Methods Applying Method Call Types be-
tween Classes. J. Inf. Sci. Eng, 22:247–267, 2006.

6. M. Fan-Chao, Z. Den-Chen, and X. Xiao-Fei. Business Component Identification of Enter-
prise Information System: A Hierarchical Clustering Method. Proc. of the 2005 IEEE Intl.
Conf. on e-Business Engineering, 2005.

7. D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using LSC’s and
the Play-Engine. Springer-Verlag, 2003.

8. J. He, Z. Liu, and X. Li. rCOS: A refinement calculus of object systems. Theor. Comput.
Sci., 365(1-2):109–142, 2006.

9. S. Lee, Y. Yang, F. Cho, S. Kim, and S. Rhew. COMO: A UML-based component develop-
ment methodology. In 6th Asia Pacific Softw. Eng. Conf., pages 54–61. IEEE, 1999.

10. D. Li, X. Li, and V. Stolz. QVT-based model transformation using XSLT. SIGSOFT Softw.
Eng. Notes, 36:1–8, January 2011.

11. Z. Liu, V. Mencl, A. P. Ravn, and L. Yang. Harnessing theories for tool support. In Proc.
of the Second Intl. Symp. on Leveraging Applications of Formal Methods, Verification and
Validation (isola 2006), pages 371–382. IEEE Computer Society, Aug. 2006.

12. Z. Liu, C. Morisset, and V. Stolz. rCOS: theory and tools for component-based model driven
development. In Arbab and Sirjani [1], pages 62–80.

13. Object Management Group. UML 2.0 Diagram Interchange Specification.
http://www.omg.org/cgi-bin/doc?ptc/2003-09-01, September 2003.

14. Object Management Group. Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification, Version 1.1, Dec. 2009.

15. Object Management Group. Unified Modeling Language: Superstructure, version 2.3, May
2010. http://www.omg.org/spec/UML/2.3/Superstructure.

16. N. Pontisso and D. Chemouil. TOPCASED Combining formal methods with model-driven
engineering. In ASE’06: Proc. of the 21st IEEE/ACM Intl. Conf. on Automated Software
Engineering, pages 359–360, Washington, DC, USA, 2006. IEEE Computer Society.

17. A. Rausch, R. Reussner, R. Mirandola, and F. Plasil, editors. The Common Component
Modeling Example, volume 5153 of Lecture Notes in Computer Science. Springer, 2008.

18. G. Shahmohammadi, S. Jalili, and S. M. H. Hasheminejad. Identification of System Software
Components Using Clustering Approach. Journal of Object Technology, 9(6):77–98, 2010.

19. C. Szyperski, D. Gruntz, and S. Murer. Component software: beyond object-oriented pro-
gramming. Addison-Wesley Professional, 2002.

20. Z. Wang, X. Xu, and D. Zhan. A survey of business component identification methods and
related techniques. International Journal of Information Technology, 2(4):229–238, 2005.

21. WWW Consortium. XSL Transformations (XSLT) Version 2.0, W3C Recommendation.
http://www.w3.org/TR/2007/REC-xslt20-20070123/, January 2007.

22. L. Zhao, X. Liu, Z. Liu, and Z. Qiu. Graph transformations for object-oriented refinement.
Formal Aspects of Computing, 21(1–2):103–131, Feb. 2009.

84

Runtime Verification of Temporal Patterns for
Dynamic Reconfigurations of Components

Julien Dormoy1, Olga Kouchnarenko1, and Arnaud Lanoix2

1 University of Franche-Comté, Besançon, France
{jdormoy,okouchnarenko}@lifc.univ-fcomte.fr

2 Nantes University, Nantes, France
arnaud.lanoix@univ-nantes.fr

Abstract. Dynamic reconfigurations increase the availability and the
reliability of component-based systems by allowing their architectures to
evolve at runtime. Recently we have proposed a temporal pattern logic,
called FTPL, to characterize the correct reconfigurations of component-
based systems under some temporal and architectural constraints.
As component-based architectures evolve at runtime, there is a need to
check these FTPL constraints on the fly, even if only a partial infor-
mation is expected. Firstly, given a generic component-based model, we
review FTPL from a runtime verification point of view. To this end we
introduce a new four-valued logic, called RV-FTPL (Runtime Verifica-
tion for FTPL), characterizing the “potential” (un)satisfiability of the
architectural constraints in addition to the basic FTPL semantics. Po-
tential true and potential false values are chosen whenever an observed
behaviour has not yet lead to a violation or satisfiability of the prop-
erty under consideration. Secondly, we present a prototype developed to
check at runtime the satisfiability of RV-FTPL formulas when reconfig-
uring a Fractal component-based system. The feasability of a runtime
property enforcement is also shown. It consists in supervising on the
fly the reconfiguration execution against desired RV-FTPL properties.
The main contributions are illustrated on the example of a HTTP server
architecture.

1 Introduction

This paper deals with the formal specification and verification of dynamic recon-
figurations of component-based systems at runtime. Dynamic reconfigurations
increase the availability and the reliability of those systems by allowing their
architectures to evolve at runtime.

Dynamic reconfiguration of distributed applications is an active research
topic [1,2,21] motivated by practical distributed applications like, e.g., those
in Fractal [10] or OSGi3. In many recent works, the idea of using temporal logics
to manage applications at runtime has been explored [6,18,8,14].

3 http://www.osgi.org

85

In [14], we have proposed a temporal pattern logic, called FTPL, to char-
acterize the correct reconfigurations of component-based systems under some
temporal and architectural constraints (1). We have also explained in [19], how
to reuse a generic formal model to check the component-based model consistency
through reconfigurations, and to ensure that dynamic reconfigurations satisfy ar-
chitectural and integrity constraints, invariants, and also temporal constraints
over (re)configuration sequences (2).

(1)(3)

INCLUDES

AtelierB

ProB

Consistency
proof

 Architectural elements
+

Basic reconfigurations

Context
Instanciated

Context

Reconfigurations
+

LTL Properties

Consistency

+ Model-checking
+ Animation

SEES

(2)

Reconfigurations

c0 c1
r0

c1
r2

c2
r1

Component ArchitectureReconfiguration
choice

Runtime
verification

RV-FTPL
properties

FTPL
properties

(4)

(5)

Fig. 1. Principle and contributions

As component-based architectures evolve at runtime, there is a need to eval-
uate the FTPL constraints on the fly, even if only a partial information can
be expected. Indeed, an FTPL property often cannot be evaluated to true or
false during the system execution. In addition, the reconfigurations change the
validity of FTPL constraints by modifying the component architecture. In this
paper, given a generic component-based model, we review FTPL from a runtime
verification point of view (3). To this end we introduce a new four-valued logic,
called RV-FTPL (Runtime Verification for FTPL), characterizing the “poten-
tial” (un)satisfiability of the architectural constraints in addition to the basic
FTPL semantics. Like in RV-LTL [8], potential true and potential false values
are chosen whenever an observed behaviour has not yet lead to a violation or
acceptance of the property under consideration.

We then integrate the runtime verification of temporal patterns into the Frac-
tal component model [10]. More precisely, we describe a prototype developed to
check at runtime—by reusing the FPath and FScript [12] tool supports—the
satisfiability of RV-FTPL formulas. This verification is performed when recon-
figurating a component-based system (4). More, the feasability of a runtime
property enforcement is also shown. It consists in supervising at runtime the re-
configuration execution in order to ensure that the RV-FTPL property of interest
is fulfilled (5): our 4-valued logic can help in guiding the reconfiguration process,

86

namely in choosing the next reconfiguration operations to be applied. The main
contributions are illustrated on the example of a HTTP server architecture.

The remainder of the paper is organised as follows. After introducing a moti-
vating example in Sect. 2, we briefly recall, in Sects. 3 and 4, the considered archi-
tectural (re-)configuration model and the FTPL syntax and semantics. We then
define in Sect. 5 the runtime verification of FTPL (RV-FTPL) refining FTPL
semantics with potential true and potential false values. Section 6 describes a
prototype implementing the RV-FTPL verification, and its integration into the
Fractal framework. Section 7 explains how to enforce, at runtime, Fractal com-
ponent system reconfigurations against desired RV-FTPL properties. Finally,
Section 8 concludes before discussing related work.

2 Motivating Example

To motivate and to illustrate our approach, let us consider an example of an
HTTP server from [11]. The architecture of this server is displayed in Fig. 2.

The RequestReceiver component reads HTTP requests from the network
and transmits them to the RequestHandler component. In order to keep the
response time as short as possible, RequestHandler can either use a cache (with
the component CacheHandler) or directly transmit the request to the Request-
Dispatcher component. The number of requests (load) and the percentage of
similar requests (deviation) are two parameters defined for the RequestHandler
component:
– The CacheHandler component is used only if the number of similar HTTP

requests is high.
– The memorySize for the CacheHandler component must depend on the over-

all load of the server.
– The validityDuration of data in the cache must also depend on the overall

load of the server.
– The number of used file servers (like the FileServer1 and FileServer2 compo-

nents) used by RequestDispatcher depends on the overall load of the server.

HttpServer

httpRequest

RequestReceiver

request getHandler

RequestHandler
(deviation, load)

handler getDispatcher

getCache RequestDispatcher

dispatcher getServer

CacheHandler
(validityDuration,

memorySize)

cache

FileServer1

server1

FileServer2

server2

Fig. 2. HTTP Server architecture

We consider that the HTTP server can be reconfigured during the execution
by the following reconfiguration operations:

87

1. AddCacheHandler and RemoveCacheHandler which are respectively used to
add and remove the CacheHandler component when the deviation value
increased/decreased around 50;

2. AddFileServer and removeFileServer which are respectively used to add and
remove the FileServer2 component;

3. MemorySizeUp and MemorySizeDown which are respectively used to increase
and to decrease the MemorySize value;

4. DurationValidityUp and DurationValidityDown to respectively increase and de-
crease the ValidityDuration value.

As an illustration, we specify the AddCacheHandler reconfiguration expressed
in the FScript language [12]. When the deviation value exceeds 50, the recon-
figuration consists in instantiating a CacheHandler component. Then, the com-
ponent is integrated into the architecture, and the binding with the required
interface of RequestHandler is established. Finally, the component CacheHan-
dler is started.

1 action AddCacheHandler(root)
2 newCache = new("CacheHandler");
3 add($root , $newCache);
4 bind($root/child :: RequestHandler/interface ::getcache , $newCache/

interface :: cache);
5 start($newCache);

3 Architectural (Re-)Configuration Model

This section recalls the generic model for component-based architectures given
in [14] and inspired by the model in [20,21] for Fractal. Both models are graphs
allowing one to represent component-based architectures and reconfiguration
operations and to reason about them.

Component-based models must provide mechanisms for systems to be dy-
namically adapted—through their reconfigurations—to their environments dur-
ing their lifetime. These dynamic reconfigurations may happen because of ar-
chitectural modifications specified in primitive operations. Notice that reconfig-
urations are not the only manner to make an architecture evolve. The normal
running of different components also changes the architecture by modifying pa-
rameter values or stopping components, for instance.

3.1 Component-based architectures

In general, the system configuration is the specific definition of the elements
that define or prescribe what a system is composed of. The architectural ele-
ments we consider (components, interfaces and parameters) are the core entities
of a component-based system and relations over them to express various links
between these basic architectural elements. We consider a graph-based represen-
tation illustrated by Fig. 3.

88

Components

Parameters
Required
Interfaces

Provided
InterfacesPTypes

ITypes

Parent

Definer

Provider
Requirer

State

Binding

Delegate

Contingency

InterfaceType
ParamType Value

Interfaces

mandatory

optional

stopped
started

Fig. 3. Architectural elements and relations between them

In our model, a configuration c is a tuple 〈Elem,Rel〉 where Elem is a set of
architectural elements, and Rel ⊆ Elem× Elem is a relation over architectural
elements.

The architectural elements of Elem are the core entities of a component-
based system:

– Components is a non-empty set of the core entities, i.e components;
– RequiredInterfaces and ProvidedInterfaces are defined to be subsets of
Interfaces. Their union is disjunctive;

– Parameters is a set of component parameters.

The architectural relation Rel then expresses various links between the pre-
viously mentioned architectural elements.

– InterfaceType is a total function that associates a type with each required
and provided interface;

– Provider is a total surjective function which gives the component having at
least a provided interface, whereas Requirer is only a total function;

– Contingency is a total function which indicates for each required interface
if it is mandatory or optional;

– Definer is a total function which gives the component of a considered pa-
rameter;

– Parent is a partial function linking sub-components to the corresponding
composite component. Composite components have no parameter, and a
sub-component must not be a composite including its parent component,
and so on;

– Binding is a partial function which connects together a provided interface
and a required one: a provided interface can be linked to only one required
interface, whereas a required interface can be the target of more than one
provided interface. Moreover, two linked interfaces do not belong to the
same component, but their corresponding instantiated components are sub-
components of the same composite component. The considered interfaces
must have the same interface type, and they have not yet been involved in
a delegation;

89

– Delegate expresses delegation links. It is a partial bijection which associates
a provided (resp. required) interface of a sub-component with a provided
(resp. required) interface of its parent. Both interfaces must have the same
type, and they have not yet been involved in a binding;

– State is a total function which associates a value from {started, stopped}
with each instantiated component: a component can be started only if all
its mandatory required interfaces are bound or delegated;

– Last, V alue is a total function which gives the current value of a considered
parameter.

Complete and formal definitions can be found in [19].

Example 1. Figure 4 gives a graph-based representation of the example from
Sect. 2. In this figure, the architectural elements are depicted as boxes and
circles, whereas architectural relations are represented by arrows.

RequiredInterfaces

ProvidedInterfacesComponents

Parameters

PTypes

DelegateHttpServer

RequestReceiver

RequestHandler

FileServer1

FileServer2
load

deviation

CacheHandler

Integer

memorySize

validityDuration

ParamType
Server2
Server1

dispatcher
cache

handler
request

httpRequest

Provider

getServer

getDispatcher

getCache

getHandler

Interfaces

Requirer
RequestDispatcher

Binding

Definer

mandatory

optional Contingency

Parent

Fig. 4. Graph-based representation of the HTTP Server example

3.2 Dynamicity of Component Architectures

To support system evolution, some component models provide mechanisms to dy-
namically reconfigure the component-based architecture, during their execution.
These dynamic reconfigurations are then based on architectural modifications,
among the following primitive operations:

– instantiation/destruction of components;
– addition/removal of components;

90

– binding/unbinding of component interfaces;
– starting/stopping components;
– setting parameter values of components;

or combinations of them. A component architecture may also evolve by modifying
parameter values or stopping components, like in the example.

Considering the component-based architecture model recalled in Sect. 3.1, a
reconfiguration action is modelled by a graph transformation operation adding
or removing nodes and/or arcs in the graph of the configuration. An evolu-
tion operation op transforms a configuration c = 〈Elem,Rel〉 into another
one c′ = 〈Elem′, Rel′〉. It is represented by a transition from c to c′, noticed
c
op→ c′. Among the evolution operations (running operations and reconfigura-

tions), we particularly focus on the reconfiguration ones, which are either the
above-mentioned primitive architectural operations or their compositions. The
remaining running operations are all represented by a generic operation, called
the run operation; it is also the case for sequences of running operations.

The evolution of a component architecture is defined by the transition system
〈C,Rrun,→〉 where:

– C = {c, c1, c2, . . .} is a set of configurations;
– Rrun = R∪ {run} is a finite set of evolution operations;
– → ⊆ C ×Rrun × C is the reconfiguration relation.

Given the model M = 〈C,Rrun,→〉, an evolution path (or a path for short)
σ of M is a (possibly infinite) sequence of configurations c0, c1, c2, . . . such that
∀i ≥ 0.∃ri ∈ Rrun.ci ri→ ci+1 ∈→)).

We use σ(i) to denote the i-th configuration of a path σ. The notation
σi denotes the suffix path σ(i), σ(i + 1), . . ., and σji denotes the segment path
σ(i), σ(i + 1), σ(i + 2), ..., σ(j − 1), σ(j). The segment path is infinite in length
when the last state of the segment is repeated infinitely often. We write Σ to
denote the set of evolution paths, and Σf (⊆ Σ) for the set of finite paths.

run
c0 c1 c1' c2 c3 c3' c4 c5

Remove
CacheHandler

Add
CacheHandler

Memory
SizeUp run Add

FileServer
Duration
ValidityUp

Fig. 5. Part of an evolution path of the HTTP server example

Example 2. A possible evolution path of the HTTP server is given in Fig. 5. In
this path,

– c0 is a configuration of the HTTP server without the CacheHandler nor
FileServer2 components;

– c1 is obtained from c0: the load value was changed following the running of
the RequestHandler component;

91

– c′1 is the same configuration as c1: Without the CacheHandler component,
the RemoveCacheHandler reconfiguration cannot terminate, it is then roll-
backed without any modification;

– c2 is obtained from the configuration c1 by adding CacheHandler, following
the AddCacheHandler reconfiguration operation;

– c3 is the configuration c2 in which the memorySize value was increased;
– c′3 is the same configuration as c3: The result of the running is not observable;
– c4 is obtained from c3 by adding the FileServer2 component;
– c5 is like the configuration c6 but the durationValidity value was increased.

4 FTPL

In this section, we recall the syntax of the linear temporal logic for dynamic re-
configurations introduced in [14] and called FTPL. It allows characterizing the
correct behaviour of reconfiguration-based systems by using architectural invari-
ants and linear temporal logic patterns. FTPL has been inspired by proposals
in [15], and their temporal extensions for JML [24,9,17].

Let us first recall the FTPL syntax as presented in [14]. A configuration
property, denoted with conf , is a first order logic formula over sets and rela-
tional operations on the primitive sets and over relations defined in Sect. 3.1. A
trace property, denoted with trace, is a temporal constraint on (a part of) the
execution of the dynamic reconfiguration model. Further, for a reconfiguration
operation ope, its ending is considered as an event.
event ::= ope terminates

| ope exceptional
| ope normal

trace ::= always conf
| eventually conf
| trace1 ∧ trace2
| trace1 ∨ trace2

temp ::= after event temp
| before event trace
| trace until event

The trace properties specify the constraints to ensure
on a sequence of reconfigurations. We mainly spec-
ify the always and eventually constraints which
respectively describe that a property has to be sat-
isfied by every configuration of the sequence for the
former, or by at least one configuration of the se-
quence for the latter.

Every temporal property concerns a part of the execution trace on which
the property should hold: it is specified with special keywords, like e.g., after,
before or until a particular event has happened.

The set of FTPL formulae is denoted with FTPL. The complete and detailed
semantics can be found in [14].

Example 3. Let us now illustrate the FTPL language on the example of the
HTTP server from Sect. 2. Notice that the reconfiguration AddCacheHandler
(resp. RemoveCacheHandler) adds (resp. removes) CacheHandler when the devi-
ation value is greater (resp. less) than 50:

Property 1 :
after RemoveCacheHandler terminates
(eventually deviation>50
until AddCacheHandler terminates)

The previous property specifies that the deviation value eventually becomes
greater than 50 between the two considered reconfigurations.

92

5 Runtime Verification for FTPL: RV-FTPL

As component-based architectures evolve at runtime, there is a need to check
the FTPL constraints on the fly, even if only a partial information is expected.
Indeed, an FTPL property often cannot be evaluated to true or false during the
system execution, as only the history of the system is available and no specifica-
tion of its future evolution exists. In addition, as architectural reconfigurations
change the component architecture, they also change the values of FTPL con-
straints.

In this paper we review the FTPL semantics from a runtime verification
point of view. To this end we introduce a new four-valued logic, called RV-FTPL
(Runtime Verification for FTPL), characterizing the “potential” (un)satisfiability
of the architectural constraints in addition to the basic FTPL semantics. Intu-
itively, potential true and potential false values are chosen whenever an observed
behaviour has not yet lead to a violation or acceptance of the property under
consideration.

Let S be a set and R a relation over S×S. R is a pre-ordering iff it is reflexive
and transitive, and a partial ordering iff it is anti-symmetric in addition. For a
partial ordering R, the pair (S,R) is called a partially ordered set; it is sometimes
denoted S when the ordering is clear. A lattice is a partially ordered set (S,R)
where for each x, y ∈ S, there exists (i) a unique greatest lower bound, and (ii) a
unique least upper bound. A lattice is finite iff S is finite. Every finite lattice has
a well-defined unique least element, often called the minimum, and a well-defined
greatest element, often called the maximum.

More specifically, let B4 = {⊥,⊥p,>p,>} be a set where ⊥,> stand resp.
for false and true values where as ⊥p,>p stand resp. for potential false and
potential true values. We consider B4 together with the truth non-strict ordering
relation v satisfying ⊥ v ⊥p v >p v >. On B4 we define the unary operation
¬ as ¬⊥ = >, ¬> = ⊥, ¬⊥p = >p, and ¬>p = ⊥p, and we define two binary
operations u and t as the minimum, respectively the maximum, interpreted
with respect to v. Thus, (B4,v) is a finite de Morgan lattice but not a Boolean
lattice.

Before defining the RV-FTPL semantics, let us recall that a configuration
property conf ∈ FTPL is valid on a configuration c = 〈Elem,Rel〉 when the
evaluation of conf on the configuration c = 〈Elem,Rel〉 is true, written [c |=
conf] = >; otherwise, the property conf is not valid on c, written [c |= conf] =
⊥.

Definition 1 (RV-FTPL Semantics). Let σn0 ∈ Σf be a finite execution path
of the length n + 1. Given an FTPL property, its value on σn0 is given by the
interpretation function [_ |= _]rv : Σ

f × FTPL→ B4 defined as follows:

1. For the configuration properties and events:

93

[σn
0 (i) |= conf]rv =

{
> if [σn

0 (i) |= conf] = >
⊥ otherwise

[σn
0 (i) |= ope normal]rv =

> if 0 < i 6 n ∧ σn
0 (i− 1) 6= σn

0 (i)

∧ σn
0 (i− 1)

ope→ σn
0 (i) ∈→

⊥ otherwise

[σn
0 (i) |= ope exceptional]rv =

> if 0 < i 6 n ∧ σn
0 (i− 1) = σn

0 (i)

∧ σn
0 (i− 1)

ope→ σn
0 (i) ∈→

⊥ otherwise

[σn
0 (i) |= ope terminates]rv =

{
> if ope normal ∨ ope exceptional
⊥ otherwise

2. For the trace properties:

[σn
0 |= always conf]rv =

{
⊥ if ∃i.(0 6 i 6 n ∧ [σn

0 (i) |= conf]rv = ⊥)
>p otherwise

[σn
0 |= eventually conf]rv =

{
> if ∃i.(0 6 i 6 n ∧ [σn

0 (i) |= conf]rv = >)
⊥p otherwise

[σn
0 |= trace1 ∧ trace2]rv = [σn

0 |= trace1]rv u [σn
0 |= trace2]rv

[σn
0 |= trace1 ∨ trace2]rv = [σn

0 |= trace1]rv t [σn
0 |= trace2]rv

3. For the temporal properties:

[σn
0 |= after event temp]rv =

>p if ∀i.(0 6 i 6 n ∧ [σn
0 (i) |= event]rv = >

⇒ [σn
i |= temp]rv = >) ∨ ∀i.(0 < i 6 n

⇒ [σn
0 (i) |= event]rv = ⊥)

⊥ if ∃i.(0 6 i 6 n ∧ [σn
0 (i) |= event]rv = >

∧ [σn
i |= temp]rv = ⊥)

⊥p if ∃i.(0 6 i 6 n ∧ [σn
0 (i) |= event]rv = >

∧ [σn
i |= temp]rv = ⊥p)

[σn
0 |= before event trace]rv =

>p if ∀i.(0 < i 6 n ∧ [σn
0 (i) |= event]rv = >

⇒ [σi−1
0 |= trace]rv ∈ {>,>p}) ∨

∀i.(0 < i 6 n⇒ [σn
0 (i) |= event]rv = ⊥)

⊥ if ∃i.(0 < i 6 n ∧ [σn
0 (i) |= event]rv = >

∧ [σi−1
0 |= trace]rv ∈ {⊥,⊥p})

[σn
0 |= trace until event]rv =

>p if ∀i.(0 < i 6 n ∧ [σn
0 (i) |= event]rv = >

⇒ [σi−1
0 |= trace]rv ∈ {>,>p})

⊥ if ([σn
0 |= trace]rv = ⊥) ∨

(∃i.(0 < i 6 n ∧ [σn
0 (i) |= event]rv = >

∧ [σi−1
0 |= trace]rv = ⊥p)

⊥p if ∀i.(0 < i 6 n ⇒ [σn
0 (i) |= event]rv = ⊥

Let us now comment and illustrate the above definition. The goal of our
work is to be able to detect when the FTPL properties become false. So, for
configuration properties and events, the interpretation does only depend on the
fact that considered configurations actually belong to the path σn0 . For events,
the basic FTPL semantics is reflected in the interpretation function.

For trace properties the intuition is as follows.

– The always conf property is not satisfied on σn0 if there is a configuration
of σn0 which does not satisfy conf . For the other cases, the property is eval-
uated to be ”potentially true”. Indeed, if the execution terminated in σn0 , the
property would be satisfied.

94

– The eventually conf property is satisfied on σn0 if at least one configuration
of σn0 satisfies conf . In the other cases, the property is evaluated to be
”potentially false”. Indeed, if the execution terminated in σn0 , the property
would be violated.

Example 4. Figure 6 displays an evolution path of the HTTP example. The next
array illustrates the evaluation of two trace properties on each configuration,
depending on the chosen either FTPL or RV-FTPL semantics:

...
c0 c1 c2 c3 c4 c5 c6 c7

Add
CacheHandler

Remove
CacheHandler

...

deviation
< 50

deviation
< 50

deviation
< 50

deviation
< 50

deviation
< 50

deviation
> 50

deviation
> 50

deviation
> 50

Fig. 6. Part of an evolution path of the HTTP server example

c0 c1 c2 c3 c4 c5 c6 c7 . . .

always deviation < 50
FTPL ? ? ? ? ? ⊥ ⊥ ⊥ ⊥
RV-FTPL >p >p >p >p >p ⊥ ⊥ ⊥ ⊥

eventually deviation > 50
FTPL ? ? ? ? ? > > > >
RV-FTPL ⊥p ⊥p ⊥p ⊥p ⊥p > > > >

Considering the FTPL semantics, we cannot conclude about the interpreta-
tion of the considered properties, until we reach the configuration c5. On the
contrary, in RV-FTPL we say at the beginning that the always property is
expected to be true in the future, until we reach c5 where it is false.

The intuition of the definition of temporal properties is as follows:

– The value of the after event temp property is potentially true either if the
event event does not occur in all considered configurations, or if the occur-
rence of the event event on a configuration implies that the temp temporal
property is evaluated to true on the suffix of the path starting at this con-
figuration. The after event temp property is evaluated to false if there is a
configuration σn0 (i) of σn0 where the event event happens and temp is eval-
uated to false on the suffix σni . The after event temp property is evaluated
to potentially false if there is a configuration σn0 (i) of σn0 where the event
event occurs, and temp is evaluated to potentially false on the suffix σni .

– The value of the before event trace property is potentially true if either
the event event does not occur in all considered configurations, or if trace
is evaluated either to true or to potentially true on the prefix of the path
where the event event occurs. The before event trace property is evaluated
to false if there is a configuration σn0 (i) of σn0 where event happens, and
trace is evaluated either to false or to potentially false on the path ending
at σn0 (i), non including this configuration.

95

– The value of the trace until event property is potentially true if the trace
property is evaluated either to true or to potentially true on the prefix of
the path where there is a configuration satisfying event, the prefix being
without that configuration. The trace until event property is evaluated to
false either if there is a configuration σn0 (i) of σn0 where event happens, and
if trace is either false or potentially false on the path ending at σn0 (i) but
non-including it; or if σn0 does not satisfy the trace property when event
does not happen on σn0 . The property is potentially false if the event event
does not occur in all considered configurations.

Example 5. Let us again consider the path in Fig. 6 and the FTPL property 1

after RemoveCacheHandler terminates
(eventually deviation>50
until AddCacheHandler terminates)

explained in Example 3. The following array displays the value of the considered
property interpreted respectively in FTPL and in RV-FTPL:

c0 c1 c2 c3 c4 c5 c6 c7 . . .

Property 1 FTPL ? ? ? ? ? ? > > >
RV-FTPL >p >p ⊥p ⊥p ⊥p ⊥p >p >p >p

From the FTPL semantics point of view, we cannot conclude about the validity
of the property until we reach the configuration c6. Using the RV-FTPL se-
mantics, the property interpretation is potential true before the reconfiguration
RemoveCacheHandler is executed. Then, the property value becomes potential
false until the deviation becomes greater than 50 on c5; as a consequence the
property value becomes potentially true because of partial information.

6 Using RV-FTPL Properties to Check Reconfigurations

The proposals of the paper have been applied to the Fractal component model.
Thsi section presents the prototype we have been developing to check at runtime
the satisfiability of RV-FTPL formulas on Fractal component-based systems. To
this end, it exploits and adapts the FPath and FScript [12] tool supports for
Fractal to evaluate the desired RV-FTPL formulas after each reconfiguration
operation.

6.1 Overview of Fractal, FPath and FScript

The Fractal model is a hierarchical and reflective component model intended
to implement, deploy and manage software systems [10]. A Fractal component
is both a design and a runtime entity that consists of a unit of encapsulation,
composition and configuration. A component is wrapped in a membrane which
can show and control a casually connected representation of its encapsulated

96

content. This content is either directly an implementation in case of a primitive
component, or sub-components for composite components.

In order to control the internal structure of a component at runtime, the
Fractal model also defines standard interfaces named controllers. In addition,
the Fractal model can be extended thanks to new controllers which allow the
user to integrate new features.

FPath [12] is a domain-specific language inspired by the XPath language
that provides a notation and introspection mechanisms to navigate inside Fractal
architectures. FPath expressions use the properties of components (e.g. the value
of a component attribute or the state of a component) or architectural relations
between components (e.g. the subcomponents of a composite component) to
express queries about Fractal architectures.

FScript [12] is a language that allows the definition of reconfigurations of
Fractal architectures. FScript integrates FPath seamlessly in its syntax, FPath
queries being used to select the elements to reconfigure. To ensure the reliability
of its reconfigurations, FScript considers them as transactions and integrates a
back-end that implements this semantics on top of the Fractal model.

6.2 Integrating RV-FTPL Property Verification into Fractal

To check RV-FTPL properties at runtime, we have implemented two Fractal
controllers which observe the Fractal component model: our first controller,
called the reconfiguration controller, permits capturing reconfiguration invoca-
tions, whereas the second controller, called the RV-FTPL controller, handles
RV-FTPL formulas.

c0 c1
r0

c1
r2

c2
r1FTPL

properties

Fractal Architecture

Properties
fulfilled?

(1)

(2)

(3)

(4)

FScript
Reconfigurations

(5)

reconfiguration
controller

RV-FTPL
controller

Fig. 7. RV-FTPL runtime verification principle

Figure 7 explains how both controllers are used to evaluate properties of
interest. When a reconfiguration is invoked (1), the reconfiguration controller
executes the reconfiguration (2)—specified in a FScript file—on the considered
component-based architecture. It then invokes the RV-FTPL controller (3) to
evaluate the RV-FTPL properties from a file (4) where those properties are
specified. The RV-FTPL controller uses the instantiated component model (5)
and executes queries over it: to post up the property evaluation result to the
user, the RV-FTPL controller parses the property of interest and uses a visitor
to evaluate it on the current configuration using FPath. In the case of the future

97

patterns containing the after keyword, the visitor waits for the reconfiguration
event before evaluating the temporal part of the property. On the contrary, for
the past patterns, i.e., the RV-FTPL properties without the after keyword, the
trace part of the property is evaluated before the reconfiguration event appears.
This avoids us from saving all the previous configurations needed to evaluate the
property once the event appears.

Fig. 8. Running prototype

The above verification procedure has been integrated into the EVA4Fractal
tool previously described in [13]. Figure 8 shows our prototype in action: a
Fractal implementation of the HTTP server example is running and the FTPL
property

after RemoveCacheHandler terminates
(eventually deviation>50
until AddCacheHandler terminates)

is evaluated at runtime after each reconfiguration execution. The reader can
notice that after the execution of the reconfiguration RemoveCacheHandler, the
value of the property is potential false. If the value of deviation raises above
50, when the reconfiguration AddCacheHandler is applied, the property value
becomes true.

7 Using RV-FTPL Properties to Enforce Reconfigurations

As explained in Sect. 1, one of the main motivations of the present work is to use
the RV-FTPL property evaluation to control the execution of reconfigurations.

98

Actually, for some kind of systems like critical systems or embedded systems, the
behaviour where the property evaluation becomes false might be not acceptable.
To this end, we can use potential true or potential false values to enforce the
reconfigurations.

c0 c1
r0

c1
r2

c2
r1FTPL

properties

Fractal Architecture
FScript

Reconfigurations

Reconfiguration
choice

Runtime
verification

(1)

(2)

(3)

Fig. 9. RV-FTPL runtime enforcement principle

In this section, we show the capability of our monitor to enforce the
component-based system reconfigurations by using the interpretation of desired
properties. The principle is illustrated in Fig. 9. While interpreting RV-FTPL
properties (1), the potential true or potential false values can be used to guide
the choice of the next reconfiguration operation (2) which will be applied to the
component architecture (3). Let us give an intuition about our approach:

1. Let us consider the RV-FTPL property 3 valued ⊥p on the current architec-
tural configuration c5 from the path given in Fig. 6;

2. We are looking for enabling the reconfiguration operations that make the
component-architecture evolve to a new architectural configuration where
the RV-FTPL property will be enforced;

3. The reconfiguration manager chooses the reconfiguration AddCacheHandler
to be applied;

4. The property will be enforced: it is valued to >p on the new configuration
c6.

In Fractal an obvious manner to implement the reconfiguration choice proce-
dure is to reuse the transaction mechanism of FScript [12], allowing the system
to rollback to a consistent state when a reconfiguration operation failed. We
propose to exploit this mechanism to evaluate the RV-FTPL property on the
possible target configurations, until a reconfiguration operation where the sys-
tem benefits enforcement in the best possible way, is found.

We display in Fig. 10 the execution scenario using this mechanism. For each
FScript reconfiguration, a transaction is started and the considered reconfigu-
ration operation is executed. Then, the RV-FTPL property is evaluated on the
reached configuration. If the interpretation value is true, there is no need to
consider remaining reconfiguration operations, so the transaction is committed
and the execution goes on. For other interpretation values, the transaction is
rollbacked and the results of the reconfiguration valuation are recorded. When

99

Begin
Transaction

Execute FScript
Reconfiguration

Verify RV-FTPL
property

Rollback
Transaction

Save Results

Otherwise

Commit
Transaction

True

Choose one
configuration
among results

Execute FScript
Reconfiguration

For each FScript configuration

Fig. 10. Enforcement scenario

all the enable reconfigurations are explored, the recorded results are used to
choose the most appropriate reconfiguration operation which is then applied to
the system. To help this choice, adaptation policies [13,11] defined by the user, or
distributed controllers [18] for knowledge-based priority properties, or runtime
enforcement monitors [16] built automatically for several enforcable properties,
can be used.

If for every reconfiguration operation the property of interest is violated, the
execution should be either stopped or continued with special recovery operations,
and the user should be informed. This reaction clearly depends on the system
features (safety critical systems, embedded systems, etc.). Again, adaptation
policies can be used to handle events associated with the property violation on
the one hand, and to specify special recovery reconfiguration operations, on the
other hand.

8 Conclusion

As component-based architectures evolve at runtime, this paper pays particu-
lar attention to checking—on the fly—temporal and architectural constraints
expressed with a linear time temporal logic over (re)configuration sequences,
FTPL [14]. Unfortunately, an FTPL property often cannot be evaluated to true
or false during the system execution. Indeed, only a partial information about the
system evolution is available: only a (finite) history of the system state is known,
and no specification about its future evolutions exists. To remedy this problem,
we have reviewed the FTPL semantics from a runtime verification point of view.
Inspired by proposals in [8], we have introduced a new four-valued logic, called
RV-FTPL, characterizing the “potential” (un)satisfiability of the architectural
FTPL constraints in addition to the basic FTPL semantics.

The paper has also reported on the prototype we have been developing to
verify and enforce RV-FTPL properties. Given a Fractal component-based sys-
tem [10] and some desired temporal and archtectural FTPL contraints, to make
it possible the system to reconfigure, the prototype interprets RV-FTPL formu-
las at runtime. The feasability of a runtime property enforcement has also been
discussed: the proposed 4-valued logic not only captures information absence,

100

but also helps the monitor in guiding the reconfiguration process, namely in
choosing the next reconfiguration operations to be applied.

Related work.
In the context of dynamic reconfigurations, ArchJava [3] gives means to re-

configure Java architectures, and the ArchJava language guarantees communica-
tion integrity at runtime. Barringer and al. give a temporal logic based framework
to reason about the evolution of systems [5]. In [4], a temporal logic is proposed
to specify and verify properties on graph transformation systems.

In the Fractal-based framework, the work in [21] has defined integrity con-
straints on a graph-based representation of Fractal, to specify the reliabil-
ity of component-based systems. Unlike [21], our model lays down only gen-
eral architectural constraints, thus providing an operational semantics to other
component-based systems, to their refinements and property preservation issues.
On the integrity constraints side, the FTPL logic allows specifying architectural
constraints more complex than architectural invariants in [12]. Let us remark
that architectural invariants as presented in [12] can be handled within the FTPL
framework by using always cp, where cp represents the considered architectural
invariant.

Among other applications, our proposals aim at a monitoring of component-
based systems. In [6], Basin and al. have shown the feasibility of monitoring tem-
poral safety properties (and, more recently, security properties) using a runtime
monitoring approach for metric First-order temporal logic (MFOTL). In [23,22],
monitors are used to check some policies at runtime, and to enforce the pro-
gram to evolve correctly by applying reconfigurations. A similar approach based
on a three-valued variant of LTL has been proposed in [7]. Contrary to those
works, we focus on temporal and architectural constraints to make it possible
component-based systems to reconfigure at runtime.

In [8], a three-valued and a four-valued LTL are studied from a logic point
of view. In [16], the authors have studied the class of enforceable properties
from the point of view of the well-known temporal property hierarchies. The
automatic monitor generation for enforceable properties has also been proposed.
In this direction, it would be interesting and important to characterize the FTPL
temporal patterns wrt. the class of enforceable properties. For non-enforceable
temporal patterns, we intend to exploit event-based adaptation policies to make
the system behave and reconfigure according to a given recovery policy when
the desired property is violated.

References

1. M. Aguilar Cornejo, H. Garavel, R. Mateescu, and N. De Palma. Specification and
Verification of a Dynamic Reconfiguration Protocol for Agent-Based Applications.
Research Report RR-4222, INRIA, 2001.

2. N. Aguirre and T. Maibaum. A temporal logic approach to the specification of
reconfigurable component-based systems. Automated Software Engineering, 2002.

3. J. Aldric. Using types to enforce architectural structure. In WICSA’08, pages
23–34, 2008.

101

4. P. Baldan, A. Corradini, B. König, and A. Lluch Lafuente. A temporal graph
logic for verification of graph transformation systems. In WADT’06, pages 1–20.
Springer-Verlag, 2007.

5. H. Barringer, D. M. Gabbay, and D. E. Rydeheard. From runtime verification to
evolvable systems. In RV, volume 4839 of LNCS, pages 97–110. Springer, 2007.

6. D. A. Basin, F. Klaedtke, S. Müller, and B. Pfitzmann. Runtime monitoring of
metric first-order temporal properties. In IARCS, FSTTCS 2008, India, volume 2
of LIPIcs, pages 49–60. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2008.

7. A. Bauer, M. Leucker, and C. Schallhart. Model-based runtime analysis of dis-
tributed reactive systems. In ASWEC’iso06. IEEE, 2006.

8. A. Bauer, M. Leucker, and C. Schallhart. Comparing LTL Semantics for Runtime
Verification. Journal of Logic and Computation (JLC), 2010.

9. F. Bellegarde, J. Groslambert, M. Huisman, J. Julliand, and O. Kouchnarenko.
Verification of liveness properties with JML. Technical report RR-5331, INRIA,
2004.

10. E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The fractal
component model and its support in java. Softw., Pract. Exper., 36(11-12):1257–
1284, 2006.

11. F. Chauvel, O. Barais, I. Borne, and J.-M. Jézéquel. Composition of qualitative
adaptation policies. In ASE 2008, pages 455–458. IEEE, 2008. Short paper.

12. P.-C. David, Th. Ledoux, M. Léger, and Th. Coupaye. FPath and FScript: Lan-
guage support for navigation and reliable reconfiguration of Fractal architectures.
Annales des Télécommunications, 64(1-2):45–63, 2009.

13. J. Dormoy and O. Kouchnarenko. Event-based Adaptation Policies for Fractal
Components. In AICCSA 2010, pages 1–8. IEEE, May 2010.

14. J. Dormoy, O. Kouchnarenko, and A. Lanoix. Using temporal logic for dynamic
reconfigurations of components. In FACS 2010, volume 6921 of LNCS. Springer-
Verlag, 2010. to appear.

15. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications
for finite-state verification. In ICSE, pages 411–420, 1999.

16. Y. Falcone, L. Mounier, J.-C. Fernandez, and J.-L. Richier. Runtime enforcement
monitors: composition, synthesis, and enforcement abilities. Formal Methods in
System Design, 38(3):223–262, 2011.

17. A. Giorgetti, J. Groslambert, J. Julliand, and O. Kouchnarenko. Verification of
class liveness properties with java modelling language. IET Software, 2008.

18. S. Graf, D. Peled, and S. Quinton. Achieving distributed control through model
checking. In CAV 2010, volume 6174 of LNCS, pages 396–409. Springer, 2010.

19. A. Lanoix, J. Dormoy, and O. Kouchnarenko. Combining proof and model-checking
to validate reconfigurable architectures. In FESCA 2011, ENTCS, 2011.

20. M. Léger. Fiabilité des Reconfigurations Dynamiques dans les Architectures à Com-
posant. PhD thesis, Ecole Nationale Supérieure des Mines de Paris, 2009.

21. M. Léger, Th. Ledoux, and Th. Coupaye. Reliable dynamic reconfigurations in a
reflective component model. In CBSE 2010, volume 6092 of LNCS, pages 74–92,
2010.

22. J. Ligatti, L. Bauer, and D. Walker. Run-time enforcement of nonsafety policies.
ACM TISSEC, 12:19:1–19:41, January 2009.

23. F. B. Schneider. Enforceable security policies. ACM TISSEC, 3:30–50, 2000.
24. K. Trentelman and M. Huisman. Extending jml specifications with temporal logic.

In AMAST 2002, volume 2422 of LNCS, pages 334–348, 2002.

102

Timed Conformance Testing for Orchestrated

Service Discovery!

Jose Pablo Escobedo1, Christophe Gaston1 and Pascale Le Gall2

1 CEA, LIST, Point Courrier 94, 91191, Gif-sur-Yvette, France
email: {jose-pablo.escobedo, christophe.gaston}@cea.fr

2 Laboratoire MAS, Grande Voie des Vignes, 92195 Châtenay-Malabry, France
email: pascale.legall@ecp.fr

Abstract. Orchestrations are systems deployed on the Internet where
there is a central component (called orchestrator) coordinating other
components (called Web services), pre-existing to the orchestration de-
sign phase. Web services are made available through repositories on the
Internet to orchestration designers. Service discovery refers to the activ-
ity of identifying Web services offered by third parties. We propose an
approach to discover Web services by taking into account the intended
behaviors of Web services as they can be inferred from the orchestrator
specifications. Web services are tested with respect to those behaviors to
decide whether or not they can be selected. Specifications of orchestra-
tors are Timed Input/Output Symbolic Transition Systems. Web service
intended behaviors are elicited by means of symbolic execution and pro-
jection techniques. Those behaviors can be used as test purposes for our
timed symbolic conformance testing algorithm.

Keywords: Web service discovery, orchestrations, conformance testing, timed
testing, symbolic execution.

1 Introduction

As explained in [18], the World Wide Web has now evolved from a place where
we share and find data to a place where we share and find dedicated functionali-
ties. Such functionalities, called Web services, can be assembled to build systems
whose particularity is that basic functional units (i.e. Web services) are devel-
oped and offered by different parties and are physically stored in different places
on the Internet. The process of building systems by combining Web services is
known as Web service composition. Composing Web services may be achieved
by means of several architectural approaches. Here we focus on orchestration
architectures [14,19]. An orchestration is a Web service system containing a con-
troller component, called an orchestrator which serves as an interface for users
and is responsible for coordinating Web services invocations accordingly to the
user needs. In order to build orchestrations, the first step is to find required Web

! Work partially supported by the french TeCoS project funded by DGA.

103

services: this activity is often referred to as (Web) Service Discovery [20]. Web
services must be published and accessible on some known repositories, and must
be associated with descriptions allowing the designer to select them. Those de-
scriptions contain usually only functional aspects (what are the offered function-
alities), and pieces of information may be syntactic (e.g. what is the interface of
a service in terms of offered methods for example). As discussed in [20], such de-
scriptions ground discovery procedures by matching orchestration requirements
with descriptions of candidate Web services.

In this paper we aim at completing those existing matching procedures
mainly based on static analysis by techniques exploiting Web service executions.
Provided that the system designer produces a behavioral description of the or-
chestrator before the Web service selection phase, we aim at taking benefits of
the knowledge of the orchestrator to select Web services. Since the orchestrator
is responsible for Web service invocations, orchestrator executions mainly con-
tain sequences of Web service invocations conditioned by Web service reactions.
Therefore an orchestrator greatly constrains the set of acceptable behaviors (i.e.
sequences of emissions/receptions that are called traces) of Web services to be
selected. Our proposal is to use that set of acceptable traces to guide a selection
procedure based on testing techniques. Technically, orchestrators are specified
by means of Timed Input/Output Symbolic Transition Systems (TIOSTS), that
we define as an extension of Input/Output Symbolic Transition Systems [8,12] to
deal with timing issues. Regardless of symbolic representations of data, TIOSTS
can be seen as a sub class of Timed Automata [1] with one clock per transition.
Taking time into account in our work is mandatory because defining timers and
reasoning about them is very common in orchestrator descriptions. Typically, one
of the most well known ways to describe orchestrators is the WS-BPEL specifi-
cation language [9]. Operations that can be made on clocks in TIOSTS reflect
the common usage of timers in WS-BPEL, which are used to guard orchestrator
reactions, typically in situations when some Web service does not react to stim-
uli of the orchestrator. [3] provides a systematic and detailed translation of the
WS-BPEL language towards a particular family of TIOSTS. Advantages of using
TIOSTS are twofold: first, we can take benefits of the formal testing framework
that we previously defined [8, 10, 13] by extending it to timing issues. Secondly,
we use symbolic execution techniques to analyze the orchestrator description:
from a tree-like structure symbolically representing all possible executions of the
orchestrator and by means of projection and mirroring techniques, we transform
those behaviors into intended Web service behaviors. From those behaviors we
extract test purposes to be used in a testing algorithm. A Web service conforming
to the test purpose extracted from the orchestrator becomes a good candidate
to be integrated in the orchestration. The testing algorithm is a timed extension
of the one we defined in [13] and further adapted to the test of orchestrators in
context in [8].

Using formal techniques to evaluate the compatibilty of Web services (in par-
ticular relatively to timing aspects) in Web service systems has been addressed
several times, but very often ([6, 7, 15, 16]) based on verification techniques ap-

104

plied on (parts of) system models (including Web service models or communica-
tion protocol models). On the contrary, we use testing techniques to discover Web
services for which no model is supposed to be available (we only have knowledge
of their interface to send them inputs and receive their outputs). Our proposal
is close to the one given in [2] where the goal is to evaluate conformance of Web
services to orchestrators thanks to testing techniques. While they use model-
checking algorithms applied to testing without considering timing issues, we use
symbolic execution techniques within a timed setting.

2 Timed Input Output Symbolic Transition Systems

2.1 Syntax

TIOSTS are symbolic communicating automata introducing constraints over
execution delays of transitions. We represent data by means of classical typed
equational logic. A data type signature is a couple Ω = (S, Op) where S is a
set of types and Op is a set of operations, each one provided with a profile
s1 · · · sn−1 → sn (for i ≤ n, si ∈ S). A set of S-typed variables is a set V of

the form
∐

s∈S

Vs. The set of Ω-terms with variables in V is denoted TΩ(V) =

⋃

s∈S

TΩ(V)s and is inductively defined as usual over Op and V . TΩ(∅) is simply

denoted TΩ. A Ω-substitution is a function σ : V → TΩ(V) preserving types.
In the following, we note TΩ(V)V the set of all Ω-substitutions of the variables
V . Any substitution σ may be canonically extended to terms. The identity Ω-
substitution over the variables of V , IdV , is defined as IdV (v) = v for all v ∈ V .
The set SenΩ(V) of all typed equational Ω-formulas contains the truth values
true, false and all formulas built using the equality predicates t = t′ for t, t′ ∈
TΩ(V)s, and the usual connectives ¬, ∨, ∧. In the sequel, we suppose that a
signature Ω = (S, Op) is given. S necessarily contains a distinguished type name
time, provided with constant symbols in the so-called set of delays D ⊆ R+

∗

(the set of strictly positive real numbers) and also provided with: the constant
symbols 0 and ∞ :→ time representing the first non countable ordinal, and with
the usual arithmetic operators as +, −, <, ≤ Moreover D is supposed to
be stable under addition, i.e. for any d, d′ ∈ D we have d + d′ ∈ D and under
subtraction, i.e. for any d, d′ ∈ D with d < d′, then d′ − d ∈ D.

TIOSTS are then defined over so-called TIOSTS signatures. A TIOSTS sig-
nature Σ is a tuple (V , C), where V is a set of data variables, and C is a set of
communication channels. A transition of a TIOSTS is a tuple composed of: a
source state, a minimal and a maximal delay for the transition firing, a formula
called a guard over variables defining a constraint on variable interpretations for
the transition firing, a communication action, an affectation on data variables
to update variable assignments, and a target state. Communication actions are
receptions (inputs, denoted by ?) or emissions (outputs, denoted by !) through
channels of C, or the unobservable communication action (denoted τ). The set

105

of communication actions over Σ is defined as Act(Σ) = I(Σ) ∪ O(Σ) ∪ {τ},
where: I(Σ) = {c?x | x ∈ V , c ∈ C} and O(Σ) = {c!t | t ∈ TΩ(V), c ∈ C}.

Definition 1 (TIOSTS). Let Σ = (V , C) be a TIOSTS signature. A TIOSTS
over Σ is G = (Q, init, T r) where: Q is a set of state names, init ∈ Q is the
initial state and Tr ⊆ Q×(D∪{0})×(D∪{∞})×SenΩ(V)×Act(Σ)×TΩ(V)V×Q
is a set of transitions.

In the sequel, for any TIOSTS G = (Q, init, T r) over Σ, we note QG , initG ,
TrG and LG respectively for Q, init, Tr and Act(Σ). For any transition tr ∈ TrG
of the form (q, δmin, δmax,ψ, act, ρ, q′), δmin is intuitively the minimum delay to
wait before the transition can be fired, and δmax is the the maximum delay be-
yond which the transition can not be fired anymore. If δmax is ∞, there is no
upper delay for the transition firing. The class of constraints that can be ex-
pressed concerning time in TIOSTS is a subclass of those that can be expressed
in Timed automata: constraints characterizing an interval of possible delays be-
fore an action occurrence. Reasoning with that simplified class of constraints
simplify the rules characterizing our algorithm in Section 4. We use the nota-
tions source(tr), δmin(tr), δmax(tr), guard(tr), act(tr), sub(tr), and target(tr)
in order to refer respectively to, q, δmin, δmax, ψ , act, ρ, and q′.

In the sequel, as in [11, 23], we only consider so-called strongly responsive
TIOSTS that do not contain an infinite sequence of transitions whose actions
are in O(Σ) ∪ {τ}.

q0q1

q2

q3

q4

u?dates
u?price

conf := true

conf = true
w!dates
w!price

conf = false
u!′not reserved′

δmin = 0
δmax = 60
w?rstat

w?rdates
w?rpriceδmin = 60

δmax = 120
u!′timeout′

β

α

rstat = reserved
u!′reserved′

u?conf

α

w → B

rstat = ′noRooms′

∨(rstat = ′option′

∧rdates (= dates)
u!′not reserved′

w → L

rstat = ′noRooms′

∨(rstat = ′option′

∧rprice (= price)
u!′not reserved′

β

w → B

rstat = ′option′

∧rdates = dates
u!rprice

price := rprice

w → L

rstat = ′option′

∧rprice = price
u!rdates

dates := rdates

Fig. 1. O: TIOSTS for the Business (B) and Low Cost (L) Hotel Reservation examples.

Example 1. Figure 1 depicts the Business (B) and Low Cost (L) Hotel Reserva-
tion examples. They consist of two simplified versions of an orchestration used
to reserve a room in a hotel for some given prices and dates, giving priority
to dates while varying the price for the Business version, and giving priority

106

to the price while varying the dates for the Low Cost version. Since they are
very similar, we abusively represent them in the same figure. The only differ-
ence consists in transitions labeled with α and β, for which we provide the
guards, communication actions and affectations in the table. Data variables V are
{dates, price, conf, rstat, rdates, rprice}. Communication channels C are {u, w}
(u to communicate with the user, and w with the Hotel Web service). In both
cases, the orchestrator (O) receives the desired dates and price from the user
(transition3 q0 → q1) and tries to find a room by using the Hotel Web service
(transition q1 → q2). The answer from the Hotel Web service must arrive before
60 seconds, else a timeout error message is sent to the user (transition q2 → q0).
This answer can be: (1) ′reserved′, if a room was found and reserved for those
dates and price, (2) ′option′, if a room was found with a date and/or price close
to the ones given as input, and (3) ′noRooms′, indicating that there are no
available rooms at all. According to the answer from the Hotel Web service, the
orchestrator may in turn: (1) confirm the reservation; (2) notify the user that
it is not possible to find a room: it may be due to the answer ′noRoom′ from
the Hotel Web service or it is ′option′ and, (2.1) for the Business version (see α
in the figure for w → B), the dates of the optional reservation are not the ones
given by the user; (2.2) for the Low Cost version (see α in the figure w → L),
the price of the optional reservation is not the one given by the user; (3) if the
answer is ′option′ and: (3.1) for the Business version (see β in the figure for
w → B), the dates are the ones desired by the user but the price is different
(usually higher), then the user is asked to confirm the new price before trying
again to make the reservation (transitions q3 → q4 → q1); (3.2) for the Low
Cost version (see β in the figure for w → L), the price is the one desired by the
user but the dates are different, then the user is asked to confirm the new dates
(transitions q3 → q4 → q1).

2.2 Semantics

In order to associate semantics to TIOSTS, we begin by interpreting data occur-
ring in Ω: an Ω-model is a set M whose elements are associated with a type in
S, and we note Ms ⊆ M the subset of M whose elements are associated with s.
Moreover for each op : s1 · · · sn−1 → sn in Op, M is associated with a function
op : Ms1 × · · · × Msn−1 → Msn . We define Ω-interpretations as applications ν
from V to M preserving types and extended to terms in TΩ(V). MV is the set
of all Ω-interpretations of V in M . A model M satisfies a formula ϕ, denoted
by M |= ϕ, if and only if, for all interpretations ν, M |=ν ϕ, where M |=ν t = t′

is defined by ν(t) = ν(t′), and where the truth values and the connectives are
handled as usual. Given a model M and a formula ϕ, ϕ is said satisfiable in M
if there exists an interpretation ν such that M |=ν ϕ. In the sequel, we sup-

3 For concision purpose, several inputs (resp. outputs) can be grouped together in a
single transition. Such a feature is practical to model orchestrators and does not
raise technical difficulties in our framework, where they can be seen as inputs or
outputs of structured pieces of data.

107

pose that an Ω-model M is given such that all operations of the time sort are
interpreted as expected.

Then we associate TIOSTS with automaton where messages and delays be-
tween them are interpreted in M . Such automaton are called Timed Input Output
Labeled Transition Systems (TIOLTS) [5,17,21] and are simply automata whose
transitions are labeled either by actions (inputs, outputs, or the internal action
τ) or by delays.

Definition 2 (TIOLTS). Let L = (Li, Lo) such that Li ∩ Lo = ∅ and (Li ∪
Lo) ∩ ({τ} ∪ R∗+) = ∅. A TIOLTS over L is a tuple G = (Q, init, T r) where Q is
a set of states, init ∈ Q is the initial state and Tr ⊆ Q × (L ∪ {τ} ∪ D) × Q is
a set of transitions.

Elements of Li and Lo are actions that are respectively called inputs and
outputs. In the sequel, we will often assimilate L with Li ∪ Lo: for example,
l ∈ L will mean l ∈ Li ∪ Lo and so on. Only transitions carrying elements
of D represent delays: other transitions are instantaneously triggered. For any
tr = (q, a, q′) of Tr, source(tr), act(tr) and target(tr) stand respectively for q,
a and q′.

For any TIOSTS signature Σ, Elements of I(Σ) and O(Σ) can be interpreted
as actions in the sense of Definition 2: for any ν ∈ MV , we note ν(c?x) for c?ν(x),
and ν(c!t) for c!ν(t). We note LΣ

i = {ν(i)|i ∈ I(Σ) ∧ ν ∈ MV}, LΣ
o = {ν(o)|o ∈

O(Σ) ∧ ν ∈ MV} and LΣ = (LΣ
i , LΣ

o).
Any TIOSTS over Σ can then be associated with a TIOLTS over LΣ, by

buildings TIOLTS-transitions reflecting all possible firing of all symbolic tran-
sitions: roughly, for any transition tr we identify all the possible couples de-
lay/interpreted action and for each of them, we build two consecutive transitions,
the first one labeled by the delay and the second one labeled by the action.

Definition 3 (Runs of transitions). For any TIOSTS G, let QM
G stand for

QG ×D×MV. For any tr ∈ TrG, Run(tr) ⊆ (QM
G ×D×QM

G).(QM
G ×(LΣ ∪{τ})×

QM
G), is such that ((qi, ti, ν

i), d, (qi, td, ν
i)).((qi, td, ν

i), l, (qf , td, ν
f)) ∈ Run(tr)

if and only if qi = source(tr), qf = target(tr), νi |= guard(tr), td = ti + d,
δmin(tr) ≤ d ≤ δmax(tr) and:

if act(tr) is of the form c!t (resp. τ), then νf = νi ◦ sub(tr), and l = νi(c!(t))
(resp. τ);

if act(tr) is of the form c?x, then there exists νa such that νa(z) = νi(z) for
every z .= x, νf = νa ◦ sub(tr), and l = νa(c?x).

The set of transitions of the TIOLTS associated to a TIOSTS contains all
those occurring in all runs of all TIOSTS transitions. Moreover we add initial-
ization transitions and transitions denoting that whenever no reactions (delays
or outputs) are specified from a given state the time may elapse. That TIOLTS
is defined as follows.

Definition 4 (TIOSTS unfolding). The unfolding of G is the TIOLTS G =
({init} ∪ QM

G , init, T r) over LΣ, where init is a(n arbitrary) state satisfying

108

init /∈ QM
G and Tr ⊆ ({init} ∪QM

G)× (LΣ ∪ {τ} ∪D)× ({init} ∪QM
G) is defined

as follows:

Initialization transitions: for any ν ∈ MV , (init, τ, (initG, 0, ν)) ∈ Tr,
Run transitions: for any tr ∈ TrG, for any (Q1, d, Q2).(Q2, l, Q3) ∈ Run(tr),

we have (Q1, d, Q2) ∈ Tr and (Q2, l, Q3) ∈ Tr,
Time elapsing transitions: for any Q ∈ {init}∪QM

G s.t. for all tr ∈ Tr with
source(tr) = Q, act(tr) ∈ LΣ

i , then for any d ∈ D we have (Q, d, Q) ∈ Tr.

The semantics of G is the set of all sequences of actions and delays that
can be associated to G. Such sequences, called timed trace, are defined from the
set of paths of G4, denoted Path(G) ⊆ TrG

∗ containing the empty sequence
ε and all sequences tr1 . . . trn such that source(tr1) = initG, and for all i <
n, target(tri) = source(tri+1). Let p be a path of G, the trace of p is the sequence
tr(p) = ε if p = ε, and tr(p) = tr(p′).act(t) (resp. tr(p) = tr(p′)) if p is of the form
p′.t and act(t) .= τ (resp. act(t) = τ). Traces(G) is the set of traces of all paths
of Path(G). For a trace - of the form -′.d.-′′ and for a decomposition d = d1+d2,
the trace -′.d1.d2.-

′′ is called a decomposition of -. The decomposition operation
can be reiterated for all delays occurring in the trace. Similarly, the reverse
operation, called the composition operation, consists in transforming the trace
-′.d1.d2.-

′′ into the trace -.d.-′. The set of all traces that can be obtained by
applying both decomposition and composition operations on - as many times as
desired is denoted T imed(-), and more generally, for a set S of traces, we note
T imed(S) =

⋃
'∈S T imed(-). We note TTraces(G) = T imed(Traces(G)).

We define the semantics of G as Sem(G) = TTraces(G).

3 Web Service Discovery: Testing Framework

Regarding the question of testing Web services from timed behaviors of orches-
trators, we now present our technical results using preferentially TIOLTS than
TIOSTS. Indeed it is commonly accepted that implementations are modeled as
TIOLTS since black-box testing induces an observational point of view that leads
the tester to perceive the implementation directly as a set of traces. Moreover
any TIOSTS can be associated with its unfolding (see Definition 4).

3.1 Timed conformance relation

Implementations are considered to be TIOLTS which accept any input at any
moment [22] and in such a way that time is correctly modeled from an observa-
tional point of view (most importantly, time is elapsing if no message occurs).

Definition 5 (Implementation). An implementation over L is a strongly re-
sponsive TIOLTS (Q, init, T r) over L satisfying the following properties:

4 A∗ denotes the set of words where letters are in A, ε denotes the empty word and
w1.w2 represents the concatenation of the words w1 and w2.

109

Input enableness: ∀q ∈ Q, ∀a ∈ Li, ∃q′ ∈ Q such that (q, a, q′) ∈ Tr
Time additivity: ∀q1, q2, q3 ∈ Q, ∀d1, d2 ∈ D,

((q1, d1, q2) ∈ Tr ∧ (q2, d2, q3) ∈ Tr) ⇒ (q1, d1 + d2, q3) ∈ Tr
Time decomposition: ∀q1, q2 ∈ Q, ∀d1, d2 ∈ D,

(q1, d1 + d2, q2) ∈ Tr ⇒ ∃q ∈ Q, ((q1, d1, q) ∈ Tr ∧ (q, d2, q2) ∈ Tr)
τ closure: ∀q1, q2, q3 ∈ Q, ∀d ∈ D, ((a1, a2) = (τ, d) ∨ (a1, a2) = (d, τ)) ⇒

(((q1, a1, q2) ∈ Tr ∧ (q2, a2, q3) ∈ Tr) ⇒ (q1, d, q3) ∈ Tr)
Time elapsing: ∀q ∈ Q, ∃(a, q′) ∈ (Lo ∪{τ}∪D)×Q such that (q, a, q′) ∈ Tr.

Property 1. Let I be an implementation over L. Then Traces(I) = TTraces(I).

The well-known so-called ioco conformance relation ([22]) defined for IOLTS
without time has already been extended to take time into account. Our definition
is similar5 to the ones of [4, 5, 17, 21] which basically include any time delays in
the set of observable outputs.

Definition 6 (tioco). Let G be a TIOLTS over L and let I be an implementation
over L. I conforms to G, denoted I tioco G, if and only if:

∀- ∈ TTraces(G), ∀a ∈ D ∪ Lo, -.a ∈ Traces(I) ⇒ -.a ∈ TTraces(G)

Other variants of timed conformance relations have been proposed (see [21]
for a detailed presentation).

3.2 Testing Web service from orchestrator behaviours

We first introduce technical operations (projection, mirror and composition) that
we will perform on orchestrators to elicit expected behaviors for Web services.

Definition 7 (Projection). Let G = (Q, init, T r) be a TIOLTS over L. Let
L′ = (L′i, L

′
o) with L′i ∩ L′o = ∅, L′i ⊆ L and L′o ⊆ L. The projection of G

on L’ is the TIOLTS over L′ defined as G↓L′ = (Q, init, T r↓L′) where Tr↓L′ =
{(q, a, q′)↓L′ | (q, a, q′) ∈ Tr} with (q, a, q′)↓L′ = (q, a, q′) if a ∈ L′ ∪ D, and
(q, a, q′)↓L′ = (q, τ, q′) otherwise.

In particular, by only considering labels of L′, we consider that transitions
carrying labels of L\L′ are performed, but are no more observable: this explains
why these labels are simply translated as τ in G↓L′ . This operation corresponds
to the hiding operation [10,23] encapsulating some designated pieces of interface.
The projection .↓L′ can canonically be extended to paths and traces. The mirror
operation changes the status (input or output) of actions: it simply depends on
the construction of L′ = (L′i, L

′
o).

Definition 8 (Mirror). Let G be a TIOLTS over L. The Mirror of G, M(G),
is the TIOLTS G over LM(G) = M(L), with M(L) = (Lo, Li).

5 The slight technical differences are essentially inherited from symbolic executions
involved in the test case generation algorithm.

110

The mirror application can be applied to all elements (transitions, paths, traces)
issued from TIOLTS by simply exchanging the role of input and output actions.
The mirror operation is often used to design a system interacting with a targeted
system: test cases are typically such reactive systems which may be defined by
using the mirror operation on the reference model G. Roughly speaking, as test
cases send messages expected by G and wait for emissions specified in G, inputs
and outputs are reversed both in the traces of G and the test case, until a verdict
is computed.

Systems can be composed by taking into account communications between
them. As usual, input and output actions will be synchronized when they share
the same name. The passing of time will also be synchronized by requiring that
any global elapsed time result from the synchronization of subsystem transi-
tions carrying the same delay value. Thus, the global system shares with its
components exactly the same perception of time. This means that our system
composition correspond to locally deployed component-based systems. Particu-
larly in the case of an orchestrator communicating with Web services, this means
that the modeling of a Web service is composed of a remote Web service and of
message transmissions on the Internet: all the sending and receptions of messages
will be stamped with the same clock than the orchestrator clock.

Definition 9 (Composition). Let G1 and G2 be two TIOLTS respectively over
LG1 and LG2 such that LG1

i ∩ LG2

i = LG1
o ∩ LG2

o = ∅.
G1 ⊗ G2 is the TIOLTS (Q, init, T r) over LG1⊗G2 with LG1⊗G2

o = LG1
o ∪

LG2
o and LG1⊗G2

i = (LG1 ∪ LG2) \ (LG1
o ∪ LG2

o), Q = QG1 × QG2 and init =
(initG1 , initG2). Tr is defined as follows:

Handshake: if (q1, a, q′1) ∈ TrG1 and (q2, a, q′2) ∈ TrG2 with a ∈ LG1⊗G2 ∪ D,
then ((q1, q2), a, (q′1, q

′
2)) ∈ Tr.

Asynchronous execution: for any (q1, a, q′1) ∈ TrG1 where a /∈ LG2 ∪D, then
for any q2 ∈ QG2 we have ((q1, q2), a, (q′1, q2)) ∈ Tr (a similar definition
holds by reversing the roles of G1 and G2).

Property 2. For p ∈ Path(G1 ⊗ G2) with - = tr(p), for i ∈ {1, 2} we define pGi

and -Gi as paths and traces over6 LGi :

– if p = ε then pGi = ε and -Gi = ε,
– if p = p′.((q1, q2), a, (q′1, q

′
2)) with -′ = tr(p′) where the last transition is an

handshake transition, then pGi = p′Gi
.(qi, a, q′i) and -Gi = -′Gi

.a.
– if p = p′.((q1, q2), a, (q′1, q2)) with -′ = tr(p′) where the last transition is

an asynchronous execution with a .∈ LG2 ∪ D, then pG1 = p′G1
.(q1, a, q′1),

-G1 = -′G1
.a, pG2 = p′G2

and -G2 = -′G2
. A symmetric reasoning holds for an

asynchronous transition with a .∈ LG1 ∪ D.

Then by construction, for i = 1, 2, pGi ∈ Path(Gi) and -Gi ∈ Traces(Gi).
Moreover, we have -Gi = tr(p)Gi = tr(pGi) = tr(p)↓LGi = tr(p↓LGi).

6 Let us remark that labels of LG1
i ∩ LG2

o change of status between G1 ⊗ G2 and pG1

and "G1 .

111

Property 3. Let L1,2 = (L1
i ∩ L2

o, L
1
o ∩ L2

i) and L2,1 = M(L1,2).
Let p1 ∈ Path(G1) and p2 ∈ Path(G2) such that tr(p1↓L1,2

) = tr(p2↓L2,1
).

Then there exists a path p of G1 ⊗ G2 such that pG1 = p1 and pG2 = p2.

An orchestrator interacts on one hand with the end-user and on the other
hand with Web services. Orchestrator actions will be split accordingly7.

Definition 10 (Orchestrator). An orchestrator is a TIOLTS O = (Q, init, T r)
over L with a distinguished set LW = (LW

i , LW
o) with LW

i ⊆ Li and LW
o ⊆ Lo of

so called Web service actions and satisfying the so-called “consistent Web service
invocation” property:

There do not exist a ∈ LW
i ∪D and a trace - on LW issued from two distinct

paths p1, p2 of O, that is tr(p1)↓LW = tr(p2)↓LW = -, such that:

– there exists a path of O of the form p1.p
′
1 with tr(p1.p

′
1)↓LW = -.a

– for all paths of O of the form p2.p
′
2, we have tr(p2.p

′
2)↓LW .= -.a.

In the sequel, we also call Orchestrator a TIOSTS O over (V , C) with a
distinguished set CW ⊆ C such that if we note O the unfolding of O and LW

the set of all numeric actions built on CW then O is an orchestrator.
The “consistent Web service invocation” property simply expresses that if

there are two distinct contexts (paths p1 and p2) from the orchestrator point
of view that are perceived as similar from the Web service (p1 and p2 have
a common projected trace - on LW), then the orchestrator should anticipate
exactly the same set of reactions from the Web service. It means that designing
an orchestrator should take into account that the set of possible Web service
reactions depends only on the observational context as perceived by the Web
service: only traces projected on LW are relevant to define observational contexts.

Definition 11 (RequireO(W)). Let O be an orchestrator over L with a distin-
guished subset LW . Let W be an implementation over8 LW = M(LW).

W satisfies requirements issued from O, noted as RequireO(W), if:
For all paths p of O⊗W such that the set {tr(pO).a | a ∈ LW

i ∪D, pO.(q, a, q′) ∈
Path(O)} is not empty, there exists at least a path p.p′ of O ⊗ W such that
tr(p.p′) = tr(p).a′ with a′ ∈ LW

i ∪ D.

The property RequireO(W) means that at any reachable state (target state of
p) in the resulting system O⊗W, W meets the expectations of O if W provides at
least one of the behaviors specified by O at this point: the behaviors are either a
possible input coming from W or a delay synchronizing behaviors of O and W. In
other words, to satisfy the RequireO(W) property, W cannot cause a deadlock9

a in the system O ⊗ W: the path p.p′ is precisely an extension in O ⊗ W of the
path p according to a reaction (a′ ∈ LW

i ∪ D) of W expected by O.

7 For simplicity purpose, we will consider that orchestrators interact only with one
Web service.

8 In practice, W can be specified over any set L′ containing at least M(LW).
9 Another interesting but stronger condition would consist in requiring that the Web

service should be able to provide all a in LW
i ∪ D that extend paths in O.

112

Theorem 1. Let O be an orchestrator over L with LW ⊆ L and let W be an
implementation over M(LW).

W tioco M(O↓LW) ⇒ RequireO(W)

By Theorem 1, in order to know whether or not a Web service implemen-
tation W is suitable to be integrated with a given orchestration (i.e. satisfies
the RequireO(W) property), it suffices to test it accordingly to the tioco confor-
mance relation and with respect to the behavior deductible from O model using
the mirror and projection operations along LW .

Proof. Let us suppose that W tioco M(O↓LW) and let us show that RequireO(W)
holds. Let us consider a path p of O⊗W such that there exists a path pO.(q, a, q′)
of O with tr(pO.(q, a, q′)) = tr(pO).a with a ∈ LW

i ∪ D.
It exists a′ ∈ LW

o ∪ D and p′ such that pW.p′ is a path of W whose trace
is tr(pW).a′. Indeed, the time elapsing property allows to extend paths with
transitions carrying actions in LW

o ∪ {τ} ∪ D. If the considered action would be
τ , then we we can reapply the property until getting an action different from τ .
W is strongly responsive: it cannot contain an infinite sequence of τ action.

As W conforms to M(O↓LW), since tr(pW) is a trace of both M(O↓LW) and
W, this means that tr(pW).a′ with a′ ∈ LW

o ∪ D is also a trace of M(O↓LW).
Thanks to the “consistent Web service invocation” property, pO can be extended
as a path pO.p′′ with tr(pO.p′′) = tr(pO).a′.

Paths p′ of W and p′′ of O share the same projection on LW , the common
part of LO and LW. By Prop.3, they can be synchronized in O ⊗ W: there exists
a path p.ρ s.t. ρW = p′, ρO = p′′ and tr(p.ρ) = tr(pO).a′ with a′ ∈ LW

i ∪ D.

4 Symbolic Timed Testing

Following our previous works [8,13], our testing algorithm is based on symbolic
execution techniques.

4.1 Symbolic Execution

Symbolically executing a TIOSTS comes to represent its possible executions as
a tree structure. Any path of the tree represents in a symbolic way a set of
traces associated to a path of the TIOSTS. In the sequel we consider that a set

F =
⋃

s∈S

Fs (disjoint of any set of variables introduced in TIOSTS signatures)

is given. We also consider a set FD of time variables (typed on D). We note
Sen(FD) the set of all conjunctions of formulas x ≤ d or d′ ≤ x with x ∈ FD,
d ∈ D∪{∞} and d′ ∈ D∪{0}. In order to store pieces of information concerning
the possible traces of a path we use symbolic states. Those informations are:
the last state of the path, the symbolic values assigned to variables, and the
constraints on those symbolic values as well as on delays between communication
actions occurring in the path. A symbolic state η is a tuple (q,σ,π,ϑ), where
q ∈ Q, σ ∈ TΩ(F)V , π ∈ SenΩ(F), and ϑ ∈ Sen(FD). In the sequel we note S

113

the set of all such symbolic states. For any η ∈ S of the form (q,σ,π,ϑ), we use
the notations state(η), sub(η), π(η) and ϑ(η) to refer respectively to q, σ, π, and
ϑ. η is said satisfiable if and only if there exists ν ∈ MF and ν′ ∈ DFD such that
ν |= π and ν′ |= ϑ. Ssat is the set of all satisfiable symbolic states.

Definition 12 (Symbolic execution of a transition). Let G be a TIOSTS
over Σ = (V , C). Let ΣF stand for (F, C). For any tr ∈ TrG and η ∈ S,
such that source(tr) = state(η), a symbolic execution of tr from η is a triple
(η, sd.sa, η′) ∈ S×(FD.Act(ΣF))×S, such that sd is a fresh variable, state(η′) =
target(tr), ϑ(η′) = ϑ(η) ∧ (δmin(tr) ≤ sd) ∧ (sd ≤ δmax(tr)), and:

– if act(tr) = c!t (resp. τ) then sa = c!z (resp. sa = τ) where z is a fresh
variable, sub(η′) = sub(η) ◦ sub(tr), and π(η′) = π(η) ∧ sub(η)(guard(tr)) ∧
z = sub(η)(t),

– if act(tr) = c?x then there exists σ ∈ TΩ(F)V satisfying y .= x ⇒ σ(y) =
sub(η)(y), and σ(x) is a fresh variable such that sa = c?σ(x), sub(η′) =
σ ◦ sub(tr), and π(η′) = π(η) ∧ sub(η)(guard(tr)).

In the following, str denotes a triple (η, sd.sa, η′), and notations source(str),
act(str), and target(str) refer to, respectively, η, sd.sa, and η′.

Definition 13 (Symbolic execution of a TIOSTS). A symbolic execution
of G, denoted SE(G), is a couple (init, Rsat), where init = (initG,σ0, true, true)
is a symbolic state such that ∀x ∈ V, σ0(x) ∈ F and σ0 is injective, and Rsat ⊆
Ssat × (FD.Act(ΣF)) × Ssat is the restriction to Ssat of the relation R ⊆ S ×
(FD.Act(ΣF))×S such that for all η ∈ S and tr ∈ Tr with source(tr) = state(η),
there exists exactly one symbolic execution of tr from η in R. Moreover, for any
(η1, sd1.c3z, η′1) and (η2, sd2.d3w, η′2) in R with 3 ∈ {!, ?}, we have sd1 .= sd2

and z .= w.

Note that the symbolic execution is unique, up to the choice of the involved
fresh variables.

The symbolic execution of a TIOSTS can be associated with a set of traces
that is exactly the one associated to the TIOLTS denoting its unfolding. Traces
of a path p = (init, sd1.sa1, η1) · · · (ηn−1, sdn.san, ηn) are the traces of the form
ν′(sd1).ν(sa1) · · · ν′(sdn).ν(san) with10 ν ∈ MF and ν′ ∈ DFD two interpreta-
tions such that ν |= π(ηn) and ν′ |= ϑ(ηn).

4.2 Algorithm

In order to assess tioco-conformance of an implementation I, the key point is that
delays appearing in I may be formulated differently than they appear in traces
of SE(G): the way they are observed depends on the periodicity of observation
in the testing architecture. Therefore our algorithm has to compare traces of I
to timed traces of SE(G) defined up to delay composition and decomposition.

10 We apply the convention that ν(τ) is the empty word.

114

Test Purpose: Our algorithm will take behaviors to be tested as inputs in order
to pilot the testing process. Such behaviors are called test purposes. Those behav-
iors are characterized as finite paths of so-called symbolic execution trees which
are couples ST = (init, R) such that init ∈ Ssat and R ⊆ Ssat × Fd.Act(ΣF) ×
Ssat. Typical examples of symbolic execution trees are symbolic execution trees
of TIOSTS but we will use other structures in Section 5 for Web service elicita-
tion. Test purposes are finite subtrees of ST whose last transition of each path
is not labeled by an input.

Definition 14. Let ST = (init, R) be a symbolic execution tree. A ST -test
purpose is TP = (init, RTP) where RTP ⊆ R is a finite set s.t. for any str ∈
RTP then either source(str) = init or there exists str1 · · · strj for some j ≥ 1
s.t.:

– for all i ≤ j, stri ∈ RTP , source(str1) = init and target(strj) = source(str),
– for all i ≤ j − 1, target(stri) = source(stri+1),
– if there is no str′ ∈ RTP s.t. source(str′) = target(str) then act(str) /∈

FD.I(ΣF).

We introduce some technical notations related to test purpose:

a) Accept(TP) ⊆ Ssat is the set of all η satisfying:
(∃str ∈ RTP , η = target(str)) ∧ (∀str ∈ RTP , η .= source(str)).

b) The set Reach(η, TP) is the set of all symbolic states reachable from η in
TP . It contains η and all η′ such that there exists a sequence
(η, act1, η1)(η1, act2, η2) · · · (ηn−1, actn, η′) of transitions of RTP .

c) We note Accept(η, TP) = Reach(η, TP) ∩ Accept(TP) the set of all states of
Accept(TP) which are reachable from η.

d) targetCond(η) is the condition
∨

η′∈Accept(η,TP)(π(η′) ∧ ϑ(η′))

Sometimes we write η ∈ TP to signify that η occurs in some transition of RTP .

Rule based algorithm: Before giving the rules of our algorithm, we introduce
the notion of context (η, fd, ft, θ). While interacting with I, we build testing
traces. We have to identify paths of ST that admit them as traces. A context
denotes the target state of such a path. Moreover it also contains pieces of
information to identify symbolic values with concrete ones (those occurring in the
testing trace). It is composed of a symbolic state η ∈ Ssat and of two formulae: fd

expresses constraints induced by the sequence of data exchanged with I while ft

expresses constraints on delays. Finally, in order to identify when the observation
occurred, we introduce a duration θ ∈ D. The meaning of the context can be
intuitively understood as follow:

115

The trace observed until now can be seen as a trace of the form -.θ, where
- is a trace of the path leading to η. Interpretations of variables that occur in
communication actions of the path have to satisfy fd in order to be consistent
with values observed in -. In the same way interpretations of symbolic delays of
the path have to satisfy ft to be consistent with concretely observed delays in -.
η may have been reached θ units of time ago.

As there may be many contexts compatible with a testing trace, we use sets
of contexts generically noted SC (for Set of Contexts). Sequences of stimuli and
observations built by the interaction between the algorithm and I are modeled
as elements of Traces(I). Practically, an observation, noted obs(r), is given by
r ∈ D ∪ LΣ

o . A stimulus, noted stim(i), is given by i ∈ LΣ
i .

We define several technical notations to denote evolutions of sets of contexts:

a) NextT rigger(a, SC), where a ∈ LΣ ∪ {τ}, is the set of all contexts that can
be reached by triggering a transition of ST consistently with the action a.

(η′, f ′d, f
′
t , θ
′) ∈ NextT rigger(a, SC) if and only if θ′ = 0 and, if a is of the

form C3Z with 3 ∈ {?, !} (resp. τ) then there exists (η, fd, ft, θ) ∈ SC, and
(η, sd.C3U, η′) ∈ R (resp. (η, sd.τ, η′) ∈ R), s.t. f ′d is fd ∧ (T = U) (resp. fd),
f ′t is ft ∧ θ = sd, and both f ′d ∧ π(η′) and f ′t ∧ ϑ(η′) are satisfiable.

b) Wait(d, SC), where d ∈ D, is the set of contexts obtained by waiting while
progressing to a situation where a transition can be triggered.

(η′, f ′d, f
′
t , θ
′) ∈ Wait(d, SC) iff there exists d′ > d, a ∈ LΣ ∪ {τ} and C =

(η, fd, ft, θ) ∈ SC s.t. NextT rigger(a, {(η, fd, ft, θ + d′)}) .= ∅, η′ = η, f ′d = fd,
f ′t = ft and θ′ = θ + d.

c) ∆(d, SC), where d ∈ D, is the set of contexts obtained by observing a quies-
cence situation.

(η′, f ′d, f
′
t , θ
′) ∈ ∆(d, SC) if and only if there exists (η, fd, ft, θ) ∈ SC such that

η′ = η , f ′t = ft, θ
′ = θ+ d and if we note react(η) the set of all transitions of R

whose action is not of the form sd.i with i ∈ I(Σ), δ(η) the formula reduced to
true if react(η) = ∅ and equal to

∧
str∈react(η) ¬π(target(str)) otherwise, then

f ′d is fd ∧ δ(η) and f ′d is satisfiable.

d) T imeElaps(d, SC) = Wait(d, SC) ∪∆(d, SC) represents the set of contexts
reachable from SC after having waited d time units.

For any set of contexts SC, we note:

Skip(SC) = {(η, fd, ft, θ)|(η, fd, ft, θ) ∈ SC, η ∈ TP,
(targetCond(η) ∧ fd ∧ ft) is satisfiable },

Pass(SC) = {(η, fd, ft, θ) ∈ Skip(SC), η ∈ Accept(TP)},

We use Skip and Pass for shortcuts to Skip(SC) and Pass(SC) when the
context is clear. Each verdict is described by means of inference rules holding on
sets of contexts. Those rules are of the form: SC

Result cond(ev), where SC is a set
of contexts, Result is either a set of contexts or a verdict, and cond(ev) is a set

116

of conditions including the observation obs(ev) or the stimulus stim(ev). Such
rules express that, given the current set of contexts SC, if cond(ev) is verified
then the algorithm may achieve a step with ev as elementary action.

As in [13], our algorithm provides four verdicts: FAIL, when the behavior
belongs neither to TP nor to ST (Rule 3); INCONC, (for inconclusive) when
the behavior belongs to ST and not to TP (Rule 2), PASS when the behavior
belongs to a path of TP ending by an accept state and not to any other path
of ST (Rule 5); and WeakPASS, when the behavior belongs to a path of TP
ending by an accept state and to at least one other path of ST (Rule 4).
Rule 0: Initialization

{(init, true, true, 0)}

Rule 1: No observed outputs for a delay d, consistently with reaching an accept state.
SC

T imeElaps(d,SC)
obs(d), Skip $= ∅, Pass = ∅

Rule 1 (bis): Observation of an output o, consistently with reaching an accept state.
SC

NextTrigger(o,SC)
obs(o), Skip $= ∅, Pass = ∅

Rule 2: The set of reached contexts is outside the test purpose.
SC

INCONC
SC $= ∅, Skip = ∅

Rule 3: The set of reached contexts is empty.
SC

FAIL
SC = ∅

Rule 4: One accept state is reached but not all reached states are accept ones.
SC

WeakPASS
Pass $= ∅, SC $= Pass

Rule 5: All reached states are accept ones.
SC

PASS
Pass $= ∅, SC = Pass

Rule 6: The tester stimulates by sending an input i.

SC

NextTrigger(i,SC)
stim(i), SC $= ∅, Skip(NextTrigger(i,SC)) $= ∅

Regarding to our contribution in [8, 13], a real novelty here is Rule 1 which
computes the impact of time passing on the set of current contexts with respect
to the test purpose. Note that rule 6 is the only one that can be applied non
deterministically with respect to others. An application strategy defines a test
case generation algorithm. The goal of the generic algorithm is similar to the one
of the algorithm described in [4]. The two main differences are that we handle
data symbolically and our test purposes are defined as symbolic trees instead of
properties given as automata. As we will automatically elicit intended behaviors
for Web services as symbolic tree from orchestrator specifications, our testing
approach is suitable for service discovery.

117

5 Elicitation of Web service test purposes

For any (TIOSTS) orchestrator O we identify the interface corresponding to
the Web service to be elicited: it is a subset CW of the set of channels C of
O. We note SE(O) = (init, Rsat). We note (init, RP) the couple reflecting the
projection on channels of CW in SE(O). Formally, for any str ∈ Rsat, if we
note act(str) as δ.a then we have: if a is of the form c∆u with c ∈ CW and
∆ ∈ {?, !} then str ∈ RP , else (source(str), δ.τ, target(str)) ∈ RP . We then
apply a mirror operation: we consider the couple (init, RW) such that for any
str ∈ RP , if we note act(str) as δ.a we have: if a is τ then str ∈ RW ; if a is of the
form c?u then (source(str), δ.c!u, target(str)) ∈ RW ; if a is of the form c!u then
(source(str), δ.c?u, target(str)) ∈ RW . (init, RW) forms a symbolic tree that is
a symbolic counterpart to the TIOLTS M(O↓LW) (where O is the unfolding of
O), and we use it to extract test purposes for testing some candidate Web service
W in order to evaluate the validity of RequireO(W) thanks to Theorem 1.

Example 2. Figure 2 shows the elicited behaviors for the Hotel Web service par-
ticipating in both versions of the Hotel Reservation example (Business B and
Low Cost L).11

The only difference between the elicited behaviors from the Business and
Low Cost versions is in the path condition π2, where for the former version the
dates are kept unchanged, while for the other one the price is kept unchanged.

Let us suppose that we want to test an implementation of a Hotel Web service
that is to be used in the Business version. Even if a given implementation of the
Web service could be used in both versions, we want to find an implementation
of the Web service that does not modify the dates. Moreover, we would expect
that a room is found in the first iteration or at least in the second one. Thus, we
define the symbolic state η3 as the only accept state, and if we reach it we also
check the path condition π2 (either the answer is ′reserved′ or it is ′option′ with
the dates kept unchanged) in order to determine if the Web service behaves as
expected. Then, we can know if it fulfills the expectations of the orchestrator.
Even if the Hotel Web service answers with a different date, or if no room is
found, no FAIL verdict would be emitted. However, those are not the behaviors
that we expect. Thus, this example shows that, in order to use a Web service
within an orchestration so that it can precisely provide behaviors expected by
the orchestrator, it has to be tested against test purposes covering these tar-
geted behaviors. Obviously, the choice of behaviors that should be primarily
ensured by Web services to be integrated depends on the subjective analysis of
the orchestration designer. This methodological subjectivity is similar to the one
guiding the choice of appropriate test purposes in a testing activity.

