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Abstract

We investigate cosmologies where the accelerated expansion of the universe is
driven by a fluid with an anisotropic equation of state. If dark energy equation
of state is anisotropic, the expansion rate of the universe becomes direction depen-
dent at late times. We show that such models are cosmologically viable. We model
such scenarios within axisymmetric limit, described by the Bianchi I, Bianchi III
and Kantowsk-Sachs geometries. A skewness parameter is introduced to quantify
the deviation of pressure from isotropy. We study the dynamics of the background
expansion in these models. The fixed points are found with the aim of uncover-
ing their stability and employing them to device possibly realistic cosmological
models.
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Introduction

Observational data shows that a homogeneous and isotropic universe is a fairly
good approximation to the real universe we live in (Partridge and Wilkinson/[1967)).
The large-scale structure of the universe also implies that it is possibly the most
symmetrical system (Peebles|[1980). However recent observations in the cosmic
microwave background temperature anisotropies suggest the need of reconsidera-
tion for some basic assumptions (Copi et al.[2010).

The statistical analysis of the WMAP data show the lack of large-scale power in
CMB (Hinshaw et al|2007). Clear asymmetries between pairs of hemispheres
have been observed. It turned out that the northern galactic and ecliptic hemi-
spheres have much fewer large-scale fluctuations than the simulated maps (Eriksen
et al.2004). The anomalous lack of power at the large scales in CMB maps seems
to be due to missing angular correlations of quadrupole-like signiture (Bernui et al.
2006). An unexpected property in the brightness distribution of the quadrupole and
octupole moments, which is known as the Axis of Evil, is also recognized (Land
and Magueijo, 2007). It is also shown that the Axis of Evil as an axisymmet-
ric effect is incompatible with the observed microwave sky at the largest angular
scales (Raki¢ and Schwarz|[2007). Whether these observed large-scale anomalies
are caused by the cosmological origin or the statistical consequence is still debat-
able (Copi et al.|[2006; Magueijo and Sorkin|2007; [Komatsu et al.[2011)).

There have been various possible cosmological causes to explain these anomalous
features. For example anisotropy can be created by introducing a preferred axis. It
can be classified into the different models depending on when this isotropy break-
ing happens. If it occurs at an early time, its statistical anisotropy may be imprinted
in the primordial perturbations (Armendariz-Picon|2006). It is shown that CMB
radiation may become statistically anisotropic by introducing spacetime noncom-
mutativity which causes nontrivial contributions to the CMB fluctuations (Akofor
et al.|2008)). The possibility that rotational invariance can be broken during inflation
when the primordial density fluctuations were created has been studied (Ackerman
et al.2007). Therefore these primordial perturbations depending on their direc-
tionality are left by isotropization (Gumrukcuoglu et al.[|[2006)). Parity violation in
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the early universe is also suggested to explain the observed loss in power and the
alignment at a preferred axis in the low mulitpole moments (Alexander2008).

If CMB is distorted at late times, the originally isotropic CMB fluctuation can be
broken spontaneously due to the long wavelength fluctuations in a mediating field
(Gordon et al.[|2005). In these cases, anisotropic fluctuations should appear at the
smallest multipoles that correspond to the wavelengths entering inside the horizon.
Fortunately it occurs exactly when dark energy begins to dominate and it might be
an answer to one of coincidence problems of why the cosmic acceleration began
when it did (Dalal et al.[2001)). Dark energy in a form of vector field can be related
to the statistical anisotropy (Armendariz-Picon|[2004; [Bohmer and Harko|2007;
Koivisto and Mota 2008). Shear viscous fluids can be associated with dark energy
to explain statistical anisotropy as well (Koivisto and Mota|2006). Modified gravity
theories (Clifton et al.[2005; |[Koivisto|2006; T'sujikawal2010) predict that dark en-
ergy would have anisotropic stresses at least at the perturvative level, if dark energy
is not the cosmological constant. It can be used to distinguish scalar field theories
in which the field is strongly coupled to the perfect fluid matter (Koivisto|2005;
Mota and Shaw|[2007). These shear stresses in perturbation can be constrained by
the viscosity properties of fluids (Capozziello et al.[2006; Mota et al.|2007). When
the perturbative anisotropic stress is limited to a large scale, it can only be seen on
amplitudes of the small multipoles of the CMB which makes it possible to escape
detection. Fortunately there are suggested models that dark energy can form small
wavelength perturbations when the Jeans scale of the dark energy is small enough.
In that case it can be detected by using weak lensing experiments (Schimd et al.
2005)).

In this work, we continue a previous study about the origins and implications of
an anisotropic acceleration in a flat universe (Koivisto and Mota|[2008)). Here the
system is constructed in coordinate system and study is extended to a curved space-
time, that is £ = 0, as well. We study exact anisotropic but homogeneous solutions
of the cosmological equations. For a flat geometry, Bianchi I model is simple
enough to allow analytical computations and it shows the basic effect even in more
complicated anisotropic models by featuring direction-dependent expansion rates.
The constraints on the Bianchi models imply that the universe may initially be
anisotropic but isotropize later. If a solution does not isotropize, anisotropic matter
sources would be needed and it should dilute slower than dust or radiation. The
existence of such cosmological sources has not been known. However it is obvi-
ous that our universe is dominated by an unexplained negative pressure, we would
like to ask whether this pressure could be anisotropic as well. This would connect
the present acceleration of the universe with the possible anomalous features in
the largest angular scales, otherwise the coincidence of the scales would seem to
require additional fine tuning. This opens a window to study the nature of dark
energy by constraining its possible anisotropy.
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Chapter 1

Preliminaries

In this chapter, the theoretical basics will be introduced. First, we will discuss
briefly the theory of general relativity. Secondly, we will review the cosmological
concepts.

1.1 The theory of general relativity

In general relativity gravity is considered as a geometric property of spacetime not a
force. Applying the Einstein equations to a given metric gives the relation between
the parameters in the metric and the contents in the universe. This is why the theory
of general relativity has been a framework to construct most of cosmology models.
In order to make use of it we need to understand a metric first, which is an essential
concept in general relativity.

1.1.1 The metric

In most astronomical work, it is crucial to be able to compute the distance be-
tween two events in a four-dimensional spacetime. Simply calculating the physical
distance between two points in a three-dimensional flat space is not difficult. How-
ever in an expanding (or contracting) universe, it becomes much less simple. One
needs to introduce a scale factor connecting the coordinate distance with the phys-
ical distance. This is because it makes the metric an important mathematical tool
for predicting the universe we live in. From the components of the metric we can
introduce the infinitesimal interval or, the line element ds

ds® = Guvdat dx” (1.1)
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where dx* is an infinitesimal coordinate displacement between two spacetime
events in the direction of the coordinate z*. The indices i and v range from 0
to 3 where the first one is a time-like coordinate, dz’ = dt and the last three are
spatial coordinates. The metric g,,, is necessarily symmetric, so it has four di-
agonal and six non-diagonal elements in four-dimensional spacetime. The most
general line element of a homogeneous and isotropic universe in spherical polar
coordinates (Carroll|2004) is

dr?