6 Conclusion

In this paper we have shown how to elicit from an orchestrator specifications,
intended behaviors of Web services likely to interact with it, and we have shown

11 In the figure, we only show the information related to η3 since it is the accept state.

118

Variable assignments
σ3 : dates← dates1, price← rprice1, conf ← conf0

rstat← rstat1, rdates← rdates1, rprice← rprice1

Variables path conditions

πB
2 : rstat1 = ′option′ ∧ rdates1 = dates1

πL
2 : rstat1 = ′option′ ∧ rprice1 = price1

Clocks path conditions
ϑ3 : ϑ2 ∧ (0 ≤ sd2) ∧ (sd2 ≤ 60)
ϑ5 : ϑ3 ∧ true

init : (q0, σ0, π0, ϑ0)

η1 : (q1, σ1, π0, ϑ1)

η2 : (q2, σ1, π1, ϑ2)

η3 : (q3, σ2, π1, ϑ3)

η5 : (q4, σ3, π
[B,L]
2 , ϑ5)

η8 : (q1, σ4, π
[B,L]
2 , ϑ8)

sd7.τ

sd4.τ

η6 : (q0, σ2, π3, ϑ6)

sd5.τ

η7 : (q0, σ2, π4, ϑ7)

sd6.τ

sd2.w!rstat1
sd2.w!rdates1

sd2.w!rprice1

η4 : (q0, σ1, π1, ϑ4)

sd3.τ

sd1.w?dates1

sd1.w?price1

sd0.τ

Fig. 2. Elicited behaviors for the Hotel Web service.

how to use them as test purposes at the Web service discovery phase. Orches-
trator specifications are given in a symbolic way and include timing constraints.
We have identified a property reflecting the absence of deadlock in an orches-
tration by relating the orchestrator and Web services of the orchestration. This
property serves as reference to select candidate Web service and we have de-
fined a theorem grounding an approach to test this property. Technically our
testing approach comes to test the conformance of Web services to symbolic
behaviors obtained by symbolically executing the orchestrator specification and
by applying projection and mirroring techniques.

References

1. R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235, 1994.

2. F. De Angelis, A. Polini, and G. De Angelis. A Counter-Example Testing Ap-
proach for Orchestrated Services. In Intl. Conf. Software Testing, Verification and
Validation (ICST), pages 373–382. IEEE Computer Society, 2010.

3. L. Bentakouk, P. Poizat, and F. Zäıdi. A Formal Framework for Service Orchestra-
tion Testing based on Symbolic Transition Systems. In Testing of Communicating
Systems and Formal Approaches to Software Testing (TESTCOM/FATES), vol-
ume 5826 of LNCS, pages 16–32, 2009.

4. N. Bertrand, T. Jéron, A. Stainer, and M. Krichen. Off-line test selection with test
purposes for non-deterministic timed automata. In TACAS/ETAPS 2011, volume
6605 of LNCS, pages 96–111, 2011.

5. L. Brandán Briones and E. Brinksma. A test generation framework for quiescent
real-time systems. In Intl. Workshop of Formal Approaches to Software Testing
(FATES), Revised Selected Papers, volume 3395 of LNCS, pages 64–78, 2004.

6. J. Dong, Y. Liu, J. Sun, and X. Zhang. Verification of computation orchestration
via timed automata. In Formal Methods and Software Engineering, volume 4260
of LNCS, pages 226–245. Springer Berlin / Heidelberg, 2006.

7. G. Dyaz, M.E. Cambronero J.J, Pardo, V. Valero, and F. Cuartero. Automatic
generation of correct web services choreographies and orchestrations with model

119

checking techniques. In Advanced Intl. Conf. on Internet and Web Applications
and Services, 2006.

8. J.P. Escobedo, P. Le Gall, C. Gaston, and A. Cavalli. Testing web service orches-
trators in context:a symbolic approach. In Proc. of Software Engineering Formal
Methods (SEFM). IEEE Computer Society, 2010.

9. A. Alves et al. Web Services Business Process Execution Language Version
2.0. OASIS, April 2007. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-
OS.html.

10. A. Faivre, C. Gaston, and P. Le Gall. Symbolic Model Based Testing for Compo-
nent oriented Sytems. In Testing of Communicating Systems (TESTCOM), volume
4581/2007 of LNCS, pages 90–106, 2007.

11. L. Frantzen and J. Tretmans. Model-Based Testing of Environmental Conformance
of Components. In Formal Methods of Components and Objects (FMCO), number
4709 in LNCS, pages 1–25, 2007.

12. L. Frantzen, J. Tretmans, and T. A. C. Willemse. Test generation based on sym-
bolic specifications. In Intl. Workshop of Formal Approaches to Software Testing
(FATES), Revised Selected Papers, volume 3395 of LNCS, pages 1–15, 2004.

13. C. Gaston, P. Le Gall, N. Rapin, and A. Touil. Symbolic Execution Techniques
for Test Purpose Definition. In Testing of Communicating Systems (TESTCOM),
volume 3964 of LNCS, pages 1–18, 2006.

14. J. Gortmaker, M. Janssen, and R. Wagenaar. The advantages of web service
orchestration in perspective. In Intl. Conf. on Electronic commerce (ICEC), pages
506–515. ACM, 2004.

15. N. Guermouche and C. Godart. Asynchronous timed web service-aware choreg-
raphy analysis. In Intl. Conf. on Advanced Information Systems Engineering
(CAiSE), pages 364–378. Springer Verlag, 2009.

16. R. Kazhamiakin, R. Pandy, and M. Pistore. Timed modelling and analysis in
web service compositions. In Intl. Conf. on Availability, Reliability and Security
(ARES), 2006.

17. M. Krichen and S. Tripakis. Black-box conformance testing for real-time systems.
In Intl. SPIN Workshop on Model Checking of Software (SPIN), volume 2989 of
LNCS, pages 109–126, 2004.

18. R. Krummenacher, M. Hepp, A. Polleres, C. Bussler, and D. Fensel. Www or what
is wrong with web services. In IEEE European Conf. on Web Services (ECOWS),
pages 235–243, 2005.

19. C. Peltz. Web services orchestration and choreography. In Computer, pages 46–52.
IEEE Computer Society, 2003.

20. T. Pilioura, A. Tsalgatidou, and R. Batsakis. Using wsdl/uddi and daml-s in web
service discovery. In WWW 2003 Workshop on E-Services and the Semantic Web,
2003.

21. J. Schmaltz and J. Tretmans. On Conformance Testing for Timed Systems. In
Intl. Conf. on Formal Modeling and Analysis of Timed Systems (FORMATS),
pages 250–264. Springer-Verlag, 2008.

22. J. Tretmans. Test generation with inputs, outputs and repetitive quiescence. Soft-
ware - Concepts and Tools, 17(3):103–120, 1996.

23. H.M. van der Bijl, A. Rensink, and J. Tretmans. Compositional testing with ioco.
In Formal Approaches to Software Testing (FATES), volume 2931 of LNCS, pages
86–100, 2004.

120

Realizability of Choreographies for Services
Interacting Asynchronously

Gregor Gössler1 and Gwen Salaün2

1 INRIA Grenoble – Rhône-Alpes, France
2 Grenoble INP, INRIA, France

Abstract. Choreography specification languages describe from a global
point of view interactions among a set of services in a system to be
designed. Given a choreography specification, the goal is to obtain a
distributed implementation of the choreography as a system of commu-
nicating peers. These peers can be given as input (e.g., obtained using
discovery techniques) or automatically generated by projection from the
choreography. Checking whether some set of peers implements a chore-
ography specification is called realizability. This check is in general un-
decidable if asynchronous communication is considered, that is, services
interact through message buffers. In this paper, we consider conversation
protocols as a choreography specification language, and leverage a recent
decidability result to check automatically the realizability of these spec-
ifications by a set of peers under an asynchronous communication model
with a priori unbounded buffers.

1 Introduction

Specification and analysis of interactions among distributed components play an
important role in service-oriented applications. A choreography is a specification
of interactions, from a global point of view, among a set of services participating
in a composite service to be designed. One important problem in choreography
analysis is figuring out whether a choreography specification can be implemented
by a set of distributed peers which communicate using message passing. Even
if these peers are obtained by projection [17, 22] from the choreography speci-
fication, this does not ensure that they precisely implement the corresponding
choreography. This problem is known as realizability.

Most of the work dedicated to realizability assumes a synchronous commu-
nication model, see for instance [22, 7, 6, 20]. Only a few works focused on the
study of this problem considering an asynchronous communication model, that
is communication using message queues or buffers. Fu et al. [11] proposed three
conditions that guarantee a realizable conversation protocol. Bultan and Fu [5]
also recently defined some sufficient conditions to test realizability of choreogra-
phies specified with collaboration diagrams. But defining such conditions is quite
restrictive because if they are not satisfied, nothing can be concluded about the
system (choreography and peers) being analysed. In [23], the authors refine and
extend this former work with an automatic check for bounded asynchronous

121

communication. The realizability of bounded MSC graphs has also been studied
and some decidability results presented in [3]. Su et al. state in [24] that “it
remains an open problem whether the realizability problem is decidable”.

More recently, [9] proved the quasi-static scheduling problem of scheduling a
set of non-deterministic communicating processes so as to ensure boundedness
of buffers, to be undecidable in general, and identified a decidable subclass.

In this paper, we consider conversation protocols [11, 12] (CPs) as choreog-
raphy specification language, and propose an approach to check automatically
the realizability of these specifications by a set of peers interacting over an asyn-
chronous communication model (Fig. 1). We do not require the model to be
existentially bounded, that is, the proposed approach decides realizability even
if it is not known a priori whether the specification can be realized with finite
buffers, and if it can, for what buffer sizes. We present here a solution that
makes this check decidable if the system is well-formed, i.e., (1) in each state
a peer can either send one message to a buffer (which we will call a channel),
read a message from one channel, or non-deterministically choose between one
or more internal actions; and (2) the system is activated by a request from the
environment, and a new request is not emitted unless the previous action is com-
pleted. Both conditions allow for a class of realistic systems, e.g., peers including
a choice among several emissions or receptions, while excluding the class of un-
decidable systems. We will show how to model such behaviours in Section 3.
Condition (1) means that non-deterministic choice is made explicit and excludes
race conditions. Condition (2) typically corresponds to service-based systems in
which a client (the environment) submits a request and a set of services interact
together until returning a response to this request.

Our approach consists of two main steps. First, we explore a sub-behavior
— called the canonical schedule — of the possibly infinite state space of the
peers interacting via channels. As the canonical schedule may be infinite, only a
finite part of it is explored to decide whether in spite of (uncontrollable) internal
choices there exists a bounded execution. This check relies on [9], and verifies
whether the canonical schedule computed from the set of peers given as input
is bounded. If such a bounded execution does not exist, the choreography is
not realizable. Otherwise, in a second step, we check realizability by comparing
the behaviors of the choreography specification with the previously constructed
finite sub-behavior of the peers.

The rest of this paper is organized as follows: Section 2 introduces peers,
conversation protocols and our running example. Section 3 presents our approach
to checking realizability. Section 4 compares our proposal to related work, and
Section 5 ends the paper with some concluding remarks.

2 Peers and Conversation Protocols

In this section, we present the notations we use in the rest of this paper to specify
choreographies and peers.

122

Fig. 1. Overview of the realizability check

Peers are described using Labelled Transition Systems (LTSs). Peers interact
by message passing through point-to-point channels. In this paper, we consider
asynchronous communication where each peer is equipped with one channel for
each type of message the peer can receive from a given sending peer. In the peer
transition systems, write and read actions to and from a channel ch are written
ch! and ch?, respectively.

Definition 1 (Peer). A peer is a Labelled Transition System (LTS) P =
(S, s0, Σ, T) where S is a finite set of states, s0 ∈ S is the initial state,
Σ = Σ!] Σ?] Σint is a finite alphabet partitioned into a set of sending, re-
ceiving, and choice actions (internal actions), and T ⊆ S×Σ×S is a transition
relation.

A peer can either send on a channel ch with action ch! ∈ Σ!, read from
a channel ch with ch? ∈ Σ?, or choose among one or more internal actions
a ∈ Σint. Final states are not made explicit and correspond to states without
outgoing transitions.

A conversation protocol is an LTS specifying the desired set of conversations
from a global point of view. Each transition specifies an interaction between two
peers Ps, Pr on a specific channel ch. A conversation protocol makes explicit the
application order of interactions. Sequence, choice, and loop are modeled using
a sequence of transitions, several transitions going out from a same state, and a
cycle in the LTS, respectively.

Definition 2 (Conversation protocol). A conversation protocol CP for a set
of peers Pi, i ∈ {1, .., n} is an LTS CP = (S, s0, L, T) where a label l ∈ L is a
tuple (j, k, ch) where Pj and Pk are the sending peer and receiving peer, respec-
tively, Pj 6= Pk, and ch is a channel on which those peers interact. We require
that each channel has a unique sender and receiver: ∀(i, j, ch), (i′, j′, ch′) ∈ L :
ch = ch′ =⇒ i = i′ ∧ j = j′.

Running example In this paper, for illustration purposes, we use a bug re-
port repository involving four peers: a client or environment (env), a bug report
repository interface (int), a database (db), and a counter (c). We give successively
a conversation protocol (Fig. 2) describing the requirements, that is what the

123

designer expects from the composition-to-be, and four candidate peers (Fig. 3).
The conversation protocol starts with a login interaction between environment
and interface, followed by the submission of a bug. Then, interface sends the
bug to database to store it, and interacts with counter which stores the number
of submitted bugs. Finally, database sends a bug identifier which is forwarded
by interface to environment. Interactions in Figure 2 are written using exponent
notation, e.g., submitenv,int stands for (env, int, submit).

Fig. 2. Running example: conversation protocol

Figure 3 shows four peers that are candidate to a distributed implementa-
tion of our conversation protocol example. For instance, interface receives lo-
gin information (login?) and a bug (submit?) from environment, sends the bug
to database (store!), interacts with counter (count!), receives the identifier from
database (ident?), and finally sends the acknowledgement to environment (ack!).

Fig. 3. Running example: peers (A) environment, (B) database, (C) interface, (D)
counter

Although these peers seem to implement the conversation protocol, it is hard
by visual analysis only to claim whether this is the case or not, even for such
a simple example. Moreover, since we assume an asynchronous communication
model, deciding whether the conversation protocol can be implemented by the

124

peers communicating through bounded buffers, is in general non-trivial. In the
rest of this paper we propose an automated technique to check whether a con-
versation protocol is bounded-realizable by a system of interacting peers.

3 Checking Bounded Realizability

In this section, we present the different steps of our method to check whether
a set of peers interacting asynchronously implements a (centralized) conversa-
tion protocol. It works in two successive steps. First, we analyse the canonical
schedule generated from the peer composition using results presented in [9]. If
the schedule is finite, we check realizability by comparing the behaviors of the
conversation protocol with the schedule. Otherwise, the conversation protocol is
not bounded-realizable by the system of communicating peers.

Definition 3 (Asynchronous product). The asynchronous product of a set
of peers Pi = (Si, s

0
i , Σi, Ti) is the peer P1‖...‖Pn = (S, s0, Σ, T) where S =

S1 × ...× Sn, s0 = (s01, ..., s
0
n), Σ =

⋃
iΣi, and

T =
{(

(s1, ..., sn), a, (s′1, ..., s
′
n)
)
| ∃i : (si, a, s

′
i) ∈ Ti ∧ ∀j 6= i : s′j = sj

}

A composite is a set of peers communicating through emissions and receptions
over a set of point-to-point channels.

Definition 4 (Composite). A composite is a tuple (P,Ch) of a set P = {Pi |
i = 1, ..., n} of peers Pi = (Si, s

0
i , Σi, Ti) equipped with a set of channels Ch =

{chi}. We require that Σ!
i ∩ Σ!

j 6= ∅ =⇒ i = j and Σ?
i ∩ Σ?

j 6= ∅ =⇒ i = j,
that is, each channel has a unique reader and writer. Furthermore, we assume
that Σ!

i ∩Σ?
i = ∅ for all i, that is, each channel links two different peers.

From a conversation protocol CP we can compute a composite where each
peer is obtained by making abstraction from all other peers in CP , and keeping
the same channels as in CP :

Definition 5 (Projection). The composite obtained by translation of a con-
versation protocol CP = (S, s0, L, T) over channels Ch is a tuple π(CP) =
({Pi}, Ch) where Pi = (Si, s

0
i , Σi, Ti) is the LTS obtained by replacing in CP

each action label (p, q, ch) ∈ L with ch! if p = i; with ch? if q = i; and with τ
(internal action) otherwise, and finally removing the τ -transitions by applying
the standard determinization algorithms [15].

By Definition 2 it can be shown that π(CP) satisfies the requirements of
Definition 4 that each channel has a unique reader and writer, and both are
different.

Example 1. We show in Figure 4 the peer database obtained by projection from
the conversation protocol presented in Section 2. The final peer (right-hand side)
is obtained by determinization and minimization of the left-hand side peer.

125

Fig. 4. Peer database generated by projection: (left) before and (right) after deter-
minization and minimization

A configuration of a set of channels Ch = {ch1, ..., chn} is a vector in Nn≥0
of non-negative integers associating with each channel the number of buffered
messages. Let 0 denote the tuple of n empty channels.

Definition 6 (Semantics of a composite). The semantics of a composite
C = ({Pi}, Ch) with ‖Pi = (S, s0, Σ, T) is the LTS sem(C) = (Q, q0, Σ,→)

where Q = S × N|Ch|≥0 , q0 = (s0,0), and → ⊆ Q × Σ × Q is the least transition
relation satisfying the following rules:

(s, chk!, s′) ∈ T
(
s, (c1, ..., ck, ..., cn)

) chk!→
(
s′, (c1, ..., ck + 1, ..., cn)

) (SND)

(s, chk?, s′) ∈ T ck ≥ 1
(
s, (c1, ..., ck, ..., cn)

) chk?→
(
s′, (c1, ..., ck − 1, ..., cn)

) (RCV)

(s, a, s′) ∈ T a ∈ Σint

(s, c)
a→ (s′, c)

(INT)

For a tuple b = (bi)chi∈Ch of channel bounds, let sem(C)/b = (Q′, q0, Σ,→′)
with

Q′ = {
(
s, (c1, ..., cn)

)
∈ Q | ∀i = 1, ..., n : ci ≤ bi}

and →′ = {(q, a, q′) ∈ → | q, q′ ∈ Q′} be the sub-graph of sem(C) restricted to
the states satisfying the buffer bounds.

For a state q ∈ Q, let enabled(q) be the set of actions a ∈ Σ such that q
a→ q′

for some q′.

We now define when a composite implements a conversation protocol. The
composite can be obtained by projection of the conversation protocol, or by
assembling existing (off-the-shelf) peers.

Definition 7 (Implements, |=b). Given a conversation protocol CP =
(S, s0, L, T) over peers 1, ..., n and a set of channels Ch, a composite C = ({Pi |
i = 1, ...,m}, Ch′) with m ≥ n and P = ‖{Pi | i = 1, ...,m} over alphabets Σi,
and G = (Q, q0, Σ,→) a sub-graph of sem(C), let � ⊆ Q × S be the greatest
relation ≺ such that if q ≺ s then:

126

1. If (s, (i, j, ch), s′) ∈ T then ∃k ≥ 0 ∃q1, ..., qk ∈ Q ∃a1, ..., ak ∈ ΣC\CP :

q
a1→ q1

a2→ ...
ak→ qk

ch!→ q′

with ch! ∈ Σi and ∀i = 1, ..., k : qi ≺ s and q′ ≺ s′ (communication in CP);

2. If q
ch!→ q′ with ch! ∈ Σi and ch ∈ Ch then ∃s′ : (s, (i, j, ch), s′) ∈ T and

q′ ≺ s′ (send in C);

3. If q
a→ q′ with a ∈ ΣC\CP then q′ ≺ s (unobservable transition of C)

where ΣC\CP = {ch! ∈ Σ | ch /∈ Ch} ∪Σ? ∪Σint.
G refines CP , written G � CP , if q0 � s0.
Given a tuple b = (bi)chi∈Ch of channel bounds, C implements CP under b,

written C |=b CP , if sem(C)/b � CP .

Intuitively, the conversation protocol and the composite must be bisimilar
with respect to the communication over channels in Ch. The composite may
encompass additional peers and use auxiliary channels that are not part of the
conversation protocol, and execute internal actions. Other notions of implemen-
tation could have been chosen such as weaker notions [17] or notions taken
receptions into account as well [21].

Remark 1. π(CP) 6|= CP , in general, as π(CP) may have more behaviors than
CP . Some solutions exist that either propose well-formedness rules to enforce
the choreography specification to be realizable [7], or extend the choreography
language with new constructs (named dominated choice and loop) that make the
peers obtained by projection respect the choreography specification [22]. How-
ever, these approaches focus on synchronous communication and do not provide
any solution to the boundedness issue inherent to asynchronous communication.

Example 2. If we compare, using Definition 7, the execution traces that can be
produced from the conversation protocol given in Figure 2 with those executed by
the composite consisting of the peers presented in Figure 3, this check says that
the composite does not implement the conversation protocol because the trace
login!, login?, submit!, submit?, store!, store?, ident! belongs to the composite but
is not a valid trace for the conversation protocol. Indeed, the latter specifies that
the interaction between interface and counter (countint,c in Figure 2) must occur
before database sends its response to interface. However, this cannot be imposed
according to the different peers we reuse for implementation purposes. To work
this out, the designer has two possible choices: (i) to relax the choreography
specification constraints by making explicit that countint,c and identdb,int can be
executed in any order (this would be specified using a diamond of interleaved
transitions in the conversation protocol), or (ii) to use extra synchronizations
such as those proposed in [23] to enforce peers to respect the ordering constraints
specified in the conversation protocol.

Definition 8 (Bounded-realizable). A conversation protocol CP is bounded-
realizable by a composite C = ({Pi}, Ch) if there exists a tuple of bounds b =
(bi)chi∈Ch on the channels such that C |=b CP .

127

For a given composite, the existence of a non-blocking quasi-static sched-
uler that ensures boundedness of the channels in spite of uncontrollable non-
determinism of the peers, has shown to be undecidable in general [9]. The goal
of the remainder of this section is to define a decidable subclass of composites
and effectively decide, for a system of this class, whether a conversation protocol
is bounded-realizable by a set of peers. In order to tackle this question we need
some more definitions.

Definition 9 (Data-branching [9]). A peer P = (S, s0, Σ, T) is data-
branching if for any s ∈ S, one of the following is true:

– All outgoing transitions are choice transitions, and there is at least one such
transition (and s is called choice state).

– s has exactly one outgoing transition (s, a, s′) and a ∈ Σ! (and s is a sending
state).

– s has at most one outgoing transition (s, a, s′) and a ∈ Σ? (and s is a polling
state).

In particular, a state without any outgoing transition is a polling state.
Intuitively, the data-branching assumption ensures that non-determinism in

the global behavior only comes from internal choice and not from race condi-
tions caused by simultaneous listening on several channels, or non-deterministic
emission to several channels. The transitions issued from choice states can be
seen as the non-deterministic choice obtained from conditional branching after
making abstraction from data. Ruling out concurrently enabled emissions is not
a restriction, due to the asynchronous model of communication. Figure 5 shows
how a choice state can be used to encode non-deterministic emissions: each emis-
sion is preceded by a choice transition (this pattern corresponds to an internal
choice in process algebra, see CSP [14] for instance).

Fig. 5. Modeling non-deterministic emissions

Next we define round-separation of a composite, ensuring that a new request
triggering a reaction of the composite is not emitted unless the previous reaction
of the composite is completed.

Definition 10 (Round-separated). A composite C = ({Pi}, Ch) of peers
Pi = (Si, s

0
i , Σi, Ti) with sem(C) = (Q, q0, Σ,→) is round-separated if

128

1. there exists some peer Pk and action init ∈ Σ!
k such that enabled(q0) =

{init};
2. ∀q =

(
(s1, ..., sn), c

)
∈ Q : init ∈ enabled(q) =⇒ ∀j 6= k : sj is a polling

state and c = 0; and
3. from any reachable state of C, final(C) = {q = (s, c) | enabled(q) ⊆ {init}∧

c = 0} is reachable.

In a round-separated composite the only action enabled in q0 — call it init —
is enabled only in states q = (s, c) ∈ Q where all other peers are polling in states
and all channels are empty. The set final(C) is the set of final states where at
most init is enabled, all other peers are in polling states, and all channels are
empty.

Example 3. The composite consisting of the peers presented in Figure 3 is round-
separated: there is some init action (login!) initiating the interaction process
(condition 1 in Definition 10), this action is never reached again (therefore con-
dition 2 does not need to be verified), and from any reachable state in the com-
posite state, a final state with empty channels is reachable where all peers are
in polling states (condition 3 in Definition 10), see the shaded states in Figure 6.

Fig. 6. Running example: final state of the composite

As the requirement of Definition 10 is expressed on the semantics of C,
we have two ways to effectively check it: by using some syntactic check that
is a sufficient but not necessary condition, or on-the-fly during the state-space
exploration. In the approach presented here we choose the second option.

Definition 11 (Well-formed). A composite is well-formed if it is round-
separated and its peers are data-branching.

The condition of well-formedness allows us to leverage the results of [9] to
effectively decide whether a conversation protocol is bounded-realizable. For the

129

sake of a self-contained presentation we cite the following definitions, slightly
adapted from [9] to match our framework.

Definition 12 (P qpoll, P
q
choice, P

q
send−min). Given a composite C = ({Pi}, Ch)

of data-branching peers and a state q = (s, c) with s = (s1, ..., sn) and c =
(c1, ..., cn) of sem(C), let P qpoll, P

q
choice, and P qsend be the sets of indices of the

peers that are in a polling state, a choice state, and a sending state, respectively.
Let P qsend−min ⊆ P qsend be the set of indices i such that chk! ∈ Σ!

i ∩ enabled(q)
with ck = min{cj} be the subset of peers ready to send a message to a channel
holding a minimal number of messages.

The basic idea of a canonical schedule is to constrain the execution of a
composite by giving priority to read and choice actions over write actions. In
the case where only write actions are enabled, one of those writing to a channel
containing a minimal number of messages is chosen.

Definition 13 (Canonical schedule). Given a composite C = ({Pi}, Ch)
with Pi = (Si, s

0
i , Σi, Ti) and ‖Pi = (S, s0, Σ, T), the canonical schedule of C

is the least sub-graph CS(C) = (Qca, q
0, Σ,→ca) of sem(C) = (Q, q0, Σ,→)

such that q0 ∈ Qca and for any q = (s, c) ∈ Qca with s = (s1, ..., sn):

– If P qpoll ∪ P
q
choice 6= ∅ and q

a→ q′ with q′ = (s′, c′), s′ = (s′1, ..., s
′
n), and

a ∈ Σ?
k ∪Σint

k where k = minP qpoll ∪ P
q
choice, then q

a→ca q
′.

– Otherwise, if q
a→ q′ with a ∈ Σ!

k where k = minP qsend−min, q′ = (s′, c′),

s′ = (s′1, ..., s
′
n), and (sk, a, s

′
k) ∈ Tk, then q

a→ca q
′.

As the canonical schedule may be infinite, an order between prefixes is defined
next that will be used to explore only a finite part of the potentially infinite state
space of a composite.

Given an LTS (S, s0, Σ,→), states q, q′ ∈ S, and a sequence σ = a1a2 · · · an ∈
Σ∗, we write q1

σ→ qn if there are states q1, ..., qn−1 ∈ S such that q
a1→ q1

a2→
...

an→ q′.

Definition 14 (≺ca). Let σ, σ′ ∈ Σ∗ with q0
σ→ (s, c) and q0

σ′
→ (s′, c′). Define

≺ca such that σ ≺ca σ′ if all of the following conditions hold:

1. σ is a prefix of σ′

2. s = s′ and ∀ch ∈ Ch, c(ch) ≤ c′(ch)
3. there exists some ch ∈ Ch such that

– σ = σ1ch! for some σ1 ∈ Σ∗ with max(σ1) < max(σ); and
– σ′ = σ2ch! for some σ2 ∈ Σ∗ with max(σ2) < max(σ′)

where

max(σ) = max
{

max{c1, ..., cn | q0 σ′
→
(
s, (c1, ..., cn)

)
} | σ′ is a prefix of σ

}

130

Algorithm 1 (Decision procedure) Given a composite C = ({Pi}, Ch) with
‖Pi = (S, s0, Σ, T) and sem(C) = (Q, q0, Σ,→), we construct a finite coverabil-
ity tree [9] Tr(C) ⊆ Σ∗ as follows. First, ε ∈ Tr(C). For any σ ∈ Tr(C) and

a ∈ Σ with q0
σ→ qσ and qσ

a→ca q
′ = (s, c):

– If init ∈ enabled(q′) and either |enabled(q′)| ≥ 2 or c 6= 0 then C is not
round-separated; stop.

– Otherwise, if there exists σ′ ∈ Tr(C) such that σ′ ≺ca σa then C is un-
bounded or final(C) is unreachable; stop.

– Otherwise, if there is no σ′ ∈ Tr(C) such that q0
σ′
→ qσ then add σa to

Tr(C).

It can be shown that Algorithm 1 terminates, since either the canonical
schedule is finite and all states have been explored, or there are two prefixes σ,
σ′ such that σ ≺ca σ′ [9].

Example 4. We give in Figure 7, the canonical schedule generated from the com-
posite given in Figure 3 by application of Definition 13 (peers are ordered wrt.
their alphabetical identifiers A, B, C, D). One can see that the choice made by the
environment is present in the canonical schedule and three possible behaviours
are derived.

Fig. 7. Running example: canonical schedule (top) where tr is the transition sequence
shown on bottom

The canonical schedule is unbounded: if the environment decides to submit
several bugs without consuming acknowledgements (submit branch in the peer
environment), then by applying Algorithm 1, we can generate traces from the

131

canonical schedule where the channel size increases (in particular, the size of
the channel in the peer environment storing acknowledgements), and case 2 of
this algorithm detects this unboundedness case. A solution to this issue is to use
a peer environment’ which systematically consumes acknowledgements sent by
the peer interface, as in Figure 8. If we use this new peer environment’ and the
other peers presented in Figure 3, the corresponding canonical schedule (given
in Figure 9) is bounded because each channel is read immediately after being
written.

Fig. 8. A candidate peer environment’ avoiding the unboundedness issue

Fig. 9. Example: canonical schedule obtained with the peer environment’ given in Fig-
ure 8

Theorem 1 (Bounded schedule). Consider a conversation protocol CP and
a composite C composed of data-branching peers.

1. If C is round-separated then Algorithm 1 does not terminate with a negative
round-separation result.

2. Otherwise, if Algorithm 1 terminates with a negative boundedness or reach-
ability result, then CP is not bounded-realizable by C.

3. If Algorithm 1 terminates without a negative result (round-separation, bound-
edness, or reachability), then C is well-formed and CS(C) is finite.

Proof. 1. The claim follows directly from Definition 10.

132

2. If Algorithm 1 terminates with a negative boundedness or reachability result,
then the non-boundedness of C or unreachability of final(C) follows from
Proposition 8 of [9]. The only difference in our setting is that we explicitly
model resets in the form of init transitions. As by hypothesis of this item,
C is round-separated, final(C) is reachable by Definition 10. Therefore, C
is unbounded, and the claim follows.

3. Round-separation under the canonical schedule is ensured by the normal
termination of the algorithm. Round-separation on arbitrary runs is ob-
tained by a reordering argument similar to that used in [9]. Well-formedness
then follows directly from the hypothesis of data-branching peers and round-
separation.

Example 5. If we consider the peer environment’ given in Figure 8 and the three
other peers presented in Figure 3, Algorithm 1 terminates with a positive result,
meaning that the composite is well-formed and the canonical schedule is finite
(see Figure 9).

Notice that even if the canonical schedule CS(C) of a composite C is finite,
the semantic graph sem(C) may still be infinite. However, if C is well-formed
and CS(C) is finite, then bounded-realizability of a conversation protocol CP
by C can be effectively verified.

Theorem 2 (Bounded-realizability). Given a conversation protocol CP and
a well-formed composite C, CP is bounded-realizable by C if and only if the
canonical schedule CS(C) = (Q, q0, Σ,→) is finite and C |=b CP , where b =
(bi)chi∈Ch with ∀i, bi = max

{
ci | ∃s ∃c = (c1, ..., cn) : q0 →∗ (s, c)

}
, and →∗

denotes the reflexive and transitive closure of →.

That is, CP is bounded-realizable by C if and only if it is bounded-realizable
for channel bounds used by the canonical schedule.

Proof. (sketch) “If”: if C |=b CP then clearly, CP is bounded-realizable by C.
“Only if”: suppose that CP is bounded-realizable by C, say C |=b′ CP for

some tuple b′ of buffer bounds. Then b′ ≥ b by construction of the canonical
schedule. In particular, CS(C) is finite. Moreover, sem(C)/b is a sub-graph of
sem(C)/b′. Therefore, it can be shown by structural induction that items 2.
and 3. of Definition 7 still hold for sem(C)/b. Moreover, as C is well-formed
and thus round-separated, final(C) is reachable from any reachable state of
sem(C). This ensures that all pending write actions will eventually be executed,
such that item 1. of Definition 7 is still satisfied. It follows that C |=b CP .

Example 6. Although the canonical schedule generated from the peer environ-
ment’ given in Figure 8 and the peers database, interface, and counter presented
in Figure 3 is finite, the corresponding semantic graph is infinite because the
counter has no obligation to read. To check bounded-realizability, the required
channel size is one for all channels since each channel can be read immediately af-
ter being written. If we consider an extension of the conversation protocol given
in Figure 2 where countint,c and returndb,int can be interleaved — as discussed

133

in Example 2 —, then this conversation protocol is bounded-realizable by the
composite.

4 Related Work

The realizability results we present in this paper rely on [9] where the authors
identify a decidable class of systems consisting of non-deterministic communicat-
ing processes that can be scheduled while ensuring boundedness of buffers. There
has been quite some work on the analysis of infinite communication buffers in
concurrent systems. Abdulla et al. [1] proposed some verification methods for
Communicating Finite State Machines. They showed the decidability and pro-
vided algorithms for verification (safety and some forms of liveness properties)
of lossy channel systems. A sufficient condition for the unboundedness of com-
munication channel was proposed in [16]. In [18, 19], the authors present an
incomplete boundedness test for communication channels in Promela and UML
RT models. They also provide a method to derive upper bound estimates for
the maximal occupancy of each individual message buffer. More recently, [10]
proposed a causal chain analysis to determine upper bounds on buffer sizes
for multi-party sessions with asynchronous communication. Our goal here is to
compute the minimal buffer sizes which make the interacting peers realize the
choreography, but this does not mean that a bound exists for each buffer. There-
fore, the results presented in [18, 19, 10] would not help to solve the problem we
tackle here.

Most of the work dedicated to the realizability issue assumes a synchronous
communication model, see for instance [6, 20, 7, 22]. In [6, 20], the authors de-
fine models for choreography and orchestration, and formalise a conformance
relation between both models. The results presented in [7, 22] formalise some
well-formedness rules to enforce the specification to be realizable. More precisely,
in [7], the authors identify three principles for global description under which
they define a sound and complete end-point projection, that is the generation
of distributed processes from the choreography description. In [22], the authors
propose a choreography language with new constructs (named dominated choice
and loop) in order to implement unrealizable choreographies. During the projec-
tion of these new operators, some communications are added in order to make
peers respect the choreography specification. However, these solutions prevent
the designer from specifying what (s)he wants to, and it also complicates the
design by obliging the designer to make explicit extra-constraints in the chore-
ography specification, e.g., by associating dominant roles to certain peers.

Only a few works focused on the realizability problem assuming an asyn-
chronous communication model, that is communication using message buffers.
Fu et al. [11] proposed three sufficient conditions (lossless join, synchronous com-
patible, autonomous) that guarantee a realizable conversation protocol. More
recently, Sasu and Bultan proposed to check conformance using synchronizabil-
ity [4]: A set of peers is synchronizable if systems produced on one hand with
synchronous communication, and on the other with 1-bounded asynchronous

134

communication, are equivalent. If a set of peers is synchronizable, one can check
whether it is conformant to a choreography using existing finite state verifica-
tion tools. However, if one of the conditions in [11] or synchronizability is not
satisfied, nothing can be concluded. Our approach works for systems that are
not synchronizable.

Bultan and Fu [5] defined some sufficient conditions to test realizability of
choreographies specified with collaboration diagrams (CDs). In [23], the authors
refine and extend this former work with some techniques to enforce realizabil-
ity (by adding additional synchronization messages among peers), and a tool-
supported approach to automatically check the realizability of CDs for bounded
asynchronous communication. The realizability problem for Message Sequence
Charts (MSCs) has also been studied (see for instance [2, 26, 3]). For example,
[3] presents some decidability results on bounded MSC graphs, that are basically
graphs obtained from MSCs using bounded buffers. These solutions are limited
because branching and cyclic behaviours are not well supported by CDs and
MSCs (no choice in CDs, no cyclic behaviours in MSCs, and only loops on a
same message in CDs).

Lohmann and Wolf [21] show how realizability of choreography automaton
can be verified by using existing techniques for the controllability problem, which
checks whether a service has compatible partner processes. Their approach works
for peers interacting via arbitrary bounded buffers, and only consider finite con-
versations, whereas we can handle infinite state space systems.

Genest et al. [13] establish equivalence of existentially bounded communicat-
ing automata with globally cooperative compositional message sequence graphs
and monadic second-order logic.

In [8] on quasi-static scheduling of free-choice Petri nets, a coverability cri-
terion is defined whose function, similar to the relation ≺ca, is to explore only
a finite part of a potentially infinite state space. The authors conjecture com-
pleteness of the criterion. Based on [8], [25] uses discrete controller synthesis
to automatically construct converters between peers so as to ensure bounded
buffering and deadlock freedom.

Compared to all these works, our approach provides a check for realizabil-
ity under asynchronous communication, and goes beyond most results which
assume arbitrary bounded buffers, this check being undecidable for unbounded
buffers. Here, we rely on a boundedness analysis of the peer composition, and
provide a decidable technique for well-formed systems of communicating peers.
We also extend existing results for conversation protocol realizability by con-
sidering peer composition (e.g., those which are not synchronizable) for which
existing solutions [11, 4] cannot conclude anything.

5 Concluding Remarks

In this paper, we have presented an approach for checking whether a conver-
sation protocol can be implemented by a set of distributed peers interacting
asynchronously. The realizability check relies on the boundedness of the canon-

135

ical schedule computed from the candidate peers. If this schedule is infinite, the
conversation protocol cannot be realized with bounded buffers by the peers. If
this schedule is finite, we compare the LTS obtained from the conversation pro-
tocol with the LTS generated from the peer composition to check whether these
peers implement the choreography specification.

An interesting direction of future work we intend to study is the general-
ization of our framework to multi-session protocols. This will require several
generalizations to our results, in particular extending the modeling formalism
and refinement relation, and relaxing the round-separation requirement.

References

1. P. A. Abdulla, A. Bouajjani, and B. Jonsson. On-the-Fly Analysis of Systems with
Unbounded, Lossy FIFO Channels. In Proc. CAV’98, volume 1427 of LNCS, pages
305–318. Springer, 1998.

2. R. Alur, K. Etessami, and M. Yannakakis. Inference of Message Sequence Charts.
IEEE Transactions on Software Engineering, 29(7):623–633, 2003.

3. R. Alur, K. Etessami, and M. Yannakakis. Realizability and Verification of MSC
Graphs. Theoretical Computer Science, 331(1):97–114, 2005.

4. S. Basu and T. Bultan. Choreography Conformance via Synchronizability. In Proc.
WWW’11. ACM Press, 2011.

5. T. Bultan and X. Fu. Specification of Realizable Service Conversations using
Collaboration Diagrams. Service Oriented Computing and Applications, 2(1):27–
39, 2008.

6. N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Choreography and
Orchestration Conformance for System Design. In Proc. Coordination’06, volume
4038 of LNCS, pages 63–81. Springer, 2006.

7. M. Carbone, K. Honda, and N. Yoshida. Structured Communication-Centred Pro-
gramming for Web Services. In Proc. ESOP’07, volume 4421 of LNCS, pages 2–17.
Springer, 2007.

8. J. Cortadella, A. Kondratyev, L. Lavagno, C. Passerone, and Y. Watanabe. Quasi-
Static Scheduling of Independent Tasks for Reactive Systems. IEEE Trans. on
CAD of Integrated Circuits and Systems, 24(10):1492–1514, 2005.

9. P. Darondeau, B. Genest, P. S. Thiagarajan, and S. Yang. Quasi-Static Scheduling
of Communicating Tasks. In Proc. CONCUR’08, volume 5201 of LNCS, pages
310–324. Springer, 2008.

10. P.-M. Deniélou and N. Yoshida. Buffered Communication Analysis in Distributed
Multiparty Sessions. In Proc. CONCUR’10, volume 6269 of LNCS, pages 343–357.
Springer, 2010.

11. X. Fu, T. Bultan, and J. Su. Conversation Protocols: A Formalism for Specification
and Verification of Reactive Electronic Services. Theor. Comput. Sci., 328(1-2):19–
37, 2004.

12. X. Fu, T. Bultan, and J. Su. Synchronizability of Conversations among Web
Services. IEEE Transactions on Software Engineering, 31(12):1042–1055, 2005.

13. B. Genest, D. Kuske, and A. Muscholl. A Kleene Theorem and Model Checking
Algorithms for Existentially Bounded Communicating Automata. Inf. Comput.,
204(6):920–956, 2006.

14. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1984.

136

15. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison Wesley, 1979.

16. T. Jéron and C. Jard. Testing for Unboundedness of FIFO Channels. Theor.
Comput. Sci., 113(1):93–117, 1993.

17. R. Kazhamiakin and M. Pistore. Analysis of Realizability Conditions for Web
Service Choreographies. In Proc. FORTE’06, volume 4229 of LNCS, pages 61–76.
Springer, 2006.

18. S. Leue, R. Mayr, and W. Wei. A Scalable Incomplete Test for Message Buffer
Overflow in Promela Models. In Proc. SPIN’04, volume 2989 of LNCS, pages
216–233. Springer, 2004.

19. S. Leue, R. Mayr, and W. Wei. A Scalable Incomplete Test for the Boundedness
of UML RT Models. In Proc. TACAS’04, volume 2988 of LNCS, pages 327–341.
Springer, 2004.

20. J. Li, H. Zhu, and G. Pu. Conformance Validation between Choreography and
Orchestration. In Proc. TASE’07, pages 473–482. IEEE Computer Society, 2007.

21. N. Lohmann and K. Wolf. Realizability Is Controllability. In Proc. WS-FM’09,
volume 6194 of LNCS, pages 110–127. Springer, 2010.

22. Z. Qiu, X. Zhao, C. Cai, and H. Yang. Towards the Theoretical Foundation of
Choreography. In Proc. WWW’07, pages 973–982. ACM Press, 2007.

23. G. Salaün and T. Bultan. Realizability of Choreographies using Process Algebra
Encodings. In Proc. IFM’09, volume 5423 of LNCS, pages 167–182. Springer, 2009.

24. J. Su, T. Bultan, X. Fu, and X. Zhao. Towards a Theory of Web Service Chore-
ographies. In Proc. WS-FM’07, volume 4937 of LNCS, pages 1–16. Springer, 2007.

25. M. Tivoli, P. Fradet, A. Girault, and G. Gössler. Adaptor Synthesis for Real-Time
Components. In Proc. TACAS’07, volume 4424 of LNCS, pages 185–200. Springer,
2007.

26. S. Uchitel, J. Kramer, and J. Magee. Incremental Elaboration of Scenario-based
Specifications and Behavior Models using Implied Scenarios. ACM Transactions
on Software Engineering and Methodology, 1(13):37–85, 2004.

137

Networks of Real-Time Actors

Schedulability Analysis and Coordination

Mohammad Mahdi Jaghoori1?, Ólafur Hlynsson2, and Marjan Sirjani2,3

1 CWI, Amsterdam, The Netherlands
2 Reykjavik University, Iceland

3 University of Tehran, Iran
jaghoori@cwi.nl,{olafurh05,marjan}@ru.is

Abstract. We present an automata theoretic framework for modular
schedulability analysis of networks of real-time asynchronous actors. In
this paper, we use the coordination language Reo to structure the net-
work of actors and as such provide an exogenous form of scheduling
between actors to complement their internal scheduling. We explain how
to avoid extra communication buffers during analysis in some common
Reo connectors. We then consider communication delays between actors
and analyze its effect on schedulability of the system. Furthermore, in
order to have a uniform analysis platform, we show how to use Uppaal to
combine Constraint Automata, the semantic model of Reo, with Timed
Automata models of the actors. We can derive end-to-end deadlines, i.e.,
the deadline on a message from when it is sent until a reply is received.

1 Introduction

Schedulability analysis in a real-time system amounts to checking whether all
tasks can be accomplished within the required deadlines. In a client-server per-
spective on distributed systems, tasks are created on a client, sent to the server
(e.g., as a message), and then finally performed on the server. A deadline given
by the client for a task covers three parts: the network delay until the message
reaches the server, the queuing time until the task starts executing, and the exe-
cution time. In case a reply is sent back to the client, an end-to-end deadline also
includes the network delay until the reply reaches the client and is processed.

In previous work [14–16], we employed automata theory to provide a modular
approach to the schedulability analysis of real-time actor models, assuming direct
and immediate communication between actors, i.e., zero communication delays.
An actor [1,12] (à la Rebeca [25]) is an autonomous entity with a single thread of
execution. Actors communicate by asynchronous message passing, i.e., incoming
messages are buffered and the code for handling each message is defined in a
corresponding method. We model each method as a timed automaton [3] where
a method can send messages while computation is abstracted in passage of time.
In our framework, an actor can define a local scheduler and thus reduce the

? The work by this author is supported by the HATS project (EU FP7-231620).

138

nondeterminism; a proper choice of a scheduling strategy is indeed necessary to
make the actor schedulable.

Section 2 explains a modular way to analyze a system of actors. To be able to
do so, the expected usage of each actor is specified in a separate timed automa-
ton, called its behavioral interface; this is a contract between the actor and its
environment [22], which among other things, includes the schedulability require-
ments for the actor in terms of deadlines. Every actor is checked individually
for schedulability with regard to its behavioral interface. We showed in [15] that
schedulable actors need finite buffers; the upper-bound on buffer size can be com-
puted statically. When composing a number of individually schedulable actors,
the global schedulability of the system can be concluded from the compatibility
of the actors [16]. Being subject to state-space explosion, we gave a technique
in [16] to test compatibility.

The contribution of this paper is twofold. First in Section 3, we extend the
above framework with Reo [4] to enable exogenous coordination of the actors.
This provides a separation of concerns between computation and coordination.
Reo can be used as a “glue code” language for compositionally building con-
nectors that orchestrate the cooperation between components or services in a
component-based system or a service-oriented application. An important fea-
ture of Reo is that it allows for anonymous communication, i.e., the sender of
a message does not need to know the recipient; instead the Reo connector will
forward the message to the proper receiver.

With Reo, individually schedulable actors can be used as off-the-shelf mod-
ules in a wider variety of network structures. This requires a new compatibility
check for our analysis that incorporates the Reo connectors. Our extension pre-
serves the asynchronous nature of the actors, therefore the Reo connectors must
have a buffer at every input/output node, which may lead to state-space explo-
sion. To avoid this problem, we provide techniques to optimize the analysis by
reusing internal actor buffers in the Reo connectors that are single-input and/or
single-output. We show that in this approach the upper-bound on the size of
the buffers of the schedulable actors need not be increased. In Section 5, we give
examples of other Reo connectors that can take advantage of the same opti-
mization technique. In any case, we assume coordination and data flow by Reo
happens in zero time.

As our second contribution, we analyze in Section 4 the effect of commu-
nication delays on the schedulability of a distributed system. For simplicity in
presentation, we assume no coordination with Reo in this section. The commu-
nication medium between every pair of actors is modeled abstractly by a fixed
delay value, called their distance. We first describe how to implement the effect of
delay on messages in an efficient manner with respect to schedulability analysis.
Secondly we extend the compatibility check to take message delays into account.
The latter is non-trivial because sending and receiving messages do not happen
at the same time any more. Nevertheless, this complication can be hidden from
the end user by implementing it in an automatic test-case generation algorithm.

139

We argue in Section 5 that coordination with Reo and communication delays
are orthogonal and can be combined.

As a running example, we consider a client/server composition of two actors.
Assuming that the client is faster, the overall system would not be schedulable
because the server would not be able to respond in time. This situation can
be remedied by using Reo to connect the client to multiple server instances in
order to compensate for their slowness. Nonetheless, the client still thinks it is
communicating with one server, i.e., coordination is transparent to the client
and the server actors. In other words, modularity of the analysis is preserved.

1.1 Related Work

Schedulability has usually been analyzed for a whole system running on a single
processor, whether at modeling [2, 10] or programming level [7, 18]. We address
distributed systems modeled as a network of actors (connected by Reo circuits)
where each actor has a dedicated processor and scheduling policy.

The work in [11] is also applicable to distributed systems but is limited to
rate monotonic analysis. Our analysis being based on automata can handle non-
uniformly recurring tasks as in Task Automata [10]. In Task automata, however,
a task is purely specified as computation times and cannot create sub-tasks.

In our approach, behavioral interfaces are key to modularity. A behavioral
interface models the most general message arrival pattern for an actor. The
behavioral interface can be viewed as a contract, as in ‘design by contract’ [22],
or as a most general assumption in modular model checking [20] (based on
assume-guarantee reasoning). Schedulability is guaranteed if the real use of the
actor satisfies this assumption.

RT-Synchronizers [23] also provide some sort of coordination among actors,
however, they are designed for declarative specification of timing constraints
over groups of untimed actors. Therefore, they do not speak of schedulability of
the actors themselves; in fact, a deadline associated to a message is for the time
before it is executed and therefore cannot deal with the execution time of the
task itself or sub-task generation.

In [9, 14], our approach is extended to accommodate synchronization state-
ments and replies of the Creol language [17]. Asynchronous message passing
in Creol is augmented with explicit return values and message synchronization.
Therefore, Creol has the natural means to model end-to-end deadlines, however
the work in [9,14] does not support network delays. In present work, an end-to-
end deadline including network delays can be computed manually by adding up
the deadlines of the message and its corresponding reply message.

There are several coordination languages that can be used to coordinate
actors, two of which are worth mentioning. First there is the ARC model [24],
which aims at coordinating resource usage and QoS goals, and is based on state
transition systems. Secondly there is the PBRD model [21], which aims at logical
communication behavior, and is based on rewriting logic. Apart from modeling
capabilities, unlike the two above, Reo has automata based semantics which
allows us to connect naturally to our automata-theoretic framework in [15].

140

invoke[reply][srv][self]!
deadline = XD

invoke[request][self][srv]?

invoke[reply][self][clnt]?

invoke[request][clnt][self]!
deadline = MD

Fig. 1. The behavioral interfaces of Client (left) and Server (right) are symmetric.

Several semantic models have been suggested for Reo in order to handle
data-transfer delays, e.g. [19]. None of these models are yet able to consider
the delay in setting up a connection in a distributed way. Therefore in this
work, we restrict to centralized Reo connectors and we assume that coordination
happens in negligible time. This assumption is reasonable when Reo connectors
are deployed local to actors. In this paper, we provide no real-time extensions of
Reo; although we propose an algorithm to translate some Reo connectors into
Timed Automata.

2 Preliminaries: Real-Time Actors

We use automata theory for modular schedulability analysis of actor-based sys-
tems [15,16]. An actor consists of a set of methods which are specified in Timed
Automata (TA) [3]. This enables us to use existing tools, for example Uppaal [6],
to perform analysis. Each actor should provide a behavioral interface that speci-
fies at a high level, and in the most general terms, how this actor may be used. As
explained later in this section, behavioral interfaces are key to modular analysis
of actors. Actors specify local scheduling strategies, e.g., based on fixed priori-
ties, earliest deadline first, or a combination of such policies. Real-time actors
may need certain customized scheduling strategies in order to meet their QoS
requirements. We describe in this section how to model and analyze actors.

Modeling behavioral interfaces A behavioral interface consists of the messages
an actor may receive and send; thus it provides an abstract overview of the actor
behavior in a single automaton. A behavioral interface abstracts from specific
method implementations, the message buffer in the actor and the scheduling
strategy.

To formally define a behavioral interface, we assume a finite global set M
for method names. A behavioral interface B providing a set of method names
MB ⊆ M is a deterministic timed automaton over alphabet ActB such that
ActB is partitioned into two sets of actions:

– outputs: ActBO = {m?|m ∈M∧m 6∈MB}
– inputs: ActBI = {m(d)!|m ∈MB ∧ d ∈ N}

Notice the unusual use of ! and ? signs; this is to simplify the analysis as
will be explained later. The integer d associated to input actions represents a
deadline. A correct implementation of the actor should be able to finish method
m before d time units.

Example. Fig. 1 depicts the Uppaal models for behavioral interfaces of two ac-
tors that can communicate in a client-server fashion by sending request and reply

141

c<=1

finish[self]!

c == 1
invoke[next][self][self]!
deadline = MD

start[initial][self]?
c:=0

c<=3

invoke[next][self][self]!
deadline = XD

c == 3

invoke[request][self][other]!
deadline = MD

finish[self]!

start[next][self]?
c := 0 c <= 1

c == 1

finish[self]!

start[reply][self]?
c := 0

Client: initial Client: next Client: reply

c<=1

finish[self]!

c == 1

start[initial][self]?
c:=0

c <= 4

invoke[reply][self][other]!
deadline = XD

finish[self]! start[request][self]?
c := 0

Server: initial Server: request

Fig. 2. Method implementations for client and server actors.

messages. In Uppaal, messages are sent along the invoke channel and deadlines
are passed using the global variable deadline. To uniquely identify messages
between different actors, every message in M is represented in Uppaal with
three parameters of invoke[msg][snd][rcv] showing the message name, sender
and receiver, respectively.

Modeling classes One can define a class as a set of methods implementing a
specific behavioral interface. A class R implementing the behavioral interface B
is a set {(m1, A1), . . . , (mn, An)} of methods, where

– MR = {m1, . . . ,mn} ⊆ M is a set of method names such that MB ⊆MR;
– for all i, 1 ≤ i ≤ n, Ai is a timed automaton representing method mi with

the alphabet Acti = {m!|m ∈MR} ∪ {m(d)! | m ∈M∧ d ∈ N};

Method automata only send messages while computations are abstracted into
time delays by using a clock c. Receiving and buffering messages is handled by
the scheduler automata (explained below). Sending a message m ∈MR is called
a self call. A self call with no explicit deadline inherits the (remaining) deadline
of the task that triggers it (called delegation); in this case the delegate channel
must be used.

Classes have an initial method which is implicitly called upon initialization
and is used for the system startup. Execution of a method begins after receiving
a signal on the start channel and terminates by sending a signal on the finish
channel; this way the scheduler can control execution of the methods. Fig. 2
shows an implementation of the methods of our example.

Modeling schedulers The scheduler for each actor, containing also its message
buffer, is modeled separately as a timed automaton (see Fig. 3). The buffer is
modeled using arrays in Uppaal and thus it can be modeled compactly, i.e.,
without different locations for different buffer states. The scheduler automaton
begins with putting an initial message in the buffer via the initialize function.

The scheduler is input-enabled, i.e., it allows receiving any message from any
sender on the invoke channel. The buffer stores along each message its sender
and deadline. A free clock is assigned to each message and reset to zero upon

142

Error

Runninginitialize()

tail == 1
finish[self]?

shift()

start[q[run]][self]!
sender[self] = s[run]

i : int[0,MAX-1]
scheduling policy
finish[self]?
run := i, shift()

msg : int[0,MSG]
delegate[msg][self]?
insertDelegate(msg)

i : int[0,MAX-1]
counter[i] > 0 &&
clk[i] > deadline[i]

msg : int[0,MSG],
sender : int [0,OBJ-1]
invoke[msg][self][sender]?
insertInvoke(msg, sender)

Fig. 3. A general scheduler automaton

insertion in the buffer. These are in the insertInvoke function. By reusing this
clock, a new message may inherit the remaining deadline of another message;
this is captured in the insertDelegate function. If a clock assigned to a message
(counter[i] > 0) passes its deadline, the scheduler moves to an Error location.

When there are multiple messages in the buffer, the scheduler decides the
order of their execution. The next method to be executed (via a signal on the
start channel) should be chosen based on a specific scheduling strategy. If the
index 0 of the buffer is always selected during context switch, the automaton
serves as a First Come First Served (FCFS) scheduler. The remaining deadline
of each message i can be used in the scheduling policy (e.g., Earliest Deadline
First) as deadline[i]− clk [i]. When a method is finished (via synchronization on
the finish channel), it is taken out of the buffer by shifting.

For more details on modeling actors and schedulers, please refer to our pre-
vious work [13].

2.1 Modular Schedulability Analysis

An actor is an instance of a class together with a scheduler. A closed system
of actors is schedulable if and only if all tasks finish within their deadlines. We
have shown in [15] that schedulable actors do not put more than ddmax/bmine
messages in the buffer, where dmax is the longest deadline for the messages
and bmin is the shortest termination time of its method automata. One can
calculate the best case runtime for timed automata as shown by Courcoubetis
and Yannakakis [8]. Formally, schedulability is defined as follows.

Definition 1 (System Schedulability). A closed system of actors is schedu-
lable if and only if none of the scheduler automata can reach the Error location
or exceeds the buffer limit of ddmax/bmine.

Thus, schedulability analysis can be reduced to reachability analysis in a
tool like Uppaal. The intrinsic asynchrony of actors and their message buffers
practically lead to state-space explosion. Our approach to modular analysis of the
actors (as in [15]) combines model checking and testing techniques to overcome
this problem. This is done in the two steps described below.

143

Individual actor analysis The methods of an actor can in theory be called
in infinitely many ways, which makes their analysis impossible. However, it is
reasonable to restrict only to the incoming method calls specified in its behav-
ioral interface. Input actions in the behavioral interface correspond to incoming
messages. Incoming messages are buffered in the actor; this can be interpreted as
creating a new task for handling that message. The behavioral interface doesn’t
capture internal tasks triggered by self calls. Therefore, one needs to consider
both the internal tasks and the tasks triggered by the behavioral interface, which
abstractly models the acceptable environments. We can analyze all possible be-
haviors of an actor in Uppaal by model checking the network of timed automata
consisting of its method automata, behavioral interface automaton B and a
scheduler automaton. Inputs of B written m! match inputs in the scheduler
written m?, and outputs of B written m? match outputs of method automata
written m!. An actor is schedulable w.r.t. its behavioral interface iff the scheduler
cannot reach the Error location and does not exceed its buffer limit.

Compatibility check Once an actor is verified to be schedulable with respect
to its behavioral interface, it can be used as an off-the-shelf component. In this
section, we assume that actors communicate directly with no communication
delays. As in modular verification [20], which is based on assume-guarantee rea-
soning, individually schedulable actors can be used in systems compatible with
their behavioral interfaces. Schedulability of such systems is then guaranteed. In-
tuitively, the product of the behavioral interfaces, called B, shows the acceptable
sequences of messages that may be communicated between actors.

Definition 2 (Compatibility). Compatibility is defined as the inclusion of
the visible traces of the system in the traces of B [16], where visible actions
correspond to messages communicated between actors.

Checking compatibility is prone to state-space explosion due to the size of
the system; we avoid this by means of testing techniques. A naive approach could
take a trace from the system S as a test case and check whether it exists also
in B. This test case generation method is not efficient due to the great deal of
nondeterminism in S. As proposed in [16], we generate test-cases from B. A test-
case, first of all, drives the system along a trace taken from B and thus restricts
system behavior. Secondly, it monitors the system along this trace checking for
any action that is forbidden in B (as a possible witness for incompatibility).
To do the monitoring, every communication between different actors has to be
intervened by the test-case automaton. Receiving and forwarding these messages
in the test-case are separated by a ‘committed’ location so that Uppaal executes
them with no interruption.

Example. Fig. 4 shows a test-case that proves the Server and Client implementa-
tions in Fig. 2 to be incompatible. This test-case considers one round of expected
request-reply scenario. This scenario is captured in the main line of the test-case
(leading to PASS verdict). For the sake of simplicity, we only monitor for one
forbidden behavior in this test-case which leads to the FAIL verdict: a lack of a

144

FAIL
PASSinvoke[request][C][T]?

invoke[reply][T][C]!invoke[reply][S][T]?invoke[request][T][S]!invoke[request][C][T]?

Fig. 4. In this test case, C, S and T represent Client, Server and Test-case, respectively.

timely reply is captured as sending two requests without an intermediate reply.
When executing this test-case, the FAIL location is indeed reachable because the
client in Fig. 2 (i.e., its ‘next’ method) is faster than the server (i.e., its ‘request’
method). We show in Section 3 how Reo can bring flexibility in composing ac-
tors such that we can remedy this problem; specifically by allowing us to use
two servers with one client.

3 Using Reo for Coordination

Reo can help us coordinate the actors to avoid unexpected message-passing
scenarios. That is, we can impose a strict communication pattern on the com-
ponents, e.g., replicating requests and merging replies or ordering the messages.
This can be seen as an exogenous scheduler that might be crucial in schedulability
of a composed system. An advantage of Reo for us is its automata-theoretic se-
mantic model, namely Constraint Automata (CA). The idea is that CA models
of Reo networks have a high potential to be used in combination with Timed
Automata models of actors and thus allow us to analyze our models in Uppaal.

Complex Reo connectors can be composed out of a basic set of channels. Each
channel has exactly two ends that have their own unique identities. A channel end
can be a source or a sink. Data enters at the source end and leaves the channel
through the sink. To build complex connectors, channels are connected by means
of nodes (also called ports). A node is like a pumping station that takes the data
on one of the incoming ‘sink’ ends and replicates the data onto all of its outgoing
‘source’ ends. Therefore, channels can be connected by: sequential composition
where the data flows from one channel to the next one; a non-deterministic choice
of data from multiple channels merging to one; or, replication of data from one
channel to many. All this happens in one synchronous step.

Table 1 illustrates a set of primitive channels. The synchronous channel ac-
cepts data at the source and dispenses data through the sink as soon as both
source and sink are ready. The lossy synchronous channel can always accept data
at the source. The data flows from the source to the sink if the sink can accept
data at that instance; otherwise, it is lost. The synchronous drain has two source
ends; it takes the data on its sources if and only if they are both ready. It acts
like a channel synchronizer and does not transfer any data. The FIFO1 channel
transfers data from the source to the sink in two transitions, thereby acting like
a one-place data storage. A FIFO channel can also be unbounded.

Transitions of constraint automata are labeled with a set of port names and
a data constraint. A transition is taken when all of the ports on its label are
ready. In that case, the data constraint determines the data flow in a declarative

145

Table 1. Basic Channels and their constraint automata.

{A,B}
data(A) = data(B)

{A}
d = data(A)

{B}
data(B) = d

Synchronous channel FIFO1 channel with variable d

{A,B}
data(A) = data(B){A}

{A,B}

Lossy synchronous channel Synchronous drain

fashion, e.g., when a synchronous channel fires the data at both ends will be the
same. Direction of data flow is understood from the types of channel ends. As
in FIFO1, a CA can have variables to temporarily store data values. The initial
state of the CA for FIFO1 depends on whether it is initially full or empty.

When channels are composed into a connector, the behavior of the connector
is derived compositionally as the product of the CA of its constituent channels.
Furthermore, the hiding operator can be applied to create a simple and intuitive
CA that accurately describes how the connector works, without exposing the
internal ports. Please refer to [5] for a formal definition of product and hiding.

3.1 Integrating Real-Time Actors with Reo

Integrating actors with Reo is complicated by the asynchronous nature of actors:
Actors can send messages whenever they have to; therefore, a Reo connector
may not block them exogenously. A natural way of solving this issue is to add a
FIFO channel as a message buffer at every input port of a Reo connector. The
problem is that for model checking, a suitable bound for these FIFOs is necessary.
Furthermore, the number of buffers needed quickly blows up the state-space. As a
workaround, we suggest using the buffers that already exist in the actors for this
purpose. Nevertheless, the upper bound for these buffers need not be increased
as discussed below. This approach can be thought of as a low-level optimization
of the schedulability check, where we produce a behavior which at a high-level
is indistinguishable from adding buffers to the input ports of the connectors.
Before explaining the details, we need to restrict the allowable Reo connectors.

A Reo connector may not lose a message. In fact when a message is lost,
it can never meet its deadline, and the system will not be schedulable. If we
were to allow lossy connectors, one may argue that lost messages can be seen
as having met their deadlines; this can be justified by assuming that the Reo
connector is in charge and has rightfully decided to lose the message. But this
causes a problem if the connector has a buffer to store messages before they
are lost (which is the case as explained above). Since we assume that a Reo
connector operates in zero time, it may lose any arbitrary number of messages

146

in zero time and therefore, we cannot statically compute a bound on the size of
this buffer for a schedulable system. This restriction, however, does not greatly
reduce the expressiveness of Reo as witnessed by the examples provided in this
section and in Section 5. Notice that drain and lossy synchronous channels can
still be used.

Another restriction is that only bounded FIFO channels may be used. There-
fore, the CA for these connectors is finite-state. Now we explain how to optimize
analysis for two patterns of Reo connectors:

– Single-input, multiple-output (e.g. Fig. 5.a): Since the output ports are
directly connected to a message buffer in an actor, they are always enabled.
Therefore, as soon as there is a message on the input port of this connector,
it can decide the destination of the message. Since the connector does not
lose the message, it may directly go to an actor or it is stored in a FIFO
channel. In either case, we do not need an extra buffer at the input port.

– Multiple-input, single-output (e.g. Fig. 5.b): In this case, the destina-
tion of all messages is the same, namely the actor connected to the output
node. Therefore, we can reuse the buffer of this actor to hold also the mes-
sages pending at the input ports. To distinguish these messages from the
ones actually in the actor’s buffer, these pending messages are flagged so
that the actor scheduler cannot select them. This flag will be removed from
a message whenever the Reo connector decides that this message can actually
be delivered to the recipient actor.

As a consequence, the Reo models do not need to include extra buffers at
the input, and rather focus on the coordination logic (cf. Fig. 5). Compared
to a normal buffer (as in Section 2, disabling a message only delays its exe-
cution, whereas its deadline counts since it is generated. Therefore, as before,
a queue with more than ddmax/bmine messages is not schedulable. Subsection
3.2 describes how we can implement the above solutions in Uppaal. Section 5
introduces more patterns in which such optimizations are possible.

Client-Server connectors In our example of client-server we have one client and
two servers. The requests and replies between the client and the servers are
routed through the connectors shown in Fig. 5. The request sequencer accepts
messages from the client through the input port I and routes them to the servers
through the output ports O1 and O2 in a strict sequence. The reply sequencer
accepts messages through input ports I1 and I2 and routes them back to the
client through output port O, in the order in which they were sent. In both
connectors we have a circular configuration of FIFO1 channels, this is to produce
an alternating behavior of port selection. For the request sequencing we see that
one FIFO11 channel is initially full, this causes ports {I, x0, x1, x2, f1, O1} to
become enabled when a message is put on input port I and the request flows
through output port 1 O1. Now the FIFO12 channel is full, so for the next
request the ports {I, x0, x3, x2, f1, O2} are enabled for the next message, causing
the data to flow through output port O2. Similarly, for the request sequencing

147

1

2

1x

2x

3x

1f

2f

0x

1

2

1f

2f

x

2x

1

start

{I, x0, x1, x2, f1, O1}

{I, x0, x3, x2, f1, O2}

start

{I1, x1, f1, O}

{I1, x2, f2, O}

Fig. 5. Request and Reply sequencing.

we have that FIFO11 channel is initially full, which forces a strict sequencing
on the order in which the replies are put into the buffer of the client. To avoid
blocking the input ports I1 or I2, in principle we need to add extra buffers on
the input ports; this extra buffer is avoided by reusing the buffer of Client as we
explained above. In the next section, we show how to implement this in Uppaal.
In the sequel, we hide internal ports {x0, x1, x2, x3, f1, f2} in the CA models.

3.2 Analysis in Uppaal

To be able to perform analysis in Uppaal, we need to give a representation of
CA in terms of Uppaal timed automata. We work with the CA representing
each connector, i.e., after the product of the CA of the constituent channels has
been computed. Furthermore, all internal ports should be hidden. Therefore, we
are not concerned with composing two translated CA.

The idea is that synchronization on port names can be translated to channel
synchronization in Uppaal. We can reuse the invoke channel for this purpose.
Recall from Section 2 that invoke is used for sending messages. An action on
an input (resp. output) port is translated to a ‘receive’ (resp. ‘emit’) on the
channel. Variables in CA can be directly translated to variables in Uppaal,
therefore, data constraints can be simply translated to assignments in Uppaal.

The main challenge is that transitions in CA may require synchronization
on multiple ports, whereas in Uppaal channels provide binary synchroniza-
tion. To solve this, whenever multiple ports should synchronize, they are put
on consecutive transitions separated by committed locations. This produces an
equivalent behavior as these transitions are all taken in zero time and without
being interleaved with other automata instances. In the following, we show how
to implement the optimizations for the two Reo patterns mentioned previously.

– Single-input, multiple-output: In this case (e.g., the request sequencer),
the message can immediately be processed and the sender will never be

148

invoke[request][self][O1]!

invoke[request][I][self]?invoke[request][self][O2]!

invoke[request][I][self]?

(a) request sequencing

invoke[reply][s][C]!
constraint = false

srv : int[1,2]
invoke[reply][srv][self]?

s=srv

coordinate[reply][I2][O]?

coordinate[reply][I1][O]? i : int[0,MAX-1]
i<tail && !enable[i]
coordinate[q[i]][s[i]][self]
enable[i] = true

(b) forwarding the reply (c) sequencing the reply by manipulating the queue

Fig. 6. Integrating Constraint Auomata into Uppaal.

blocked. Therefore, the above translation from CA to timed automata is
enough and the CA can directly intermediate between the sender and re-
ceiver actors. For example in Fig. 6.(a), the synchronous step on I and O1

is modeled by first reading a request message on I and then writing the
message on O1. Similarly, I and O2 are synchronized at the next step.

– Multiple-input, single output: As explained in previous subsection, actor
buffers need to be extended such that every message has a boolean flag
called ‘enabled’. As long as this flag is false, the message will be not be
selected by the scheduler. The extended insertInvoke function (cf. Section
2) assigns variable ‘constraint’ to the ‘enabled’ field corresponding to every
incoming message. The variable ‘constraint’ is always set to true, except
when a message is sent via a “multiple-input, single-output” connector (cf.
Fig. 6.(b)). Via this connector, all messages are directly passed on to the
buffer of the single receiver with their ‘enabled’ flag set to false.
Another automaton, shown in Fig. 6.(c), captures the coordination logic, i.e.,
it has the exact form of the constraint automata for the Reo connector. The
second automaton in Fig. 6.(c) is an extension to the scheduler automata
which follows the coordination logic to enable messages in the queue. There-
fore, these messages are enabled at the moment that is allowed by the CA.
In this figure q[i] shows a message at index i of the queue which was sent
by s [i]. Note that this automaton selects only disabled messages, i.e., it
does not consider a message twice. However, as shown in this figure, it does
not distinguish between different instances of the same message. Since every
message already has a clock assigned to it which keeps track of how long it
has been in the queue, we can use that clock to select the oldest message
instance. To do so, we need to extend the guard like this:

i < tail && ! enable[i] &&

forall (m : int[0,MAX -1]) (

enable[m] || m>=tail ||

q[i] != q[m] || s[i] != s[m] ||

clk[ca[i]]-clk[ca[m]]>=0

)

where clk [ca[i]] shows the clock assigned to the message at q[i].

149

invoke[reply][srv][self]!
deadline = XD

invoke[request][self][srv]?

invoke[reply][srv][self]!
deadline = XD

invoke[request][self][srv]?

FAIL

PASS

invoke[request][T][S2]! invoke[request][C][T]?

invoke[request][C][T]?

invoke[reply][T][C]!invoke[reply][S1][T]?

invoke[request][T][S1]!invoke[request][C][T]?

Fig. 7. A client that can send two requests in a row and a corresponding test-case.

Compatibility Check To check the compatibility of actors coordinated us-
ing Reo connectors, we need to compose the behavioral interfaces of the actors
with the Constraint Automata models of the Reo connectors. This composed
automaton will serve as the basis for test case generation. In this composition,
we will use the transformed version of the constraint automata into Uppaal
format. However, the coordinate channels need to be converted back to invoke
channel so that the behavioral interfaces can communicate with them. Note that
converting Constraint Automata to Timed Automata can ideally be automated
such that these conversions would be safe from human error.

Fig. 7 shows a new behavioral interface for the client that accommodates
a late reply by incorporating the possibility of sending two requests in a row.
On the right side, a (simplified) test case is shown that is generated from the
composition of behavioral interfaces of one client and two servers connected with
the sequencer Reo connectors. Compared to the test case in Section 2, this test
case can identify two servers S1 and S2. This test case cannot reach the FAIL
verdict. This is because before the client wants to send a third request, the
servers will provide the replies.

4 Actors with Communication Delays

In this section, we show how to extend the modeling framework of Section 2
and the corresponding schedulability analysis to take account of communication
delays between actors. We assume here that actors communicate directly, i.e.,
there is no Reo connector.

(C S

C 0 1
S 1 0

)

Fig. 8. The distance
matrix.

We assume a fixed delay for communications between
every pair of actors, called their distance. This is a rea-
sonable assumption if the communication medium be-
tween the actors is fixed for all messages. Therefore, the
delays in the whole network can be modeled as a matrix;
this matrix will be symmetric if we assume the uplink
and downlink connections have the same properties. For
example, for the client-server example, we assume the
distance 1 between the client and the server (see Fig. 8).
The distance of an actor to itself is then zero.

Extension of the actor framework with network delays must properly address
the following concerns:

150

1. The time difference since a message is sent and is executed (at receiver)
cannot be smaller than the distance between the sender and the receiver.

2. The deadline associated to each message (specified by the sender) should
also include the network delay.

3. The modularity of the analysis techniques should be preserved.

A naive solution to handle network delays is to introduce network buffers,
e.g., by adding an extra actor. This actor should delay each message exactly
as intended and reduce its remaining deadline correspondingly. This, however,
introduces a great overhead in the size of the model: there will be at least a buffer
(and its corresponding clocks) between every pair of actors in each direction, i.e.,
an exponential number of buffers and clocks. Additionally, finding a reasonable
upper bound on the size of these buffers is not trivial.

To avoid introducing this overhead, we place the messages directly into the
buffer of the receiving actors. To model the distances, the messages in the buffer
should be disabled as long as the network delay has not passed (concern 1). As
explained in Section 2, clk[msg] is reset to zero when msg is added to the buffer.
With the distance matrix available, we can use this guard:

distance[sender][receiver] < clk[msg]

as the enabling condition for each message. Recall that scheduling policies are
implemented as guards in the scheduler automata in Uppaal, which model the
selection condition of every message. The above enabling condition can therefore
be hard coded into this guard. Thus we avoid extra variables in the buffer repre-
sentation to capture the enabling conditions of messages, which leads to a very
efficient implementation. Additionally, using clk[msg] together with the original
deadline of the message satisfies the second concern in a straightforward way.

This approach brings about two new concerns:

4. In this approach, the order of messages in a buffer are based on their sending
time rather than their arrival time, i.e., when they become enabled.

5. While preserving schedulability, the buffer of every actor needs to be big
enough to contain all messages, including disabled messages.

Since messages may arrive from different actors with different distances, mul-
tiplexing them into the same buffer should preserve their order of arrival rather
than their order of sending. This is important in scheduling strategies that de-
pend on the arrival order of the messages, e.g., FIFO. To address this issue, we
need to re-implement such schedulers based on the waiting time of messages after
they become enabled, which is equal to clk[msg] − distance[sender][receiver];
this value should be used when it is not negative.

Finally, we show that the size of buffer for schedulable actors does not need
to be increased in presence of network delays. As argued in previous section,
disabling a message may only delay its execution, whereas the deadline associated
to all messages (disabled or enabled) is still in effect and approaching. Therefore,
if there are n > ddmax/bmine messages in the buffer, one of them inevitably

151

PASS

FAIL

invoke[reply][T][C]! invoke[reply][S][T]?

invoke[request][T][S]!invoke[reques][C][T]?
check[reply][S][C]?

check[request][C][S]?

check[request][C][S]?

PASS

FAIL

invoke[reply][T][C]! invoke[reply][S][T]?

invoke[request][T][S]!invoke[reques][C][T]?
check[reply][S][C]?

check[request][C][S]?

check[request][C][S]? i : int[0,MAX-1]
i<tail &&
x[ca[i]] == distance[s[i]][self]
check[q[i]][s[i]][self]!

(a) Test-driver (b) Monitor (c) Scheduler extension

Fig. 9. Checking compatibility while considering network delays

misses its deadline. This means that individually schedulable actors can still
be used provided that the compatibility check is adapted, i.e., modularity is
preserved.

4.1 Compatibility Check

Definition 2 defines compatibility as the inclusion of visible traces of the system
S in the traces of B, where B is the composition of the behavioral interfaces. The
actions in these traces are instantaneous communication of messages; however,
in presence of network delays, communication is not instantaneous any more.
The main challenge here is to bridge the time gap between the traces in S which
capture the sending times and the traces in B which reflect the arrival times.

Definition 3 (Compatibility with delay). For every trace from S, say σ =
(m1, t1) . . . (mi, ti) . . ., which captures the sending time of each message, there
should exist a corresponding trace σ′ = (m1, t1 + x1) . . . (mi, ti + xi) . . . in B,
where xi is the distance between the sender and receiver of mi (cf. Fig. 8).

Furthermore, a deadline on the server side (in the behavioral interface) only
includes the buffer time and the execution time, whereas a deadline on the
client side (in a method) includes also the network delay. In other words, the
compatibility check must ensure that the client side deadline is not smaller than
the deadline on the server side plus the distance between the actors.

To check compatibility, as explained in Section 2, we generate test cases from
the more abstract side, i.e., the composition of the behavioral interfaces B. A
test-case in the original framework [16] both drives the system under test and
monitors it for unexpected behavior. These tasks must be separated now: a test-
driver automaton communicates with the system based on the send times (cf.
Fig. 9.(a)); a monitor automaton checks whether the arrival time of messages
matches the expectations in B (cf. Fig. 9.(b)). The latter is not trivial as the
arrival time of a message is when it become enabled. Therefore, the scheduler
automata must send a signal on a new channel, check, at the actual arrival time
of the message, i.e., clk[msg] reaches distance[sender][receiver] (cf. Fig. 9.(c)).

A test-driver is a linear timed automaton generated from a trace taken from
B. To be able to drive the system under test, the arrival times must be changed
to sending times. As a result, we may need to reorder the transitions of the
original trace so that the messages are sent in the correct chronological order.

152

Request
Sequencer Internet
Reply
Sequencer

Client

I

O

O

O

I

I

1

2

1

2

Server 1

Server 2

Network

Fig. 10. Graphical illustration of the client-server example.

The monitor automaton is obtained in the same way as in Section 2 when
no delays are present. However, it does not drive the system behavior any more.
Instead it uses the check channel to see if an actor in the system could receive
a message outside the expected time as specified in its behavioral interface.
Fig. 9.(b) considers the client/server model in Section 2 where two consecutive
request messages are disallowed.

5 Discussion and Future Work

We extended our previous work on schedulability analysis of real-time actors to
consider complex networks of actors. On one hand, the coordination language
Reo is applied. Reo can be used to take better advantage of off-the-shelf com-
ponents, where in our case components are modeled as actors. We showed with
our simple example that with the help of Reo we can combine actors in such a
way that their combination becomes schedulable; in addition, more complicated
systems can be built. On the other hand, we showed how to consider communi-
cation delays between actors. This is especially important when actors are to be
deployed on remote machines.

In an ideal situation, Reo connectors can carry timing information and as
such also include the network delays. However, as already mentioned, there is
currently no fully satisfactory real-time extension of Reo. As a result, we con-
tinue with the assumption that the coordination in Reo connectors happens in
negligible time (as in Section 3). Furthermore, we assume that Reo connectors
are local to actors. Therefore, the use of a distance matrix as introduced in Sec-
tion 4 is orthogonal to using Reo. This means that one can directly combine
the techniques in the previous two sections to analyze coordinated networks of
actors in presence of delays.

In Fig. 10 we illustrate this implementation graphically for our running ex-
ample. The request and reply sequencing connectors are local to the Client actor.
The real delay happens in the network cloud (formally modeled in the distance
matrix). By assuming a fixed delay between every pair of actors, we can essen-
tially look at the network as a black-box, i.e. we don’t need to know any details
about the network, only how long it takes to send messages through the network.

For checking compatibility, we need to generate the separate test-driver and
monitor automata because of the delay in the network. Nevertheless, the test
cases should be generated from the composition of the behavioral interfaces and
the constraint automata models of the Reo connectors, as depicted in Section 3.

153

Reo Patterns. In this paper, we considered only two patterns of Reo connectors,
i.e., single input or single output. Although this may seem a strict restriction on
use of Reo, many useful connectors can still be used. Another example of such
connectors is shown in Fig. 11.(a). In this example, the client actor requires two
services m1 and m2 (say ‘BookFlight’ and ‘BookHotel’) but there is no server
actor that can provide both. The connectors in this figure can be used to connect
such a client to two servers each providing one of these services. In this connector
filter channels are used which may pass the incoming data only if it matches the
pattern provided and thus e.g. distinguishing m1 and m2. The replies from the
two servers can be simply merged using a merger as shown in Fig. 11.(b).

m1

m2

F. Arbab 356

a b

g h i

a b,c d
a

b,d

c

a,c
b a d a d

a d

g j

a b

c

a b

c d
f

c d e

b,e,c

f fd

b,e,c

b,e,c

h,f,i

Fig. 4. Examples of channel composition and connectors.

9.2.1. Generic behaviour of Sync The generic behaviour of a Sync channel c whose

source and sink ends are xc and yc , respectively, is defined by the following two functions:

accepts(xc , d) = accepts(ŷc , d) (8)

offers(yc , p) = {〈yc , d〉 | 〈z , d〉 ∈ offers(x̂c , p)}. (9)

9.2.2. Generic behaviour of Filter(pat) The generic behaviour of a Filter(pat) chan-

nel c whose source and the sink ends are xc and yc , respectively, is defined by the following

two functions:

accepts(xc , d) = d $% pat ∨ accepts(ŷc , d) (10)

offers(yc , p) = {〈yc , d〉 | 〈z , d〉 ∈ offers(x̂c , p) ∧ d % pat}. (11)

9.2.3. Generic behaviour of LossySync The generic behaviour of a LossySync c whose

source and sink ends are xc and yc , respectively, is defined by the following two functions:

accepts(xc , d) = true (12)

offers(yc , p) = {〈yc , d〉 | 〈z , d〉 ∈ offers(x̂c , p)}. (13)

This reflects the fact that the state of a LossySync channel allows it to consume a data

item regardless of whether or not a matching I/O operation is pending on its opposite

end, and either transfers or loses the data item.

10. Channel composition

The utility of channel composition in Reo can be demonstrated through a number of

simple examples. For convenience, we represent a channel by the pair of its source and

sink ends, that is, ab represents the channel whose source and sink ends are, respectively,

a, and b. Two channels, ab and cd can be joined in one of the three configurations shown

in Figures 4.a–c. For instance, the connectors in Figures 4.a–c can be created as follows.

We can create two channels of types t1 and t2 by <a, b> = create(t1) and <c, d> =

create(t2). The connectors in Figures 4.a–c are constructed out of two such channels

(a) (b) (c)

Fig. 11. More Reo connectors

Although applying a multiple in-
put multiple output connector may
in general require an extra buffer at
its input, this can be avoided again
in several kinds of connectors, which
need to be considered individually.
Another example where we can opti-
mize the implementation is a barrier
synchronizer, shown in Fig. 11.(c). A barrier synchronizer delays the messages
from the fast client actors until all inputs are ready and only then forwards
them to their destinations. In this connector, the destination actor for each in-
put port is statically known; therefore, the buffer of that actor can be used to
store messages on the respective input port.

References

1. G. Agha, “The structure and semantics of actor languages,” in Proc. the REX
Workshop, 1990, pp. 1–59.

2. K. Altisen, G. Gößler, and J. Sifakis, “Scheduler modeling based on the controller
synthesis paradigm,” Real-Time Systems, vol. 23, no. 1-2, pp. 55–84, 2002.

3. R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical Computer
Science, vol. 126, no. 2, pp. 183–235, 1994.

4. F. Arbab, “Reo: A channel-based coordination model for component composition,”
Mathematical Structures in Computer Science, vol. 14, pp. 329–366, 2004.

5. F. Arbab, C. Baier, J. J. Rutten, and M. Sirjani, “Modeling component connectors
in Reo by constraint automata,” in Proceedings of FOCLASA’03, ser. ENTCS,
vol. 97. Elsevier, 2004, pp. 25–46.

6. G. Behrmann, A. David, and K. G. Larsen, “A tutorial on uppaal,” in Proc. For-
mal Methods for the Design of Computer, Communication, and Software Systems,
ser. LNCS, M. Bernardo and F. Corradini, Eds., vol. 3185, 2004, pp. 200–236.

7. E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venter, D. Weil, and S. Yovine,
“TAXYS: A tool for the development and verification of real-time embedded sys-
tems,” in Proc. CAV’01, ser. LNCS, vol. 2102. Springer, 2001, pp. 391–395.

8. C. Courcoubetis and M. Yannakakis, “Minimum and maximum delay problems in
real-time systems,” Formal Methods in System Design, vol. 1, no. 4, pp. 385–415,
1992.

154

9. F. de Boer, T. Chothia, and M. M. Jaghoori, “Modular schedulability analysis
of concurrent objects in Creol,” in Proc. Fundamentals of Software Engineering
(FSEN’09), vol. 5961, 2009, pp. 212–227.

10. E. Fersman, P. Krcal, P. Pettersson, and W. Yi, “Task automata: Schedulability,
decidability and undecidability,” Information and Computation, vol. 205, no. 8,
pp. 1149–1172, 2007.

11. J. J. G. Garcia, J. C. P. Gutierrez, and M. G. Harbour, “Schedulability analysis of
distributed hard real-time systems with multiple-event synchronization,” in Proc.
12th Euromicro Conference on Real-Time Systems. IEEE, 2000, pp. 15–24.

12. C. Hewitt, “Procedural embedding of knowledge in planner,” in Proc. the 2nd
International Joint Conference on Artificial Intelligence, 1971, pp. 167–184.

13. M. M. Jaghoori, “Time at your service,” Ph.D. dissertation, LIACS, Leiden Uni-
versity, 2010.

14. M. M. Jaghoori and T. Chothia, “Timed automata semantics for analyzing Creol,”
in Proc. 9th International Workshop on the Foundations of Coordination Languages
and Software Architectures (FOCLASA’10), ser. EPTCS 30, 2010, pp. 108–122.

15. M. M. Jaghoori, F. S. de Boer, T. Chothia, and M. Sirjani, “Schedulability of
asynchronous real-time concurrent objects,” J. Logic and Alg. Prog., vol. 78, no. 5,
pp. 402 – 416, 2009.

16. M. M. Jaghoori, D. Longuet, F. S. de Boer, and T. Chothia, “Schedulability and
compatibility of real time asynchronous objects,” in Proc. RTSS’08. IEEE CS,
2008, pp. 70–79.

17. E. B. Johnsen and O. Owe, “An asynchronous communication model for distributed
concurrent objects,” Software and Systems Modeling, vol. 6, no. 1, pp. 35–58, 2007.