2 _ 2 2

+ 72(d6* + sin® 0dp?) (1.2)

where ¢ is the proper time as measured by a comoving observer and a(t) is a scale
factor which is proportional to the physical distance. Its present value is usually set
to one for convenience. One notes that the comoving distance remains constant as
the universe expands. On the other hand, the physical distance increases with time.
A curvature parameter k is included in the metric. & > 0 represents a positively
curved space (closed, sphere when k& = +1), £ = 0 represents a flat space, and
k < 0 represents a negatively curved space (open, hyperboloid when k£ = —1).
These are all local concepts. This metric is called the Robertson-Walker (RW)
metric.

1.1.2 The Einstein equations

The Einstein equations are
G = 81GT,, (1.3)

where G, is the Einstein tensor, GG is Newton’s gravitational constant, and 7),,, is
the energy-momentum tensor describing the constituents of the universe. There-
fore the left-hand side of (1.3) is a function of the metric and the right-hand side
is a function of the energy of relativistic mass (Misner et al.||1973). The time-time
component of energy-momentum tensor 7}, often represents the density of rela-
tivistic mass and the time-space or space-time components mean linear momentum
density. When it comes to the space-space components, the diagonal components
represents normal stress which can be interpreted as pressure when it is indepen-
dent of direction and the remaining components mean shear stress. The Einstein

tensor G, is expressed

1
G = Ry — ig’“/R (1.4)

where R, is the Ricci tensor and R is the Ricci scalar defined by the contraction
of the Ricci tensor (R = g"”R,,,). The Ricci tensor R, can be written in terms
of the Christoffel symbol,

Ry, =T1%,,—- T

po,v

+ Faﬁarﬁyu - I VFB,LLC! (1.5)
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where commas denote derivatives with respect to x, for example

or«
re = it (1.6)

Here the Christoffel symbol is

o 0 0
m - L GJov 9pv . Jap
d af 9 | 9B + oz ox¥ (1.7)

The Christoffel symbol arises when we take the covariant derivate of a metric ten-
sor. In general relativity, Christoffel symbol plays the role of the gravitational
force field. Note that it is not a tensor (Kusse and Westwig 2010). Then geodesic
equation in general also can be written in terms of the Christoffel symbol
Pt datda? (1.8)
d\? B g\ d\
where ) is a parameter which increases along the particle’s path. The geodesic is
the notion of shortest or straight line in spacetime and defined as the path followed
by a particle in the absence of any forces. In a Cartesian coordinate system, the
Christoffel symbol vanishes and the geodesic equation becomes zero. However
generally they do not vanish and their existence describes geodesics in nontrivial
coordinate systems (Dodelson|2003).

1.2 Homogeneous and isotropic cosmology

1.2.1 Maximally symmetric universe

Copernican principle means that the universe is almost exactly the same every-
where, in other words no point in the universe is special. It has turned out, we
are not a privileged observer. Therefore the earth is neither in the center of the
universe, nor is it in a spatially favoured position. The copernican principle is con-
nected to these two mathematical properties :isotropy and homogeneity. These two
concepts appear to be similar, however they bring quite a different description to
the universe as a whole.

Isotropy is having the same property in all directions(Freedman and Kaufmann
2002). Same observational evidence is available by looking in any direction in the
universe. Isotropy applies at some specific point. The space looks the same no
matter in what direction an observer looks.

Homogeneity is having the same property in one region as in every other region.
Same observational evidence is available to observers at different locations in the
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universe. It is obviously false in local scale though, it works statistically in scales
of the millions light-years. Then the average density of matter is almost same
thorough the whole universe, so the universe is smooth in density on large scales.

There is no necessary relationship between isotropy and homogeneity. At least
the isotropy for all observers implies the homogeneity for all observers (Peacock
1999). It is possible to build homogeneous but anisotropic universes, but the re-
verse is not possible (Barrow and Matzner | 1977).

Cosmological principle is derived from the copernican principle but it cannot be
proved in a mathematical sense. It is supported by the empirical grounds, for exam-
ple observations of the uniform temperature distribution of the cosmic microwave
background. In other words, when it comes to cosmological principle, it can be
understood that on large scales the universe is both homogeneous and isotropic
(Hawking and Ellis|[1973)).

The great advantage of having homogeneity and isotropy is that it is assumed that
the universe is fairly spatially symmetric. Isotropy can be considered as a rota-
tional invariance and homogeneity as a translational invariance. This maximally
symmetric universe can be a gound state of general relativity and is considered the
standard model of cosmology today.

1.2.2 The Friedmann equations

The RW metric is defined for scale factor (I.2)). Plugging it into Einstein’s equa-
tions gives the Friedmann equations connecting the energy-momentum of the uni-
verse with the scale factor. In the case of a perfect isotropic fluid, the energy-
momentum tensor becomes

Tul/ = dlag (*pa b, b, p) (19)
where p is the energy density and p is the pressure of the fluid. The trace is simply
given by 7", = —p + 3p. We assume that there is no gravity and velocities are

negligible. Then the energy density and pressure evolve according to the conti-
nuity equation, dp/dt = 0 and the Euler equation, Op/dx* = 0. It becomes a
conservation equation for the energy-momentum tensor,

™,,=0 (1.10)
since we chose a perfect isotropic fluid,
op a
i3z =0 1.11
5 T3, (0+D) (1.11)

Defining a relationship between p and p which is the equation of state gives

p=wp (1.12)
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where w is called the equation-of-state parameter which is often set to be indepen-
dent of time but it is not necessary. If we restrict ourselves to sources with p > 0,
then the energy conditions |'| will imply w < |1| (Visser and Barcel6|[2000). Then
the conservation of energy equation becomes

P_ 301 +w)? (1.13)
P a

Assuming that w is constant and integrating it gives
p ox a 30+ (1.14)

It can be applied to obtain information about the scaling of cosmological fluids.
Matter is collisionless and nonrelativisitc particles which are known as dust. It
has effectively zero pressure. When the universe is matter-dominated the energy
density in matter scales

=0 — pmxa? (1.15)

Radiation is either actual photons or relativistic particles. When the universe is
radiation-dominated the energy density in radiation scales
1 —4
br= gpr — prxXa
accounting for the additional loss in energy as photons redshift due to the expan-
sion. Vacuum energy can be considered as a form of perfect fluid. If a vacuum
energy is nonzero the universe can be dominated by vacuum energy at late times,
since the energy density for matter and radiation die out as the universe expands .
When the universe is vacuum-dominated the energy density scales

(1.16)

PA = —pA —> pa = constant (1.17)

Einstein’s equation from (I.3]) and (T.4) can be written in the form

1
R, — qu,ﬂ?, =81GT), (1.18)
The Ricci tensor and Ricci scalar can be calculated by using the Christoffel sym-

bol (1.7) in Robertson-Walker metric (1.2]).

Roop = —3°
a
da + 262 + 2k
Fn = 1—kr?
Ros = r%(da + 2a* + 2k) (1.19)

R33 = r’(da + 2a® + 2k) sin? 0
i a\? k
-+(=-) +=
a a a

The Null Dominant Energy Condition allows for a vacuum energy of either positive or negative
sign but otherwise requires matter that cannot destabilized the vacuum (Carroll et al.[2003).

R =6




6 CHAPTER 1. PRELIMINARIES

Applying (I.19) to the equation (I.I8) and rearranging, we can find

N

a k 8rG

@ o2t 1.2

<a> == (1.20)
and . A

a T

L__E 1.21

" 5 (p+3p) (1.21)

The two Friedmann equations are finally derived from the Einstein equations. The
RW metric corresponding to these Friedmann equations defines Friedmann-
Robertson-Walker universes (Carroll|2004). The density parameter is also a useful
cosmological quantity, so we define

Q=" (1.22)

where the critical density is defined by

3H?
rG

where H = a/a is the Hubble parameter. From the first Friedmann equation (1.20)

(1.23)

Perit =

k

Q_leQaQ

(1.24)

The sign of curvature k£ depends on the density parameter (2. The recent obser-
vations of the cosmic microwave background anisotropy shows that €2 has to be
very close to unity. Here we can set one more important cosmological parameter.
From the curvature parameter can be defined

k
with corresponding energy density term
3k
P = — peoxa? (1.26)

- 87Ga2

This term does not mean an energy density though, still it is convenient to express
the contribution of spatial curvature as an energy density parameter. So far the
description of energy density p for different species with its equation of state p =
wp and the spatial curvature k are found. Now we are ready to solve the Friedmann
equation (I.20) to obtain the evolution of the scale factor a(t). The Friedmann
equation is simply a first-order differential equation which can be easily integrated.
Firstly the Friedmann equation (I.20) may be written as follows

81
02 ==Y, (1.27)

1
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where p; is the energy density of different species ¢ including the contribution of
spatial curvature. H? is proportional to >, pi- If all the energy density components
are positive, the universe will keep expanding. There will be no such transition
from expansion to contraction, which requires H to be zero. Dividing both sides
by H? we find

1= ZQI (1.28)

Note that the right-hand side is not the total energy density parameter €. It only
covers the actual energy density contributions not the curvature so that 2 = 1—2.
Even though the real universe seems to be the combination of matter, radiation and
vacuum energy, it is still useful to have solutions to the Friedmann equation for a
single energy source. Since different sources evolve at different rates, there will be
a period which is clearly dominated by one kind of source. When one single species
dominates the energy density the scale factor a can be simply expressed in terms of
time ¢. For example we consider a flat matter-dominated case, ) = 2, = 1, which
is known as the Einstein-de Sitter universe. In this universe, the scale factor evolves
as a o t2/3. If a universe is flat and radiation-dominated, evolves as a oc t}/2.
There can be a universe without matter and radiation, but spatially flat due to the
vacuum energy. The universe with a positive cosmological constant is called the
de Sitter universe and evolves as a o< efft. The completely empty universe can
be an interesting special case. No energy density but only with spatial curvature,
Q = Qg = 1. From (I.25)) we see that a universe will expand linearly, a o ¢. This
is known as Milne universe. Taking the time derivate of the Hubble parameter H,

we obtain
. . 2
g=2_ (“) (1.29)
a a

and plugging it into the two Friedmann equations (I.20) and (I.21)) to find

H=—47G) (1 +wi)p; (1.30)

(2

In the limit of |w;| < 1, if all the energy density components are positive, H will
never be positive which means the universe keeps expanding, but the rate of expan-
sion decreases gradually. There can be a case that a is positive but H is negative,
it can be shown easily from (I.29). In spite of the decreasing expansion rate mea-
sured by the Hubble parameter H, the scale factor a can be accelerating. The
derivative of the scale factor and the Hubble parameter are explaining two different
situations. One would be how the fixed source moves away from us with time.
Then the answer would be given by the change in the scale factor. The other would
be about two sources at fixed initial distance and how much these two have sepa-
rated sometime after. Then the answer would be given by the Hubble parameter.
These two are conceptually different, however can be considered in the sense of
explaining acceleration or deceleration, when acceleration is defined as @ > 0.
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1.2.3 Redshift and distances
The cosmic redshift

In mechanics, redshift is considered as a result of the Doppler effect, a change of a
wavelength for an observer moving relative to its source. As a result, the received
wavelength is shorter when its approach and is longer when its recession compared
to the emitted wavelength. However the cosmic redshift is more specialized in a
certain sense, since it can be interpreted as a consequence of the expansion of the
universe. In general, it happens when a sufficiently distant source is moving away
from an observer. Also gravitational redshifts occur when a light source escapes
from the gravitational field. We consider the electromagnetic waves coming to-
wards us at the origin. The first wave is emitted at a cosmic time ¢, and the second
wave is emitted infinitesimally later at time ¢, + dt.. Then we observe them at ¢,
and t, + dt,. Since the light follows a path defined by ds®> = 0 and travels along a
line of § = ¢ = constant, the RW line element becomesﬂ

dr? dt dr
0=dt* — a®(t — = - 1.31
O 72 alt) VI—kr? (130
Integrating it for the first and second wave from the emission to the observation
time which should be the same for the both case

to to+dto
/ dat / dt (1.32)
te a(t) te+Ote a(t)
Rearranging
te+0te to+0to
/ dt:/ At — Ote _ Ol (1.33)
te a(t) Ji a(t) ate)  alto)

It implies 6te < 0t, which means that the expansion of universe stretches the
wavelength of the photons. Then we can get the relation

>~

=

o alto) _
R (1.34)

where 0t = A and 0t, = A,. The cosmic redshift is parametrized by z and
measures how much the universe has expanded between the times of emission and
observation. The cosmic redshift is often referred to the redshift of an epoch, since

it is observationally available quantity and determines unique cosmic time of emis-
sion.