18. C. Kloukinas and S. Yovine, “Synthesis of safe, QoS extendible, application specific
schedulers for heterogeneous real-time systems,” in Proc. ECRTS’03. IEEE CS,
2003, pp. 287–294.

19. N. Kokash, B. Changizi, and F. Arbab, “A semantic model for service composition
with coordination time delays,” in Proc. 12th International Conference on Formal
Engineering Methods (ICFEM’10), ser. LNCS, vol. 6447, 2010, pp. 106–121.

20. O. Kupferman, M. Y. Vardi, and P. Wolper, “Module checking,” Information and
Computation, vol. 164, no. 2, pp. 322–344, 2001.

21. J. Meseguer and C. L. Talcott, “Semantic models for distributed object reflection,”
in Proceedings of the 16th European Conference on Object-Oriented Programming,
ser. ECOOP ’02. Springer, 2002, pp. 1–36.

22. B. Meyer, Eiffel: The language. Prentice-Hall, 1992.
23. S. Ren and G. Agha, “RTsynchronizer: language support for real-time specifica-

tions in distributed systems,” ACM SIGPLAN Notices, vol. 30, no. 11, pp. 50–59,
Nov. 1995.

24. S. Ren, Y. Yu, N. Chen, K. Marth, P.-E. Poirot, and L. Shen, “Actors, roles and
coordinators: A coordination model for open distributed and embedded systems,”
in Coordination Models and Languages, ser. LNCS, 2006, vol. 4038, pp. 247–265.

25. M. Sirjani, A. Movaghar, A. Shali, and F. S. de Boer, “Modeling and verification
of reactive systems using Rebeca,” Fundamamenta Informaticae, vol. 63, no. 4, pp.
385–410, 2004.

155

A Formal Model of Object Mobility in
Resource-Restricted Deployment Scenarios ?

Einar Broch Johnsen, Rudolf Schlatte, and S. Lizeth Tapia Tarifa

Department of Informatics, University of Oslo, Norway
{einarj,rudi,sltarifa}@ifi.uio.no

Abstract. Software today is often developed for deployment on differ-
ent architectures, ranging from sequential machines via multicore and
distributed architectures to the cloud. In order to apply formal methods,
models of such systems must be able to capture different deployment
scenarios. For this purpose, it is desirable to express aspects of low-level
deployment at the abstraction level of the modeling language. This paper
considers formal executable models of concurrent objects executing on
deployment components, which reflect the execution capacity of sets of
objects between observable points in time. We show how to model and
simulate the behavior of objects moving between components, by means
of relocation strategies expressed in the modeling language. A running
example is used to demonstrate how activity on deployment components
causes congestion and how object relocation can alleviate this conges-
tion. We simulate the behavior of models which vary in the execution
capacity of deployment components and in object relocation strategies.

1 Introduction

Software is increasingly often developed as a range of systems. Different versions
of a software may provide different functionality and advanced features, depend-
ing on target users. In addition to such functional variability, software systems
need to adapt to different deployment scenarios. For example, operating systems
adapt to specific hardware and even to different numbers of available cores; vir-
tualized applications are deployed on a varying number of (virtual) servers; and
services on the cloud may need to adapt dynamically to the underlying cloud in-
frastructure. This kind of adaptability raises new challenges for the modeling and
analysis of component-based applications [33]. To apply formal methods to such
applications, it is interesting to lift aspects of low-level deployment concerns to
the abstraction level of the modeling language. In this paper we propose abstract
performance analysis for formal object-oriented models, in which objects may
migrate between deployment components that are parametric in the amount of
concurrent processing resources they provide to their objects.

The work presented in this paper uses ABS [20], a modeling language for dis-
tributed concurrent objects which communicate by asynchronous method calls.
? Partly funded by the EU project FP7-231620 HATS: Highly Adaptable and Trust-
worthy Software using Formal Models (http://www.hats-project.eu).

156

ABS is an executable language, but still allows abstractions (i.e., functions and
abstract data types can be used to specify internal, sequential computations).
The concurrent object semantics of ABS are similar to Actors [1] and Erlang
processes [5]: ABS objects are inherently concurrent, with at most one process
active per object. Concurrent objects and agents have attracted attention as
an alternative to multi-thread concurrency in object-orientation (e.g., [9]), and
been integrated with, e.g., Java [30,32] and Scala [15]. ABS proposes cooperative
scheduling of processes inside concurrent objects, which eliminates some common
programming errors (specifically, race conditions are much harder to introduce
inadvertently) and enables compositional verification of ABS models [2, 12].

In order to capture deployment scenarios for ABS models, previous work
by the authors proposes an extension of the ABS language with deployment
components which are parametric in the amount of concurrent activity they
allow within a time interval [22]. This allows us to analyze how the amount of
concurrent execution resources allocated to a deployment component influences
the performance of objects deployed on the component. For this purpose, we work
with a notion of timed concurrent objects [8], extended to capture parametric
concurrent activities between observable points in time. To validate and compare
the concurrent behavior of models under restricted concurrency assumptions, the
timed operational semantics of our ABS extension, for brevity presented in an
SOS style [29] in this paper, is expressed in rewriting logic [25], which enables
the use of Maude [11] for as a simulation and analysis tool for ABS models.

The contribution of this paper is a formalization of object mobility in resource-
restricted deployment scenarios. We extend ABS with a goto statement which
allows objects to move between deployment components, show how this extension
naturally integrates in the ABS semantics in an elegant and simple way, and
how it allows load balancing strategies to be expressed and executed in parallel
with the functional parts of the model. This approach complements the work
presented in [21], which formalizes load balancing by resource reallocation. We
demonstrate the use of simulation techniques to analyze the resource usage of
distributed system models in ABS in order to compare the behavior of models
ranging over resources and load-balancing strategies. This enables designers to
anticipate behavior of distributed systems at an early stage in the design process.

Paper Overview. Section 2 introduces the language via a running example.
Section 3 presents the syntax and semantics of a timed concurrent object model-
ing language with deployment components. Section 4 shows how we can use our
interpreter to simulate the behavior of our example ranging over deployment
scenarios. Section 5 talks about load balancing strategies, Section 6 discusses
related work, and Section 7 concludes the paper.

2 Motivating Example

Let us consider services for building software using the service-oriented design
paradigm; e.g., as found in web shops, social networks, browsers applications.
The ABS model of such a service is given in Fig. 1 (Sec. 3 contains a detailed

157

interface Agent {Session getsession(); Unit free(Session session);}
interface Session {Bool request(Int cost);}

class SessionImp(Agent agent) implements Session {
Bool request(Int cost) {
Time start = now;
Int remCost = cost;
while (remCost > 0){remCost = remCost-1;}
agent.free(this);
return (2*(now−start) < cost);}}

class AgentImp() implements Agent {
Set<Session> sessions = Empty;
Unit free(Session session) {sessions = add(session,sessions);}
Session getsession() {Session session;
if (isEmpty(sessions)) {session = new SessionImp(this);}
else {session = choose(sessions);

sessions = remove(session,sessions);}
return session;}}

{// Main block:
DC server = component(20); Agent a = new AgentImp() in server;
}

Fig. 1. A web application model in ABS.

explanation of the language syntax). In our example, clients use the service by
first calling the getSession method of an Agent object. An Agent hands
out Session objects from a dynamically growing pool. Clients then call the
request method of their Session instance. After completing the request,
the session object is returned to the agent’s pool. For simplicity, we abstract
from the specific functionality of our service and let the request method of a
session have a certain computation cost, given as the actual parameter to the
method. This cost reflects the computation cost of the service given in terms
of its input size; e.g., manipulating photos or recursing through an address list
(where remCost reflects the remaining cost of the computation of the request
method). A request is successful if it can be handled within a certain amount
of time, depending on its input. This is captured by the return statement of
the method, which relates the execution time of a method activation (i.e., the
difference between the current time now and the start time of the request) to
the input cost of the method call.

In the Agent class, the attribute sessions stores a set of Session objects.
(ABS has a datatype for sets, with operations isEmpty to check for the empty
set, denoted Empty, choose to select an element of a non-empty set, and the
usual remove and add operators.) When a customer requests a Session, the
Agent takes a session from the available sessions if possible, otherwise it creates
a new session. The method free inserts the session in the available sessions of
the Agent, and is called by the session itself upon completion of a request. This
model captures the architecture and control flow of a service oriented application,
while abstracting from many details (such as thread pools, data models, sessions
spanning multiple requests etc.) which can be added to the model if needed.

158

The main block of the model specifies the initial state for model execution as
a deployment scenario in which an agent object is deployed on a deployment
component server (of the predefined type DC), which will also contain the
Session objects. The parameter to the server specifies its execution capacity
in terms of abstract concurrent resources, which reflect the amount of potential
abstract execution cycles available to the objects deployed on the server between
observable points in time. The agent creates concurrently executing Session
objects on the same server as needed. It is easy to see that heavy client traffic may
lead to congestion on the server, which may in turn cause a lot of unsuccessful
requests to the service.

3 Models of Deployed Concurrent Objects in ABS

ABS is an abstract behavioral specification language for distributed concurrent
objects. This section briefly introduces ABS (for further details see, e.g., [20]).
In ABS, objects conceptually have dedicated processors and live on deployment
components which constrain concurrent execution capabilities. Objects are dy-
namically created instances of classes, with attributes initialized to default type-
correct values. An optional init method may be used to redefine attributes.
Objects are typed by interface and communicate by asynchronous method calls,
spawning concurrent activities in the called object. Active behavior, specified by
an optional run method, is interleaved with passive behavior, triggered by such
asynchronous method calls. Thus, an object has a set of processes to be exe-
cuted, which stem from method activations. Among these, at most one process
is active. The others are suspended on a queue. Process scheduling is by default
non-deterministic, but controlled by processor release points in a cooperative
way. ABS is strongly typed: for well-typed programs, invoked methods are sup-
ported by the called object (when not null), and formal and actual parameters
match. We assume that programs are well-typed.

Deployment components restrict the inherent concurrency of objects in ABS
by mapping the logical concurrency to a model of physical computing resources.
In ABS, objects exists in the context of a deployment component with a given
amount of resources. Deployment components are first-class citizens of ABS, of
type DC. Deployment components abstract from the number and speed of the
physical processors available to the component by a notion of concurrent re-
source [22]: A simple time model defines the points in time when the executing
system is observable. Concurrent resources can be consumed in parallel or in
sequential order, which reflects the number of processors and their speeds rela-
tive to the intervals between observable points in time. Objects deployed on a
component may consume resources within a time interval until the component
runs out of resources or the objects are otherwise blocked. This way, the logi-
cal concurrency model of the concurrent objects is controlled by their associated
deployment component. A deployment component is parametric in the computa-
tional resources it offers to a group of dynamically created objects, which makes
it easy to configure deployment scenarios varying in their concurrent resources.

159

Syntactic categories.
C, I,m in Names
g in Guard
s in Stmt
x in Var
e in Expr
b in BoolExpr
r in Resource

Definitions.
IF ::= interface I { [Sg] }
CL ::= classC [(I x)] [implements I] { [I x;]M}
Sg ::= I m ([I x])

M ::= Sg {[I x;] s }
g ::= b | x? | g ∧ g
s ::= s; s | x = rhs | suspend | await g | skip | goto(e)
| if b then { s } [else { s }] | while b { s } | return e

e ::= x | b | r | this | now | thiscomp | available | load(e)
rhs ::= e | cm | new C (e) [in e] | component (e)
cm ::= [e]!m(e) | [e.]m(e) | x.get

Fig. 2. ABS syntax. Terms such as e and x denote lists over the corresponding syntactic
categories, square brackets [] denote optional elements.

Figure 2 gives the syntax of timed ABS with deployment components. A
program consists of interface and class definitions and a main block to configure
the initial state. IF defines an interface with name I and method signatures Sg .
A class implements a set I of interfaces, which specify types for its instances.
CL defines a class with name C, interfaces I, class parameters and state vari-
ables x (of type I), and methods M . (The attributes of the class are both its
parameters and declared fields.) A method signature Sg declares the return type
I of a method with name m and formal parameters x of types I. M defines a
method with signature Sg, a list of local variable declarations x of types I, and
a statement s.

Statements. Assignment x = rhs, sequential composition s1; s2, skip, if,
while, and return e are standard. The statement goto(e) moves the object
to deployment component e. The statement suspend unconditionally releases
the processor by suspending the active process. The guard g controls proces-
sor release in statements await g, and consists of Boolean expressions b over
attributes and return tests x? (see below). If g evaluates to false, the current pro-
cess is suspended. In this case, any enabled process from the pool of suspended
processes may be activated. The scheduling of processes is cooperative in the
sense that processes explicitly yield control and execution in one process may
enable the further execution in another.

Expressions rhs include pure expressions e, communications cm, and the
creation of deployment components and objects. The expression component (e)
creates a component with e concurrent resources. Resources are modeled by a
type Resource which extends the natural numbers with an “unlimited resource”
ω. The set of concurrent objects deployed on a component, representing the
logically concurrent activities, may grow dynamically. Object creation new C(e)
in e has an optional clause to specify the targeted deployment component: here
the C object is to be deployed on component e. (If the target component is
omitted, the new object will be deployed on the same component as its parent.
The behavior of ABS models without deployment restrictions on their functional
behavior is captured by a main deployment component with ω resources.)

160

Pure expressions e are variables x, Boolean expressions b, resources r, this
(the object’s identifier) and thiscomp (the object’s current deployment com-
ponent), and now, which returns the current time. Timed ABS uses an implicit
time model [8], comparable to a system clock which updates every n millisec-
onds (representing a time interval). Time values are totally ordered by the less-
than operator; comparing two time values results in a Boolean value suitable
for guards in await statements. From an object’s local perspective, the passage
of time is indirectly observable via await statements. Time advances when no
other activity may occur. This model of time is used to handle the amount of
concurrent activity allowed within a time interval in order to model resource
constraints for different deployment scenarios. The resources available to ob-
jects on the current deployment component are given by available, and the
average load on the component for the last e time intervals by load(e). (The
full language includes a functional expression language with standard operators
for data types such as strings, integers, lists, sets, maps, and tuples. These are
omitted here, and explained when used in the examples.)

Communications cm are based on asynchronous method calls. After making
an asynchronous call x = e!m(e), the caller may proceed without waiting for
the method reply. Here x is a future variable, which refers to a return value
which may still need to be computed. Two operations on future variables control
synchronization in ABS [20]. First, the guard await x? suspends the active
process until a return to the call associated with x has arrived. This suspends
execution of the process, but allows other processes to run. Second, the return
value is retrieved by the expression x.get, which blocks all execution in the
object until the return value is available. Two commonly used communication
patterns are now explained; the statement sequence x = e!m(e); y = x.get
encodes a blocking call, conveniently abbreviated y = e.m(e) (often referred to as
a synchronous call), whereas the statement sequence x = e!m(e); await x?; y =
x.get encodes a non-blocking, preemptable call.

3.1 Operational Semantics

The semantics of timed ABS with deployment components is given as a transition
system in an SOS style [29]. Transition rules apply to subsets of configurations.
For simplicity, configurations can be reordered to match the left hand side of rules
(i.e., matching is modulo associativity and commutativity as in rewriting logic
[11]). A system run is a possibly nonterminating sequence of rule applications.
Auxiliary functions are evaluated between the application of transition rules.

Timed configurations tcn are given in Fig. 3 and consist of one global clock
and an untimed configuration cn; i.e., a set of deployment components, objects,
invocation messages, and futures. Let whitespace denote the associative and
commutative union operator on configurations and ε the empty configuration.
Timed configurations live inside curly brackets; in the term {x}, the variable x
captures the entire configuration. In the (global) clock cl(t), t is the current time.
In a deployment component dc(n, r, u, h), n is the identifier of the component,
r the (non-negative) number of available computing resources, u the maximum

161

cn ::= ε | comp | object | msg tcn ::= { clock cn }
| future | cn cn comp ::= dc(n, r, u, h)

object ::= ob(o, σ, p, q) msg ::= invoc(o, f,m, v)
q ::= ∅ | p | q\p | enqueue(p, q) future ::= fut(f, v)
p ::= {σ|s} | select(q, σ, cn, t) | idle clock ::= cl(t)
σ ::= x 7→ v | σ[x 7→ v] | σ, σ v ::= o | f | null | b | t

Fig. 3. The syntax for timed runtime configurations.

number of resources which can be consumed before the clock advances, and
h the history of resource consumption over past time intervals. In an object
ob(o, σ, p, q), o is the identifier, σ an attribute mapping representing the object’s
fields, p the active process, and q a queue of suspended processes. In the fields σ of
an object o, the reserved field ‘thiscomp’ is bound to the deployment component
associated with o. A process p is either idle, consists of a mapping σ of local
variable bindings and a list s of statements, or it is selected from the process
queue by the auxiliary function select. To simplify the presentation, we will
represent the fields of objects by the variable a and the local variable bindings of
a process by l, and denote a process p by {l|s} when convenient. In an invocation
message invoc(o, f,m, v), o is the callee, f the future to which the call’s result
is returned, m the method name, and v lists the call’s actual parameter values.
In a future fut(f, v), f is the identifier and v the reply value (which is ⊥ when
the future’s reply value has not been received yet). Values are object and future
identifiers, Boolean expressions, clock values, null, and ⊥ (which is used for
uninitialized values in futures).

Expressions are evaluated in the context of a given process, object state, and
configuration; this ensures that now, thiscomp, available, and load(i), as
well as reply guards and declared variables, are evaluated correctly in the state
of the system. Denote by [[e]]cnσ,t a confluent and terminating reduction system
for evaluating expressions e to data values, given a substitution a ◦ l (composing
fields a and local variable bindings l), the current time t, and the current untimed
system configuration cn. Let [[now]]cna◦l,t = t, [[thiscomp]]cna◦l,t = a(thiscomp),
and define availability and load by

[[available]]cna◦l,t = r if n = a(thiscomp) ∧ dc(n, r, u, h) ∈ cn
[[load(i)]]cna◦l,t = avg(h, i) if n = a(thiscomp) ∧ dc(n, r, u, h) ∈ cn
avg(h, 0) = 0

avg(h, i) = sum(h, i)/min(i, length(h)) if i > 0

Here, sum(h, i) sums the values of the first i elements of the list h (or the total
sum of h if its length is shorter than i). For guards, let [[x?]]cnσ,t = true if [[x]]cnσ,t = f
and fut(f, v) ∈ cn with v 6= ⊥, otherwise [[x?]]cnσ,t = false. We omit the remaining
cases, which basically retrieve values for declared variables.

The Rules. The rewrite rules of the operational semantics transform state con-
figurations into new configurations, and are given in Fig. 4 and Fig. 5.

162

(Skip)

a(thiscomp) = n r > 0

ob(o, a, {l|skip; s}, q) dc(n, r, u, h)
→ ob(o, a, {l|s}, q) dc(n, r − 1, u, h)

(Bind-Mtd)

l(destiny) = f
{l | s} = bind(o, f,m, v, C)

ob(o, a, p, q) invoc(o, f,m, v)
→ ob(o, a, p, enqueue({l | s}, q))

(Assign1)

x ∈ dom(l) v = [[e]]ε(a◦l),t
a(thiscomp) = n r > 0

ob(o, a, {l|x := e; s}, q)
dc(n, r, u, h) cl(t)

→ ob(o, a, {l[x 7→ v]|s}, q)
dc(n, r − 1, u, h) cl(t)

(Async-Call)

o′ = [[e]]ε(a◦l),t v = [[e]]ε(a◦l),t
fresh(f) a(thiscomp) = n r > 0

ob(o, a, {l|x := e!m(e); s}, q) dc(n, r, u, h) cl(t)
→ ob(o, a, {l|x := f ; s}, q) dc(n, r − 1, u, h)

cl(t) invoc(o′, f,m, v) fut(f,⊥)

(Assign2)

x ∈ dom(a) v = [[e]]ε(a◦l),t
a(thiscomp) = n r > 0

ob(o, a, {l|x := e; s}, q)
dc(n, r, u, h) cl(t)

→ ob(o, a[x 7→ v], {l|s}, q)
dc(n, r − 1, u, h) cl(t)

(Return)

v = [[e]]ε(a◦l),t r > 0

a(thiscomp) = n l(destiny) = f

ob(o, a, {l|return e; s}, q) cl(t)
fut(f,⊥) dc(n, r, u, h)
→ ob(o, a, {l|s}, q) cl(t)
fut(f, v) dc(n, r − 1, u, h)

(Cond1)

[[e]]ε(a◦l),t
ob(o, a, {l|if e then s1

else s2 fi; s}, q) cl(t)
→ ob(o, a, {l|s1; s}, q) cl(t)

(Await1)

[[g]]cn(a◦l),t
{ob(o, a, {l|await g; s}, q) cl(t) cn}
→ {ob(o, a, {l|s}, q) cl(t) cn}

(Cond2)

¬[[e]]ε(a◦l),t
ob(o, a, {l|if e then s1

else s2 fi; s}, q) cl(t)
→ ob(o, a, {l|s2; s}, q) cl(t)

(Await2)

¬[[g]]cn(a◦l),t
{ob(o, a, {l|await g; s}, q) cl(t) cn}

→ {ob(o, a, {l|release;await g; s}, q) cl(t) cn}

Fig. 4. Operational semantics of resource-restricted timed ABS (1).

If σ is a mapping, denote by dom(σ) its domain; by σ(x) the value bound to
x in σ (assuming x ∈ dom(σ)); by σ[x 7→ v] the extension of σ which binds x to
v (and σ[x 7→ v](x′) = σ(x′) if x 6= x′); and by σ1 ◦ σ2 the composed mapping
such that σ1 ◦ σ2(x) = σ2(x) if x ∈ dom(σ2), σ1 ◦ σ2(x) = a(x) otherwise. For
simplicity, classes are not represented explicitly in the semantics, but may be
seen as static tables. Assume given functions bind(o, f,m, v, C) which returns
a process resulting from the method activation of m in a class C with actual
parameters v, callee o and associated future f ; init(C) which returns a process
initializing instances of class C; and atts(C, v, o, n) which returns the initial state
of an instance of class C with class parameters v, identity o, and deployment
component n. The predicate fresh(n) asserts that a name n is globally unique
(where n may be an identifier for an object or a future). Let ‘idle’ represent
any process {l | s} where s is an empty statement list. We define different
assignment rules for side effect free expressions (Assign1 and Assign2), object

163

(release)

ob(o, a, {l|release; s}, q)
→ ob(o, a, idle,

enqueue({l|s}, q))

(Read-Fut)

v 6= ⊥ f = [[e]]ε(a◦l),t a(thiscomp) = n r > 0

ob(o, a, {l|x := e.get; s}, q) fut(f, v) dc(n, r, u, h) cl(t)
→ ob(o, a, {l|x := v; s}, q) fut(f, v) dc(n, r − 1, u, h) cl(t)

(Go-To)

a′ = a[thiscomp 7→ [[e]]ε(a◦l),t]

ob(o, a, {l|goto(e); s}, q) cl(t)
→ ob(o, a′, {l|s}, q) cl(t)

(New-Object1)

a(thiscomp) = a′(thiscomp) p = init(B)
fresh(o′) a′ = atts(B, [[e]]ε(a◦l),t, o

′, n)

ob(o, a, {l|x := new B(e); s}, q) cl(t)
→ ob(o, a, {l|x := o′; s}, q) ob(o′, a′, p, ∅) cl(t)

(Activate)

p = select(q, a, cn, t)
{ob(o, a, idle, q) cl(t) cn}
→ {ob(o, a, p, q\p) cl(t) cn}

(New-Object2)

a(thiscomp) = [[e′]]ε(a◦l),t p = init(B)

fresh(o′) a′ = atts(B, [[e]]ε(a◦l),t, o
′, [[e′]]ε(a◦l),t)

ob(o, a, {l|x = new B(e) in e′; s}, q) cl(t)
→ ob(o, a, {l|x = o′; s}, q) ob(o′, a′, p, ∅) cl(t)

(progress)

canAdv(cn, t)
{cn cl(t)}

→ {Adv(cn) cl(t+ 1)}

(New-Component)

fresh(n′) r′ = [[e]]εa◦l,t r ≥ r′
ob(o, a, {l|x = component(e); s}, q) cl(t) dc(n, r, u, h)

→ ob(o, a, {l|x = n′; s}, q) cl(t)
dc(n, r − r′, u, h) dc(n′, r′, 0, ε)

Fig. 5. Operational semantics of resource-restricted timed ABS (2).

creation (New-Object1 and New-Object2), method calls (Async-Call), and
future dereferencing (Read-Fut).

Rule Skip consumes a skip in the active process and a resource in the ob-
ject’s deployment component. Here and in the sequel, the variable s will match
any (possibly empty) statement list, the object’s deployment component is given
by a(thiscomp), and r > 0 asserts that the deployment component has available
resources. Rules Assign1 and Assign2 assign the value of expression e to a vari-
able x in the local variables l or in the fields a, respectively, consuming a resource
in the deployment component of the object. Rules Cond1 and Cond2 branch the
execution depending on the value obtained by evaluating the expression e. (We
omit the rule for while, which unfolds the while loop using an if-expression.)

Process Suspension and Activation. Three operations are used to manipulate
a process queue q: enqueue(p, q) adds a process p to q, q \ p removes the process
p from q, and select(q, a, cn, t) selects a process from q (if q is empty, this is the
idle process or no process is ready). The actual definitions of these operations are
left unspecified; different definitions correspond to different scheduling policies
for processes (e.g., EDF, FIFO). Let ∅ denote the empty queue. Rule Release
suspends the active process to the process queue, leaving the active process idle.
Rule Await1 consumes the await statement if the guard evaluates to true in
the current state of the object, rule Await2 adds a release statement in order
to suspend the process if the guard evaluates to false. Rule Activate selects a
process from the process queue for execution if this process is ready to execute,
i.e., if it would not directly be resuspended or block the processor.

164

canAdv(cn′, t) = true cn’ contains no objects or messages
canAdv(msg cn, t) = false messages are instantaneous
canAdv(ob(o, a, p, q) dc(n, 0, u, h) cn, t) no more resources

= canAdv(dc(n, 0, u, h) cn, t) ∧ a(thiscomp) == n
canAdv(ob(o, a, {l|x = f.get; s}, q) fut(f,⊥) cn, t) o is blocked and

= canAdv(fut(f,⊥) cn, t) no value is available
canAdv(ob(o, a, idle, q) cn, t) no ready processes

= canAdv(cn, t) ∧ select(q, a, cn, t) == idle
canAdv(ob(o, a, p, q) cn, t) = false otherwise

Adv(dc(n, r, u, h) cn) = dc(n, u, u, h ◦ u− r) Adv(cn)
Adv(cn) = cn otherwise

Fig. 6. Auxiliary functions controlling time advance. Here, msg denotes a message and
cn′ ranges over message- and object-free configurations.

Communication, Object and Component Creation, and Object Mobility. Rule
Async-Call sends an invocation message to o′ with the unique identity f (by
the condition fresh(f)) of a new future, the method name m, and actual param-
eters v. Note that the return value of the new future f is undefined (i.e., ⊥).
This operation consumes a resource. Rule Bind-Mtd consumes an invocation
method and places the process corresponding to the method activation in the
process queue of the callee. The reserved local variable ‘destiny’ is used to store
the identity of the future associated with the call. Rule Return places the return
value into the call’s associated future. This operation consumes a resource. Rule
Read-Fut dereferences the future f if it has a value. This operation consumes a
resource. Note that if this attribute is ⊥ the reduction in this object is blocked.
The rules New-Object1 and New-Object2 create a new object with a unique
identifier o′. The object’s fields are given default values by atts(B, v, o′, n), ex-
tended with the actual values v for the class parameters, o′ for this, and n
for thiscomp. In order to instantiate the remaining attributes, the process p is
loaded (we assume that this process reduces to idle if init(B) is unspecified in
the class definition, and that it asynchronously calls run if the latter is speci-
fied). This operation reduces to an assignment which consumes a resource. Note
that in New-Object1, the new object inherits the deployment component of its
creator, while in New-Object2 the new object is in an explicitly named deploy-
ment component. Rule New-Component creates a new component with a fresh
identifier n′ and transfers the specified resources r′ from the component n of
the creator to n′. The rule can only be applied if n has sufficient resources, and
consumes r′ resources from n. Object relocation is captured by the rule Go-To
which reassigns the object variable thiscomp to the value of expression e, given
as a parameter in the goto statement.

Time advance is controlled by the rule Progress, which updates the global
clock. We capture a run-to-completion semantics for concurrent execution within
the resource bounds of deployment components: all objects must finish their

165

0

10

20

30

40

50

10 15 20 25 30 35 40 45 50 55

Web Shop Simulation

Server Capacity

Responses Successful Responses

0

10

20

30

40

0 10 20 30 40 50 60 70 80 90

Server Load, Capacity=35

Time

Fig. 7. Single-server simulation results. Left: Number of total and successful (non-
timeout) responses for 50 requests (50% low and 50% high cost), with varying server
capacity. Right: Server load over time for capacity = 35 per time unit.

actions as soon as possible if resources are available. In order to reflect timed
concurrent execution with an interleaving semantics, time cannot advance freely.
We follow the approach of Real-Time Maude [27], and use a predicate canAdv
to specify when time can advance and a function Adv to specify the effect of
advancing time on the configuration. The predicate canAdv ranges over config-
urations and time (see Fig. 6) and can be explained as follows:

– For simplicity, we assume that invocation messages do not take time. There-
fore, time may not advance when a message is on its way.

– Time may not advance if any deployment component has remaining resources
and any of the component’s objects o may execute. There are three cases:
1. the active process in o is blocked on a value that has become available,
2. the active process in o is idle, but a suspended process can be activated.
3. the active process in o is not blocked.

– If all deployment components have run out of resources or none of their
objects can proceed, then time can advance.

In summary: Time advances if and only if there can be no activity in any object,
and no invocation messages are in transit. Once time has advanced, the deploy-
ment components get their resources refreshed for the next time interval by the
function Adv, which updates a configuration by resetting the free resources of
each deployment component to the specified limit and extending the load history
of the components with the unused resources of the current time interval. For
simplicity time here advances by a single unit.

The operational semantics presented in this section can be directly repre-
sented in rewriting logic [25], which allows models to be analyzed using the
rewrite tool Maude [11] as an interpreter for the semantics of ABS.

166

interface Agent {Session getsession(); Unit free(Session session);}
interface Session {Bool request(Int cost); Unit moveto(DC server);}

class SessionImp(Agent agent) implements Session {
Time start = now;
Bool request(Int cost){ . . . } // As before
Unit moveto(DC server){if (thiscomp != server){goto(server);}}}

class AgentImp(DC backupserver) implements Agent {
Set<Session> sessions = Empty;
Unit free(Session session){ . . . } // As before
Session getsession() { Session session;
if (isEmpty(sessions)){session = new SessionImp(this);}
else {session = choose(sessions);
sessions = remove(session,sessions);}

if ((2*load(4)) > available){ // Move session to backup server
session!moveto(backupserver);}

else {session!moveto(thiscomp);} // Use original server
return session;}}

Fig. 8. An agent which performs load-balancing for the web application.

4 Comparing Resource-Restricted Behaviors

In order to investigate the effects of specific deployment scenarios on the tim-
ing behavior of timed software models, we use Maude as an interpreter for the
operational semantics to simulate and test ABS models. The test purpose for
these scenarios is to reach a conclusion on whether redeployment on a different
configuration leads to an observable difference in timing behavior. We compare
the behavior of ABS models with the same functional behavior and input when
the models are deployed on components with different amounts of resources.

The approach is illustrated by extending the example of Section 2 with a de-
ployment component and a workload scenario. We included a deployment com-
ponent Server to hold the Agent and Session objects, which were executed
in parallel with simulated clients that provide the workload scenario. We defined
a Client class (code not shown) which periodically calls request with cost
c every t time intervals. The client object(s) model the expected usage scenario
and run with unlimited resources.

Figure 7 (left) shows simulations results using one light client which makes
25 requests of cost 20, with one request per time interval, and one heavy client
which makes 25 requests of cost 80, with one request every two time intervals.
We run the clients concurrently and monitor the behavior of the model for 100
time intervals. The results show that as the resources available to the server are
reduced, the quality of service of the web application goes down due to conges-
tion. We see that all requests can be answered with 35 concurrent resources, but
only 50% of the requests are answered within the allotted time. Figure 7 (right)
shows the load of the server over time; we see that there are no available re-
sources until time 83, and that the activity on the server ends at time 85. In this
case, although all requests were answered, half of the requests did not complete
in time due to congestion on the server’s deployment component.

167

interface Agent { Session getsession(); Unit free(Session session);}
interface Session { Bool request(Int cost); Unit monitor();}

class SessionImp(Agent agent, Time limit, DC backupserver)
implements Session {

Time start = now; Bool active = False; DC origserver = thiscomp;
Bool request(Int cost){Int remCost=cost; start=now; active=True;
this!monitor(); // Asynchronous call to the monitor method
while (remCost > 0){remCost = remCost−1; suspend;}
active = False; agent!free(this);
return (now−start <= cost);
}
Unit monitor() {
await (now > (start+limit)); if (active){goto(backupserver);}
await (!active); if (thiscomp != origserver){goto(origserver);}}}

class AgentImp(Time limit, DC backupserver) implements Agent {
// Same as in Fig. 1 but creating Session objects with backupserver

}

Fig. 9. Self-monitoring session objects for the web application.

5 Load Balancing Strategies

ABS models may be augmented with load balancing strategies with the aim
of decreasing congestion and thus improving the quality of service compared
to models with static deployment scenarios. Load balancing strategies may be
expressed in ABS using the resource-related language constructs available,
load, and goto.

We illustrate how ABS models may be augmented with load balancing strate-
gies using the running example of a web application, and compare the results
of load balancing to the base results presented in Section 4. We explore and
model two different load balancing strategies; (1) a load-balancing agent which
moves sessions to a backup server when the load on the main server is above
a given threshold, and (2) self-monitoring sessions which move themselves to
the backup server after a certain time. Both of these deployment scenarios are
simulated with the same user scenario as in Section 4. Other, more elaborate
load-balancing strategies may be modeled possible in the same style.

Figure 8 shows the ABS model of a load-balancing agent which moves sessions
to a backup server when the load on the main server is above 50% of the available
resources. This is a simple load balancing strategy that tries to minimize the
amount of work done on the second server, while keeping quality of service
acceptable. Figure 9 shows an ABS model of self-monitoring session objects
which move themselves to the backup server if the execution of the current
request takes more than a given amount of time (limit). This models a scenario
where the primary server processes as many requests as possible while moving
long-running requests to the backup server.

Simulations of Load-Balancing Deployment Scenarios. For the simulations of the
running example augmented with load balancing strategies, we added a second

168

0

10

20

30

40

0 10 20 30 40 50 60 70 80 90

Smart Agent balancing

Time
Server 1 Server 2

0

10

20

30

40

0 10 20 30 40 50 60 70 80 90

Self-Monitor balancing

Time
Server 1 Server 2

Fig. 10. Left: Two servers with 35 resources per time interval using the load-balancing
agent strategy. Right: The same servers using the self-monitoring sessions strategy.

deployment component to the initial configurations of Section 4, and let both
deployment components have the same capacity. Figure 10 shows the time pro-
gression of the load on the two deployment components using the load-balancing
agent strategy (left) and the self-monitoring session strategy (right), with both
deployment components running with 35 resources. For the load-balancing agent,
the servers are active until time 74, with 98% response success rate. For the self-
monitoring session strategy, the servers are active until time 54, which means
that with 2 servers the web application responds to the 50 request within 54
time intervals, where 94% of the responses are successful.

Figure 11 summarizes all three scenarios (single server, smart agent, and self-
balancing sessions) with deployment component capacities ranging from 10 to
55. It can be seen that the load balancing strategies outperform the single server
in all cases (as they should, since these scenarios have twice the total number of
resources). The simulations show that except in the most constrained scenarios,
the self-balancing strategy outperforms the smart agent for our example model.

6 Related Work

Asynchronously communicating software units, known from Actors and Erlang,
are interesting due to their inherent compositionality. Concurrent objects with
asynchronous method calls and futures combine asynchronous communication
with object orientation [2, 9, 30, 32]. In these models, each software unit is also
a unit of concurrency. There is a vast literature on formal models of mobility,
based on, e.g., agents, ambient calculi, and process algebras, which is typically
concerned with maintaining correct interactions between the moving entities
with respect to, e.g., security, link failure, or location failure. For non-functional
properties, access to shared resources have been studied through type and ef-
fect systems (e.g., [17, 18]), QoS-aware processes proposed for negotiating con-
tracts [26], and space control achieved by typing for space-aware processes [7].
Closer to our work, timed synchronous CCS-style processes can be compared

169

0

10

20

30

40

50

10 15 20 25 30 35 40 45 50 55

Successful Responses

Server Resources

Simple Smart Agent Self-Monitor

Fig. 11. Comparison of the number of successful responses in 100 time intervals with
a total of 50 request (50% low and 50 % high cost).

for speed using faster-than bisimulation [24], albeit without notions of mobil-
ity or location. We are not aware of other formal models connecting execution
capacities to locations as in the deployment components studied in our paper.

This paper is part of ongoing work on resource-restricted execution contexts
for concurrent objects [4, 21, 22]. Whereas [4] considers memory usage, deploy-
ment components with parametric concurrent resources were introduced in [22],
extending work on a timed rewriting logic semantics for Creol [8]. A follow-up
paper considers resources as first-class citizens of the language, formalizing the
semantics of ABS with resource reallocation in rewriting logic [21]. In contrast,
the present paper considers object mobility using a goto statement to allow
an object to move to another deployment component, formalized in a more ab-
stract SOS semantics. Relocation is possible due to the inherent compositionality
of concurrent objects [12]: processes are encapsulated inside objects and the state
of other objects can only be accessed through asynchronous method calls. This
way the object is in control of its own location, which fits with the encapsulation
of both state and control in the concurrent object model. Resource realloca-
tion and object mobility are in a sense complementary means to achieve load
balancing: both have applications where they seem most natural.

Techniques and methodologies for predictions or analysis of non-functional
properties are based on either measurement ormodeling. Measurement-based ap-
proaches apply to existing implementations, using dedicated profiling or tracing
tools like, e.g., JMeter or LoadRunner. Model-based approaches allow abstrac-
tion from specific system details, but depend on parameters provided by domain
experts [13]. A survey of model-based performance analysis techniques is given
in [6]. Formal approaches using Petri Nets, game theory, and timed automata
(e.g., [10, 14, 23]) have been applied in the embedded software domain, but also
to the schedulability of tasks in concurrent objects [19]. That work complements
ours as it does not consider resource restrictions on the concurrency model, but
associates deadlines with method calls.

170

Work on object-oriented models with resource constraints is more scarce.
Based on a UML profile for schedulability, performance and time, the infor-
mally defined Core Scenario Model (CSM) [28] targets questions in performance
model building. CSM has a notion of resource context, which reflects the set
of resources used by an operation. CSM aims to bridge the gap between UML
specifications and techniques to generate performance models [6]. UML models
with stochastic annotations for performance prediction have been proposed for
components [16]. Closer to our work is a VDM++ extension to simulate embed-
ded real-time systems [31], in which architectures are explicitly modeled using
CPUs and buses, and resources statically bound to the CPUs. However, their
work does not address relocation and load balancing strategies.

7 Discussion and Future Work

As software is increasingly developed to be deployed on a variety of architec-
tures, it is important to be able to analyze the behavior of a model under dif-
ferent resource assumptions. ABS uses deployment components with parametric
resources to express deployment scenarios for high-level executable models. This
paper proposes a primitive for relocating concurrent objects between deployment
components, at the abstraction level of the ABS modeling language, which inte-
grates with the formal framework of deployment components in an elegant and
simple way. Furthermore, we consider the problem of modeling systems with dif-
ferent load balancing strategies by allowing objects to move between deployment
components, depending on the work load of their component. We demonstrate
how a simple language extension is sufficient to naturally express dynamic object
relocation strategies in this setting; our example shows how traffic on deploy-
ment components may cause congestion in the model, resulting in performance
degradation for given deployment scenarios, and how load balancing strategies
can be used to dynamically alleviate the congestion and thus to improve the
overall performance of the model in a given deployment scenario.

For simplicity, this paper uses a quite abstract and simple cost model, ignor-
ing the costs of expression evaluation and communication. We see three different
ways in which this cost model may be improved. First, an explicit cost state-
ment could be added to the modeling language, similar to duration statements
in timed modeling languages. This leaves the responsibility of correctly captur-
ing the resource consumption for a specific model with the developer. Second,
cost profiles could be included to mimic specific architectures. This way, the
model could easily be analyzed for different profiles (or cost scenarios), which is
difficult to do following the first approach. Third, the cost model could be de-
duced using static analysis techniques to better approximate the actual cost of
communication and evaluation of expressions (e.g., following [3]). Currently, we
envisage to follow this approach as it keeps the resource analysis of the models
more abstract by overapproximating actual architectures. We have applied this
approach for memory analysis of ABS models [4]. Our next step is the integra-
tion of static analysis for execution cost with the deployment components with

171

concurrent resources. Furthermore, a recently developed Java code generator
from ABS models opens up the possibility of comparing model-predicted behav-
ior against running code and observing how resource analysis carries over from
abstract executable models to the generated code. This is another interesting
extension of the modeling framework considered in this paper.

References

1. G. A. Agha. ACTORS: A Model of Concurrent Computations in Distributed Sys-
tems. The MIT Press, Cambridge, Mass., 1986.

2. W. Ahrendt and M. Dylla. A system for compositional verification of asynchronous
objects. Science of Computer Programming, 2010. In press.

3. E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-form upper bounds in
static cost analysis. Journal of Automated Reasoning, 46:161–203, 2011.

4. E. Albert, S. Genaim, M. Gómez-Zamalloa, E. B. Johnsen, R. Schlatte, and S. L.
Tapia Tarifa. Simulating concurrent behaviors with worst-case cost bounds. In
FM 2011, LNCS 6664, pages 353–368. Springer, June 2011.

5. J. Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf, 2007.

6. S. Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni. Model-based performance
prediction in software development: A survey. IEEE Transactions on Software
Engineering, 30(5):295–310, 2004.

7. F. Barbanera, M. Bugliesi, M. Dezani-Ciancaglini, and V. Sassone. Space-aware
ambients and processes. Theoretical Computer Science, 373(1–2):41–69, 2007.

8. J. Bjørk, E. B. Johnsen, O. Owe, and R. Schlatte. Lightweight time modeling
in Timed Creol. Electronic Proceedings in Theoretical Computer Science, 36:67–
81, 2010. Proceedings of 1st International Workshop on Rewriting Techniques for
Real-Time Systems (RTRTS 2010).

9. D. Caromel and L. Henrio. A Theory of Distributed Object. Springer, 2005.
10. A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and M. Stoelinga. Resource in-

terfaces. In R. Alur and I. Lee, editors, Proc. Third International Conference on
Embedded Software (EMSOFT’03), LNCS 2855, pages 117–133. Springer, 2003.

11. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C. L.
Talcott, editors. All About Maude - A High-Performance Logical Framework, How
to Specify, Program and Verify Systems in Rewriting Logic, LNCS 4350. Springer,
2007.

12. F. S. de Boer, D. Clarke, and E. B. Johnsen. A complete guide to the future. In
R. de Nicola, editor, Proc. 16th European Symposium on Programming (ESOP’07),
LNCS 4421, pages 316–330. Springer, Mar. 2007.

13. I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli. Model evolution by run-
time parameter adaptation. In Proc. 31st International Conference on Software
Engineering (ICSE’09), pages 111–121. IEEE, 2009.

14. E. Fersman, P. Krcál, P. Pettersson, and W. Yi. Task automata: Schedulability,
decidability and undecidability. Information and Computation, 205(8):1149–1172,
2007.

15. P. Haller and M. Odersky. Scala actors: Unifying thread-based and event-based
programming. Theoretical Computer Science, 410(2–3):202–220, 2009.

16. J. Happe, H. Koziolek, and R. Reussner. Parametric performance contracts for
software components with concurrent behaviour. In Proc. Formal Aspects of Com-
ponent Software (FACS’06), ENTCS 182:91–106, 2007.

172

17. M. Hennessy. A Distributed Pi-Calculus. Cambridge University Press, 2007.
18. A. Igarashi and N. Kobayashi. Resource usage analysis. ACM Transactions on

Programming Languages and Systems, 27(2):264–313, 2005.
19. M. M. Jaghoori, F. S. de Boer, T. Chothia, and M. Sirjani. Schedulability of

asynchronous real-time concurrent objects. Journal of Logic and Algebraic Pro-
gramming, 78(5):402–416, 2009.

20. E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A core
language for abstract behavioral specification. In Proc. Formal Methods for Com-
ponents and Objects (FMCO 2010), LNCS 6957. Springer, 2011. To appear.

21. E. B. Johnsen, O. Owe, R. Schlatte, and S. L. Tapia Tarifa. Dynamic resource
reallocation between deployment components. In J. S. Dong and H. Zhu, edi-
tors, Proc. International Conference on Formal Engineering Methods (ICFEM’10),
LNCS 6447, pages 646–661. Springer, Nov. 2010.

22. E. B. Johnsen, O. Owe, R. Schlatte, and S. L. Tapia Tarifa. Validating timed
models of deployment components with parametric concurrency. In B. Beckert
and C. Marché, editors, Proc. International Conference on Formal Verification of
Object-Oriented Software (FoVeOOS’10), LNCS 6528, pages 46–60. Springer, 2011.

23. M. Katelman, J. Meseguer, and J. C. Hou. Redesign of the LMST wireless sensor
protocol through formal modeling and statistical model checking. In G. Barthe and
F. S. de Boer, editors, Proc. Formal Methods for Open Object-Based Distributed
Systems (FMOODS’08), LNCS 5051, pages 150–169. Springer, 2008.

24. G. Lüttgen and W. Vogler. Bisimulation on speed: A unified approach. Theoretical
Computer Science, 360(1–3):209–227, 2006.

25. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96:73–155, 1992.

26. R. D. Nicola, G. L. Ferrari, U. Montanari, R. Pugliese, and E. Tuosto. A process
calculus for QoS-aware applications. In 7th Intl. Conf. on Coordination Models
and Languages (COORDINATION’05), LNCS 3454, pages 33–48. Springer, 2005.

27. P. C. Ölveczky and J. Meseguer. Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation, 20(1–2):161–196, 2007.

28. D. B. Petriu and C. M. Woodside. An intermediate metamodel with scenarios
and resources for generating performance models from UML designs. Software and
System Modeling, 6(2):163–184, 2007.

29. G. D. Plotkin. A structural approach to operational semantics. Journal of Logic
and Algebraic Programming, 60-61:17–139, 2004.

30. J. Schäfer and A. Poetzsch-Heffter. JCoBox: Generalizing active objects to con-
current components. In European Conference on Object-Oriented Programming
(ECOOP 2010), LNCS 6183. Springer, June 2010.

31. M. Verhoef, P. G. Larsen, and J. Hooman. Modeling and validating distributed
embedded real-time systems with VDM++. In Proc. 14th Intl. Symposium on
Formal Methods (FM’06), LNCS 4085, pages 147–162. Springer, 2006.

32. A. Welc, S. Jagannathan, and A. Hosking. Safe futures for Java. In Proc. Object
oriented programming, systems, languages, and applications (OOPSLA’05), pages
439–453, New York, NY, USA, 2005. ACM Press.

33. S. M. Yacoub. Performance analysis of component-based applications. In G. J.
Chastek, editor, Proc. Second International Conference on Software Product Lines
(SPLC’02), LNCS 2379, pages 299–315. Springer, 2002.

173

The Logic of XACML

Carroline Dewi Puspa Kencana Ramli, Hanne Riis Nielson, Flemming Nielson

Department of Informatics and Mathematical Modelling
Danmarks Tekniske Universitet

Lyngby, Denmark
{cdpu,riis,nielson}@imm.dtu.dk

Abstract We study the international standard XACML 3.0 for describing se-
curity access control policy in a compositional way. Our main contribution is to
derive a logic that precisely captures the idea behind the standard and to formally
define the semantics of the policy combining algorithms of XACML. To guard
against modelling artifacts we provide an alternative way of characterizing the
policy combining algorithms and we formally prove the equivalence of these ap-
proaches. This allows us to pinpoint the shortcoming of previous approaches to
formalization based either on Belnap logic or on D-algebra.

1 Introduction

XACML (eXtensible Access Control Markup Language) is an approved OASIS 1 Stand-
ard access control language [1,14]. XACML describes both an access control policy lan-
guage and a request/response language. The policy language is used to express access
control policies (who can do what when) while the request/response language expresses
queries about whether a particular access should be allowed (requests) and describes
answers to those queries (responses).

In order to manage modularity in access control, XACML constructs policies into
several components, namely PolicySet, Policy and Rule. A PolicySet is a collection of
others PolicySets or Policies whereas a Policy consists of one or more Rules. A Rule is
the smallest component of XACML policy and each Rule only either grants or denies
an access. As an illustration, suppose we have access control policies used within the
National Health Care System. The system is composed of several access control policies
of local hospitals. Each local hospital has its own policies such as patient policy, doctor
policy, administration policy, etc. Each policy contains one or more particular rules,
for example, in patient policy there is a rule that only the designated patient can read
his or her record. In this illustration, both the National Health Care System and local
hospital policies are PolicySets. However the patient policy is a Policy and one of its
rules is the patient record policy. Every policy is only applicable to a certain target
and a policy is applicable when a request matches to its target, otherwise, it is not

1 OASIS (Organization for the Advancement of Structured Information Standard) is a non-for-
profit, global consortium that drives the development, convergence, and adoption of e-business
standards. Information about OASIS can be found at http://www.oasis-open.org.

174

applicable. The evaluation of composing policies is based on a combining algorithm –
the procedure for combining decisions from multiple policies. There are four standard
combining algorithms in XACML i.e., (i) permit-overrides, (ii) deny-overrides, (iii)
first-applicable and (iv) only-one-applicable.

The syntax of XACML is based on XML format [2], while its standard semantics
is described normatively using natural language in [14]. Using English paragraphs in
standardization leads to misinterpretation and ambiguity. In order to avoid this draw-
back, we define an abstract syntax of XACML 3.0 and a formal XACML components
evaluation based on XACML 3.0 specification in Section 2. Furthermore, the evaluation
of the XACML combining algorithms is explained in Section 3.

Recently there are some approaches to formalizing the semantics of XACML. In [8],
Halpern and Weissman show XACML formalization using First Order Logic (FOL).
However, their formalization does not capture whole XACML specification. It is too
expensive to express XACML combining algorithms in FOL. Kolovski et al. in [10,11]
maps a large fragment of XACML to Description Logic (DL) – a subset of FOL –
but they leave out the formalization of only-one-applicable combining algorithm. An-
other approach is to represent XACML policies in term of Answer Set Programming
(ASP). Although Ahn et al. in [3] show a complete XACML formalization in ASP, their
formalization is based on XACML 2.0, which is out-of-date nowadays. More particu-
lar, the combining algorithms evaluation in XACML 2.0 is simpler than XACML 3.0.
Our XACML 3.0 formalization is closer to multi-valued logic approach such as Belnap
logic [4] and D-algebra [13]. Bruns et al. in [5,6] and Ni et al. in [13] define a logic
for XACML using Belnap logic andD-algebra, respectively. In some cases, both works
show different results from the XACML standard specification. We discuss the short-
coming of formalization based either on Belnap logic or on D-algebra in Section 4 and
we conclude in Section 5.

2 XACML Components

XACML syntax is describe verbosely in XML format. For our analysis purpose, we
do abstracting XACML components. From the abstraction XACML, we show how
XACML evaluates policies. We give an example how XACML policies can be de-
scribed in our abstraction and the components evaluation at the end of this section.

2.1 Abstracting XACML Components

There are three main policy components in XACML, namely PolicySet, Policy
and Rule. PolicySet is the root of all XACML policies. A PolicySet is com-
posed of a sequence of others PolicySet or Policy components along with a
policy combining algorithm ID and a Target. A Policy is composed of a sequence
of Rule, a Target and a rule combining algorithm ID. A Rule is a single entity
that defines the individual rule in the policy. A Rule is composed of a Target,
a Condition and its effect, i.e., either deny or permit. A Target is an XACML
component that indicates under which categories an XACML policy is applicable. A
Target consists of conjunction of AnyOf component with each AnyOf consists of

175

disjunction of AllOf components and each AllOf consists of conjunction of Match.
Each Match contains only one particular category to be matched with the request.
Typical categories of XACML attributes are subject category (e.g. human user, worksta-
tion, etc) action category (e.g. read, write, delete, etc), resource category (e.g. database,
server, etc) and environment category (e.g. SAML, J2SE, CORBA, etc). A Condition
is a set of propositional formulae that refines the applicability of a Rule.

A Request contains a set of available informations on desired access request such
as subject, action, resource and environment categories. A Request also contains ad-
ditional information about external state, e.g. the current time, the temperature, etc.

We present in Table 1 a succinct syntax of XACML 3.0 that is faithful to the more
verbose syntax used in the standard [14].

Table 1. Abstraction of XACML 3.0 Components

XACML Policy Components
PolicySet ::= 〈Target, 〈PolicySet1, . . . ,PolicySetm〉, θ〉

| 〈Target, 〈Policy1, . . . ,Policym〉, θ〉 where m ≥ 0
Policy ::= 〈Target, 〈Rule1, . . . ,Rulem〉, θ〉 where m ≥ 1
Rule ::= 〈Effect,Target,Condition〉
Condition ::= propositional formulae
Target ::= Null

| AnyOf1 ∧ . . . ∧ AnyOfm where m ≥ 1
AnyOf ::= AllOf1 ∨ . . . ∧ AllOfm where m ≥ 1
AllOf ::= Match1 ∧ . . . ∧ Matchm where m ≥ 1
Match ::= Φ(α)
Φ ::= subject | action | resource | enviroment
α ::= attribute value
θ ::= p− o | d− o | f − a | o− 1− a
Effect ::= d | p

XACML Request Component
Request ::= {A1, . . . , Am } where m ≥ 1
A ::= Φ(α) | external state

2.2 XACML Evaluation

The evaluation of XACML components starts fromMatch evaluation and it is contin-
ued iteratively until the PolicySet evaluation. The Match, AllOf, AnyOf, and
Target values are either match, not match or indeterminate. The value can be inde-
terminate if there is an error during the evaluation so that the decision cannot be made at
that moment. The Rule evaluation depends on Target evaluation and Condition
evaluation. The Condition component is a set of propositional formulae which each
formula is evaluated to either true, false or indeterminate. An empty Condition is
always evaluated to true. The result of Rule is either applicable, not applicable or
indeterminate. An applicable Rule has effect either deny or permit. Finally, the evalu-
ation of Policy and PolicySet are based on a combining algorithm of which the
result can be either applicable (with its effect either deny or permit), not applicable or
indeterminate.

176

2.2.1 Three-Valued Lattice

We use three-valued logic to determine XACML evaluation value. We define L3 =
〈V3,≤〉 be three-valued lattice where V3 is the set { >, I,⊥ } and ⊥ ≤ I ≤ >. Given
a subset S of V3, we denote the greatest lower bound (glb) and the least upper bound
(lub) at S (w.r.t. L3) by

d
S and

⊔
S, respectively. Recall that

d ∅ = > and
⊔ ∅ = ⊥.

We use J.K notation to map XACML elements into their evaluation values. The
evaluation of XACML components to values in V3 is summarized in Table 2.

Table 2. Mapping V3 into XACML Evaluation Values

V3 Match and Target value Condition value Rule, Policy and PolicySetvalue
> match true applicable (either deny or permit)
⊥ not match false not applicable
I indeterminate indeterminate indeterminate

2.2.2 Match Evaluation

A Match element M is an attribute value that the request should fulfill. Given a
Request component Q, the evaluation of Match element is as follows:

JMK(Q) =

> M ∈ Q
⊥ M 6∈ Q
I there is an error during the evaluation

(1)

2.2.3 Target Evaluation

LetM be a Match, A =M1 ∧ . . . ∧Mm be an AllOf, E = A1 ∨ . . . ∨ An be an
AnyOf, T = E1 ∧ . . . Eo be a Target andQ be a Request. Then, the evaluations of
AllOf, AnyOf, and Targetare as follows:

JAK(Q) =
ml

i=1

JMiK(Q) (2)

JEK(Q) =
n⊔

i=1

JAiK(Q) (3)

JT K(Q) =
ol

i=1

JEiK(Q) (4)

In summary, we can simplify the Target evaluation as follows:

JT K(Q) =
l⊔l

JMK(Q) (5)

An empty Target – indicated by Null – is always evaluated to >.

177

2.2.4 Condition Evaluation

We define the conditional evaluation function eval as an arbitrary function to evalu-
ate Condition to value in V3 given a Request component Q. The evaluation of
Condition is defined as follows:

JCK(Q) = eval(C,Q) (6)

2.2.5 Extended Values

In order to distinguish an applicable policy to permit an access from applicable policy
to deny an access, we extend > in V3 value to >p and >d, respectively. The same
case also applies to indeterminate value. The extended indeterminate value contains the
potential effect values which could have occurred if there would not have been an error
during a evaluation. The possible extended indeterminate values are [14]:

– Indeterminate Deny (Id): an indeterminate from a policy which could have evalu-
ated to deny but not permit, e.g., a Rule which evaluates to indeterminate and its
effect is deny.

– Indeterminate Permit (Ip): an indeterminate from a policy which could have eval-
uated to permit but not deny, e.g., a Rule which evaluates to indeterminate and its
effect is permit.

– Indeterminate Deny Permit (Idp): an indeterminate from a policy which could have
effect either deny or permit.

We extend the set V3 to V6 = { >p,>d, Id, Ip, Idp,⊥ } and we use V6 for for XACML
policies evaluations.

2.2.6 Rule Evaluation

Let R = 〈∗, T , C〉 be a Rule and Q be a Request. Then, the evaluation of Rule is
determined as follows:

JRK(Q) =

>∗ JT K(Q) = > and JCK(Q) = >
⊥

(
JT K(Q) = > and JCK(Q) = ⊥

)
or JT K(Q) = ⊥

I∗ otherwise
(7)

Let F and G be two values in V3. We define a new operator ;: V3 × V3 → V3 as
follows:

F ; G =

{
G F = >
F otherwise

(8)

We define a function σ : V3 ×{ p,d } → V6 that maps a value in V3 into a value in
V6 given a particular Rule’s effect as follows:

σ(X, ∗) =
{
X X = ⊥
X∗ otherwise

(9)

178

Proposition 1. LetR = 〈∗, T , C〉 be a Rule andQ be a Request. Then, the follow-
ing equation holds

JRK(Q) = σ (JT K(Q) ; JCK(Q), ∗) (10)

2.2.7 Policy Evaluation

The standard evaluation of Policy element taken from [14] is as follows

Target value Rule value Policy Value
match At least one Rule value is applicable Specified by the combining algorithm
match All Rule values are not applicable not applicable
match At least one Rule value is indeterminate Specified by the combining algorithm

not match Don’t care not applicable
indeterminate Don’t care indeterminate

Let P = 〈T ,R, θ〉 be a Policy where R = 〈R1, . . . ,Rn〉. Let Q be a Request
and R′ = 〈JR1K(Q), . . . , JRnK(Q)〉. The evaluation of Policy is defined as follows:

JPK(Q) =

I∗ JT K(Q) = I and
⊕

θ(R′) ∈ { >∗, I∗ }
⊥ JT K(Q) = ⊥ or

JT K(Q) = > and ∀Ri : JRiK(Q) = ⊥⊕
θ(R′) otherwise

(11)

Note 1. The combining algorithms denoted by
⊕

is explained in Section 3.

2.2.8 PolicySet Evaluation

The evaluation of PolicySet is similar to Policy evaluation. However, the input of
the combining algorithm is a sequence of either PolicySet or Policy components.

Let PS = 〈T ,P, θ〉 be a PolicySet where P = 〈P1, . . . ,Pn〉. Let Q be a
Request and P′ = 〈JP1K(Q), . . . , JPnK(Q)〉. The evaluation of PolicySet is defined
as follows:

JPSK(Q) =

I∗ JT K(Q) = I and
⊕

θ(P′) ∈ { >∗, I∗ }
⊥ JT K(Q) = ⊥ or

JT K(Q) = > and ∀Pi : JPiK(Q) = ⊥⊕
θ(P′) otherwise

(12)

2.3 Examples

The following examples simulate briefly how a policy is built using the abstraction. The
examples are motivated by [7,9] which presents a health information system for a small
nursing home in New South Wales, Australia.

Example 1 (Patient Policy). The general policy in the hospital in particular:

179

1. Patient Record Policy
– RP1: only designated patient can read his or her patient record except that if

the patient is less than 18 years old, the patient’s guardian is permitted also
read the patient’s record,

– RP2: patients may only write patient surveys into their own records
– RP3: both doctors and nurses are permitted to read any patient records,

2. Medical Record Policy
– RM1: doctors may only write medical records for their own patients and
– RM2: may not write any other patient records,

The XACML policies for this example is shown in Figure 1. The topmost policy in
this example is the Patient Policy that contains two policies, namely the Patient Record
Policy and the Medical Record Policy. The access is granted if either one of the Patient
Record Policy or the Medical Record Policy gives a permit access. Thus in this case,
we use permit-overrides combining algorithm to combine those two policies. In order
to restrict the access, each policy denies an access if there is a rule denies it. Thus, we
use deny-overrides combining algorithms to combine the rules.

PS_patient = <Null, <P_patient_record, P_medical_record>, po>
P_patient_record = <Null, <RP1, RP2, RP3>, do>
P_medical_record = <Null, <RM1, RM2>, do>

RP1 =
< p,

subject(patient) /\ action(read) /\ resource(patient_record),
patient(id,X) /\ patient_record(id,Y) /\
(X = Y \/ (age(Y) < 18 /\ guardian(X,Y))>

RP2 =
< p,

subject(patient) /\ action(write) /\ resource(patient_survey),
patient(id,X) /\ patient_survey(id, X)>

RP3=
< p,

(subject(doctor) \/ subject(nurse)) /\ action(read) /\ resource(patient_record),
true>

RM1 =
< p,

subject(doctor) /\ action(write) /\ resource(medical_record),
doctor(id,X) /\ patient(id,Y) /\ medical_record(id, Y) /\ patient_doctor(Y,X)>

RM1 =
< d,

subject(doctor) /\ action(write) /\ resource(medical_record),
doctor(id,X), patient(id,Y), medical_record(id, Y), not patient_doctor(Y,X)>

Figure 1. The XACML Policy for Patient Policy

Suppose now there is an emergency situation and a doctor D asks permission to
read patient record P . The Request is as follows:

{ subject(doctor), action(read), resource(patient_record),
doctor(id,d), patient(id,p), patient_record(id,p)}

180

Only Target RP3 matches for this request and the effect of RP3 is permit. Thus,
the final result is doctor D is allowed to read patient record P . Now, suppose that after
doing some treatment, the doctor wants to update the medical record. A request is sent

{ subject(doctor), action(write), resource(medical_record),
doctor(id,d), patient(id,p), medical_record(id,p)}

The Target RM1 and the Target RM2 match for this request, however because
doctor D is not registered as patient P ’s doctor thus Condition RM1 is evaluated to
false while Condition RM2 is evaluated to true . In consequence, Rule RM1 is not
applicable while Rule RM2 is applicable with effect deny.

3 Combining Algorithms

Currently, there are four basic combining algorithms in XACML, namely (i) permit-
overrides, (ii) deny-overrides, (iii) first-applicable, and (iv) only-one-applicable.
The input of a combining algorithm is a sequence of Rule, Policy or PolicySet
values. In this section we give formalizations of the XACML 3.0 combining algorithms
based on [14]. To guard against modelling artifacts we provide an alternative way of
characterizing the policy combining algorithms and we formally prove the equivalence
of these approaches.2

3.1 Pairwise Policy Values

In V6 we define the truth values of XACML components by extending > to >p and >d

and I to Id, Ip and Idp. This approach shows straightforwardly the status of XACML
component. However, it is easier if we use numerical encoding when we need to do a
computation, especially for computing policies compositions. Thus, we encode all the
values returned by algorithms as pairs of natural numbers.

In this numerical encoding, the value 1 represents an applicable value (either deny
or permit), 1

2 represents indeterminate value and 0 means there is no applicable value.
In each tuple, the first element represents the Deny value (>d) and the later represents
Permit value (>p). We can say [0, 0] for not applicable (⊥) because neither Deny nor
Permit is applicable, [1, 0] for applicable with deny effect (>d) because only Deny
value is applicable, [12 , 0] for Id because the Deny part is indeterminate, [12 ,

1
2] for Idp

because both Deny and Permit have indeterminate values. The conversion applies
also for Permit.

A set of pairwise policy values is P =
{
[0, 0], [12 , 0], [0,

1
2], [1, 0], [

1
2 ,

1
2], [0, 1]

}
.

Let [D,P] be an element on P. We denote d([D,P]) = D and p([D,P]) = P for the
function that returns the Deny value and Permit value, respectively.

2 An extended version of this paper with all the proofs is available at http://www2.imm.
dtu.dk/˜cdpu/Papers/the_logic_of_XACML-extended.pdf.

181

We define δ : V6 → P as a mapping function that maps V6 into P as follows:

δ(X) =

[0, 0] X = ⊥
[1, 0] X = >d

[0, 1] X = >p

[12 , 0] X = Id

[0, 12] X = Ip

[12 ,
1
2] X = Idp

(13)

We define δ over a sequence S as δ(S) = 〈δ(s)|s ∈ S〉.
We use pairwise comparison for the order of P. We define an order vP for P as

follows [D1, P1] vP [D2, P2] iff D1 ≤ D2 and P1 ≤ P2 with 0 ≤ 1
2 ≤ 1. We write

PP for the partial ordered set (poset) (P,vP) illustrated in Figure 2.

[0, 0] = ⊥

[1
2
, 0] = Id [0, 1

2
] = Ip

[1, 0] = >d [1
2
, 1
2
] = Idp [0, 1] = >p

Figure 2. The Partial Ordered Set PP for Pairwise Policy Values

Let max : 2R → R be a function that returns the maximum value of a set of rational
numbers and let min : 2R → R be a function that returns the minimum value of a set of
rational numbers. We define MaxvP

: 2P → P as a function that returns the maximum
pairwise policy value which is defined as follows:

MaxvP
(S) = [max ({ d(X) | X ∈ S }),max ({ p(X) | X ∈ S })] (14)

and MinvP
: 2P → P as a function that return the minimum pairwise policy value

which is defined as follows:

MinvP
(S) = [min({ d(X) | X ∈ S }),min({ p(X) | X ∈ S })] (15)

3.2 Permit-Overrides Combining Algorithm

The permit-overrides combining algorithm is intended for those cases where a permit
decision should have priority over a deny decision. This algorithm (taken from [14])
has the following behaviour:

1. If any decision is >p then the result is >p,

182

⊥

Ip Id

>d

Idp

>p

⊥

Ip

>p

Id

Idp

>d

⊥

>d

Id

>p

Ip

Idp

Figure 3. The Lattice Lp−o for The Permit-Overrides Combining Algorithm (left), The Lattice
Ld−o for The Deny-Overrides Combining Algorithm (middle) and The Lattice Lo−1−a for The
Only-One-Applicable Combining Algorithm (right)

2. otherwise, if any decision is Idp then the result is Idp,
3. otherwise, if any decision is Ip and another decision is Id or >d, then the result is
Idp,

4. otherwise, if any decision is Ip then the result is Ip,
5. otherwise, if decision is >d then the result is >d,
6. otherwise, if any decision is Id then the result is Id,
7. otherwise, the result is ⊥.

We call Lp−o = (V6,vp−o) for the lattice using the permit-overrides combining
algorithm where vp−o is the ordering depicted in Figure 3. The least upper bound
operator for Lp−o is denoted by

⊔
p−o.

Definition 1. The permit-overrides combining algorithm
⊕V6

p−o is a mapping function
from a sequence of V6 elements into an element in V6 as the result of composing policies.
Let S = 〈s1, . . . , sn〉 be a sequence of policy values in V6 and S′ = { s1, . . . , sn }. We
define the permit-overrides combining algorithm under V6 as follows:

V6⊕

p−o
(S) =

⊔

p−o
S′ (16)

The permit-overrides combining algorithm can also be expressed under P. The idea
is that we inspect the maximum value of Deny and Permit in the set of pairwise
policy values. We conclude that the decision is permit if the Permit is applicable (i.e.
it has value 1). If the Permit is indeterminate (i.e. it has value 1

2) then the decision
is Idp if the Deny is either indeterminate (i.e. it has value 1

2) or applicable (i.e. it has
value 1). Otherwise we take the maximum value of Deny and Permit from the set of
pairwise policy values as the result of permit-overrides combining algorithm.

Definition 2. The permit-overrides combining algorithm
⊕P

p−o is a mapping function
from a sequence of P elements into an element in P as the result of composing policies.
Let S = 〈s1, . . . , sn〉 be a sequence of pairwise policy values and S′ = { s1, . . . , sn }.

183

We define the permit-overrides combining algorithm under P as follows:

P⊕

p−o
(S) =

[0, 1] MaxvP
(S′) = [, 1]

[12 ,
1
2] MaxvP

(S′) = [D, 12], D ≥ 1
2

MaxvP
(S′) otherwise

(17)

Proposition 2. Let S be a sequence of policy values in V6. Then

δ(

V6⊕

p−o
(S)) =

P⊕

p−o
(δ(S))

3.3 Deny-Overrides Combining Algorithm

The deny-overrides combining algorithm is intended for those cases where a deny de-
cision should have priority over a permit decision. This algorithm (taken from [14]) has
the following behaviour:

1. If any decision is >d then the result is >d,
2. otherwise, if any decision is Idp then the result is Idp,
3. otherwise, if any decision is Id and another decision is Ip or >p, then the result is
Idp,

4. otherwise, if any decision is Id then the result is Id,
5. otherwise, if decision is >p then the result is >p,
6. otherwise, if any decision is Ip then the result is Ip,
7. otherwise, the result is ⊥.

We call Ld−o = (V6,vd−o) for the lattice using the deny-overrides combining
algorithm where vd−o is the ordering depicted in Figure 3. The least upper bound
operator for Ld−o is denoted by

⊔
d−o.

Definition 3. The deny-overrides combining algorithm
⊕V6

d−o is a mapping function
from a sequence of V6 elements into an element in V6 as the result of composing policies.
Let S = 〈s1, . . . , sn〉 be a sequence of policy values in V6 and S′ = { s1, . . . , sn }. We
define the deny-overrides combining algorithm under V6 as follows:

V6⊕

d−o
(S) =

⊔

d−o
S′ (18)

The deny-overrides combining algorithm can also be expressed under P. The idea
is similar to permit-overrides combining algorithm by symmetry.

Definition 4. The deny-overrides combining algorithm
⊕P

d−o is a mapping function
from a sequence of P elements into an element in P as the result of composing policies.
Let S = 〈s1, . . . , sn〉 be a sequence of policy values in P and S′ = { s1, . . . , sn }. We
define the deny-overrides combining algorithm under P as follows:

P⊕

d−o
(S) =

[1, 0] MaxvP
(S′) = [1,]

[12 ,
1
2] MaxvP

(S′) = [12 , P], P ≥ 1
2

MaxvP
(S′) otherwise

(19)

184

Proposition 3. Let S be a sequence of policy values in V6. Then

δ(

V6⊕

d−o
(S)) =

P⊕

d−o
(δ(S))

3.4 First-Applicable Combining Algorithm

The result of first-applicable algorithm is the first Rule, Policy or PolicySet
element in the sequence whose Target and Condition is applicable. The pseudo-
code of the first-applicable combining algorithm in XACML 3.0 [14] shows that the
result of this algorithm is the first Rule, Policy or PolicySet that is not ”not
applicable”. The idea is that there is a possibility an indeterminate policy could return
to be an applicable policy. The first-applicable combining algorithm under V6 and P
are defined below.

Definition 5 (First-Applicable Combining Algorithm). The first-applicable combin-
ing algorithm

⊕V6

f−a is a mapping function from a sequence of V6 elements into an
element in V6 as the result of composing policies. Let S = 〈s1, . . . , sn〉 be a sequence
of policy values in V6. We define the first-applicable combining algorithm under V6 as
follows:

V6⊕

f−a
(S) =

{
si ∃i : si 6= ⊥ and ∀j < i : sj = ⊥
⊥ otherwise

(20)

Definition 6. The first-applicable combining algorithm
⊕P

f−a is a mapping function
from a sequence of P elements into an element in P as the result of composing policies.
Let S = 〈s1, . . . , sn〉 be a sequence of policy values in P. We define the first applicable
combining algorithm under P as follows:

P⊕

f−a
(S) =

{
si ∃i : si 6= [0, 0] and ∀j < i : sj = [0, 0]

[0, 0] otherwise
(21)

Proposition 4. Let S be a sequence of policy values in V6. Then

δ(

V6⊕

f−a
(S)) =

P⊕

f−a
(δ(S))

3.5 Only-One-Applicable Combining Algorithm

The result of the only-one-applicable combining algorithm ensures that one and only
one policy is applicable by virtue of their Target. If no policy applies, then the result is
not applicable, but if more than one policy is applicable, then the result is indeterminate.
When exactly one policy is applicable, the result of the combining algorithm is the result
of evaluating the single applicable policy.

We callLo−1−a = (V6,vo−1−a) for the lattice using the only-one-applicable com-
bining algorithm where vo−1−a is the ordering depicted in Figure 3. The least upper
bound operator for Lo−1−a is denoted by

⊔
o−1−a.

185

Definition 7. The only-one-applicable combining algorithm
⊕V6

o−1−a is a mapping
function from a sequence of V6 elements into an element in V6 as the result of com-
posing policies. Let S = 〈s1, . . . , sn〉 be a sequence of policy values in V6 and S′ =
{ s1, . . . , sn }. We define only-one-applicable combining algorithm under V6 as follows

V6⊕

o−1−a
(S) =

Id ∃i, j : i 6= j, si = sj = >d and
∀k : sk 6= >d → sk = ⊥

Ip ∃i, j : i 6= j, si = sj = >p and
∀k : sk 6= >p → sk = ⊥⊔

o−1−a S
′ otherwise

(22)

The only-one-applicable combining algorithm also can be expressed under P. The
idea is that we inspect the maximum value of Deny and Permit returned from the
given set of pairwise policy values. By inspecting the maximum value for each ele-
ment, we know exactly the combination of pairwise policy values i.e., if we find that
both Deny and Permit are not 0, it means that the Deny and the Permit are either
applicable (i.e. it has value 1) or indeterminate (i.e. it has value 1

2). Thus, the result of
this algorithm is Idp (based on the XACML 3.0 Specification [14]). However if only
one element is not 0 then there is a possibility that many policies have the same ap-
plicable (or indeterminate) values. If there are at least two policies with the Deny (or
Permit) are either applicable or indeterminate value, then the result is Id (or Ip).
Otherwise we take the maximum value of Deny and Permit from the given set of
pairwise policy values as the result of only-one-applicable combining algorithm.

Definition 8. The only-one-applicable combining algorithm
⊕P

o−1−a is a mapping
function from a sequence of P elements into an element in P as the result of com-
posing policies. Let S = 〈s1, . . . , sn〉 be a sequence of policy values in P and S′ =
{ s1, . . . , sn }. We define only-one-applicable combining algorithm under P as follows

P⊕

o−1−a
(S) =

[12 ,
1
2] MaxvP

(S′) = [D,P], D, P ≥ 1
2

[12 , 0] MaxvP
(S′) = [D, 0], D ≥ 1

2 and
∃i, j : i 6= j, d(si), d(sj) ≥ 1

2

[0, 12] MaxvP
(S′) = [0, P], P ≥ 1

2 and
∃i, j : i 6= j, p(si), p(sj) ≥ 1

2

MaxvP
(S′) otherwise

(23)

Proposition 5. Let S be a sequence of policy values in V6. Then

δ(

V6⊕

o−1−a
(S)) =

P⊕

o−1−a
(δ(S))

4 Related Work

We will focus the discussion on the formalization of XACML using Belnap logic [4]
and D-Algebra [13] – those two have a similar approach to the pairwise policy values

186

approach explained in Section 3. We show the shortcoming of the formalization on
Bruns et al. work in [6] and Ni et al. work in [13].

4.1 XACML Semantics under Belnap Four-Valued Logic

Belnap in his paper [4] defines a four-valued logic over four = { >>, tt, ff ,⊥⊥ }.
There are two orderings in Belnap logic, i.e., the knowledge ordering (≤k) and the truth
ordering (≤t) (see Figure 4).

⊥⊥

tt ff

>>

ff

>> ⊥⊥

tt

≤k ≤t

glb = ⊗B

lub = ⊕B

glb = ∧
lub = ∨

knowledge ordering truth ordering

Figure 4. Bi-lattice of Belnap Four-Valued Logic

Bruns et al. in PBel [5,6] and also Hankin et al. in AspectKB [9] use Belnap four-
valued logic to represent the composition of access control policies. The responses of
an access control system are tt when the policy is granted or access permitted, ff when
the policy is not granted or access is denied, ⊥⊥ when there is no applicable policy
and >> when conflict arises, i.e., an access is both permitted and denied. Additional
operators are added as follows [6]:

– overwriting operator [y 7→ z] with y, z ∈ four. Expression x[y 7→ z] yields x if
x 6= y, and z otherwise.

– priority operator x > y; it is a syntactic sugar of x[⊥⊥ 7→ y].

Bruns et al. defined XACML combining algorithms using Belnap four-valued logic
as follows [6]:

– permit-overrides: (p⊕B q)[>> 7→ ff]
– first-applicable: p > q
– only-one-applicable: (p⊕B q)⊕B ((p⊕B ¬p)⊗B (q ⊕B ¬q))

Bruns et al. suggested that the indeterminate value is treated as >>. However, with
indeterminate as>>, the permit-overrides combining algorithm is not defined correctly.
Suppose we have two policies: p and q where p is permit and q is indeterminate. The
result of the permit-overrides combining algorithm is as follows (p⊕B q)[>> 7→ ff] =
(tt ⊕B >>)[>> 7→ ff] = >>[>> 7→ ff] = ff . Based on the XACML 2.0 [12] and the
XACML 3.0 [14], the result of permit-overrides combining algorithm should be permit
(tt). However, based on Belnap four-valued logic, the result is deny (ff).

Bruns et al. tried to define indeterminate value as a conflict by formalizing it as
>>. However, their formulation of permit-overrides combining algorithm is inconsist-
ent based on the standard XACML specification. Moreover, they said that sometimes

187

indeterminate should be treated as ⊥⊥ and sometimes as >> [5], but there is no ex-
planation about under which circumstances that indeterminate is treated as >> or as
⊥⊥. The treatment of indeterminate as>> is too strong because indeterminate does not
always contains information about deny and permit in the same time. Only Idp contains
information both deny and permit. However, Id and Ip only contain information only
about deny and permit, respectively. Even so, the value ⊥⊥ for indeterminate is too
weak because indeterminate is treated as not applicable despite that there is informa-
tion contained inside indeterminate value. The Belnap four-valued logic has no explicit
definition of indeterminate. In contrast, the Belnap four-valued has a conflict value (i.e.
>>).

4.2 XACML Semantics under D-Algebra

Ni et al. in [13] define D-algebra as a decision set together with some operations on it.

Definition 9 (D-algebra [13]). Let D be a nonempty set of elements, 0 be a constant
element of D, ¬ be a unary operation on elements in D, and ⊕D,⊗D be binary op-
erations on elements in D. A D-algebra is an algebraic structure 〈D,¬,⊕D,⊗D, 0〉
closed on ¬,⊕D,⊗D and satisfying the following axioms:

1. x⊕D y = y ⊕D x
2. (x⊕D y)⊕D z = x⊕D (y ⊕D z)
3. x⊕D 0 = x
4. ¬¬x = x
5. x⊕D ¬0 = ¬0
6. ¬(¬x⊕D y)⊕D y = ¬(¬y ⊕D x)⊕D x

7. x⊗D y =

{
¬0 : x = y

0 : x 6= y

In order to write formulae in a compact form, for x, y ∈ D, x�D y = ¬(¬x⊕D¬y)
and x	D y = x�D ¬y.

Ni et al. [13] show that XACML decisions contain three different value, i.e. permit
({p}), deny ({d}) and not applicable ({na }). Those decision are deterministic decisions.
The non-deterministic decisions such as Id, Ip and Idp are denoted by

{
d, na

}
,
{
p, na

}
,

and
{
d,p, na

}
, respectively. The interpretation of a D-algebra on XACML decisions

is as follows [13]:

– D is represented by P(
{
p,d, na

}
)

– 0 is represented by ∅
– ¬x is represented by

{
p,d, na

}
− x where x ∈ D

– x⊕D y is represented by x ∪ y where x, y ∈ D
– ⊗D is defined by axiom 7

There are two values which are not in XACML, i.e. ∅ and { p,d }. Simply we say
∅ for empty policy (or there is no policy) and { p,d } for a conflict.

188

The composition function of permit-overrides using D-Algebra is as follows:

fpo(x, y) = (x⊕D y)
	D(((x⊗D { p })⊕D (y ⊗D { p }))�D

{
d, na

}
)

	D(¬((x�D y)⊗D
{

n
a

}
)�D

{
n
a

}
�D ¬((x⊗D ∅)⊕D (y ⊗D ∅)))

The composition function that Ni et al. proposed is inconsistent with neither the
XACML 3.0 [14] nor the XACML 2.0 [12] as they claimed in [13]. Below we show an
example that compares all of the results of permit-overrides combining algorithm under
the logics discussed in this paper.

Example 2. Given two policies P1 and P2 where P1 is Indeterminate Permit and P2

is Deny. Let us use the permit-overrides combining algorithm to compose those two
policies. Table 3 shows the result of combining polices under Belnap logic, D-algebra,
V6 and P.

Table 3. Result of Permit-Overrides Combining Algorithm for Composing Two Policies P1 and
P2 where P1 is Indeterminate Permit and P2 is Deny Under Various Logic

Logic P1 P2 Permit-Overrides Function Result
Belnap logic >> ff (>>⊕B ff)[>> 7→ ff] ff
D-algebra

{
p, n

a

}
{ d } fpo(

{
p, n

a

}
, { d }) { p,d }

V6 Ip >d

⊕V6
p−o(〈Ip,>d〉) Idp

P [0, 1
2
] [1, 0]

⊕P
p−o(〈[0, 1

2
], [1, 0]〉) [1

2
, 1
2
]

The result of permit-overrides combining algorithm under Belnap logic is ff and
underD-algebra is { p,d }. Under Bruns et al. approach using Belnap logic, the access
is denied while under Ni et al. approach using D-algebra, a conflict occurs. Both Bruns
et al. and Ni et al. claim that their approaches fit with XACML 2.0 [12]. Moreover
D-algebra claims that it fits with XACML 3.0 [14]. However based on XACML 2.0
the result should be Indeterminate and based on XACML 3.0 the result should be In-
determinate Deny Permit and neither Belnap logic nor D-algebra fits the specifications.
We have illustrated that Belnap logic and D-algebra in some cases give different result
with the XACML specification. Conversely, our approach gives consistent result based
on the XACML 3.0 [14] and on the XACML 2.0 [12].

5 Conclusion

We have shown the formalization of XACML version 3.0 step by step. We believe that
with our approach, the user can understand better about how XACML works especially
in the behaviour of combining algorithms. We show two approaches to formalizing
standard XACML combining algorithms, i.e., using V6 and P. To guard against model-
ling artifacts, we formally prove the equivalence of these approaches.

The pairwise policy values approach is useful in defining new combining algorithms.
For example, suppose we have a new combining algorithm ”all permit”, i.e., the result

189

of composing policies is permit if all policies give permit values, otherwise it is deny.
Using pairwise policy values approach the result of composing a set of policies values
S is permit ([0,1]) if MinvP

(S) = [0, 1] = MaxvP
(S), otherwise, it is deny ([1,0]).

Ni et al. proposes a D-algebra over a set of decisions for XACML combining
algorithms in [13]. However, there are some mismatches between their results and the
XACML specifications. Their formulations are inconsistent based both on the XACML
2.0 [12] and on the XACML 3.0 [14].3

Both Belnap four-valued logic andD-Algebra have a conflict value. In XACML, the
conflict will never occur because the combining algorithms do not allow that. Conflict
value might be a good indication that the policies are not well design. We propose an
extended P which captures a conflict value in Appendix A.

References

1. eXtensible Access Control Markup Language (XACML). http://xml.coverpages.
org/xacml.html.

2. XML 1.0 specification. w3.org. retrieved 2010-08-22. http://www.w3.org/TR/xml/.
3. Gail-Joon Ahn, Hongxin Hu, Joohyung Lee, and Yunsong Meng. Reasoning about xacml

policy descriptions in answer set programming (preliminary report). In 13th International
Workshop on Nonmonotonic Reasoning (NMR 2010), 2010.

4. N.D. Belnap. A useful four-valued logic. In G. Epstein and J.M. Dunn, editors, Modern Uses
of Multiple-Valued Logic, pages 8–37. D. Reidel, Dordrecht, 1977.

5. Glenn Bruns, Daniel S Dantas, and Michael Huth. A simple and expressive semantic frame-
work for policy composition in access control. In Proceedings of the 2007 ACM workshop
on Formal methods in security engineering, FMSE ’07, pages 12–21, New York, NY, USA,
2007. ACM.

6. Glenn Bruns and Michael Huth. Access-control via belnap logic: Effective and efficient
composition and analysis. In 21st IEEE Computer Security Foundations Symposium, June
2008.

7. Mark Evered and Serge Bögeholz. A case study in access control requirements for a health
information systems. In Proceedings of the second workshop on Australasian information
security, Data Mining and Web Intelligence, and Software Internationalisation - Volume
32, ACSW Frontiers ’04, pages 53–61, Darlinghurst, Australia, Australia, 2004. Australian
Computer Society, Inc.

8. Joseph Y. Halpern and Vicky Weissman. Using first-order logic to reason about policies.
ACM Transaction on Information and System Security (TISSEC), 11(4):1 – 41, 2008.

9. Chris Hankin, Flemming Nielson, and Hanne Riis Nielson. Advice from belnap policies.
Computer Security Foundations Symposium, IEEE, 0:234–247, 2009.

10. Vladimir Kolovski and James Hendler. Xacml policy analysis using description logics. In
Proceedings of the 15th International World Wide Web Conference (WWW), 2007.

11. Vladimir Kolovski, James Hendler, and Bijan Parsia. Formalizing xacml using defeasible
description logics. In Proceedings of the 15th International World Wide Web Conference
(WWW), 2007.

3 The detail of all of XACML decisions under D-algebra can be seen in ex-
tended paper at http://www2.imm.dtu.dk/˜cdpu/Papers/the_logic_of_
XACML-extended.pdf.

190

12. Tim Moses. eXtensible Access Control Markup Language (XACML) version 2.0. Tech-
nical report, OASIS, http://docs.oasis-open.org/xacml/2.0/access control-xacml-2.0-core-
spec-os.pdf, August 2010.

13. Qun Ni, Elisa Bertino, and Jorge Lobo. D-algebra for composing access control policy
decisions. In ASIACCS ’09: Proceedings of the 4th International Symposium on Information,
Computer, and Communications Security, pages 298–309, New York, NY, USA, 2009. ACM.

14. Erik Rissanen. eXtensible Access Control Markup Language (XACML) ver-
sion 3.0 (committe specification 01). Technical report, OASIS, http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-core-spec-cd-03-en.pdf, August 2010.

A Extended Pairwise Policy Values

We add three values into P, i.e. deny with indeterminate permit ([1, 12]), permit with
indeterminate deny ([12 , 1]) and conflict ([1, 1]) and we call the extended pairwise policy
values P9 = P ∪

{
[1, 12], [

1
2 , 1], [1, 1]

}
. The extended pairwise policy values shows

all possible combination of pairwise policy values. The ordering of P9 is illustrated in
Figure 5.

[0, 0] = ⊥

[1
2
, 0] = Id [0, 1

2
] = Ip

[1, 0] = >d [1
2
, 1
2
] = Idp [0, 1] = >p

[1
2
, 1] = Id>p[1, 1

2
] = >dIp

[1, 1] = >d>p

Figure 5. Nine-Valued Lattice

We can see that P9 forms a lattice (we call this L9) where the top element is [1, 1]
and the bottom element is [0, 0]. The ordering of this lattice is the same as vP where
the greatest lower bound and the least upper bound for S ⊆ P9 are defined as follows:

l

L9

S = MaxvP
(S) and

⊔

L9

S = MinvP
(S)

191

A proof assistant based formalization of
components in MDE

Mounira Kezadri1, Benoit Combemale2, Marc Pantel1, Xavier Thirioux1

1 Université de Toulouse, IRIT - France
First name.Last name@enseeiht.fr

2 Université de Rennes 1, IRISA, France,
First name.Last name@irisa.fr

Abstract. Model driven engineering (MDE) now plays a key role in the
development of safety critical systems through the use of early valida-
tion and verification of models, and the automatic generation of software
and hardware artifacts from the validated and verified models. In order
to ease the integration of formal specification and verification technolo-
gies, various formalizations of the MDE technologies were proposed by
different authors using term or graph rewriting, proof assistants, logical
frameworks, etc.
The use of components is also mandatory to improve the efficiency of
system development. Invasive Software Composition (ISC) has been pro-
posed by Aßman in [1] to add a generic component structure to existing
Domain Specific Modeling Languages in MDE. This approach is the basis
of the ReuseWare toolset.
We present in this paper an extension of a formal embedding of some
key aspects of MDE in set theory in order to formalize ISC and prove
the correctness of the proposed approach with respect to the confor-
mance relation with the base metamodel. The formal embedding we rely
on was developed by some of the authors, presented in [23] and then
implemented using the Calculus of Inductive Construction and the Coq
proof-assistant. This work3 is a first step in the formalization of compos-
able verification technologies in order to ease its integration for DSML
extended with component features using ISC.

1 Introduction

Model driven engineering now plays a key role in the development of safety
critical systems through the use of model early validation and verification, and
the automatic generation of software or hardware artefacts from the validated
and verified models. This approach usually relies on many different Domain
Specific Modeling Languages (DSML) either explicitly or through UML and its
extensions that provides many different cooperating languages through diagrams
(in fact, OMG is currently studying the possibility for the future next major

3 This work was funded by the European Union and the french DGCIS through the
ARTEMIS Joint Undertaking inside the CESAR project

192

version of UML to define it as a collection of cooperating DSML) and profiles.
Each DSML is defined as a specific metamodel or as an extension through profiles
of a part of a huge metamodel in UML.

The use of components is also mandatory to improve the efficiency of sys-
tem development. Common DSML do not usually integrate components natively,
either because it was not an initial requirement, or to avoid a too complex def-
inition of the language. Invasive Software Composition (ISC) was proposed by
Aßman [1] in order to add a generic component structure to any existing DSML.
This approach is the basis of ReuseWare4 that provides ISC based tools inside
the Eclipse Modeling Framework5. It allows to define the composition concern
relying on elements in the metamodel and then to extract components from ex-
isting models with defined composition interface (called fragment boxes), and
to compose fragments to produce new fragments or models. All the provided
tools are generic and parametrized by the composition concern. The framework
allows to adapt and extend an existing language by adding composition facil-
ities at some points called Hook. This extension relies on a metamodel level
transformation applied on the language definition based on the specification of
the composition concern. The Hook are the variation points introduced in the
models whose value can change and thus allows to build components. The main
advantage of the ISC technology is that it is generic and can be applied to any
language defined by a metamodel. This framework ensures that the result of the
composition of fragments extracted from models conforming to a given meta-
model is also conforming to the same metamodel. This common conformance
is the kind of standard structural properties available in all the MDE frame-
works that is verified in this paper. The long term purpose of our work is also
to handle behavioral properties and thus tackle the formalization of all kind of
compositional verification technologies.

In order to ease the integration of formal specification and verification tech-
nologies, some of the authors proposed in [23] a formal embedding of some
key aspects of Model Driven Engineering in Set Theory. This embedding was
then implemented using the Calculus of Inductive Construction and the Coq6

proof-assistant. This first version focused on the notions of models, metamod-
els, conformance and promotion. It was later extended to express constraints on
metamodels using the Object Constraint Language (OCL). The purpose of this
framework called Coq4MDE is to provide sound mathematical foundations for
the study and the validation of MDE technologies. The choice of constructive
logic and type theory as formal specification language allows to extract proto-
type tools from the executable specification that can be used to validate the
specification itself with respect to external tools implementing the model driven
engineering (for example, in the Eclipse Modeling Project).

This paper contributions are the specification of the composition operators
provided by the ISC method [1] using an extension of Coq4MDE and the proof

4 http://www.reuseware.org
5 http://www.eclipse.org/modeling/emf
6 http://coq.inria.fr

193

Model (M) MetaModel (MM)

conformsTo(m:M) : Bool

conformsTo ▶

0..*

Fig. 1. Model & MetaModel Definition using the UML Class Diagram Notation

of the well-foundedness and termination of these operators. This specification
allows to express the models expected properties and the verification technolo-
gies for composite models and then provide support for compositional verifica-
tion. This first contribution focuses on the metamodel structural conformance
relation. It relies on the Model and MetaModel concepts from Coq4MDE that
is extended to represent fragments as proposed by ISC. The various concepts
provided by ReuseWare are formalized leading to the proof that composition
preserves metamodel conformity.

First, Section 2 introduces the notions ofModel andMetaModel from Coq4MDE.
Then, the ReuseWare approach for extending DSML with components is pre-
sented in Section 3. The Coq4MDE framework is then extended to support the
definition of component interface and the composition operators in Section 4.
After that, the validation of a composition function is presented in Section 5.
Also, a background of related work is given in Section 6. Finally, conclusion and
perspectives are presented in Section 7.

2 Model and MetaModel

This section gives the main insight of our MDE framework Coq4MDE, derived
from [23]. We first define the notions of model and metamodel. Then, we describe
conformity using the conformsTo predicate.

Our approach separates the type level from the instance level, and describes
them with different structures hence different types. A Model (M) is the instance
level and a MetaModel (MM) is a modeling language used to define models
(Figure 1). A MM also specifies the semantic properties of its models. For
instance, in UML, a multiplicity is defined on relations to specify the allowed
number of objects that have to be linked. Moreover, OCL is used to define
more complex structural constraints which may not have any specific graphical
notation.

Into our framework, the concept of MetaModel is not a specialization of
Model. They are formally defined in the following way. Let us consider two
sets: Classes, respectively References, represents the set of all possible class,
respectively reference, labels. We also consider instances of such classes, the set
Objects of object labels. References includes a specific inh label used to specify
the inheritance relation. In the following text, we will withdraw the word label
and directly talk about classes, references and objects.

194

Definition 1 (Model). Let C ⊆ Classes be a set of classes.
Let R ⊆ {〈c1, r, c2〉 | c1, c2 ∈ C , r ∈ References} be the set of references among
classes such that ∀c1 ∈ C ,∀r ∈ References, card{c2 | 〈c1, r, c2〉 ∈ R} ≤ 1.

A model over C and R, written 〈MV,ME〉 ∈ Model(C ,R) is a multigraph
built over a finite set MV of typed object nodes and a finite set ME of reference
edges such that:

MV ⊆ {〈o, c〉 | o ∈ Objects, c ∈ C }
ME ⊆

{
〈〈o1, c1〉, r, 〈o2, c2〉〉 〈o1, c1〉, 〈o2, c2〉 ∈MV, 〈c1, r, c2〉 ∈ R

}

Note that, in case of inheritance, the same object label will be used several
time in the same model graph, associated to different classes to build different
nodes. This label reuse is related to inheritance polymorphism a key aspect of
most OO languages. Inheritance is represented with a special reference called
inh 7 (usually defined in the metamodeling languages such as MOF [17]).

Accordingly, we first define an auxiliary predicate stating that an object o of
type c1 has a downcast duplicate of type c2.

hasSub(o ∈ Objects, c1, c2 ∈ Classes, 〈MV,ME〉) ,
c1 = c2 ∨ ∃c3 ∈ Classes, 〈〈o, c2〉, inh, 〈o, c3〉〉 ∈ME
∧hasSub(o, c1, c3, 〈MV,ME〉)

Then, we define the notion of standard inheritance. The first part of the con-
junction states that the inheritance relation only conveys duplicate objects. The
second part states that every set of duplicates has a common base element (a
common inherited class).

standardInheritance(〈MV,ME〉) ,
∀〈〈o1, c1〉, inh, 〈o2, c2〉〉 ∈ME, o1 = o2
∧∀〈o1, c1〉, 〈o2, c2〉 ∈MV, o1 = o2 ⇒ ∃c ∈ Classes,

hasSub(o1, c1, c, 〈MV,ME〉)
∧hasSub(o2, c2, c, 〈MV,ME〉)

Finally, the following property states that c2 is a direct subclass of c1.

subClass(c1, c2 ∈ Classes, 〈MV,ME〉) ,
∀〈o, c〉 ∈MV, c = c2 ⇒ 〈〈o, c2〉, inh, 〈o, c1〉〉 ∈ME

Consequently, Abstract Classes, that are specified in the metamodel using the
isAbstract attribute, serve as parent classes and child classes are derived from
them. They are not themselves suitable for instantiation. Abstract classes are
often used to represent abstract concepts or entities. Features of an abstract class
are then shared by a group of sibling sub-classes which may add new properties.

Therefore, a model does not conform to a metamodel if it contains objects
that are instances of abstract classes without having instances of concrete derived
classes as duplicates.

isAsbstract(c1 ∈ Classes, 〈MV,ME〉) ,
∀〈o, c〉 ∈MV, c = c1 ⇒ ∃c2 ∈ Classes, 〈〈o, c2〉, inh, 〈o, c1〉〉 ∈ME

7 inh must not be used in a model or metamodel as a simple reference

195

Definition 2 (MetaModel). A MetaModel is a multigraph representing classes
and references as well as semantic properties over instantiation of classes and
references. It is represented as a pair composed of a multigraph (MMV,MME)
built over a finite set MMV of class nodes and a finite set MME of edges
tagged with references, and of a predicate over models representing the semantic
properties.

A metamodel as a pair 〈(MMV,MME), conformsTo〉 ∈ MetaModel such
that:

MMV ⊆ Classes

MME ⊆ {〈c1, r, c2〉 | c1, c2 ∈MMV, r ∈ References}
conformsTo : Model(MMV,MME)→ Bool

such that ∀c1 ∈MMV,∀r ∈ References, card{c2 | 〈c1, r, c2〉 ∈MME} ≤ 1

Given one model M and one metamodel MM , we can check conformance.
The conformsTo predicate embedded in MM achieves this goal. It identifies
the set of valid models with respect to a metamodel.

In our framework, the conformance checks on the model M that:

1. every object o in M is the instance of a class C in MM .
2. every link between two objects is such that there exists, in MM , a reference

between the two classes typing the two elements. In the following we will say
that these links are instances of the reference between classes in MM .

3. finally, every semantic property defined in MM is satisfied in M . For in-
stance, the multiplicity defined on references between concepts denotes a
range of possible links between objects of these classes (i.e. concepts). More-
over, structural properties expressed on the metamodel as OCL constraints
and behavioural properties will be taken into account in future work as
conformsTo predicates.

This notion of conformity can be found in the framework depicted in Figure 1
by a dependency between a M and a MM it conforms to. In fact, the semantic
properties associated to the metamodel are encoded into the conformsTo pred-
icate. These semantic properties are not to be given a syntax. Instead, in order
to express our properties, we assume an underlying logic that should encompass
OCL in terms of expressive power.

In the rest of this paper, we extend the previous MDE framework to formal-
ize compositional technologies. Our final target outside the scope of this paper
is to formalize compositional verification activities. Coq4MDE is extended to
support the introduction of components in DSML defined by their metamodels.
This extension allows to express fragment boxes (models with defined interface)
composition based on concepts from the ISC method.

In the scope of this paper, we take into account a simplified version of the
conformsTo predicate (cf. Section 5) called instanceOf which is restricted to 1
and 2. We demonstrate that the verification of this instanceOf property is com-
positional relying on the ISC operators (the property of components is preserved
in case of composition using the ISC basic operators).

196

3 ISC and ReuseWare approach

ISC [1] is a generic technology for extending a DSML with model composition
facilities. Its first version was defined to compose Java programs and was im-
plemented in the COMPOST system8. A universal extension called U-ISC was
proposed in [12], this technique deals with textual components that can be de-
scribed using context-free grammars and then the fragments are represented as
trees. The method as presented considers tree merging for the composition. Re-
cently, in order to deal with graphical languages the method was extended to
support typed graphs in [14], this method was implemented in the ReuseWare
framework. This last implementation is consistent with the description of models
as graphs in our Coq4MDE framework.

ISC introduces the fragment box structure to group model or source code
fragments. The fragment box defines its composition interface and then provides
tools and concepts allowing the composition. The composition interface for a
fragment box consists of a set of addressable points. Two types of addressable
points are defined, the variation points which are elements inside the fragment
box that can be used as a receptor for other elements and reference points which
are used to address some parts inside a fragment box so they can be used in
composition. We formalize thereafter one type of correspondence (variation/ref-
erence) points which is the pair (hook/prototype). As described in [11] a hook is
a variation point that constitutes a place-holder to contain a fragment referenced
by a prototype reference point.

We propose in the following section to extend the Coq4MDE framework to
support ISC concepts and then to define a sound basis to ensure the correctness
by construction for this composition style. This enables to describe and to verify
structural properties. We plan in future work to extend the formalization to
support other kind of properties and especially behavioural properties.

4 Formalizing Model Component Extraction and
Composition

4.1 Extended MetaModel with Model Component

We must be able to extend any metamodel to support the definition of fragment
boxes. This extension adds the definition of a fragment interface constituted
from a set of addressable points. We note the extended metamodel for some
metamodel MM as MMExt. We note ROV the abstract class representing the
addressable points, the Hook variation point and the Prototype reference points
are subclasses of ROV . In MMExt, every node in the graph representing MM
can be referenced by an addressable point. For this purpose, an abstract class
called AbsC is added as a super class for all the classes of MM . This class
is linked by the reference bind with ROV . The three classes ROV , Hook and

8 http://www.the-compost-system.org

197

Fig. 2. MetaModel extension

Prototype are also automatically imported to the metamodel with appropriate
inheritance relations between them 9.

The following definition represents the extension function implemented in
Coq as a graph transformation which is not in the scope of this paper.

Definition 3. Let MM = 〈〈MMV,MME〉, conformsTo〉 be a metamodel.
Let ROV,Hook, Prototype,AbsC ∈ Classes, bind ∈ References.
MMExt is defined as 〈〈MMV Ext,MMEExt〉, conformsToExt〉 such that:

MMV Ext = MMV ∪ {ROV,Hook, Prototype,AbsC}
MMEExt = MME ∪ {〈ROV, bind,AbsC〉}
conformsToExt(〈MV,ME〉) , conformsTo(〈MV,ME〉)
∧ isAbstract(ROV)
∧ subClass(Hook,ROV)
∧ subClass(Prototype,ROV)
∧ isAbstract(AbsC)
∧ ∀c ∈MMV, subClass(c, AbsC)

The figure 2 shows the example of the extension of the MetaModel MM .

4.2 Component interface extraction

The goal of the function FragmentExtraction is to construct a fragment box
from a model by defining its composition interface. This function takes as pa-
rameters: a model, the object referenced in that model and the kind of the
addressable point associated to this object.

9 The metamodel extension used in [14] is defined at the third modeling level
(metametamodel level) which may use the promotion notion to be defined in the
Coq4MDE framework. The extension defined thereafter uses only the second mod-
eling level (metamodel level) which seems to be sufficient.

198

FragmentExtraction : Model × Objects × Classes → Model is defined
as10:

FragmentExtraction(〈MV,ME〉, o,HP) = 〈MV Ext,MEExt〉
where HP ∈ {Hook, Prototype} and ∃c ∈ Classes, 〈o, c〉 ∈MV
such that :
MV Ext = MV ∪ {〈h,HP 〉, 〈h,ROV 〉, 〈o,AbsC〉}
MEExt = ME ∪ {〈〈o, c〉, inh, 〈o,AbsC〉〉,
〈〈h,ROV 〉, bind, 〈o,AbsC〉〉,
〈〈h,HP 〉, inh, 〈h,ROV 〉〉}

ElimInterface eliminates the fragment box interface (all variation and refer-
ence points) of a fragment box, it is the inverse function of FragmentExtraction
in case of only one addressable point in the fragment box. This is implemented in
[14] using the remove operator which is automatically applied after composition
execution to make the component understandable by tools where addressable
points semantics is not defined.
ElimInterface : Model→Model, such as:

ElimInterface 〈MV Ext,MEExt〉 = 〈MV,ME〉
such that :
MV = {〈o, c〉 ∈MV Ext|c /∈ {Hook, Prototype, V OR,AbsC}}
ME = {〈〈o, c〉, r, 〈o′, c′〉〉 ∈MEExt|c, c′ /∈ {Hook, Prototype,ROV,AbsC}}

The definition of these two functions requires some proofs on multigraphs.
First, the proof that the extension of the multigraph representing the model is
also a multigraph 11, this is done by proving that adding vertexes to a multi-
graph generates a multigraph and also adding edges in some conditions to a
multigraph is also a multigraph. Second, the proof that deleting some elements
from a multigraph representing the fragment box is also a multigraph 12, this
is done using a filter function defined on multigraphs. So, Coq4MDE can now
support the definition of components with composition interface in any DSML.
We describe in the following section the formalisation of ISC basics composition
operators in Coq4MDE.

4.3 Components Composition

In this section, we present the implementation in our framework of the two basic
operators of ISC (bind and extend) presented in [1] [14] . The difference between
these operators is that ”the bind applied to the hook replaces the hook (i.e., it
removes the hook from its containing fragment) while extend applied on a hook
does not modify the hook itself but uses it as a position for extension (i.e., the
hook remains in its containing fragment) ”.

10 Another version can be implemented by specifying a set of pairs (o,HP) to add
several points at the same time.

11 http://www.irit.fr/~Mounira.Kezadri/FISC/MMext.html
12 http://www.irit.fr/~Mounira.Kezadri/FISC/IntElim.html#elimInterface

199

Bind The bind operator replaces an object o1 referenced by a hook variation
point by an object o2 referenced by a prototype reference point. The links to
(resp. from) the object o1 are replaced with links to (resp. from) the object o2.
The composed model is obtained by substituting the object o1 by o2 in both
objects and links sets. bind : Model × Model × (Objects × Classes)
× (Objects × Classes)→Model is defined as:

bind(〈MV 1,ME1〉, 〈MV 2,ME2〉, 〈b, B〉, 〈b′, B′〉) = 〈MV 3,ME3〉
where 〈b, B〉 ∈MV 1 and 〈b′, B′〉 ∈MV 2, we have :
∃h, p ∈ Objects, 〈〈h,Hook〉, inh, 〈h,ROV 〉〉 ∈ME1
∧〈〈h,ROV 〉, bind, 〈b, AbsC〉〉 ∈ME1
∧〈〈b, B〉, inh, 〈b, AbsC〉〉 ∈ME1
∧〈〈p, Prototype〉, inh, 〈p,ROV 〉〉 ∈ME2
∧〈〈p,ROV 〉, bind, 〈b′, AbsC〉〉 ∈ME2
∧〈〈b′, B′〉, inh, 〈b′, AbsC〉〉 ∈ME2
and finally :
MV 3 = substV (〈b, B〉, 〈b′, B′〉,MV 1)
ME3 = substE(〈b, B〉, 〈b′, B′〉,ME1)

such that substV (〈b, B〉, 〈b′, B′〉,MV) (resp. substE(〈b, B〉, 〈b′, B′〉,ME)) is the
function that replaces 〈b, B〉 by 〈b′, B′〉 in every element in MV (resp. relation in
ME). The condition of the composition is: B = B′.

The construction of this function in Coq requires the proof that substituting
an object by another in some multigraph is also a multigraph 13. The proof is
done by induction, it is automatic for the empty graph. In case of a graph built
from adding an edge (a reference) to the graph, one reference is presented as
〈src, dst, a〉, suppose that the substitution replaces o1 by o2, we must consider
all cases of equality between src, dst, o1 and o2. Last, in case of a graph built
by adding a vertex to a graph which considers also cases of equality between the
added vertex, o1 and o2. The current implementation can be largely improved by
the definition of some graph operations like the map function, which is currently
partially done and will be presented in future work. A recursive call for the
previous function using a list of correspondence (Variation/Reference) points
allows to replaces several objects at the same time.

Extend This operator allows to extend a model 〈MV 1,ME1〉 (the extension
point is an object o1 addressed as a hook variation point inside the model) by a
model 〈MV 2,ME2〉 at an object o2 addressed as a prototype reference point.

This function is parametrized by a metamodel (to insure the type safety) and
a name for the added link between o1 and o2. The composed model consists of a
multigraph built over the union of all objects of 〈MV 1,ME1〉 and 〈MV 2,ME2〉,
all links of the two models in addition to a link between the objects o1 and o2.

extend : Model × Model × (Objects × Classes) × (Objects × Classes)
× MetaModel × References→Model is defined as:

13 http://www.irit.fr/~Mounira.Kezadri/FISC/CompBind.html#GraphSubst

200

extend(〈MV 1,ME1〉, 〈MV 2,ME2〉, 〈b, B〉, 〈b′, B′〉,
(〈MMV,MME〉, conformsTo), LinkName) = 〈MV 3,ME3〉
where ∃ 〈b, B〉 ∈MV 1 and 〈b′, B′〉 ∈MV 2, we have :
extensible(〈MV 1,ME1〉, 〈MV 2,ME2〉, 〈b, B〉, 〈b′, B′〉,
(〈MMV,MME〉, conformsTo), LinkName) such that :
MV 3 = MV 1 ∪MV 2
ME3 = ME1 ∪ME2 ∪ {〈〈b, B〉, LinkName, 〈b′, B′〉〉}

The predicate extensible checks that a model 〈MV 1,ME1〉 whose interface is
〈b, B〉 regarding some metamodel can be extended by another model 〈MV 2,ME2〉
whose interface is 〈b′, B′〉.

extensible(〈MV 1,ME1〉, 〈MV 2,ME2〉, 〈b, B〉, 〈b′, B′〉,
(〈MMV,MME〉, conformsTo), LinkName) ,
isExtendedH(〈MV 1,ME1〉, 〈b, B〉)
∧isExtendedP (〈MV 1,ME1〉), 〈b′, B′〉)
∧(B,LinkName,B′) ∈ MME

The predicate isExtendedH verifies that 〈b, B〉 is a hook in 〈MV 1,ME1〉.

isExtendedH〈MV 1,ME1〉〈b, B〉 ,
∃h ∈ Objects, 〈〈h,Hook〉, inh, 〈h,ROV 〉〉 ∈ME1
∧〈〈h,ROV 〉, bind, 〈b, AbsC〉〉 ∈ME1
∧〈〈b, B〉, inh, 〈b, AbsC〉〉 ∈ME1

The predicate isExtendedP verifies that 〈b, B〉 is a prototype in the model.

isExtendedP 〈MV 2,ME2〉〈b, B〉 ,
∃p, 〈〈p, Prototype〉, inh, 〈p,ROV 〉〉 ∈ME2
∧〈〈p,ROV 〉, bind, 〈b, AbsC〉〉 ∈ME2
∧〈〈b, B〉, inh, 〈b, AbsC〉〉 ∈ME2

The construction of this function in Coq requires the proof that the multi-
graph built by extending another multigraph as described in the function extend
is also a multigraph 14.

Here we defined only one type of correspondence variation and reference point
(hook/prototype), the method as presented in [14] considers also another type of
correspondence (slot/anchor). The second type requires to consider the contain-
ment property of an edge. The difference as explained in [14] is that contrarily
to hook and prototype the slot variation point and the anchor reference point
keeps their containments in case of composition. The first type of correspondence
allows to express quite complicated composition functions like described in the
following example and is consistent with the current models graph representa-
tion. The second type of correspondence can be considered in future work. The
operators like described here are applied to the two models, a generalization to

14 http://www.irit.fr/~Mounira.Kezadri/FISC/CompBind.html#

compositionExtend

201

an application on several models at the same time is allowed in ReuseWare and
can be implemented in our framework as an iterative application of the operators
by composing the models one by one or by defining more general operators that
can be applied on several models.

4.4 Detailed example

We describe in this section the use of the previously defined basic operators to
elaborate a model composition. M1 is a state machine modeling a door with a
lock. The door provides the operations: open, close, pass, lock and unlock. We
would like to add the possibility of simple and double locking the door, these
two states are described in the model M2. M1 and M2 are described in Fig. 3.

Fig. 3. M1 and M2 models

The first step is to define the interface for each model. This is done with the
FragmentExtraction function, the function applied to the model M1 defines
Locked as a hook and applied to M2 defines Simple lock as a prototype like
described in Fig. 4.

Fig. 4. Variation and reference point for the models M1 and M2

The application of the function bind on the two fragments as described in
Fig. 4 followed by the elimination of the interface produces the model Mbind

shown in Fig. 5.

Fig. 5. Model after execution of the bind function

202

Then, Simple lock is defined in Mbind as a prototype reference point and
Double lock is defined in M2 fp elim as a hook variation point as shown in Fig.
6.

Fig. 6. Fragment boxes extraction

The execution of the function extend on the two models in Fig. 6 after the
interface elimination generates the model presented in Fig. 7. The model is the
state machine for a door with a double lock option.

Fig. 7. Model after execution of the extend and ElimInterface functions

The original contribution of this paper is not the definition of composition
operators which is taken from ISC but their implementation in the Coq proof
assistant, their integration in the Coq4MDE framework and the proof that the
verification of the instanceOf property is compositional with respect to these
operators.

5 Composition Validation

The bind and extend operators are defined in order to enforce the well typedness
properties. These two operators like all the concepts presented in this paper are
encoded in the Coq proof assistant. The aim of this formalization is to check
some properties on the composite models and then provide the basis for the
specification and proof of correctness of compositional verification technologies.
The first property considered is the well typedness property. This property is
related to the conformance defined in Section2. It checks that every object in
M is the instance of a class in MM and every link in M is an instance of a
relation in MM . To prove that this verification is compositional, we need to
prove that the composition of two models instances of the same metamodel is
also an instance of the same metamodel.

We define the first validity criteria for any composition function. This cri-
teria is defined as a higher order predicate that checks the well typedness for
some function. The function InstanceOf is used in that purpose, it checks that

203

all objects and links of a Model are instances of classes and references in a
metamodel.

InstanceOf(〈〈MV,ME〉, 〈〈MMV,MME, conformsTo〉〉〉) ,
∀〈o, c〉 ∈MV, c ∈MMV ∧
∀〈〈o, c〉, r, 〈o′, c′〉〉 ∈ME ∧ 〈c, r, c′〉 ∈MME

Then, the predicate ValidCompositionFunctionMM reflects this criteria. It
verifies that using two components instance of MM , the component resulting
from the application of a composition function f is also instance of MM .

V alidCompositionFunction(MM ∈MetaModel, f) ,
∀ M1 M2 ∈Model,
InstanceOf (M1,MM) ∧ InstanceOf (M2,MM)
→ InstanceOf ((f M1 M2),MM)

We use this predicate to verify the type safety for the composition operator
bind described in Section 4.3. This is described in the theorem ValidBind.

Theorem V alidBind : ∀ MM ∈MetaModel,
V alidCompositionFunction(MM, bind)

The Coq proof is done for this theorem. It uses intermediate lemmas that
prove the preservation of the well typedness by the elementary operations implied
in the composition. Among these lemmas, conformsAddO ensures that the result
of adding an object instance of a class in the metamodel to a component instance
of this metamodel is a component instance of the same metamodel.

Theorem conformsAddO :
∀〈MV,ME〉 ∈Model, 〈(MMV,MME), conformsTo〉 ∈MetaModel.
∀o ∈ Objects, c ∈ Classes.
InstanceOf(〈MV,ME〉, 〈(MMV,MME), conformsTo〉) ∧ c ∈MMV
→ InstanceOf(〈MV ∪ {〈o, c〉},ME〉, 〈(MMV,MME), conformsTo〉)

Another Coq proof was done to demonstrate the type safety for the com-
position operator extend described also in Section 4.3. This is encoded in the
theorem ValidExtend.

Theorem V alidExtend : ∀ MM ∈MetaModel,
V alidCompositionFunction(MM, extend)

Also, similar correction properties should hold for the fragment extraction
function and the elimination function.

Theorem V alidFragmentExtraction :
∀〈MV,ME〉 ∈Model, 〈(MMV,MME), conformsTo〉 ∈MetaModel.
∀o ∈ Objects, HP ∈ {Hook, Prototype}.
InstanceOf(〈MV,ME〉, 〈(MMV,MME), conformsTo〉)
→ InstanceOf(FragmentExtraction(〈MV,ME〉, o,HP),
〈(MMV Ext,MMEExt), conformsToExt〉)

204

Theorem V alidInterfaceElimination :
∀〈MV,ME〉 ∈Model, 〈(MMV,MME), conformsTo〉 ∈MetaModel.
InstanceOf(〈MV,ME〉, 〈(MMV Ext,MMEExt), conformsToExt〉)
→ InstanceOf(InterfaceElimination(〈MV,ME〉),
〈(MMV,MME), conformsTo〉)

So, starting from the Coq4MDE framework and from the ISC composition
method, we defined a framework for model composition. The definitions of model
and metamodel were extended to support the definition of model composition
interface, the constituted fragment box is also a model conforms to an extended
metamodel. The basic composition operators was described like all elements in
this paper using the Coq proof assistant. The source code is about 6400 lines, it is
accessible at http://www.irit.fr/~Mounira.Kezadri/FISC/index.html. The
formalization in Coq ensures the termination15 of the composition operators,
elaborates a compositional verification property and also will enable to describe
and prove more richer properties in future work.

6 Related work

6.1 Composition approaches

Models are aspects of the system that must be composed to build the final
system, similarly to aspects in AOP [15]. Tools and approaches have been pro-
posed aiming to automate the composition task. This problem concerns a wide
variety of modeling domains and includes several techniques. We are looking
for an approach that supports component extraction from models and model
composition from components. The ISC approach supports these two character-
istics. It enables to extend arbitrary language to provide reuse with the concepts
of fragment box. In this method components can be invasively composed, this
can be done by adapting or extending the component at some variation point
(fragments or positions, which are subject to change) by transformation. Several
composition methods were collected in[13]. most of these methods are interested
in implementing the merge operator by using some mappings between the mod-
els like Rational Software Architect 16 , Bernstein et al. data model [5], Atlas
Model Weaver 17 [9], Epsilon 18, Theme/UML [7] and EMF Facet19. Merge op-
erators as presented in these works can be implemented in our framework and
constitutes one of the directions for future work.

15 We can’t write any function in Coq if the proof of termination is not given or
deduced by Coq

16 http://www-306.ibm.com/software/awdtools/architect/swarchitect/
17 http://www.eclipse.org/gmt/amw/
18 http://www.eclipse.org/gmt/epsilon/
19 www.eclipse.org/proposals/emf-facet/

205

6.2 Formalization of model driven engineering

MoMENT (MOdel manageMENT) [6] is a model management framework based
on experiments in formal model transformation and data migration, it provides
a set of generic operators to manipulate models. MoMENT relies on algebraic
formalisms using the Maude language [8]. In this framework, the metamodels
are represented as algebraic specifications and the operators are defined inde-
pendently of the metamodel. To be used, the operators must be specified in a
module called signature that specify the constructs of the metamodel. The ap-
proach was implemented in a tool 20 that gives also an automatic translation
from an EMF metamodel to a signature model.

A. Vallecillo et al. have designed and implemented previously a different
embedding of metamodels, models ([22]) and model transformations ([24]) using
MAUDE. This embedding is shallow, it relies strongly on the object structure
proposed by MAUDE in order to define model elements as objects, and relies on
the object rewriting semantics in order to implement model transformations.

I. Poernomo has proposed an encoding of metamodels and models using type
theory ([19]) in order to allow correct by construction development of model
transformation using proof assistant like Coq ([20]). Some simple experiments
have been conducted using Coq mainly on tree-shaped models ([21]) using in-
ductive types. General graph model structure can be encoded using co-inductive
types. However, as shown in [18] by C. Picard and R. Matthes, the encoding is
quite complex as Coq enforces structural constraints when combining inductive
and co-inductive types that forbid the use of the most natural encodings pro-
posed by Poernomo et al. M. Giorgino et al. rely in [10] on a spanning tree of
the graph combined with additional links to overcome that constraint using the
Isabelle proof assistant. This allows to develop a model transformation rely-
ing on slightly adapted inductive proofs and then extract classical imperative
implementations. These embeddings are all shallow: they rely on sophisticated
similar data structure to represent model elements and metamodels (e.g. Coq
(co-)inductive data types for model elements and object and (co-)inductive types
for metamodel elements).

The work described in this paper is a deep embedding, each concept from
models and metamodels are encoded using elementary constructs instead of
relying on similar elements in MAUDE, Coq or Isabelle. The purpose of
this contribution is not to implement model transformation using correct-by-
construction tools but to give a kind of denotational semantics for model driven
engineering concepts that should provide a deeper understanding and allow the
formal validation of the various implemented technologies.

6.3 Formalization of models composition

A formalisation of ISC in Frame Logic (or F-Logic) [16] was proposed in [2].
F-Logic provides structural aspects of object oriented and frame-based lan-
guages (object identity, complex objects, inheritance, polymorphic types, query

20 http://moment.dsic.upv.es/

206

methods, encapsulation and others). The description in F-Logic allows reasoning
on the composition architecture and provides many additional checking: cyclic
check, reachability and constraint check. In this work we define the mathemat-
ical formalisation of the concepts of the ISC method aiming to describe it in a
proof assistant. The advantage of this formalization in addition to those of the
previous cited work (it can be added to any model and is independent of specific
component description languages and the checked properties), are proof of ter-
mination of composition functions and the possibility of extracting the validated
executable code from the definitions after some modifications on functions that
are written now for validation purpose.

6.4 Compositional verification

In order to develop safety critical systems, methods are now needed that al-
lows not only the reuse of components but also of their properties for inferring
the global properties of the composite system from properties of his constituent
components. Nguyen, T.H. proposes in [4] a compositional verification approach
to check safety properties of component-based systems. The systems must be
described in the BIP (Behavior - Interaction - Priority) language [3]. Another ap-
proach allowing to verify systems by composition from verified components was
proposed in [25], this approach reduces the complexity of verifying component-
based systems by utilizing their compositional structures. In this approach, tem-
poral properties of a software component are specified, verified, and packaged
with the component. The selection of a component for reuse considers also its
temporal properties. The Ptolemy21 project proposes a compositional theory for
concurrent, real-time, embedded systems. It uses well defined models of compu-
tation and defines an unified mathematical framework to relate heterogeneous
models of computation. In this paper, regarding the previous cited methods, we
adopted a generic composition technology where the interactions and temporal
properties are not yet integrated. This is planned for future work.

7 Conclusion

Starting from Coq4MDE our formal framework for model and metamodel def-
inition, we have tackled the problem of model composition. Taking inspiration
from the ISC generic method for model composition and also from the Reuse-
Ware toolbox, we proposed first a metamodel extension, and associated model
operators for expressing component extraction and composition. This yielded a
formalisation of model components, model extraction and model composition.
All these notions are also currently being reflected in the Coq proof assistant,
following the line of thought of our previous work around model and metamodel
formalisation. This embedding provides us correct-by-construction pieces of ex-
ecutable code for the different model operations related to composition. For

21 http://ptolemy.eecs.berkeley.edu/

207

instance model extraction and model composition are both proved to be termi-
nating, the latter operation being in addition correct, as advocated by the main
theorem. As we target a general purpose MDE-oriented framework, our work ap-
plies to any model, modeling language, application and is not restricted to some
more-or-less implicit language context.

Yet, for the ease of experimentation, we have in a first step somehow restricted
the possibilities of our composition framework. For instance, the notion of con-
formity, a notion at the heart of our formal description, has been temporarily
weakened to take into account only instantiation constraints, disregarding any
other model property (multiplicity, etc).

As future work, all these constraints should be enforced to achieve a fully-
fledged formal model composition framework.

Furthermore, the interplay between model composition (where objects are
replaced by others, assuming they have the same type) and sub-typing (where
a single object may exhibit many types, due to duplication) needs to be clearly
worked out in our framework.

This proposal is a preliminary mandatory step in the formalization of compo-
sitional formal verification technologies. We have tackled the formal composition
of models from model fragments independently of the properties satisfied by the
model fragments and the expected properties for the composite model. The next
step in our work is to formalize the notion of model verification relying on sev-
eral use case from simple static constraints such as typing or verification of OCL
constraints satisfaction, to more dynamic properties such as deadlock freedom as
proposed in the BIP framework. The expected result of our work is a framework
to define compositional verification technologies and to prove the correctness of
the associated verification tools.

References

1. Aßmann, U.: Invasive software composition. Springer-Verlag New York Inc (2003)
2. Azurat, A.: Mechanization of invasive software composition in F-logic. In: Proceed-

ings of the 2007 annual Conference on International Conference on Computer En-
gineering and Applications. pp. 89–94. World Scientific and Engineering Academy
and Society (WSEAS) (2007)

3. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: Software Engineering and Formal Methods, 2006. SEFM 2006. Fourth
IEEE International Conference on. pp. 3–12. IEEE (2006)

4. Bensalem, S., Bozga, M., Nguyen, T., Sifakis, J.: Compositional verification for
component-based systems and application. Software, IET 4(3), 181–193 (2010)

5. Bernstein, P., Halevy, A., Pottinger, R.: A vision for management of complex mod-
els. ACM Sigmod Record 29(4), 55–63 (2000)

6. Boronat, A., Meseguer, J.: An algebraic semantics for mof. Formal Asp. Comput.
22(3-4), 269–296 (2010)

7. Clarke, S.: Extending standard UML with model composition semantics. Science
of Computer Programming 44(1), 71–100 (2002)

8. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Quesada,
J.: Maude: specification and programming in rewriting logic. Theoretical Computer
Science 285(2), 187–243 (2002)

208

9. Fabro, M.D.D., Valduriez, P.: Towards the efficient development of model transfor-
mations using model weaving and matching transformations. Software and System
Modeling 8(3), 305–324 (2009)

10. Giorgino, M., Strecker, M., Matthes, R., Pantel, M.: Verification of the Schorr-
Waite algorithm - From trees to graphs. In: International Symposium on Logic-
Based Program Synthesis and Transformation (LOPSTR’10) (2010)

11. Heidenreich, F., Henriksson, J., Johannes, J., Zschaler, S.: On language-
independent model modularisation. Transactions on Aspect-Oriented Software De-
velopment VI pp. 39–82 (2009)

12. Henriksson, J.: A Lightweight Framework for Universal Fragment Composi-
tion—with an application in the Semantic Web. Ph.D. thesis, PhD thesis, TU
Dresden (January 2009)

13. Jeanneret, C.: An Analysis of Model Composition Approaches. Master’s thesis,
Ecole Polytechnique Fédérale de Lausanne (2007-2008)

14. Johannes, J.: Component-Based Model-Driven Software Development. Ph.D. the-
sis, vorgelegt an der Technischen Universität Dresden Fakultät Informatik (2011)

15. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-Oriented Programming. In: Proceedings of the 11th European
Conference on Object-Oriented Programming (ECOOP), Lecture Notes in Com-
puter Science, vol. 1241, pp. 220–242. Springer (Jun 1997)

16. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-
based languages. Journal of the ACM 42(4), 741–843 (1995)

17. Object Management Group, Inc.: Meta Object Facility (MOF) 2.0 Core Specifica-
tion (Jan 2006), http://www.omg.org/docs/formal/06-01-01.pdf, final Adopted
Specification

18. Picard, C., Matthes, R.: Coinductive graph representation : the problem of embed-
ded lists. Electronic Communications of the EASST, Special issue Graph Compu-
tation Models, GCM’10 (2011)

19. Poernomo, I.: The meta-object facility typed. In: Haddad, H. (ed.) SAC. pp. 1845–
1849. ACM (2006)

20. Poernomo, I.: Proofs-as-model-transformations. In: Vallecillo, A., Gray, J., Pieran-
tonio, A. (eds.) ICMT. Lecture Notes in Computer Science, vol. 5063, pp. 214–228.
Springer (2008)

21. Poernomo, I., Terrell, J.: Correct-by-construction model transformations from par-
tially ordered specifications in coq. In: Dong, J.S., Zhu, H. (eds.) ICFEM. Lecture
Notes in Computer Science, vol. 6447, pp. 56–73. Springer (2010)

22. Romero, J.R., Rivera, J.E., Durán, F., Vallecillo, A.: Formal and tool support for
model driven engineering with maude. Journal of Object Technology 6(9), 187–207
(2007)

23. Thirioux, X., Combemale, B., Crégut, X., Garoche, P.L.: A Framework to Formalise
the MDE Foundations. In: Paige, R., Bézivin, J. (eds.) International Workshop on
Towers of Models (TOWERS). pp. 14–30. Zurich (Jun 2007)

24. Troya, J., Vallecillo, A.: Towards a rewriting logic semantics for atl. In: Tratt,
L., Gogolla, M. (eds.) ICMT. Lecture Notes in Computer Science, vol. 6142, pp.
230–244. Springer (2010)

25. Xie, F., Browne, J.: Verified systems by composition from verified components.
ACM SIGSOFT Software Engineering Notes 28(5), 277–286 (2003)

209

Controlling an iteration-wise coherence in
dataflow

Sébastien Limet, Sophie Robert, and Ahmed Turki

Laboratoire d’Informatique Fondamentale d’Orléans, Université d’Orléans, France ?

Abstract. This paper formalizes a data-flow component model specif-
ically designed for building real-time interactive scientific visualization
applications. The advantages sought in this model are performance, co-
herence and application design assistance. The core of the article deals
with the interpretation of a property and constraint based user specifica-
tion to generate a concrete assembly based on our component model. To
fulfill one or many coherence constraints simultaneously, the application
graph is processed, particularly to find the optimal locations of filtering
objects called regulators. The automatic selection and inter-connection of
connectors in order to maintain the requested coherences and the highest
performance possible is also part of the process.

Keywords: Composition, Coherence, Coordination, Synchronization

1 Introduction

Assisted or semi-automated composition is a recurrent feature in component-
based frameworks [6], particularly when the end users are not computer scien-
tists. The aim is to provide an abstraction layer that makes composition more
intuitive, descriptive and, ideally, close to the natural language. Research in this
area addresses the underlying reasoning approaches that would map the user’s
specification to the concrete assembly of the model’s elements. Apart from hiding
the technicalities of the model, the purpose of allowing a coarse grained specifi-
cation is to alleviate the complexity of tuning a whole system, a complexity that
grows exponentially with the size of this system.

Automation can take place in two aspects of dataflow composition: consis-
tency and coordination. The former consists in ensuring the compatibility of
the data exchanged by the components and is an inescapable feature for scien-
tific workflow designers [2, 13]. The latter deals with the execution order of the
components. In models where connection patterns are mainly blocking, i.e. syn-
chronous, the execution of the components is sequential. Solutions have then
to be provided to allow users to put loops or branching in their workflows
so that they can accurately set up their processing scenarios. While some ap-
proaches [4, 7, 11, 14] propose ready-to use control constructs, others [3] suggest

? This work is supported by the french ANR project FvNano.

210

composition languages to build advanced coordination patterns out of simpler
ones.

The level of abstraction of the application’s specification that the different
approaches propose closely depends on the targeted audience and application
areas. The component approach has, for example, been widely used in scientific
computing. A variety of Scientific Workflow Management Systems (SWMSs) [18]
exist to design, generate, deploy and execute scientific applications. The targeted
applications usually consist in carrying out an overall process over a dataset
through a sequence of finite steps. Despite the name “workflow”, the current
state of the art of SWMS is divided into frameworks adopting either a workflow
paradigm [5] or a dataflow paradigm [7,11,14]. Because they are less dependent
on the components’ implementations -no function calls between components,
only data is exchanged-, dataflow-oriented frameworks promote code reuse bet-
ter. In SWMSs, the trend is to bring the specification to an always higher level.
In [12], the authors suggest to refine the results of a workflow execution with in-
tents and goals expressed at specification. In SWMSs also, the processing pipeline
that produced a result is referred to as the provenance of this result [15] and is a
crucial information for scientists. Provenance is usually recorded and displayed
at the end of an execution for analysis [1, 11] or for failure diagnosis [17]. How-
ever, because it is itself seen as part of the result set, the SWMSs do not provide
any interface for a priori controlling or parameterizing provenance. This would
though help ensure the accuracy of a result depending on the coherence of its
different sources.

In [10], we introduced a component model specifically designed for high per-
formance interactive scientific applications. In that model, components can en-
capsulate different kinds of tasks: computing, display, user control management,
data conversion, etc. They, by definition, run iteratively and their composition
is the loosest possible to promote performance. It was presented along with a
coarse grained coordination specification system. Coupling is usually loose in
such applications so branching control is not necessary and coordination rather
defines the degree of synchronicity between components. Nevertheless, spatial
and temporal provenance remain important. That is why, in our model’s speci-
fication system, we introduced the possibility of imposing tight coherence con-
straints which consisted in allowing the user to request an exact synchronicity
between message flows reaching the same component. This property is, to sci-
entists, among the relevant information [16] when evaluating their results. Our
contribution was then to automatically adapt the user’s initial graph to fulfill
this type of constraints. In the current paper, we intend to enrich the definition of
coherence and the component model to allow looser user provenance constraints.

This paper is organized as follows: Section 2 introduces our component model.
Section 3 details our methodology to automatically build a coherent dataflow out
of a user specification. In Section 4, we evaluate our method and give the axes
of our future work.

211

2 Component model

In [10], we have defined a component model for Real-time interactive (RTI) ap-
plications including a component of iterative nature and five inter-component
connection patterns. We also described how this model and our connection pat-
terns can be used to construct an application guaranteeing a tight coherence of
the data consumed by a component. In this section, we briefly give a reminder
of our model and add to it a new object called the regulator.

2.1 Components

A component works iteratively. It is defined as a quadruple C = (n, I,O, f) where
n is the name of the component and I and O two sets of user defined input and
output ports. I and O respectively include s (for start) and e (for end), two
default triggering input and output ports. f is a boolean to indicate that the
component must run freely and that its iteration cycle can not be blocked by
other components. The iteration cycle of the component consists in

1. receiving new messages on all its connected input ports, including s,
2. when all its input ports are fed, beginning a new iteration,
3. at the end of the iteration, producing new data on all its output ports and

an ending signal on e that can be connected to the s port of another object
to trigger it.

Each component numbers its iterations. input and output ports are identified
by a name and data circulating between ports are called messages. Along with
the data it transports, a message m also contains stamps. A stamp is a small
information associated to a message and generated by the sender. Each message
contains at least one stamp, denoted it(m), that is the iteration number of the
component that produced it. The components of our model can also handle
empty messages, i.e. containing no data, allowing it to go out of the waiting
state as soon as all of its input ports are supplied. For a component C, name(C)
denotes its name and I(C) and O(C) respectively its sets of input and output
ports. A port of a component C is denoted C.i with i ∈ I(C) or C.o with
o ∈ O(C).

2.2 Connectors

Connectors must be set between two components to determine the communica-
tion policy between them, i.e. the type of synchronization and the possibility to
lose messages or not. A connector c is a quadruple c = (n, {s, i}, {o}, t) where t is
its type and i is an input port and o an output port. n and s are similar to their
homonyms in the component. We use the same notations name(c) and type(c) as
for components. c can store several messages. When the sender writes a message
on an output port, it simply adds this message to the connector and when the
receiver reads its input ports, the connector delivers one of its messages.

212

Fig. 1. The five connectors of our framework

Because the components might run at different rates, the connectors need to
avoid the overflow of messages when the receiver is slower than the sender. On
the other hand, the sender might also slow the receiver down if its iteration rate
is lower. To tackle these problems, we propose five connection patterns besides
the plain FIFO, summarized in Figure 1. These connectors needed to be carefully
designed in order to express fine inter-components synchronization policies.

– The sFIFO connector is a plain FIFO connection where, to prevent over-
flows, the sender waits for a triggering signal on its s port usually sent by
the receiver.

– The bBuffer and nbBuffer keep their incoming messages until the reception
of a triggering signal and then dispatches the oldest message. These buffered
FIFO connections can be useful to absorb overflows when one of the two
components has an irregular iteration rate. The n(on)b(locking)Buffer
connector dispatches empty messages when its buffer is empty whereas the
b(locking)Buffer blocks the receiver until fresh messages arrive.

– A greedy connector keeps only the last message provided by the sender and
sends it upon the receiver’s request. It is usually used to avoid overflows when
it is not required that all the messages are processed. The bGreedy and the
nbGreedy are, respectively, the blocking and the non-blocking variants of
this pattern.

2.3 Regulators

Regulators are special multi-channel connectors that coordinate the message
flows of several communication channels. Their policy is expressed by user-
defined coherence rules to filter the message flows on the different channels.
These rules are linear formulae over message iteration numbers. Formally, a reg-
ulator, illustrated in Figure 2, is a quintuple r = (n, I,O, F, b) where n is its

213

name, I and O its sets of input and output ports. I contains a triggering port s.
F is a set of formula, also denoted F (r). A formulae has the form ini ◦α×inj+δ
with ini, inj ∈ I \ {s}, ◦ ∈ {≤,=,≈} and α, δ ∈ N. The operator ≈, used with
δ > 0, denotes an absolute gap tolerance of δ between the two operands ini
and inj . b is a boolean that denotes the blocking behaviour of the regulator.
Moreover there is a one to one correspondence between the ports of I \ {s} and
those of O. These two sets thus contain the same number of ports.

Let M = {m1, . . . ,mn} be a set of messages contained in each buffer of
messages received by r on its n input ports. We say that M validates f =
ini ◦α× inj + δ of F (r) if it(mi)◦α× it(mj)+ δ. M validates F (r) if it validates
all the formulae of F (r).

The behaviour of a regulator is the following:

1. it buffers the messages received on its input ports,
2. each time it receives a signal on its port s, it analyzes the iteration numbers

of the messages available in its input buffers,
3. (a) if a set of messages that validates F (r) can be found in the buffers, the

regulator moves them to the corresponding output ports and flushes the
older messages in the buffers. Besides, if, in an input buffer, more than
one messages fulfills the rules, the oldest one is selected.

(b) otherwise, the regulator dispatches empty messages from all of its output
ports if b is set to false and does nothing if not.

Thanks to blocking connectors or to the synchronization mechanisms de-
scribed in Section 3, the coherence established by a regulator can be maintained
throughout the application.

Fig. 2. Schema of the regulator

2.4 Links

Links connect components, connectors and regulators together via their ports.
They are denoted by (x.p, y.q) with x, y components, connectors or regulators,
p ∈ O(x) and q ∈ I(y). There are two types of links:

– A data link transmits data messages. For a data link (x.p, y.q), we impose
that p 6= e, q 6= s and at least x or y is a connector or a regulator. Indeed,

214

as a connector or a regulator is always required to define a communication
policy, a data link cannot be directly set between two components.

– A triggering link transmits triggering signals. For such a link (x.p, y.q),
we impose that x is a component, p = e and q = s. Please note that, to
avoid deadlocks, neither components nor connectors nor regulators wait for
a triggering signal before their very first iteration.

2.5 Application graph

With these elements, an application is represented by a graph called the appli-
cation graph. The vertices of this graph are the components, the connectors and
the regulators. The edges represent the links.

Definition 1. Let C be a set of components, L a set of connectors, R a set of
regulators, D a set of data links, T a set of triggering links. The graph G =
(C ∪L∪R,D∪T) defines an application graph. In the remainder of this article,
we call a data path of G an acyclic path in the graph (C ∪ L ∪R,D).

With G an application graph, let us also consider the following additional
definitions:

– We call the source src(p) the starting vertex of a data path p of G and
destination dest(p) its ending vertex,

– A message m arriving at dest(p) is called a result of p and the message from
the source that originates this result is denoted by ori(m),

– A data path whose source and destination are components is called a pipeline,
– rankp(x) denotes the rank of element x along pipeline p. rankp(src(p)) =

1, rankp(dest(p)) = length(p) with length(p) the number of elements of p.

Figure 3 illustrates a sample application graph.

3 Provenance-based coherence

This section describes a composition method to build an application that can be
deployed on a distributed architecture. We aim to propose an automatic process
in a few steps to transform a specification graph defined by a scientist into an
application graph respecting all the coherence constraints and allowing the best
performance possible.

3.1 Specification graph

Application specification helps the user focus on the expected properties of the
communications in the application, sparing him technicalities. It is done through
a directed graph called the specification graph. The vertices of this graph are the
components of the application and its edges indicate which component ports are
connected together. Its vertices are the components defined in Section 2.1. The
edges, directed from the sender to the receiver, are labelled with the output and
input ports and with constraints on the communications. These constraints are
of two types

215

Fig. 3. An application graph

– the message policy, i.e. can this communication drop messages or not,
– the synchronization policy, i.e. should the receiver of the message be blocked

when no new messages are available.

These communication constraints are used to construct a preliminary ap-
plication graph where connectors are automatically chosen to implement the
synchronization policy with the best performance possible but without any guar-
antee on coherence. Besides the graph itself, a set of constraints K defines the
coherence constraints on the input ports of the components. Provenance-based
coherence is a fine type of coherence based on the tolerated -positive, null or
negative- iteration gap between two messages m1 and m2 issued by two out-
put ports, and originating the messages that arrive simultaneously to two input
ports of a component at each iteration of it. While in [10] we introduced a tight
coherence imposing equalities between message iterations and a common compo-
nent as message source, this new coherence type aims at allowing more flexible
synchronization policies when the application needs not to manipulate data gen-
erated exactly at the same iteration by the same component. More formally
provenance-based coherence is defined as follows:

216

Definition 2. Let C1, C2 and D be three components such that C1 6= D,C2 6=
D, oi ∈ O(C1), oj ∈ O(C2) and {ik, il} ⊂ I(D). The coherence constraint κ
defined by Dik,il : C1.oi ◦ α × C2.oj + δ with ◦ ∈ {≤,=,≈} and {α, δ} ∈ N is
satisfied if, for each pair of pipelines p1 and p2 starting respectively at C1.oi and
C2.oj and reaching respectively D.ik and D.il, we ensure that it(ori(m1)) ◦ α×
it(ori(m2)) + δ where m1 and m2 are results of respectively p1 and p2 read at
the same iteration of D. Such a pair of pipelines p1 and p2 are called sibling
pipelines with respect to coherence κ. sibκ(p) denotes the set of sibling pipelines
of pipeline p with respect to coherence κ.

Figure 4 gives an example of specification graph to which we add the following
provenance coherence constraints:

– κ1 = Jin1,in2
: A.out ≈ B.out + 10, which means that, at each iteration of

component J , we do not allow the pair of messages read on in1 and in2 of
J to reflect an absolute iteration difference between A and B that is greater
than 10 iterations.

– κ2 = Kin1,in2
: E.out ≈ C.out + 5, which has the same meaning as the

previous constraint.

Fig. 4. A specification graph

3.2 Preliminary application graph

The first step of the process consists in building a preliminary application graph
by replacing each edge of the specification graph with a connector following the
rules of Table 1. As in many cases several connectors fit the same combination,

217

Blocking policy Non-blocking
or

Free receiver

Msg loss bGreedy nbGreedy

Free sender Sender not free

No msg loss bBuffer sFIFO nbBuffer
Table 1. The communication pattern selection

this table was created following the rule: The generated application has to be,
first of all, as overflow-safe as possible and then, as fast as possible.

The application graph of Figure 3 derives from the specification graph of
Figure 4. Of course, if no provenance coherence is requested, the application
graph can be finalized just after this step.

3.3 Coherence subgraphs

The next steps of the process deal with the solving of the coherence constraints.
The first step of the transformation consists in looking, in the application graph,
for pipelines that must be coherent. They are collected into coherence subgraphs.

Definition 3. Given an application graph G and C1, C2 and D three distinct
components of G such that oi ∈ O(C1), oj ∈ O(C2) and {ik, il} ⊂ I(D) and
given a coherence constraint κ = Dik,il : C1.oi ◦ α × C2.oj + δ, the coherence
subgraph gκ of κ is the subgraph of G that contains all the sibling pipelines
between the source ports C1.oi and C2.oj and the destination ports respectively
D.ik and D.il.

The coherence subgraphs of κ1 and κ2 are in respectively a dashed and a
dotted frame in Figure 3. As they intersect, they are merged into one single
subgraph to avoid backtrackings in the remaining of the process.

In a subgraph, we can decompose each path into a set of independent syn-
chronous segments according to the following definition.

Definition 4. A pipeline (C1, c1, . . . , Cn−1, cn−1, Cn) where Ci (1 ≤ i ≤ n) is
a component and ci (1 ≤ i ≤ n − 1) is either a sFIFO or bBuffer connector is
called a synchronous segment.

The message flow is preserved inside a synchronous segment i.e. no messages are
lost and no empty messages are produced by the connectors. As a consequence,
all the components of the segment perform the same number of iterations.

Property 1. Let s = (C1, c1, . . . , Cn−1, cn−1, Cn) be a synchronous segment and
mn a message produced by Cn, it(mn) = it(oris(mn)).

The property is obvious since no message is lost inside a synchronous segment.
Cn generates as many messages as C1.

218

Definition 5. The connector between two successive synchronous segments is
called a junction and is either a bGreedy, an nbGreedy or an nbBuffer connector.
A junction makes two successive synchronous segments independent as they can
run at different iteration rates. Predicate lossy(j) is true if junction j is lossy.

The next step of our automatic construction consists in the equalization of
the number of junctions between all the sibling pipelines of a coherence sub-
graph. This is needed to fulfill the coherence constraints. Indeed, controlling the
messages entering a synchronous segment allows to control the messages at the
end of the segment. To summarize, our method tends to preserve as many junc-
tions as possible in order to preserve as many independent segments as possible
from the initial graph. It also ensures that the number of independent segments
is the same in all the pipelines from a source port to a destination port of the
coherence. Coherence control can then be operated piecewise along them. After
path segmentation, junctions of the same level will be grouped inside plateaus.

Definition 6. Let G be an application graph, p1 and p2 two sibling pipelines of
a constraint κ in G starting at components C1 and C2 respectively and reaching
component D. Due to the segmentation step, p1 = (S1

1 , j
1
1 , . . . , j

n
1 , D) and p2 =

(S1
2 , j

1
2 , . . . , j

n
2 , D) are composed of the same number n of synchronous segments

where S1
1 (respectively S1

2) starts at C1 (respectively C2) and are separated by n−1
junctions (ji1)1≤i≤n−1 for p1 and (ji2)1≤i≤n−1 for p2. We say that the junctions
ji1 and ji2 are of the same level, which is denoted ji1 ↔ ji2. The reflexive-transitive
closure of ↔ is denoted ↔∗. A plateau is the set of the junctions of the same
equivalence class of ↔∗.

A plateau is the entry point of several synchronous segments involved in the
same constraint -or in interdependent constraints. They are the points where
messages circulating in different pipelines will be controlled by regulators and
by input or output synchronizations as explained further in Section 3.5. Further
in the process, a plateau will either :

1. be replaced by the primary regulator of the coherence, the role of which is
to establish the coherence as expressed in the formulae of the constraint,

2. or be a synchronization point, maintaining the coherence of the pipelines
thanks to input and output synchronization mechanisms.

The equalization of the number of junctions -and thus, of synchronous seg-
ments- between multiple pipelines is obtained by allowing the system to switch
some connectors from {sFIFO or bBuffer} to nbBuffer, or from {bGreedy or
nbGreedy} to {sFIFO, bBuffer or nbBuffer}. It is allowed, for the sake of co-
herence, to relax blocking, non-blocking or lossy constraints of the connection
specification. However, non-lossy constraints are never relaxed. In addition, no
blocking connectors can be put before a free component either. The path seg-
mentation is solved on the whole application graph. We use a linear system
where each variable is associated to a connector. The domain of the variables is
{0, 1}. 0 means that the connector is either a sFIFO or a bBuffer, and 1 any of

219

the three other patterns -and a potential regulator location. Since these three
other patterns define junctions, it is sufficient to impose that the sums of the
variables of each sibling pipeline be equal to ensure that they have the same
number of segments. Additional constraints are also added to the problem to
avoid misleading solutions. For each connector c of G, according to the proper-
ties of the corresponding connection in the specification graph and those of the
sender and the receiver, we determine the set of compatible patterns. If this set
contains only elements of {nbBuffer, bGreedy, nbGreedy}, we add vc = 1 to the
linear system EqG .

In this process, it is also crucial to anticipate the placing of the regulators as
they will replace plateaus. One regulator is sufficient for a coherence constraint
and it will be crossed by all the sibling pipelines so that it can compare their
message iterations and adjust their flows. This regulator is called the primary
regulator of the coherence in contrast with other regulators the pipelines might
come across and that may be set to control another coherence.

Definition 7. Let κ be a coherence constraint, gκ = {p1 . . . pz} its subgraph and
Π = {J1 . . . Jn} the set of plateaus of gκ such that J i = {ji1 . . . jiz}. i ∈ [1, n]
denotes the level of the plateau J i along the pipelines of gκ. J i is a location
candidate for the primary regulator of κ if ∃jik ∈ J i and ∃pk ∈ gκ such that
lossy(jik) = true and jik ∈ pk and ∀pl ∈ sibκ(pk),@C ∈ pl ∩ pk such that C is a
component and rankpk(C) < rankpk(jik). Then, J i ∈ Π is the primary regulator
location for κ if @Jj ∈ Π a primary regulator candidate for κ such that j < i.

Fig. 5. Simple illutration of the regulator setup policy

The definition of the regulator given in Section 2.3 requires the junctions the
primary regulator replaces to be lossy. Consequently, the highest junctions in a

220

coherence subgraph before setting the regulator have to be lossy. In addition, to
respect a coherence constraint, data must not be lost before the primary regu-
lator. Otherwise it(m1) 6= it(ori(m1)) for a message m1 reaching the regulator
and it would not be possible to express a constraint on it(ori(m1)) in the pri-
mary regulator anymore. Thus, there must not be other junctions above the first
lossy ones on the pipelines. For that, the system forces all the connectors pre-
ceding the highest lossy junctions to form a synchronous segment by enforcing
vc = 0 for each of them. The primary regulator has also to be set before any
intersection between two sibling pipelines. Otherwise, the iteration number of
the messages produced by the common component would not allow to distinct
the message iterations from the two sources of the sibling pipelines anymore.
Figure 5 shows a sample application in which we consider coherence between
the two input ports of component G is requested with respect to the outputs
of A and B. The regulator has three possible locations represented by plateaus
1, 2 and 3. Obviously, plateau 3 is not convenient as part of the flows from A
and B merge at F and become indistinguishable. To guarantee performance, the
primary regulator has also to be set as close as possible to the sources of the
involved pipelines in order to release the synchronicity as soon as possible. For
example, if the primary regulator is set at plateau 2 in Figure 5, the junctions of
plateau 1 will necessarily be removed and replaced by synchronous connections.
Consequently, the primary regulator will rather be set by the system at plateau
1 so that the desynchronization plateau 2 can be kept.

At this step, if a pipeline appears not to have any lossy connector at all, it
will prevent the establishment of the provenance coherence. A warning that a
tight coherence [10] can be ensured instead is then raised. The set of additional
equations in the linear system is denoted FixG . Most of the time, the system
has many solutions that are not equivalent from a performance point of view.
We then give priority to those that maximize the application’s performance, i.e.
that preserve at best the initial junctions. This is expressed by the objective
function Maximize(Sum(JG)) where JG is the set of junctions initially set in
G and Sum(JG) = Σc∈JG (vc). So the linear problem we want to solve is EqG ∪
FixG ∪Maximize(Sum(JG)).

After the numbers of junctions in the pipelines were made the same, it be-
comes possible to definitively set the type of each junction. First, plateaus are
formed according to Definition 6. Plateaus belonging to different coherences are
grouped if they have at least one connector in common. Then, as demonstrated
in [10], the connectors of a given plateau must be of the same type to effec-
tively maintain the coherences all the way down to the destination input ports.
When a plateau contains connectors of different types, we set all its connectors to
nbBuffer if it contains at least one nbBuffer pattern and, otherwise, to nbGreedy
if it contains at least one connector of this type.

3.4 Regulator setup

This step sets the necessary regulators to cover all the coherence constraints. The
system iterates over the provenance coherence constraints, setting their primary

221

regulators one by one. If the selected plateau is of type nbGreedy, the regulator
will adopt a non-blocking policy on all its output ports, and that for a matter of
coherence between them. Otherwise, it will be blocking on all its output ports.

The filtering rules inscribed inside a regulator are adapted to the location of
the regulator along the pipelines. Therefore, for each input port of the regulator,
the source output port of the pipeline is sought and a rule with respect to sibling
pipelines is added. Here, because of merged plateaus, a regulator of a coherence
may intersect pipelines of other coherences but without being their primary
regulator. It then automatically adds equality rules between all the pipelines
which are siblings with respect to other coherences in order to maintain them.
In Figure 7, not only does regulator R2 ensure κ1 but it also maintains κ2
established by R1. More formally, let r be the primary regulator of a coherence
constraint κ = Di1,i2 : C1.oi ◦ α× C2.oj + δ. F (r) consists in the set of filtering
rules fpk,pl where pk ⊂ Pk and pl ⊂ Pl such that Pk and Pl are two sibling
pipelines and pk, pl reach respectively ports ink and inl of r. fpk,pl = ink ◦f
αf × inl + δf , where ◦f = ◦, αf = α and δf = δ if Pk and Pl are sibling with
respect to κ and ◦f = “ = “, αf = 1, δf = 0 otherwise.

3.5 Coherence preservation

The coherence between sibling pipelines established by the regulators has to be
maintained until the final input ports. This is achieved by setting up, in the
remaining plateaus, the tight coherence mechanisms introduced in [10].

Definition 8. We denote by M a series of messages, by |M | its length and
mi denotes its ith message. A set of series of messages {M1, . . . ,Mn} is called
synchronized if |M1| = · · · = |Mn| and ∀i ∈ [1, |M1|], it(mi

1) = · · · = it(mi
n).

The synchronicity mechanisms consist in input and output synchronization
patterns. While the ouput synchronization mechanism remains as defined in [10],
we slightly enrich the input synchronization pattern so that it can also begin with
a regulator instead of two junctions.

Definition 9. In an application graph, an input synchronization is a compo-
sition pattern that consists of two synchronous segments p1, p2 of respectively
k and l components and ended by respectively the components Ck1 and Cl2 not
necessarily distinct and

– either two junctions j1, j2 of the same type and not necessarily distinct,
triggered by their receivers C1

1 and C1
2 and a backward cross-triggering con-

sisting of (C1
1 .e, j2.s) and (C1

2 .e, j1.s).

– or a regulator r triggered by C1
1 and C1

2 and a backward cross-triggering
consisting of (C1

1 .e, r.s) and (C1
2 .e, r.s).

This pattern is denoted J ∗ (p1, p2).

222

The input synchronization ensures that the junctions j1, j2 belonging to a
plateau P of junctions select their messages at the same time and that no new
messages are accepted by the first components before all the components of the
segments are ready for a new iteration. If P is a regulator, it may alter the mes-
sage flows such that the messages entering p1 and p2 are coherent with respect to
the rules inscribed in it. The simultaneous triggering preserves the synchronicity
of the pipelines and of the dispatched messages. If P is non-blocking and does
not contain a pair of messages for p1 and p2 when it is triggered, it issues a
couple of empty messages instead. Figure 6 shows the different input synchro-
nization cases that can be met according to the degree of merging of p1 and p2.
In Figure 6(a), p1 and p2 begin with the same component so only two triggering
links are needed. In Figure 6(b), p1 and p2 have two distinct sources. In case
there is a regulator instead of the junctions as in Figure 6(c), it is triggered by
the components that are its direct receivers. In Figure 6(d), the pipelines are
merged before they reach the junction. Their synchronization is then implicit.

Fig. 6. There are five different input synchronization cases

Definition 10. In an application graph, an output synchronization is a com-
position pattern involving

– two synchronous segments p1 and p2 not necessarily distinct of respectively
k and l components and ended by respectively components Ck1 and Cl2,

– two bBuffer connectors bB1 and bB2 following respectively p1 and p2,
– a forward cross-triggering consisting of (Ck1 .e, bB2.s) and (Cl2.e, bB1.s).

This pattern is denoted (p1, p2) ∗ bB.

This composition pattern ensures that the delay between the synchronous
segments to produce messages is absorbed. As the bBuffer connectors select
their messages at the same time when all the last components of the synchronous
segments are done, the messages are also delivered at the same time. Note that
this property is maintained when the two bBuffer connectors are triggered by
a same additional set of signals. If Ck1 = Cl2, no additional bBuffers or forward
cross-triggering is needed as p1 and p2 are naturally synchronized by this common
destination component. Moreover, no output synchronization is needed if p1 and
p2 precede a regulator as the regulator itself buffers incoming messages and
outputs and guarantees the simultaneity of these outputs.

In what follows we demonstrate that the different steps of our construction
generate an application graph which respects the coherence constraints.

223

Definition 11. In an application graph G, the composition J∗(s1, s2)∗bB where
s1 and s2 are two synchronous segments is called a pair of coherent segments.
[J ∗ (s1, s2) ∗ bB]q denotes the composition of q coherent segments J1 ∗ (s11, s

1
2) ∗

bB1 ∗ · · · ∗ Jq ∗ (sq1, s
q
2) ∗ bBq.

Theorem 1. Let G be an application graph and (S1, S2) = [J ∗ (s1, s2) ∗ bB]q

two segments in G. If the series of messages M1 and M2 stored in the junctions
j11 and j12 of the first coherent segments are synchronized, then the set of mes-
sages m1 and m2 stored respectively in the bBuffer connectors bBq1 and bBq2 of
the last coherent segments are such that it(m1) = it(m2) and it(oriS1

(m1)) =
it(oriS2(m2)) when the bBuffers are triggered.

This theorem comes from [10] where no regulators existed. This result can be
easily extended to the case where some junctions (jk1 , j

k
2) (1 ≤ k ≤ q) are replaced

by a regulator with two input ports ink1 and ink2 and that imposes ink1 = ink2 .
Such a constraint plays, indeed, the same role as an input synchronization.

Theorem 2. Let P1 and P2 be two sibling pipelines of a coherence constraint
κ = Di1,i2 : C1.oi ◦ α × C2.oj + δ. Let m1 and m2 two messages read by D at
the same iteration on respectively i1 and i2 ports. Then m1 and m2 verify that
it(oriP1(m1)) ◦ α× it(oriP2(m2)) + δ.

Proof. Since P1 and P2 are two sibling pipelines of the constraint κ, we can
decompose them into n + 1 pairs of coherent segments as follows. (P1, P2) =
(p1, p2) ∗ J ∗ (C ′1P

′
1, C

′
2P
′
2) with

– (p1, p2) two synchronous segments such that the first edge of p1 is connected
to C1.oi and the first edge of p2 is connected to C2.oj ,

– J is in the plateau that is the primary regulator r of κ where p1 is connected
to port in1 and p2 to port in2 of r,

– C ′1P
′
1 and C ′2P

′
2 are composed of synchronous segments, begin with compo-

nents C ′1 and C ′2 respectively and end at respectively i1 and i2 of D.

Let m1 and m2 be two messages read at the same iteration of D on re-
spectively ports i1 and i2. Since J is the primary regulator of κ, all the other
regulators crossed by P ′1 and P ′2 impose equality on the ports that concerns P ′1
and P ′2. Therefore, from Theorem 1, it(oriP ′

1
(m1)) = it(oriP ′

2
(m2)).

Since r is the primary regulator of κ, the rule fP1,P2
= in1 ◦ α × in2 + δ

is in F (r). Therefore, the messages oriP ′
1
(m1) and oriP ′

2
(m2) belong to a set of

messages that validates F (r). This means that we have it(oriC′
1P

′
1
(m1)) ◦ α ×

it(oriC′
2P

′
2
(m2)) + δ.

Since p1 and p2 are two synchronous segments, we know that for any messages
m′1 and m′2 reaching ports in1 and in2 of J , we have it(orip1(m′1)) = it(m′1) and
it(orip2(m′2)) = it(m′2). From that, we can conclude that it(oriP1(m1)) ◦ α ×
it(oriP2(m2)) + δ.

This theorem proves that the coherence κ is respected in the application
graph automatically constructed.

224

Fig. 7. The final application graph of our example

Figure 7 gives the final application graph under two coherence constraints κ1
and κ2 of the application specified in Figure 4. To put coherence preservation
in practice, the system first adds the backward cross-triggerings to the junc-
tions. Since a plateau may involve more than two segments, our construction
generalizes Definition 9. For a plateau j1 . . . jn and the segments p1 . . . pn ending
with components C1 . . . Cn, we add the set of edges {(Ci.e, Jj .s)|i 6= j}. On the
example, regulator R1 is synchronized by D and E and regulator R2 is syn-
chronized by G, H and I. Then, to implement the output synchronization, we
add one bBuffer connector just after each Ci (i ∈ [1, n]) and add the edges for
the forward cross-triggerings. Output synchronization mechanisms can be no-
ticed before plateaus {c9, c10} and {c11, c12}. These plateaus are also subjected
to input synchronization from respectively components J and K.

4 Discussion and future work

The great emphasis on performance in the communication between the compo-
nents of our model targets the building of real-time interactive scientific visu-
alization applications, a particular type of scientific applications to which, to

225

our knowledge, no specific component model is dedicated yet. The intended in-
teractivity in these applications is not limited to a passive manipulation of the
graphical output. It is rather active and its effects are propagated throughout
the whole running application.

In our approach, we associated to the commonly known spatial provenance
its temporal dimension and used it to ensure coherence in a loosly connected
system. Provenance-based coherence expands the definition of the tight coher-
ence introduced in [10] allowing the specifications of finer rules. We presented a
method to automatically set regulators and connectors to fulfill coherence con-
straints. As explained, our method sets the regulators as high as possible in the
graph to allow the greatest number of desynchronized segments in the pipelines
and thus, promote performance. This can however cause one regulator to be pri-
mary for multiple coherence constraints having the same sources. The potential
drawback of this situation is having conflicting coherence rules inside the same
regulator. Fortunately, unless the conflicting rules are equality+offset rules, the
regulator will always output messages, reflecting their lowest common denomi-
nator. It is also assumed that a buffer, whether inside a connector or a regulator,
has an infinite capacity. At implementation, we are considering the use of a per-
formance model to obtain runtime adaptive buffer sizes. This would, in addition,
make non-lossy channels possible in regulators. To prevent overflows, it can also
be noticed that our construction method sets, as a priority, sFIFOs and Greedies
before Buffers.

The implementation of the complete application generator is ongoing. Mean-
while, representing components, connectors, regulators and small applications as
Petri nets [19] serves as a temporary and light model checking means. Our objec-
tive is to provide a SWMS specifically designed for real-time interactivity. The
current paper addresses the application composition phase and not component
programming. Solutions for the latter, focused on code reuse, were presented
in [9]. The main solution consists in a high level API to transform C, C++ or
Fortran code into FlowVR [8] iterative components. FlowVR is a middleware to
develop and run high-performance interactive applications.

In the future, we plan to extend our coherence constraints to data properties
other than the iteration number. For example, a module may use the results of
two different simulations that generate messages at different rates but stamped
with simulation time. In this case the user may impose constraints on these
time stamps to get coherent results. Another extension consists in expanding
our component definition to supporting not only, regular message streaming but
also event-based message emission.

References

1. S.P. Callahan, J. Freire, E. Santos, C.E. Scheidegger, C.T. Silva, and H.T. Vo.
VisTrails: visualization meets data management. In Proceedings of the 2006 ACM
SIGMOD international conference on Management of data, page 747. ACM, 2006.

226

2. Eran Chinthaka, Jaliya Ekanayake, David Leake, and Beth Plale. CBR Based
Workflow Composition Assistant. 2009 Congress on Services - I, pages 352–355,
July 2009.

3. Dave Clarke, José Proença, Alexander Lazovik, and Farhad Arbab. Channel-
based coordination via constraint satisfaction. Science of Computer Programming,
76(8):681–710, August 2011.

4. P. Velasco Elizondo and K.-K Lau. A catalogue of component connectors to support
development with reuse. Journal of Systems and Software, 83(7):1165–1178, 2010.

5. T. Goodale, G. Allen, G. Lanfermann, J. Masso, T. Radke, E. Seidel, and J. Shalf.
The cactus framework and toolkit: Design and applications. In Vector and Parallel
Processing, pages 1–31, 2002.

6. Paul Groth and Yolanda Gil. Analyzing the Gap Between Workflows and their
Descriptions. isi.edu, 2009.

7. Duncan Hull, Katy Wolstencroft, Robert Stevens, Carole Goble, Mathew R Pocock,
Peter Li, and Tom Oinn. Taverna: a tool for building and running workflows of
services. Nucleic acids research, 34(Web Server issue):W729–32, juillet 2006.

8. Jean-Denis Lesage and Bruno Raffin. High Performance Interactive Computing
with FlowVR. In IEEE VR 2008 SEARIS workshop, pages 13–16, Reno, USA,
2008. Shaker Verlag.

9. S. Limet, S. Robert, and A. Turki. FlowVR-SciViz : A component-based frame-
work for interactive scientific visualization. In Component-Based High Performance
Computing (CBHPC09), Portland, OR, USA, November 2009. ACM.

10. S. Limet, S. Robert, and A. Turki. Coherence and performance for interactive
scientific visualisation applications. In Software Composition: 10th International
Symposium, SC 2011, Zurich, Switzerland, June 29 - July 1, 2011., volume 6708
of LNCS, pages 149–164. Springer, 2011.

11. B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E.A. Lee,
J. Tao, and Y. Zhao. Scientific workflow management and the Kepler system.
Concurrency and Computation: Practice and Experience, 18(10):1039–1065, 2006.

12. Edoardo Pignotti, Peter Edwards, Alun Preece, Nick Gotts, and G. Enhancing
workflow with a semantic description of scientific intent. The Semantic Web:,
pages 1–15, 2008.

13. Jun Qin and Thomas Fahringer. A novel domain oriented approach for scientific
Grid workflow composition. 2008 SC - International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, November 2008.

14. Ian Taylor, Matthew Shields, Ian Wang, and Andrew Harrison. Visual Grid Work-
flow in Triana. Journal of Grid Computing, 3(3-4):153–169, January 2006.

15. Liqiang Wang, Shiyong Lu, Xubo Fei, Artem Chebotko, H. Victoria Bryant, and
Jeffrey L. Ram. Atomicity and provenance support for pipelined scientific work-
flows. Future Generation Computer Systems, 25(5):568–576, 2009.

16. Ustun Yildiz, Adnene Guabtni, and A.H.H. Ngu. Towards scientific workflow pat-
terns. In Proceedings of the 4th Workshop on Workflows in Support of Large-Scale
Science, pages 1–10, New York, New York, USA, 2009. ACM.

17. Ustun Yildiz, Pierre Mouallem, Mladen Vouk, Daniel Crawl, and Ilkay Altintas.
Fault-Tolerance in Dataflow-Based Scientific Workflow Management. 2010 6th
World Congress on Services, pages 336–343, July 2010.

18. Z. Zhao, A. Belloum, A. Wibisono, F. Terpstra, P.T. de Boer, P. Sloot, and
B. Hertzberger. Scientific workflow management: between generality and appli-
cability. In Quality Software (QSIC 2005)., pages 357–364. IEEE, 2006.

19. A. Zimmermann, M. Knoke, A. Huck, and G. Hommel. Towards version 4.0 of
TimeNET. MMB 2006, 2006.

227

Learning from Failures: a Lightweight Approach
to Run-Time Behavioural Adaptation �

José Antonio Mart́ın1, Antonio Brogi2, and Ernesto Pimentel1

1 Department of Computer Science, University of Málaga, Málaga, Spain
{jamartin, ernesto}@lcc.uma.es

2 Department of Computer Science, University of Pisa, Pisa, Italy
brogi@di.unipi.it

Abstract. Software integration needs to face signature and behaviour
incompatibilities that unavoidably arise when composing services devel-
oped by different parties. While many of such incompatibilities can be
solved by applying existing software adaptation techniques, these are
computationally expensive and require to know beforehand the behaviour
of the services to be integrated. In this paper, we present a lightweight
approach to dynamic service adaptation which does not require any
previous knowledge on the behaviour of the services to be integrated.
The approach itself is adaptive in the sense that an initial (possibly the
most liberal) adaptor behaviour is progressively refined by learning from
failures that possibly occur during service interaction.

1 Introduction

The wide adoption of Web service standards has considerably contributed to
simplifying the integration of heterogeneous applications both within and across
enterprise boundaries. The languages to describe messaging (SOAP), functionali-
ties (WSDL) and orchestration of services (WS-BPEL) have been standardised,
but the actual signatures and interaction protocols of services have not. For
this very reason, service adaptation [2,13,17] remains one of the core issues for
application integration in a variety of situations: the need of overcoming various
types of mismatches among services developed by different parties; customising
existing services to different types of clients; adapting legacy systems to meet new
business demands; or ensuring backward compatibility of new service versions.

Various approaches have been proposed to adapt service signatures [6], process
behaviour [3], quality of service [7], security [12] or service level agreements [15].
In this paper, we focus on signature and behaviour incompatibilities, whose
occurrence can impede the very interoperability of services. Many signature and
behaviour incompatibilities can be solved by applying existing (semi-)automated

� This work has been partially supported by the project TIN2008-05932 funded by
the Spanish Ministry of Education and Science (MEC), FEDER, by project P07-
TIC-03131 funded by the Andalusian local Government and by EU-funded project
FP7-256980 NESSOS.

228

adaptation techniques. However such techniques present two limitations: i) they
require signature and behaviour of both parties to be known before service
interaction starts, and ii) they are computationally expensive since they explore
the whole interaction space in order to devise adaptors capable of solving any
possible behaviour mismatch.

In this paper we focus on the problem of dynamic adaptation in applications
running on limited capacity devices, as in typical pervasive computing scenarios
where (unanticipated) connections and disconnections of peers continuously
occur. Unfortunately, the limited computing, storage, and energy resources of
such devices inhibit the applicability of most existing adaptation approaches.

We present a lightweight adaptive approach to the adaptation of services
that is capable of overcoming signature and behaviour mismatches that would
otherwise impede service interoperation. The approach is lightweight in the sense
that it requires low computing and storage capabilities to run.

The adaptation is controlled by an adaptation contract which specifies what
is considered a meaningful and successful trace in a declarative manner. It also
states how to solve signature incompatibilities between the known operations of
the services, therefore the operations of the services (their signature) must be
known but the sequence on which those operations are offered and requested (i.e.,
the service behaviour, as those represented by BPEL or BPMN processes) do
not need to be known and might even change during the lifespan of the adaptor.

The adaptation process is itself adaptive in the sense that an initial (possibly
the most liberal) adaptor behaviour is progressively refined at run-time by
learning the behaviour of the services from failures that may occur during service
interactions. Roughly speaking, the adaptor initially allows all interactions that
satisfy the current adaptation contract. If an interaction session between the
services fails w.r.t. the contract, the adaptor memorises the interaction trace that
led to the failure and it will suitably exploit it to inhibit that failing trace in
following sessions. Intuitively speaking, the more failures will be experimented,
the faster the adaptor will refine its behaviour so as to allow only deadlock-free
interactions among the services.

Learning and inhibiting erroneous traces tackle permanent failures. For in-
stance, a behavioural incompatibility which leads the system to a deadlock
situation or a hardware malfunction (maybe due to low battery) which disables
part of the functionality. In addition, communications in pervasive computing can
be unstable due to changes in the environment. For instance, shadow fading [10],
where messages might be lost due to the presence of possibly moving obstacles,
has deep impact in the reliability of communication channels. We propose several
learning policies which tackle this scenario of sporadic errors. Inhibited traces
learned by the adaptor are eventually forgotten so that it can re-adapt itself to
drastic changes in service functionality, temporal changes in the environment or
sporadic communication failures.

As one may expect, the results of the refinement performed by this adaptive
adaptation approach are particularly interesting when the process starts with a
non-empty adaptation contract. However, the approach can overcome message

229

ordering mismatches [11] also in the extreme situation in which no such adaptation
contract is available. When compared with the few other existing proposals of
lightweight behaviour adaptation of services, such as [5] for instance, our approach
features the important advantage of requiring just an adaptation contract based
on the services signatures, it does not require to know the interaction behaviour of
the services that need adaptation. In other words, the adaptor is not synthesised
at design time, instead, it is directly deployed with no other information than an
adaptation contract and it will successively learn the behaviour of the services
and how to solve their behavioural incompatibilities.

Failed traces, although undesirable, are commonplace in pervasive comput-
ing due to its unstable nature, and unavoidable due to communication errors.
Therefore, services in these unstable scenarios are usually able to autonomously
restart whenever failures happen so, in general, it is safe to assume some failed
traces. As regards the complexity in time and space of learning adaptors, these
only depend on the size and structure of the adaptation contract.

The structure of the paper is the following. We introduce behavioural adapta-
tion in Sect. 2. The lightweight adaptive approach to dynamic service adaptation
is formally presented in Sect. 3 and we comment on several learning policies in
Sect. 4. Then we proceed to evaluate its implementation with an example based
on two real-world data-diffusion protocols for sensor networks (Sect. 5). Some
related work is introduced in Sect. 6 and we finally conclude with Sect. 7.

2 Behavioural Adaptation

The deployment of suitable “adapters-in-the-middle” has proven to be an effective
way to overcome signature and behaviour incompatibilities between services [3].
Intuitively speaking, such adaptors intercept, collect, and modify the messages
exchanged by two parties so as to overcome their incompatibilities. The adaptor
behaviour is specified by an adaptation contract defining a set of correspondence
rules between actions and (optionally) some constraints on the use of such rules.

Definition 1. An adaptation contract C is a finite state machine (FSM, for
short)

�
Σc, Sc, sc

0, F
c, T c

�
where Σc is a set of correspondence rules, Sc is a set

of states, sc
0 ∈ Sc is the initial state, F c ⊆ Sc is the set of final states, and

T c ⊆ (Sc ×Σc × Sc) is a set of labelled transitions. Correspondence rules in Σc

have the form a ♦ b where: a and b are input or output communication actions;
one side of the rule can be empty (viz., a ♦ or ♦ b); and if both a and b are
present, then one is an input action and the other is an output action.

Adapters act as mediators between two sides. Any communication between
those sides must be intercepted and handled by the adaptor. Actions on the each
side of correspondence rules denote the complementary actions that the adaptor
will perform towards the service on that side. For instance, a correspondence rule
such as !msg ♦ ?msg� (where msg and msg� are operation names followed by
symbolic parameters) states that if the adaptor receives message msg from the
service on the left-hand side then it will have to (eventually) send message msg�

230

to the service on the right-hand side. Every message received by the adaptor
is matched against a correspondence rule, and such matching possibly updates
the state of stored parameters maintained by the adaptor. Once correspondence
rule !msg ♦ ?msg� is triggered, message msg� is instantiated and inserted in a
queue of messages to be eventually sent. When the target service will be ready
to receive, the first matching message in the queue can be delivered.

The transition relation T c imposes further (optional) restrictions on the order
in which correspondence rules can be triggered. In this way, T c permits to enforce
high level policies on the communication such as “do not perform more than
three requests” or “after every request there must be an acknowledgment”.

Example 1. Our running example is based on a simplified meteorologic system.
We have three incompatible services but with complementary functionality: a) a
temperature sensor service, this service could be deployed in a sink of a tempera-
ture sensor network; b) a monitoring service which registers the information, this
could be located in a laptop; and c) a humidity service which might be deployed
in the same infrastructure as the temperature sensor network or otherwise.