)

2As an electromagnetic wave moves towards us at the origin, r decreases so that dr < 0 for
dt > 0.
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The proper distance

Measuring distance in an expanding universe is tricky. One simple way of handling
this is calculating distances at a given time ¢ as the universe is still. This is called a
proper distance which is the shortest path (spatial geodesic) in space between two
points at an exact time ¢. The scale factor a(t) is fixed as well. The proper distance
is denoted by dp(t) and is given by

dp(t) = a(t) /O flw =a(t)S7(r) (1.35)

where
sin~!r for k= +1
Stry=< r for k= 0 (1.36)
sinh~!r for k=-1

For the spatially flat universe, k& = 0 the proper distance is dp(t) = a(t)r. This is
just the comoving coordinate r, which is a constant in time, times the scale factor
a(t). As it is shown that the proper distance dp is a function of time ¢, the relative
distance between the two points increases due to the expansion. The observed
relative velocity is simply

v=dp(t) =aS ' (r) = gdp(t) (1.37)
Introducing the Hubble parameter H (t) = a/a
v(t) = H(t)dp(t) (1.38)

This is Hubble’s law : the observed recession velocity is directly proportional to
the distance at a given time. Since the universe does not expand at the same rate
at all times, the Hubble parameter in principle is a function of time. However it is
common to consider the Hubble parameter as a constant  for a present time %g.

The luminosity distance

It is clear that the universe has expanded significantly during the time the light has
travelled towards us. We can obtain a distance by measuring the flux from an object
of known luminosity, this is called luminosity distance dy . The observed flux F',
which is an emitted energy per unit time and area, can be written as

L | L

where a distance d from a source of known luminosity L, which is an emitted
energy per unit time. In order to generalize this result to an expanding universe,
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we consider a spherical shell with radius a(t,)r at the time of observation ¢,. The
wavelengths of the observed photons have stretched by a factor a(t,)/a(t) at time
t,. Then the received flux F' at {, may be written

L < alt) )2 (1.40)

- 4ma?(t,)r? \ a(t,)
Using the definition (1.34) and (1.39) we obtain
t
d = a(t)r 2 —aiyr (11 2) (1.41)

The Cepheid variables and type Ia supernovae have been used to determine dis-
tances to very large redshift z (Macri et al.[2006; [Schweizer et al.[2008)).

The angular diameter distance

Another way to determine distances is to measure the angle § with the observed
diameter size D at a sufficiently large distance d. The angular diameter distance is
defined

dy = = (1.42)

We can obtain the angular diameter distance in an expanding universe by placing
the observer at the origin and a source at a radial comoving coordinate . Then the
observed diameter of the source at time ¢ becomes a(t) r §. Therefore we find

a(ty)r = alto)r (1.43)

d = t =
A a()r 1+ 2z

The angular diameter distance is the same as the proper distance at low redshift,

but decreases at very large redshift. From the definitions (1.41]) and (1.43)) we can

find the relation between the luminosity distance and the angular diameter distance
dy

_ 2
g =(1+2) (1.44)

1.2.4 Dark energy

The recent results from Planck in Fig. show that the total mass-energy of the
universe contains 4.9% ordinary matter, 26.8% dark matter, and 68.3% dark energy.
Even though dark energy is still unknown, it is the most accepted hypothesis to
account for the accelerating expansion of the universe. The observation of the
supernovae (Suzuki et al.[2012), the cosmic microwave background anisotropies
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(Komatsu et al|[2011), and the large scale structure (Blake et al.|[2011) are the

indication of the existence of dark energy.

One explanation for dark energy is that it is space itself that is the so-called cosmo-
logical constant A. Tt is also called vacuum energy because it is an energy density
of empty vacuum (Peebles and Ratral2003). According to classical thermodynam-
ics the cosmological constant should have a negative pressure, which means that,
for example, the equation of state parameter w in (I.12)) is equal to —1, so that it
can drive the acceleration of the expansion of the universe. Another explanation is
that dark energy is a form of dynamical energy field, called the quintessence field
(Linder 2008). Therefore the potential energy of the field can be a trigger for the
acceleration of the scale factor. The difference from the cosmological constant is
that the quintessence field can vary in space and time. A scalar field can be one
example based on the standard model of elementary particles (Koivisto and Motal
2007). There are substantial amount of possiblities for dark energy and also alter-
natives to dark energy which are aimed to explain the observational data as well
(Ishak et al.[|2008} [Mattsson![2010).

Dark Matter Dark Matter

Dark Energy Dark Energy

Before Planck After Planck

Figure 1.1 New cosmic inventory data from Planck’s high-precision CMB map (Planck
[Collaboration et al.|2013). The ‘before Planck’ figure is based on the WMAP nine-year
data release presented by (Hinshaw et al.|2012).
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Chapter 2

Phase plane analysis

The phase plane provides a visualization of the qualitative behavior of the differ-

ential equation system (Graham and McRuer|1961). It is a great tool to understand

especially nonlinear systems because it is not often that nonlinear systems have

analytical solutions. The phase plane also gives us a physical insight of the system.

In order to understand the phase plane, we start with a two-dimensional system of

differential equations as a simple but very useful example

= ':U’
p(z,y) o1

=q(z,y)

where x and y are states of the system and p and ¢ are nonlinear functions of the

states ﬂ Basically the phase plane is the plane having x and y as its coordinates
not a time ¢. It can be written as

’

€T
/

Yy

d
dz p(z,y)
The equilibrium solution (or singular point) of the system, for example, is
o, =0
(2o, Yo) 2.3)
q(x0,y0) =0

Now we look at the behavior of a equilibrium point under small perturbations

x=x9+ 0z

(2.4)
Yy =yo + 9y

lPrf:viously we defined two different time variables, cosmic time which is denoted as dot and
e-folding time which is denoted as prime. However here we don’t distinguish these two. The prime
denotes differentiation with respect to the general time term ¢ here.

13
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We assume that the perturbations are so small that it is sufficient to expand the
equations to first order in them. Differentiating (2.4) with respect to ¢ gives

' =62’ 25)
y/ — 6y/ .
where the derivatives of the perturbations to the linear order are
0 0
5z’ = 1 sx 4 2P 5y
x|, Y1y,
(2.6)
,_ g 9q
oy = —| dz+ —| oy
x|, Yy,
By setting in a new notation as below
0 0 0 0
az—p , bz—p , cz—q , dE—q 2.7
Ox|,, Y |y, o |, Y |y,
then (2.6) becomes
o' =adx+b6
Y 2.8)

8y = céx +ddy

which can be expressed to a matrix equation

oz’ a b\ [x
<5y’> N (C d) <5y> @

In linear algebra, every square matrix is associated with a characteristic polynomial
(Blyth and Robertson|2002). This is very useful since the important properties of
matrix such as eigenvalues, determinant and trace are in the characteristic polyno-
mial. Let us define as follows

dx [ _fa b
E_MX where x:<5y>,l\/[:<c d> (2.10)