The signatures of the services (i.e., their operation names and arguments)
are known. The temperature service (service a) has output operations !user(usr)
and !pass(psw) to authenticate with its user name (argument usr) and password
(psw); an operation to notify of the current temperature, i.e., !upload(temp); two
input operations for the upload to be either ?denied() or answered with a new
interval of time prior the next notification (?delay(time)); and finally, an output
operation to notify that it finishes it current session, !end(). Intuitively speaking,
input actions (e.g., ?denied()) represent the availability of service operations
while output actions represent service requests (e.g., !upload(temp)), both with
the types of their arguments between parentheses.

The monitoring service (service b) might be a new version or come from
a different vendor so that it has operations with similar functionalities but
incompatible signature. Instead of operations ?user(usr) and ?pass(psw) ex-
pected by service a, it has a single authentication operation ?login(usr, psw).
The authentication can be !rejected() or !connected(). It receives the temper-
ature notifications with an operation ?register(temp) and it sends the answer
always through !answer(time). This service can receive a ?quit() petition and
it notifies of the finished session with !end(). The monitoring service requires
humidity information (typed humid) before deciding how long to wait for the
next temperature update. For this reason, it requests the humidity information
to the humidity service (service c) through the request and response !getHumid()
and ?getHumid(humid). The latter is understood by service c but, instead of
the former, service c needs the temperature information to do some calibration
via ?getHumid(temp) and it finally ends its session with !finish().

Figure 1 illustrates a possible adaptation contract for these services. Rule
vu enables the adaptor to receive action user and refers to its argument as U .
Rule vl first receives the password (in P) with action pass and, as a consequence,
it eventually sends a login message with both the user U and password P
previously received. The rest of the correspondence rules behave accordingly. The

231

Σc = { !user(U) ♦ (vu), !pass(P) ♦ ?login(U, P) (vl),

♦ !connected() (vc), !upload(D) ♦ (vp),

♦ ?register(D) (vr), ?getHumid(D) ♦ !getHumid() (vg),

?delay(T) ♦ !answer(T) (va), !getHumid(H) ♦ ?getHumid(H) (vt),

?denied() ♦ !rejected() (vd), ♦ ?quit() (vq),

!end() ♦ (ve), !finish() ♦ (ve�),

♦ !end() (ve��)}
(a) Correspondence rules

{ve} {ve}

Σc \ {va, ve, ve� , ve��} Σc \ {ve, ve� , ve��}

{ve��}

Σc \ {vc, ve, ve� , ve��} {va}

{ve�}

{vc}

(b) Contract FSM

Fig. 1. An adaptation contract

automaton of the contract states that the goal of the system is that, if service c
sends connected (vc), then the temperature update must be eventually replied
with an answer and sent as a delay message to service a through correspondence
rule va. In addition, the automaton states that the session should finish (through
ve, ve� and ve��) either at this point or before connecting (i.e., before vc).

As we have seen in the example, services can employ different alphabets of
actions (different names of actions as well as different names, number or order
of parameters). The synchronisation rules of the contract (Σc) tell us how to
solve these signature incompatibilities. In addition, services might also lock due
to behavioural incompatibilities between them. These incompatibilities arise
because one service offers and requests operations in a different order than the
one expected by another.

The intentional semantics of the contract specifies what we want from the
adapted system (i.e., what are the desired interactions between the services) but it
does not necessarily say anything about how to solve behavioural incompatibilities
(since the behaviour of the services might be unknown). In order to adapt
behavioural incompatibilities without knowing the actual behaviour of the services
(which might even change drastically due hardware problems or low battery, for
instance) the runtime adaptors presented in this paper must learn to be compliant
with the given adaptation contract (i.e., to respect the intentional semantics of
its contract) and avoid the deadlocks that might occur due to incompatibilities
between the unknown behaviour of the services.

232

2.1 Intensional Semantics of Adaptation Contracts

The intensional semantics of an adaptation contract provides the interactions
between the services and the adaptor allowed by the contract. Formally, the
intentional semantics of an adaptation contract c is defined by a labelled transition

system
x→c over configurations of the form �s, ∆� where s is the current state of

the contract and ∆ is a multiset of pending actions that the adaptor will have

to eventually perform. A transition �s, ∆� x→c �s�, ∆�� indicates that an adaptor
could, by contract c, execute action x in state s with pending actions ∆. The

transition system
x→c is defined by the following inference rules

(I1)
(s, a ♦ b, s�) ∈ T c

�s,∆� |a→c �s�,∆ ∪ {b|}�
(I2)

(s, a ♦ b, s�) ∈ T c

�s,∆� b|→c �s�,∆ ∪ {|a}�
(I3)

�s,∆ ∪ {x}� x→c �s,∆�

where the complementary action of a non-internal action a is denoted by a (e.g.,
if a = !do() then a = ?do(), and vice-versa).

Note that the labels denoting the actions of the adaptor are annotated with a
left-hand or right-hand bar to explicitly represent whether they are communication
actions performed by the adaptor towards the service on the left-hand side (|a)
or towards the service on the right-hand side (b|), respectively. Note also that an
ordered semantics of pending actions is assumed, that is, in rule (I3) we assume
that if there is more than one x in the multiset ∆, then the emitted x is the oldest
in ∆. Finally, since in a correspondence rule a ♦ b of an adaptation contract

either a or b may be absent, the definition of
x→c includes also the following rules:

(I4)
(s, a ♦ , s�) ∈ T c

�s,∆� |a→c �s�,∆�
(I5)

(s, ♦ b, s�) ∈ T c

�s,∆� b|→c �s�,∆�

It is worth noting that the intensional semantics defined by rules (I1) to (I5)
may force eager choices. Such eager choices may occur, among other situations,
when an adaptation contract contains more than one correspondence rule for
an action a. Consider for instance the simple contract c = �Σc, Sc, sc

0, F
c, T c�

where Σc = {a ♦ b, a ♦ c}, Sc = {s0, s1}, sc
0 = s0, F c = {s1}, and T c =

{(s0, a ♦ b, s1), (s0, a ♦ c, s1)}. Then, two of the transitions that may fire in

the initial state, namely �s0, ∅�
|a→c �s1, {b|}� and �s0, ∅�

|a→c �s1, {c|}�, create
an eager choice of the adaptor, which must pick one of them when it executes
a. Intuitively, such an unnecessary eager choice may lead the adaptor to fail
adapting some interactions. We could enforce contracts to be deterministic but,
instead, we allow such flexibility by providing a lazy choice alternative which
results in deterministic adaptors. Lazy choice is modelled by lifting transition
system

x→c so as to deal with sets of pairs �s, ∆�.

(L)
A� = {�s�, ∆�� | ∃�s, ∆� ∈ A . �s, ∆� x→c �s�, ∆��} �= ∅

A
x

�→c A�

Not every execution order among the correspondence rules in the contract
avoid deadlocks since deadlocks depend on the actual behaviour of the services,

233

which is unknown. For instance, let us consider the actual behaviour of the services
of our running example were the FSMs depicted in Fig. 2. Internal choices (e.g.,
if-then-else or switch conditionals) are modelled by τ actions as usual, while
external choices (e.g., WS-BPEL pick) are modelled by input-action-labelled
transitions leaving from the same state. Now, assuming that service b internally
decides to connect (it follows the right-hand side τ), then the intensional semantics
of the contract in Fig. 1 allows the sequence of rules vu : vl : vc : vp : vq (which,
among others, corresponds to trace |?u : |?s : !l| : ?c| : |?p : ?q| where actions are
represented by their underlined characters and ‘:’ is the append operator). This
sequence would lead the system to a deadlock because, in that point, service
b cannot participate in the rules needed for service a to reach a final state
(i.e., vd and va, at least). Because of these deadlock situations, the intensional
semantics of adaptation contracts are refined into a concrete adaptor behaviour
capable of controlling the services and leading them to successful states while
avoiding locks. This refinement is the key concept of traditional adaptor synthesis
proposals [1,3,11,13]. These related works, however, are focused on design time
and they require to know in advance the behaviour of the services. Unlike those
related works, the goal of the learning process presented in this paper is to do
this adaptation at run time without knowing the behaviour of the services.

Example 2. Assuming that the unknown behaviour of the services were the FSMs
shown in Fig. 2, the most general adaptor compliant with the contract in Fig. 1
would be the one depicted in Fig. 3. For the sake of clarity, actions in Fig. 3 have
been reduced to their underlined letters in the contract and have been prefixed
with the identification of the communicating service. Such an adaptor could
be generated using traditional approaches being provided the contract and the
behaviour of the services. The learning adaptors presented in this work do not
need to know the behaviour of the services. A learning adaptor for our running
example dynamically learns to synchronise with the services in the same way
that the adaptor in Fig. 3 does. When the learning adaptor converges, each of its
transitions is either one in Fig. 3 or it is offered but never used by the services.
In addition, the behaviour of the adaptor does not need to be stored since every
transition is generated on-demand.

3 Learning Adapters

Our proposal is to directly deploy an adaptor without no other information
than the adaptation contract and then the adaptor will dynamically learn the
behaviour and incompatibilities of the services. The approach is to initially
support every communication allowed by the adaptation contract without any
guarantee about the successful termination of the current session. The adaptor
learns which sessions ended correctly and, on failures, it will forbid the last
communication which led to the failure. The goal is to make this process converge
to the most general adaptor which complies with the adaptation contract and
the given services. However, depending on the contract and the services (they

234

(a) Service a, tem-
perature sensor

(b) Service b, monitoring station

(c) Service c, humidity sensor

Fig. 2. The (unknown) behaviour of the services of our running example

might not be controllable due to their internal choices) it is possible that no such
an adaptor exists. In this case, the process will converge to an empty adaptor
(single initial state with no transitions) where no communication is allowed.

The following transition system
x�−→ models the way in which an adaptor

wraps the service it adapts and interacts with the rest of the environment. An
adaptor wrapping a service according to an adaptation contract c is denoted in
the transition system

x�−→ by a term of the form: �A, I, t�c [P] where A is a set of
pairs �s, ∆� (s is a state of the contract and ∆ the multiset of pending actions
that it should eventually perform), I is a sequence of inhibited traces that have
previously led to unsuccessful interactions according to what the adaptor has
learned so far, t is the trace of actions executed so far by the adaptor during the
current interaction session, c is the adaptation contract and P is the current state
of the service being adapted (which is not known by the adaptor). An adaptor
at the beginning of a session is denoted by �A0, I, λ�c [P] where A0 = {�sc

0, ∅�}
and λ is the empty trace. If the adaptor has not learned anything yet, then I is
empty.

I contains elements of the domain of inhibited traces. Each of these trace
is a sequence of communication actions ranging over Σ∗ (where Σ represents

235

a?u

a?s

b!l

a?p

a?p

b?c

b?j

b!l b?c

b?j

b!r

a!d

b?c

b?j

a?p

b?g

c!g

c?g
b!g

b?a
a!v

b?q

b?q

a!v

a?e

b?e
c?f

a?p

Fig. 3. Static most-general adaptor compliant with the contract and services shown in
Fig. 1 and Fig. 2, respectively

a global set of communicating actions). Among others, I can be modelled as a
set, a sequence or a tree. Independently of its implementation, we will denote as
I � t whether trace t is inhibited by I or not. When no trace is inhibited we say
that I = ∅ and we say that I ∪ I � � t iff I � t or I � � t.

We will denote by t : a the sequence obtained by appending element a to
sequence t, by a.t the sequence obtained by prefixing element a to sequence t,
and by t::t� the sequence obtained by concatenating sequences t and t�. We will
also say that sequence t is a prefix of t::t�, where both t and t� can be empty,
being λ the empty sequence.

Rules (Ext) and (Int) describe the steps that the adaptor can make by
offering a communication to the external environment and by interacting with
the service it wraps, respectively.

(Ext)
A

|a
�→c A� ∧ I �� t : |a

�A, I, t�c [P]
a�−→ �A�, I, t : |a�c [P]

(Int)
A

b|
�→c A� ∧ P

b�−→ P � ∧ I �� t :b|
�A, I, t�c [P]

τ�−−→ �A�, I, t :b|�c [P �]

Note that the communications offered by the adaptor only depend on the current
state of the adaptor, not the services. Rule (Int) models synchronisations between
the adaptor and the service to be adapted as silent actions τ as such interactions
are not visible by the external environment. Also the internal steps independently
made by the wrapped service are modelled as silent actions (Tau). Rules (Syn)
and (Par) model (commutative) parallel composition between services and
adaptors with synchronous communications in the standard way:

(Tau)
P

τ�−→ P �

A[P]
τ�−→ A[P �]

(Syn)
P

a�−→ P � ∧ Q
a�−→ Q�

P |Q τ�−→ P �|Q�
(Par)

P
a�−→ P �

P |Q a�−→ P �|Q
By rule (Ok), an adaptor can consider an interaction session successfully

terminated when it is in a final state of the adaptation contract and there are no
more pending communications to perform. Let OKc = {�s, ∅� | s ∈ F c}.

236

(Ok)
A ∩OKc �= ∅ ∧ A0 = {�sc

0, ∅�}
�A, I, t�c [P]

ok(t)�−−−−→ �A0, I, λ�c [P]

Rule (Learn) describes how an adaptor can autonomously decide, after a
timed wait, to inhibit the trace corresponding to an interaction session that has
not (yet) successfully terminated.

(Learn)
A ∩OKc = ∅ ∧ A0 = {�sc

0, ∅�}
�A, I, t�c [P]

add(t,I)�−−−−−−→ �A0, add(t, I), λ�c [P]

Note that rule (Learn) does not constrain the way in which timed waits will
be actually realised in the underlying implementation. From the viewpoint of the
external environment, a learning step made by the adaptor is an internal action
of the latter which may take place at virtually any moment. In Sect. 4 we will
show different definitions of add(t, I) that can be employed to define different
learning policies for rule (Learn). Function add consists of including the new
trace into I so that add(t, I) � t. For instance, we can define an add0 such that:

add0(t, I) � t� iff I � t� ∨ t� = t

Note also that rules (OK) and (Learn) specify that the adaptor will be
restarted (to its initial state A0) when it detects the successful termination of an
interaction session or when it performs a learning step3.

A natural assumption on the services deployed in limited capacity devices is
that they their behaviour is bounded in length. This does not necessarily mean
that the services will expire but, instead, it means that the interaction with the
service are divided in finite sessions that can be run over and over again. In the
sequel we always assume bounded services whose behaviour consists of a finite set
of finite length traces.

Informally, we say that a learning function add is monotonic if add(t, I)
inhibits (when used in rules (EXT) and (INT)) all the traces inhibited by I.
Of course, add mapping must also inhibit trace t. In order to formalize this
monotonicity notion, we need to introduce the set of traces prefixed by elements
of I as follows:

prefixed(I) = {u ∈ Σ∗ | ∃t . I � t and t prefix of u}

Definition 2. A learning function add is monotonic if add(t, I) is a monotonic
extension of I and t ∈ prefixed(add(t, I)), for each t and I. We say that add(t, I)
is a monotonic extension of I (I � add(t, I)) if

prefixed(I) ⊆ prefixed(add(t, I)).

3 Rules (OK) and (Learn) do not enforce an immediate restart of the wrapped service
P and of the service Q interacting with P through the adapter in a configuration
Q| �A, I, t�c [P]. We assume that the restart of P and Q is autonomously performed
(by a timeout, for instance) alternatively, it can be triggered by the adaptation
contract itself, which can include explicit restart messages.

237

We say that add(t, I) is a proper monotonic extension of I (I � add(t, I)) if
prefixed(I) ⊂ prefixed(add(t, I)).

Obviously, � relationship defined on sequences of traces is a pre-order.
We now prove that the adaptation process converges if a monotonic learning

function add is employed in rule (LEARN) to adapt bounded services.

Proposition 1 (Convergence). Let S and P be two bounded services, A0 be
an adaptor for contract c in its initial state A0 = {�sc

0, ∅�}, and I0 be a (possibly
empty) domain of inhibited traces. If the adaptor employs a monotonic learning
function, then there exists a sequence I0, I1, . . . , In, with a finite n ≥ 0, such that:

1. ∀j ∈ [0, n) ∃S�, P � . S|�A0, Ij , λ�c[P]
τ�−→∗ Ij+1�−−−−→ S�|�A0, Ij+1, λ�c[P �]

with Ij � Ij+1, and

2. � ∃S�, P �, In+1 . S|�A0, In, λ�c[P]
τ�−→∗ In+1�−−−−→ S�|�A0, In+1, λ�c[P �]

with In � In+1.

The previous proposition shows that the training process with bounded
services is finite and it always converges to a domain of inhibited traces In. We
call such a In a complete domain of inhibited traces for S and P .

Now, to demonstrate the correctness of our proposal, we prove that an adaptor
with a complete domain of inhibited traces In always lead the interacting services
to successful states of the contract (OKc) while avoiding locks.

Proposition 2 (Correctness). Given the initial states of two bounded services
S and P , an adaptor with an initial state A0 with contract c. If the adaptor
employs a monotonic learning function, and I is a complete domain of inhibited
traces, then for every S�, A�, t� and P � such that

S | �A0, I, λ�c [P]
τ�−→∗

S� | �A�, I, t��c [P �]

where A� �= A0, there exists a sequence of τ transitions

S� | �A�, I, t��c [P �]
τ�−→∗

S�� | �A��, I, t���c [P ��]

such that A�� ∩OK c �= ∅.
This result is particularly interesting in those cases where the adaptation

contract guarantees that the services have successfully finished, i.e., those in
which S�� and P �� are also final states of their respective services. This happens
in our running example because the contract automaton (Fig. 1(b)) is aware of
the ending of the services due to correspondence rules ve, ve� and ve�� .

It is worth noting that the sequence {Ii}i∈{0,...,n} of inhibited traces derived
from Proposition 1 could be different for each run-time session. In this way,
different learning iterations may lead to different complete domains of inhibited
traces. Thus, we need to prove that the learning process is well defined, in the
sense that the learning process does not depend on the execution or, in other
words, the complete domains of inhibited traces are “essentially” the same. The
following proposition illustrates this result.

238

Proposition 3 (Well-definedness). Let S and P be the initial states of two
bounded services. Let us consider an adaptation contract c which corresponds
to an adaptor with an initial state A0 and a monotonic learning function. If I
and I � are complete domains of inhibited traces resulting from a learning process
starting in S | �A0, I0, λ�c [P], then

I � I � and I � � I

4 Learning Policies

We now show how different definitions of add(t, I) can be employed to define
different learning policies for rule (Learn).

Bounded learning. An upper bound to the number of traces that are
inhibited by an adaptor at any given time may be set for different reasons. The
most common is memory capacity, which may limit the size of learned information
that can be kept in memory. To respect such a limit, adaptors may need to forget
some previously inhibited traces when learning a new trace to be inhibited. A
simple bounded learning policy is to forget (if needed) the oldest learned trace
when learning a new one. For this, we are going to model inhibited traces I as a
sequence of traces (e.g., I = t0 : · · · : tn) where I � t iff I = I � : t::I ��:

add1(t, I) =

�
J : t if outOfBound(I : t,β) and I = u.J
I : t otherwise

where outOfBound(I : t,β) holds if the size of I : t exceeds the maximum allowed
size β4. Other types of bounded learning policies can be implemented by defining
different outOfBound boundedness conditions (e.g., on the number of traces —
rather than on their size) and/or by choosing differently which trace(s) to forget
(e.g., one of the longest traces —rather than the oldest one). For instance:

add1�(t, I) =

�
delap({u}, I) : t if outOfBound(I : t,β) and u ∈ longest(I)
I : t otherwise

where ap(t, I) = I : t; longest(I) = {u | I � u ∧ � ∃t . |t| > |u|}; and del is recursively
defined as follows:

dela(D, I) =

dela(D, J) if I = a(u, J) and D � u
a(u, dela(D, J)) if I = a(u, J) and D �� u
∅ if I = ∅

Prefix-driven absorption. The way in which adaptors forget inhibited
traces affects the overall performance of learning adaptors as much as the way
in which they learn them. While bounded learning policies indirectly define
a (boundedness determined) forget policy, trace prefixing can be exploited to

4 Since boundedness conditions are often application- and device-dependent, bounded
learning policies are parameterised w.r.t the maximum allowed size β.

239

intentionally define a forget policy to shrink the size of learned information.
Intuitively speaking, the inhibition of a trace t which is a prefix of a previously
inhibited trace t :: u subsumes (by rules (Ext) and (Int)) the inhibition of the
latter, which hence does not need to be explicitly stored among the inhibited
traces anymore. A learning policy based on prefix-driven absorption can be easily
specified by defining add(t, I) as:

adda
2(t, I) = a(t, dela(prefixedBy(t, I), I))

where prefixedBy(t, I) = {u | I � u ∧ ∃v . u = t::v} is the set of traces in I that
are prefixed by t. It is worth observing that different learning policies can be
combined together. For instance, prefix-driven absorption and bounded learning
policies can be naturally combined into a single policy as follows.

add2+1(t, I) = addadd1
2 (t, I)

It is also worth observing that prefix-driven absorption can also be exploited
to identify temporary failures not due to service protocol incompatibilities. To
do that we must distinguish “simple” prefixes from “non-simpe” prefixes. We
say that t is a simple prefix of t :: u if u contains only one element. The normal
learning process of an adaptor may inhibit a simple prefix t of a previously
inhibited trace t : a whenever the adaptor realises that there is no alternative
extension of t. On the other hand, the inhibition of a trace t which is a non-simple
prefix of a previously inhibited trace t :: u might be caused by some temporary
failure that intervened (e.g., physical communication problems —such as shadow
fading or increased physical distance). The detection of temporary failures can be
exploited to define refined prefix-driven absorption policies that maintain the set
IT of traces learned from temporary failures separate from the set IP of traces
learned from (supposedly) permanent failures5, such as the following definition
of add. Let oneprefixedBy(t, I) = {t :α | I � t :α} be the set of traces t :α in I which
are prefixed by t and which are only one element longer than t. Then:

adda
3(t, �IP , IT �) =

�a(t, dela(J, IP)), dela(J, IT)� if oneprefixedBy(t, IP) �= ∅ and
J = prefixedBy(t, IP ∪ IT)

�dela(J, IP), a(t, dela(J, IT))� if oneprefixedBy(t, IP) = ∅ and
prefixedBy(t, IP ∪ IT) = J and
J �= ∅

�a(t, IP), IT � otherwise

Combined policies whose bounded learning and/or time-to-forget components
prioritarily forget traces corresponding to temporary failures can be easily defined.
For instance, let �I �

P , I �
T � = addadd0

3 (t, �IP , IT �), then:

add3+1(t, �IP , IT �) =

�I �
P , JT � if outOfBound(I �

P :: I �
T ,β) and I �

T = u.JT

�JP , ∅� if outOfBound(I �
P :: I �

T ,β) and I �
T = ∅ and I �

P = u.JP

�I �
P , I �

T � otherwise

5 Rules (Ext) and (Int) trivially extend to the case in which I is modelled as a pair
�IP , IT �, viz., by turning I �� t into IP ∪ IT �� t.

240

Reset on empty adaptors. The aforementioned learning policies aim at
reducing the memory requirements (add1 and add2) and mitigate sporadic errors
(add3). In particular, the main problem of the basic learning policy (add0) with
sporadic errors (unforeseen failures in the synchronisations due to instabilities in
the communication channels) is that it tends to converge to the empty adaptor.
This happens because add0 does not forget the inhibited traces due to this
sporadic errors and, as a result, the adaptor behaviour is constantly reduced
every time one of these errors occurs. An straightforward solution to this issue,
is to recognise when the process has converged to the empty adaptor and then
reset the inhibited traces so that the adaptor can converge to better solutions.
This is formalised with the following function.

adda
4(t, I) =

�
∅ if t = λ

a(t, I) otherwise

Intuitively, add4 behaves as a when the adaptor is not empty. If it becomes
empty, and this is not considered valid by the given contract, then the only rule
that can be triggered is the rule Learn inhibiting the empty trace λ as far as no
synchronisation is possible with the empty adaptor. When this happens, function
add4 clears the inhibited traces so that the adaptor can synchronise again. As
usual, add4 can be combined with other learning policies, e.g.:

add4+2+1(t, I) = add
add2+1
4 (t, I)

It is easy to prove that addi, i ∈ {0, 2, 3} (and their combinations) are mono-
tonic by Definition 2 whereas add1, add4 are not (deliberately). We will see in
Sect. 5 that, although non-monotonic learning policies do not necessarily converge,
they have the advantage of overcoming sporadic errors while maintaining high
success rates.

5 Evaluation and Tool Support: ITACA

Learning adaptors have been implemented and included in the Integrated Toolbox
for Automatic Composition and Adaptation (ITACA6 [4]). We have evaluated
our approach with two real-world data-diffusion protocols for sensor networks:
TinyDiffusion [14] and SPIN [8] (see Sect. B). In this experiment, a TinyDiffusion
node was adapted to participate in the communication between two SPIN nodes.
The example can be solved with a minimum of 55 inhibited traces (corresponding
to 7123 adaptor transitions which do not need to be stored in memory) and it
allows a maximum of 5466 different successful traces. We use a transition error rate
parameter (TER ∈ [0, 1]) which represents the probability of a synchronisation
to forcibly fail due to sporadic errors. The experiment is run 10 times to plot the
arithmetic mean and the sample standard deviation.

6 http://itaca.gisum.uma.es/

241

Different learning policies are compared in Fig. 4, where the number of
simulated traces is shown in the horizontal axis. Line reg corresponds to a
regular adaptor using add2. Line dthr represents an adaptor using add4+2+1

with a dynamic threshold β ∈ N, initially set to 0, which is incremented and
decremented each time rules Ok and Learn are respectively used. The adaptive
adaptor, athr, also uses add4+2+1 with a dynamic threshold β� ∈ N but, in this
case, β� is always set to be equal to the number of transitions in the adaptor.
Finally, noi represents an adaptor which does not learn, i.e., I is always empty.
The latter is used as a comparative baseline for the other approaches.

Figure 4(a) shows the success rate, i.e., the percentage of simulated traces
which were successful in the current interval. It can be seen that noi remains close
to a success rate of 55%, which is reduced proportionally to the TER. Adapter
dthr performs slightly better, but not significantly due to its low threshold β.
The other adaptors take advantage of the learning process and achieve success
rates close to 100%. However, when sporadic errors start to occur (starting from
simulation 4000), adaptor reg, which is not able to forget inhibited traces, quickly
converges to the empty adaptor and remains so for the rest of the simulation.
Finally, athr is also affected by high values of TER but it is able to recover when
sporadic errors cease to occur, achieving success rates close to 100%.

A detail of the athr adaptor is depicted in Fig. 4(b). It shows the amount of:
inhibited traces (I), sporadic errors (E) and the total number of failed traces
(F ≥ E). The number of inhibited traces initially approximates the desired value
of 55. However, when sporadic errors appear (4000), new inhibited traces reduce
the size of the adaptor (i.e., number of transitions), this reduces threshold β�

which finally reduces the number of inhibited traces. Intuitively, this means that
the adaptor reduces its knowledge because it cannot trust it. This phenomenon
reappears when TER is increased in subsequent iterations (6000, 8000, 10000
and 12000). The final range (14000, 20000] is more interesting. We can see that,
although athr succeeds in recovering from sporadic errors, achieving success rates
close to 100%, it does so at the cost of obtaining a suboptimal, but correct,
solution. In other words, depending on where the sporadic errors occurred,
adaptor athr might prune bigger parts of the behaviour than what is needed.

Interestingly, adaptor reg enhanced with reset capabilities as dthr (i.e.,
reg+reset using add4+2) was able to match athr7. This fact leads to the conclusion
that it is not the dynamic threshold what matters but to be able to notice the
convergence to empty adaptor, and thus reset the inhibited traces. Therefore,
the most promising adaptor is reg+reset (add4+2) thanks to its simplicity and
effectiveness.

Regarding the computational complexity, every synchronisation with the
adaptor requires a transition in the adaptor behaviour and the possible inclusion
of a new inhibited trace. The pseudocode for this algorithm is shown in Appendix
C. Assuming hash sets and hash maps with constant complexity for membership
queries and insertions, the time complexity is O(|Sc||Σc|l) where |Sc| is the
number of states in the contract automaton, |Σc| is the number of correspondence

7 The statistics characterising reg+reset are indistiguishable from those of athr.

242

0

25

50

75

100

 0 2 4 6 8 10 12 14 16 18 20

%
 S

uc
ce

ss
fu

l t
ra

ce
s

Iteration (thousands)

athr
dthr
reg
noi

(a) Comparative between adaptors noi, reg,
dthr and athr using various TER values

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10 12 14 16 18 20

Ca
rd

in
al

ity

Iteration (thousands)

 I
 E
 F

(b) Details of the adaptive adaptor athr

Fig. 4. Statistics gathered from the simulation with different adaptors and TER values.
TER is 0 between (0, 4000]; 10−4 between (4000, 6000]; 10−3 in (6000, 10000]; 0.01 in
(10000, 12000]; 0.1 in (12000, 14000]; then, it decreases to 10−3 in (14000, 16000]; 10−4

in (16000, 18000]; and it finally becomes 0 in (18000, 20000]

rules in the contract and l is the maximum length of a trace. The spatial complexity
of our approach with addi, i ∈ {0, 2, 3, 4} is given by the combined size of: the
inhibited traces, the adaptor state and the adaptation contract. The space
required by inhibited traces can be reduced either by storing them as a tree or
using any learning policy based on add1 (where the size of the inhibited traces is
bounded by β). Both approaches result in an spatial complexity of O(|Sc||Σc|l).
Both complexities are greatly reduced if the adaptation contract is deterministic
in the sense that it does not require the lazy-choice represented by rule L. In this
case, at any given adaptor state �A, I, t�c it happens that A contains a single
element �s, ∆�. This simplification results in a time complexity of O(max(|Σc|, l))
and a spatial complexity of O(|Sc||Σc| + |Σc|l).

6 Related Work

The behaviour of an adaptor can be synthesised at design time following other
approaches covered in related work [1,4,11,13]. However, adaptor synthesis is
exponential with regard to the number and size of the services involved and it
requires to know in advance the behaviour of these services. This is not feasible
in the current setting of nodes with restricted capabilities where the actual
behaviour of the services is unknown. For instance, the correspondence rules
presented in this work are similar to the adaptation operators presented in [6] and
to the mismatch patterns introduced in [11], but their approaches are focussed on
design-time. So there are few related work which aim at addressing both runtime
and lightweight behavioural adaptation at the same time.

One of them is [5], where an ontology is required to generate a mapping
between the operation of the services. Some properties (expressed in a temporal
logic) are dynamically verified by performing forward-search analyses on the
behaviour of services. While similar properties can be encoded with our adaptation

243

contract automata, differently from us, [5] requires the behaviour of services to
be known and it has to bear with the cost of the forward-search analysis.

Wang et al. [16] propose the dynamic application of adaptation rules. These
rules are triggered by the input actions received by the adaptor and then an
output action is generated. Our approach is similar to theirs in the sense that we
also apply the adaptation contract dynamically without generating the whole
adaptor. However, their rules must specify how to solve both signature and
behavioural incompatibilities, hence requiring to know the behaviour of the
services beforehand. Our contracts, instead, only specify the how to solve signature
incompatibilities and an optional description of the adaptation goal. Then, our
adaptors dynamically learn how to solve behavioural incompatibilities.

Another related work is [9], where the problem of controlling services with
unknown behaviour is discussed. Intuitively, this work shares with our approach
the idea of progressively refining an over-approximated controller when failures
occur. The authors of [9] perform such refinement by exploiting (bounded) model
checking, whose overhead is not bearable in applications running on limited
capacity devices.

7 Conclusion

We have presented a new lightweight approach to behavioural runtime adaptation.
Our approach requires an adaptation contract based on the signatures of the
services (the collection of operations they require and offer), but no previous
knowledge on the behaviour of the services is needed, which will be dynamically
learned. We have shown how adaptors can incrementally learn from interaction
failures at run time so as to eventually converge to the same behaviour that could
be a priori synthesised by means of (computationally expensive) analyses on the
behaviour of the services at design time.

The learning adaptors presented in this work can be applied to perform zero-
knowledge adaptation, i.e., adaptors without adaptation contract. In this case,
there is an implicit contract which assumes that every source and destination
service share the same alphabet of actions, therefore presenting a trivial set of
one-to-one correspondence rules. Having such a zero-knowledge contract, which is
dynamically inferred, the adaptor does not perform any adaptation at signature
level (it simply forwards messages), but it does learn from possible behavioural
incompatibilities between the services (such as message expected in different
order), therefore it avoids the deadlocks that would be present without adaptation.

As future work, we will investigate process mining techniques to improve the
efficiency of the approach.

References

1. Autili, M., Inverardi, P., Navarra, A., Tivoli, M.: SYNTHESIS: A Tool for Auto-
matically Assembling Correct and Distributed Component-Based Systems. In: Proc.
of ICSE’07. pp. 784–787. IEEE (2007)

244

2. Bracciali, A., Brogi, A., Canal, C.: A Formal Approach to Component Adaptation.
Journal of Systems and Software 74(1), 45–54 (2005)

3. Brogi, A., Popescu, R.: Automated Generation of BPEL Adapters. In: Proc. of
ICSOC’06. LNCS, vol. 4294. Springer (2006)

4. Cámara, J., Mart́ın, J., Salaün, G., Cubo, J., Ouederni, M., Canal, C., Pimentel,
E.: ITACA: An Integrated Toolbox for the Automatic Composition and Adaptation
of Web Services. In: Proc. of ICSE’09. pp. 627–630. IEEE (2009)

5. Cámara, J., Canal, C., Salaün, G.: Behavioural Self-Adaptation of Services in
Ubiquitous Computing Environments. In: Proc. of SEAMS’09. pp. 28–37 (2009)

6. Dumas, M., Spork, M., Wang, K.: Adapt or Perish: Algebra and Visual Notation
for Service Interface Adaptation. In: Proc. of BPM’06. LNCS, vol. 4102, pp. 65–80.
Springer (2006)

7. Harney, J., Doshi, P.: Speeding up Adaptation of Web Service Compositions Using
Expiration Times. In: Proc. of WWW’07. pp. 1023–1032. ACM (2007)

8. Heinzelman, W.R., Kulik, J., Balakrishnan, H.: Adaptive protocols for information
dissemination in wireless sensor networks. In: Proc. of MobiCom’99. pp. 174–185.
ACM (1999)

9. Holotescu, C.: Controlling the Unknown. Tech. Rep. 13, KIT (28–30 Jun 2010), in
Proc. of FoVeOOS’10

10. Kim, Y.Y., qi Li, S.: Capturing important statistics of a fading/shadowing channel
for network performance analysis. Selected Areas in Communications 17(5), 888
–901 (may 1999)

11. Kongdenfha, W., Nezhad, H.R.M., Benatallah, B., Casati, F., Saint-Paul, R.:
Mismatch Patterns and Adaptation Aspects: A Foundation for Rapid Development
of Web Service Adapters. IEEE TSC 2(2), 94–107 (2009)

12. Mart́ın, J.A., Pimentel, E.: Contracts for Security Adaptation. JLAP 80(3-5), 154 –
179 (2011)

13. Mateescu, R., Poizat, P., Salaün, G.: Adaptation of Service Protocols using Process
Algebra and On-the-Fly Reduction Techniques. In: Proc. of ICSOC’08. pp. 84–99.
LNCS, Springer (2008)

14. Mysore, M., Golan, M., Osterweil, E., Estrin, D., Rahimi, M.: TinyDiffusion in the
extensible sensing system (12 Aug 2003), http://www.cens.ucla.edu/~mmysore/
Design/OPP/

15. Narendra, N.C., Ponnalagu, K., Krishnamurthy, J., Ramakumar, R.: Run-Time
Adaptation of Non-Functional Properties of Composite Web Services Using Aspect-
Oriented Programming. In: Proc. of ICSOC’07. LNCS, vol. 4749, pp. 1023–1032.
Elsevier (2007)

16. Wang, K.W., Dumas, M., Ouyang, C., Vayssiere, J.: The service adaptation machine.
In: Proc. of ECOWS’08 (2008)

17. Yellin, D.M., Strom, R.E.: Protocol Specifications and Components Adaptors. ACM
Transactions on Programming Languages and Systems 19(2), 292–333 (1997)

245

Analyzing Reconfigurable Component-Based

Systems Using Attribute Grammars⋆

Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University, Germany

noll@cs.rwth-aachen.de

Abstract. Reconfigurable systems have pervaded many fields of com-
puting and are becoming more and more important. To make them
amenable to systematic design and analysis methods, formal modeling
languages are required. One such language is AADL (Architecture Anal-
ysis and Design Language), which is gaining widespread acceptance in
automobile, avionics and aerospace industries for comprehensively mod-
eling component-based, safety-critical distributed systems by capturing
functional, probabilistic and hybrid aspects. In particular, AADL sup-
ports the specification of dynamic reconfiguration of systems in the form
of mode transitions which (de-) activate components and their commu-
nication connections. However it turns out that one has to use this mech-
anism carefully as it can give rise to cyclic dependencies between com-
munication ports, which are forbidden.
In this paper we show that the problem of cyclic data port dependencies
in AADL specifications is closely related to the circularity problem in at-
tribute grammars, a well-known formalism for describing syntax-directed
translations such as the semantic analysis or code generation in compil-
ers for programming languages. Exploiting this relation, we are able to
reuse existing circularity tests for analyzing AADL specifications.

Keywords: Reconfigurable systems, AADL, Port dependencies, Attribute
grammars, Circularity

1 Introduction

Reconfigurable systems have pervaded many fields of computing and are becom-
ing more and more important. This is particularly true for aerospace applications
where maximizing the potential of high-performance payload design against mul-
tiple missions requires both performance and flexibility. To make reconfigurable
systems amenable to systematic design and analysis methods, formal model-
ing languages are required. One such language is AADL (Architecture Analysis
and Design Language), which is gaining widespread acceptance in automobile,
avionics and aerospace industries for comprehensively modeling safety-critical
distributed systems by capturing functional, probabilistic and hybrid aspects.

⋆ Partially funded by ESA/ESTEC under Contract No. 4200021171

245

The central concept in AADL is that of a component. Systems are hierar-
chically organized, i.e., components can contain other components, entailing the
notion of subcomponents. The operational state of a component is determined
by its current mode, and its behavior is defined by transitions between modes
which are triggered by incoming events, or which generate outgoing events. Com-
ponents can exchange values via data ports whose interconnection structure is
specified in the component implementation by introducing connections (between
components) and flows (within a component).

With regard to dynamic reconfiguration, the key feature of AADL is that the
activation of subcomponents, connections and flows can be made dependent on
the current mode of the respective component. In other words, a mode transition
of that component can activate or deactivate some of its subcomponents and
change their interconnection structure. However it turns out that one has to use
this dynamic reconfiguration mechanism carefully as it can give rise to cyclic
dependencies between data ports. Such cyclic dependencies are disallowed for
semantic reasons as they give rise to recursive equations on data port values,
which are not (uniquely) solvable in general. What is required therefore is a
checking procedure that tests whether, in any mode configuration of the overall
system, there exists a cycle in the dependency graph over the data ports that is
induced by the connections and flows that are active in that configuration.

In this paper we show that this problem is closely related to the circularity
problem in attribute grammars, a well-known formalism for describing syntax-
directed translations such as the semantic analysis or code generation in com-
pilers for programming languages. Exploiting this relation, we are able to reuse
the circularity tests that have been developed in the past for analyzing AADL
specifications. We also sketch the implementation of one such test in a toolset
for the the analysis and verification of AADL specifications.

The remainder of this paper is organized as follows. Section 2 gives a brief
introduction to AADL, with a particular emphasis on the specification of recon-
figurable systems. Section 3 explains the essential concepts of attribute grammars
and the circularity problem. Section 4 presents the main result of this paper, the
relation between (the cyclicity problem of) AADL specifications and (the circu-
larity problem of) attribute grammars. Section 5 briefly describes a toolset that
implements the corresponding test. Finally, Section 6 presents some conclusions.

2 Specifying Reconfigurable Systems in AADL

2.1 Overview of AADL

Developed by a Society of Automotive Engineers (SAE) sponsored committee of
experts, the Architecture Analysis and Design Language (AADL) was approved
and published as SAE Standard AS-5506 in 2004 [11]. Models in this language
can capture real-time, performance critical and distributed aspects of a system
at an architectural level. It supports a component-based, model-driven develop-
ment approach throughout the system life cycle. More concretely, AADL has the
following design features:

246

– Modeling both the system’s nominal and faulty behavior. To this aim, AADL
(and its Error Model Annex [12]) provides primitives to describe software
and hardware faults, error propagation (that is, turning fault occurrences
into failure events), sporadic (transient) and permanent faults, and degraded
modes of operation (by mapping failures from architectural to service level).

– Specifying timed and hybrid behavior. In particular, in order to analyze con-
tinuous physical systems such as mechanics and hydraulics, AADL supports
continuous real-valued variables with (linear) time-dependent dynamics.

– Modeling probabilistic aspects, such as random faults, repairs, and stochastic
timing.

A complete specification consists of three parts, namely a description of the
nominal behavior, a description of the error behavior, and a fault injection spec-
ification that describes how the error behavior influences the nominal behavior.
In this paper we concentrate on the nominal specification.

The nominal model describes the system under normal operation. It is a
system decomposition of interacting components in which system details can be
abstracted by defining a hierarchy among components. The interaction inter-
faces are specified using port connections of which there are three types. Data
port connections expose port values to other components, flow port connec-
tions (flows for short) are evaluable functions based on incoming data ports, and
event port connections are used to define (multi-way) hand-shaking communi-
cation between components. These port interfaces are complemented by a mode
transition system, which describes changes over the ports, and thus essentially
captures a component’s behavior. The transition system can be annotated with
linear differential equations and timing constraints to model the evolution of
physical aspects, like temperature, pressure and scheduling of tasks. Modes can
also be used to represent degradation of the system. Transitions between these
modes can lead to dynamic reconfigurations by (de-)activating components and
port connections, as shown in the following subsection.

2.2 Language Features for Specifying Dynamic Reconfiguration

As mentioned earlier, dynamic reconfiguration of systems is supported in AADL
by (de-)activating components and connections. More concretely, the presence
of subcomponents and port connections can be made dependent on the cur-
rent mode of the respective component. Whenever a mode transition adds or
removes a subcomponent, connection, or flow, we say that the former activates
or deactivates the latter, respectively.

We introduce these features by means of a simple example, a redundant data
acquisition system with main component Acquisition. As shown in Figure 1,
it is comprised of a redundant sensor component, a redundant filter component,
and a monitor component. Excerpts of the corresponding specification are given
in Figures 2 and 3. The idea is that measurement values are captured by the
currently active sensor. Then they are forwarded along the out-to-in data port
connection between Sensors and Filters to the currently active filter, where

247

they are processed (in this example, simply doubled) and passed on to the out-
going data port value of the main component.

The output of both the sensor and the filter component is supervised by a
monitor component, which triggers the switch to the spare component (using the
respective switch event) if the output does not lie in the expected range. As can
be seen, the activation status of components and connections is determined by
the in modes clauses. If they are absent, the object is active in every mode of the
respective supercomponent (such as subcomponent Sensors of supercomponent
Acquisition).

Note that there are three different types of data port connections:

– from an incoming port of a supercomponent to an incoming port of one of
its subcomponents, such asdata port input -> filter1.input

in Filters;
– from an outgoing port of a component to an incoming port of one of its

neighbor components, such asdata port sensors.output -> filters.input

in Acquisition; and
– from an outgoing port of a subcomponent to an outgoing port of its super-

component, such asdata port filters.output -> value

in Acquisition.

In particular, data port connections from incoming to outgoing ports are ex-
cluded. Such dependencies have to be defined using flows; please refer to the
definition of Filter for an example.

2.3 Cyclic Dependencies between Data Ports

Data port connections and flows induce an instantaneous exchange of informa-
tion. It must be ensured that in every reachable configuration of the system (that
is, for every combination of component modes that occurs in some execution),
every data port can be assigned a unique value. It must therefore always be
guaranteed that the dependency relation on the collection of all data ports of
the system which is imposed by flows and data port connections is acyclic.

In order to make this notion precise, we use the following formal description
of an AADL specification.

– The set of components is denoted by Cmp, and the main component is
denoted by main .

248

sensor1

sensor2

Sensors

switch

filter1

filter2

Filters

switch

Monitor

switchFswitchS

Acquisition

value

output output

Fig. 1. Graphical representation of data acquisition system.

– For each component c ∈ Cmp, the (finite) set of its modes is given by Mod(c),
and the set of its (direct) subcomponents which are active in the respec-
tive mode m ∈ Mod(c) (according to the in modes clauses) is denoted by
Act(c, m) ⊆ Cmp. If the component does not have an associated mode, we
assume an implicitly defined default mode defmod.

– The incoming and outgoing data ports of c ∈ Cmp are collected in the
(disjoint) sets InPrt(c) and OutPrt(c), respectively, and we let Prt(c) :=
InPrt(c) ⊎ OutPrt(c).

– As described earlier, data port connections fall into three different categories,
depending on the direction of the ports (in or out) and the relation of the
participating components (super or sub). To obtain a concise notation, we use
the index 0 to refer to the respective supercomponent, and positive indices
for its direct subcomponents. Formally, for c0 ∈ Cmp, m ∈ Mod(c0), and
Act(c0, m) = {c1, . . . , cn},

Con(c, m) ⊆ {(p.i, q.j) | i = 0, j ∈ [n], p ∈ InPrt(c0), q ∈ InPrt(cj), or
i, j ∈ [n], p ∈ OutPrt(ci), q ∈ InPrt(cj), or
i ∈ [n], j = 0, p ∈ OutPrt(ci), q ∈ OutPrt(c0)}

where [n] abbreviates {1, . . . , n}.

249

system Acquisitionfeatures
value: out data port real;end Acquisition ;system implementation Acquisition .Implsubomponents
sensors : system Sensors ;

filters : system Filters ;

monitor : system Monitor ;onnetionsdata port sensors .output -> filters .input;data port sensors .output -> monitor .valueS;data port filters .output -> value;data port filters .output -> monitor .valueF;event port monitor .switchS -> sensors .switch;event port monitor .switchF -> filters .switch;end Acquisition .Impl ;system Sensorsfeatures
output: out data port real;
switch: in event port;end Sensors ;system implementation Sensors.Implsubomponents
sensor1 : devie Sensor in modes (Primary);

sensor2 : devie Sensor in modes (Backup);onnetionsdata port sensor1 .output -> output in modes (Primary);data port sensor2 .output -> output in modes (Backup);modes
Primary : initial mode;
Backup: mode;transitions
Primary -[switch]-> Backup;end Sensors .Impl ;devie Sensorfeatures
output: out data port real;end Sensor;devie implementation Sensor.Impl

...end Sensor.Impl ;

Fig. 2. Specification of main and sensor components (excerpt).

250

system Filtersfeatures
input: in data port real;
output: out data port real;
switch: in event port;end Filters ;system implementation Filters.Implsubomponents
filter1 : devie Filter in modes (Primary);

filter2 : devie Filter in modes (Backup);onnetionsdata port input -> filter1.input in modes (Primary);data port input -> filter2.input in modes (Backup);data port filter1 .output -> output in modes (Primary);data port filter2 .output -> output in modes (Backup);modes
Primary : initial mode;
Backup: mode;transitions
Primary -[switch]-> Backup;end Filters .Impl ;devie Filterfeatures
input: in data port real;
output: out data port real;end Filter;devie implementation Filter.Implflows
output := 2.0 * input;end Filter.Impl ;system Monitorfeatures
valueS: in data port real;
valueF: in data port real;
switchS : out event port;
switchF : out event port;end Monitor ;system implementation Monitor.Implmodes
check: initial mode;transitions
check -[switchS when ... valueS ...]-> check;

check -[switchF when ... valueF ...]-> check;end Monitor .Impl ;

Fig. 3. Specification of filter and monitor components (excerpt).

251

– Finally, for c ∈ Cmp and m ∈ Mod(c) the flows of c that are active in m are
denoted by

Flw(c, m) ⊆ {(e, q) | e expression over InPrt(c), q ∈ OutPrt(c)}.

For example, the specification of the data acquisition system in Figures 2
and 3 is formalized as follows.

– Cmp = {Acquisition, Sensors, Sensor, Filters, Filter, Monitor}
– main = Acquisition

– Mod(Acquisition) = {defmod}
Act(Acquisition, defmod) = {Sensors, Filters, Monitor}

Mod(Sensors) = {Primary, Backup}
Act(Sensors, Primary) = {Sensor}
Act(Sensors, Backup) = {Sensor}

...

– InPrt(Acquisition) = ∅
OutPrt(Acquisition) = {value}

InPrt(Filters) = {input}
OutPrt(Filters) = {output}

...

– Con(Acquisition, defmod) = {(output.1, input.2),
(output.1, valueS.3),
(output.2, value.0),
(output.2, valueF.3)}

Con(Sensors, Primary) = {(output.1, output.0)}
Con(Sensors, Backup) = {(output.2, output.0)}

...

– Flw (Acquisition, defmod) = ∅
Flw (Filter, defmod) = {(2.0 ∗ input, output)}

...

Note that Con and Flw represent dependencies between data ports that are
induced by connections and flows, respectively, on the level of a single compo-
nent. On this level, cyclic dependencies are excluded since outgoing data ports of
the respective component cannot be connected to incoming ports; this can only
happen in a larger context. Thus we have to lift component-level dependencies to
system-level dependencies by considering all possible system configurations, i.e.,
assignments of modes to components. For each configuration, the corresponding
dependency graph can be obtained by concatenating the dependency graphs of
all active components in their respective mode. For example, Figure 1 visualizes
the data port dependencies of the data acquisition system in a configuration that
uses the primary sensor and the primary filter.

252

Under these premises, an AADL specification is called cyclic if there exists
a mode configuration such that the corresponding data port dependency graph
has a (directed) cycle.

It is important to notice that this property is undecidable if we restrict it
to reachable configurations, i.e., to those that can occur in any concrete exe-
cution of the system. As the AADL fragment for describing mode transitions
is quite expressive (involving computations and tests on integers, for example),
the reachability problem for configurations is undecidable and therefore also the
corresponding cyclicity problem. We thus have to approximate it by considering
all combinations of modes, no matter whether they are reachable or not. More
formal details on the formalization of AADL specifications can be found in [1,
2].

Also note that data port connections alone are not sufficient to yield a de-
pendency cycle, as connections are only involving ports of the same direction,
or are running from output to input ports. In order to close a cycle, it must
be possible to introduce a dependency from an input to an input port, which
requires a flow.

As can be seen in Figure 1, the given system configuration is cycle-free. In
fact, this applies to every configuration of the system. This would be different
if, for example, we introduced a flow in the Monitor component that processes
the valueF information coming from the Filters component and feeds it back
to the input port of that component along a connection using a new outgoing
data port.

3 Attribute Grammars

Attribute grammars were devised by Knuth [8, 9] to describe semantic aspects
of context-free languages. They give a meaning to every derivation tree of the
underlying context-free grammar by assigning values to various attributes associ-
ated with the nodes of the tree. Nowadays they are mainly used for implementing
syntax-directed translations such as the semantic analysis or code generation in
compilers for high-level programming languages [5, Chapter 3].

3.1 Definition of Attribute Grammars

We start with the definition of a context-free grammar, which is of the form
G = 〈N, Σ, P, S〉 where

– N is a finite set of nonterminal symbols ;
– Σ is a (finite) alphabet of terminal symbols (disjoint from N);
– P is a finite set of production rules of the form A → α where A ∈ N and

α ∈ X∗ for X := N ⊎ Σ; and
– S ∈ N is a start symbol.

A context-free grammar is extended to an attribute grammar by attaching
attributes to the nonterminal symbols. These attributes come in two variants:

253

– inherited attributes, which are used for passing context information top-
down from the root towards the leaves; and

– synthesized attributes, which are used for collecting information in a subtree
and for passing it bottom-up towards the root.

This information flow is realized in the following way. In the context of each
production, the values of the synthesized attributes of the left-hand side nonter-
minal (for the bottom-up flow) and the values of the inherited attributes of the
right-hand side nonterminals (for the top-down flow) have to be defined by a so-
called semantic rule. The latter is an equation whose right-hand side may refer
to the complementary set of attributes, that is, to the inherited attributes of the
left-hand side nonterminal and the synthesized attributes of the right-hand side
nonterminals.

Formally this can be described by a tuple of the form A = 〈N,Atr , atr ,D ,E 〉
with the following components.

– Atr = Inh ⊎ Syn is the set of (respectively inherited and synthesized) at-
tributes.

– The function atr : N → 2Atr denotes the attribute assignment, and we let
inh(A) := atr(A) ∩ Inh and syn(A) := atr(A) ∩ Syn for every A ∈ N .

– D := (Dα | α ∈ Atr) is the family of domains, which restrict the possible
values of each attribute in Atr .

– Every production π = Y0 → Y1 . . . Yn ∈ P determines the set

Varπ := {α.i | i ∈ {0, . . . , n}, Yi ∈ N, α ∈ atr(Yi)}

of attribute variables of π. It is decomposed into the subsets of inner and
outer variables

Inπ := {α.i | i = 0, α ∈ syn(Yi) or i ∈ [n], α ∈ inh(Yi)}
Outπ := Varπ \ Inπ

which are respectively used on the left-hand and right-hand sides of semantic
rules.

– A semantic rule of π is an equation of the form

α.i = f(α1.i1, . . . , αk.ik)

where k ∈ N, α.i ∈ Inπ, αj .ij ∈ Outπ (j ∈ [k]), and f : Dα1×. . .×Dαk
→ Dα.

– For each π ∈ P , Eπ is a set with exactly one semantic rule for every inner
variable of π, and we let E := (Eπ | π ∈ P).

For example, the attribute grammar given in Figure 4, taken from [8], spec-
ifies the evaluation of a given binary number (with fraction). It employs the
synthesized attribute v (of nonterminals N , L, and B) to compute the respec-
tive value in Dv := Q. Moreover l ∈ Syn represents the length of a bit list L
(Dl := N), and p ∈ Inh stands for the position of a single bit B (Dp := Z).

In general, an attribute grammar is used in the following way. To compute
the semantic value of a given input word, say w,

254

Numbers: N → L v.0 = v.1
p.1 = 0

N → L.L v.0 = v.1 + v.3
p.1 = 0
p.3 = −l.3

Lists: L → B v.0 = v.1
l.0 = 1
p.1 = p.0

L → LB v.0 = v.1 + v.2
l.0 = l.1 + 1
p.1 = p.0 + 1
p.2 = p.0

Bits: B → 0 v.0 = 0

B → 1 v.0 = 2p.0

Fig. 4. Attribute grammar for evaluating binary numbers.

1. the corresponding derivation tree with respect to the underlying context-free
grammar is constructed; and

2. the attribute occurrences are evaluated according to the semantic rules.

To implement the second step, several methods have been proposed in the liter-
ature (see [4] for an overview). For example, the result of evaluating all attribute
occurrences for the input word 10.1 using the attribute grammar from Fig-
ure 4 is shown in Figure 5. The latter also visualizes the corresponding attribute
dependencies by arrows.

Just as cyclic data port dependencies in AADL specifications are critical,
attribute evaluators usually cannot cope with cyclic dependencies between at-
tribute occurrences, as the associated attribute equation system generally does
not have a unique solution in this case. In the context of attribute grammars,
this situation is called circularity.

3.2 (Strong) Circularity

Just as concatenating data port connections and flows for all components of
the given AADL specification can give rise to cyclic dependencies between data
ports, the same is true for attribute grammars.

An attribute grammar is called circular if there exists a syntax tree such that
the corresponding attribute equation system is recursive (i.e., some attribute
variable depends on itself).

Although a context-free grammar generally yields infinitely many derivation
trees, the circularity problem for a given attribute grammar is nevertheless de-
cidable. The corresponding algorithms (such as [10]) exploit the fact that, for
every nonterminal symbol, there are only finitely many possible combinations
of dependencies between the inherited and synthesized attributes of that sym-
bol. However, one is faced with the problem of combinatorial explosion. The

255

N

L . L

L B

B

B

0

1

1

v : 2.5

v : 2 l : 2p : 0

v : 2 l : 1p : 1

v : 0.5 l : 1p :−1

v : 0p : 0

v : 2p : 1

v : 0.5p :−1

Fig. 5. An attributed derivation tree.

underlying reason is that for deriving the possible attribute dependencies on the
left-hand side of a production, all combinations of dependencies for the right-
hand side nonterminals have to be considered. In fact, in [6] it is shown that
the circularity problem for attribute grammars is of intrinsically exponential
complexity.

One approach to overcome this problem is a simplification of non-circularity
which is called strong non-circularity [7, 3]. The idea is to merge all possible
dependencies between the inherited and synthesized attributes of a nonterminal
symbol without distinguishing different (types of) derivation trees with the re-
spective nonterminal at the root. As different derivation trees can entail different
dependencies between the root attributes, this may yield spurious dependency
cycles. (Please refer to Section 5 for an example.) The question whether this
over-approximation does not yield any (true or spurious) cycle is decidable in
polynomial time. Clearly, every strongly non-circular attribute grammar is also
non-circular.

4 Analyzing AADL Specifications Using Attribute
Grammars

After having introduced both AADL and attribute grammars, we can continue
with describing the relation of the two formalisms in greater detail. Concretely,
with a given AADL specification we will associate an attribute grammar such
that the latter is circular if and only if the former is cyclic. This connection will
then allow us to reuse circularity tests on attribute grammars for analyzing the
AADL specification with respect to cyclic port dependencies.

256

AADL Attribute grammars

System configuration Derivation tree
Active component Nonterminal symbol
Inactive component Terminal symbol
Mode Production
Incoming data port Inherited attribute
Outgoing data port Synthesized attribute
Flow/data port connection Semantic rule

Table 1. Relation between AADL and attribute grammars

The relation between AADL and attribute grammars is summarized in Ta-
ble 1. The key idea is the analogy between system configurations on the one side
and derivation trees on the other side. Remember that a configuration is defined
by the current mode of each of the components in the system. It determines
the active components: the main component is always active, and the current
mode of the main component yields its active subcomponents according to thein modes clause given with its declaration. Recursively applying this definition
and interpreting active and inactive components as nonterminal and terminal
symbols, respectively, we obtain a derivation tree of a context-free grammar
whose productions correspond to the modes of the AADL specification.

This idea is formalized by the following definition of a context-free grammar
G = 〈N, Σ, P, S〉 for a given AADL specification with component set Cmp,
modes association Mod , and component activity mapping Act .

– N := Cmp;
– Σ := Cmp†;
– P := {πc,m | c ∈ Cmp, m ∈ Mod(c)} where πc,m := c → c′

1 . . . c′
n for⋃

m∈Mod(c) Act(c, m) = {c1, . . . , cn} and c′
i := ci if ci ∈ Act(c, m) and c′

i :=

c†
i otherwise; and

– S := main.

Here Cmp† introduces a second name for each component to indicate its inac-
tivity. In examples, we will use names with initial uppercase/lowercase letters to
denote active/inactive components, respectively.

A further remark: it is possible to introduce data components in AADL
specifications, which act as local variables in component implementations. (This
feature was not used in the data acquisition example.) In the attribute grammar
representation, they actually correspond to another kind of terminal symbols.
As they cannot be equipped with data ports, however, they can be ignored for
the cyclicity check. We have therefore not considered them in the translation.

Now that the context-free grammar part is fixed, we can continue with the
attribute system. The principle is quite simple: (incoming and outgoing) data
ports correspond to (inherited and synthesized, respectively) attributes, and the
connections and flows are represented as semantic rules. Formally, with a given
AADL specification with incoming/outgoing data ports InPrt/OutPrt, data port

257

connections Con , and flows Flw , we can associate an attribute grammar A =
〈N,Atr , atr ,D ,E 〉 as follows.

– Inh :=
⋃

c∈Cmp InPrt(c);
– Syn :=

⋃
c∈Cmp OutPrt(c);

– for every c ∈ Cmp, inh(c) := InPrt(c);
– for every c ∈ Cmp, syn(c) := OutPrt(c); and
– for every c ∈ Cmp and m ∈ Mod(c),

Eπ := {q.j = p.i | (p.i, q.j) ∈ Con(c, m)}
∪ {q.0 = e[p 7→ p.0; p ∈ InPrt(c)] | (e, q) ∈ Flw (c, m)}.

Note that data port connections, which are equipped with indices to distin-
guish between super- and subcomponents, can directly be translated to semantic
rules. In contrast, flows, which just employ data port names without indices (as
they only refer to a single component), have to be adapted by attaching the in-
dex 0 to yield the corresponding rule. Here the expression e[p 7→ p.0] is obtained
from e by replacing every occurrence of p by p.0.

The result of this association is the following.

The AADL specification is cyclic if and only if the associated attribute
grammar is circular.

For example, the AADL specification of the data acquisition system as de-
fined in Figures 2 and 3 yields the attribute grammar in Figure 6. Remember that
names starting with uppercase letters refer to active components (nonterminals)
while lowercase names denote inactive components (terminals).

Acquisition → Sensors Filters Monitor input.2 = output.1
valueS.3 = output.1
value.0 = output.2

valueF.3 = output.2

Sensors → Sensor sensor output.0 = output.1

Sensors → sensor Sensor output.0 = output.2

Sensor → ε

Filters → Filter filter input.1 = input.0
output.0 = output.1

Filters → filter Filter input.2 = input.0
output.0 = output.2

Filter → ε output.0 = 2.0 ∗ input.0
Monitor → ε

Fig. 6. Attribute grammar representation of data acquisition system.

258

5 Implementation

The circularity test for attribute grammars as sketched in Section 3 has been used
as the basis for an algorithm that checks whether a given AADL specification
is cyclic. More concretely, in order to avoid the exponential complexity of the
general problem [6], we decided to consider strong non-circularity [7], which can
be tested in polynomial time.

The (somewhat artificial) specification in Figure 7 exemplifies the difference.
As component Sub occurs twice and as it has two modes, the overall system
has four configurations. As can be seen from Figure 8, it is non-cyclic as none of
those exhibits a cyclic dependency between data ports, and so the corresponding
context-free grammar is non-circular. The algorithm for checking strong non-
circularity, however, merges all dependencies that are induced by the flows de-
fined for Sub. It thus yields the dependency graph that is shown in Figure 9, and
that clearly exhibits a cycle. The attribute grammar is therefore not strongly
non-circular.

The algorithm for testing strong non-circularity has been implemented in
a toolset for analyzing and verifying AADL specifications. The correspond-
ing project is entitled COMPASS (COrrectness, Modelling and Performance
of Aerospace SyStems), and is funded by the European Space Agency (ESA).
More information and the tool download page can be found at http://compass.
informatik.rwth-aachen.de/.

Our experiences show that considering strong non-circularity is sufficient
for this purpose. Only AADL pathological specifications are non-cyclic but fail
to pass our test. In our industrial case studies involving (parts of the) control
systems of satellites, not a single system description of this kind was identified.

6 Conclusions

In this paper we have established a strong connection between specifications
of reconfigurable systems in AADL on the one side and attribute grammars
on the other side. Exploiting the idea that the (de-)activation of components
and their communication structures by mode transitions can be interpreted as
the application of production rules of a context-free grammar, we were able to
show that the cyclicity problem for AADL specifications can be reduced to the
circularity problem of attribute grammars. This approach has been successfully
implemented in a toolset for analyzing AADL specifications.

References

1. Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M.: Code-
sign of dependable systems: A component-based modelling language. In: Proc. 7th
Int. Conf. on Formal Methods and Models for Co-Design (MEMOCODE 2009).
pp. 121–130. IEEE CS Press (2009)

259

system Superend Super;system implementation Super.Implsubomponents
sub1 : system Sub;

sub2 : system Sub;onnetionsdata port sub1 .out1 -> sub2 .in2;data port sub1 .out2 -> sub2 .in1;data port sub2 .out1 -> sub1 .in1;data port sub2 .out2 -> sub1 .in2;end Super.Impl ;system Subfeatures
in1: in data port int;
in2: in data port int;
out1 : out data port int;
out2 : out data port int;end Sub;system implementation Sub.Implflows
out1 := in2 in modes (m0);

out1 := 1 in modes (m1);

out2 := 2 in modes (m0);

out2 := in1 in modes (m1);modes
m0: initial mode;
m1: mode;transitions
...end Sub.Impl ;

Fig. 7. A non-cyclic AADL specification.

Super

Sub Subin1 in2 out1 out2 in1 in2 out1 out2

Super

Sub Subin1 in2 out1 out2 in1 in2 out1 out2

Super

Sub Subin1 in2 out1 out2 in1 in2 out1 out2

Super

Sub Subin1 in2 out1 out2 in1 in2 out1 out2

Fig. 8. Configurations without cyclic dependencies.

260

Super

Sub Subin1 in2 out1 out2 in1 in2 out1 out2

Fig. 9. Cyclic dependency after merging.

2. Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M.: Safety,
dependability, and performance analysis of extended AADL models. The Computer
Journal doi: 10.1093/com (March 2010)

3. Courcelle, B., Franchi-Zannettacci, P.: Attribute grammars and recursive program
schemes. Theoretical Computer Science 17(2 and 3), 163–191 and 235–257 (1982)

4. Engelfriet, J.: Attribute Grammars: Attribute Evaluation Methods. In: Lorho, B.
(ed.) Methods and Tools for Compiler Construction, pp. 103–138. Cambridge Uni-
versity Press (1984)

5. Grune, D., Bal, H.E., Jacobs, C.J., Langendoen, K.G.: Modern Compiler Design.
John Wiley (2000)

6. Jazayeri, M., Ogden, W.F., Rounds, W.C.: The Intrinsically Exponential Com-
plexity of the Circularity Problem for Attribute Grammars. Communications of
the ACM 18(12), 679–706 (Dec 1975)

7. Kennedy, K., Warren, S.K.: Automatic Generation of Efficient Evaluators for At-
tribute Grammars. In: 3rd ACM POPL, pp. 32–49. ACM (Jan 1976)

8. Knuth, D.: Semantics of Context-Free Languages. Mathematical Systems Theory
2(2), 127–145 (Jun 1968)

9. Knuth, D.: Semantics of Context-Free Languages: Correction. Mathematical Sys-
tems Theory 5(1), 95–96 (Jun 1971)

10. Räihä, K.J., Saarinen, M.: Testing attribute grammars for circularity. Acta Infor-
matica 17(2), 185–192 (1982)

11. Architecture Analysis and Design Language (AADL) V2. SAE Draft Standard
AS5506 V2, International Society of Automotive Engineers (Mar 2008)

12. Architecture Analysis and Design Language Annex (AADL), Volume 1, Annex E:
Error Model Annex. SAE Standard AS5506/1, International Society of Automotive
Engineers (Jun 2006)

261

Verifying Safety of Fault-Tolerant Distributed
Components?

Rabéa Ameur-Boulifa1, Raluca Halalai2, Ludovic Henrio3, and Eric Madelaine3

1 Institut Telecom, Telecom ParisTech, LTCI CNRS, Sophia-Antipolis, France
2 Technical University of Cluj-Napoca, Cluj, Romania

3 INRIA-I3S-CNRS, University of Nice Sophia Antipolis, France

Abstract. We show how to ensure correctness and fault-tolerance of
distributed components by behavioural specification. We specify a sys-
tem combining a simple distributed component application and a fault-
tolerance mechanism. We choose to encode the most general and the
most demanding kind of faults, byzantine failures, but only for some of
the components of our system. With Byzantine failures a faulty process
can have any behaviour, thus replication is the only convenient classi-
cal solution; this greatly increases the size of the system, and makes
model-checking a challenge. Despite the simplicity of our application,
full study of the overall behaviour of the combined system requires us
putting together the specification for many features required by either
the distributed application or the fault-tolerant protocol: our system en-
codes hierarchical component structure, asynchronous communication
with futures, replication, group communication, an agreement protocol,
and faulty components. The system we obtain is huge and we have proved
its correctness by using at the same time data abstraction, compositional
minimization, and distributed model-checking.

1 Introduction

Safety in distributed systems is a wide research area which needs to be tackled
at several levels: from the safety of the execution platform, to the correctness of
the communication protocols and to correctness of the distributed applications.
This article aims at evaluating the adequacy of formal method techniques for
the verification of real-size distributed applications. The objective tackled by
this article is really challenging because the application we consider features
several non-functional concerns which contribute to the explosion of the number
of states that can be reached by the application. Indeed we choose to provide a
model and prove properties for a distributed application featuring fault-tolerance
similar to Byzantine fault tolerance (BFT).

Our work is placed in the context of component oriented programming. In-
deed from a programming model point of view, components provide well-defined

? This work was partialy funded by the ANR international project ANR09-BLAN-
0375-01 between INRIA and Un. of Tsinghua, Beijing, China.

263

modularity, and easiness to compose large applications from the composition of
basic blocks. Also components require the precise definition of interfaces through
which the basic blocks cooperate, which is crucial for a precise design of an ap-
plication, but also strongly helps the formal specification of the application.
Our components also allow a hierarchical and modular design, better specifying
the structure of the application. We choose GCM[2] as our component model
because it is naturally adapted to distribution, hierarchy, and one-to-many com-
munication, but also it provides reconfiguration capabilities which we want to
consider in future works. GCM is an extension of the Fractal component mod-
els with support for deployment, scalability, autonomic behaviour, and asyn-
chronous communication; it also shares a lot of similarities with SCA [3]. In
the VerCors [8] platform, we provide tools for verifying the behaviour of such
distributed component applications.

This paper shows how to specify the behaviour and to verify properties of dis-
tributed component applications with request queues, future proxies and group
proxies, and one-to-many interfaces. To illustrate our approach, we choose a sim-
ple distributed application featuring fault-tolerance by replication. Though the
fault-tolerance properties we address are not outstanding, we think this applica-
tion is a good opportunity to investigate on the use of model-checking to ensure
safety of fault-tolerant applications. This article has the following objectives:

– Promote the use of formal methods to ensure safety of distributed systems.
– Provide a model for one-to-many communication.
– Study the modelling of faulty processes, and investigate the use of model-

checking for verifying fault-tolerance from an application point of view. In-
deed, most of the existing studies on this domain focus on the proof of cor-
rectness of the protocols only, not on the whole distributed application [14].

– Investigate the adequacy of distributed model-checking for verifying a dis-
tributed and asynchronous application that generates a huge state-space.

We do not model reconfiguration and adaptation, but we design our specification
in such a way that those aspects can be added to the model in the future.

In the following, Section 2 presents the related works, with a particular focus
on BFT and GCM components. Then, we describe our fault-tolerant application
and its modelling in Section 3. Finally, Section 4 describes the distributed model
checking phase and the properties we verify.

2 Background and Related Works

2.1 Formal Methods for Component Models

As the formal methods matured, they have been integrated into environments
that support the development of component-based systems. They ensure the
correct behaviour of the assembly of complex applications in all the stages of
the development lifecycle (from specification to execution). However, although
those frameworks share the same basic concepts, they substantially differ in the
range of application domains and supported features. For instance, some of them

264

are dedicated to embedded systems verification [10, 4] while the others are dedi-
cated to software engineering. We focus below on related works for behavioural
specification and verification of distributed components.

Creol [19] is a programming model featuring active objects, requests and fu-
tures, similarly to our approach. A framework provides component modelling
for Creol; it provides a formal language [13] that supports compositional rea-
soning and makes automatic testing and verification possible. This language is
defined over communication labels, and specifies components in terms of traces
of observable behaviour at the interfaces.

Cadena [16] is an environment for modelling and verifying CCM component-
based systems. The framework offers a rigorous type-based language [20] for
describing component connectors, and the interaction between them. The com-
positional analysis is based on the assume-guarantee reasoning. However, the
component model does not support hierarchical structure.

SOFA [24] is a framework for developing distributed systems. It supports
component-based development as well as formal verification. The SOFA 2 com-
ponent model is hierarchical and supports reconfiguration, making it quite close
to ProActive/GCM even though one-to-many communication and asynchrony
with futures are not offered by default in SOFA. SOFA uses “behaviour proto-
cols” for specifying possible interactions between components and checking the
correctness of the assembly, making the verification process in SOFA quite dif-
ferent from ours, but our approach could also be applied to SOFA components.

This article relies on the pNets [1] formalism for describing the behaviour
of parametrized networks of LTSs. We showed in [1] how to build models for
GCM components, asynchronous communication, and futures. [7] describes how
to specify group communication in pNets. Additionally to faulty components,
this article extends the preceding semantics by specifying one-to-many commu-
nication at the GCM level, and the management of proxy instances.

The CADP toolset [11] is one of the prominent platforms for the specifica-
tion, verification, and testing of distributed systems in the academic landscape.
It handles several input formalisms, and provides an extensible API. The toolset
includes engines for building hierarchically the state-space of systems, building
and manipulating LTSs on distributed infrastructures, minimizing LTSs along
several behavioural equivalences, model-checking properties, checking equiva-
lences between systems, building test suites, evaluating performances, etc.

2.2 Verifying Byzantine Fault-tolerant Systems

Byzantine fault tolerance (BFT) has a long history [22, 26]; results in this re-
search area are very difficult to obtain and to prove. Indeed, BFT supposes that
a faulty process can have any behaviour. The name BFT comes from the original
problem raised by Lamport relying on Byzantine generals that must all take the
same decision (attack or retreat), knowing that some of the generals are traitors.
Traitors can say anything to the others, but the others must all act identically.
In computer science, this situation represents either a faulty process behaving

265

“randomly” or a malicious entity. BFT has gain new interests since the appari-
tion of a new form of large scale distributed computations relying on entities
that, by nature, cannot be trusted. Typically a P2P storage application cannot
make any assumption on the kind of misbehaviour the peers can have.

The purpose of this paper is not to prove that a BFT protocol is correct but
to understand whether it is possible to represent all the aspects of a complete
component application communicating by request-replies, and at the same time
reason about the fault-tolerance of this entire application. We focus on a specific
application similar to [21] but simplify it: our application consists of a Master
component replicating data to be stored on several workers. The master updates
the worker value, and gathers replies from workers to retrieve the stored value.
If enough non-faulty workers are instantiated, and enough identical replies are
returned to the master, the stored value can be retrieved. The objective of this
paper is not to study the implementation of the component model, this is why we
make the assumption that communications are performed safely. More precisely,
we suppose that the middleware ensures that messages systematically follow
the bindings, and that a component can only reply to the requests it received.
For example, a faulty component cannot communicate to any component of the
application, and a faulty components cannot reply instead of a non-faulty one.

Note that the master is supposed to be non-faulty; Protocols for dealing
with a faulty master exist and have been heavily studied and implemented. For
example, recently [21] implemented a BFT storage in the same settings as our
application. Here we simplify the problem and focus on the correct handling of
faulty workers, similarly to the case studied in Section 4.2 in [26]. If f is the
number of tolerated faults, 2f + 1 slaves are sufficient for reaching a consensus.
However, as it is generally required in BFT, i.e. when the master can be faulty, we
instantiate 3f + 1 slaves. Section 4 will show that specifying a whole application
with those simplifying hypotheses already requires the full power of distributed
model-checking over a cloud-like architecture.

Our approach for encoding Byzantine faults is the following: faulty slaves can
feature any behaviour, upon verification the model-checker will then explore all
the possible behaviours, including the malicious ones. We then specify a simple
agreement procedure where the Master component waits until enough slaves
answered correctly. In order to count them, our architecture description is aware
of which slave is faulty, but the business code does not use this information.

2.3 Distributed Components and their Semantics

This section recalls the component structure and semantics of GCM, a complete
definition can be found in [17].

Component Structure. The structure of GCM components is inherited from
Fractal: A GCM component can be either composite (i.e. composed of subcom-
ponents), or primitive (a basic element encapsulating the business code). A com-
ponent comprises a content (providing the functional code) and a membrane (a
container managing non-functional operations). The interfaces are the only ac-

266

non-functional server interfaces
(binding, contents, lifecycle, ...)

controller part

content part

client interface

internal interface

server interface non-functional client interface

external interface

Fig. 1. A GCM component

primitive
component

primitive
component

bindingComposite component

Fig. 2. A component system

cess points to components. Each interface is either client (emitting invocations)
or server (receiving invocations). We distinguish functional interfaces address-
ing the business of the application from non-functional ones invoked to manage,
monitor, and introspect the application. A binding connects a client interface
to a server interface (Fig. 2); a message emitted by a client interface is trans-
mitted to the server interface bound to it. In composite components, interfaces
are either internal – exposed to the subcomponents – or external – exposed to
other components. The interface cardinality indicates how many bindings can be
made from or to this interface. In this paper, we only use two interface cardinal-
ities: singleton (one-to-one binding) and multicast (one-to-many binding). The
different parts of a GCM component are shown in Fig. 1, whereas Fig. 2 shows
an assembly of components bound together, on the left there is a composite
composed of two primitives; the figure also illustrates different bindings.

Communication. The basic communication paradigm in GCM is asynchronous
message sending: communication consists in synchronously dropping a message
in a request queue at the receiver side, and creating a future to represent the
result of the invocation. A future is an empty object representing the result of
a computation performed in parallel. Once the future is created, the execution
continues immediately on the sender side. When the request treatment is fin-
ished, the result is automatically returned to replace all the references to the
corresponding future. When a component accesses a future, it is blocked until
the result is returned. However, future references can safely be passed between
components, inside invocation parameters, or inside a request result. To pre-
vent shared memory between components, parameters and results are copied;
no object is passed by reference.

A multicast interface is a client interface that transforms a single invocation
into a list of invocations, sent in parallel to a set of connected interfaces. The
result of an invocation on a multicast interface is a list of results. Invocation
parameters can be distributed according to a distribution policy that can be
customized. Typical distribution policies include broadcast that sends the same
parameter to each connected component, and scatter that splits the parameter.

Component Behaviour. Primitive components encapsulate the business code,
their behaviour is highly dependent on the application; it is provided by the

267

BFT Composite
Good
Slave1

Good
Slave3

Good
Slave2

Bad
Slave1

Master

Read(fid)

Write(fid, b)

Write,
Commit,

Read

Error

Fig. 3. Component Structure of our application

application programmer. The only constraints they must respect are: they serve
requests of the request queue, they emit new requests on their client interfaces,
and can receive a result for the futures they hold. We consider here only mono-
threaded primitive components: a single request is served at a time.

By contrast, composite components have a predefined behaviour: they serve
requests in the reception order, and delegate the requests to sub-components,
according to the bindings. For example, when a composite component receives a
request from the outside, it delegates its service to one of the sub-components.

3 Our Fault-tolerant Application and its Specification

This section describes informally our application, and then presents its be-
havioural model. We present the architecture using the pNets model [1], a for-
malism to encode labeled transition systems with value passing, parametrized
topologies of processes, and different types of communication. We describe then
the primitive component internal behaviour, and the semantic-level process gen-
erated from the GCM architecture. We focus on the parts of the specification
that are directly related to one-to-many communications and fault-tolerance,
details of the other processes are given in [6].

3.1 Distributed Component for Fault-tolerant Storage

Fig. 3 shows the architecture of our application. It consists of a main composite
component BFT-Composite. The white part of the composite is the functional
content made of a Master component and several slaves. Some of those slaves are
called good slaves, i.e. non-faulty, the bad ones are faulty and behave randomly.
In practice one never knows which of the slaves is good or bad but it is necessary
that the verification process knows this information to be able to count the
number of good and bad slaves.

Properties of Interest. From a high-level point of view, we are interested
in the storage properties of our application: the stored value can be retrieved
unchanged, even if some of the slaves are faulty. Of course, some additional
properties are crucial like: the master always finally answers to the requests it

268

Write

Commit

Read

Body

Proxy
_Read[c]

_Commit[c]
Proxy

Proxy
_Write[c]

Slave[k]

Queue

CO

CO

CO

Body

Queue

Read

AC_f

Call_*R_*

Group Manager

Proxy Manager

Activate_*

BC

BC

BC

Master

Write

Q Write(fid,b)

Q Read(fid)

R Write(fid)

R Read(fid,b)

Serve *

Q commit(?)

R ACGet(f)

R ACSet
ACSet(f)

ACGet

Q Read()

Q Write(b)

Fig. 4. pNet Architecture for the whole system

receives. Also, the master must rely on the slaves for storing the value, and does
not distinguish good slaves from bad slaves, for example, for writing data the
master must broadcast a write request to all the slaves.

3.2 Architecture

We describe here the architecture of the semantic model of our use-case. The
overall architecture of the system is shown in Fig. 4. It is composed of:

– An indexed family of slaves receiving invocations from the master. Each of
them has a queue4 storing the requests not treated yet, a body part describ-
ing how to treat the incoming requests and delegate them to the behavioural
specification of methods Write, Commit, and Read. Each requests can reply
to the master by updating a future (represented by the arrows between the
Write box and the CO element). The system is instantiated with 3 good
slaves and 1 bad slave.

– A Master component receiving requests from a client and forwarding them
to the slaves (that are bound to it). It also has a request queue and a body
delegating the treatment of requests to sub-parts of the master. Treatment
of read and write methods will be detailed below.

– The connections that are one-to-one bindings, except for BC (broadcast)
that dispatches a request from the master to all the slaves it is bound to,
and CO (collect) that carries a reply from one of the slaves to the appropriate
proxy. Those 2 bindings will be detailed in Section 3.3.

To optimize the size of the model, the composite has no request queue and
calls are directly issued to the Master component. This has no consequence

4 We generate the behaviour of each request queue as an individual process able to
store a finite number of requests with their parameters

269

because the requests are directly delegated to the Master component, and the
request queue of the Master is sufficient for dealing with asynchrony.

3.3 The Master Body and its methods

Let us first describe the communication patterns and name conventions that we
use in this paper. All local methods are triggered by a first outgoing commu-
nication of the form !Method, then the response is received as parameter of a
?R Method incoming communication. For example, in Fig. 6 !Get Write Proxy

requires a new group proxy for invoking the Write method on the slaves. The
proxy is returned and stored into p1 by the reply: ?R Get Write Proxy(p1). On
the other side, method invocation towards remote components are of the form
!Call Method, those method invocations enqueue a request in the remote request
queue, and pass a proxy reference as one of the parameters of the invocation.
The remote method will, upon termination, fill the proxy with the calculated
value; for this, the !R Method transition synchronizes at the same time with the
invoker that receives the value and with the body of the component containing
the method, so that next request can be served.

The master body. The body is encoded in generic way: it serves sequentially
functional and non-functional requests. In this work, we only use the service of
each functional request (on method Read, Write, or SetF). This service calls the
adequate method (e.g., !Call Read), and waits until the method terminates,
signaled by R events (e.g., ?R Read); R Read synchronizes both with the com-
ponent that triggered the request and with the body. As requests are served one
after the other, this encodes a mono-threaded behaviour for the master.

agreed_bit:=true

!R_CollateReplies(nb_ones)
else

agreed_bit:=false

!R_CollateReplies(nb_zeros) fi

if ind<MAX−SLAVES−1 then ind:=ind+1; to S1 fi

if nb_ones>nb_zeros then

to S0

if Rep[ind]=False then nb_zeros:=nb_zeros+1 fi

if Rep[ind]=True then nb_ones:=nb_ones+1 fi

?CollateReplies(wRep)
ind:=0;nb_ones:=0;nb_zeros:=0

S0 S2

S1

!R_GetBit(agreed_bit)

?GetBit

MethodCollateReplies

Fig. 5. Behaviour of the method: MasterCollateReplies

270

The Attribute controller. In Fractal, the attribute controller provides read
and write access to the attributes of the components; the only attribute of the
Master component is f – the number of faults that can be handled. The behaviour
of the attribute controller is very simple: it simply provides a setter (ACSet) and
a getter (ACGet) method for storing and retrieving the value of f.

The Collate method. Based on the vector of replies received by the proxy, this
method computes a consensus in order to know whether enough slaves returned
a correct answer. It is used by the methods Read and Write described below.
Fig. 5 represents the behaviour of Collate in a format similar to Statecharts
[15]: starting from initial state S0, Collate is always used by first triggering
a ?CollateReplies sending it a vector of replies currently known; then from
state S1, a complex transition counts the number of True and False in the
vector. It stores in agreed bit the reply the most frequent and returns (by
!R CollateReplies) the number of replies that agreed on this value. Then, the
agreed value can be retrieved by a ?GetBit, that returns the agreed bit value.

The Write method. The write method is the most complex method of our
example, it is shown in Fig. 6. It first gets the current value of f, read from the

!Get_Write_Proxy

?R_Get_Write_Proxy(p1)

?R_WaitN_Write(p1,wRep)

!CollateReplies(wRep)

?R_CollateReplies(nb_w_agree)

?R_Get_Commit_Proxy(p2)

!Call_Proxy_Write(p1,b)

!Call_Proxy_Commit(p2,b)

!WaitN_Commit(p2,nbWait)

?R_WaitN_Commit(cRep)

!CollateReplies(cRep)

?R_CollateReplies(nb_c_agree)

!WaitN_Write(p1,nbWait)

[nb_c_agree<agree

& nbWait<nb_Slave]

nbWait ++

!WaitN_Commit(p2, nbWait)

[nb_w_agree<agree

nbWait ++

!WaitN_Write(p1, nbWait)

Error

[nb_w_agree<agree

 & nbWait=nb_Slave]

& nbWait<nb_Slave]

!Error(not BFT)

[nb_w_agree>=agree]
nbWait:=agree

[nb_c_agree<agree

& nbWait=nb_slave]

!Error(not BFT)

!Get_Commit_Proxy

?Call_Write(b)

nb_Slave:=3*f+1

agree:=2*f+1

!Call_GetF

nbWait:=agree

?R_GetF(f)MethodWrite

[nb_c_agree>=agree]

!R_Write

Fig. 6. Behaviour of the Write method

271

BC:
Q_Read(p)

Q_Commit(p)
BC:

BC:

Q_Write(...) !Slave[i].Q_Write(p,b)!Q_Write(g,p,b)

?R_WaitN_Write

!Call_Proxy_Write(p,b)

!WaitN_Write CO:
R_Write(p)

?R_Write(p)

Proxy_Write[p]

!Call_Proxy_Read(p)

CO:

?R_Read(p,val)

!Call_Proxy_Commit(p,b)

CO:

?R_Commit(p)

Proxy Manager

?R_Get_*_Proxy (p)

!Get_*_Proxy

?Q_Unbind

?Q_Bind

Proxy_Read[p]

Proxy_Commit[p]

Activate_Write(p,g) i ∈ g

i ∈ g
cf figure 9

Fig. 7. Focus on the elements for managing the group

attribute controller, and initializes the variables agree, awaited, and nb Slave.
It consists of two phases; first, a write request is sent to all the slaves, then
the master waits until enough slaves agree on the reply, agree is the number
of necessary identical replies, and awaited is the number of awaited replies. If
necessary, additional replies are awaited, and awaited is incremented. It is not
possible to wait for more replies than the number of slaves; if such a situation
occurs, it means that the BFT hypothesis is not verified, more exactly, more than
f slaves are faulty and an error is raised. When enough identical replies have
been received, the write method enters a commit phase that behaves similarly
to the write phase. At the end the method returns to the initial phase, emitting
a !R Write that also indicates the end of the method.

The Read method. The behaviour of the Read method is very similar to
the Write method above. The main difference is that, after triggering remote
invocations and waiting for enough identical replies, it inputs the agreed bit
found by the collate method and returns this value to the client.

The Master Proxies

Managing groups of slaves. We first focus on the management of groups of
slaves, i.e. groups to which the write, read and commit requests will be addressed.
The part of the pNets that deal with this aspect is shown in Fig. 7. It includes a
proxy manager (Fig. 8) that returns an available proxy through its Get * Proxy

invocations. If reconfiguration was enabled, it would receive bind and unbind
requests for adding or removing slaves. When a new proxy is requested, one proxy
is activated (among the families of Proxy write, Proxy Read, or Proxy Commit

proxies), and given the group g on which next invocation will be performed. A
reference to this proxy is returned, and can be used to remotely invoke Write,

272

[WPool[p].free=True]

?Get_Write_Proxy
p:=0

Proxy Manager
WPool:array[1..Max_Proxy]
RPool:...