Then the characteristic equation of a matrix M is
det M —XI]=0 (2.11)

where det is the determinant and I is the identity matrix. The eigenvalues of the
matrix M is exactly the solution of the characteristic equation which is A. Substi-

tuting the matrix (2.10) to (2.11)) gives

a— A\ b
det[ . d— )\] =0 (2.12)

Then we find our characteristic equation of the matrix M

N~ (a+d)\+ (ad —bc) =0 (2.13)
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where a + d is the trace and ad — bc is the determinant of the coefficient matrix M.
We can rewrite this relationship more explicitly as follows

1
A= (a+d j:\/(a+d)2—4(ad—bc)> 2.14)
The eigenvectors are defined as Mix = Ax. The eigenvalues are the powers of the
exponential components and the eigenvectors are coefficients. Then the general
solution of the system will be

x(t) = c1kieMt + cokoe?t (2.15)

where k; and ks are linearly independent eigenvectors. c¢; and cs are undetermined
constants which can be solved if we have an initial condition of the system. The
behavior of the solutions depends on the characteristic of the eigenvalues A; and
A2. These eigenvalues completely reveal the stability properties of the equilibrium
point of the system. We consider the following possible cases where two eigenval-
ues are real and distinct.

* If the signs of eigenvalues are both negative, the trajectories from the entire
phase plane converges to the equilibrium point E| which is a stable node or
an attractor. The phase portrait of an asymptotically stable point is shown in
Fig. Here the example matrix ((—1,0), (0, —2)) is used, which has the
negative eigenvalues -1 and -2.

\\\\\\\3«%#3&4%///////
N | s
NN NN VA SS
SNNNN N NN A A S
—— I 2 R U U S S
A N T S NI NI NI NN
VAR S S R S S NN
A A | XXX
VARV A A A S S A A R R D T O U S . S U N

Figure 2.1 Phase portrait for asymptotically stable node. The origin is the equilibrium
point and the axes are §x and dy, respectively.

The equilibrium point does not have to be at the origin. Even if the equilibrium point is not at
the origin, there is no loss of generality by this assumption. The shifted system can always be chosen
without any behavioral change of the system.
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* If the signs are all positive, the solution grows exponentially so they move
away from the node as time increases. This equilibrium point is called an
unstable node or a repellor. The phase portrait of an unstable point is shown
in Fig. Here the example matrix ((1,0), (0,2)) is used, which has the
positive eigenvalues 1 and 2.

\\\\\\\\Tﬂfffff/////
AN U ! VA
AN N O T Y A 4
AN N N UL U R B S A A
77777 B D 2 U " U
A A R T TN N N NN
2 A ER NI
y ¥ ¥ ! NN\
A A A A A R R T T T T R T W R

Figure 2.2 Phase portrait for unstable node. The origin is the equilibrium point and the
axes are dx and dy, respectively.

Furthermore, there can be a special case that two real eigenvalues are equal,
then the general solution (2.13]) becomes

X(t) = (Clkl + Cka)e)\t (2.16)

In this case, all trajectories are the straight lines towards origin. The origin
is called a proper node. In addition to the equal eigenvalues if the matrix
M has only one independent eigenvector k, then the general solution (2.13))
becomes

x(t) = crke™ + ea(kt 4 kg)e (2.17)

where k; is a generalized eigenvector defined as
(M- Ak, =k (2.18)

In this case the origin is called an improper node. 1If the matrix IM have two
linearly independent eigenvectors, the origin is a proper node.

* If the eigenvalues have opposite sign, one solution will approach the equilib-
rium point from one direction but diverge away from the another direction.
So there exist both stable and unstable trajectories. The equilibrium point
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in this case is termed a saddle point. It is considered as an unstable point.
The phase portrait of a saddle point is shown in Fig.[2.3] Here the example
matrix ((1,2), (3,2)) is used, which has the opposite sign of eigenvalues -1
and 4.

NN 7 7 7! Va4
N NN~ 7 77 A
VNN N> 7 7 AT
P AN NN 7 s
FY Y NN N A A
bbb Y N NN A A S
2 2N T T R TN o S A A A
N A N T NI g A A A A
,,,,,,,,, S SN S SN SNV S N S S S
///////kfff////
S A A A X e
AV AV AV AVarach NI U B T
VAV Ay aVar D o YA U T B
VAV AV ararasl o Y U U T
P AV N U N S |
VX s a2 amam=-— %X X
A/:////k‘\‘\\\ X
Yy ¥ EA///A/A—/A—‘\\\\
¥ ¥ ¥ [ b u a a4 - ~— W X%

Figure 2.3 Phase portrait for unstable saddle point. The origin is the equilibrium point
and the axes are dz and dy, respectively.

Now let us look at the cases that the eigenvalues are not real anymore.

If the eigenvalues are complex conjugates, for example A = « + [¢ with
eigenvectors k = A + Bi, we obtain two linearly independent solutions

x1(t) = (Acos St — BsinfBt)e™

2.19
xa(t) = (Bcos Bt + Asin t) e™ (219
Then the general solution becomes
x(t) = erxa (t) + c2xa(t) (2.20)

Note that it has a nonzero real part. The equilibrium point becomes a spiral
point and the stability depends on the sign of the real part a.. It diverges for
negative real part and converges for positive real part. The phase portrait
of an asymptotically stable spiral point is shown in Fig. 2.4] The example
matrix ((0,1),(—1,—1)) is used and it has the eigenvalues —(1 % 1/37)/2
and the negative real number —1/2. Also the phase portrait of an unstable
spiral point is shown in Fig. The example matrix ((0,1),(—1,1)) is
used, which has the eigenvalues (1 & /3i)/2 and the positive real number
1/2.
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— — — T e S S | NN N NN
//»—»—»\\\\\i\\\\ \
P L U N N N N
P e e S N U N T N O S T
A A A 77— — =~ 0N N0
///////#\M\\\\\\\\\
[ Y S A A S d N R T N R
b A AN N
[ N N N N
LT R T S S S A S N T I I
NN NN N NN NN m YA
NN XN XN XN XN NN N Y Y
XX X X XN NN N~
XN XN XN NN N N St
\ A N N N N N N A A A i o
AR AN N N N e e
XX X X N N T e e i
\\\\\\ 3 O R R S . - - -

Figure 2.4 Phase portrait for asymptotically stable spiral point when the real part o < 0.
The origin is the equilibrium point and the axes are éx and Jy, respectively.

/ ////V////»»ﬂ\\
A A A A AT r e
fASAASA A AT 7w NN
LA A A A A AT 7 N\
///f/////V/»\\\\\\\
AT S R A S Y Y A S P o NI N UL S T T |
bt A A A NN
[ R N NN A A A A A
\\\\\\\\«/V//////IIJ
NN NNNNNT~—m A A A A A
NXNNNN—w—a— S A A AN
NN N~~~ L Y YA A A A
NN~ LN ¥ X XA
Nt~ i LN Y SN /
e NS s
-~ w— 4 4 a a & . XA A AN

Figure 2.5 Phase portrait for unstable spiral point when the real part o > 0. The origin is
the equilibrium point and the axes are dx and vy, respectively.

* If the both eigenvalues are pure imaginary values for an example of A = 01
with eigenvectors k = A + Bi, we find two linearly independent solutions

x1(t) = (A cosft —Bsinft)

x2(t) = (Bcos St + Asin f5t) (2.21)
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Then the general solution becomes
x(t) = c1x1(t) + caxa(t) (2.22)

Since the real part of the eigenvalue is zero, this is a periodic solution. The
equilibrium point is a stable center. The phase portrait of a stable center is
shown in Fig. The example matrix used is ((0,1), (—1,0)) which has
the complex eigenvalue :.

Vliad NN
e N

NN\
s

=N\
\
\
il
'
/
/
~w i)

AT

/

/l

f

t

\\

\
NN\~

rrs
ANANAN

~ Ve
NN reyvd

Figure 2.6 Phase portrait for stable center when the real part is zero. The origin is the
equilibrium point and the axes are §z and dy, respectively.

The stable node in Fig.[2.T|and the stable spiral point in Fig. [2.4]are asymptotically
stable. In other words, no matter where the trajectories begin, they all end up at
the equilibrium at last. On the other hand, the stable center in Fig. [2.6] does not
show any asymptotic characteristics. All the trajectories remain in their own orbit,
therefore they never reach the equilibrium point.

The possibilities of the stability conditions are summarized in Table [2.1]

Eigenvalues Equilibrium point
Real and negative Stable node

Real and positive Unstable node

Real and opposite signs Saddle point
Complex and negative real part Stable spiral point
Complex and positive real part Unstable spiral point
Complex and zero real part Stable center

Table 2.1 Possible cases of the stability conditions according to the eigenvalues.
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Chapter 3

Anisotropic Equation of State

In this chapter, we start by taking a look at anisotropic cosmology models and set-
ting up metrics. Then we rewrite the Einstein equations in terms of our dynamic
variables which yields the generalized Friedmann equation. Consequently the evo-
lution equations for each variables are derived. Phase plane analysis is shortly
reviewed in given system as well.

3.1 Anisotropic cosmology

The possible cosmological symmetries for isotropy can be classified into isotropic,
locally rotationally symmetric (LRS) and anisotropic at a general point. If it is
isotropic, there are no curvature quantities and all observations at every point are
isotropic. This is the Friedmann—Lemaitre—Robertson—Walker (FLRW) geometry.
If it is LRS which is proposed in (Mimoso and Crawford|1993)), kinematical quan-
tities are rotationally symmetric to a preferred spatial direction. All observations
at every point are rotationally symmetric to this preferred direction. More specif-
ically, in three-dimensions there are two different kinds rotational symmetry. If
there is no change when rotating about one axis then it is a cylindrical symmetry
and if there is no change for any rotation, it is a spherical symmetry. Axisymme-
try in this sense refers to a cylindrical symmetry. If it is anisotropic, there are no
rotational symmetries and observations in each direction are different from obser-
vations in each other direction (Ellis and van Elst|[1999). Our framework is set up
in spatially homogeneous LRS metrics. To make it simple, the axisymmetric LRS
class is chosen here (Koivisto et al.|[2011)):

ds? = —dt? + B (t)dy? + a*(t) | de? + |,1€52<|kr%£>d¢2 G.1)
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where
sing for k>0

S(x)=< = for k=0 (3.2)
sinhx for £ <0

and the Ricci scalar of spatial hypersurfaces R is related to the curvature k :

2k

3R = (3.3)

a?
The case S(x) = sinx corresponds to the Kantowski-Sachs metric with spatial
sections of the form of the product R x S2. In all cases, the line R is parametrized
by the coordinate y. In particular, here & and ¢ should be considered as angular
coordinates on the two sphere S2. The second case S(x) = z corresponds to
the Bianchi I geometry, for which spatial sections take the form R x R?. With
the line R in this case the functions £ and ¢ should be thought of as cylindrical
coordinates on the plane R?. For S(z) = sinhx we have Bianchi IIT metric with
spatial sections of the form R x H?. In this case, the functions ¢ and ¢ should
be considered as hyperbolic coordinates on the two hyperboloid 2. The Bianchi
I metric contains flat FRW geometry as a special case when a(t) = b(t), but the
other two cases are anisotropic forever, since their sectional curvatures are never
equal at the same time.

3.2 Phase space variables

We are ready to set up our phase space variables. The expansion rate of universe is
characterized by
] b
Hy=2 and Hy=- (3.4)
a b

where overdot denotes the derivative with respect to coordinate time ¢. In the limit
of H, = Hy the isotropic flat Friedmann universe is recovered. The mean expan-
sion rate can be determined as an average Hubble rate H

9H, + H,
3

H

(3.5)

The differences of expansion rates can be expressed as a shear anisotropy parameter
S (Barrow|1997)

H, — H,
H
which is Hubble-normalized and dimensionless. A notation here is in the coordi-
nate formalism and the equations are in terms of the metric components for simpler
and more transparent analysis. Alternative parametrization in covariant expres-
sions was conducted in |[Koivisto and Motal (2008). We consider a universe as a

S = (3.6)
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two-fluid system filled with a perfect fluid (dark matter) and an imperfect fluid
(dark energy). Now we can generalize the results that are obtained on a FRW
universe from first chapter. The case we are interested in is that there is no interac-
tions between a perfect fluid and a fluid with and anisotropic pressure. The perfect
fluid energy-momentum tensor characterized by its rest frame mass density p and
isotropic pressure wp is simply

T+, = diag(—1, w, w, w)p (3.7

where w is the equation of state parameter of matter, w = 0 for dust and w = 1/3
for radiation. In the chosen framework the off-diagonal elements of Einstein ten-
sor vanish, so the energy-momentum tensor should be diagonalized. If the pres-
sure in each coordinate direction is different, the anisotropy of the pressure can be
parametrized by the dimensionless skewness parameter vy

3/_}/ = Pz — Dy — Pz — Py (3.8)

p p

Then the energy-momentum tensor of dark energy is
Tly, = diag(—1, wp + 37, ws, wp +37)ps (3.9)

where wp is the equation of state parameters of background. With the given matter
contents, the Einstein field equations