?Get_XXX_Proxy
{for each XXX method}

!R_Get_Write_Proxy(p)

WPool[p].free:=False
?Activate_Write(p, group)

[p<Max_Proxy]
p++

[WPool[p].free=False]

!Error(NoMoreProxy)
[p=Max_Proxy]

group:array[1..MaxSlave]?Unbind(i)
group[i]:=False

group[i]:=True
?Bind(i)

Fig. 8. Behaviour of the Proxy Manager

Read, or Commit on the slaves. The group g passed upon activation is used later
inside the broadcast communication: the circle BC: Q Write(...) performs a
synchronization involving the proxy and all the slaves of g sending them the
same invocation, !Slave[i].Q Write(p,b), where p is the proxy identifier. The
symmetric communication is performed by the CO: R Write(p) that collects
replies from all the slaves of g and returns them to the Proxy Write pNet: each
member of g can send a reply to the master. Note that g can be modified inside
the manager and a copy of the group is passed upon activation of a proxy. This
guarantees that the CO operation will be performed on the same group as the
invocation, even if, in the manager, the group is changed in the meantime.

The Write proxy. (see Fig. 9) Upon activation, the write proxy waits for an
invocation from the master write method. It then initializes the WRep array of
received replies as well as len – the number of replies currently received. Its

Proxy WriteProxy WriteProxy WriteProxy WriteProxy WriteProxy WriteProxy WriteProxy WriteProxy WriteProxy WriteProxy WriteProxy WriteProxy WriteProxy WriteProxy WriteProxy WriteProxy Write

?Activate_Write(group)?Activate_Write(group)?Activate_Write(group)?Activate_Write(group)?Activate_Write(group)?Activate_Write(group)?Activate_Write(group)?Activate_Write(group)?Activate_Write(group)?Activate_Write(group)?Activate_Write(group)?Activate_Write(group)?Activate_Write(group)?Activate_Write(group)?Activate_Write(group)?Activate_Write(group)?Activate_Write(group)

?WaitN_Write(nbWait)?WaitN_Write(nbWait)?WaitN_Write(nbWait)?WaitN_Write(nbWait)?WaitN_Write(nbWait)?WaitN_Write(nbWait)?WaitN_Write(nbWait)?WaitN_Write(nbWait)?WaitN_Write(nbWait)?WaitN_Write(nbWait)?WaitN_Write(nbWait)?WaitN_Write(nbWait)?WaitN_Write(nbWait)?WaitN_Write(nbWait)?WaitN_Write(nbWait)?WaitN_Write(nbWait)?WaitN_Write(nbWait)

[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)

[len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait]
!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)

[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);
if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;
wRep(i) := valwRep(i) := valwRep(i) := valwRep(i) := valwRep(i) := valwRep(i) := valwRep(i) := valwRep(i) := valwRep(i) := valwRep(i) := valwRep(i) := valwRep(i) := valwRep(i) := valwRep(i) := valwRep(i) := valwRep(i) := valwRep(i) := val

?Call_Proxy_Write(b)?Call_Proxy_Write(b)?Call_Proxy_Write(b)?Call_Proxy_Write(b)?Call_Proxy_Write(b)?Call_Proxy_Write(b)?Call_Proxy_Write(b)?Call_Proxy_Write(b)?Call_Proxy_Write(b)?Call_Proxy_Write(b)?Call_Proxy_Write(b)?Call_Proxy_Write(b)?Call_Proxy_Write(b)?Call_Proxy_Write(b)?Call_Proxy_Write(b)?Call_Proxy_Write(b)?Call_Proxy_Write(b)
wRep:=[undef...undef]wRep:=[undef...undef]wRep:=[undef...undef]wRep:=[undef...undef]wRep:=[undef...undef]wRep:=[undef...undef]wRep:=[undef...undef]wRep:=[undef...undef]wRep:=[undef...undef]wRep:=[undef...undef]wRep:=[undef...undef]wRep:=[undef...undef]wRep:=[undef...undef]wRep:=[undef...undef]wRep:=[undef...undef]wRep:=[undef...undef]wRep:=[undef...undef]
nbWait:=0;len:=0nbWait:=0;len:=0nbWait:=0;len:=0nbWait:=0;len:=0nbWait:=0;len:=0nbWait:=0;len:=0nbWait:=0;len:=0nbWait:=0;len:=0nbWait:=0;len:=0nbWait:=0;len:=0nbWait:=0;len:=0nbWait:=0;len:=0nbWait:=0;len:=0nbWait:=0;len:=0nbWait:=0;len:=0nbWait:=0;len:=0nbWait:=0;len:=0

!Q_Write(group,p,b)!Q_Write(group,p,b)!Q_Write(group,p,b)!Q_Write(group,p,b)!Q_Write(group,p,b)!Q_Write(group,p,b)!Q_Write(group,p,b)!Q_Write(group,p,b)!Q_Write(group,p,b)!Q_Write(group,p,b)!Q_Write(group,p,b)!Q_Write(group,p,b)!Q_Write(group,p,b)!Q_Write(group,p,b)!Q_Write(group,p,b)!Q_Write(group,p,b)!Q_Write(group,p,b)

Fig. 9. Behaviour of the Write request proxy (Proxy for Read and Commit are similar)

273

MethodWrite(Good)MethodWrite(Good)MethodWrite(Good)MethodWrite(Good)MethodWrite(Good)MethodWrite(Good)MethodWrite(Good)MethodWrite(Good)MethodWrite(Good)MethodWrite(Good)MethodWrite(Good)MethodWrite(Good)MethodWrite(Good)MethodWrite(Good)MethodWrite(Good)MethodWrite(Good)MethodWrite(Good)

?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)

!SetBit(b)!SetBit(b)!SetBit(b)!SetBit(b)!SetBit(b)!SetBit(b)!SetBit(b)!SetBit(b)!SetBit(b)!SetBit(b)!SetBit(b)!SetBit(b)!SetBit(b)!SetBit(b)!SetBit(b)!SetBit(b)!SetBit(b)

?R_SetBit(b1)?R_SetBit(b1)?R_SetBit(b1)?R_SetBit(b1)?R_SetBit(b1)?R_SetBit(b1)?R_SetBit(b1)?R_SetBit(b1)?R_SetBit(b1)?R_SetBit(b1)?R_SetBit(b1)?R_SetBit(b1)?R_SetBit(b1)?R_SetBit(b1)?R_SetBit(b1)?R_SetBit(b1)?R_SetBit(b1)

!R_Write(p,b1)!R_Write(p,b1)!R_Write(p,b1)!R_Write(p,b1)!R_Write(p,b1)!R_Write(p,b1)!R_Write(p,b1)!R_Write(p,b1)!R_Write(p,b1)!R_Write(p,b1)!R_Write(p,b1)!R_Write(p,b1)!R_Write(p,b1)!R_Write(p,b1)!R_Write(p,b1)!R_Write(p,b1)!R_Write(p,b1)

MethodWrite(Bad)MethodWrite(Bad)MethodWrite(Bad)MethodWrite(Bad)MethodWrite(Bad)MethodWrite(Bad)MethodWrite(Bad)MethodWrite(Bad)MethodWrite(Bad)MethodWrite(Bad)MethodWrite(Bad)MethodWrite(Bad)MethodWrite(Bad)MethodWrite(Bad)MethodWrite(Bad)MethodWrite(Bad)MethodWrite(Bad)

?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)

!R_Write(p,true)!R_Write(p,true)!R_Write(p,true)!R_Write(p,true)!R_Write(p,true)!R_Write(p,true)!R_Write(p,true)!R_Write(p,true)!R_Write(p,true)!R_Write(p,true)!R_Write(p,true)!R_Write(p,true)!R_Write(p,true)!R_Write(p,true)!R_Write(p,true)!R_Write(p,true)!R_Write(p,true) !R_Write(p,false)!R_Write(p,false)!R_Write(p,false)!R_Write(p,false)!R_Write(p,false)!R_Write(p,false)!R_Write(p,false)!R_Write(p,false)!R_Write(p,false)!R_Write(p,false)!R_Write(p,false)!R_Write(p,false)!R_Write(p,false)!R_Write(p,false)!R_Write(p,false)!R_Write(p,false)!R_Write(p,false)

Fig. 10. The Write method of the (Good and Bad) slaves

two main behaviours are then (1) to receive a reply from an element of the
group, which updates the Wrep array, and the len value; and (2) to fulfill a
WaitN Write invocation from the master write, which returns the current array
of received replies once the number of awaited replies is reached. Proxies for read
and commit method are similar to the write request proxy.

3.4 The Slave Components and their methods

The behaviour of the slaves is much simpler than the one of the master. We
encode two kinds of slaves: good slaves behave as expected, whether bad slaves
behave randomly and encode the byzantine faulty processes. We instantiate as
many faulty processes as the number of faults we can tolerate. The fact that the
system description distinguishes between faulty and non-faulty processes has no
influence here because the functional parts of the components never use this
knowledge: the code of the Master component never distinguishes between the
communications towards the faulty slaves, and towards the non-faulty ones.

The slave body serves successively the requests (Commit, Read and Write)
arriving at the slave queue much similarly to the master body. The bad slaves
and the good slaves have the same body, they all serve the request in a FIFO
order, and no two requests are served at the same time: the slaves are mono-
threaded. The slaves have three methods: Write, Read and Commit; we show
the method Write for the good and bad slaves in Fig. 10, the behaviour of a
good slave consists in storing the bit value b received thanks to a call to !SetBit

that sets a local attribute of the slave. There is a method !GetBit for reading
this value, it is called by the Read request. The bad slave as shown in Fig. 10
replies randomly to each individual request. The commit phase is here to show
how a commit phase would be implemented, but it is not used by our slaves: it
would be useful if the master could also have a faulty behaviour.

According to the BFT hypothesis, a bad slave can behave arbitrarily. How-
ever, we have to restrict a little this behaviour so that it can be encoded and
verified by finite model-checking techniques. Here are the hypotheses we make
and the reasons why it is safe to make them:

– Bad slaves do not steal the identity of another entity: we suppose here that
the underlying middleware guarantees the identity of the components send-
ing requests or replies. It is the classical “oral messages” assumption of [22].

274

– Bad slaves only reply to required requests. We suppose again that the mid-
dleware verifies this to guarantee the integrity of the program execution.

– Bad slaves only reply to requests in the order required. This assumption is
stronger but we can show that it has no influence on the final result. First, the
master is single threaded, waits for enough replies before requiring another
computation, and does not access the future afterward; thus late replies
would have no influence on the computation. In principle, a bad slave could
serve the request in the wrong order and use this information to behave in a
malicious manner; but the exhaustive exploration of all the possible replies
is even more general than the scenarios using out of order service of requests.

4 Building the model, and running the verification tools

In this section we describe the methods and tools used to build the behavioural
model of our application and to check its properties, and we discuss the combi-
nation of advanced techniques we have used to master the model complexity.

We build the behavioural model of our case-study in three steps (Fig. 11).
From the specification of the component architecture and behaviour, our tool
ADL2N [8] builds a hierarchical and parametrized pNets model, including the
data types, the behaviour, and the architecture of the system. Then abstractions
are applied on the data domains, yielding a finitary model. Finally the model is
encoded using a combination of several input formalisms from the CADP toolset
[11]: the Fiacre language [5] provides syntax for data types and expressions,
definition of LTS, and a form of composition of processes by synchronization on
channels; the EXP and SVL languages [11] support the hierarchical encoding of
our pNets, and the scripting of the various verification tasks.

Then we run a combination of CADP tools, the most important ones are:
ceasar.open for generating transition systems from Fiacre programs, either on
a single machine, or on parallel infrastructures when used in combination with
distributor; exp.open to build product of transition systems described in EXP
format; and Evaluator4, the new version of the model-checker that deals with
the MCL (Model Checking Language) logics [23], which is an extension of the
alternation-free regular µ-calculus with facilities for manipulating data.

The Vercors5 tool platform should assist the programmer in the encoding and
verification of his application. It includes the Vercors editors, the ADL2N, ABS
and N2F tools; it is currently under development. For this paper, we already
have been able to generate approximately 50% of the Fiacre and EXP code.

One goal of this work is to experiment with various methods for mastering
the state explosion inherent to large models, such methods consist of:

1. data abstraction
2. hierarchical hiding and minimization
3. use of contextual environment information
4. distributed state-space generation

5 http://www-sop.inria.fr/oasis/index.php?page=vercors

275

Behavioural

=
model

generation

semantics

ABS* N2F

State−space
generation

+
Model−checking

ADL2N

Architecture

Interfaces

Behaviour

Properties

Component
Specifications :

CADP

Evaluator4

Caesar.open

Distributor

Exp.open

Translation

Fiacre
+ EXP
+ SVL

Abstractions

Data

Vercors

Editors
Component pNets

pNets

Finitary

Fig. 11. Tool chain and corresponding processing steps

We have used 1) in several ways. First, all data variables have been given
abstract types with (very small) finite domains, in fact we choose the smallest
abstract domain that preserves the formulas to be proven. Secondly, the topology
parameters of the system (the number of slaves and number of proxy instances)
have been reduced to a minimum number, though significant for our scenario;
proving properties that would be valid for any values of such parameters is
out of the scope of model-checking. Finally, the request queues raises another
issue: their explicit representation has a size exponential in the number of values
that the queue cells admit. Our approach is to encode a (small) finite model of
the queue, including events denoting an error when this finite queue is out-of-
bounds. Then we check by model-checking whether this event is reachable, or the
chosen size is sufficient. The soundness of these approaches is worth discussing;
for the domains of value-passing parameters, we can define finite abstractions
that preserve safety and liveness properties [9]; for the length of queues, we
are building an under-approximation, and we check explicitly its validity. But
for topology parameters, we have no such general result and we only prove
properties for a given instantiation, that is already very helpful as a “debugging
tool”. Proving more general properties is not in the scope of this paper.

Method 2) is now quite classical when using bisimulation-based tools. Let
us remark that to be optimal, we have to generate models specifically for each
formula to prove. Method 3) has been proposed and advocated by the CADP
developers, and is indeed very important when combined with 2). The problem
arises when you build subsystems hierarchically without taking into account the
specific way in which other pieces of the system interact with a given subsystem.
The context information can be built automatically by the CADP tools from
the behaviour of the other subsystems (in which case it is guaranteed to be
sound), or can be specified manually (that may lead to under-approximations).
We chose the second option, and we used the context behaviour to reduce further
the possible values of input data of some methods, by symmetry arguments.

Method 4) is a hot research topic. We are using a local Cloud platform,
providing large computing resources (>1300 cores and 3 Tbytes of RAM), where
we can submit jobs in the form of task workflows. In our case, tasks consist of
compilation of input formalisms, generation of transition systems for subsystems,

276

minimization and product of systems, and model-checking. Tasks can be parallel,
but for the current version of CADP, only LTS generation can run in a distributed
way [12]. We were able to build systems with more than 109 states explicitly
stored in distributed memory [18], but then the bottleneck is the merging of this
structure before minimization or model-checking on a single machine. In practice,
the good strategy is to decompose the system in such a way that subsystems
are of reasonable size, or can be strongly constrained by contextual information,
and to run concurrently the tasks computing the behaviour of each subsystem.
Then minimization, product, and model-checking tasks are run as soon as their
inputs are available, in a coarse-grain concurrent workflow.

Parameter Domains and System Sizes. We ran the use-case with 3 good
slaves and 1 bad slave, allowing for 1 failure. We also generated the model in
two different configurations, with the length Q of the Master Queue respectively
2 (for OutOfBounds detection) and 1 (for optimization).

As we do not have yet enough tool support at the level of the formalism
compilers, we had to do a significant part of the Fiacre/Exp/SVL programming
by hand, so we chose to build one single model with enough events visible to prove
our formulas of interest. The intermediate code consists in 43 Fiacre processes
for a total of 2900 lines of code, and of 330 lines of synchronization vectors in
EXP format encoding 240 pNet structures.

Then the system is divided in 12 subsystems (9 for the Master itself); each
part is encoded in a Fiacre source file, and its state space computed using dis-
tributor. So we have at this level 12 independent tasks in our workflow, running
on 2 to 10 cloud nodes each. Each resulting automaton is reduced by branch-
ing bisimulation (with as much local actions hidden as possible), before being
composed in a hierarchical way, using 4 synchronization products. The final
product is minimized again, before running Evaluator4 for checking our proper-
ties. Decomposing the system in an efficiently manner currently requires human
operation: the choice of subsystems is a compromise between: identifying pro-
cesses that may be reused easily (through relabeling); defining subsystems that
are big enough to take advantage of a distributed generation; choosing pieces
which environment behaviour is well-specified.

The system sizes (states/transitions, after minimization) and computation
times are summarized in the following table:

Q. size Queue Intermediate Master GoodSlave Global Total time
Q=1 21/229 542/3107 2M/45M 744/6550 22K/110K 10’
Q=2 237/3189 542/3107 5.8M/103M 5936/61K 34K/164K 59’

The middle columns in the table give reduced sizes for the most interesting sub-
systems: the Master queue, the biggest intermediate subsystem in our decompo-
sition of the Master, the whole Master component, the (good) Slave component,
and finally the global system, comprising the Master, 4 Slaves, and a Client. The
last column gives the global computation time.

Correctness Properties. Once the behavioural model generated, we verified
several properties, written using the MCL logics; they express various facets

277

of the system correctness. Some properties express global correctness of the
application, seen from the (external) client point of view. Others require the
visibility of some internal events of the system, and reveal the feasibility of
several scenarios, or the impossibility of some errors.

Let us start with simple reachability properties: all requests (Write or Read)
sent to the system can terminate and return successfully. The first formula means
that for each possible value of fid (the identifier of a client request), the action
R Read denoting the return of the corresponding Read request is reachable with
some returned value val. This property is True, meaning that the Read request
can terminate (this holds also for Write requests).

forall fid:nat among {0...2}. exists b:bool.

<true* . {R_Read !fid !b}> true

Next formula checks the reachability of the BFT Error events. This property
is False, meaning that we instantiated enough good slaves.

< true* . ’Error (NotBFT)’> true

We then ensure that the Master’s queue cannot receive too many requests.
Its validity depends on the system client(s). Here we have proved that a queue
depth of 1 is sufficient to prove all of our correctness properties, if we have a
single client, and if this client waits for replies before sending the next request.

< true* . ’Error (Master-OutOfBounds)’> true

Also, we have proved Inevitability properties like the following one. It ensures
that it is (fairly) inevitable that after a Write request, either the system sends
the corresponding Write response or raises an error. Here fairness means ”fair
reachability of predicates” in the sense of Queille and Sifakis [25]:

[true* . ({Q_Write ?fid:nat ?bit:bool})

. (not (’Error.*’ or {R_Write !fid}))*]

< (not (’Error.*’ or {R_Write !fid}))*

. (’Error.*’ or {R_Write !fid}) > true

Similarily, we have shown that it is fairly inevitable that Read requests are
replied, and also that the system is functionally correct: after a Write request
(and before the next one), a Read request will answer with the correct value.

To summarise, we proved by model-checking that our application consisting
of 1 master and 4 slaves (3 good ones and bad one) behaves correctly: 1) it
answers to Read and Write requests, 2) the answers are correct in the sense that
the read value is the value that has been written, 3) for this it relies on the slaves
for storing the data (the master only performs a consensus), and 4) enough good
slaves have been instantiated and the NotBFT error cannot be raised.

5 Conclusion

This paper shows the modelisation and verification by model-checking of a sys-
tem that features: one-to-many communication, asynchronous communication

278

with futures, byzantine faults, replication, and consensus. We showed here the
possibility to encode and verify the correct behaviour of a whole distributed
application that tolerates some faulty processes. Handling byzantine faults is a
difficult task, because no assumption can be made on the behaviour of the faulty
processes. Such a random behaviour makes automatic verification of the correc-
tion of a whole application even more difficult because a lot of possible states
must be considered.

A next step could be to integrate the generation of faulty process, replication
management, and consensus methods to our specification environment: the user
would identify the possibly faulty components and the environment would gener-
ate BFT-like behaviour and replication for those components, but also broadcast
and consensus operations. The new system could then be model-checked to de-
cide whether the whole application is fault-tolerant.

Another lesson drawn here is that the behaviour of the whole application is
huge, we used all the power of the distributed version of CADP on a cloud-like
environment to verify the application. This shows that application-level fault-
tolerance can be verified by a model-checker, but also that adding any other
feature to the system (e.g. reconfiguration for changing the number of replicates
at runtime) may be very difficult. To master such complexity we should use
semantic properties of the programming model and of the middleware to get
better and smaller abstractions at the level of the generated behaviour.

References

1. T. Barros, R. Ameur-Boulifa, A. Cansado, L. Henrio, and E. Made-
laine. Behavioural models for distributed Fractal components. Annals of
Télécommunications, 64(1-2):25–43, 2009.

2. F. Baude, D. Caromel, C. Dalmasso, M. Danelutto, V. Getov, L. Henrio, and Ch.
Pérez. GCM: a grid extension to Fractal for autonomous distributed components.
Annals of Télécommunications, 2009.

3. M. Beisiegel, H. Blohm, D. Booz, M. Edwards, and O. Hurley. SCA service com-
ponent architecture, assembly model specification. Technical report, March 2007.

4. S. Bensalem, M. Bozga, T.-H. Nguyen, and J. Sifakis. Compositional verification
for component-based systems and application. IET Software, 4(3), 2010.

5. B. Berthomieu, J.P. Bodeveix, M. Filali, H. Garavel, F. La ng, F. Peres, R. Saad,
J. Stoecker, and F. Vernadat. The syntax and semantics of Fiacre. In Rapport
LAAS #07264 Rapport de Contrat Projet OpenEmbeDD, Mai 2007.

6. R. Ameur Boulifa, R. Halalai, L. Henrio, and E. Madelaine. Verifying safety of
fault-tolerant distributed components (extended version). Research Report RR-
7717, INRIA, August 2011.

7. R. Ameur Boulifa, L. Henrio, and E. Madelaine. Behavioural models for group
communications. In WCSI-10: International Workshop on Component and Service
Interoperability, Malaga, Spain, 2010.

8. A. Cansado and E. Madelaine. Specification and verification for grid component-
based applications: From models to tools. In F. de Boer, M. Bonsangue, and
E. Madelaine, editors, FMCO’08, volume 5751 of LNCS, pages 180–203. Springer,
Heidelberg, 2008.

279

9. R. Cleaveland and J. Riely. Testing-based abstractions for value-passing systems.
In J. Parrow B. Jonsson, editor, Int. Conf. on Concurrency Theory (CONCUR’94),
volume 836 of LNCS, pages 417–432. Springer, Heidelberg, 1994.

10. J. Eker, J. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Sachs, and Y. Xiong.
Taming heterogeneity - the ptolemy approach. Proceedings of the IEEE, 91(1):127–
144, January 2003.

11. H. Garavel, F. Lang, R. Mateescu, and W. Serve. Cadp 2010: A toolbox for the
construction and analysis of distributed processes. In TACAS’11, volume 6605 of
LNCS, Saarbrücken, Germany, 2011. Springer, Heidelberg.

12. H. Garavel, R. Mateescu, D. Bergamini, A. Curic, N. Descoubes, C. Joubert,
I. Smarandache-Sturm, and G. Stragier. Distributor and bcg merge: Tools for
distributed explicit state space generation. In J. Palsberg H. Hermanns, editor,
TACAS’06, volume 3920 of LNCS, pages 445–449. Springer, Heidelberg, 2006.

13. I. Grabe, M. Steffen, and A. B. Torjusen. Executable Interface Specifications for
Testing Asynchronous Creol Components. Research Report 375, University of
Oslo, Dept. of Computer Science, July 2008.

14. R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić. The next 700 BFT proto-
cols. In Proceedings of the 5th European conference on Computer systems, EuroSys
’10, pages 363–376, New York, NY, USA, 2010. ACM.

15. D. Harel. Statecharts: A visual formalism for complex systems, 1987.
16. J. Hatcliff, W. Deng, M. B. Dwyer, G. Jung, and V. Ranganath. Cadena: An in-

tegrated development, analysis, and verification environment for component-based
systems. In Proc. of the 25th Int. Conf. on Software Engineering, 2003.

17. L. Henrio, F. Kammüller, and M. Rivera. An asynchronous distributed component
model and its semantics. In F. de Boer, M. Bonsangue, and E. Madelaine, editors,
FMCO’08, volume 5751 of LNCS, pages 159–179. Springer, Heidelberg, 2008.

18. L. Henrio and E. Madelaine. Experiments with distributed model-checking of
group-based applications. In Sophia-Antipolis Formal Analysis Workshop, page
3p., France Sophia-Antipolis, Oct 2010.

19. E. B. Johnsen, O. Owe, and I. C. Yu. Creol: a types-safe object-oriented model for
distributed concurrent systems. Journal of Theoretical Computer Science, 365(1 –
2):23 – 66, 2006.

20. G. Jung and J. Hatcliff. A type-centric framework for specifying heterogeneous,
large-scale, component-oriented, architectures. Science of Computer Programming,
75(7):615–637, 2010.

21. R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva: speculative
byzantine fault tolerance. In Proceedings of twenty-first ACM SIGOPS symposium
on Operating systems principles, SOSP ’07, pages 45–58, New York, NY, USA,
2007. ACM.

22. L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4:382–401, July 1982.

23. R. Mateescu and D. Thivolle. A model checking language for concurrent value-
passing systems. In K. Sere J. Cuellar, T. S. E. Maibaum, editor, FM’08, volume
5014 of LNCS. Springer, Heidelberg, 2008.

24. P. Parizek and F. Plasil. Assume-guarantee verification of software components in
sofa 2 framework. Software, IET, 4(3):210 –211, june 2010.

25. J.-P. Queille and J. Sifakis. Fairness and Related Properties in Transition Systems
— A Temporal Logic to Deal with Fairness. Acta Informatica, 19:195–220, 1983.

26. F. B. Schneider. Implementing fault-tolerant services using the state machine
approach: a tutorial. ACM Comput. Surv., 22:299–319, December 1990.

280

Reducing the Model Checking Cost of Product

Lines Using Static Analysis Techniques⋆

Hamideh Sabouri1 and Ramtin Khosravi1,2

1 School of Electrical and Computer Engineering University of Tehran
Karegar Ave., Tehran, Iran

2 School of Computer Science, Institute for Research in Fundamental
Sciences (IPM), Tehran, Iran

Abstract. Software product line engineering is a paradigm to develop
software applications using platforms and mass customization. Compo-
nent based approaches play an important role in development of product
lines: Components represent features, and different component combina-
tions lead to different products. The number of combinations is expo-
nential in the number of features, which makes the cost of product line
model checking high. In this paper, we propose two techniques to reduce
the number of component combinations that have to be verified. The
first technique is using the static slicing approach to eliminate the fea-
tures that do not affect the property. The second technique is analyzing
the property and extracting sufficient conditions of property satisfac-
tion/violation, to identify products that satisfy or violate the property
without model checking. We apply these techniques on a vending ma-
chine case study to show the applicability and effectiveness of our ap-
proach. The results show that the number of generated states and time
of model checking is reduced significantly using the proposed reduction
techniques.

1 Introduction

Software product line engineering is a paradigm to develop software applications
using platforms and mass customization. To this end, the commonalities and
differences of the applications should be modeled explicitly [1]. Feature models
are widely used to model the variability of software product lines. A feature
model is a tree of features, containing mandatory and optional features as well as
a number of constraints among them. A product is then defined by a combination
of features, and product family is the set containing all of the valid feature
combinations [2]. A configuration vector can be used to keep track of inclusion
or exclusion of features.

The Vending Machine Example: Feature Model. Throughout this pa-
per, we use a product family of vending machines as a running example. A
vending machine may serve coffee and/or tea. It also may add milk to the coffee.
Figure 1 shows the feature model of the family of vending machines.

⋆ This research was in part supported by a grant form IPM. (No. CS1390-4-02).

281

Fig. 1. The feature model of the vending machine example

Software product line engineering enables proactive reuse by developing a
family of related products. One of the main approaches to develop software
product lines is the compositional approach, in which features are implemented
as distinct code units [3]. These code units are reused when the corresponding
units are composed to generate each product. Component technology [4] is suit-
able in this approach as reusability is an important characteristic of software
components. In component-based development of product lines, each feature
is implemented using a component. Some of the features can be implemented
within the components in a fine-grained manner as well, using annotative tech-
niques [5]. Consequently, the behavior of a component may change according
to inclusion or exclusion of the features. Software product line engineering is
used in the development of embedded and critical systems [6]. Therefore formal
modeling and verification of software product lines is essential.

Model checking [7] is a promising technique for developing more reliable
systems. Recently, several approaches have been developed for formal modeling
of product lines [8–13]. These approaches capture the behavior of the entire
product family in a single model by including the variability information in it. In
other words, it is specified in the model how the behavior changes when a feature
is included or excluded. Model checking of product lines is discussed in [10, 12,
13]. In these approaches, the model checker investigates all of the possible feature
combinations when verifying the model of a product family against a property,
and the result of model checking is the set of products that satisfy the given
property. The focus of these works is on adapting model checking algorithms to
verify product families, and they do not address the state space explosion issue.
However, the main problem of model checking is its high computational and
memory costs which may lead to state space explosion. This problem limits the
applicability of model checking technique to verify product lines, as in product
families the number of products can be exponential in the number of features. In
[14, 15], two incremental approaches are proposed for product line verification. In
[14], only sequential composition of features is discussed which is a considerable
limitation as the approach is not applicable to concurrent systems. The focus of
[15] is on reducing the effort of applying deductive verification techniques (not
model checking) on product lines. The main idea of our approach is to use static
slicing and static analysis techniques to tackle the state space explosion problem
in model checking of component-based software product lines.

We use Rebeca to model product families in a component-based manner, as
a basis to explain our approach. However, the approach is not limited to Re-

282

beca models, and it is applicable to any modeling language with slicing analysis
support. In our approach, each feature is modeled using one component that
captures its corresponding behavior, or using an alternative behavior within a
component that changes the behavior of the component based on the presence
or absence of the feature accordingly. Each product contains the components
associated to the features that are included in the product, and the behav-
ior of each of its components is determined according to the features that are
included/excluded in that product. The model checker considers all of the possi-
ble combinations of components and alternative behaviors, to verify the product
family. The focus of this paper is on reducing the number of combinations that
should be investigated in model checking. We propose two techniques for this
purpose.

The first technique uses the static slicing approach. Static slicing [16] is an
analysis technique that extracts the statements from a program that are rele-
vant to a particular computation. This technique has been used as a reduction
technique in model checking of Promela [17], CSP [18], Petri-nets [19], and Re-
beca [20, 21] models. In [22], an evaluation of applying static slicing for model
reduction is presented. The result shows significant reductions that are orthog-
onal to a number of other reduction techniques, and applying slicing is always
recommended because of its automation and low computational costs. One of
the main approaches for slicing is using reachability analysis on program de-
pendence graph. The nodes of a program dependence graph are the statements
of the program, and its edges represent data and control dependencies among
the statements. In this paper, we adapt the program dependence graph and the
reachability algorithm, to use static slicing to identify the features that do not
affect the correctness of the property. By discarding these features, the model
checker investigates fewer feature combinations when model checking the prod-
uct family.

In the second technique, we analyze the property statically to extract suffi-
cient conditions of its satisfaction or violation. These conditions are used along
with reachability conditions for variables to conclude satisfaction or violation of
the given property for certain products, without verification. The model checker
does not verify these products, therefore the number of feature combinations that
should be verified is reduced. It should be noted that the proposed techniques
(slicing, extracting conditions from property, and investigating reachability of
variables) can be applied automatically.

This paper is structured as follows. Section 2 explains how product fami-
lies are modeled and model checked. In Section 3 we describe the slicing tech-
nique that is used to identify the features that do not affect a property. Section
4 describes our approach for extracting sufficient conditions of property satis-
faction/violation, and identifying products that satisfy or violate the property,
without model checking. In Section 5 we present the results of using the two
proposed techniques for reducing the feature combinations of a vending machine
case study. Finally, we conclude our work in Section 6.

283

2 Modeling and Model Checking Product Families

This section introduces the Rebeca modeling language [23], and explains how
a product family can be modeled and model checked using Rebeca. We select
Rebeca as a basis to describe our approach, because it is suitable for modeling
concurrent systems, it is supported by the Modere model checking tool [24], it
supports components [25], and the slicing technique is adapted to be applicable
on Rebeca models [20, 21]. However, our proposed approach is not limited to
Rebeca models, and can be applied to other modeling languages with similar
facilities as well.

2.1 Rebeca

Rebeca is an actor-based language for modeling concurrent and distributed sys-
tems as a set of reactive objects which communicate via asynchronous message
passing. A Rebeca model consists of a set of reactive classes. Each reactive class
contains a set of state variables and a set of message servers. Message servers ex-
ecute atomically, and process the receiving messages. The initial message server
is used for initialization of state variables. A Rebeca model has a main part,
where a fixed number of objects are instantiated from the reactive classes and
execute concurrently. We refer to these objects as rebecs. The rebecs have no
shared variable, and each rebec has a single thread of execution that is trig-
gered by reading messages from an unbounded message queue. When a message
is taken from the queue, its corresponding message server is invoked. In [25],
components are added to the Rebeca language to encapsulate tightly coupled
reactive objects. In other words, a component is a set of one or more reactive
objects.

2.2 Product Family Model

To model product families, we should model optional components (which may
be included in some of the products, and excluded in other products), and alter-
native behaviors of components. Different combinations of optional components
and alternative behaviors lead to different products. To this end, we use a spe-
cial tag @AC before a statement to specify the application condition of the
statement. An application condition is a propositional logic formula in terms of
features. This tag indicates that the statement will be executed only in those
products that AC holds. When a feature F corresponds to a component, we
use @F tag before all the message server calls to that component. Subsequently,
message servers of a component are invoked only if its associated feature is in-
cluded in a product. If the feature is excluded in a product, no message is sent
to its corresponding component, and the component will be excluded. Moreover,
these tags can be used to indicate the change of the behavior within components
according to presence and absence of features.

The Vending Machine Example: Rebeca Model. Figure 2 shows the
Rebeca code for the product family of vending machines. In this model, there is a

284

controller component that manages coffee and tea requests and sends messages
to the coffee maker and tea maker components accordingly. The nextRequest
message server (line 12”) is responsible for handling the requests. When there
is request for coffee (req = 1), the serveCoffee message is put in the queue of
coffeeMaker, if the machine is capable of serving coffee (line 15”). If the machine
does not have the coffee option, the coffee request is ignored and the machine
processes the next request (line 17”). The tea request (req = 2) is handled in a
similar way. Consequently, if the coffee or tea feature is excluded in a product, no
message is sent to the corresponding component, and the component will be also
excluded. In the coffee maker component, the behavior changes according to the
existence of the milk feature. If the milk feature is included in a product, milk is
added to coffee (line 15). One of the linear temporal logic (LTL) [26] properties
that can be considered for this model is P : �(¬(addingCoffee ∧ addingTea)),
where � stands for globally. This property describes that the machine should
not add both coffee and tea to a drink at the same time.

1 reactiveclass CoffeeMaker { 1’ reactiveclass TeaMaker { 1” reactiveclass Controller{
2 knownrebecs { 2’ knownrebecs { 2” knownrebecs {
3 Controller ctrl; 3’ Controller ctrl; 3” CoffeeMaker cm;
4 } 4’ } 4” TeaMaker tm;

5” }
5 statevars { 5’ statevars {
6 boolean addingCoffee; 6’ boolean addingTea; 6” statevars {
7 boolean addingMilk; 7’ } 7” int req;
8 } 8” }

8’ msgsrv initial() {
9 msgsrv initial() { 9’ addingTea = false; 9” msgsrv initial() {
10 addingCoffee = false; 10’ } 10” self.nextRequest();
11 addingMilk = false; 11” }
12 } 11’ msgsrv serveTea() {

12’ addingTea = true; 12” msgsrv nextRequest() {
13 msgsrv serveCoffee() { 13’ self.serveComplete(); 13” req = ?(1,2);
14 addingCoffee = true; 14’ } 14” if(req == 1)
15 @Milk addingMilk = true; 15” @Coffee
16 self.serveComplete(); 15’ msgsrv serveComplete() { cm.serveCoffee();
17 } 16’ addingTea = false; 16” if(req == 1)

17’ ctrl.nextRequest(); 17” @!Coffee
18 msgsrv serveComplete() { 18’ } self.nextRequest();
19 addingCoffee = false; 19’ } 18” if(req == 2)
20 addingMilk = false; 19” @Tea
21 ctrl.nextRequest(); tm.serveTea();
22 } 20” if(req == 2)
23 } 21” @!Tea

self.nextRequest();
22” }
23” }

Fig. 2. The Rebeca code of the product family of vending machines

285

2.3 Model Checking the Product Family

For a product line with n features (where each feature corresponds to a com-
ponent or an alternative behavior of a component), potentially there exist 2n

products in its corresponding product family. To model check the product fam-
ily, a configuration vector C ∈ 〈I, E, ?〉n (I: Included, E: Excluded, ?: not de-
cided) is used to keep track of inclusion and exclusion decisions that are made for
each feature [10]. The validity of configuration vector with respect to the feature
model can be checked during model checking by transforming the feature model
to a propositional logic formula [27] and using a SAT-solver (like [28]) to inves-
tigate its satisfiability. The result of model checking a product family against a
property is the set of products (represented through configuration vectors) that
satisfy the given property.

The Vending Machine Example: Model Checking. We assume the
first, second, and third elements of configuration vector correspond to Coffee,
Tea, and Milk features, respectively. The result of model checking the product
family of vending machines against the property P is:

R = {〈E, I, E〉, 〈I, E, E〉, 〈I, I, E〉, 〈I, E, I〉, 〈I, I, I〉}
Note that the configurations 〈E, E, E〉, 〈E, E, I〉, and 〈E, I, I〉 do not appear

in R as they do not represent valid products, according to the feature model.

3 Slicing the Model of a Product Family

The main purpose of slicing is to extract the statements of a program that are
relevant to a particular computation. A backward program slice consists of the
statements that potentially affect the values computed by some statement of
interest (referred to as a slicing criterion). A common approach for program
slicing is applying a graph reachability algorithm on the program dependence
graph. In this section, we first describe the program dependence graph of Rebeca
models that capture the behavior of a product family, and then present the slicing
algorithm that computes the slice of the product family model, followed by a
short discussion on model checking the computed slice.

3.1 Program Dependence Graph

A program dependence graph models the data and control dependencies that
exist among the statements of a program. In such a graph, the nodes represent
the statements of a program, and the edges are dependencies among them. A data
dependence edge exists between two statements if one statement assigns a value
to a variable and the other statement may read the value of that variable before it
is changed by another statement. A control dependence edge exists between two
statements if one statement determines whether the other statement is executed.

A special dependence graph named Rebeca Dependence Graph (RDG), is
introduced for Rebeca in [20]. In this graph, there is a class node for each

286

reactive class, and member dependence edges connect the class nodes to their
message servers. Each message server is modeled by an entry node, a set of
nodes representing its statements, and data dependence and control dependence
edges modeling dependencies within the body of the message server. Sending a
message is represented through an activation node. In addition, an activation
edge is used to connect the activation node to the entry node of the corresponding
message server. Finally, intra-rebec dependence edge represents the dependency
between a statement that writes on a state variable in a message server, and a
statement which reads the value of that variable in another message server. To
adapt the dependence graph for product families, we add a tag to the nodes to
specify their application conditions.

Fig. 3. The RDG of the vending machine example

The Vending Machine Example: RDG. Figure 3 shows the RDG of the
vending machine. In this graph the nodes 15, 15”, 17”, 19”, and 21”, are tagged
with a feature as their corresponding statements in the Rebeca model are tagged
with these features.

3.2 Slicing Algorithm

After constructing the program dependence graph, the slice with respect to a
property can be computed using a graph reachability algorithm. The slicing
criterion consists of the statements that assign values to the variables that appear
in the given property. Figure 4 shows the static slicing algorithm that is adapted
to extract the features affecting the property as well. To this end, the algorithm
traverses the graph backwards (starting from the slicing criterion nodes), and
adds the traversed nodes to the slice, and their corresponding features to the
relevant features set. In this algorithm, we assume that Features(v) gives the set
of features that appear in the application condition of node v. The features in
the set F are the components and the alternative behaviors that their presence

287

Input: The set of slicing criterions (C) and RDG (Rebeca Dependence Graph)
Output: Slice S, Relevant features set F

S={}; /*initialize the slice*/
F={}; /*initialize the relevant features set*/
for each(ci∈C){ /*for each slicing criterion*/

W={ci}; /*add the slicing criterion node to the work list*/
S=S∪{ci}; /*add the slicing criterion node to the slice*/
while(W 6=∅){ /*while the work list is not empty*/

W=W\{w}; /*remove one element (w) from the work list*/
for each(v⇀w){ /*for each node v on which w depends*/

if(v 6∈S){ /*if the node is not included in the slice*/
W=W∪{v}; /*add it to the work list and the slice*/
S=S∪{v};
F=F∪Features(v); /*add the corresponding features to the relevant feature set*/

}
}

}
}

Fig. 4. Static slicing algorithm adapted to extract relevant features

or absence affects the correctness of the property. Therefore, the model checker
should investigate their different combinations.

The Vending Machine Example: Slicing. The slicing criterion nodes for
the property P : �(¬(addingCoffee ∧ addingTea)), are indicated by gray nodes
in Figure 3. The slice computed by the slicing algorithm contains all of the nodes
except 11, 15, 20, and the feature set is F = {Coffee,Tea}.

3.3 Model Checking the Slice

The features that do not exist in the set F represent the components and alter-
native behaviors that do not affect the property. Therefore, the combinations of
these features can be ignored when model checking the slice of a product family.
Having a feature model with n features, there will be at most 2n feature combi-
nations (products), in the product family. By excluding m features that do not
affect the property, the number of products to verify is reduced to 2(n−m). The
configuration vector is C ∈ 〈I, E, ?〉(n−m), as practically, the value of an element
that its associated feature is removed always remains as “?”.

The result of model checking the slice of product family against a property is
the set R containing the configurations that satisfy the given property. However,
these configurations are based on the combinations of n − m features and do
not describe identifiable products. As the other m features do not affect the
property, we can combine the configurations in R with inclusion and exclusion
of each of these features, taking constraints of the feature model into account,
to achieve the final result. If we have r configurations such as C ∈ 〈I, E〉(n−m)

in R, The ultimate result R′ would contain (r × 2m) − u configurations in the
form C ∈ 〈I, E〉n, where u is the number of feature combinations that are not
valid according the feature model.

288

The Vending Machine Example: Model Checking the Slice. The Milk
feature does not affect the property P , and does not appear in the slice. This
reduces the number of products in the product family from 23 to 22. The result
of model checking the slice against P is:

R = {〈E, I〉, 〈I, E〉, 〈I, I〉}
In the next step, the milk feature should be combined with each of the above

configurations. So it should be included and be excluded in these configurations
(that leads to two new configurations per each configuration). The final result is
R′ that consists of (3 × 21) − 1 configurations (〈E, I, I〉 is invalid):

R′ = {〈E, I, E〉, 〈I, E, E〉, 〈I, E, I〉, 〈I, I, E〉, 〈I, I, I〉}

4 Static Analysis of Property Satisfaction/Violation in
Products

In this section, we describe how satisfaction/violation of a property can be in-
ferred for some of the products without model checking. For this purpose, we
extract sufficient conditions for property satisfaction/violation in terms of initial
values of atomic propositions and the possibility of their change in the model. We
assume that a property is described using boolean variables where each variable
corresponds to an atomic proposition. Therefore, we can evaluate sufficient con-
ditions using the initial values of the variables and the possibility of their change
in different products. The latter is achieved by analyzing the reachability of
statements to obtain a condition in terms of presence and absence of features,
which describes in which products the value of a variable may change. Using the
result of evaluating sufficient conditions, we determine a subset of products that
satisfy/violate the property without model checking. In other words, we indicate
in which components and in which of their alternative behaviors the value of a
variable does not change, and consequently the property is satisfied/violated.

It should be mentioned that this analysis only makes sense for models of
product families that capture the behavior of all products. In traditional model
checking, the value of a variable changes when the model is executed, and almost
always it is not possible to infer satisfaction/violation of a property without
model checking.

4.1 Condition Extraction from the Property

In this work, we consider properties expressed in linear temporal logic (LTL) [26].
An LTL formula over the set of AP of atomic propositions is formed according
the following grammar:

ϕ ::= true | false | p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | �ϕ | ♦ϕ | ϕ1Uϕ2

289

In the above grammar, p ∈ AP , and �, ♦, and U stand for globally, finally,
and until operators respectively.

A transition system TS is a tuple (S,Act , →, I,AP , L) where S is a set of
states, Act is a set of actions, →⊆ S × Act × S is a transition relation, I ⊆ S
is a set of initial states, AP is a set of atomic propositions, and L : S → 2AP is
a labeling function. For simplicity, in this paper we assume a single initial state
s0 for a transition system. A state s is reachable from the initial state, s0 →∗ s,
if there exists a set of actions αi ∈ Act such that s0

α1→ s1
α2→ ...

αn→ s.

Figure 5 shows the proposed rules for extracting sufficient conditions of prop-
erty satisfaction/violation. These conditions are statically inferable from the ini-
tial values of atomic propositions, and also the atomic propositions that do not
vary in TS. The notation VTS (ϕ) means that the LTL formula ϕ does not vary
in TS, because some of the atomic propositions in ϕ do not change in TS.

Rules 1-8 are trivial. We can infer TS � �ϕ from TS � ϕ (Rule 9) if ϕ
does not vary in TS (VTS (ϕ)). From TS 2 ϕ we can conclude that TS 2 �ϕ,
as ϕ should hold in all states and otherwise �ϕ is violated (Rule 10). Similar
justifications can be made for the other rules.

Using these rules, we extract sufficient conditions for property satisfaction
or violation. These conditions are propositional logic formulas in terms of initial
values of atomic propositions (p ∈ L(s0)) and their variability (VTS(p)).

The Vending Machine Example: Extracting Satisfaction/Violation
Conditions. For the property P : �(¬(addingCoffee ∧ addingTea)) we can ex-
tract sufficient conditions for satisfaction/violation by applying the rules in Fig-
ure 5 in the following order (it is assumed that p is (addingCoffee = true), and
q is (addingTea = true)):

TS � (�(¬(p ∧ q))) if (TS � (¬(p ∧ q))) ∧ VTS (¬(p ∧ q)) Rule(9)

TS � (¬(p ∧ q)) if TS 2 (p ∧ q) Rule(3)

TS 2 (p ∧ q) if (TS 2 p) ∨ (TS 2 q) Rule(8)

TS 2 p if p /∈ L(s0) Rule(2)

TS 2 q if q /∈ L(s0) Rule(2)

VTS (¬(p ∧ q)) if VTS (p ∧ q) Rule(18)

VTS (p ∧ q) if VTS (p) ∧ VTS (q) Rule(22)

VTS (p ∧ q) if (TS 2 p) ∧ VTS (p) Rule(23)

VTS (p ∧ q) if (TS 2 q) ∧ VTS(q) Rule(24)

This way, the three extracted sufficient conditions of property satisfaction
would be:

TS � P if (p /∈ L(s0) ∨ q /∈ L(s0)) ∧ (VTS (p) ∧ VTS (q))

TS � P if (p /∈ L(s0) ∨ q /∈ L(s0)) ∧ (p /∈ L(s0) ∧ VTS (p))

TS � P if (p /∈ L(s0) ∨ q /∈ L(s0)) ∧ (q /∈ L(s0) ∧ VTS (q))

290

TS � p if p ∈ L(s0) Rule(1)

TS 2 p if p /∈ L(s0) Rule(2)

TS � ¬ϕ if TS 2 ϕ Rule(3)

TS 2 ¬ϕ if TS � ϕ Rule(4)

TS � (ϕ1 ∨ ϕ2) if (TS � ϕ1) ∨ (TS � ϕ2) Rule(5)

TS 2 (ϕ1 ∨ ϕ2) if (TS 2 ϕ1) ∧ (TS 2 ϕ2) Rule(6)

TS � (ϕ1 ∧ ϕ2) if (TS � ϕ1) ∧ (TS � ϕ2) Rule(7)

TS 2 (ϕ1 ∧ ϕ2) if (TS 2 ϕ1) ∨ (TS 2 ϕ2) Rule(8)

TS � �ϕ if (TS � ϕ) ∧ VTS (ϕ) Rule(9)

TS 2 �ϕ if TS 2 ϕ Rule(10)

TS � ♦ϕ if TS � ϕ Rule(11)

TS 2 ♦ϕ if (TS 2 ϕ) ∧ VTS (ϕ) Rule(12)

TS � (ϕ1Uϕ2) if TS � ϕ2 Rule(13)

TS 2 (ϕ1Uϕ2) if (TS 2 ϕ1) ∧ (TS 2 ϕ2) Rule(14)

TS 2 (ϕ1Uϕ2) if (TS 2 ϕ2) ∧ VTS (ϕ2) Rule(15)

VTS (p) if ∄s | (s0 →∗ s) ∧ [(p ∈ L(s0)) ∧ (p /∈ L(s))] Rule(16)

VTS (p) if ∄s | (s0 →∗ s) ∧ [(p /∈ L(s0)) ∧ (p ∈ L(s))] Rule(17)

VTS (¬ϕ) if VTS (ϕ) Rule(18)

VTS (ϕ1 ∨ ϕ2) if VTS (ϕ1) ∧ VTS (ϕ2) Rule(19)

VTS (ϕ1 ∨ ϕ2) if (TS � ϕ1) ∧ VTS (ϕ1) Rule(20)

VTS (ϕ1 ∨ ϕ2) if (TS � ϕ2) ∧ VTS (ϕ2) Rule(21)

VTS (ϕ1 ∧ ϕ2) if VTS (ϕ1) ∧ VTS (ϕ2) Rule(22)

VTS (ϕ1 ∧ ϕ2) if (TS 2 ϕ1) ∧ VTS (ϕ1) Rule(23)

VTS (ϕ1 ∧ ϕ2) if (TS 2 ϕ2) ∧ VTS (ϕ2) Rule(24)

VTS (�ϕ) if VTS (ϕ) Rule(25)

VTS (♦ϕ) if VTS (ϕ) Rule(26)

VTS (ϕ1Uϕ2) if VTS (ϕ1) ∧ VTS (ϕ2) Rule(27)

VTS (ϕ1Uϕ2) if (TS � ϕ2) ∧ VTS (ϕ2) Rule(28)

VTS (ϕ1Uϕ2) if (TS 2 ϕ2) ∧ VTS (ϕ2) Rule(29)

Fig. 5. Rules for extracting sufficient conditions of property satisfaction/violation,
based on initial values of atomic propositions, and the atomic propositions that do
not vary in TS

291

A sufficient condition of property violation for P can be extracted in a similar
way:

TS 2 P if p ∈ L(s0) ∧ q ∈ L(s0)

4.2 Evaluation of the Extracted Conditions

The initial values of atomic propositions (p ∈ L(s0) or p /∈ L(s0)) are computed
based on initialization statements. For simplicity, we assume that the property
is described using boolean variables only. It should be mentioned that we can
always rewrite a property such as �(x = y + z) in the form �(v = true), where
v is boolean variable representing x = y + z. This assumption implies that each
atomic proposition is a boolean variable in the Rebeca model, and the value
that is assigned to the variable in the initialize message server, determines if
p ∈ L(s0) or p /∈ L(s0).

The next step is to investigate if the value of the atomic proposition p may
vary (VTS (p)). The value of variable v (where v corresponds to p) changes in
a product if the product has a reachable statement s that assigns a value to
v. According to our model for product families, a tagged statement is executed
when its application condition holds in a product. Other statements are exe-
cuted normally. We assume that F(s) gives the application condition that is
associated to a tagged statement s, and for other ones returns true. A statement
s is reachable in a product if its associated application condition holds in the
product, as well as at least one of the application conditions assigned to those
statements on which s is control/activation dependent (possibly indirectly). We
compute the reachability condition of the statement s recursively as:

RC (s) =
∨

r⇀c,as

(F(s) ∧ RC (r))

In the above computation, r ⇀c,a s is the set of statements on which s is con-
trol or activation dependent. To avoid recursion, we mark each statement r when
its condition is extracted, and in r ⇀c,a s we only consider the unmarked state-
ments. Note that when a behavioral model is inconsistent (e.g. RC (s) contains
the conjunction of a feature and its negation), the statement s is not reachable
in any of the products.

We assume Def (v) is the set of statements that assign value to the variable
v, except the initialization statement which is the one assigning value to v in
the initial message server of the Rebeca model. The value of v may change
in a product, if at least one of the statements s ∈Def (v) are reachable in that
product. The atomic proposition p which corresponds to v may vary in transition
system TS if:

VTS (p) =
∨

s∈Def (v)

RC (s)

Consequently:

292

VTS (p) = ¬(
∨

s∈Def (v)

RC (s))

The possibility of variation for p is thus described using application condi-
tions, where each application condition is a propositional logic formula in terms
of features itself. Substituting the initial values of atomic propositions and their
possibility of variation (VTS (p)) in sufficient conditions of property satisfac-
tion/violation, leads to a number of propositional logic formulas. These formu-
las describe products that we can conclude satisfaction/violation of the given
property in them statically. A product satisfies or violates a property if at least
one of the sufficient conditions of property satisfaction or violation holds for it,
because of the components and alternative behaviors that it includes. The model
checker only verifies the products that their satisfaction or violation cannot be
concluded from sufficient conditions.

The Vending Machine Example: Evaluation of the Extracted Con-
ditions. We assume that atomic propositions p and q correspond to addingCoffee
and addingTea variables, respectively. According to the initializations in the Re-
beca model, we can conclude that p /∈ L(s0) and q /∈ L(s0). The statements
10 and 14 assign value to addingCoffee which means that Def (addingCoffee) =
{s14, s19}. Therefore:

VTS (p) = ¬(RC (s14) ∨ RC (s19)) = ¬Coffee

Because:

RC (s14) = RC (s13) = RC (s15”) = Coffee ∧ RC (s14”) = Coffee ∧ RC (s12”) =

Coffee ∧ [RC (s17′) ∨ RC (s17”) ∨ RC (s21”) ∨ RC (s10”)︸ ︷︷ ︸ ∨RC (s21)] =

Coffee ∧ [RC (s17′) ∨ RC (s17”) ∨ RC (s21”) ∨ RC (s9”)︸ ︷︷ ︸∨RC (s21)] =

Coffee ∧ [RC (s17′) ∨ RC (s17”) ∨ RC (s21”) ∨ true ∨ RC (s21)] = Coffee

and:

RC (s19) = RC (s18) = RC (s16) = RC (s13) = Coffee

Similarly, we can compute VTS (q) = ¬Tea. By substitution of VTS (p) and
VTS (q) with ¬Coffee and ¬Tea respectively, the following conditions are achieved
which describe the products for which satisfaction/violation of P is inferable
without model checking:

TS � P if (¬Coffee ∧ ¬Tea)

TS � P if ¬Coffee

TS � P if ¬Tea

293

According to the above conditions, the products that do not have the Coffee
feature, and the products that do not have the Tea feature, satisfy P , and there
is no need to verify them. This way, the number of the products that should be
model check is reduced to 22 − 3, as we can tell that the products 〈I, E〉, 〈E, I〉,
and 〈E, E〉 satisfy P (although 〈E, E〉 is not a valid product).

Fig. 6. The feature model of the vending machine case study

5 Results

We applied our proposed approach to a vending machine case study that is much
more complex than the running example 3. The machine includes a controller
that handles the requests. Figure 6 shows the feature model of the vending ma-
chine. The coffee maker, tea maker, and soda server components are responsible
for serving the associated drinks. There is also a milk adder component which
adds milk to coffee. There are two coffee container components and two tea con-
tainer components, containing black coffee, coffee with cream, black tea, and
green tea, respectively. The coffee maker and the tea maker components use the
proper container to serve the requested drink. They add water through the water
component. The water component can be filled using two different mechanisms
which are handled by the filler 1 and filler 2 components. Finally, there are two
different payment methods for a vending machine: paying by coin, or paying by
card. We defined the following six LTL properties to be verified.

– P1 = �[¬(ServingCoffee ∧ ServingTea ∧ ServingSoda)]
– P2 = �(¬empty)
– P3 = �(¬overFlow)
– P4 = �[¬(addingBlackCoffee ∧ addingCreamCoffee)]
– P5 = �[¬(addingBlackTea ∧ addingGreenTea)]
– P6 = �♦(ServingSoda)

The first property describes that the vending machine should not be serving
three drinks at the same time. The second and third properties check that the

3 The source code is available at http://ece.ut.ac.ir/rkhosravi/sourcecode

294

water container should not get empty, or overflow. The forth property describes
that the machine should not add black coffee together with coffee and cream to
a drink. This fact should be also checked for the tea drink (the fifth property).
The last property states that the machine should serve soda infinitely often.

Table 1. Number of states and time of verification (in seconds) before applying the
techniques (first column), after applying the slicing technique (second column), and
after identifying products that satisfy/violate the property without model checking
(third column), for the vending machine case study

Complete Model Static Slicing Slicing and Static Analysis

states time(sec) states time(sec) states time(sec)

P1 - - 49,307,358 24,574 25,590,940 13,849

P2 - - 39,169,329 17,156 39,126,321 17,138

P3 - - 39,182,632 18,019 19,571,384 9,119

P4 - - 43,484,712 19,623 16,037,384 7,517

P5 - - 47,317,992 24,084 14,696,264 6,951

P6 - - 114,547,805 142,081 63,357,123 75,356

Table 1 shows the number of states and the time of verification (in seconds)
for model checking the product family of vending machine case study. The time
of applying slicing technique and computing sufficient conditions are negligible
comparing to model checking time and are ignored. The complete model can
not be model checked against the properties because of state space explosion
(first column). After applying the slicing technique and eliminating irrelevant
features, the sliced model can be checked against the properties (second column).
However, the number of states and time of verification can be reduced even
more by extracting sufficient conditions of property satisfaction/violation, and
identifying products that satisfy/violate the property without model checking.

6 Conclusion

In this paper we presented two techniques to reduce the number of products of a
product line that are model checked against a property. This way, the number of
generated states and the required time for verifying product families are reduced.
The first technique was to apply static slicing to eliminate the features that do
not affect the property. The second technique was to analyze the property and
reachability of its variables in different products statically to identify products
that satisfy/violate the property without model checking. The results of using
these techniques in model checking the vending machine case study show the
effectiveness of our approach as the number of generated states and time of
verification reduced significantly after applying these techniques. The slicing and
static analysis technique are completely automatic, and their cost is negligible
comparing to the verification cost which makes using our approach for model
checking product families practical.

295

References

1. Pohl, K., Böckle, G., Linden, F.J.v.d.: Software Product Line Engineering: Foun-
dations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus, NJ,
USA (2005)

2. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Technical report, Carnegie-Mellon Uni-
versity Software Engineering Institute (November 1990)

3. Kästner, C., Apel, S., Kuhlemann, M.: Granularity in software product lines. In:
Proceedings of the 30th international conference on Software engineering. ICSE
’08, ACM (2008) 311–320

4. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2002)

5. Kästner, C., Apel, S.: Integrating compositional and annotative approaches for
product line engineering. In: Proceedings of the GPCE Workshop on Modular-
ization, Composition and Generative Techniques for Product Line Engineering
(McGPLE), University of Passau (October 2008)

6. Ebert, C., Jones, C.: Embedded software: Facts, figures, and future. Computer 42
(April 2009) 42–52

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (2000)
8. Larsen, K.G., Nyman, U., Wasowski, A.: Modal I/O automata for interface and

product line theories. In: Proceedings of the 16th European Symposium on Pro-
gramming. ESOP’07, Springer-Verlag (2007) 64–79

9. Larsen, K.G., Nyman, U., Wasowski, A.: Modeling software product lines using
color-blind transition systems. Int. J. Softw. Tools Technol. Transf. 9(5) (2007)
471–487

10. Gruler, A., Leucker, M., Scheidemann, K.: Modeling and model checking software
product lines. In: Proceedings of the 10th international conference on Formal
Methods for Open Object-Based Distributed Systems. FMOODS ’08, Springer-
Verlag (2008) 113–131

11. Muschevici, R., Clarke, D., Proenca, J.: Feature Petri nets. In: Second Proceedings
of the 14th international conference on Software product lines. (2010) 99–106

12. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A., Raskin, J.F.: Model check-
ing lots of systems: efficient verification of temporal properties in software product
lines. In: Proceedings of the 32nd ACM/IEEE International Conference on Soft-
ware Engineering. ICSE ’10, ACM (2010) 335–344

13. Sabouri, H., Khosravi, R.: An effective approach for verifying product lines in
presence of variability models. In: Second Proceedings of the 14th international
conference on Software product lines. (2010) 113–120

14. Liu, J., Basu, S., Lutz, R.R.: Compositional model checking of software product
lines using variation point obligations. Automated Software Engg. 18 (March 2011)
39–76

15. Bruns, D., Klebanov, V., Schaefer, I.: Verification of software product lines with
delta-oriented slicing. In: Proceedings of the 2010 international conference on For-
mal verification of object-oriented software. FoVeOOS’10, Springer-Verlag (2011)
61–75

16. Weiser, M.: Program slicing. In: Proceedings of the 5th international conference
on Software engineering. (1981) 439–449

17. Millett, L., Teitelbaum, T.: Issues in slicing Promela and its applications to model
checking, protocol understanding, and simulation. Software Tools for Technology
Transfer (2000) 343–349

296

18. Bruckner, I., Wehrheim, H.: Slicing an integrated formal method for verification.
In: Proceedings of Seventh International Conference on Formal Engineering Meth-
ods. ICFEM’05 (2005) 360–374

19. Rakow, A.: Slicing Petri nets with an application to workflow verification. In:
Proceedings of the 34th Conference on Current Trends in Theory and Practice of
Computer Science. SOFSEM 2008 (2008) 436–477

20. Sabouri, H., Sirjani, M.: Actor-based slicing techniques for efficient reduction of
Rebeca models. Sci. Comput. Program. 75(10) (October 2010) 811–827

21. Sabouri, H., Sirjani, M.: Slicing-based reductions for Rebeca. In: Electron. Notes
Theor. Comput. Sci. Volume 260. (January 2010) 209–224

22. Dwyer, M.B., Hatcliff, J., Hoosier, M., Ranganath, V., Wallentine, T.: Evaluating
the effectiveness of slicing for model reduction of concurrent object-oriented pro-
grams. In: Proceedings of International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. TACAS06, Springer (2006) 73–89

23. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.: Modeling and verification of
reactive systems using Rebeca. Fundamenta Informaticae 63(4) (December 2004)
385–410

24. Jaghoori, M., Movaghar, A., Sirjani, M.: Modere: The model-checking engine of
Rebeca. ACM Symposium on Applied Computing - Software Verification Track
(2006) 1810–1815

25. Sirjani, M., de Boer, F., Movaghar, A.: Modular verification of a component-based
actor language. Journal of Universal Computer Science 11(10) (2005) 1695–1717

26. Emerson, E.A.: Temporal and modal logic. Handbook of theoretical computer
science (1990) 995–1072

27. Batory, D.S.: Feature models, grammars, and propositional formulas. In: Proceed-
ings of the 9th international conference on Software product lines. SPLC’05 (2005)
7–20

28. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: Proceedings of the 38th annual Design Automation
Conference. DAC ’01, ACM (2001) 530–535

297

Bigraphical Modelling of Architectural Patterns

Alejandro Sanchez1, Luís S. Barbosa2, and Daniel Riesco1

1 Departamento de Informática, Universidad Nacional de San Luis,
Ejército de los Andes 950, D5700HHW San Luis, Argentina

{asanchez,driesco}@unsl.edu.ar
2 DI - HASLab, Universidade do Minho,

Campus de Gualtar, 4710-057 Braga, Portugal
lsb@di.uminho.pt

Abstract. Archery is a language for behavioural modelling of architec-
tural patterns, supporting hierarchical composition and a type discipline.
This paper extends Archery to cope with the patterns’ structural dimen-
sion through a set of (re-)configuration combinators and constraints that
all instances of a pattern must obey. Both types and instances of ar-
chitectural patterns are semantically represented as bigraphical reactive
systems and operations upon them as reaction rules. Such a bigraphical
semantics provides a rigorous model for Archery patterns and reduces
constraint verification in architectures to a type-checking problem.

1 Introduction

In a number of contexts the term architectural pattern is used as an architectural
abstraction. The expression is taken in the usual sense in classical software archi-
tecture – a known solution to a recurring design problem. In [4] it is characterised
as a description of element and configuration types, and a set of constraints on
how to use them. Available catalogs such as [8] provide a vocabulary for their use
at a high abstraction level. However, the lack of formality in their pattern doc-
umentation prevents its usage for developing precise architectural specifications
on top of them, and in consequence, any tool-supported analysis and verification.

Such is the motivation behind Archery, a language to describe the behaviour
of pattern elements, a subset of which was recently presented at [13]. Its seman-
tics is given by translation to mCRL2 [10]. A pattern specification in Archery
comprises a set of architectural elements (connectors and components) and their
associated behaviours. An architecture describes a particular configuration that
instances of a pattern’s elements assume. This configuration has an emergent
behaviour and constitutes an instance of the pattern. Then, both patterns and
elements define the types of behaviour expected from instances. The language
supports hierarchical composition of architectures.

This paper, extends Archery to the so-called structural dimension of archi-
tectural patterns. This comprises the usage of typed variables to contain and
reference instances, a set of scripting operations to build architectural configu-
rations, and a set of primitives to specify constrains over such configurations.

298

Constraints restrict the class of valid configurations that architectures, instances
of a particular pattern, may adopt. Then, reconfigurations are only enabled if
respecting the pattern constraints. For instance, a reconfiguration script that
connects two clients in a Client-Server architecture violates the intended use of
the pattern and should be prevented.

A second contribution of this paper is a semantics for the structural dimen-
sion of Archery on top of Bigraphical Reactive Systems (BRS) [11]. The theory
of BRSs was developed to study systems in which locality and linking of com-
putational agents varies independently, and to provide a general unifying theory
in which existing calculi for concurrency and mobility can be represented. The
two main constituents of a BRS are a bigraph and a set of parametric reaction
rules. The former specifies the BRS structure as two orthogonal graphs upon the
same set of nodes, one modelling locality, and another linking. Rules model its
dynamics, i.e., how the structure is reconfigured through reaction.

The theory of BRSs has a precise definition. A bigraph, expressed as a tuple of
functions, is an arrow in a category. Its domain and codomain are objects. A more
restrictive category can be defined for bigraphs by including in their definition
a mechanism, called sorting, that constrains the configurations they can adopt.
This setting allows the formal treatment of the encoded system. In particular,
if conditions are met [11], it allows to automatically derive a labelled transition
system (LTS) from a BRS, in which behavioural equivalence is a congruence.

The choice of BRS as a semantical framework for Archery arose naturally as
the language was expected to allow for independently modifying both placing
and linking of pattern instances. At a more fundamental level, the structural
dimension of patterns and architectures become encoded as arrows in a suitable
category3. Finally, the use of bigraphs reduces the problem of verifying whether
an architectural constraint holds for a pattern to a certain kind of type-checking.
Actually, once a structural constraint is encoded as a sorting, to check if it is
verified by an architecture amounts to translating the latter to a bigraph and
prove that such a bigraph belongs to the category defined by the sorting.

The bigraphical encoding presented here is also the basis, along the work
in [5], to explore in [12] the automatic derivation of LTS whose states stand
for the different configurations the corresponding architecture can adopt. This
makes possible to resort to behavioural equivalence to compare the application
of different patterns in reconfiguring systems.

The following sections illustrate how Archery can be endowed with a bigraph-
ical semantics. For such purposes we limit ourselves to a subset of the scripting
operations and an example constraint. The full version of the language can be
found in [12]. The rest of the paper is organised as follows: section 2 introduces
the Archery with both extensions. Section 3 briefly recalls the basic theory of
BRS and section 4 develops the formal semantics for the structural dimension
of Archery. Finally, section 5 concludes and discusses future work.

3 In fact, the name Archery comes from a comment in Steve Awodey’s book [3] em-
phasising the importance of arrows in category theory: “ ...the subject might better
have been called abstract function theory, or perhaps even better: archery.”

299

2 The Archery Language

We structure Archery as a core and two extensions, respectively named Archery-
Core, Archery-Script, and Archery-Structural-Constraint. The first is a slightly
modified version of the language presented in [13], the second adds the oper-
ations for building configurations, and the third incorporates the primitives for
defining structural constraints. The structure follows the differences in how their
semantics are defined. While both behavioural and structural semantics are de-
fined for Archery-Core, only structural semantics are given to Archery-Script and
Archery-Structural-Constraint. The three language subsets are endowed structural
semantics by translations to bigraphs. However, the codomain of each translation
differs, and the third subset requires a more involved approach.

2.1 Archery-Core

A specification in Archery-Core comprises one or more patterns and a main ar-
chitecture. The first rule of the grammar, shown in Figure 1, indicates this by
equating the Spec non-terminal to one or more Pat and a Var non-terminals.
Note that several non-terminal are undefined; the grammar leaves out the defi-
nition of the ones that are not relevant to the structural dimension.

Spec ::= Pat+ Var
Pat ::= pattern TYPEID (PatPars?) elements Elem+ end
Elem ::= element TYPEID (ElemPars?) Behaviour ElemInterface
ElemInterface ::= interface Port+
Port ::= (in|out) ID ;
Var ::= ID : TYPEID = Inst ;
Inst ::= (ElemInst |PatInst)
ElemInst ::= TYPEID (ElemInstPars?)
PatInst ::= architecture TYPEID (PatInstPars?) ArchBody end
ArchBody ::= Instances Attachments? ArchInterface?
Instances ::= instances Var+
Attachments ::= attachments Att+
Att ::= from PortRef to PortRef ;
ArchInterface ::= interface Ren+
Ren ::= PortRef as ID ;
PortRef ::= ID.ID

Fig. 1: Grammar Fragment for Archery-Core

A pattern is specified according to the rule expanding the Pat non-terminal.
Its definition contains, a TYPEID token that represents the identifier for it, an
optional list of formal parameters, and one or more architectural elements Elem,

300

i.e., specified according to the Elem non-terminal. For instance, the specification
in Listing 1 includes two patterns: ClientServer and PipeFilter.

Each architectural element in a pattern is specified as described by Elem.
Its definition comprises: a TYPEID token as its identifier, an optional list of
formal parameters, a description Behaviour of its behaviour, and a description
ElemInterface of its interface. The behaviour is specified with a slightly modified
subset of mCRL2 limiting its expressivity to sequential processes. Its description
must contain one ore more process expressions, as the one shown in line 5, and
a list of action definitions, like in line 4. The first process is the initial behaviour
of the instance and may call other processes defined within the element. The
interface contains one or more ports Port. A port is defined by a direction in-
dicator, either in or out, and an ID token that must match an action name
in the list of action definitions. For instance, the interface Server defines two
ports in line 6. We adopt the underlying metaphor of water flow in [2] for ports:
an in port receives input from any port connected to it, and an out port sends
output to all ports connected to it. Ports are synchronous: actually a suitable
process algebra expression can be used to emulate any other port behaviour.

Listing 1: Example Patterns and Architectures
1 pattern ClientServer()
2 elements
3 element Server()
4 act rreq, sres, cres;
5 proc Server() = rreq.cres.sres.Server();
6 interface in rreq; out sres;
7 element Client()
8 act prcs, sreq, rres;
9 proc Client() = prcs.sreq.rres.Client();

10 interface in rres; out sreq;
11 end
12 pattern PipeFilter()
13 elements
14 element Pipe()
15 act accept, forward;
16 proc Pipe() = accept.forward.Pipe();
17 interface in accept; out forward;
18 element Filter()
19 act rec, trans, send;
20 proc Filter() = rec.trans.send.Filter();
21 interface in rec; out send;
22 end
23 cs : ClientServer = architecture ClientServer()
24 instances
25 s1 : Server = architecture PipeFilter()
26 instances
27 f1 : Filter = Filter(); f2 : Filter = Filter();
28 p1 : Pipe = Pipe();
29 attachments

301

30 from f1.send to p1.accept;
31 from p1.forward to f2.rec;
32 interface f1.rec as rreq; f2.send as sres;
33 end
34 c1 : Client = Client(); c2 : Client = Client();
35 attachments
36 from c1.sreq to s1.rreq; from c2.sreq to s1.rreq;
37 from s1.sres to c1.rres; from s1.sres to c2.rres;
38 end

A variable and its value is defined according to Var. The variable has an
ID token as its identifier, followed by a TYPEID token that must match an
element or pattern name. The value can be either a pattern PatInst or an element
ElemInst instance. Note that the variable that follows the pattern definitions,
as indicated in the first grammar rule, and as shown in line 23 of the example,
must contain an architecture (the main one).

An architecture defines a set of variables and describes the configuration
adopted by the instances in them. It contains: a TYPEID token that must match
a pattern name, an optional list of actual arguments, a set of variables Var,
an optional set of attachments Att, and an optional interface ArchInterface.
Each variable in the set must have as type an element defined in the pattern
the architecture is instance of. If the variable has as assigned value an element
instance ElemInst, it is defined by a TYPEID and a list of actual parameters. If
it has a pattern instance, like between lines 25 and 33 of the example, a nested
architecture is defined. Each attachment Att includes a port reference PortRef
to an out port, and another to an in port. A port reference is an ordered pair
of ID tokens, with the first matching a variable identifier, and the second a
port of the variable’s instance. Then, an attachment indicates that the out port
communicates with the in port, such as in the case of f1.send with p1.accept
in line 30. The architecture interface is a set of one or more port renames Ren.
Each port rename contains a port reference and an ID token with the external
name for the port. Ports not included in the set are not visible from the outside.
Including the same port in an attachment and in the interface is incorrect. An
example interface with two renames is shown in line 32.

2.2 Archery-Script

Archery-Script is used to specify a script for creating an architecture or for re-
configuring an existing one. It assumes the existence of a process that triggers a
scripts under some conditions. Its operations (informally described in Table 1),
are defined independently of any pattern. The design principles of patterns are
enforced through constraints, as it is shown in Section 2.3. This independence,
and the fact that a variable may contain an instance whose type may not nec-
essarily match the variable’s type, allows the reuse of a script in an open family
of patterns (related by some refinement relation). We illustrate the operations
through the example in Listing 2.

302

Table 1: Set of Operations in Archery–Script
Name Format Description
Import import(s) Receives as a parameter a reference s to an Archery

specification and imports it to the environment of the
executing script (e.g., line 2 in Listing 2).

Create
Variable

v:type Creates a variable with name v and type type (line
3).

Create
Instance

v=type() Creates a new instance of type type and assigns it
to a variable v (line 4).

Add
Instance

addInst(a,v) Adds a variable v and the instance in it, to the archi-
tecture in variable a (line 5)

Attach attach(vf.pf,
vt.pt)

Attaches the port pf of the instance in variable vf
to the port pt of the instance in variable vt (line 8)

Deattach deattach(
vf.pf, vt.pt)

Removes the attachment between the port pf of the
instance in variable vf and the port pt of the instance
in variable vt (line 6)

Move move(vs, vt) Moves the instance in variable vs to the variable vt
(line 11). The reference to the contents of vt are lost,
but its attachments remain.

The example is divided in three parts and assumes the existence of an initial
configuration we call csinitial. The configuration is similar to the one in Listing
1, but differs in that the nested architecture (between lines 25 and 33) is replaced
by a Server instance (in a single line s1:Server=Server();).

The first part of the example reconfigures csinitial by adding and connecting a
second server. It starts with an import operation that leaves the configuration in
variable cs. The operations in lines 3 and 4, create a new variable s2 and assign
a fresh instance of Server to it. Upon that, s2 is included in the architecture
in cs. Then the operations in the next two lines remove the attachments among
the instances in variables cs.c2 and cs.s1. Subsequently, new attachments
are created between the instance in variable cs.c2 with the instance in variable
cs.s2. We will refer to the obtained configuration as csfirst.

Listing 2: Example Script
1 script
2 import("initial"); // first part
3 s2 : Server;
4 s2 = Server();
5 addInst(cs, s2);
6 deattach(cs.c2.sreq, cs.s1.rreq);
7 deattach(cs.c2.rres, cs.s1.sres);
8 attach(cs.c2.sreq, cs.s2.rreq);
9 attach(cs.c2.rres, cs.s2.sres);

10 import("pf"); // second part
11 move(pf, cs.s2);
12 c3 : Client = Client(); // third part

303

13 addInst(cs, c3);
14 deattach(cs.c2.sreq, cs.s2.rreq);
15 deattach(cs.c2.rres, cs.s2.sres);
16 attach(cs.c2.sreq, cs.c3.rres);
17 attach(cs.c2.rres, cs.c3.sreq);
18 end

The second part of the example starts in the line 10 and shows how a server
is replaced. It assumes the existence of a configuration pf , similar to the one
described between the lines 25 and 33 in Listing 1, but with the architecture
contained in a variable named pf of type PipeFilter. The script imports the
configuration pf , and then the instance in pf is moved to the variable cs.s2.
The instance in the variable cs.s2 is now the architecture of type PipeFilter
but connected as it was the previous instance in the variable.

The third part begins upon line 12. It creates a new client and connects it in a
wrong way. A new variable c3 is created and a new instance of the type Client
is assigned to it line 12. Next, the fresh variable is included in the architecture in
cs. Subsequently, the attachments between the instances in variables cs.c2 and
cs.s2 are removed. Then, the script creates two attachments between instances
in variables cs.c3 and cs.c2. The resulting configuration violates the design
principle behind a client-server architecture by connecting two clients. We refer
to the configuration obtained upon the script execution as cswrong.

2.3 Archery-Structural-Constraint

To rule out configurations such as cswrong, entails the need for mechanisms to
constrain what may count as valid instances of a pattern. Since the variable cs
in the script of Listing 2 is of type ClientServer, we could add to the pattern
specification a constraint ϕ to express that clients can only connect to servers
and vice versa. We define ϕ for all attachments att in an architecture of type
ClientServer as follows

client(from(att))⇒ server(to(att)) ∧ client(from(att))⇒ server(to(att))

with from (respectively, to) a function that returns the variable with the out
(respectively, in) port in att, and with client (respectively, server) a predicate
yielding true when its argument is of type Client (respectively, Server).

By constraining patterns in this way, we can prevent an operation in a script
that generates an invalid configuration. Clearly, cswrong does not satisfy it. In
contrast, the configuration csfirst does. Given a configuration c and a constraint
ϕ, the satisfaction problem can be formulated as c |= ϕ, which can be rendered
as a type checking assertion in the bigraphical semantics for Archery. Such is the
the topic of the following sections.

3 Bigraphical Reactive Systems

A Bigraphical Reactive System (BRS) is an inhabitant of a category. The opera-
tions and the elementary bigraphs in such category enable an algebraic treatment

304

of BRSs. In the next sections we briefly describe the notions of bigraphs, their
algebra, and the parametric reaction rules that make them dynamic. We refer
the reader to [11] for more detail on these notions and their precise definitions.

3.1 Bigraphs

A bigraph contains a set of nodes related through a parent-child relationship
and through edges. The former gives rise to a forest structure called place graph,
in which the roots of the trees are the nodes without parent. The latter defines
a hypergraph called link graph: a node is related to others by an edge, if each
one has a port linked to an end of such edge. A bigraph is said to be concrete
if its nodes and edges have identity, and abstract if they not. Figure 2 shows
the structure of bigraphs following the anatomy style used in [11]. The abstract
bigraph in it has a forest with two trees and a hypergraph with two edges.

0

L
0

M

1

1

L

M

u

w

y z

Inner Name

Root

Control Node Site

Outer Name

EdgePort

u/{w} /x (/y (L{xy}.(id0) | y/{x} /z M{wxz}) ‖ idw ‖ /w M{wxz}.(L{xy} | id1))

Fig. 2: Anatomy of Bigraphs

The encoding of a system is enabled by the basic signature of a bigraph.
Every node has an associated control from a set K that distinguishes its kind of
contribution to the encoding. The control also establishes the number of ports
the node has with an arity function ar : K → N. The tuple (K, ar) is the basic
signature of a bigraph and in the case of our example K = {L : 2,M : 3}.

New bigraphs can be built from existing ones by plugging one into another.
The interface of a bigraph defines the form of the bigraphs it can contain – inner
face, and the form that a container must accept – outer face. Suppose we divide
a bigraph into two parts. A division in a tree leaves a site in one part, and a
new root on the other. A division in an edge generates two open links: one called
inner name and another called outer name The roots and outer names are the

305

outer face, and the sites and inner names the inner face of a bigraph. Figure 2
shows the graphic conventions to depict them.

The category in which a bigraph lives depends on whether it is abstract or
not and the signature K over which it is defined. An abstract bigraph becomes
an arrow F : I → J in a category Bg(K). Its domain I and codomain J are
objects in such category. The domain is a tuple I = 〈n,X〉, in which n is a set
of ordinals {0, 1, ..., n − 1} that index its sites, and X is its set of inner names.
Similarly, the codomain is a tuple J = 〈m,Y 〉 with m indexing its roots, and
Y its set of outer names. If the bigraph is concrete, the space is a precategory
8Bg(K) instead. The reason for using a precategory is that composition is not
always defined when nodes and edges have identity.

Undesired arrangements of controls can be ruled out by defining a sorting
Σ = (Θ,K, Φ). The controls in K are classified in a set of sorts Θ = {θ0, ..., θn},
and valid arrangements of sorts are restricted with a formulation rule Φ. The
sorts can be assigned to the controls – place sorting, or to the links according
to the ports in controls – link sorting. Abstract (respectively, concrete) bigraphs
over a sorting Σ inhabit a category Bg(Σ) (respectively, precategory 8Bg(Σ)).

3.2 Algebra

All bigraphs can be built from elementary ones by applying three basic oper-
ations: composition, product and identities. The composition G ◦ F : I → K,
also denoted G F , of two bigraphs F : I → J and G : J → K, represents
a new bigraph obtained by plugging F into G. This operation is only defined
when the inner face of G matches the outer face of F . The set |F | of node
and edge identifiers of F needs to be disjoint with |G| if bigraphs are con-
crete. When G ◦ F is defined, we say that G is a context for F . The prod-
uct of two bigraphs Fi : 〈mi, Xi〉 → 〈ni, Yi〉 (i = 0, 1), is a new bigraph
F0 ⊗ F1 : 〈m0 + m1, X0] X1〉 → 〈n0 + n1, Y0] Y1〉, (with] the union of
disjoint sets) that represents placing F0 besides F1. |F0| ∩ |F1| = ∅ also needs to
hold for concrete bigraphs. The identity bigraph (arrow) of an interface (object)
I = 〈m,X〉 is a tuple 〈idm, idX〉. In practice, a set of derived operations defined
on top of the basic ones and elementary bigraphs is actually used.

The elementary bigraphs that do not have nodes are divided in the ones that
only have roots and sites – placings (φ), and the ones that only have (outer and
inner) names – linkings (λ). Placings can be generated from three elementary
forms: a root with no sites 1 : 0→ 1; a symmetry γ1,1 : 2→ 2 that exchanges the
indexes of roots with the ones of sites; and a join join : 2 → 1 of two sites into
one root. A merge bigraph can be derived as mergen+1 = join◦ (id1⊗mergen).
Similarly, linkings can be generated from two elementary forms: the substitution
y/X of a set of names X with one name y; and the closure /x of a link x. The
only elementary bigraph that introduces nodes is K #»x : 1→ 〈1, { #»x}〉, defined for
each control K : n (with n ports), gives rise to a bigraph with a single node
whose n ports are bijectively linked to n names in #»x .

Some abbreviations for operations we may use are as follows: we may write
F ◦ G instead of (F ⊗ idI) ◦ G when there is no ambiguity; given a linking

306

λ : Y → Z and a bigraph G : I → 〈m,X〉 with Y = X]X ′, we may write λ ◦G
instead of (idm ⊗ λ) ◦ (G⊗X ′) when m and X are clear from the context.

The derived operations are: parallel product, nesting and merge product. The
parallel product of two bigraphs Fi : 〈mi, Xi〉 → 〈ni, Yi〉 (i = 0, 1) is defined as
F0 ‖ F1 : 〈m0 +m1, X0 ∪X1〉 → 〈n0 + n1, Y0 ∪ Y1〉, a tensor product of the two
bigraphs, with the exception that the link map allows name sharing. The result of
the nesting of two bigraphs F : I → 〈m,X〉 and G : m→ 〈n, Y 〉 that may share
names is a bigraph G.F : I → 〈n,X∪Y 〉 defined by the expression (idX ‖ G)◦F .
The merge product of two bigraphs Gi (i = 0, 1) is merge ◦ (G0 ‖ G1), i.e.,
the merge of the parallel product of them. Abbreviations that we may use are
as follows: y/X ◦G instead of (y/X ‖ idI) ◦G with I = 〈n,Z〉, when G has outer
face 〈n,X] Z〉; A for the bigraph A.1 when the control A has no children.

The algebraic expression in Figure 2 represents the bigraph shown above it,
and is defined in terms of these elementary bigraphs and operations.

3.3 Reaction Rules

A parametric reaction rule is a tuple 〈R : m → J,R′ : m′ → J ′, η〉, with R
and R′ bigraphs respectively called redex and reactum, and η an instantiation
map. R and R′ cannot have edges that are not connected to any port or inner
name, R′ cannot have barren roots nor have names that are not linked. The
instantiation map assigns to each ordinal in m′ = {0, 1, .., i, ..,m′−1} an ordinal
m = {0, 1, .., j, ..,m − 1}. When a bigraph F matches the redex, it is replaced
with the reactum. The sites in F are placed in the sites of the reactum according
to η. If we name the bigraphs contained by F according to the sites m in the
redex in which they are placed, we obtain a sequence d0, d1, .., dj , .., dm. Then,
the expression η(i) = j tells that dj will be placed in the ith site of the reactum.

Bigraphs that have an associated set of reaction rules are defined over a
dynamic signature. It differs from the basic in that each control is assigned one
of the three values as follows: atomic – for controls of nodes without children
(barren), active – for non-atomic controls that allow reactions to occur among
the nodes inside, passive – for non-atomic and non-active controls. A reaction
only takes place if the bigraph matching the redex is in an active context, i.e.,
in a root, or in an active node with all ancestors active as well.

The abstract (respectively concrete) BRS with sorting Σ and parametric
reaction rules R (8R) live in a category Bg(Σ, R) (8Bg(Σ,8R)).

4 Bigraphical Modelling of Archery Specifications

In this section we provide a bigraphical semantics for Archery. We respectively
translate Archery-Core and Archery-Script specifications into bigraphs in cate-
gories Bg(ΣArch−Core, RArch−Core) and Bg(ΣArch−Script, RArch−Script). Since
each Archery-Structural-Constraint constraint generates a different category, we
limit to define Bg(Σϕ,RArch−Core) for the example constraint ϕ described in
Section 2.3 and leave a generic method to [12].

307

4.1 Archery-Core

Function T (1) translates an Archery-Core specification into a bigraph in category
Bg(ΣArch−Core, RArch−Core). It takes a Spec and returns the parallel product
of bigraphs that result of translating each Pat in Pat+, and a variable V ar
containing the main architecture. We describe the signature and rules as we
explain the translation, and leave the sorting for the end of the section. Table
2 lists the controls in ΣArch−Core and the sort assignment to their ports, and
Table 3 the rules in RArch−Core. Figure 3 shows the bigraph that returns the
application of function T to the pattern ClientServer in Listing 1, and Figure
4 to the architecture between lines 25 and 33.