G¥, = 87G(T", + Tl ) (3.10)

can be written as (henceforth 87G = 1)

i b ab
@4 2492 p_op 3.11
b—i— s B (3.1

. k .2
PN N (3.12)
a a

222 L EE Y (3.13)

ab a

where P = wp, P3 = wppg, and Ly = 3~pp, respectively. The continuity equa-
tions of a fluid are defined by the divergence equation which is a statement of
conservation of energy and conservation of linear momentum.

p=—3H(1+uw)p (3.14)

g = —H[3(1 +ws) + (3 — 29))pp (3.15)

It shows that the densities fall in proportion to the comoving volume as

pox (a®0)1% and pp o (a?b) "1 T¥Ba07 (3.16)
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3.3 Evolution equations

We define a curvature parameter K as our new phase space variable which scales

as a2
k

= a2H?
In the case of K = 0 the flat FRW universe is recovered. A curved universe will

be studied separately. The dimensionless density parameters may be defined as
follows

3.17)

- P B

- 3H? 3H?
By introducing these density parameters we can quantify the amount of matter
in accordance with the standard cosmology as a fraction of matter contribution
inversely proportional to the square of the average Hubble rate H. As the time
variable we will use an average e-folding time scale N rather than ¢

and Qp = (3.18)

1
N=g log(a?b) (3.19)
in relation to the cosmic time scale ¢
d 1d
- -2 3.20
dN Hdt ( )

In the following the derivative of a function with respect to N will be denoted by
prime. In the case of H, = Hj, the e-folding time becomes N = loga which
describes isotropic expansion. It is also useful to employ the so-called slow-roll
parameter € by

%(1 + Wefr) = —%
where the effective equation of state wer = > w;€);. Using the relation of the
definitions of the average Hubble rate (3.3) and the shear (3.6)

(3.21)

€=

H H
H, = g(S +3) and Hp= 3(3 —25) (3.22)
and rewriting the Einstein equation (3.13) in terms of our dynamic variables, the

shear anisotropy .S, the two density parameters 2 and {2, and the curvature K,
yields the generalized Friedmann equation

S? =3K —9(Q+Qp —1) (3.23)

Rewriting (3.13)) gives

Y= H,+H? and ;= Hy+ Hj (3.24)
a
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Substituting the slow-roll parameter (3.21)) and (3.24) in the first field equation (3.11)
and combining it with the second field equation (3.12) gives

3 1
€= [1+w+ (ws +7)QB+§(SQ+K) (3.25)

The above can be confirmed by the comparison with (3.21)). Then from the equa-
tions (3.11)) and (3.12) with (3:23)) by getting rid of S? we can finally obtain the
evolution equation for .S

S =(e-3)S -9 — K (3.26)

By the definitions (3.18)) and (3.21)) and the continuity equations and (3.13)

the evolution equations for 2 and {2y turn out to be

QO = [2e—3(1+w)Q 3.27)
Qf = [2e—3(1+ws)+7(25 —3)] Qp (3.28)

Similarly, starting from the definition of the curvature parameter (3.17) and em-
ploying (3.21)) and (3.22)), we find our curvature evolution equation at last.

K' = §(3e - S—-3)K (3.29)

One can see from the evolution equations that the anisotropic matter generates the
shear and the curvature. If Q = 0, then ' = 0 as it is shown from (3.28)), therefore
it does not evolve from zero. In other words, €2 stays zero if it ever hits zero. The
same for {2 and K as well. However shear S is sourced by the other properties.
The results can be double-checked by plugging all the evolution equations into the
derivative of the Friedmann equation

255" —3K' +9(9' + Q) =0 (3.30)

3.4 The background as a dynamical system

It has been shown that a model beginning from a matter-dominated scaling so-
lution to an accelerating scaling solution in the Friedmann-Lemaitre universe has
difficulty proving the coincidence problem. Opening the possibility to have differ-
ent expansion rates might help us understand why and how the cosmic acceleration
began. Hence we study the asymptotic behaviors of the universe.

We start with some assumptions to make it as simple as possible. Our universe is
initially isotropic enough, however it expands anisotropically due to the skewness
of dark energy. Let us look at the system of Bianchi I, the simplest one among all



26 CHAPTER 3. ANISOTROPIC EQUATION OF STATE

Bianchi models, by setting K = 0. Our system is axisymmetric with respect to y
axis and no coupling between the components 2 and 25. To find the fixed point
of the system we assume that the evolution equations are constants that guarantee

S =0 =Q = (3.31)

We assume constant equation of state and skewness parameter as well

W= w}’3 =+"=0 3.32)
Therefore the phase variables are only proportional to the perturbations. The fixed
points are found by solving the evolution equations which are simply ordinary
differential equations. We can simplify the equations further by eliminating €2 in €
from the generalized Einstein equation (3.23).

1
0=1-Qp— §S2 (3.33)

The slow-roll parameter € can be removed in the process. Considering our universe
is flat, there are only two phase variables left, S and (2. It turns out that our
system has five fixed points. The stability of these fixed points will tested by adding
disturbances. Now we add small perturbations and write full quantities as

S = S +08

(3.34)

where Sy and (g are the background values which are our fixed points. By differ-
entiating (3.34)) with respect to the e-folding time, we can make use of (3.31). The
background values would be then zero combining (3.3T)) and (3.34) gives another
useful relation
S = 68 =0
Q= 005 =0
According to the assumption, the perturbations are very small, so it is sufficient

to expand the equations to first order. With mentioned assumptions and (3.23),
(3.26) and (3.28) we can derive 0.5 and 02} in the perturbed terms of 6.5 and 62

exactly like (2.8)

(3.35)

5S' = B16S+ B2 Qg
5 = B3dS + By Qg

which can be written in a matrix form like (2.9)

55"\ (B, By (68
(sog,) = (51 52) (5 67

The condition (3.35)) defines the left-hand side of (3.37) zero. Then from the char-
acteristic equations we can find the eigenvalues which will give the information
about what kind of fixed point it is.

(3.36)



Chapter 4

Fixed points in a flat geometry

4.1 Analytical stability analysis

Our framework for a flat universe is set up in the Bianchi I metric. This model
describes the simplest homogeneous and anisotropic universe (Ellis||2006). Usu-
ally the Bianchi models are isotropized, unless anisotropic matter sources may be
needed (Ellis and van Elst/[1999). If a universe is filled with perfect fluid, this be-
comes a FRW universe after all (Jacobs||[1968). Since the modern cosmological
observations imply that the universe is isotropic to about 10~ (Copi et al.[2010)
and it is not likely to have growing anisotropies, the models that isotropize have
been more studied. Therefore it seems to need a fine-tuned cosmology that agrees
with non-isotropization and the observational data. However there has been evi-
dences against the presumptions mentioned above. So we analyze for fixed points
here in the more general point of direction-dependent expansion rates. In the ax-
isymmetric case the line element of a BI universe can be written as

ds® = —dt? + a?(t)da? + b2 (t)dy? + a?(t)dz> 4.1

where there are two scale factors and therefore two volume expansion rates, re-
spectively. With previous assumptions our system turns out to have 5 fixed points.