T (Spec) =
n

Pat+

T (Pat) ‖ T (V ar) (1)

T (Pat) = PatTY PEID.(
∣∣∣

Elem+

T (Elem)) (2)

T (Elem) = ElemTY PEID.(
∣∣∣

Port+

T (Port)) (3)

T (in ID) = NewInID, T (out ID) = NewOutID (4)
T (V ar) = T (V ar, 1) (5)
T (V ar,B) = NewVarID,TY PEID.(T (Inst, ID,B))

T (ElemInst, idV ar,B) = NewInstTY PEID,idV ar.(B) (6)
T (PatInst, idV ar,B) = NewInstTY PEID,idV ar.(

T (idV ar, V ar+, Att∗, Ren∗, B))

T (idV ar, V ar V ar∗, Att∗, Ren∗, B) = (7)
T (V ar,AddVaridV ar,ID.(T (idV ar, V ar∗, Att∗, Ren∗, B)))

T (idV ar, [], Att∗, Ren∗, B) = T (Att∗, Ren∗, B)

T (idIF idPF idIT idPT Att∗, Ren∗, B) = (8)
NewAtt idIF, idPF, idIT, idPT, uniqueId().(T (Att∗, Ren∗, B))

T ([], Ren∗, B) = T (Ren∗, B)

T (idInst idPrt idNew Ren∗, B) = (9)
NewRenidInst,idPrt,idNew.(T (Ren∗, B))

T ([], B) = B

The translation of a pattern Pat (2) creates a node Pat (a node with control
Pat) and outer name TY PEID, and nests the merge product of translating each
of its elements. It translates each element Elem (3) into a node Elem with outer
name TY PEID, and nests the merge product of translating each of its ports.
The translation of each port Prt yields a node NewIn if its direction is in, and
a node NewOut if it is out. In both cases, the node has ID, the identifier of the
port, as outer name.

Function T translates a variable V ar (5) into a node NewVar with outer
names ID and TY PEID. Then, it nests its recursive call with Inst, ID, and

308

Table 2: Sorting for Archery-Core
Ctrl Arity Activeness Sorts Represented Item
Pat 1 passive u A pattern
Elem 1 passive u An element
NewIn 1 passive u An in port within an element definition

In 1 atomic i An in port within an instance
NewOut 1 passive u An out port within an element definition

Out 1 atomic o An out port within an instance
NewInst 2 passive uu Instance creation and assignment

Inst 1 active u An Instance
NewVar 2 passive uu Variable creation

Var 2 active uu A variable
AddVar 2 passive uu Movement of one variable into another
NewAtt 5 passive uuuuu Attachment creation
NewRen 3 passive uuu Rename creation
From 2 atomic fu Attachment end for out port
To 2 atomic tu Attachment end for in port

0

Pat

ClientServer

Elem

Client

NewIn

rres

NewOut

sreq

Elem

Server

NewIn

rreq

NewOut

sres

PatClientServer.(ElemClient.(NewInrres | NewOutsreq) |
ElemServer.(NewInrreq | NewOutsres))

Fig. 3: Bigraph for the Client-Server Pattern

a bigraph B as parameters. NewVarID,TY PEID partially matches the redex of
Rule 1 (in Table 3). The reaction yields a bigraph with two roots: one with a
node VarID, TY PEID that represents the variable, and another with the former
contents, matching parameter d0, of the node NewVar.

The translation of an instance (6) also takes as parameters, the id idV ar of
the variable that contains it, and a bigraph B. The instance can either be an
element or a pattern instance, with the form ElemInst or PatInst, respectively.
In both cases a node NewInst is created with the type TY PEID of the instance
and idV ar as outer names. In the former case, B is nested. In the latter, the
result of translating the three parts of the architecture: its instances in variables
V ar+, its attachments Att+, and its interface Ren+, is nested.

NewInstTY PEID, idV ar triggers Rule 2 if TY PEID refers to an element, and
Rule 3 if it refers to a pattern. The two rules create a node InstTY PEID, and place
it inside the node VaridV ar (already created). NewInstTY PEID, idV ar disappears

309

Table 3: Parametric Reaction Rules for Archery-Core
1 New Variable NewVary,x.d0 _ Vary,x.1 ‖ d0
2 Create Element

Instance
Elemx.d0 ‖ Vary,−.1 ‖ NewInsty,x.d1 _
Elemx.d0 ‖ Vary,−.(Instx.d0) ‖ d1

3 Create Pattern
Instance

Patx.d0 ‖ Vary,−.1 ‖ NewInsty,x.d1 _
Patx.d0 ‖ Vary,−.Instx.1 ‖ d1

4 Create In Port Instx.(NewIny | d0) _ /y Instx.(Iny | d0)
5 Create Out Port Instx.(NewOuty | d0) _ /y Instx.(Outy | d0)
6 Add Instance Varx,−.(Inst−.d0 | d1) ‖ Vary,−.d2 ‖ AddVarx,y.d3 _

Varx,−.(Inst−.(Vary,−.d2 | d0) | d1) ‖ d3
7 Add Attachment Varvf,−.(Inst−.(Outpf | d0) | d1) ‖

Varvt,−.(Inst−.(Inpt | d2) | d3) ‖ NewAttvf,pf,vt,pt,att.d4 _
Varvf,−.(Inst−.(Outpf | d0) | Frompf,att | d1) ‖
Varvt,−.(Inst−.(Inpt | d2) | Topt,att | d3) ‖ d4

8 Add Rename Out Varv,−.(Inst−.(Outp | d0) | d1) ‖ NewRenv,p,np.d3 _
Varv,−.(np/{p}(Inst−.(Outp | d0)) | d1) ‖ d3

9 Add Rename In Varv,−.(Inst−.(Inp | d0) | d1) ‖ NewRenv,p,np.d3 _
Varv,−.(np/{p}(Inst−.(Inp | d0)) | d1) ‖ d3

and its contents are combined with VaridV ar using parallel product. Rule 3 also
copies the contents of ElemTY PEID into InstTY PEID. Since the context for the
contents is active (a Inst with active ancestors) Rules 4 and/or 5 are triggered.
Rule 4 transforms a node NewIn into a node In, keeping its outer name, but also
closing it. Rule 5 does a similar work but for nodes NewOut and Out. These three
rules are needed to represent the creation of an element instance. A single rule
cannot achieve the desired effect because of how the copy of a closure operation
is treated (see chapter eight of [11]) by parametric reaction rules.

Function T (7) recursively translates the list of variables V ar in the ar-
chitecture. It translates the first variable with a recursive call that takes two
parameters: the variable V ar; and the translation of the rest of the architecture
nested in a node AddVaridV ar,ID, with idV ar the id of the variable that con-
tains the architecture, and ID the identifier of V ar. When the list is empty, the
translation continues with the attachments Att∗ and the renames Ren∗.

The effect of Rule 6, that is partially triggered by AddVaridV ar,ID, is to make
the variable with identifier ID, a variable of the architecture in variable idV ar.
It produces a bigraph with two roots: one contains VarID, − nested inside the
node with control Inst that represents the architecture; and the other holds the
former contents of AddVaridV ar,ID.

In a similar way as with variables, Function T (8) processes the list of attach-
ments Att. It takes the header, creates a node with control NewAtt, and nests
the bigraph obtained with its recursive call with the tail. An Att specification
has four identifiers: idIF and idIT that respectively reference the instances with
the out and in ports, and idPF and idPT that correspond to the out and in
ports. The node is created using these four identifiers and a value att of the call
to the function uniqueId as outer names. Function uniqueId provides a unique

310

0

Var

Inst
Var

Inst

In Out
i o

To
tu

From
u

f

Var

Inst

In
i

Out
o

From

f
u

Var

Inst

In
i

To
tu

Out
o

Server s1att1 att2PipeF ilter P ipe p1 Filterf1 f2

Fig. 4: Bigraph for Architecture

identifier for the node representing an attachment creation. When the function
receives an empty list, it begins with the translation of renames Ren.

NewAttidIF, idPF, idIT, idPT, att partially matches Rule 7. Its first and third
outer names respectively link it with the variables containing the origin VaridIF,−
and the end VaridIT,− instances of the communication, and its second and fourth
match their participating ports, OutidPF and InidPT . The rule removes the node,
adds two new, and creates three edges. It adds FromidPF,att inside the instance
of VaridIF,−, and ToidPT,att inside the instance of VaridIT,−. This creates three
edges: one closed edge between OutidPF and FromidPF, att, another between
InidTF and ToidTF, att, and an open edge between FromidPF, att and ToidTF, att.
It defines a route – a sequence of nodes and edges, between the ports.

Function T (9) recursively processes a list of renames Ren∗. Each Ren
has an identifier idInst for the instance that contains the port, an identifier
idPrt for such port, and a new name idNew for it. The function creates a
NewRenidInst, idPrt, idNew for each Ren.

NewRenidInst, idPrt, idNew partially matches either Rule 8 or 9, depending on
whether the control of the node with outer name idPrt respectively is Out or In.
The two rules perform a similar task, they remove the node triggering the Rule,
place its contents in a parallel root, and add a substitution idNew/{idPrt}.

The sorts for the links of a control Θ = {o, f, t, i, u} and the formulation rule
Φ ensure valid configurations representing attachments: routes can only connect
ports with opposite direction (in/out). Formulation rule Φ restricts the structure
as follows: a link with a point o (port or inner name with sort o) can only have
other points f; a link with a point i can only have other points t; a link with a
point u has sort u and no constraints. The sorting assignment in Table 2 and Φ
prevents a bigraph representing attachments between two ports with the same
direction. Figure 4 shows two edges between Out (respectively, In) and From (To)

311

nodes that satisfy Φ. It does not show sorts u with the exception of nodes From
and To. An attachment, for instance, between two In nodes violates Φ since it
would require an edge with a point i and a point f.

4.2 Archery-Script

We translate a script into a bigraph in Bg(ΣArch−Script,RArch−Script). Both the
sorting and the parametric reaction rules extend the ones defined for Archery-
Core. ΣArch−Script includes two more controls and RArch−Script includes the two
parametric reaction rules in Table 4.

Table 4: Parametric Reaction Rules for Archery-Script
10 Remove

Attachment
Varvf,−.(Inst−.(Outpf | d0) | Frompf,att | d1) ‖
Varvt,−.(Inst−.(Inpt | d2) | Topt,att | d3) ‖ RemAttvf,pf,vt,pt.d4 _
Varvf,−.(Inst−.(Outpf | d0) | d1) ‖
Varvt,−.(Inst−.(Inpt | d2) | d3) ‖ d4

11 Move
Instance

Varvd,−.d0 ‖ Varvo,−.(Inst−.(d1) | d2) ‖ MoveInstvd, vo.d3 _
Varvd,−.Inst−.(d1) ‖ Varvo,−.(d2) ‖ d3

Function T S carries out the translation of a script t = [t1 t2 ... tn] by
processing the first operation and returning a combination of the result and the
recursive call with the tail of the sequence. Each operation ti has as type one
of the seven in Table 1. Expression (10) translates an import operation into
the parallel product of the application of T to the specification Spec, and the
recursive call with the rest of the script. Expressions (11) to (16) translate t by
nesting the translation of the tail of t in a node that results from translating t1.
The created node partially triggers one of the reaction rules in RArch−Script.

We introduce the controls and rules in expressions (15) and (16) since they
are not present in ΣArch−Core and RArch−Core. The former creates a node with
control RemAtt that represents a remove attachment operation. It is a passive
control with four ports of sort u. The outer names of the node are the source
variable and port names (respectively, vf and pf), and the corresponding tar-
get names (respectively, vt and pt). This node partially triggers Rule 10, that
removes the nodes RemAtt, From, and To, making the edge representing the
attachment disappear. It also places the contents of the first, that match the
parameter d4 in a parallel root. The latter (16) creates a node MoveInst that
represents instance movement operations. The control is passive and has two
ports with sort u: one identifier vo representing the original container for the in-
stance, and another vd for the container to where it is moved. The node partially
matches the redex of Rule 11. The reaction nests the contents of Varvo, −, match-
ing Inst−.(d1), into Varvd, −. The former contents of the destination are lost. The
original variable keeps the contents matching d2 (outside the instance), and the
contents matching d3 are place in a parallel root.

312

T S([import(Spec); t]) = T (Spec) ‖ T S(t) (10)
T S([v : type; t]) = NewVarv, type.T S(t) (11)
T S([v = type(); t]) = NewInstv, type.T S(t) (12)
T S([addInst(a, v); t]) = AddVara, v.T S(t) (13)
T S([attach(vf.pf, vt.pt); t]) = NewAttvf, pf, vt, pt, uniqueId().T S(t) (14)
T S([deattach(vf.pf, vt.pt); t]) = RemAttvf, pf, vt, pt.T S(t) (15)
T S([move(vo, vd); t]) = MoveInstvo,vd.T S(t) (16)
T S([]) = 1

4.3 Archery-Structural-Constraint

The way constraints are dealt within the bigraphical framework discussed in this
paper is now illustrated through an example. Let us consider the constraint ϕ
formulated in Section 2.3. We derive from it a place sorting Σϕ. Note that, in
general, this derivation can be automated [12]. Then, a specification that fulfils
ϕ is translated to a bigraph in Bg(Σϕ, RArch−Core).

For this example, we define the set of sorts as Θ = {cli, ser, att, oth}. The sort
of a node Var−, type depends on its outer name type: if type is Client it has sort
cli, if type is Server, ser. Nodes From and To have sort att, and nodes with other
controls sort oth. The formation rule Φ is as follows: a node att immediately in
a node cli can only have an edge to an att immediately in a node ser. Given two
nodes w and w′, w is in w′ if the former has w′ as ancestor in the parent-child
relationship.

It can now be verified whether a specification V ar representing an instance
of type Client-Server preserves constraint ϕ, by checking if the type of bigraph
T (V ar) is Bg(Σϕ, RArch−Core). In Section 2.2 we described csfirst and cswrong
as two configurations. Figure 5 partially shows the bigraphs that encode them.
Only the sorts att, cli and ser, and nodes that participate in attachments are
shown. Control labels, outer names and nodes not relevant for checking Φ are not
included. Figure 5a contains a bigraph that partially encodes csfirst. It can be
observed that all four nodes att in cli (respectively, ser) only have edges to nodes
att in nodes ser (respectively, cli). Then, the bigraph is Bg(Σϕ, RArch−Core) and
configuration csfirst satisfies ϕ. In contrast, the encoding of cswrong shown in
Figure 5b, does not fulfil formation rule Φ: the nodes att in the node cli with outer
name c1, has edges with nodes att in another node cli. Therefore, the bigraph is
not Bg(Σϕ, RArch−Core).

5 Conclusions

In this paper we introduced Archery, a modelling language for software archi-
tectural patterns rooted in the process algebra trend [10]. The language allows
the specification of both structural and behavioural dimensions of architectures

313

ser

seratt

att
ser

seratt

att

cli

cli att

att

cli

cli att

att

c2 Client c1 s1 Server s2

(a) csfirst

ser

seratt

att
cli

cliatt

att

cli

cli att

att

cli

cli

att

att

c2 Client c1 s1 Server c3

(b) cswrong

Fig. 5: Bigraphs for Example Configurations

(Archery-Core), scripts to (re)configure such architectures (Archery-Script), and
constraints to ensure that they obey the design principles of the pattern they
are instance of (Archery-Structural-Constraint).

A second contribution of the paper was the development of a bigraphical se-
mantics for Archery. To respect space limits, this was fully presented for Archery-
Core, partially for the scripting component and illustrated through an example
for constraints. By doing so, we were able to reduce the constraint satisfaction
verification to a type checking problem.

We can distinguish two approaches in the design of languages that provide
support for both the behavioural and structural dimensions, in architectural
design. One is to extend a structure-based language with a behavioural model
[6], and the other is to build the architectural language on top of the behavioural
model [1], by upgrading it with architectural constructs. Our work is along the
lines of the latter approach but with the difference that we used bigraphs as a
foundation for the structural dimension. Benefits of using the bigraphical theory
include its solid categorical framework, its independent treatment of locality and
linking of computational agents, and its role of unifying theory for concurrency
and mobile calculi. The work in [9] also provides a bigraphical semantics to an
architectural description language. While our encoding uses a single signature
to encode any pattern, theirs requires different signatures for different patterns.
There are two main approaches to the reconfiguration of pattern instances: one
is to define a generic set of operations and reflect a pattern’s design principles
with constraints that prevent illegal configurations; and another is to design a
pattern-specific set of operations that allow to correctly (re)configure instances
[7]. Our work is aligned with the former.

314

As part of future work we mention the derivation process for sortings that
encode constraints. The process must ensure that the resulting sorting does
not prevent the automatic derivation of an LTS for a BRS, and consider the
decidability and complexity of type-checking.

Acknowledgements

This research was partially supported by the project Evolve (Evolutionary
Verification, Validation and Certification) under contract QREN 1621.

References

1. Aldini, A., Bernardo, M., Corradini, F.: A Process Algebraic Approach to Software
Architecture Design, vol. 54. Springer London (2010)

2. Arbab, F.: Reo: a channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14(3), 329–366 (Jun 2004)

3. Awodey, S.: Category Theory (Oxford Logic Guides). Oxford University Press,
USA, second edn. (Aug 2010)

4. Bass, L., Clements, P., Kazman, R.: Software architecture in practice. Addison-
Wesley Longman Publishing Co., Inc., second edn. (2003)

5. Birkedal, L., Debois, S., Hildebrandt, T.: On the construction of sorted reactive sys-
tems. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008 - Concurrency Theory,
Lecture Notes in Computer Science, vol. 5201, pp. 218–232. Springer Berlin/Hei-
delberg (2008)

6. Bodeveix, J.P., Filali, M., Gaufillet, P., Vernadat, F.: The AADL real-time model
A behavioural annex for the AADL. In: Proceedings of the DASIA 2006 – DAta
Systems In Aerospace – Conference (2006)

7. Bruni, R., Bucchiarone, A., Gnesi, S., Hirsch, D., Lluch Lafuente, A.: Graph-based
design and analysis of dynamic software architectures. In: Degano, P., De Nicola,
R., Meseguer, J. (eds.) Concurrency, Graphs and Models, Lecture Notes in Com-
puter Science, vol. 5065, pp. 37–56. Springer Berlin / Heidelberg (2008)

8. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture Volume 1: A System of Patterns. Wiley (1996)

9. Chang, Z., Mao, X., Qi, Z.: An Approach based on Bigraphical Reactive Systems to
Check Architectural Instance Conforming to its Style. In: First Joint IEEE/IFIP
Symposium on Theoretical Aspects of Software Engineering, 2007. TASE ’07. pp.
57 – 66. IEEE Computer Society (2007)

10. Groote, J.F., Mathijssen, A., Reniers, M., Usenko, Y., van Weerdenburg, M.: The
formal specification language mCRL2. In: Methods for Modelling Software Sys-
tems: Dagstuhl Seminar 06351 (2007)

11. Milner, R.: The space and motion of communicating agents, vol. 54. Cambridge
University Press (2009)

12. Sanchez, A.: A Calculus of Architectural Patterns (to appear). Ph.D. thesis, Uni-
versidad Nacional de San Luis (2012)

13. Sanchez, A., Barbosa, L.S., Riesco, D.: A Language for Behavioural Modelling
of Architectural Patterns. In: Proceedings of the 3rd Workshop on Behavioural
Modelling - Foundations and Applications (BM-FA 2011). ACM DL (2011)

315

A formal framework for coordinated simulation
of heterogeneous service-oriented applications?

D. Brugali2 L. Gherardi2 E. Riccobene1 P. Scandurra2

1 Università degli Studi di Milano, DTI, Crema (CR), Italy
elvinia.riccobene@unimi.it

2 Università degli Studi di Bergamo, DIIMM, Dalmine (BG), Italy
{brugali,luca.gherardi,patrizia.scandurra}@unibg.it

Abstract. Early design and validation of service-oriented applications
is hardly feasible due to their distributed, dynamic, and heterogeneous
nature. In order to support the engineering of such applications and dis-
cover faults early, foundational theories, modeling notations and anal-
ysis techniques for component-based development should be revisited.
This paper presents a formal framework for coordinated simulation of
service-oriented applications based on the OSOA open standard Service
Component Architecture (SCA) for heterogeneous service assembly and
on the formal method Abstract State Machine (ASM) for modeling no-
tions of service behavior, interactions, and orchestration in an abstract
but executable way. The proposed framework is exemplified through a
Robotics Task Coordination case study of the EU project BRICS.

1 Introduction

Service-oriented applications are playing so far an important role in several ap-
plication domains (e.g., information technology, health care, robotics, defense
and aerospace, to name a few) since they offer complex and flexible functionali-
ties in widely distributed environments by composing, possibly dynamically “on
demand”, different types of services. Web Services is the most notable example of
technology for implementing such components. On top of these service-oriented
components, business processes and workflows can be (re-)implemented as com-
position of services – service orchestration or service coordination3. Examples of
composition languages are WS-BPEL4, XLANG5, and Jolie [30], to name a few.

This emerging paradigm raises a bundle of problems, which did not exist in
traditional component-based design, where abstraction, encapsulation, and mod-
ularity were the main concerns. Early designing, prototyping, and testing of the

? The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) under grant agreement
no. FP7-ICT-231940-BRICS (Best Practice in Robotics)

3 Thorough this paper, the terms coordination and orchestration are interchangeable.
4 www.oasis-open.org
5 www.ebpml.org/xlang.htm

316

functionality of such assembled service-oriented applications is hardly feasible
since services are discoverable, loosely-coupled, and heterogeneous (i.e. they dif-
fer in their implementation/middleware technology) components that can only
interact with others on compatible interfaces. Concurrency and coordination
aspects [4] that are already difficult to address in component-based system de-
sign (though extensively studied), are even more exacerbated in service-oriented
system design. Components encapsulate and hide to the rest of the system how
computations are ordered in sequential threads and how and when computations
alter the system state. The consequence of improper management of the order
and containment relationships or the total absence of an explicit coordination
model in a complex, concurrent system leads to deadlock and starvation [18].

In order to support the engineering of service-oriented applications, to dis-
cover faults early, and to improve the service quality (such as efficiency and
reliability), foundational theories and high-level formal notations and analysis
techniques traditionally used for component-based systems should be revisited
and integrated with emerging service development technologies. In the Robotics
context, in particular, as the Internet is leveraged to connect humans to robots
and robots to the physical world, there is a strong requirement to investigate
service-oriented engineering approaches and knowledge representations to effec-
tively distribute the capabilities offered by robots: service-oriented robots [9].

This paper proposes a formal framework for coordinated simulation of het-
erogeneous service-oriented applications. It relies on the SCA-ASM language
[32] that combines the OSOA open standard model Service Component Archi-
tecture (SCA) [29] for heterogeneous service assembly in a technology agnos-
tic way, with the formal method Abstract State Machine (ASM) [12] able to
model notions of service behavior, interactions, and orchestration [10, 7, 11] in
an abstract but executable way. A designer may use the proposed framework
to provide abstract implementations in SCA-ASM of (i) mock components (pos-
sibly not yet implemented in code or available as off-the-shelf) or of (ii) core
components containg the main service composition or process that coordinates
the execution of other components (possibly implemented using different tech-
nologies) providing the real computation. He/she can then validate the behavior
of the overall assembled application, by configuring these SCA-ASM models in
place within an SCA-compliant runtime platform as implementation of (mock
or core) components and then execute them together with the other (local or
remote) components implementations according to the chosen SCA assembly.

We, in particular, show the usage of our framework through a Robotics Task
Coordination scenario from a case study [27] of the EU project BRICS [14]. In
Robotics, service-oriented components embed the control logic of the application.
They cooperate with each other locally or remotely through a communication
network to achieve a common goal and compete for the use of shared resources,
such as a robot sensors and actuators, the robot functionality, and the processing
and communication resources. Cooperation and competition are forms of inter-
actions among concurrent activities. So, in this domain, applications are very
workflow-oriented and require developing coordination models explicitly [16].

317

ASMs provide a general method to combine specifications on any desired level
of abstraction, ground modeling (requirements capture) techniques and stepwise
refinement to executable code providing the basis for experimental validation
and mathematical verification [12]. ASM rigorousness, expressiveness, and ex-
ecutability allow for the definition and analysis of complex structured services
interaction protocols in a formal way but without overkill. Moreover, the ASM
design method is supported by several tools [22, 5], useful for validation and
verification of ASM-based models of services.

This paper is organized as follows. Section 2 provides background on SCA
and ASMs. Section 3 presents the Robotics Task Coordination case study that
will be used throughout the paper. Section 4 describes the proposed framework
for coordinated simulation of service-oriented applications. Section 5 describes
some related works, while Section 6 reports our lesson learned in developing the
case study. Finally, Section 7 concludes the paper and sketches some future work.

2 Background on SCA and ASMs

Service Component Architecture SCA is an XML-based metadata model
that describes the relationships and the deployment of services independently
from SOA platforms and middleware programming APIs (as Java, C++, Spring,
PHP, BPEL, Web services, etc.). SCA is supported by a graphical notation (a
metamodel-based language developed with the Eclipse-EMF) and runtime en-
vironments (like Apache Tuscany and FRAscaTI) that enable to create service
components, assemble them into a composite application, provide an implemen-
tation for them, and then run/debug the resulting composite application.

Fig. 1 shows an SCA composite (or SCA assembly) as a collection of SCA
components. Following the principles of SOA, loosely coupled service components
are used as atomic units or building blocks to build an application.

An SCA component is a piece of software that has been configured to provide
its business functions (operations) for interaction with the outside world. This
interaction is accomplished through: services that are externally visible functions
provided by the component; references (functions required by the component)

Fig. 1. An SCA composite (adapted from the SCA Assembly Model V1.00 spec.)

318

wired to services provided by other components; properties allowing for the con-
figuration of a component implementation with externally set data values; and
bindings that specify access mechanisms used by services and references accord-
ing to some technology/protocol (e.g. WSDL binding to consume/expose web
services, JMS binding to receive/send Java Message Service, etc.). Services and
references are typed by interfaces. An interface describes a set of related oper-
ations (or business functions) which as a whole make up the service offered or
required by a component.

The provider may respond to the requester client of an operation invocation
with zero or more messages. These messages may be returned synchronously or
asynchronously.

Assemblies of service components deployed together are supported in terms
of composite components consisting of: properties, services, service implemen-
tations organized as sub-components, required services as references, and wires
connecting sub-components.

Abstract State Machines ASMs are an extension of FSMs [12] where unstruc-
tured control states are replaced by states comprising arbitrary complex data.
The states of an ASM are multi-sorted first-order structures, i.e. domains of
objects with functions and predicates (boolean functions) defined on them. The
transition relation is specified by rules describing how functions change from one
state to the next. There is a limited but powerful set of ASM rule constructors,
but the basic transition rule has the form of guarded update “if Condition then
Updates” where Updates is a set of function updates of the form f(t1, . . . , tn) := t
which are simultaneously executed6 when Condition is true.

Dynamic functions are those changing as a consequence of agent actions (or
updates). They are classified as: monitored (only read, as events provided by the
environment), controlled (read and write), shared (read and write by an agent
and by the environment or by another agent) and out (only write) functions.

Distributed computation can be modeled by means of multi-agent ASMs:
multiple agents interact in parallel in a synchronous/asynchronous way. Each
agent’s behavior is specified by a basic ASM. The predefined variable (or 0-ary
function) self can occur in the model and is interpreted by each agent as itself.

Besides ASMs comes with a rigorous mathematical foundation [12], ASMs
can be read as pseudocode on arbitrary data structures, and can be defined as
the tuple (header, body, main rule, initialization): header contains the signature7

(i.e. domain, function and predicate declarations); body consists of domain and
function definitions, state invariants declarations, and transition rules; main rule
represents the starting point of the machine program (i.e. it calls all the other
ASM transition rules defined in the body); initialization defines initial values for
domains and functions declared in the signature.

6 f is an arbitrary n-ary function and t1, . . . , tn, t are first-order terms. To fire this
rule in a state Si, i ≥ 0, evaluate all terms t1, . . . , tn, t at Si and update the function
f to t on parameters t1, . . . , tn. This produces another state Si+1 which differs from
Si only in the new interpretation of the function f .

7 Import and export clauses can be also specified for modularization.

319

Executing an ASM M means executing its main rule starting from a specified
initial state. A computation M is a finite or infinite sequence S0, S1, . . . , Sn, . . .
of states of M , where S0 is an initial state and each Sn+1 is obtained from Sn
by firing simultaneously all of the transition rules which are enabled in Sn.

A lightweight notion of module is also supported. An ASM module is an
ASM (header, body) without a main rule, without a characterization of the set
of initial states, and the body may have no rule declarations.

An open framework, the ASMETA tool set [5], based on the Eclipse/EMF
platform and developed around the ASM Metamodel, is also available for editing,
exchanging, simulating, testing, and model checking models. AsmetaL is the
textual notation to write ASM models within the ASMETA tool-set.

The SCA-ASM modeling language By adopting a suitable subset of the
SCA standard for modeling service-oriented components assemblies and exploit-
ing the notion of distributed multi-agent ASMs, the SCA-ASM modeling lan-
guage [32] complements the SCA component model with the ASM model of
computation to provide ASM-based formal and executable description of the
services internal behavior, services orchestration and interactions. According to
this implementation type, a service-oriented component is an ASM endowed
with (at least) one agent (a business partner or role instance) able to be engaged
in conversational interactions with other agents by providing and requiring ser-
vices to/from other service-oriented components’ agents. The service behaviors
encapsulated in an SCA-ASM component are captured by ASM transition rules.

The ASM rule constructors and predefined ASM rules (i.e. named ASM rules
made available as model library) used as basic SCA-ASM behavioral primitives
are recalled in Table 1 by separating them according to the separation of con-
cerns computation, communication and coordination. In particular, communica-
tion primitives provide both synchronous and asynchronous interaction styles
(corresponding, respectively, to the request-response and one-way interaction
patterns of the SCA standard). Communication relies on a dynamic domain Mes-
sage that represents message instances managed by an abstract message-passing
mechanism: components communicate over wires according to the semantics of
the communication commands reported above and a message encapsulates in-
formation about the partner link and the referenced service name and data
transferred. We abstract, therefore, from the SCA notion of binding8.

Fault/compensation handling is also supported (see [32]), but their SCA-
ASM constructs are not reported here since they are not used in the case study.

8 Indeed, we adopt the default SCA binding (binding.sca) for message delivering, i.e.
the SOAP/HTTP or the Java method invocations (via a Java proxy) depending if
the invoked services are remote or local, respectively.

320

Table 1. SCA-ASM rule constructors for computation, coordination, communication

computation and coordination

Skip rule skip do nothing

Update rule f(t1, . . . , tn) := t update the value of f at t1, . . . , tn to t

Call rule R[x1, . . . , xn] call rule R with parameters x1, . . . , xn
Let rule let x = t in R assign the value of t to x and then execute

R

Conditional it φ then R1 else R2 if φ is true, then execute rule R1,
rule endif otherwise R2

Iterate rule while φ do R execute rule R until φ is true

Seq rule seq R1 . . . Rn endseq rules R1 . . .Rn are executed in sequence
without exposing intermediate updates

Parallel rule par R1 . . . Rn endpar rules R1 . . .Rn are executed in parallel

Forall rule forall x with φ do R(x) forall x satisfying φ execute R

Choose rule choose x with φ do R(x) choose an x satisfying φ and then execute
R

Split rule forall n ∈ N do R(n) split N times the execution of R

Spawn rule spawn child with R create a child agent with program R

communication

Send rule wsend[lnk,R,snd] send data snd to lnk in reference to rule R
(no blocking, no acknowledgment)

Receive rule wreceive[lnk,R,rcv] receive data rcv from lnk in reference to
R (blocks until data are received, no ack)

SendReceive wsendreceive send data snd to lnk in reference to R
rule [lnk,R,snd,rcv] waits for data rcv to be sent back (no ack)

Reply rule wreplay[lnk,R,snd] returns data snd to lnk, as response of R
request received from lnk (no ack)

3 Running case study: a robotics tasks coordination

We propose a simple scenario where a laser scanner offers its scan service to
different clients, which compete for the use of this shared resource. The scenario
is defined by three participants:

– A Laser Scanner, which executes scans of the environment on demand and
writes the acquired values on a data buffer. A scan is a sequence of measures
executed in a single task (for example 360 values, one for each degree). We
suppose that the Laser Scanner allows its client to request a scan from an
initial angle (start) to a finale one (end) defined as the number of steps
between start and end.

– A 3D Perception application, which requests the measures to the Laser Scan-
ner in order to generate a set of meshes that describe the surface of the
objects present in the environment.

– An Obstacle Avoidance application, which requests the measures to the Laser
Scanner in order to detect the obstacles along the robot path.

The proposed scenario is subjected to the following requirements:

321

1. The laser scan activity requires a certain amount of time to be completed.
This time is not fixed, and depends on the number of measures requested
by the client. During this time the client could have the need of executing
other activities and so it does not have to wait for the scan termination.

2. A client could request a single scan or multiple scans (for example 4 scans
composed each one by 20 measures).

3. While the Laser Scanner is executing a scan requested by a client A, a client
B could require another scan. These requests have to be managed according
to one of the following policies:
– Policy 1: Discard the scan request.
– Policy 2: Queue the scan request.

Moreover, it is assumed that different clients could simultaneously access to the
services offered by the Laser Scanner and that client requests are asynchronous,
i.e. the client requests a scan to the Laser Scanner and then it continues to
execute its work. In this case the interactions between the clients and the Laser
Scanner have to be managed by a third part: a coordinator. This coordinator,
Sensor Coordinator, is in charge of forwarding the clients requests to the Laser
Scanner and so it has to manage the concurrent access of the clients.

High-level solution In order to keep the example simple to expose, we assume
in this paper9 to address only the request management policy 1, i.e. if a request
is received while the laser is already scanning the new request will be discarded.
With this assumption, the Sensor Coordinator behavior can be captured, as first
high-level model, by the finite state machine shown in Fig. 2.

Essentially, the Sensor Coordina-

Fig. 2. Sensor Coordinator FSM

tor receives a request of one or n scans
from a client. According to the fol-
lowed policy (see above) the new re-
quest could be discarded, or queued
or forwarded (the normal case) to the
Laser Scanner. When the request is
forwarded, the Laser Scanner starts
the scanning work and sends a notifi-

cation (Ack) to the Sensor Coordinator in order to inform it that the scan has
started. Depending on the number of scan requested, the Sensor Coordinator
will forward to the Laser Scanner one or more single scans. In case of multiple
scans, the Sensor Coordinator will forward n single scan requests to the Laser
Scanner (to this purpose, the count variable remScans, initially set to n, is used
and decremented at each forward). The Laser Scanner then writes each measure
on the Measures Buffer until the final angle is reached, and it finally sends a no-
tification (Done) to the Sensor Coordinator in order to inform it that the scan is
finished. At this point, if there are not remaining scans to execute (remScans is
equal to 0) it sends a notification to the client in order to inform it that the new
measures are available on the Buffer. The client then can access the Measures
Buffer to read the measures.
9 Details on different variants of this scenario can be found in [27].

322

SCA modeling The application is heterogeneous: by the icons attached to
components, the Sensor Coordinator is implemented in ASM, while the other
two components in Java. The clients are considered external entities interacting
with the Sensor Coordinator and with the Measures Buffer through the services
offered (promoted) by the composite. More precisely, a client could request a
scan by means of the service SensorCoordinating and could access the Measures
Buffer by means of the service MeasuresBufferReading.

Fig. 3. The Sensor Composite

The definition of the service interfaces is reported in the listing 1.1 using the
Java interface construct as IDL (Interface Definition Language). Note that, the
interface EventObserving is implemented by the Sensor Coordinator to manage
the notification received from the Laser Scanner10.

The ASM (abstract) implementation of the SCA Sensor coordinator’s behav-
ior will be provided later in Sect. 4.1. For the sake of space, the Java implemen-
tation code of the other components is not reported.

Listing 1.1. Service interfaces definition in Java

public interface MeasuresBufferReading { public LaserScan getScan(); }
public interface MeasuresBufferWriting { public void writeMeasure(LaserMeasure measure); }
public interface LaserScanning {

/∗∗@param from: point from which the laser starts the scan
∗ @param numOfSteps: number of steps of the scan ∗/

@OneWay public void scan(int from, int numOfSteps); }
public interface SensorCoordinating {

/∗∗@param from: point from which the laser starts the scan
∗ @param numOfSteps: number of steps of the scan
∗ @param numOfScans: number of scans required ∗/

@OneWay public void request(int from, int numOfSteps, int numOfScans); }
public interface EventObserving {

/∗∗@param event: it describe the type of event.
∗ For the laser scanner valid values are ”Ack” and ”Done”
∗/

public void update(String event); }

10 So far it is used as a service to resemble a callback (not yet supported in SCA-ASM).

323

4 Coordinated simulation framework

The proposed framework relies on the SCA-ASM language originally presented
in [32] as a formal and abstract component implementation type to cover com-
putation, communication, and coordination aspects during early execution (or
simulation) of an SCA assembly of an heterogeneous service-oriented applica-
tion. ASMs can be adopted to provide abstract implementations (or prototypes)
of mock components, or to implement “core” components that contain the main
service composition or coordination process that guides the application’s execu-
tion. The framework relies also on other SCA component implementation types
(such as Java, Spring, C++, etc., see [29]) to include components providing the
real computation services used by the core component(s) and these components
can themselves require services provided by other local or remote components.

The framework was developed by integrating the Eclipse-based SCA Compos-
ite Designer, the SCA runtime platform Tuscany [35], and the simulator AsmetaS
of the ASM toolset ASMETA [5]. This environment11 allows us to graphically
model, compose, analyze, deploy, and execute heterogeneous service-oriented ap-
plications in a technologically agnostic way. As described and exemplified below,
an heterogeneous SCA assembly (or composition) of service-oriented components
(implemented in ASM or in another implementation language) can be graphi-
cally produced using the SCA Composite Designer and also stored or exchanged
in terms of an XML-based configuration file. This last file is then used by the
SCA runtime to instantiate and execute the system by instrumenting AsmetaS
and other execution infrastructures in an unique environment (see Fig. 5).

4.1 Service component implementation and configuration

Through the considered case study, we here show the use of the ASM implemen-
tation type (i.e. of the SCA-ASM language) for SCA components. This implemen-
tation type provides a behavioral specification that is essential for performing
early prototyping, functional simulation and formal verification to prove (verifi-
able) correctness and reliability of both single services and the overall assembly.

Service component implementation The following listings report the ASM
(abstract) implementation of the Sensor Coordinator component (request man-
agement policy 1). To this purpose, the AsmetaL textual notation to write ASM
models within the ASMETA tool-set is used. Two grammatical conventions must
be recalled: a variable identifier starts with $; a rule identifier begins with “r ”.

Listing 1.2 shows the header of the ASM. The import clauses include the ASM
modules of the provided service interfaces (SensorCoordinating and EventOb-
serving) and required interfaces (the LaserScanning interface) of the component,
annotated, respectively, with @Provided and @Required. The @MainService an-
notation, when importing the SensorCoordinating interface, denotes the main
service (read: main component’s agent) that is responsible for initializing the

11 https://asmeta.svn.sourceforge.net/svnroot/asmeta/code/experimental/SCAASM

324

component’s state (in the predefined r init rule). The signature of the machine
contains declarations for: references (shared functions annotated with @Refer-
ence), which are abstract access endpoints to services, back references to re-
quester agents (shared functions annotated with @Backref), and declarations of
ASM domains and functions, which are used by the component for internal com-
putation only. In particular, the variable (a controlled 0-ary function) ctl state

stores the current control state of the ASM.

Listing 1.2. ASM header of the Sensor Coordinator component

module SensorCoordinator
import STDL/StandardLibrary
import STDL/CommonBehavior
//@MainService
import SensorCoordinating
//@Provided
import EventObserving
//@Required
import LaserScanning
export ∗
signature:
//@Reference
shared laserScanning : Agent −> LaserScanning
//@Backref
shared clientSensorCoordinating : Agent −> Agent
//@Backref
shared clientEventObserving : Agent −> Agent
enum domain State = {IDLE | BUSY | SCANNING}
//Internal properties
controlled ctl state : Agent −> State //stores the current control state
controlled paramScan : Agent −> Prod(Integer,Integer,Integer) //arguments of an scan request
controlled from : Agent −> Integer //stores the start position of an scan request
controlled steps : Agent −> Integer //stores the number of measures of an scan request
controlled remScans : Agent −> Integer //stores the number of scans requested by a client
controlled event : Agent −> String //stores the argument of an update request.

The body of the ASM (see Listing 1.3) includes definitions of the services
(transition rules annotated with @Service) r request and r update, the main
transition rule r SensorCoordinator (that takes by convention the same name
of the component), the transition rule with the predefined name r init that is
invoked in the initialization to set up the internal component state (i.e. values
of controlled functions), and another utility rule named r acceptRequest.

The r request service is in charge of requesting a scan to the laser scanner.
When the rule is called, it executes in parallel the following actions: sets the state
of the ASM to BUSY, stores the arguments of the requested scan, invokes (by a
send action) the service scan, which is provided by the service Laser Scanning.

The r update service is in charge of receiving the notification from the laser
scanner and updating the control state by resembling the FSM shown in Fig. 2.

The r acceptRequest rule advances the control state of the machine properly
according to the arriving service requests (the input parameter $r). In case of
a new scan request (r request), this is removed from the requests queue (by
the r wreceive action) and the input is stored in the variable paramScan. A
direct invocation of the r request service then follows if the input is defined.
In case, instead, of a notification (r update) from the laser scanner, the request
is removed from the requests queue (by the r wreceive action) and in case the

325

input (stored in the variable event) is defined the service r update is invoked.
Note that all the scan requests received while the scanner is already scanning
are discarded (what the policy 1 defines).

Listing 1.3. ASM body of the Sensor Coordinator component

definitions:
//State invariant: Number of scans required by a client must be non negative
invariant inv neverNeg over remScans(): not(remScans < 0)
//@Service
rule r request($a in Agent,$from in Integer,$steps in Integer, $nScans in Integer)=

par
ctl state($a) := BUSY
from($a) := $from
steps($a) := $steps
remScans($a) := $nScans − 1
r wsend[laserScanning($a),”r scan(Agent,Integer,Integer)”,($from,$steps)]

endpar

//@Service
rule r update($a in Agent, $event in String) =

if (ctl state($a)=BUSY and $event=”Ack”)
then ctl state($a) := SCANNING
else if (ctl state($a)=SCANNING and $event=”Done” and remScans($a)>0)

//continue with next scan
then par

ctl state($a) := BUSY
remScans($a) := remScans($a)−1
r wsend[laserScanning($a),”r scan(Agent,Integer,Integer)”,(from($a),steps($a))]

endpar
else if (ctl state($a)=SCANNING and $event=”Done” and remScans($a)=0)
then ctl state($a) := IDLE endif endif endif

rule r acceptRequest ($a in Agent, $r in String) =
if (ctl state($a)=IDLE and $r=”r request(Agent,Integer,Integer,Integer)”)
then
seq //first scan
r wreceive[clientSensorCoordinating($a),”r request(Agent,Integer,Integer,Integer)”,paramScan(

$a)]
if (isDef(paramScan($a))) then

r request[$a,first(paramScan($a)),second(paramScan($a)),third(paramScan($a))] endif
endseq

else if (not ctl state($a)=IDLE and $r=”r update(Agent,String)”)
then
seq
r wreceive[clientEventObserving($a),”r update(Agent,String)”,event($a)]
if (isDef(event($a))) then r update[self,event($a)] endif

endseq
endif endif

//Main agent’s program
rule r SensorCoordinator =

let($r = nextRequest(self)) //Select the next request(if any)
in if isDef($r) //Handle the request $r

then r acceptRequest[self,$r] endif
endlet

rule r init($a in SensorCoordinating) = //for the startup of the component
par

status($a) := READY
ctl state($a) := IDLE
from($a) := 0
steps($a) := 0
remScans($a) := 0

endpar

326

The r SensorCoordinator rule is the program of the main component’s
agent and is invoked every times a client requests a service offered by the Sensor
Coordinator. This rule simply forwards the request to the r acceptRequest rule.

Finally, the r init rule is called during initialization of the component ex-
ecution. This rule simply sets the status of the agent to READY, the control
state to IDLE and initializes the scan parameters to 0.

The ASM definitions of the sensor coordinator’s provided interfaces are re-
ported in the listing 1.4 using the AsmetaL notation. They are ASM modules
containing only declarations of business agent types (subdomains of the prede-
fined ASM domain Agent), and of business functions (ASM out functions).

Listing 1.4. ASM definition of the Sensor Coordinating interface

//@Remotable
module SensorCoordinating
import STDL/StandardLibrary
import STDL/CommonBehavior
export ∗
signature:
// the domain defines the type of this agent
domain SensorCoordinating subsetof Agent
// out is a function that implements the provided service
out request: Prod(Agent,Integer,Integer,Integer) −> Rule
definitions:

//@Remotable
module EventObserving
import STDL/StandardLibrary
import STDL/CommonBehavior
export ∗
signature:
domain EventObserving subsetof Agent
out update: Prod(Agent,String) −> Rule
definitions:

Listing 1.5. XML configuration file

<?xml version=”1.0” encoding=”UTF−8” standalone=”no”?>
<sca:composite xmlns:sca=”http://www.osoa.org/xmlns/sca/1.0” xmlns:asm=”http://asm”
name=”Sensor” targetNamespace=”http://eclipse.org/CaseStudy/src/Sensor”>

...
<sca:component name=”SensorCoordinator”>
<asm:implementation.asm location=”SensorCoordinator.asm”/>
<sca:reference name=”laserScanning”/>
<sca:service name=”SensorCoordinating”>
<asm:interface.asm location=”SensorCoordinating.asm”/>

</sca:service>
</sca:component>
...

</sca:composite>

Service component configuration Component metadata, describing which
services are required and provided by a component, and information that allow
the SCA runtime to locate (locally or remotely) the component implementation,
must be provided in the SCA XML composite file. Listing 1.5 shows a fragment of
the SCA XML composite file regarding the metadata of the Sensor Coordinator
component that is implemented (by the tag implementation.asm) in ASM.

327

4.2 In-place simulation of SCA-ASM models

SCA-ASM components use annotations to denote services, references, properties,
etc. With this information, as better described below, an SCA runtime platform
(Tuscany in our case) can create a composition (an application) by tracking ser-
vice references (i.e. required services) at runtime and injecting required services
into the component when they become available.

Fig. 4. Instantiating and invoking ASM implementation instances within Tuscany

In-place ASM execution mechanism. Fig. 4 illustrates how the ASM
implementation provider12 sets up the environment (the container) within Tus-
cany for instantiating and handle incoming/outgoing service requests to/from
an ASM component implementation instance (like component A in the figure)
by instrumenting the ASM simulator AsmetaS. Currently, the implementation
scope of an SCA-ASM component is composite, i.e. a single component instance
– a single main ASM instance (see the main ASM for component A in Fig. 4)
– is created within AsmetaS for all service calls of the component13. This main
ASM is automatically created during the setting up of the connections and it is
responsible for instantiating the component agent and related resources, and for
listening for service requests incoming from the protocol layer and forward them
to the component’agent instance (see component A in Fig. 4). Executing an ASM
component implementation means executing its main ASM. For each reference,
another entity (i.e. another ASM module) is automatically created (and instan-
tiated as ASM agent within the main ASM of the component) as “proxy” for a
remote component (see the ASM proxy for component B in Fig. 4) for making
an outbound service call from the component. Using a terminology adopted in

12 The Tuscany core delegates the start/stop of component implementation instances
and related resources, and the service/reference invocations, to specific implementa-
tion providers that typically respond to these life-cycle events.

13 We postpone as future work the implementation of the other two SCA implementa-
tion scopes, stateless (to create a new component instance on each service call) and
conversation (to create a component instance for each conversation).

328

the Java Remote Method Invocation (RMI) API, this proxy ASM plays the role
of stub to forward a service invocation (and their associated arguments) to an
external component’s agent, and to send back (through the ASM rule r replay)
the result (if any) to the invoker component’agent (the agent of the component
A in Fig. 4). The main ASM, instead, plays the role of skeleton, i.e. a proxy
for a remote entity that runs on the provider and forward (through the ASM
rule r sendreceive) client’s remote service requests (and their associated ar-
guments) to the appropriate component’s agent (usually the main agent of the
component), and then the result (if any) of the invoked service is returned to the
client component’agent (via stubs). For the sake of space, the ASM implemen-
tation of the stub and skeleton (as generated by the runtime) for the component
Sensor Coordinator is not reported.

When an ASM implementation component is instantiated, the Tuscany run-
time also creates a value for each (if any) externally settable property (i.e. ASM
monitored functions, or shared functions when promoted as a composite prop-
erty, annotated with @Property). Such values or proxies are then injected into
the component implementation instance. A data binding mechanism also guar-
antees a matching between ASM data types and Java data types, including
structured data, since we assume the Java interface as IDL for SCA interfaces.

Fig. 5 shows a simulation snapshot of the considered case study where the
Sensor Coordinator changes state from IDLE to BUSY (see also the rule r request

in the Listing 1.3) after receiving a first scan request from a client.

Fig. 5. Simulation of the Sensor Composite application

329

Other ASM execution features Useful features are currently supported by
the AsmetaS simulator when running within the SCA Tuscany platform.

State invariant checker : AsmetaS implements an invariant checker, which at
the end of each transition execution checks if the invariants (if any) expressed
over the state of the currently executed SCA-ASM component are satisfied or
not. If an invariant is not satisfied, AsmetaS throws an InvalidInvariant-

Exception, which keeps track of the violated invariant. Listing 1.3 shows an
example of state invariant (inv neverNeg) for the Sensor Coordinator. It states
that the number of scans required by a client must be non negative.

Consistent Updates checking : The simulator also includes a checker for reveal-
ing inconsistent updates. In case of inconsistent updates an UpdateClashExcep-

tion is thrown by reporting the location which is being inconsistently updated
and the two different values which are assigned to that location. The user, ana-
lyzing this error, can detect the fault in the ASM component implementation.

Logging : AsmetaS produces a minimal output to show the current state and
the update set. The user can also inspect how the simulator performs particular
tasks (including the evaluation of terms, the building of update set for rules, and
the variables substitution) by providing a log4j configuration file.

5 Related work

Some works devoted to provide software developers with formal methods and
techniques tailored to the service domain also exist (see, e.g., the survey in [8]
for the service composition problem), mostly developed within the EU projects
SENSORIA [33] and S-Cube [28]. Several process calculi for the specification of
SOA systems have been designed (see, e.g., [23, 25, 17]). They provide linguistic
primitives supported by mathematical semantics, and verification techniques for
qualitative and quantitative properties [33]. Still within the SENSORIA project,
a declarative modeling language for service-oriented systems, named SRML [34],
has been developed. SRML supports qualitative and quantitative analysis tech-
niques using the UMC model checker[1] and the PEPA stochastic analyzer14.

Compared to the formal notations mentioned above, the ASM method has
the advantage to be executable. On the formalization of the SCA component
model, some previous works, like [19, 20] to name a few, exist. However, they
do not rely on a practical and executable formal method like ASMs. In [26], an
analysis tool, Wombat, for SCA applications is presented; this approach is similar
to our as the tool is used for simulation and verification tasks by transforming
SCA modules into composed Petri nets. There is not proven evidence, however,
that this methodology scales effectively to large systems.

An abstract service-oriented component model, named Kmelia, is formally
defined in [6, 3] and is supported by a prototype tool (COSTO). In the Kmelia
model, services are used as composition units and services behavior is modeled
by labeled transition systems. Our proposal is similar to the Kmelia approach;

14 http://www.dcs.ed.ac.uk/pepa/

330

however, we have the advantage of having integrated our SCA-ASM component
model and the ASM-related tools with an SCA runtime platform for a more
practical use and an easier adoption by developers.

Within the ASM community, the ASMs have been used for the purpose
of formalizing business process notations and middleware technologies related
to web services, such as [13, 10, 21, 2] to name a few. Some of these previous
formalization efforts, as explained in [32], are at the basis of our work.

Concerning the Robotics domain, [24] proposes a new approach for coordi-
nating the behavior of Orocos RTT (Open Robot Control Software Real Time
Toolkit) [31] components. Orocos RTT is a C++ framework, which allows the
design and the deployment of component-based robotics control systems. The
proposed approach defines the behavior of single components and of entire sys-
tems by means of a minimal variant of the UML hierarchical state-charts, which
is called reduced FSM (rFSM). The main advantages of the rFSM are their hi-
erarchical composability and their applicability in hard-real time applications.
Furthermore, despite they are currently used only with Orocos, rFSM are totally
framework independent. The main differences between the ASMs and the rFSMs
are that rFSMs do not allow the execution of parallels agent actions and parallel
states; moreover, they do not have the universality and broad application of the
ASMs, and do not offer the same flexibility and tools provided by the ASMs.

6 Lesson learned

We have shown how formal high-level ASM models of service-oriented compo-
nents can be assembled together with real components through the SCA frame-
work and how we manage the coordination of the overall resulting application
by means of the ASM formalism for prototyping and simulation purposes. We
experienced that the use of two different frameworks for modeling two different
concerns (SCA and its various implementation types for computation, and ASM
for coordination) improves the level of flexibility and reusability.

We have shown this by means of a use case in the Robotics field, where flex-
ibility and reusability are very challenging issues [14–16]. In general, robotics
software require and provide a number of different functionalities, which are
typically encapsulated in components that cooperate and compete in order to
control the behavior of a robot. Cooperation and competition are forms of in-
teraction among concurrent activities and so they have to be coordinated. In
order to achieve a good level of reusability and flexibility the coordination and
the computation (how the component provides the service) need to be managed
separately. So by our experience, the service paradigm seems promising also in
the Robotics domain. In particular, we appreciated the possibility to change
the coordination policies (see [27]) without modifying the implementation of
the services provided by components merely dedicated to computation (such as
sophisticated algorithms), thus improving the level of flexibility and reusability.

331

7 Conclusion and future directions

We presented a practical framework for early service design and prototyping
that combines the SCA open standard and the ASM formal support to assemble
service-oriented components as well as intra- and inter- service behavior. The
framework is supported by a tool that exploits the SCA runtime Tuscany and
the toolset ASMETA for model execution and functional analysis. The effective-
ness of our framework was experimented through various case studies of different
complexity and heterogeneity. These include examples taken from the SCA Tus-
cany distribution, the case study of the EU project BRICS [14] presented here,
and also a scenario of the Finance case study of the EU project SENSORIA [33].

We plan to support more useful SCA concepts, such as the SCA callback in-
terface for bidirectional services and an event-based style of interaction. We want
also to enrich the SCA-ASM language with interaction and workflow patterns
based on the BPMN specification. We also plan to support pre/post-conditions
defined on services for contract correctness checking in component assemblies.

On the functional analysis side, we plan to experiment the framework on large
distributed application scenarios involving SCA assemblies deployed on various
local and remote hosting nodes. We want also to try the use of SCA-ASM models
as oracles for reasoning and testing about real components implementations,
including but not limited to, conformance testing and run-time monitoring.

References

1. J. Abreu, F. Mazzanti, J. L. Fiadeiro, and S. Gnesi. A model-checking approach
for service component architectures. In D. Lee, A. Lopes, and A. Poetzsch-Heffter,
editors, FMOODS/FORTE, volume 5522 of LNCS, pages 219–224. Springer, 2009.

2. M. Altenhofen, A. Friesen, and J. Lemcke. ASMs in Service Oriented Architectures.
Journal of Universal Computer Science, 14(12):2034–2058, 2008. http://www.

jucs.org/jucs_14_12/asms_in_service_oriented.
3. P. André, G. Ardourel, and C. Attiogbé. Composing components with shared

services in the kmelia model. In C. Pautasso and É. Tanter, editors, Software
Composition, volume 4954 of LNCS, pages 125–140. Springer, 2008.

4. F. Arbab. What do you mean, coordination? Bulletin of the Dutch Association
for Theoretical Computer Science, page 1122, Mar. 1998.

5. The ASMETA toolset website. http://asmeta.sf.net/, 2006.
6. C. Attiogbé, P. André, and G. Ardourel. Checking component composability. In

W. Löwe and M. Südholt, editors, Software Composition, volume 4089 of Lecture
Notes in Computer Science, pages 18–33. Springer, 2006.

7. A. P. Barros and E. Börger. A compositional framework for service interaction
patterns and interaction flows. In K.-K. Lau and R. Banach, editors, ICFEM,
volume 3785 of LNCS, pages 5–35. Springer, 2005.

8. M. T. Beek, A. Bucchiarone, and S. Gnesi. Formal Methods for Service Composi-
tion. Annals of Mathematics, Computing & Teleinformatics, 1(5):1–10, 2007.

9. M. B. Blake, S. L. Remy, Y. Wei, and A. M. Howard. Robots on the Web: Service-
Oriented Computing and Web Interfaces. IEEE ROBOTICS & AUTOMATION
MAGAZINE, June 2011.

332

10. E. Börger. Modeling Workflow Patterns from First Principles. In 26th Int. Confer-
ence on Conceptual Modeling, volume 4801 of LNCS, pages 1–20. Springer, 2007.

11. E. Börger, O. Sörensen, and B. Thalheim. On defining the behavior of or-joins in
business process models. J. UCS, 15(1):3–32, 2009.

12. E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer Verlag, 2003.

13. E. Brger, O. Srensen, and B. Thalheim. On defining the behavior of or-joins in
business process models. Journal of Universal Computer Science, 15(1):3–32, 2009.
http://www.jucs.org/jucs_15_1/on_defining_the_behavior.

14. EU project BRICS (Best Practice in Robotics), www.best-of-robotics.org/.
15. D. Brugali and P. Scandurra. Component-based robotic engineering (Part I) [Tu-

torial. IEEE Robotics & Automation Magazine, 16(4):84–96, Dec. 2009.
16. D. Brugali and A. Shakhimardanov. Component-based robotic engineering part ii:

Systems and models. Robotics, XX(1):1–12, 2010.
17. R. Bruni. Calculi for service-oriented computing. In M. Bernardo, L. Padovani,

and G. Zavattaro, editors, SFM, volume 5569 of LNCS, pages 1–41. Springer, 2009.
18. J. S. Davis. Order and containment in concurrent system design. PhD thesis, Univ.

of California, Berkeley, 2000.
19. Z. Ding, Z. Chen, and J. Liu. A rigorous model of service component architecture.

Electr. Notes Theor. Comput. Sci., 207:33–48, 2008.
20. D. Du, J. Liu, and H. Cao. A rigorous model of contract-based service component

architecture. In CSSE (2), pages 409–412. IEEE Computer Society, 2008.
21. R. Farahbod, U. Glässer, and M. Vajihollahi. A formal semantics for the business

process execution language for web services. In S. Bevinakoppa, L. F. Pires, and
S. Hammoudi, editors, WSMDEIS, pages 122–133. INSTICC Press, 2005.

22. ASMs web site. http://www.eecs.umich.edu/gasm/, 2008.
23. C. Guidi, R. Lucchi, R. Gorrieri, N. Busi, and G. Zavattaro. : A calculus for service

oriented computing. In A. Dan and W. Lamersdorf, editors, ICSOC, volume 4294
of LNCS, pages 327–338. Springer, 2006.

24. M. Klotzbuecher, P. Soetens, and H. Bruyninckx. OROCOS RTT-Lua: an Execu-
tion Environment for building Real-time Robotic Domain Specific Languages. In
Int. Workshop on Dynamic languages for RObotic and Sensors, 2010.

25. I. Lanese, F. Martins, V. T. Vasconcelos, and A. Ravara. Disciplining orchestra-
tion and conversation in service-oriented computing. In SEFM’07, pages 305–314.
IEEE, 2007.

26. A. Martens and S. Moser. Diagnosing sca components using wombat. In S. Dustdar,
J. L. Fiadeiro, and A. P. Sheth, editors, Business Process Management, volume
4102 of Lecture Notes in Computer Science, pages 378–388. Springer, 2006.

27. EU project BRICS, Tech. Rep. A Coordination Use Case. March 24, 2011. www.
best-of-robotics.org/wiki/images/e/e0/coordinationusecaseubergamo.pdf.

28. EU project S-Cube http://www.s-cube-network.eu/.
29. Service Component Architecture (SCA) www.osoa.org.
30. F. Montesi, C. Guidi, and G. Zavattaro. Composing services with jolie. In ECOWS,

pages 13–22. IEEE Computer Society, 2007.
31. The Orocos Project. http://www.orocos.org.
32. E. Riccobene and P. Scandurra. A modeling and executable language for designing

and prototyping service-oriented applications. In EUROMICRO Conf. on Software
Engineering and Advanced Applications (SEAA 2011), 2011.

33. EU project SENSORIA, www.sensoria-ist.eu/.
34. SRML: A Service Modeling Language. http://www.cs.le.ac.uk/srml/, 2009.
35. Apache Tuscany. http://tuscany.apache.org/.

333

Verifying Temporal Properties of Use-Cases in Natural
Language

Viliam Simko1, David Hauzar1, Tomas Bures1,2,
Petr Hnetynka1, and Frantisek Plasil1,2

{simko, hauzar, bures, hnetynka, plasil}@d3s.mff.cuni.cz
1Department of Distributed and Dependable Systems,

Faculty of Mathematics and Physics,
Charles University, Malostranské náměstí 25,

Prague 1, 118 00, Czech Republic
2Institute of Computer Science,

Academy of Sciences of the Czech Republic
Pod Vodárenskou věží 2, Prague 8, 182 07, Czech Republic

Abstract. This paper presents a semi-automated method that helps iteratively
write use-cases in natural language and verify consistency of behavior encoded
within them. In particular, this is beneficial when the use-cases are created si-
multaneously by multiple developers. The proposed method allows verifying the
consistency of textual use-case specification by employing annotations in use-
case steps that are transformed into LTL formulae and verified within a formal
behavior model. A supporting tool for plain English use-case analysis is currently
being enhanced by integrating the verification algorithm proposed in the paper.

Keywords: Use-Cases, Behavior Modeling, Verification, Natural Language, La-
bel Transition System, Model-Checking, Requirements Engineering

1 Introduction

In typical software development practice, majority of the requirement documents cre-
ated in the early phase of a project, are written in natural language [10]. Such a speci-
fication is therefore inherently imprecise, ambiguous, and a potential source of contra-
dictions. An important issue is that in a large software project, the specification phase
involves collaboration among a number of team members1 who express their personal
views in natural language. In such an environment, there is a high chance of conflicts
among individual parts of the specification.

Use-cases are traditionally used in requirement specification because they can easily
capture the behavior of a system under discussion (SuD) from the perspective of differ-
ent actors. Usually, SuD may be equalled to a component where a use-case describes a
part of the interaction between the component and its environment.

Since the inclusion of use-cases into the UML standard [14], their use has been
greatly extended, making them a mandatory requirement for any object-oriented soft-
ware development project. As stressed by Cockburn [3] and Larman [9], the main asset

1 For example, the Agile software development methodology proposes teams of 5-9 people.

334

of use-cases is that behavior is encoded in natural language and thus accessible to a
wide range of stakeholders of a project.

Although an isolated use-case can clearly describe a simple scenario, the overall
behavior of combined use-cases may become quite blurry. In particular, the problem
can easily appear in specifications where use-cases are composed using include and
precede relationships [3].

The intended behavior expressed by use-cases contains implicit temporal dependen-
cies that are likely violated during the iterative development. Because late detection of
such errors leads to significantly higher costs of a project [2], writers of the specifica-
tion greatly benefit from tools that help them keep the textual specification consistent
and that warn them about potential violations immediately during writing.

Use-Case: Buyer Places Bid On Item
Main success scenario:

1. Include use-case “Buyer Reviews Item Information”.
2. The buyer notifies the GPM that he/she wants to place a bid.
3. The GPM shall respond by requesting the details about bids from the buyer.
4. The buyer sends a submit bid request to the GPM.
5. The GPM shall respond by sending a notification to the buyer.
6. The buyer sends a notification acknowledgement to the GPM.

Extension:
1a. The use-case “Buyer Reviews Item Information” was aborted.
1a1. The GPM displays a message “Bid cannot be placed”
1a2. Use-case aborted.

Use-Case: Buyer Reviews Item Information
Main success scenario:

1. The buyer uses the web page to send a review
item information request to the GPM.

2. The GPM displays information about the item.
3. The buyer reviews item information.

Variation:
2a. The item in not valid
2a1. The GPM display a message describing invalid item.
2a2. Use-case aborted.

U
1

U
2

Buyer
needs this
informationN

e
c

e
s

s
a

ry
 c

o
rr

e
c

ti
o

n

Fig. 1. Example use-cases with aborts (textual form)

Motivation example: Figure 1 shows a pair of the dependent use-cases U1 and U2

specified as a sequence of English sentences (U1 includes U2). The final text of these
use-cases was created in 3 iterations. In the first iteration, an initial version was created
with just a simple success scenario. In the second iteration, the use-case U2 was refined
by introducing an optional branch (variation) aborting U2. However, such specification
is not consistent: U1 does not consider a possible abort in U2. In more detail, there is a
possible trace leading to usage of an unavailable item (in case of the aborted U2, GPM
in U1 is unavailable – Figure 1).

Problem statement. Such an inconsistency may be detected only when both use-
cases are put into context of one another using the include relationship. This makes
such inconsistencies difficult to notice, especially when specification is large with many
use-cases and includes relationships.

335

So it would be desirable to propose a method that, in an automatized way, detects
such an inconsistency and issues a warning. In the example, as a reaction to such a
warning, U1 could be manually extended by adding an abort-handling branch to affect
the set of traces that involve branching transitions. Verification would now succeed
because the traces involving the abort step in U2 would be limited to the abort-handling
branch.

Goal. Thus, the goal of this paper is to present a method that allows an early de-
tection of violation of temporal dependencies of use-case steps. The proposed method
(Use-Case Temporal Verification – UCTV) allows automated derivation of a formal be-
havior model (LTS) from use-cases in plain English. Moreover, by adding annotations
to use-case steps, it is possible to verify temporal properties in an automatized way in
order to identify inconsistencies within the original specification. The detected errors
are presented to the user as erroneous traces. For automated transformation of the use-
cases into the formal model and verification of temporal dependencies, we designed a
software tool (REPROTOOL), which stems from the PROCASOR tool [12,4,15] de-
signed earlier in our group.

Other approaches exist that aim at extracting behavior models from text, for exam-
ple authors of [19] describe how to generate UML Activity Diagrams from use-cases.
The method uses restriction rules [20] imposed on the use-case step sentences. In [7], a
method for deriving message sequence charts from textual scenarios is described.

Several languages and formalisms for behavior modeling of software systems have
been proposed. They range from very generic ones (e.g., process algebras [6,13]), to
those specific to components (e.g., Darwin [11], Interface automata [1], or Threaded
Behavior Protocols [8]).

To achieve the goal, the paper is structured as follows: In Section 2 we overview
the main concepts in UML use-cases as the terminology base used further in the paper.
Section 3 describes how users interact with an application that implements our method.
In Section 4 we explain the algorithm in detail, while Section 6 concludes the paper.

2 Use-cases in natural language and UML

The prevalent practice of capturing use-cases is to use textual notation and natural
language. Futher, UML Use-Case Diagrams provide means for establishing relations
among use-cases.

Although there are different styles of writing use-cases, for our purposes we con-
sider the format depicted in Figure 1 and 5. This format is taken from the book [3] as it
is widely accepted.

With regard to the structure of a use-case, the main success scenario of a use-case
consists of several steps that contribute to achieving the use-case goal. Alternative sce-
narios can be expressed using variations and extensions. The difference between exten-
sions and variations is that a variation replaces the step to which it is attached, while
an extension provides optional branching from its parent step. For illustration, consider
the use-case U1 in Figure 5. There is a variation 2a attached to the step 2 which means
that 2 and 2a are mutually exclusive branches. On the other hand, the use-case U2 con-

336

tains an extension 1b which means that the step 1 is always executed before the optional
1b branch.

2.1 Actions in use-case steps

It has been advised by practitioners, e.g. in [3], to use simple sentences when writ-
ing use-cases. A sentence should encode a single action, which is either (a) interaction
between an actor and SuD, (b) internal action within SuD, or (c) special action (see
below). As to the structure of a sentence, in English it should conform to the SVDPI
pattern (Subject, Verb, Direct-Object, Preposition, and Indirect-Object); this is very im-
portant for an automated processing. The following special actions are introduced in
the UCTV method:

Goto action : The trace advances by another step (indicated by this action) within the
same use-case. This action is typically used to express looping. Example: Goto step
1. (See Figure 5 use-case U2 step 2a2).

Include action : Similar to calling a procedure, the trace advances in the included use-
case, when it is finished, the include action is concluded. Example: Include use-case
“Generate city” (e.g. use-case U2, step 1 in Figure 5).

Abort action : The use-case execution is aborted. However, if the aborted use-case
U3 was included into another use-case U2, the trace immediately advances in U2.
Example: Use-case aborts (e.g. use-case U3, step 2a1 in Figure 5).

2.2 Relations in the UML Use-Case Diagrams

UML provides means for expressing dependencies among use-cases using stereotyped
relations in the UML Use-Case Diagrams. The UCTV method takes into account the
«includes» (via the include special action) and «precedes» UML relationships:

U1 «includes» U2 : The include relationship allows inserting the behavior from one
use-case into another. It minimizes duplication and improves comprehension of the
whole specification when used carefully. The use of include means that at the given
point in use-case A, the trace advances over the steps in B and when B is finished,
it returns back to A [9].

U1 «precedes» U2 : Rosenberg and Stephens in the book [16] define the precedence
relationship as: The use-case U1 must take place in its entirety before another use-
case U2 even begins, i.e. there is temporal precedence in which U1 must occur
before U2. For example a Login use-case must be completed before Checkout is
begun.
We use the Prec precedence relation formed by the pairs of use-cases, in which
first use-case precedes the second one.

337

3 User’s perspective

Before we present the UCTV in a formal way, let us describe use-case design from the
user’s perspective. Figure 2 contains a screenshot from our application REPROTOOL
that the user employs when writing use-case specification2.

Fig. 2. Screenshot from the REPROTOOL application.

In the first phase, the user creates several use-cases with steps written in English
prose. Each step is automatically parsed and the sentence is transformed into a linguis-
tic parse tree. Depending on the sentence structure, the type of the action is derived
automatically or set manually by the user. This way, REPROTOOL derives LTS from
the use-cases and renders a graphical representation of the LTS as depicted in Figure 2.

In the next phase, the user can assign annotations to individual steps to define prece-
dence relations determining temporal dependencies among use-cases and their steps.
These will be verified in the next phase.

When looking at the motivation example, the temporal dependency between U1 and
U2 can be captured using a pair of annotations – use:item and create:item (for illustra-
tion see Figure 3 providing annotated use-cases and capturing their creation in itera-
tions). The semantics of them is that in each trace containing a step with the use:item
annotation, any other step with a create:item annotation has to precede the former (pair-
wise).

At some point, during the iterative process of writing use-cases, the user initiates
the verification procedure performed within the REPROTOOL application.

2 REPROTOOL is based on Eclipse and uses Eclipse Modeling Framework (EMF) as a tool for
data representation. The application is still under development and not yet completely finished,
see http://code.google.com/a/eclipselabs.org/p/reprotool/.

338

U
1

U
2

Iteration #3: Error fixed by adding abort-handling branch

abort
handling

use:item

include

abortsuccesssuccess

U
1

U
2

Iteration #2: Aborting branch added violating temporal property

use:item

include

abortsuccess

create:item

success

U
1

U
2

Iteration #1: Dependent use-cases created and annotated

include

successsuccess

create:item

use:item create:item

Use-Case: Buyer Places Bid On Item
Main success scenario:

1. Include use-case “Buyer Reviews Item Information”.
2. The buyer notifies the GPM that he/she wants to place a bid.
3. The GPM shall respond by requesting the details about bids from the

buyer.
4. The buyer sends a submit bid request to the GPM. #use:item
5. The GPM shall respond by sending a notification to the buyer.
6. The buyer sends a notification acknowledgement to the GPM.

Extension:
1a. The use-case “Buyer Reviews Item Information” was aborted. #on:abort1
1a1. The GPM displays a message “Bid cannot be placed”
1a2. Use-case aborted.

Use-Case: Buyer Reviews Item Information
Main success scenario:

1. The buyer uses the webpage to send a review
item information request to the GPM.

2. The GPM displays information about the item. #create:item
3. The buyer reviews item information.

Variation:
2a. The item in not valid
2a1. The GPM display a message describing invalid item.
2a2. Use-case aborted. #trace:abort1

U
1

U
2

It
e

ra
ti

o
n

 #
3

It
e

ra
ti

o
n

 #
2

Fig. 3. Verification of dependent use-cases with aborts using temporal annotations

If a verification error is detected, the model-checker shows a trace that violates the
temporal properties determined by annotations. After the verification is finished, the
user can adjust the textual specification to fix the reported error by:

– Adding precedence relationships among use-cases, which fix the missing create
annotation that the preceded use-case might have provided.

– Adding an abort-handling branch as seen in the motivation example (Fig. 3).
– Adjusting annotations of steps or rewriting/reorganizing them.

In the motivation example, after introducing the abort branch (variation 2a of U2),
the model-checker detected an error trace (Figure 3, Iteration #2). The user fixed the
error by adding an extension 1a intoU1 (Figure 3, Iteration #3 and Figure 1, "Necessary
correction").

In addition to the create-use annotation pair, we have also described the open-close
annotation pair in the text below. These annotations cover the majority of dependencies
among use-cases that we encountered in our survey [17]. However, since the UCTV
method internally uses LTL formulae to capture desired temporal properties, our ap-
proach is also applicable for other annotations, the semantics of which can be described
by LTL.

4 Verification of use-cases

In this section, we describe all the annotations and the REPROTOOL verification algo-
rithm in detail.

339

4.1 Annotations in use-case steps

There are two types of annotations: (a) annotations expressing temporal dependencies
(technically translated to LTL), and (b) annotations constraining the set of traces to be
inspected by the model-checker.

(a) Annotations expressing temporal dependencies :
The create-use annotation pair: In all traces it must hold that for any step annotated
by use:x there must previously appear a step annotated by create:x (as above, x is a
user-chosen identifier). That is, if x is used, it must be created before. Next, it must hold
that for each step annotated by create:x, there must be a trace reaching this step and
then eventually reaching another step annotated by use:x. In other words, if x is created
then it must be somewhere used in the future 3. An example is shown in Figure 5.
The open-close annotation pair: For any trace that with a step annotated by open:x,
there must eventually appear a step annotated by close:x. Obviously, another open:x step
is not allowed in between. In a similar vein, close:x cannot appear without a preceding
open:x.

(b) Annotations constraining the traces :
The trace-on annotation pair: These annotations serve to control application of use-
case variations.

Technically, the trace:x annotation marks with a flag x all the traces going through
the step where this annotation appears. This flag may be later tested and used as a guard
in branching via the annotation on:x. That is, a trace that goes through a step marked
with trace:x annotation and reaches this branching state must continue using the step
marked with an on:x annotation and a trace that does not go through a step marked with
a trace:x annotation and reaches this branching state must continue using any other step
going from this state.

Typically, this annotation pair is used when detecting unhandled aborts in use-cases.
Figures 3 and 5 show examples.

4.2 The verification strategy

Verification of textual use-cases is done in two phases. First the precedences and in-
cludes are statically checked for presence of cyclic dependencies. Second, a dedicated
type of LTS (use-case automaton) is built from the textual use-cases and model-checking
is employed to verify temporal dependencies expressed by annotations. Figure 4 pro-
vides an overview of the verification phases and their steps.

Before the actual verification starts, the textual use-cases are parsed using the method
described in [4] into an internal form where the sequence of steps, variations and exten-
sions of steps, actions in use-case steps, and annotations of use-case steps are specifi-
cally represented. After the internal form has been created the verification proceeds as
described below.

3 Strictly speaking, creating something without its usage is not an error. Nevertheless, since it is
not a good practice, we consider such a trace to be erroneous.

340

1 // Entry function of the verification algorithm.
2 // Returns a set of detected errors.
3 function verify(U, Prec)
4 // U = set of all use−cases in an internal form (already parsed)
5 // Prec = precedence relation
6
7 // Check precedence cycles
8 Gprec := buildPrecedenceGraph(Prec)
9 Gincl := buildIncludeGraph(U)

10 if Gprec has cycle or Gincl has cycle then
11 return "Cycle detected"
12 endif
13
14 // Build use−case automata with includes
15 Lincl := ∅
16 foreach usecase u∈U do
17 Lincl := Lincl ∪ buildLts(u)
18 done
19
20 // Resolve includes and annotations
21 Lres := ∅

22 foreach usecase automaton with includes l∈Lincl do
23 Lres := Lres ∪
24 resolveAnnotations(resolveIncludes(l, Lincl))
25 done
26
27 // Create overall−behavior automata
28 Lob := ∅
29 foreach permutation perm of Lres ordered according to Prec)

do
30 Lob := Lob ∪ concat(perm)
31 done
32
33 // Resolve annotations and verify
34 Lan := ∅
35 E := ∅
36 foreach lts l∈Lob do
37 Lan := Lan ∪ resolveAnnotations(l)
38 E := E ∪ verifyConsistency(l)
39 done
40
41 return E // verification errors
42 endfunc

Fig. 4. Verification algorithm as a pseudo-code implementation

Static check of precedences and includes In this phase, precedence and include use-
case relationships are checked statically. The cyclic dependencies among use-cases rep-
resented in the internal form are detected by creating an oriented precedence and include
graphs.

Model-checking of temporal dependencies In this phase, the internal form is used
to build LTS-like structure (based on use-case automata). The annotations expressing
temporal dependencies are converted into an LTL formula. Finally, a modified LTL
model-checking algorithm (Use Case Model Checking – UCMC)4 is applied to verify
the LTL properties. This phase comprises three steps:

– A use-case automaton with includes (UCAI) is built for each use-case. Basically,
UCAI is an LTS with transitions corresponding to steps of a use-case. Specifically,
it contains include transitions, which correspond to include steps in the use-case.
Figure 5 shows an example of three textual use-cases and the corresponding UCAIs.

– By creating resolved use-case automata (RUCAs), includes in UCAIs are inlined.
RUCA is obtained from UCAI by replacing each of the include transitions by in-
lining the reference automaton. See Figure 6a for an example of resolution of the
automaton U2 from Figure 5.
Moreover the annotations constraining the traces are converted into guards (con-
trolled by dedicated variables) on the automata transitions (Figure 6c shows an
automaton with guards).

– The annotations expressing temporal dependencies are converted to LTL for-
mulae5. Figure 6b shows the automaton with annotations on transitions.

4 The model-checking algorithm cannot be used in its standard form since we consider also
finite traces and LTS with guards – discussed in detail in Section 5.5

5 In this paper, we only consider LTL formulae corresponding to the create-use and open-close
annotation pairs.

341

Use-Case: Select city on map
Main success scenario:

1. The user opens the map web page.
2. The system generates a map with available cities.
3. The user selects a city on the map. #create:city

Variations:
2a. No cities available.
2a1. System displays an empty map with message.
2a2. Use-case aborts. #trace:abort1

U
11

2

3

2a

2a1

2a2

Use-Case: Generate city
Main success scenario:

1. The system asks MapServer to provide city information. #use:city
2. MapServer provides the requested information.
3. The system generates the map with default zoom settings. #create:zoom
4. User adjusts zoom settings.

Variations:
1a. There was an abort in “Select city on map”. #on:abort1
1a1. Abort.
2a. MapServer error occurred.
2a1. Abort. #trace:abort2

U
3

1

2

3

4

1a

1a1

2a

2a1

Use-Case: Generate restaurant map for city
Main success scenario:

1. Include use-case "Generate city".
2. System validates the zoom settings. #use:zoom
3. System asks RestaurantServer for restaurants. #use:zoom, #use:city
4. RestaurantServer generates the restaurant layer information.
5. System generates restaurant map.

Variations:
1a. There was an abort in “Select city on map”. #on:abort1
1a1. Use-case aborts.
Extensions:
1b. There was an abort in “Generate city”. #on:abort2
1b1. Use-case aborts.
2a. Zoom settings are invalid
2a1. System display an error message to the user.
2a2. Goto step 1.

U
2

1

2

3

4

5

1a

1a1

2a

2a2

2a1

1b

1b1

U
1
 ‹‹precedes›› U

2

U
1
 ‹‹precedes›› U

3

Fig. 5. Example fragment of a use-case specification of a web portal providing information about
restaurants. For clarity reasons, the annotations (blue) are visible only in the textual specification
and hidden in the corresponding label transition system (use-case automaton with includes).

– A set of automata which captures overall behavior of the system (OB) is cre-
ated. Because the precedes relations define only a partial ordering of use-case ap-
plications, the overall behavior OB is determined by a set of all possible sequences
of the use-case applications.
Technically, each such a sequence is represented by a RUCA created by a con-
catenations of the RUCAs representing the individual members of the sequence.
Figure 6d shows an example of concatenation of the use-case automata U1 and U2

from Figure 5.
– In the final step, the UCMC algorithm is used to verify each RUCA in OB against

the extracted LTL formulae.

5 Theoretical background

In this section, we provide a formal definition of the key abstraction used by the UCTV
method, specifically this includes UCAI, RUCA and a proof of the correctness of the
UCMC algorithm.

342

2

3

4

5

1a

1a1

2a

2a2

2a1

1'

2'

3'

4'

1a'

1a1'

2a'

2a1'

Res(U
2
) = U

2
 incl U

3

2

3

4

5

1a

1a1

2a

2a2

2a1

1'

2'

3'

4'

1a'

1a1'

2a'

2a1'

Annotated U
1
 U

2
 U

3

on:abort1

on:abort1

use:city

create:zoom

use:zoom

use:city
use:zoom

2

3

4

5

1a

1a1

2a

2a2

2a1

1'

2'

3'

4'

1a'

1a1'

2a'

2a1'

Variables and guards

guard(c
1
)

guard(¬c
1
)

guard(c
1
)

guard(¬c
1
)

v
20

 = true

v11 = true

v
21

 = true
v

20
 = true

1b

1b1

1b

1b1

1b

1b1

on:abort2 guard(c
2
)

v
21

 = true
guard(¬c

2
)

(a) (b) (c)

f1 f2

f3

f1 f2

f3

i1 i1

f1 f2

f3

i1

trace:abort2 c
2
 = true

2

3

4

5

1a

1a1

2a

2a2

2a1

1'

2'

3'

4'

1a'

1a1'

2a'

2a1'

1''

2''

3''

2a''

2a1''

2a2''

U
1
 prec (U

2
 incl U

3
)

+ variables and guards

guard(c
1
)

v
10

 = true

c
1
 = true

guard(¬c
1
)

guard(c
1
)

guard(¬c
1
)

v
20

 = true

v11 = true

v
21

 = true
v

20
 = true

1b

1b1

guard(c
2
)

v
21

 = true
guard(¬c

2
)

(d)

f1 f2

f3

i1

p1
p2

c
2
 = true

s2

s1

Fig. 6. Visual representation of the construction of the verifying LTS: (a) Included LTS (green) is
inlined to the base LTS (black), (b)+(c) annotations (blue) are initialized either as LTL variables
or control variables with guards, (d) all final states of the preceded LTS (purple) are connected to
the initial state of the base LTS (black). Note: These LTS automata correspond to use-cases from
the Figure 5.

5.1 Use-case automaton with includes

We define use-case automaton with includes (UCAI) and the way it corresponds to a
textual use-case. The correspondence is straightforward – steps of a textual use-case
correspond to transitions of a use-case automaton with includes.

Definition 1 (Use-case automaton with includes–UCAI).
A use-case automaton with includes (UCAI)P = 〈VP , V initP , V abortP , V succP , AP , τP 〉

consists of the following elements:

– VP is a set of states
– V initP ⊆ VP is a set of initial states. We require that V initP contains at most one

state. If V initP = ∅, then P is called empty.
– V abortP ⊆ VP is a set of abort states.
– V succP ⊆ VP is a set of succeeded states. We require that V succP contains at most

one state.
– AP = AIP ∪AincludeP ∪{ε} is a set of all actions.AIP , A

include
P are mutually disjoint

sets of internal and include actions, ε is the empty action.
– τP ⊆ VP ×AP × VP is a set of transitions.

Definition 2 (Annotation function). Let AP be a set of actions of UCAI P and N a
set of annotations. Annotation function Af : τP 7→ 2N maps a transition of P to a set
of annotations.

343

Note that that two instances of an annotation with an identical name – i.e. two on : x
annotations annotating different steps of use-case – are not considered as equal. Hence,
there is no annotation that annotates two different steps.

Definition 3 (Correspondence of a use-case to UCAI). Let U be a use-case, let P =
〈VP , V initP , V abortP , V succP , AP , τP 〉 be UCAI. We say that P corresponds to U if for
each step sti of U there is the corresponding transition ti = (si, ai, s

′
i) ∈ τP , si, s′i ∈

VP , ai ∈ AP of P such that:

– If sti is an include step then ai ∈ AincludeP , if sti is an abort or a goto step ai = ε,
otherwise ai ∈ AIP .

VP , V initP , V abortP , V succP , and τP are defined as:

– If for any other step stj ∈ U, stj 6= sti of U and corresponding transition tj =
(sj , aj , s

′
j) of the automaton is s′i = s′j , then either stj or sti is a goto step, a last

step of the variation, or a last step of an extension.
– If sti is not the first step of the main success scenario, the first step of a variation,

or the first step of an extension, let sti−1 ∈ U be a step preceding the step sti and
(si−1, ai−1, s′i−1) ∈ τP a corresponding transition of P . It holds that s′i−1 = si.

– If sti is the first step of the main success scenario of U then si ∈ V initP .
– If sti is the last step of the main success scenario of U then s′i ∈ V succP .
– If sti is the first step of a variation of the step stj ∈ U and let (sj , aj , s′j) ∈ τP be

the transition of P corresponding to the step stj , then it holds that si = sj .
– If sti is the first step of an extension of the step stj ∈ U and let (sj , aj , s′j) ∈ τP

be the transition of P corresponding to the step stj and stj+1 ∈ U be the step
following the step stj and (sj+1, aj+1, s

′
j+1) ∈ τP corresponding transition, it

holds that si = s′j .
– If sti is the last step of a variation or an extension and it is an abort step, then
ai = ε and s′i ∈ V abort.

– If sti is the last step of a variation or an extension and it is not an abort or goto
step, then let stj be the step that sti extends or variates and (sj , aj , s

′
j) ∈ τP be

the corresponding transition, it holds that s′i = s′j .
– If sti is a goto step and stj ∈ U is the target step and let (sj , aj , s′j) be the transi-

tion of P corresponding to the step stj , it holds that s′i = sj .

The annotation function Af is defined as: if sti is annotated by a set of annotations
N , then Af(ti) = N .

Example 1. Figure 5 shows three textual use-cases U1, U2, and U3 and the correspond-
ing UCAIs.

5.2 Resolution of the include relationship

We define the operation of resolution of includes – a transformation of UCAI to RUCA.
This operation replaces include transitions with transitions of the included automata.

344

Definition 4 (Resolved use-case automaton–RUCA). Resolved use-case automaton
(RUCA) is UCAI that does not contain any include action.

Definition 5 (Resolution of includes). Let P be UCAI. Let I be the set of use-case au-
tomata included in automaton P . The operation of resolution of includes (Res) trans-
formsP = 〈VP , V initP , V abortP , V succP , AP , τP 〉 to RUCAQ = 〈VQ, V initQ , V abortQ , V succQ ,
AQ, τQ〉 in the following way:

– VQ = VP
⋃
U∈I VRes(U)

– V initQ = V initP

– V abortQ = V abortP

– V succQ = V succP

– AQ = AP \AincludeP

⋃
U∈I ARes(U)

– τQ = τP ∪ τA \ {τI}, τI = (s, inc, s′) ∈ τP , inc ∈ AincP , s, s′ ∈ VP

τA is defined as follows. Let ti = (si, inc, s
′
i) ∈ τP , si, s

′
i ∈ VP be a transition

of the automaton P that contains an include action, let Qinc be UCAI associated with
the include action inc and R = Res(Qinc) be the corresponding resolved use-case
automaton. For every such a transition ti, τA contains:

– (si, ε, s0), s0 ∈ V initR

– (sfinal, ε, s
′
i) sfinal ∈ V succR ∪ V abortR

Example 2. Figure 6a shows an example of UCAI U2 from Figure 5 after the operation
of resolution of includes.

5.3 Resolution of annotations

In textual use-cases, additional behavioral restrictions and consistence constraints are
captured using annotations. Additional behavioral restrictions are captured using trace-
on annotation pair and additional consistency properties are captured by create-use and
open-close annotation pairs. We describe how these annotations define valuation of
variables in transitions of the automaton, guard functions, and LTL formulae. Guard
functions restrict sequences of transitions that the automaton captures and LTL formu-
lae describe consistency requirements on the automaton.

Definition 6 (Valuation of states of RUCA). Let P be RUCA andX a set of variables.
Valuation of transitions of P over the set of variables X is a function ValP : τP 7→ 2X

that maps each transition of P to a set of variables. We denote each variable v ∈
ValP (s) as satisfied in a transition s ∈ VP .

The set of variables XP is called variables of P if ∀x ∈ XP : ∃v ∈ VP such that
x ∈ ValP (v). ByXs

P = XP \Val(s) we denote the set of variables that are not satisfied
in the transition s.

Definition 7 (Guard functions). Let P be RUCA and XP a set of variables of P .
Guard functions Guard+ : τp 7→ (2XP) and Guard− : τp 7→ (2XP) map each transi-
tion of P to a set of variables.

345

The concept of guard functions is important for defining enabled transitions (Defi-
nition 13); how a guard function is constructed expresses the Definition 8.

Definition 8 (Correspondence of annotations to valuation of a use-case automa-
ton). Let P be a RUCA, Af be an annotation function, and N a set of all annotations of
all transitions of P . Let Val be a valuation function, and Guard+ and Guard− guard
functions. We say that Val, Guard+, and Guard− correspond to P and Af when for
each annotation an ∈ N it holds:

– If an is an annotation of the form trace : id, there is a variable cid such that
cid ∈ Val(t).

– If an is an annotation of the form on : id, there is a variable cid ∈ Guard+(tan)
and for all transitions tu = (si, ak, sn), sn 6= sj , it holds that cid ∈ Guard−(tu).

– If an is an annotation of the form create : id, there is a variable crid such that
crid ∈ Val(t).

– If an is an annotation of the form use : id, there is a variable uid such that uid ∈
Val(t).

– If an is an annotation of the form open : id, there is a variable oid such that
oid ∈ Val(t).

– If an is an annotation of the form close : id, there is a variable clid such that
clid ∈ Val(t).

Consequently, for ti ∈ τp is Guard+(ti) ∩Guard−(ti) = ∅.

Example 3. Figure 6b shows RUCA with annotated transitions and Figure 6c shows
this RUCA with valuations of transitions and guards. The transition 1a is annotated
by a set of annotations {on : abort1} and the other transition i1 from the input state
of the transition 1a has no on : id annotation. Hence, values of guard functions on
these transitions are defined as follows: Guard+(1a) = {cabort1}, Guard−(1a) = {},
Guard+(i1) = {}, and Guard−(i1) = {cabort1}.

Definition 9 (Consistency properties). Let P be RUCA, Af be an annotation function,
and N be a set of all annotations of all states of P . A set of consistency properties
associated with the automaton P and annotation function Af LTLP is a set of LTL
formulae defined as follows. For each annotation an ∈ N LTLP contains:

– If an is an annotation of form use : id, then ¬uidUcrid ∈ LTLP.
– If an is an annotation of form create : id, then ¬G(crid ⇒ F (¬uid)) ∈ LTLP

– If an is an annotation of form open : id, then oid ⇒ Fclid ∈ LTLP and oid ⇒
¬oidUclid ∈ LTLP.

– If an is an annotation of form close : id, then ¬clidUoid ∈ LTLP

Note that these formulae represent consistency properties described in Section 4.1.

Example 4. For RUCA P in Figure 6c we define the following LTL formulae:LTLP =
{F (crzoom&¬ G uzoom),¬ucity U crcity,¬uzoom U crzoom}.

346

5.4 Resolution of precedence relationship

Now, we define how automata capturing behavior of individual use-cases are serialized
according to the precedence relationship.

Definition 10 (Concatenated RUCA). Let s = (R1, R2, ..., Rk) be an sequence of
RUCAs. Concatenated RUCA Q corresponding to s is defined as follows:

– VQ =
⋃
R∈s VR

– V initQ = V initR1

– V abortQ = V abortRk

– V succQ = V succRk

– AQ =
⋃
R∈sAR

– τQ =
⋃
R∈s τR ∪ τA

τA is defined as follows. Let (Ri, Ri+1) be a pair of subsequent resolved use-case
automata in the sequence s. Let initi+1 be the initial state of the automaton Ri+1. For
every such a pair and every final state finali ∈ V succi ∪ V aborti of the automaton Ri,
there are transitions (succi, ε, initi+1) and (finali, ε, finali) ∈ τA.

Obviously, this definition stems from classical automata concatenation; the key en-
hancement here is the introduction of the transitions of the form (finali, ε, finali),
which corresponds to the semantics of Prec. That is, Ui must occur before Ui+1, hence
all traces that reach Ui+1 must go through Ui. However, it is not required that Ui+1

is executed after Ui. There exist infinite traces that go through Ui and loop using the
transition (finali, ε, finali) thus never reaching Ui+1.

Example 5. Figure 6d shows an example of concatenation of RUCA U1 from Figure 5
and Res(U2) from Figure 6a. The initial state of the resulting automaton is the initial
state of U1, abort and succeeded states of the resulting automaton are the same as abort
and succeeded states of the automaton Res(U2). The two automata are connected using
transitions p1 and p2 going from the final states of the automaton U1 to the initial state
of the automaton Res(U2). Then, there are looping transitions s1 and s2 going from
each final state of U1 back to this state. All these transitions contain the ε action.

Definition 11 (Precedence Relation). Precedence relation defined on a set of RUCA
U Prec : U × U is an antisymmetric and irreflexive relation, whose transitive clo-
sure Prec? is antisymmetric and irreflexive as well. We say that URi precedes URj if
(URi , U

R
j) ∈ Prec. We say that URk must be executed before URl if (URk , U

R
l) ∈ Prec?.

Definition 12 (Overall-behavior–OB). Let U be a set of RUCAs, let Prec be a prece-
dence relation, and let S be the set of all permutations of RUCAs from U ordered ac-
cording to Prec. The overall-behavior OB set with respect to U and Prec is the set of
concatenated RUCAs corresponding to members of S.

Example 6. There are two permutations of use-cases in use-case specification in Fig-
ure 5 ordered according to specified precedences. That is, (U1, U2, U3) and (U1, U3, U2).
Hence, the set OB for this specification consists of two automata.

347

5.5 Verification algorithm

In this section, we define the verification algorithm and related concepts.

Definition 13 (Enabled transition). Let P be RUCA. Let tr = v0, a0, v1, a1, ..., vn
be an alternating sequence of states and actions such that ti = (vi, ai, vi+1) ∈ τP .
The transition ti is enabled on tr if all the transitions tj , j < i are enabled, for all
v+ ∈ Guard+(ti) there exists tk, k ≤ i such that v+ ∈ Val(tk), and there is no
tl, l ≤ i such that for some v− ∈ Guard−(ti) it holds v− ∈ Val(tl). If the transition is
not enabled on tr, we say that it is disabled on tr.

Example 7. Consider the use-case automaton in Figure 6d and the sequence of transi-
tions (p1, i1, 1′, 2a′, 2a1′, f2, 1b, 1b1). For the transition p1 both guard functions return
the empty set and this transition is trivially enabled on sq1. Next, Guard+(i1) = {}
and Guard−(i1) = {cabort1} and there is no predecessor tj of a transition i1 in the
sequence sq1 such that cabort1 ∈ Val(tj). Hence, the transition i1 is enabled on sq1.
Values of guard functions on transition 1′ are the same and therefore this transition is
also enabled on sq1. Transitions 2a′, 2a1′, and f2 are trivially enabled on sq1. Tran-
sition 1b is enabled on sq1 because Guard+(1b) = {cabort2} and Guard−(1b) = {}
and for the transition 2a1′ it holds Val(2a1′) = {cabort2}.

Now, consider a sequence of transitions (p1, 1a, 1a1). Similar to the previous ex-
ample, the transition p1 is trivially enabled on sq2. Guard+(1a) = {cabort1} and there
is no predecessor sj of the transition 1a in the sequence sq2 for that cabort1 ∈ Val(sj).
Hence, a transition 1a is disabled on sq2. Both guard functions for a transition 1a1 re-
turn the empty set, however, because a transition 1a, which precedes the transition 1a1,
is disabled on sq2; the transition 1a1 is also disabled on sq2.

Definition 14 (Execution fragment). An execution fragment of RUCA P is an alter-
nating sequence of states and actions v0, a0, v1, a1, ... such that all transitions in the
sequence ti = (vi, ai, vi+1) ∈ τP are enabled on P .

Definition 15 (Execution trace). An execution trace of RUCA P is an execution frag-
ment of use-case automaton P that starts in the initial state of P and is infinite or end
in some final state vfinal ∈ V succC ∪ V abortC of the automaton P .

Definition 16 (Consistent use-case). A resolved use-case automaton P is consistent if
for all execution traces of the automaton P all formulae from LTLP are satisfied.

Verification algorithm. The verification algorithm takes a set U of use-cases (al-
ready parsed textual use-cases encoded in an internal form). and a precedence relation
Prec describing the precedence relationship among use-cases in U as input. First, a
static check of precedences and includes is done. If a cyclic dependency is found, the
algorithm stops and returns not consistent.

Second, model-checking of temporal properties (using UCMC algorithm) is per-
formed: UCAI is built for each use-case in U (Definition 3); the set of RUCAs is cre-
ated by resolving all UCAIs (Definition 5), then valuation of variables, guard functions
(Definition 8), and consistency properties (Definition 9) are generated from annota-
tions of RUCAs, the set OB is built (Definition 12) and then each automaton in OB is

348

model checked for consistency with generated LTL formulae (Definition 16). If all such
automata are consistent, the algorithm returns consistent. If there is an concatenated
RUCA in OB that is not consistent, there is an execution trace for which the LTL for-
mula corresponding to a consistency property of the concatenated RUCA does not hold.
In this case, the algorithm returns not consistent and provides further details which in-
clude (1) the steps of use-cases from U that correspond to this execution trace, and (2)
the ordering of use-cases in OB.

The set of enabled transitions in a state of RUCA depends on states that precedes
this transition in an execution trace, so that the classical LTL model-checking algorithm
for Kripke structure based on Buchi automata cannot be applied in case of RUCA.
Therefore, the state space is generated and the satisfaction LTL formulae is checked
on-the-fly with respect to validity of guards. Using this approach, it is possible to check
arbitrary LTL formulae. In the future work, we consider to let a user to specify arbitrary
annotations that would only affect the valuation of variables and then let him/her to
define arbitrary LTL formulae over these annotations. These LTL formulae would be
translated into LTL formulae over variables introduced by the annotations and checked
the same way as the automatically generated LTL formulae.

Theorem 1 (Correctness of the verification algorithm). Let U be the set of textual
use-cases, Gprec be the graph describing a precedence relationship, and Gincl be the
graph describing an include relationship. Assume that Gprec and Gincl do not contain
cycles. Then, the algorithm returns consistent iff the specification consisting of a set
of textual use-cases U and precedences among these use-cases does not contain any
incorrectly used create, use, open or close annotation.

Proof. Correctness of the algorithm directly follows from the definitions above, seman-
tics of textual use-cases, and semantics of the annotations. It can be proven in two steps.
These are: (1) a proof that traces6 of transitions captured by the OB automata exactly
correspond to the sequences of steps captured in the use-case specification when the an-
notations are not considered, and (2) a proof that execution traces of the OB automata
correspond to the sequences of steps captured by the specification when the trace-on
annotations are considered.

Then, from the Definition 9, it follows that LTL formulae generated from the create-
use and open-close annotations correspond to semantics of these annotations. From this
fact and the step (2), it follows that sequences of steps captured by the specification
with correctly used annotations exactly correspond to the execution traces where all the
generated LTL formulae are satisfied. Since there are no cyclic include dependencies
and the number of variables is finite, the number of traces to explore is also finite and
the algorithm eventually terminates. And thus the algorithm is correct.

Let us prove now the step (1). From the Definition 3 and the Definition 5 it follows
that there is a sequence of steps that a given textual use-case describes iff there is a trace
of transitions in RUCA corresponding to the use-case. From the Definition 10 it follows

6 The term trace in this context is defined in the same way as the execution trace (see Defi-
nition 15) with the modification that all the possible transitions are considered (not just the
enabled ones).

349

that semantics of concatenation of RUCA corresponds to semantics of a precedence re-
lation between textual use-cases. From the Definition 12 it follows that for each possible
order of executions of the use-cases permissible by the specification there is a use-case
automaton in the set of the OB automata that consists of the automata concatenated in
this order.

Finally, let us prove the step (2). From the Definition 3 it follows that the annotations
of steps of a use-case correspond to the annotations of traces of the RUCA. The trace-
on annotations restrict sequences of steps captured by the specification. From this fact
and (1), it follows that for each sequence of steps captured by the specification when the
trace-on annotations are considered, there is a trace in a use-case automaton in the set of
the OB automata. The trace is the execution trace iff for each transition annotated with
the on:id annotation there is a transition annotated with the trace:id annotation before
this transition. That is, there is no execution fragment not corresponding to a sequence
of steps captured by the specification.

6 Summary and Future Work

We have developed means for verifying consistency of textual use-cases useful espe-
cially when use-cases are written iteratively by multiple authors. By introducing anno-
tations to use-case steps, we can capture temporal dependencies among use-cases which
is a foundation for further verification of temporal properties (based on LTL). As a key
contribution, we have defined a formal behavior model (based on LTS) and defined its
correspondence to textual use-case specification. A formal behavior model satisfying
LTL formulae inferred from user annotations corresponds to a consistent use-case spec-
ification. Even though we have considered just two annotation pairs, the create-use and
open-close pairs, our approach is applicable for other annotations as well, the semantics
of which can be described by LTL. This is because we internally use LTL formulae to
capture desired temporal properties. It should be noted that most of the examples in the
text were taken from case studies of real-life use-cases [5].

Currently, we continue the development of REPROTOOL which integrates the ver-
ification method with analysis of natural language. As a future work we plan to tackle
the following challenges:

– We plan to extend the palette of annotations in future and potentially to let users
define their own annotations using arbitrary LTL-formulae.

– We could also implement asynchronous events in use-case specification. As pointed
out by Larman [9] these events can be attached to multiple steps, e.g. “at any time”
or “within a range of steps”.

– Our method would work even if we did not use any tools for processing natural
language. Users could manually mark sentences as goto-, abort- or include-actions.
However, due to the restrictions of the natural language in use-case specifications
[3,9,20], we can benefit from NLP tools and thus automate this process. It should
be also possible to infer the use-case step annotations from the text automatically.
We intend to improve the currently employed NLP tools in REPROTOOL.

– The LTS constructed from use-cases can be used as an input for model-based test-
ing and test-based modeling tools. This way, we intend to compare LTS (or similar

350

behavior model) extracted from a legacy application using test-based modeling ap-
proach [18], with LTS constructed using our method from use-case specification.

Acknowledgements. This work was partially supported by the Grant Agency of the
Czech Republic project P103/11/1489, by the Ministry of Education of the Czech Re-
public (grant MSM0021620838) and by the grant SVV-2011-263312.

References

1. de Alfaro, L., Henzinger, T.A.: Interface Automata. SIGSOFT Softw. Eng. Notes 26(5), 109–
120 (2001)

2. Boehm, B.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs (1981)
3. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley, Boston, MA, USA (2000)
4. Drazan, J., Vladimir, M.: Improved processing of textual use cases: Deriving behavior spec-

ifications. In: Proc. of SOFSEM ’07. pp. 856–868. Springer (2007)
5. Firesmith, D.: Global personal marketplace system requirements specification (2003),

http://www.it.uu.se/edu/course/homepage/pvt/SRS.pdf
6. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall Int. (UK) Ltd. (1985)
7. Kof, L.: From textual scenarios to message sequence charts: Inclusion of condition genera-

tion and actor extraction. In: Proc. RE 2008. pp. 331–332. IEEE CS (2008)
8. Kofron, J., Poch, T., Sery, O.: TBP: Code-Oriented Component Behavior Specification. In:

SEW ’08: Proceedings of the 2008 32nd Annual IEEE Software Engineering Workshop. pp.
75–83. IEEE CS, Washington, DC, USA (2008)

9. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and Iterative Development. Prentice Hall PTR, Upper Saddle River, NJ, USA (2004)

10. Luisa, M., Mariangela, F., Pierluigi, I.: Market research for requirements analysis using lin-
guistic tools. Requir. Eng. 9, 40–56 (February 2004)

11. Magee, J., Dulay, N., Eisenbach, S., Kramer, J.: Specifying Distributed Software Architec-
tures. In: Fifth European Software Engineering Conference, ESEC ’95 , Barcelona (1995),
http://pubs.doc.ic.ac.uk/SpecifyDistributedArchitectures/

12. Mencl, V.: Deriving behavior specifications from textual use cases. In: Proc. of WITSE’04
(September 2004)

13. Milner, R.: Communication and Concurrency. Prentice Hall International (UK) Ltd., Hert-
fordshire, UK, UK (1995)

14. OMG: Unified Modeling Language (2008), http://www.uml.org
15. Plasil, F., Mencl, V.: Getting ’Whole Picture’ Behavior In A Use Case Model. Journ. of

Integrated Design and Process Sci. 7(4), 63–79 (2003)
16. Pow-Sang, J.A., Nakasone, A., Imbert, R., Moreno, A.M.: An approach to determine soft-

ware requirement construction sequences based on use cases. In: Proc. of ASEA’08. pp.
17–22. IEEE CS, Washington, DC, USA (2008)

17. Simko, V.: Patterns in specification documents. Tech. Rep. 2011/6, Charles Uni. (2011),
http://d3s.mff.cuni.cz/publications/download/tr2011-6.pdf

18. Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from a practical
perspective. In: Proc. of SFM 2011, LNCS, vol. 6659, pp. 256–296. Springer (2011)

19. Yue, T., Briand, L., Labiche, Y.: An automated approach to transform use cases into activity
diagrams. In: Proc. of ECMFA 2010, LNCS, vol. 6138, pp. 337–353. Springer (2010)

20. Yue, T., Briand, L.C., Labiche, Y.: A use case modeling approach to facilitate the transition
towards analysis models: Concepts and empirical evaluation. In: Proc. of MODELS ’09. pp.
484–498. Springer, Berlin, Heidelberg (2009)

351

Connectors as Designs: the Time Dimension

Sun Meng1,2

1 LMAM & Department of Informatics, School of Mathematical Science, Peking University
sunmeng@math.pku.edu.cn

2 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of
Sciences

Abstract. In this paper, we extend the design model for the coordination lan-
guage Reo by introducing designs for timed connectors. Design is a key concept
in Unifying Theories of Programming (UTP), which is used to describe the con-
tract between programmer and client. The model developed in this paper specifies
properties of timed component connectors properly. Implementation of the design
model developed in JTom is provided.
Keywords: Coordination, Timed Reo Connector, UTP, Design, JTom

1 Introduction

Complex distributed applications are typically heterogeneous and geographically dis-
tributed, usually exploit communication infrastructures whose topology varies and com-
ponents can, at any moment, connect to or detach from. The development of such dis-
tributed applications requires a coordination model that formalizes the orchestration
among the components. Compositional coordination models and languages provide a
formalization of the “glue code” that interconnects the constituent components and or-
ganizes the mutual interactions among them in a distributed processing environment.
They support large-scale distributed applications by allowing construction of complex
component connectors out of simpler ones. As an example, Reo [4,8] offers a power-
ful glue language for implementation of coordinating component connectors. Primitive
connectors called channels in Reo, such as synchronous channels and FIFO channels,
can be composed to build circuit-like connectors which serve as the glue code to exoge-
nously coordinate the behavior of components in distributed applications.

The problem that we identify and address in this paper is the time aspects of timed
Reo connectors under the UTP semantic framework. UTP (Unifying Theories of Pro-
gramming) is proposed by Hoare and He in [13], which can present a formal semantics
for various programming languages and specification languages like Circus and timed
Circus [17,19], TCOZ [18], rCOS [14] and CSP [12]. In [16] we have shown that un-
timed Reo connectors can be translated into an essentially equivalent UTP design, i.e.,
a pair of predicates P ` Q where P specifies what the designer can rely on when the
communicating operation is initiated by input to the connector, and Q is the condition
on output that must be true when the communicating operation terminates. Connectors
also admit intermediate observations on suitable occasions between initiation and ter-
mination. Additional variables and naming conventions are used to denote the results
of such observations. In this paper the design model for untimed Reo is extended such

352

that the UTP specification of channels (and connectors) can involve timing constraints
and we also show how the UTP design model for timed connectors are implemented in
JTom (Tom3 built on top of Java)[2].

To give a semantic model for timed Reo, which clearly separates data and time,
we need to choose an appropriate model of time. There are two typical models: dis-
crete time and dense time. The discrete time model has been adopted in [19,18] on the
semantics for timed Circus and TCOZ respectively. The dense time model, which is
adopted in the timed data stream semantic model for Reo [6], seems to be more appro-
priate since it is very expressive and closer to the nature of time in the real world. For
example, for a FIFO1 channel, if we have a sequence of two inputs, the time moment
for the output should be between the two inputs. If we use a discrete time model like
N, and have the first input at time point 1, then the second input can only happen at
a time point greater than 2, i.e., at least 3. But in general, such timing constraints are
not explicit for the input providers. Therefore, we choose the dense time model in this
paper.

The formal semantics for Reo makes it possible to specify and analyze the behav-
ior of a connector precisely. There are different formal semantics for Reo in literature.
For example, a coalgebraic semantics for Reo in terms of relations on infinite timed
data streams has been developed by Arbab and Rutten [6], but the causality between
input and output is not clear in this semantics. An operational semantics for Reo us-
ing constraint automata is provided by Baier et al. [8]. However, modeling unbounded
primitives or even bounded primitives with unbounded data domains is impossible with
finite constraint automata. Bounded large data domains cause an explosion in the con-
straint automata model which becomes problematic. A model for Reo connectors based
on the idea of coloring a connector with possible data flows to resolve synchroniza-
tion and exclusion constraints is presented by Clarke et al. [9]. Unlike the coalgebraic
and operational semantics, data sensitive behavior, which is supported by filter chan-
nels in Reo, are not captured in the coloring approach. The real-time aspects of Reo has
been investigated in [5], which uses timed constraint automata (TCA) as the operational
model for Reo connectors and provides a variant of LTL to serve as a specification for-
malism for timed Reo connectors. In [15], the TCA model is translated into mCRL2
for model checking timed Reo connectors. However, these works suffer from the same
problem as in the coalgebraic approach that the casuality between input and output is
not clear.

Comparing with previous work on (both untimed and timed) Reo semantics, the
UTP approach provides a family of algebraic operators for different kinds of compo-
sition of connectors (merger, replicator and flow-through composition), which can be
used to interpret the composition of connectors more explicitly than other approaches,
such as TDS in the coalgebraic semantics. Moreover, by separation of the assumption
(input) and the commitment (output) in the design model in our approach, the connector
behavior becomes more clear and easy to be composed. The UTP approach also makes
it possible to check connector properties by assume-guarantee reasoning. Properties of

3 Tom is a powerful and efficient pattern matching engine on top of conventional programming
languages like C or Java.

353

a complex connector can be decomposed into properties of its subconnectors and each
subconnector can be checked separately.

The paper is structured as follows. After this general introduction, we briefly sum-
marize the coordination language Reo and introduce the notion of design in UTP being
used throughout the rest of the paper in Section 2. Section 3 presents the model of ob-
servations on connector nodes. Section 4 briefly summarizes the UTP design model for
basic (untimed and timed) Reo channels and timed Reo circuits. In Section 5, we dis-
cuss the implementation of the design model in Tom. Finally, Section 6 concludes with
some further research directions.

2 Preliminaries

In this section, we briefly review basic concepts of Reo and UTP design. The discussion
on Reo is mainly based on [4,8] and the overview of UTP design is from [13].

2.1 Reo

Reo [4] is a channel-based exogenous coordination language wherein complex coordi-
nators, called connectors, are compositionally constructed from simpler ones. We sum-
marize only the main concepts in Reo here. Further details about Reo can be found in
[4,8].

Fig. 1. Some basic channels in Reo

A Reo connector consists of a network of primitive connectors, called channels.
A connector provides the protocol that controls and organizes the communication, syn-
chronization and cooperation among the components/services that communicate through
the connector. Each channel has two channel ends. There are two types of channel ends:
source and sink. A source channel end accepts data into its channel, and a sink channel
end dispenses data out of its channel. It is possible for the ends of a channel to be both
sinks or both sources. Each channel end can be connected to at most one component
instance at any given time. Figure 1 shows the graphical representation of some simple
channel types in Reo whose composition allows for expressing a rich set of coordination
patterns [4].

A FIFO1 channel represents an asynchronous channel with one buffer cell which
is empty if no data item is shown in the box (this is the case in Figure 1). If a data
element d is contained in the buffer of a FIFO1 channel then d is shown inside the
box in its graphical representation. A synchronous channel has a source and a sink end
and no buffer. It accepts a data item through its source end iff it can simultaneously

354

dispense it through its sink. A lossy synchronous channel is similar to a synchronous
channel except that it always accepts all data items through its source end. The data
item is transferred if it is possible for the data item to be dispensed through the sink
end, otherwise the data item is lost. Synchronous drain has two source ends and no sink
end. A synchronous drain can accept a data item through one of its ends iff a data item
is also available for it to simultaneously accept through its other end as well, and all
data accepted by the channel are lost. More exotic channels permitted in Reo will be
omitted here and can be found in [4]. Note that the set of channel types is not fixed in
Reo, and new ones can be defined freely by users with their own interaction policies.

Complex connectors are constructed by composing simpler ones via the join and
hiding operations. Channels are joined together in nodes. A node consists of a set of
channel ends. The set of channel ends coincident on a node A is disjointly partitioned
into the sets of source and sink channel ends that coincide on A. Nodes are categorized
into source, sink and mixed nodes, depending on whether all channel ends that coincide
on a node are source ends, sink ends or a combination of the two. The hiding operation
is used to hide the internal topology of a component connector. The hidden nodes can
no longer be accessed or observed from outside. A complex connector has a graphical
representation, called a Reo circuit, whose behavior is formalized by means of the data-
flow at its sink and source nodes. Intuitively, the source nodes of a circuit are analogous
to the input ports, and the sink nodes to the output ports of a component, while mixed
nodes are its hidden internal details.

Fig. 2. Source, Sink and Mixed Nodes in Reo

A component can write data items to a source node that it is connected to. The
write operation succeeds only if all (source) channel ends coincident on the node accept
the data item, in which case the data item is transparently written to every source end
coincident on the node. A source node, thus, acts as a replicator. A component can
obtain data items, by an input operation, from a sink node that it is connected to. A
take operation succeeds only if at least one of the (sink) channel ends coincident on
the node offers a suitable data item; if more than one coincident channel end offers
suitable data items, one is selected non-deterministically. A sink node, thus, acts as
a non-deterministic merger. A mixed node non-deterministically selects and takes a
suitable data item offered by one of its coincident sink channel ends and replicates it
into all of its coincident source channel ends.

2.2 A Theory of Designs

A direct and obvious way to represent the observable behavior of a connector is to
model it as a relation on its inputs and outputs. Because the inputs / outputs take place

355

through the nodes of the connector, sequences of data items that pass through a node
together with the moments in time that the data items are observed emerge as the key
building blocks for describing connector behavior.

In our semantic model, we use two auxiliary variables ok and ok′ to analyze ex-
plicitly the phenomena of communication initialization and termination. The variable
ok stands for a successful initialization and the start of a communication. When ok
is false, no observation can be made. The variable ok′ denotes the observation that
the communication has either terminated or reached an intermediate stable state. The
communication is divergent when ok′ is false. The observational semantics for a Reo
connector is described by a design, i.e., a relation expressed as P ` Q, where P is the
predicate specifying the relationship among the observations on the source nodes of the
connector, and Q is the predicate specifying the condition that should be satisfied by
the observations on the sink nodes of the connector. Such a design P ` Q is defined as
follows:

Definition 1. A design is a pair of predicates P ` Q, where neither predicate contains
ok or ok′, and P has only input variables. It has the following meaning:

P ` Q =df (ok ∧ P ⇒ ok′ ∧Q)

The separation of condition on inputs from condition on outputs in our model allows
us to write a specification that has a more generous precondition than simply the domain
of a relation used as a specification. We are allowed to assume that the condition on
inputs holds, and we have to satisfy the condition on its outputs. Moreover, we can
rely on the behavior of a connector having been started, but we must ensure that it
terminates. If the condition on inputs does not hold, or the connector does not start its
behavior, we are not committed to establish the condition on the outputs nor even to
make the connector behavior terminate.

A facility to select between alternatives according to the truth or falsehood of some
guard b is necessary for non-trivial behavior. Conditional expression P /b.Q describes
a system that behaves like P if the initial value of b is true, or like Q otherwise. It can
be defined as follows:

Definition 2. The conditional expression is defined as follows:

P / b . Q =df (true ` (b ∧ P ∨ ¬b ∧Q))

The sequential composition P ;Q denotes a system that first executes P , and when
P terminates executes Q. This system is defined via existential quantification to hide
its intermediate observation, and to remove the variables that record this observation
from the list of free variables of the predicate. To accomplish this hiding, a fresh set
of variables v0 is used to denote the intermediate observation. These fresh variables
replace the input variables v of Q and the output variables v′ of P , thus the output
alphabet of P (outαP) and the input alphabet of Q (inαQ) must be the same.

Definition 3. Let outαP = {v′}, inαQ = {v}, then

P (in : u; out : v′);Q(in : v; out : w) =df ∃v0•P (in : u; out : v0)∧Q(in : v0; out : w)

356

If the conditional and sequential operators are applied to designs, the result is also
a design. This follows from the laws below.

(P1 ` Q1) / b . (P2 ` Q2) = ((P1 / b . P2) ` (Q1 / b . Q2))

(P1 ` Q1); (P2 ` Q2) = (P1 ∧ ¬(Q1;¬P2) ` (Q1;Q2))

In UTP, we have the well-known property for refinement, which is established by
the following definition:

Definition 4. [(P1 ` Q1) v (P2 ` Q2)] iff [P1 ⇒ P2] ∧ [P1 ∧Q2 ⇒ Q1]

3 Observations on Connectors

To specify inputs and outputs on connectors explicitly, for a connector R, We use inR
and outR to denote the observations on its source nodes and sink nodes, respectively,
instead of using unprimed variables for initial observations (inputs) and primed vari-
ables for subsequent ones (outputs) as in [13] (the definition of inR and outR will be
given later).

For every node N in a connector R, the corresponding observation on N is given
by a timed data sequence, which is defined as follows:

Let D be an arbitrary set, the elements of which are called data elements. The
set DS of data sequences is defined as DS = D∗, i.e., the set of all sequences α =
(α(0), α(1), α(2), · · ·) over D.

Let R+ be the set of non-negative real numbers, which in the present context can
be used to represent time moments. For a sequence s, the length of s is denoted by
|s|. If s is an infinite sequence, then |s| = ∞. Let R∗+ be the set of sequences a =
(a(0), a(1), a(2), · · ·) over R+, and for all a, b in R∗+, if |a| = |b|, then

a < b iff ∀0 ≤ n < |a|, a(n) < b(n)

a ≤ b iff ∀0 ≤ n < |a|, a(n) ≤ b(n)

For a sequence a = (a(0), a(1), a(2), · · ·) ∈ R∗+, and t ∈ R+, a[+t] is a sequence
defined as follows:

a[+t] = (a(0) + t, a(1) + t, a(2) + t, · · ·)

Furthermore, the element a(n) in a sequence a = (a(0), a(1), a(2), · · ·) can also be
expressed in terms of derivatives a(n) = a(n)(0), where a(n) is defined by

a(0) = a, a(1) = (a(1), a(2), · · ·), a(k+1) = (a(k))(1)

The set TS of time sequences is defined as

TS = {a ∈ R∗+ |(∀0 ≤ n < |a|.a(n) < a(n+ 1))∧
(|a| =∞⇒ ∀t ∈ R∗+.∃k ∈ N.a(k) > t)}

Thus, a time sequence a ∈ TS consists of increasing and diverging time moments
a(0) < a(1) < a(2) < · · · .

357

For a sequence a, the two operators aR and −→a are used to denote the reverse and
tail of a respectively, which are defined as:

aR =

{
() if a = ()

(a′)R
a
(a(0)) if a = (a(0))aa′

−→a =

{
() if a = ()

a′ if a = (a(0))aa′

where a is the concatenation operator on sequences. The concatenation of two se-
quences produces a new sequence that starts with the first sequence followed by the
second sequence.

The set TDS of timed data sequences is defined as TDS ⊆ DS×TS of pairs 〈α, a〉
consisting of a data sequence α and a time sequence a with |α| = |a|. Similar to the
discussion in [6], timed data sequences can be alternatively and equivalently defined as
(a subset of) (D × R+)

∗ because of the existence of the isomorphism

〈α, a〉 7→ (〈α(0), a(0)〉, 〈α(1), a(1)〉, 〈α(2), a(2)〉, · · ·)

The occurrence of a data item d at some node N of a connector (i.e., taking d from N
or writing d to N) is modeled by an element in the timed data sequence for that node,
i.e., a pair of a data element and a time moment.

4 Reo and its Design Model

In this section we provide an overview on how Reo connectors can be modeled as UTP
designs. We first see how primitive untimed channels in Reo are specified as designs,
and then study the design model of timed channels. Finally we show how composite
connectors can be constructed from simpler ones structurally.

We useWD for a predicate of well-defined TDS types. In other words, we define the
behavior only for valid sequences expressed via a predicateWD. Then, every connector
R can be represented by the design P (inR) ` Q(inR, outR) as follows:

con : R(in : inR; out : outR)

in : P (inR)

out : Q(inR, outR)

where R is the name of the connector, P (inR) is the condition that should be satisfied
by inputs inR on the source nodes of R, and Q(inR, outR) is the condition that should
be satisfied by outputs outR on the sink nodes of R. Let Nin and Nout be the set of
source and sink node names of R, respectively, then inR and outR are defined as the
following mappings from the corresponding sets to TDS:

inR : Nin → TDS

outR : Nout → TDS

358

4.1 Designs for Primitive Reo Channels

We now start by presenting a few examples of basic channels in Reo and their design
model. Discussions on more channel types can be found in [16].
FIFO channels. The simplest form of an asynchronous channel is a FIFO channel with
one buffer cell, which is denoted as FIFO1. A FIFO1 channel with source end A and
sink end B is graphically represented by A−<=→ B. The design model for a FIFO1
channel is given as follows:

con : FIFO1(in : (A 7→ 〈α, a〉); out : (B 7→ 〈β, b〉))
in : WD〈α, a〉

out : WD〈β, b〉 ∧ β = α ∧ a < b ∧ (
−→
bR)R < −→a

For a FIFO1 channel, when the buffer is not filled, the input is accepted without im-
mediately outputting it. The accepted data item is kept in the internal FIFO buffer of
the channel. The next input can happen only after an output occurs. Note that here we

use (
−→
bR)R < −→a to represent the relationship between the time moments for outputs

and their corresponding next inputs. This notation can be simplified to b < −→a if we
consider infinite sequences of inputs and outputs. 4

For the FIFO1 channelA−<e=→ B where the buffer contains the data element e, the
communication can be initiated only if the data element e can be taken via the sink end.
In this case, we denote the channel by FIFO1e and have its design model as follows:

con : FIFO1e(in : (A 7→ 〈α, a〉); out : (B 7→ 〈β, b〉))
in : WD〈α, a〉

out : WD〈β, b〉 ∧ β = (e)aα ∧ a < −→b ∧ (
−→
bR)R < a

Synchronous channels. A synchronous channel transfers the data without delay in
time. So it behaves just as the identity function. The pair of I/O operations on its two
ends can succeed only simultaneously. A synchronous channel with source end A and
sink endB is graphically represented asA−−−→ B. The design model for a synchronous
channel is as follows:

con : Sync(in : (A 7→ 〈α, a〉); out : (B 7→ 〈β, b〉))
in : WD〈α, a〉

out : WD〈β, b〉 ∧ β = α ∧ b = a

A lossy synchronous channel (graphically depicted as A− → B) is similar to a
normal synchronous channel, except that it always accepts all data items through its
source end. If it is possible for it to simultaneously dispense the data item through its

4 Note that (
−→
bR)R denotes the sequence obtained by removing the n-th element from a sequence

b with length n. For infinite sequences, we have (
−→
bR)R = b.

359

sink end, the channel transfers the data item; otherwise the data item is lost. Its design
model is given as follows:

con : LossySync(in : (A 7→ 〈α, a〉); out : (B 7→ 〈β, b〉))
in : WD〈α, a〉

out : WD〈β, b〉 ∧ L(〈α, a〉, 〈β, b〉)

where

L(〈α, a〉, 〈β, b〉)
≡(β = () ∧ b = ())∨
(
a(0) ≤ b(0) ∧

{
α(0) = β(0) ∧ L(〈−→α ,−→a 〉, 〈−→β ,−→b 〉) if a(0) = b(0)

L(〈−→α ,−→a 〉, 〈β, b〉) if a(0) < b(0)

)

An exotic channel in Reo is the synchronous drain A →−−← B that has two source
ends. Because a drain has no sink end, no data value can ever be obtained from this
channel. Thus, all data accepted by this channel are lost. A synchronous drain accepts a
data item through one of its ends iff a data item is also available for it to simultaneously
accept through another end.

con : SyncDrain(in : (A 7→ 〈α, a〉, B 7→ 〈β, b〉); out : ())
in : WD〈α, a〉 ∧WD〈β, b〉 ∧ a = b

out : true

A filter channel A−{p}→ B specifies a filter pattern p which is a set of data values.
It transfers only those data items that match with the pattern p and loses the rest. A
write operation on the source end succeeds only if either the data item to be written
does not match with the pattern p or the data item matches the pattern p and it can be
taken synchronously via the sink end of the channel.

con : Filterp(in : (A 7→ 〈α, a〉); out : (B 7→ 〈β, b〉))
in : WD〈α, a〉

out : WD〈β, b〉 ∧ F (〈α, a〉, 〈β, b〉)

where

F (〈α, a〉, 〈β, b〉)

≡

β = () ∧ b = () if α = () ∧ a = ()

β(0) = α(0) ∧ b(0) = a(0) ∧ F (〈−→α ,−→a 〉, 〈−→β ,−→b 〉) if α(0) ∈ p
F (〈−→α ,−→a 〉, 〈β, b〉) if α(0) /∈ p

4.2 Designs for Reo Timer Channels

We now describe the design models of a few timer channels in Reo that can serve to
measure the time between two events and produce timeout signals.

360

The source end of a t-timer A
t

−−◦−→B channel accepts any input value d and re-
turns on its sink end B a timeout signal after a delay of t time units.

con : Timert(in : (A 7→ 〈α, a〉); out : (B 7→ 〈β, b〉))
in : WD〈α, a〉 ∧ a[+t] ≤ −→a

out : WD〈β, b〉 ∧ β ∈ {timeout}∗ ∧ b = a[+t]

An exciting behavior for a similar timer channelA
t

−−•−→B is to produce a timeout
after a delay t for all inputs, even if the inter-arrival time of the inputs is less than t
(maybe for up to n such inputs). The corresponding design model is similar as t-timer,
but with a weaker condition on the inputs:

con : ATimert(in : (A 7→ 〈α, a〉); out : (B 7→ 〈β, b〉))
in : WD〈α, a〉

out : WD〈β, b〉 ∧ β ∈ {timeout}∗ ∧ b = a[+t]

A t-timer with the off -option A(−©t−→B allows the timer to be stopped before the
expiration of its delay when a special “off" value is consumed through its source end.

con : OFFTimert(in : (A 7→ 〈α, a〉); out : (B 7→ 〈β, b〉))
in : WD〈α, a〉 ∧ ∀i < |a|.(a[+t](i) ≤ −→a (i) ∨ −→α (i) = off)

out : WD〈β, b〉 ∧ β ∈ {timeout}∗ ∧OFF (〈α, a〉, 〈β, b〉)
where

OFF (〈α, a〉, 〈β, b〉)

≡

〈β, b〉 = 〈(), ()〉 if 〈α, a〉 = 〈(), ()〉
OFF (〈−→α ,−→a 〉, 〈−→β ,−→b 〉) ∧ b(0) = a(0) + t if a(0) + t ≤ a(1) ∨ |a| = 1

OFF (〈α, a〉, 〈
−→−→
β ,
−→−→
b 〉) if a(1) < a(0) + t ∧ α(1) = off

Similarly, the reset-option allows the timer to be reset to 0 after it has been activated
when a special “reset" value is consumed through its source end. A t-timer with the
reset-option is graphically represented as A−�−©t−→B and its design model is given as
follows:

con : RESETTimert(in : (A 7→ 〈α, a〉); out : (B 7→ 〈β, b〉))
in : WD〈α, a〉 ∧ ∀i < |a|.(a[+t](i) ≤ −→a (i) ∨ −→α (i) = reset)

out : WD〈β, b〉 ∧ β ∈ {timeout}∗ ∧RT (〈α, a〉, 〈β, b〉)
where

RT (〈α, a〉, 〈β, b〉)

≡

〈β, b〉 = 〈(), ()〉 if 〈α, a〉 = 〈(), ()〉
RT (〈−→α ,−→a 〉, 〈−→β ,−→b 〉) ∧ b(0) = a(0) + t if a(0) + t ≤ a(1) ∨ |a| = 1

RT (〈−→α ,−→a 〉, 〈β, b〉) if a(1) < a(0) + t ∧ α(1) = reset

361

A timer with early expiration makes the timer produce its timeout signal through its
sink and reset itself when it consumes a special “expire" value through its source end.
A t-timer with early expiration is graphically represented as A−�−©t−→B and its design
model is given as follows:

con : EXPIRETimert(in : (A 7→ 〈α, a〉); out : (B 7→ 〈β, b〉))
in : WD〈α, a〉 ∧ ∀i < |a|.(a[+t](i) ≤ −→a (i) ∨ −→α (i) = expire)

out : WD〈β, b〉 ∧ β ∈ {timeout}∗ ∧ ET (〈α, a〉, 〈β, b〉)

where

ET (〈α, a〉, 〈β, b〉)

≡

〈β, b〉 = 〈(), ()〉 if 〈α, a〉 = 〈(), ()〉
ET (〈−→α ,−→a 〉, 〈−→β ,−→b 〉) ∧ b(0) = a(0) + t if a(0) + t ≤ a(1) ∨ |a| = 1

ET (〈−→α ,−→a 〉, 〈−→β ,−→b 〉) ∧ b(0) = a(1) if a(1) < a(0) + t ∧ α(1) = expire

4.3 Designs for Reo Circuits

Complex connectors in Reo are organized as a network of channels, which are called
Reo circuits. Since basic channels can be modeled by designs, their composition can be
defined as design composition, and the resulting connector is still a design. According
to the node types in Reo, we have three types of composition, which can be captured by
the three configurations as shown in Figure 3.

B
C

B

C

A C
1 2

B

A

A

(1) (2)

B1 2R ; R R R1

R R

R1

R2

R1

R2

R R12C 2A

(3)

Fig. 3. Connector composition

Different channel ends can be joined together into new nodes. If all channel ends
coincident on a node are source (sink) channel ends, the node is called a source (sink)
node. Figure 3(1) shows the case of flow-through composition of connectors. For the
two connectors R1 and R2, suppose one sink node of R1 and one source node of R2

are joined together into a node B. In this case, the node B is called a mixed node which
behaves as a self-contained pumping station. When we compose connectors, we want
the events on the mixed nodes to happen silently and automatically whenever they can,
without the participation or even the knowledge of the environment of the connector.
Such mixed nodes are hidden (encapsulated) by using existential quantification. Figure

362

3(2) shows the case of merging two sink nodes of the connectors R1 and R2. In this
case the node C behaves as a merger. An attempt to take a data item from the node
succeeds when at least one of its coincident channel ends has a suitable data to offer,
in which case the suitable data available through one of its coincident channel ends is
non-deterministically selected to be taken. Figure 3(3) shows the case of merging two
source nodes of the connectors R1 and R2. In this case the node acts as a replicator.
Writing a data item to a source node succeeds when all of the coincident channel ends
are capable of accepting the data item simultaneously, in which case the data item is
atomically copied into every source ends coincident on A. Due to the length limitation,
we will only give the definition for merging sink nodes operation here. Details for the
other composition operators can be found in [16].

Let 〈γi, ci〉 for i = 1, 2 be the timed data sequences on the sink node C in R1

and R2, respectively. Then by merging the two sink nodes, the resulting connector is
denoted by R = R1 oC R2, and the corresponding design is given as

con : R(in :
⋃

i=1,2

inRi
; out : (

⋃

i=1,2

(outRi
\ {C 7→ 〈γi, ci〉})) ∪ {C 7→ 〈γ, c〉})

in :
∧

i=1,2

Pi(inRi)

out : WD〈γ, c〉∧
∃〈γ1, c1〉, 〈γ2, c2〉.(

∧

i=1,2

Qi(inRi , outRi)) ∧M(〈γ1, c1〉, 〈γ2, c2〉, 〈γ, c〉)

In this definition, the ternary relation M is defined as

M(〈γ1, c1〉, 〈γ2, c2〉, 〈γ, c〉)

=

〈γ, c〉 = 〈γ1, c1〉 if |〈γ2, c2〉| = 0

〈γ, c〉 = 〈γ2, c2〉 if |〈γ1, c1〉| = 0

c1(0) 6= c2(0)∧

γ(0) = γ1(0) ∧ c(0) = c1(0)∧
M(〈−→γ1,−→c1〉, 〈γ2, c2〉, 〈−→γ ,−→c 〉) if c1(0) < c2(0)

γ(0) = γ2(0) ∧ c(0) = c2(0)∧
M(〈γ1, c1〉, 〈−→γ2,−→c2〉, 〈−→γ ,−→c 〉) if c2(0) < c1(0)

otherwise

In this relation M , two timed data sequences 〈γ1, c1〉 and 〈γ2, c2〉 are merged to-
gether into one single timed data sequence 〈γ, c〉 where the order of elements in the
sequence is decided by the time moments. Furthermore, if we have three timed data se-
quences 〈γ1, c1〉, 〈γ2, c2〉 and 〈γ, c〉, such that M(〈γ1, c1〉, 〈γ2, c2〉, 〈γ, c〉) is satisfied,
then we say that 〈γ, c〉 = merge(〈γ1, c1〉, 〈γ2, c2〉). Moreover, the merging operation
can also be defined on the data and time sequences separately: γ = merge(γ1, γ2) and
c = merge(c1, c2).

Example 1. We consider the circuit given in Figure 4 as a simple example. This cir-
cuit ensures the lower bound “> t” for a take operation on node B; it yields a FIFO1

363

Fig. 4. Lower Bounded FIFO1 Channel

channel that guarantees every data item will remain in its buffer at least t time units.
The design model for this connector can be easily obtained from the composition of the
basic channels:

con : LowerboundedFIFO1(in : (A 7→ 〈α, a〉); out : B 7→ 〈β, b〉)
in : WD〈α, a〉 ∧ a[+t] ≤ −→a

out : WD〈β, b〉 ∧ β = α ∧ a[+t] < b ∧ (
−→
bR)R < −→a

Fig. 5. Timed FIFO3 Connector

Example 2. A useful connector that can be used to model a real-time network is a timed
FIFOn that delays every input for t time units, even if the inter-arrival time of the
inputs is less than t (for up to n such inputs). Such a connector can not be obtained
by just composing n timed FIFO1 channels. However, it is still easy to be constructed

by using
t

−−•−→. Figure 5 shows an example of such a timed FIFO3 connector. We
can parameterize this connector to have as many buffers as we want simply by inserting
more (or fewer) FIFO1 channels between nodesA and F , as required. The design model
for this connector is as follows5:

con : timedFIFOn(in : (A 7→ 〈α, a〉); out : B 7→ 〈β, b〉)
in : WD〈α, a〉

out : WD〈β, b〉 ∧ β = α ∧ b = a[+t] ∧ b < a(n)

5 To simplify the expression we consider infinite sequences of inputs and outputs here. For
finite sequences with length k, the only difference is to replace the condition b < a(n) by the
relationship that b(i) < a(n+ i) for any i ≤ k − n.

364

Example 3. A variant of FIFO1 is called expiring FIFO1, denoted by A−<=≤t
→ B,

where a data item is lost if it is not taken out of the buffer through the sink end of the
channel within t time units after it enters through its source end. Figure 6 shows on the
left how an expiring FIFO1 channel can be constructed out of a normal FIFO1 channel
and a timer.

Fig. 6. Expiring FIFO1 Channel

By composing the channels together (and after some equational transformations to
simplify the expression), we can get the design model for the expiring FIFO1 as6:

con : ExpiringFIFO1(in : (A 7→ 〈α, a〉); out : B 7→ 〈β, b〉)
in : WD〈α, a〉 ∧ a[+t] ≤ −→a

out : ∃〈π, h〉.WD〈β, b〉 ∧WD〈π, h〉∧

a < merge(b, h) ∧ (
−−−−−−−−−−→
(merge(b, h))R)R < −→a ∧ L(〈α,merge(b, h)〉, 〈β, b〉)∧

L(〈timeout∗, a[+t]〉, 〈π, h〉)

5 Implementation

Higher-level languages like Maude [10] and Tom [11] offer suitable means to quickly
prototype our design model for Reo connectors. In contrast to dedicated languages like
Java, the advantages of such languages include easy prototyping, clear separation be-
tween syntax and semantics, and high-level mechanisms like strategies for meta-control
of the executions of the programs. The reason why we choose Tom instead of Maude
(the language of choice in [3] for implementation of untimed Reo connectors) for im-
plementing the design model for timed connectors is that Tom is much more flexible
and support pattern matching against native data-structures like objects or records. This
is a strong point since we can take advantage of existing efficient implementations of
data structures like ArrayList or HashMap and the corresponding functions to ma-
nipulate the basic ingredients in the theory of connectors, which are sequences and
streams.

6 Here we use timeout∗ to denote the sequence s ∈ {timeout}∗.

365

In this section we focus on how the syntax and the semantics of timed connector are
implemented in JTom. This is of concern especially for future developers and should
be seen as a short documentation for a library providing user facilities for manipulating
connector specifications.

5.1 Syntax

We take the following JTom code where the module Connector from the construc-
tion %gom{...} specifies the BNF grammar of connectors:

import testconnector.connector.types.*;
public class TestConnector{
%gom{

module Connector
imports Stream Logic
abstract syntax
Node = node(name:String, s:StreamId) | source(n:Node) | sink(n:Node)
Ins = ins(Node*)
Outs = outs(Node*)
Config = R(ins:Ins, outs:Outs)
ChannelType = sync() | fifo() | syncDrain() | lossysync() | ...
TChannelType = timer() | offtimer() | resettimer() | ...
Pre = pre(p:Pred)
Post = post(p:Pred)
CSpec = spec(p:Pre, q:Post)

| getSpecBC(c:Connector)
| constraint(t:ChannelType, s1:StreamId, s2:StreamId)

Connector = channel(ct:ChannelType, n1:Node, n2:Node)
| tchannel(ct:TChannelType, time:Double, n1:Node, n2:Node)
| connector(cf:Config, cs:CSpec)

ConnectorList = connectorList(Connector*) }
public final static void main(String[] args) {

Connector ab;
StreamId sa, sb;
sa = ‘sId("sa"); sb = ‘sId("sb");
ab = ‘tchannel(timer(), 5, source(node("a", sa)), sink(node("b", sb))); } }

In order to use the Java code generated by the %gom{...} construction we need
to import the package testconnector.connector.types.* where the path
corresponds to the name of the class (TestConnector), followed by the name of the
module (Connector), both in lowercase, and ending with types.*. Furthermore,
the module Connector imports the module Stream, where the BNF grammar of
streams is defined as pairs of data and time sequences, and the module Logic, which
defines predicates as basic blocks for building connector specification. These predicates
include, besides the booleans True() and False(), WD for the well-definedness of
streams and M for the merging operation. The %gom{...} construct defines sorts for
data-structures, e.g., Node, Connector, and operators on these sorts. The operators
node, connector, channel and tchannel are called constructors in an algebraic
sense, because they are used to “construct” connectors either from configurations and
specifications or from nodes, in the case of basic (untimed or timed) channels.

The mainmethod illustrates the declaration and definition of connectors and streams.
The definitions use the back-quote expression ‘ to construct data. The operator sId is
declared in the module Stream to identify streams. Note that we work symbolically
with identifiers instead of real values because we do not actually need them. As we will
see later, whenever the identifier of a data or time sequence is needed, we only need to

366

call a corresponding function which unfolds streams. Note further the use of the con-
structor tchannel for defining ab as a basic channel of type timer() that has a
source node a with a stream sa and a sink node b with a stream sb where the delay
is 5 time units. We distinguish between the constructors connector, channel and
tchannel because we do not want users to explicitly write the specification of basic
channels; to define a channel, one only needs to specify the type and the nodes of the
channel. And for timer channels additional timing information needs to be provided,
this is what the definition ab illustrates.

5.2 Semantics

We now describe how the semantics of connector designs is implemented in JTom. We
first consider the specification of connectors. Connectors are either basic (untimed or
timed) channels, or have the generic format of pairs of configurations and specifications.
To extract the specification we define a Java function which uses one of the main
features of Tom, the construction %match:

public static CSpec getSpec(Connector c) {
%match(c) {
connector(_, spec) -> { return ‘spec; }
tchannel(timer(), 5, source(_, sa), sink(_, sb)) &&

comp(da, ta) << getUnfold(sa) && comp(db, tb) << getUnfold(sb)
-> { return ‘spec(pre(andL(WD(comp(da, ta)), leT(add(ta,5),tail(ta)))),

post(andL(WD(comp(db, tb)), eqT(add(ta,5), tb), eqD(timeout, db)))); } } }

where “_” denotes an arbitrary variable and can be used when the name of the vari-
able is not needed. The %match construct is similar to a switch/case mechanism
in imperative languages or to a rule in declarative languages: given a subject, if it
matches a pattern, the associated action is executed. For example, when the subject
c matches the pattern connector(_, spec) denoting a connector in the general
format, the associated action is to return the specification of c. Besides patterns, Tom
allows the definition of constraints. For example, the expression comp(da, ta) «
getUnfold(sa) denotes a constraint between the pattern comp(da, ta) and the
subject getUnfold(sa). It basically says that the stream identified by sa has a data
(time) sequence identified by da (ta). The boolean operator && is used to combine
multiple constraints. Thus, when the subject c matches tchannel(timer(), 5,
source(_, sa), sink(_, sb)) which denotes a Timer channel with a stream
sa (sb) on its source (sink) node with delay of 5 time units, and the constraints on
the streams are satisfied, then the action returns the specification of the Timer chan-
nel, i.e., the precondition of the well-definedness of sa and the post-condition of the
well-definedness of sb, together with the constraints that the data (time) sequences
should be satisfied. Observe that the advantage of the Tom syntax is its modularity and
expressiveness. This leads to more clear and concise code.

The next step in implementing the semantics of Reo is to consider the composition
operators, i.e., sequencing, merging and replicating. In our semantics of Reo, merg-
ing and replicating have a higher priority than sequencing, so we need to be able to
specify that sequential composition takes place after all the other possible compositions
have been performed. Since we consider connector compositions as elementary trans-
formations, we implement them as elementary strategies by means of the Tom construct

367

%strategy. In this way, we maintain a clear separation between transformation and
control. Strategies also afford us a great degree of flexibility and this makes it possi-
ble to experiment with different alternative scheduling policies for compositions, by
choosing alternative definitions of strategies. Due to the length limitation, we do not
describe the strategies in detail here. To understand the idea it suffices to know that
their corresponding strategies are Seq(), Replicate() and Merge(). Taking into
account that merging and replicating have a higher priority than sequencing, we imple-
ment a function that takes a list of connectors as input and returns its corresponding
“normalised” connector, obtained by applying all possible compositions:

public static ConnectorList fixpoint(ConnectorList cl){
try{

cl = ‘Repeat(Choice(Merge(), Replicate())).visit(cl);
cl = ‘Repeat(Seq()).visit(cl);

} catch (VisitFailure e) { System.out.println("fixpoint: strategy failed"); }
return cl; }

In the above code, Choice is a basic strategy combinator with intuitive meaning and
visit is the method for applying a strategy to a term, in our case to the list of con-
nectors cl, and the fixpoint function relieves the programmer from the burden of
explicitly specifying the order of compositions.

6 Conclusion and Future Work

This paper extends our previous work on the design model for (untimed) Reo connec-
tors and introduces the UTP design model for timed Reo connectors. This approach
provides a unified semantic model for different kinds of channels and composite con-
nectors, covers different communication mechanisms encoded in Reo, and allows the
combination of different untimed and timed channels as in Reo. In our work, we model
basic channels in Reo as designs in UTP, and the composition of connectors is speci-
fied by design composition. Our semantic model offers potential benefits in developing
tool support for Reo. The syntax and design semantics for timed Reo connectors are
implemented in Tom.

In future work, we will investigate the semantic model of probabilistic connectors
[7]. On the other hand, we will investigate the relationship between the UTP design
semantics and other semantics of Reo that have been developed, and extend the UTP
design model to treat the inherent dynamic topology and mobility in “full” Reo, es-
pecially context-sensitive connector behavior and reconfiguration of connectors. The
development of refinement and testing theories for timed connectors like refinement
and testing for untimed connectors in [3,16] and integration of such theories into the
existing tools for Reo [1] is of special interest and in our scope as well.

Acknowledgement. The author is indebted to Lăcrămioara Aştefănoaei for her help in
the JTom implementation, and the anonymous reviewers for their valuable comments.
The work is done when the author visits UNU/IIST in Macau, supported by the Macao
Science and Technology Development Fund under the PEARL project, grant number
041/2007/A3.

368

References

1. Eclipse Coordination Tools. http://reo.project.cwi.nl/.
2. Tom. http://tom.loria.fr/wiki/index.php5/Main_Page.
3. B. K. Aichernig, F. Arbab, L. Astefanoaei, F. S. de Boer, S. Meng, and J. Rutten. Fault-based

test case generation for component connectors. In W.-N. Chin and S. Qin, editors, TASE
2009, Third IEEE International Symposium on Theoretical Aspects of Software Engineering,
pages 147–154. IEEE Computer Society, 2009.

4. F. Arbab. Reo: A Channel-based Coordination Model for Component Composition. Mathe-
matical Structures in Computer Science, 14(3):329–366, 2004.

5. F. Arbab, C. Baier, F. de Boer, and J. Rutten. Models and Temporal Logics for Timed
Component Connectors. In J. R. Cuellar and Z. Liu, editors, Proceedings of SEFM2004,
pages 198–207. IEEE Computer Society, 2004.

6. F. Arbab and J. Rutten. A coinductive calculus of component connectors. In M. Wirs-
ing, D. Pattinson, and R. Hennicker, editors, Recent Trends in Algebraic Development Tech-
niques: 16th International Workshop, WADT 2002, Revised Selected Papers, volume 2755
of LNCS, pages 34–55. Springer-Verlag, 2003.

7. C. Baier. Probabilistic Models for Reo Connector Circuits. Journal of Universal Computer
Science, 11(10):1718–1748, 2005.

8. C. Baier, M. Sirjani, F. Arbab, and J. Rutten. Modeling component connectors in Reo by
constraint automata. Science of Computer Programming, 61:75–113, 2006.

9. D. Clarke, D. Costa, and F. Arbab. Connector colouring I: Synchronisation and context
dependency. Science of Computer Programming, 66:205–225, 2007.

10. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and J. F. Quesada.
Maude: specification and programming in rewriting logic. Theoretical Computer Science,
285:187–243, 2002.

11. J. Guyon, P.-E. Moreau, and A. Reilles. An integrated development environment for pat-
tern matching programming. Electronic Notes in Theoretical Computer Science, 107:33–49,
2004.

12. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall International, 1985.
13. C. A. R. Hoare and J. He. Unifying Theories of Programming. Prentice Hall International,

1998.
14. H. Jifeng, X. Li, and Z. Liu. rCOS: A refinement calculus of object systems. Theoretical

Computer Science, 365(1-2):109–142, 2006.
15. N. Kokash, C. Krause, and E. de Vink. Time and data aware analysis of graphical service

models. In IEEE International Conference on Software Engineering and Formal Methods
(SEFM’10), September 2010, Pisa, Italy, pages 125–134. IEEE Computer Society, 2010.

16. S. Meng and F. Arbab. Connectors as Designs. In Proceedings of the 8th International
Workshop on the Foundations of Coordination Languages and Software Architectures, FO-
CLASA’09, volume 255 of ENTCS, pages 119–135, 2009.

17. M. Oliveira, A. Cavalcanti, and J. Woodcock. A Denotational Semantics for Circus. Elec-
tronic Notes in Theoretical Computer Science, 187:107–123, 2007.

18. S. Qin, J. S. Dong, and W.-N. Chin. A Semantic Foundation for TCOZ in Unifying Theories
of Programming. In FME 2003: Formal Methods, International Symposium of Formal Meth-
ods Europe, Pisa, Italy, September 8-14, 2003, Proceedings, volume 2805, pages 321–340,
2003.

19. A. Sherif and J. He. Towards a Time Model for Circus. In C. George and H. Miao, editors,
Proceedings of ICFEM 2002, volume 2495, pages 613–624. Springer, 2002.

369

A New Component Model for Highly
Distributed Environments

Antoine Beugnard and Ali Hassan

Telecom Bretagne
firsname.lastname@telecom-bretagne.eu

1 Abstract

During the last years new distributed platforms have emerged, often qualified as
highly distributed environments (HDEs). HDEs still include powerful and robust
machines but they are, in addition, composed of resource-constrained and mobile
devices such as laptops, tablet computers, personal digital assistants (or PDAs),
smart-phones, GPS devices, sensors, etc. Moreover, these devices communicate
using a variety of dependable and undependable fixed and wireless networks.
This fundamental change in the deployment environment has not been accom-
panied by a software model that provides deep understanding and systematic
solutions to build compatible software systems. This challenge has been reported
as a problem by software developers, software architects, and computer science
researchers. Mark Murphy said: “Developing programs for a phone is a di↵erent
experience than developing desktop applications, web sites, or back-end server
processes” [6]. Similarly, however on a di↵erent level of abstraction, Malek et al.
[5] have noticed “transparency (i.e. hiding distribution, location, and interac-
tion of distributed objects) is considered a fundamental concept of engineering
distributed software systems, as it allows for the management of complexity asso-
ciated with the development of such systems”. This is usually achieved through
the utilization of a middleware layer that has as main function (among others)
to make remote calls appear as local calls. That is correct for stable distributed
systems, however, this same concept, distribution transparency, has been shown
to su↵er from major shortcomings when applied extensively in HDEs [5]. Similar
arguments have been given by Luca Cardelli [3].

That leaves us in the following situation: there is excessive and increasing
need to build complex mobile and pervasive systems for entertainment and pro-
fessional uses. And at the same time, the fundamental engineering techniques
available are inherited from stable distributed environments, and su↵er from sev-
eral drawbacks and weaknesses when utilized in these new environments. The
only available answer currently is applying ad-hoc techniques to overcome these
drawbacks and weaknesses.

This ongoing Ph.D. work is a direct response to the above mentioned chal-
lenge. We are trying to provide a comprehensive answer for the above mentioned
challenge. The solution we propose is based on a “paradigm shift” from distri-
bution transparency to localization acknowledgment. Traditional distributed ap-
plications are based on distribution transparency, where a middleware layer is

370

expected to handle and hide all remote communications. Moreover, distribution
transparency also masks many distinctions between devices, such as processor
architecture and operating systems, by utilizing other software pieces including
but not limited to Java virtual machine. On the other hand, localization ac-
knowledgment removes these masks completely and to the deepest level needed.
All details of the deployment environment, including networks and communica-
tions, mobile devices, constrained devices, sensors, operating systems, protocols,
and even algorithms inside protocols and operating systems, are considered a
first class concern in this new model that we propose in this PhD work.

To facilitate this paradigm shift in an implementable approach, we used the
concept of “software components” because of its attractive and powerful encapsu-
lation attributes. We propose a novel component model called Cloud Component
(CC). This model includes the expected deployment environment in its defini-
tion, i.e. we raise the importance of the deployment environment to be equal to
the importance of the functionality required from the component, with contrast
to the other component models that are centered over the required functionality
only [4]. The other important feature of this novel model is that it is funda-
mentally distributed. A single CC is usually distributed over many distant hosts,
the specification of these hosts are considered and fundamentally acknowledged
during the development process of this CC, and all aspects related to communi-
cation, coordination, and quality of service (QoS) monitoring and maintenance,
are migrated to be internal to the border of the CC. This makes CC novel and
nontraditional with comparison to traditional component models that, in most
models, provide no support for extra functional properties (EFPs) such as QoS
[4]. This is particularly true for industrial component models such as OSGi and
EJB. And the fewer models that provide support for EFPs fails at the compo-
sition of EFPs. “Clearly, the composition of EFPs still belongs to the research
challenges” [4].

The novel development process we propose starts with required specifica-
tions of the application along with the expected deployment environment(s). All
steps of the development process are directly guided by the specification of the
deployment environment devices, networks, etc. We also proposed an assembly
model to build large systems using CCs as building blocks. To support software
development using CCs, we provide automatic checkers to increase the level of
confidence in our software. The first checker is the assembly checker that verifies
if the CC assembly in the design respects the guidelines suggested in the CC
assembly model. This checker generates warning and error messages to help the
designer(s). The second checker is the software-hardware compatibility checker.
This checker is an ontology-based checker [1, 2]. Before deployment, we model
the actual deployment environment where we are going to deploy the system. An
automatic checker will verify if this actual deployment environment is compatible
with the expected deployment environment that the system was designed and
implemented for. If yes, the deployment proceeds with high level of confidence
of QoS. The second checker is partially implemented. We also proposed a formal
notation to describe CC model, CC assembly, and the development process of

371

CCs. We believe this formal language will open the door for a wide range of
theoretical topics including component type inference, subtypes, etc. Moreover,
this formal language is a fundamental tool to define, prove, and communicate
concepts related to CC model. The above mentioned checkers are based on this
formal model. Due to the lack of space, we will present briefly the formal defini-
tion of the CC, leaving all other definitions and formalism for future publication.
A single cloud component is formally defined using the following four tuples: (1)
A finite set of roles ⇤. (2) A finite set of multiplicities for these roles µ. (3) A
set of possible deployment environments L. Each L is either a finite set of hosts
H, or a finite set of host types T . (4) A function Z that maps roles to location
types or hosts.

⌦ ⌘ (⇤, µ, L, Z)

The following formally defines the cloud component com in figure 1: ⌦com ⌘
(⇤, µ, L, Z) where: ⇤ = {⇤S, ⇤R}. µ = {(⇤S, 1), (⇤R, 2)}. L =
{{TServer, TClient 1, TClient 2}}. Z : ⇤S # TServer, ⇤R # TClient 1, ⇤R #
TClient 2.

Fig. 1. Cloud component com with two roles and three hosts.

This is an ongoing work. At the current stage we are developing real scale soft-
ware application using CC as building blocks, and using all the above mentioned
tools and ideas. We will use this software application to refine our proposal, and
finally as a prove of concept.

References

1. http://www.ontoprise.de/en/products/ontobroker/.
2. http://www.ontoprise.de/en/products/ontostudio/.
3. L. Cardelli. Abstractions for mobile computations. Secure Internet Programming:

Security Issues for Mobile and Distributed Objects. Lecture Notes in Computer Sci-
ence, 1603:51–94, 1999.

4. I. Crnkovic, A. Vulgarakis, and M. Chaudron. A classification framework for soft-
ware component models. IEEE Transactions on Software Engineering, September
2010.

5. S. Malek, G. Edwards, Y. Brun, H. Tajalli, J. Garcia, I. Krka, N. Medvidovic,
M. Mikic-Rakic, and G. Sukhatme. An architecture-driven software mobility frame-
work. Journal of Systems and Software, 83(6):972–989, 2010.

6. M. L. Murphy. Beginning Android 2. Apress, 2010.

372

A Rewriting-Logic-Based Tool for
Object-Oriented Formal Modeling and Analysis

of Interacting Hybrid Systems

Muhammad Fadlisyah

Department of Informatics, University of Oslo, Norway

Introduction. HI-Maude [4] is a tool that supports the formal modeling, simu-
lation, and model checking of interacting hybrid systems in rewriting logic. The
tool is targeted for complex hybrid systems in which multiple physical entities
interact and influence each other’s continuous and discrete behaviors. For ex-
ample, a cup of coffee in a room interacts with the room and a coffee heater
through different kinds of heat transfer (see Fig. 1, right), leading to a change of
the coffee’s temperature, and this change also influences the change of the room’s
temperature. More heat flow from the heater may cause the coffee to evaporate,
leading the phase change of the coffee from liquid to gas. One distinguishing fea-
ture of HI-Maude is the modularity and compositionality of the specification of
the system’s continuous dynamics. Non-compositional specification of the whole
system is very hard, as it involves combining the ordinary differential equations
(ODEs) that specify the dynamics of its components; it also requires redefin-
ing the system’s continuous dynamics for each new configuration of interacting
physical components.

Modeling and Executing Interacting Hybrid Systems. We have defined a general
object-oriented modeling methodology [1] for modeling such interacting hybrid
systems in HI-Maude, which adapts the effort/flow method [7] to model a phys-
ical system as a network of physical entities and physical interactions between
the entities. This makes the models modular and compositional, in the sense
that it is sufficient to define the continuous dynamics for each component to
define the dynamics of the entire system. To model such interacting system we
have defined three kind of components (see Fig. 1, left): (i) a physical entity
is described by a real-valued effort, a set of attribute values, and the entity’s
continuous dynamics; the attribute values describe discrete properties, e.g., the
mass or the phase of a material, that can only be changed by discrete events;
the effort variable represents a dynamic physical quantity, such as temperature,
that evolves over time as given by the continuous dynamics in the form of an
ODE (ii) a physical interaction between two physical entities is described by a
real-valued flow, a set of attribute values, and a continuous dynamics; the flow
value describes the dynamic interaction between two entities, whose evolution
over time is specified by the continuous dynamics; the values of the effort vari-
ables of the two physical entities are used in the definition of the continuous
dynamics of the interaction (iii) a flow source can be use to model the addition
or removal energy from a physical entity.

373

Physical
Entity

effort

attributes

flow

Physical
Interaction

attributes

flow

Flow
Source

attributes

Continuous
Dynamics

Discrete
Dynamics

Continuous
Dynamics

Continuous
Dynamics

Continuous
Dynamics

Discrete
Dynamics

Continuous
Dynamics

Continuous
Dynamics

Continuous
Dynamics

Discrete
Dynamics

Continuous
Dynamics

Continuous
Dynamics

Room

Conduction
through the cup

Convection through
the surface

solid evaporatingliquidmelting on off

Coffee Heater

Fig. 1. HI-Maude components (and their dynamics) for modeling interacting hybrid
systems (left), and modeling a cup of coffee in a room (right).

The system components may also exhibit discrete transitions, because of
phase changes, explicit control, communication, or other factors.

We use numerical techniques to approximate the continuous behaviors by
advancing time in small discrete time increments, and approximating the values
of the continuous variables at each “visited” point in time. We have adapted
the following numerical methods to our effort/flow framework: the Euler [1], the
Runge-Kutta 2nd order, and the Runge-Kutta 4th order methods [3] for fixed and
adaptive time increments. Another method which will be adapted to the tool
is the approximation-error-based adaptive time increments which its Real-Time
Maude implementation is presented in [2] (adapting the Runge-Kutta-Fehlberg
4/5).

The HI-Maude Tool. The HI-Maude tool extends Real-Time Maude [6], which is
a formal specification language and a simulation, reachability analysis, and LTL
and TCTL model checking tool for real-time systems. It is based on rewriting
logic [5] and emphasizes expressiveness and ease of specification.

The HI-Maude tool integrates the modeling techniques explained above and
the Real-Time Maude implementations of the adaptation of the numerical ap-
proximation algorithms to support the rewriting-logic-based object-oriented for-
mal modeling and simulation, reachability, and LTL model checking analysis of
hybrid systems containing interacting physical components. HI-Maude extends
Real-Time Maude’s analysis commands by allowing the user to select (i) the nu-
merical approximation technique used to approximate the continuous behaviors,
(ii) the time increment used in the approximation, and (iii) discrete-switch-
detection-based adaptive time increments.

In particular, the HI-Maude tool makes it easy to define the continuous dy-
namics of the effort and flow variables of single physical entities and physical
interactions, respectively. Once the dynamics of the single physical components
have been defined, the tool (i) automatically defines the continuous dynam-
ics of the entire systems, and (ii) provides the usual Real-Time Maude formal
analysis commands, but where the desired built-in approximation algorithm,
the desired time increments used by the approximations, and the activation of
discrete-switch-based adaptive time increments are additional parameters of the

374

commands. Furthermore, the tool provides infrastructure to define that instan-
taneous transitions (modeled as instantaneous rewrite rules) are applied in a
timely manner.

HI-Maude is as expressive as simulation tools, yet provides reachability and
LTL model checking analysis in addition to simulation. The price to pay is that
reachability and satisfaction of LTL properties are in general no longer decidable.
HI-Maude only analyzes those behaviors that are possible with the selected time
increment and numerical method used to approximate the continuous behaviors.
Therefore, the results of search and model checking in HI-Maude may not be
correct. If a counterexample is found in LTL model checking, or a desired state is
found in a search, these are indeed valid counterexamples up to the approximation
errors due to the use of numerical approximations and round-off errors due to
the use of floating-point numbers. However, since only a subset of all possible
behaviors are analyzed, the fact that a state is not found during a search or
that LTL model checking returns true does not necessarily imply that the state
cannot be reached or that the LTL property holds.

Currently we are working on a complex case study on modeling human ther-
moregulatory system. We have made many improvements to the human body
model presented in [4]. We are targeting to model and analyze problems related
to heat and cold exposures to human body by using real examples, e.g., the
problems in sauna bathing, winter activities, firefighting, etc. We compose the
human body model with different models representing different kinds of envi-
ronment surrounding human body.

The HI-Maude tool files, including case studies and related papers and tech-
nical reports, are available at http://folk.uio.no/mohamf/HI-Maude/.

References

1. Fadlisyah, M., Ábrahám, E., Lepri, D., Ölveczky, P.C.: A rewriting-logic-based tech-
nique for modeling thermal systems. In: Proc. RTRTS’10. Electronic Proceedings
in Theoretical Computer Science, vol. 36 (2010)

2. Fadlisyah, M., Ábrahám, E., Ölveczky, P.C.: Adaptive-step-size numerical methods
in rewriting-logic-based formal analysis of interacting hybrid systems. Electronic
Notes in Theoretical Computer Science 274, 17–32 (2011), 4th International Work-
shop on Harnessing Theories for Tool Support in Software (TTSS)

3. Fadlisyah, M., Ölveczky, P.C., Ábrahám, E.: Formal modeling and analysis of hybrid
systems in rewriting logic using higher-order numerical methods and discrete-event
detection. In: Computer Science and Software Engineering (CSSE), 2011 CSI Inter-
national Symposium on. pp. 1–8 (2011)

4. Fadlisyah, M., Ölveczky, P.C., Ábrahám, E.: Object-oriented formal modeling and
analysis of interacting hybrid systems in hi-maude. In: Proc. SEFM’11 (2011), to
appear in LNCS

5. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science 96, 73–155 (1992)

6. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20(1-2), 161–196 (2007)

7. Wellstead, P.E.: Introduction to physical system modelling. Academic Press (1979)

375

Formal Aspects of Component-Based Design of
Embedded Real-Time Systems

Andrey Kruglyak

Dept. of Computer Science, Electrical and Space Engineering
Lule̊a University of Technology, 971 87 Lule̊a, Sweden

E-mail: kruglyak@mac.com

Motivation and Previous Work

An embedded system is traditionally defined as a computational system that is
a part of a larger device and serves a specific function. Such systems are often
safety-critical, and a vast majority of them include at least some hard real-time
tasks, where correctness depends on timeliness of computations.

In recent years, there has been a surge in complexity of embedded systems,
often further complicated by resource sharing between independent tasks; there
is also a growing demand for concurrency in system operation. The challenge is
to achieve that without compromising correctness and reliability.

Component-based design (CBD), successfully used in development of general-
purpose software, seems to be a natural choice. However, despite a considerable
body of research (see, for example, work on Rubus Component Model [2] and
Ptolemy II [1]) and a number of commercial tools available in the market, CBD is
rarely used for development of embedded systems outside some specific domains
(e.g., Koala [3] has been used by Philips in consumer electronics). This calls
for a new, formal approach to CBD addressing the important characteristics of
embedded systems. Such an approach should:

– allow for an accurate modeling of interaction between software and hardware,
which is key to defining functionality of most embedded systems and is the
usual source of hard real-time requirements,

– incorporate timing specifications, central to development of most embedded
systems, directly into the model at all levels,

– provide an intuitive and “safe” mechanism for introducing concurrency into
system operation,

– ensure a good correspondence between a component model and its imple-
mentation in a programming language, in order to facilitate component and
system verification, and

– define a graphical representation of a component model of a system that
can be used throughout the design process (in most tools in use today, a
graphical model can no longer be used once program code generated from it
is modified manually).

Our work on CBD of embedded real-time systems is a part of the ongoing
development of the programming and modeling language Timber [4] at Lule̊a

376

University of Technology and Chalmers University of Technology, Sweden. Tim-
ber specifically targets hard real-time systems. It is an object-oriented language
that combines purely functional evaluation of expressions with an imperative-
style command layer, incorporating system I/O and message passing between
objects. Importantly, it has been developed to meet some of the requirements on
modeling embedded systems discussed above. Firstly, it adopts a reactive execu-
tion model, i.e. a reaction (execution of an object’s method) is triggered either
by an external event or by a message from another object; this makes Timber
particularly suitable for specifying interaction between software and hardware.
Secondly, it combines object-level concurrency with a complete encapsulation
of an object’s state, which results in a fairly simple implicit concurrency model.
Thirdly, timing specification can be incorporated into Timber code by specifying
a permissible execution window – a baseline and a deadline – for each method in-
vocation; this specification is preserved in the compiled code and can be used to
guide scheduling at run-time as well as to perform static schedulability analysis.

Research Goals

Our goal is to formulate a general framework for component-based design of
embedded real-time systems and to include support for CBD directly in the
Timber language. This involves a number of tasks:

• a formal component model should be defined using existing syntactic con-
structs or by introducing new ones to the Timber language, with component
composability verified by static type-checking (Timber has an advanced type
system with automatic type inference); the unambiguous semantics of such
a model is guaranteed by the operational semantics of the language;

• a language for specifying timing behavior at system and component levels
should be defined so that it is possible to verify (a) component composability
with respect to timing requirements, and (b) that a particular implementa-
tion of a component (in terms of Timber code with permissible execution
windows for method invocations) conforms to timing specification at the
component level;

• a graphical representation of a component model should be defined, as well
as its translation to Timber code and vice versa; the existence and quality
of this representation is seen as key to usability of the proposed approach.

Some of our recent results obtained while working on the third task are
presented below. These results are of a general nature and are not specific to
Timber-based component models.

A Formal Approach to Defining a Graphical Representation

A formal component model is typically defined in a text-based language (in our
case – in the programming language Timber), but its usefulness depends on the
existence of a graphical representation. True usability, however, comes with the

377

ability to perform graphical editing operations at any stage of the development
process, i.e. even after program code has been added and/or edited manually
(which is not supported by the majority of existing design tools). The challenge
here is two-fold: firstly, information that should be visualized in a graphical
model is often implicit in program code (e.g., a relation between two components
can hinge on the value of some variable), and secondly, a graphical model should
be simple and hence the translation from program code is inevitably lossy and
in many cases irreversible.

To meet this challenge, we propose to introduce an intermediate representa-
tion G and, given a set of abstract syntax trees of syntactically correct programs
P and a set of models Ĝ, expressed as labelled graphs (such as formal compo-
nent models or any other models with unambiguous graphical representations),
we define:

• a translation τ : P → G that augments an abstract syntax tree of a program
with an explicit representation of information needed for the graphical model
(e.g., links between a component definition and its instantiations); we should
require that for every syntactically correct program there exists exactly one
intermediate representation;

• an inverse translation τ−1 : G → P that removes the vertices and edges
added by τ (these may be labelled differently from labels on vertices and
edges of abstract syntax trees to make τ−1 trivial), such that

(∀p ∈ P)[τ−1(τ(p)) = p]

• an “erasure” δ : G → Ĝ that hides some of the information available in
G (e.g., pure computations that do not affect the component structure) by
“collapsing” certain vertices into edges and by completely removing some
other vertices and edges;

• graphical editing operations γ1, . . . γn, defined not on Ĝ but on the more
complete intermediate representation G; for each operation it is necessary
to prove that it preserves syntactical correctness of a program:

(∀p ∈ P)(∃p′ ∈ P)[τ−1(γi(τ(p))) = p′]

It can be shown that this approach ensures that a graphical representation
can indeed be used at any stage of the development process, even after program
code has been edited manually.

References

1. Ptolemy Project, http://ptolemy.eecs.berkeley.edu.
2. Hänninen, K., Mäki-Turja, J., Nolin, M., Lindberg, M., Lundbäck, J., Lundbäck,

K.-L.: The Rubus Component Model for Resource Constrained Real-Time Systems.
In: Proc. of 3rd IEEE Intl. Symp. on Industrial Embedded Systems (SIES’08), pp.
177–183 (2008).

3. van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The Koala Component
Model for Consumer Electronics Software. Computer 33(3), pp. 78–85 (2002).

4. Timber Home, http://www.timber-lang.org.

378

Analysis of Cooperating Systems by Refined
Over-Approximations

Nils Semmelrock??

University of Mannheim, Chair of Practical Computer Science II
nsemmelr@informatik.uni-mannheim.de

We consider complex systems which are built from cooperating subsystems
(components). The reachable state space of a system can become exponentially
large in the number of components. For many formalisms, modeling this kind of
systems, there exist PSPACE-completeness results for the reachability problem
– even for classes of systems with strong structural constraints. Therefore, many
important properties of such systems can not be checked efficiently.

Here, we introduce an approach for verifying a global property P in a complex
cooperating system. The approach consists of three parts:

1. the construction of a family of compact representations of over-approximations
of the global system,

2. the refinement of these over-approximations by a technique that we call
Edge-Match and

3. the construction of an indicator predicate P ′, such that P holds for a system
under consideration if P ′ holds for all over-approximations.

Our approach has polynomial costs, i.e., we can not expect that our approach
works for every system.

We consider the component-based formalism of interaction systems (Sifakis
et al.) as a formal model. A tuple Sys = (K, {Ai}i∈K , Int, {Ti}i∈K) is called
interaction system. K is a set of components and, for i ∈ K, Ai is a set of
ports and Ti a transition system with labels in Ai that models the behavior of
component i. The cooperation of the components is specified by a set Int of
interactions. An interaction is a set of ports from different components, which
have to work synchronously. The behavior of Sys is a transition system T . The
state space of T is the Cartesian product of the local state spaces of the Ti.
The transitions are specified by Int. A transition with label α ∈ Int can be
performed if for each involved component its participating port is enabled.

The over-approximations are constructed by choosing a subset C ⊂ K of
components and constraining the interactions Int to these components. An in-
teraction system SysC that is defined in this way can be interpreted as a compact
representation of an over-approximation that would result, if the components in
K \ C have always all their ports enabled. Thus, if a state q is reachable in the
global behavior T then a state qC is reachable in the behavior of SysC such that
qC is a projection of q on the components in C.

?? Advisor: Prof. Dr. Mila Majster-Cederbaum

379

An over-approximation that is constructed in this manner might be relatively
coarse. In a second step we refine the approximations by an operator we call
Edge-Match that compares the SysC pairwise. The operator is based on the
following observation. Let C,D be subsets of K such that C ∩ D 6= ∅. Let
qC

α−→C q′C be a reachable transition in an over-approximation with respect
to C. If there is an over-approximation with respect to D with no reachable
transition qD

α−→D q′D where qC and qD respectively q′C and q′D agree on shared
components then there is no reachable transition in the global behavior T that
is a projection of qC

α−→C q′C . Thus, removing qC
α−→C q′C results in a refined

over-approximation with respect to C.

We demonstrate by the property of deadlock-freedom, how the over-approxi-
mations can be used to verify a property P . A deadlock in Sys is a state in T
in which no interaction is enabled. Sys is called deadlock free, if no deadlock is
reachable in T . In a deadlock every component is waiting (in its local state) for
other components to synchronize its enabled ports. This implies the existence
of a directed cycle of components that are waiting for each other. If a deadlock
is reachable in Sys then this cycle is visible as chains of waiting components
in according approximations. A (naive) indicator predicate P ′ can be stated by:
there are no such chains in a (reasonable) set of approximations. If P ′ holds then
Sys has no reachable deadlock. We use a sophisticated version of this predicate
that consists amongst others of a second application of a modified form of the
Edge-Match operator.

Table 1 displays results of our approach for the refinement of over-approxima-
tions on a couple of parameterized examples. Here we used over-approximations
with respect to all subsets that consists of three components that have a con-
nected communication structure – this family of over-approximations is suited
to our indicator predicate for deadlock freedom and depending on the structure,
this family can be notably smaller than a family built from all subsets of size
three. The table reads as follows: |K| is the number of components and |Int|
the number of interactions of the interaction system under consideration. |Q|
is the number of states of the corresponding global behavior, i.e., the number
of states that have to be dealt with in a direct application of model-checking
techniques. #OA is the number of over-approximations. #States is the sum of
the size of the state spaces of the over-approximations. #RT is the sum of the
number of reachable states in the initial over-approximations. #EM is the sum
of the number of reachable states in a fixed-point with respect to reachability
analyses and the application of the Edge-Match operator. “time in ms” is the
time in milliseconds that was needed to calculate the fixed-point on a 2.53GHz
dual core CPU with 4GiB memory. The results show that a significant number of
states is removed by our operator which could be the reason for a false-negative
of an indicator predicate. The results are calculated by our tool that is based on
BDDs as a data structure for transition systems.

Our approach offers the possibility to effectively check properties of systems
whose state space size is to large for a direct application of model-checking

380

System1 |K| |Int| |Q| #OA #States #RT #EM time in ms

Circle(30,20)a 90 270 2428,3 240 5.790.240 4.519.260 3.152.640 59.799

Chain(30,20)b 88 372 2420,5 225 5.931.613 4.567.165 2.780.289 50.287

Grid(10,5,3)c 165 700 2486,6 2.151 9.149.931 7.297.031 6.383.026 99.729

Phil(500)d 1.000 2.000 21.792,5 1.000 48.000 25.500 20.000 11.334

PhilTB(200)e 600 800 2864,4 7.800 144.000 110.000 69.200 256.390

Table 1. Results of a couple of parameterized examples. Underlined parameters affect
the size of components, non-underlined the number of components.

techniques. We described how over-approximations can be used for checking the
important property of deadlock-freedom.

Even, if our approach works in praxis efficiently, so far we can give only a
rough polynomial upper bound for the calculation of a fixed-point with respect
to our refinement operator. The Edge-Match operator is related to the Semi-
Join operator in the relational data model. This relationship will be analyzed
further to give amongst others a detailed upper bound for particular classes of
systems. The main idea is that a transition relation of a transition system can
be interpreted as a table in the relational data model, i.e., a transition in an
over-approximation is a row in an associated table such that every state of a
component and the interaction is placed in its own cell. To put it roughly, an ap-
plication of the Semi-Join operator on two tables that model over-approximations
results in tables of transitions that agree on shared components. An important
theorem in the relational data model states that a fixed-point without “arti-
facts” with respect to the Semi-Join operator on a family of tables exists iff the
hypergraph with respect to the attributes of the tables is acyclic. The number
of Semi-Joins needed to calculate a fixed-point on a family like this is linear in
the number of tables.

1 a) Circle - a circle of components, b) Chain - a chain of components, c) Grid - a
rectangular grid of measurement stations, d) Phil - classic philosophers problem, e)
PhilTB - classic philosophers problem with semaphores

381