4.1.1 The FLRW solution

Q=1, Q=0 S=0 4.2)

It describes a matter-dominated, flat and isotropic universe. Following the calcula-
tion introduced in Sec.[3.4] we find two eigenvalues

{51 3w

27
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For simplicity’s sake, we assume w < 1. When w < wp +  the FLRW solution is
a stable node, otherwise a saddle point.

There are the phase portraits in this fixed point. The following phase portraits are
generated from the matrix as in

5w-1) 9y
0 3(w—wp —7)

The center is the origin and the axes are 4.5 and §{2g, respectively. It gives the
visualization of qualitative behavior. The figure at left side clearly shows a general
behavior in totally however does not show any direction, so the additional figure
at right side is added for better understanding. The phase portrait in the case of
7 =0.25,w = 0and wg = —1 is shown in Fig.A.T| As it is shown that trajectories
approch to the origin horizontally but spread out from it, which proves it is a saddle
point in this case. It agrees with the stability condition we derived above. Since
w > wp + 7, this is expected to be a saddle point. The following phase portrait in
Fig.[d.2]is the case of 7 = —0.25, w = 0 and wg = —1. According to the stability
condition w > wp + 7, this is expected to be a saddle point. The phase portrait in
the case of ¥ = 2, w = 0 and wg = —1 is shown in Fig. &3] Trajectories starting
from everywhere converge to the origin. It shows the behavior of a stable point
which corresponds to the stability condition w < wg + . The following phase
portrait in Fig. #.4] is the case of v = —2, w = 0 and wg = —1. It shows the
behavior of a saddle point. From the stability condition w > wg + v, it is expected
to be a saddle point.

vy v v > .
v o v o e
vy o >

T a4

A oA oA o

Y
Y
\
\
\

,,,,,,,,,,,,,,,,,,,,,,,

A

Figure 4.1 Phase portrait in the case of v = 0.25, w = 0 and wg = —1. The center is the
origin and the axes are 0.5 and §€2g, respectively. It shows the behavior of a saddle point.
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Figure 4.2 Phase portrait in the case of v = —0.25, w = 0 and wg = —1. The center
is the origin and the axes are §.5 and J2g, respectively. It shows the behavior of a saddle
point as well.
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Figure 4.3 Phase portrait in the case of v = 2, w = 0 and wg = —1. The center is the

origin and the axes are 0.5 and §§2g, respectively. It shows the behavior of a stable point.
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Figure 4.4 Phase portrait in the case of v = —2, w = 0 and wg = —1. The center is the

origin and the axes are §.5 and {2z, respectively. It shows the behavior of a saddle point.
4.1.2 An anisotropically expanding empty universe

Q2=0, Qp=0, S=43 4.3)

The universe in this case is shear-dominated. In the case of S = 3, the eigenvalues
are

{3(1 —w), 3(1+~v—ws)}

and when v < wp — w it is a saddle point. In the case of S = —3, the eigenvalues
are

{31 —w), 3(1 =3y —ws)}

and when (w —wg)/3 < 7 itis a saddle point as well. Otherwise in both cases it is
an unstable node. This is also called the Kasner solution which is an exact solution

of the Einstein equations (Misner et al.|[1973]; Belinski and Verdaguer|2001). The
Kasner metric can be described by

ds® = —dt* + t*P da” + t*P2dy” + P dz? 4.4)

where the Kasner exponents satisfy

prtprtps=pi+ps+pi=1 (4.5)

As a consequence each hypersurface corresponding to constant ¢ is a flat three-
dimensional space. Since the volume element ¢ is constantly increasing, it repre-
sents an expanding universe. It describes an anisotropic vacuum solution near the
singularity, ¢ — 0 where the matter is negligible since p/ H? ~ 0. Due to the axial
symmetry, the two exponents p; and ps are equal in our system. We can find two
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solutions in the present case. There can be two static directions and one expanding
direction, corresponding p; = p3 = 0 and py = 1. Nextly, there can be two ex-
panding directions and one contracting direction, corresponding p; = p3 = 2/3
and py = —1/3.

There are the phase portraits in this fixed point. First, the phase portraits of the
case when S = 3 are shown. The following phase portraits are generated from the
matrix as in[3.37
3(1 —w) %(wB —w+7)
0 3(1 —ws +7)

The center is the origin and the axes are 4.5 and §{2g again. The phase portrait in
the case of ¥ = 0.25, w = 0 and wg = —1 is shown in Fig.[4.5] It shows that all the
trajectories spread out from the origin which is the behavior of an unstable point.
According to the stability condition v > wp — w, it is expected to be an unstable
point. The following phase portrait in Fig. isthecase of v = —0.25,w =0
and wg = —1. The stability condition agrees to the condition to be an unstable
point, v > wp — w. The phase portrait in the case of y = 2, w =0and wp = —11is
shown in Fig. It shows the behavior of an unstable point and it is also expected
to be so by the stability condition v > wp — w. The phase portrait in the case of
v = —-21,w = 0and wg = —1 is shown in Fig. Note that v # —2 here.
The reason for using v = —2.1 is to show a more recognizable figure because it
is hard to see the change of directions from the original figure. First it is checked
that a small change of the parameter does not make a drastic change of the result.
Therefore from this figure we can understand the behavior of the orginal case as
well. The original figure of the left panel only shows the straight lines. The right
panel of the original figure also shows no change in §{2g direction. This point is
expected to be a saddle point from the stabiltiy condition v < wp — w. From this
figure we can see a very small but noticable change in 65 direction which makes

it a saddle point. Next, when S = —3 the phase portraits are generated from the
matrix :
3(1 —w) —%(wB —w+3)
0 3(1 —wp — 37)
The phase portrait in the case of v = 0.25, w = 0 and wg = —1 is shown in

Fig. This shows a typical behavior of an unstable point. Trajectories diverge
out from the orgin. It agrees with the result from the stability condition for an
unstable point, (w — wg)/3 > . The phase portrait in the case of v = —0.25,
w = 0 and wg = —1 is shown in Fig. .10] This shows a typical behavior of
an unstable point as well and also corresponds to the stability condition for an
unstable point, (w — wp)/3 > . The phase portrait in the case of v = 2, w = 0
and wg = —1is shown in Fig. This shows a typical behavior of a saddle point
diverging horizontally and converging vertically. This agrees with the result from
the stability condition for a saddle point, (w — wp)/3 < ~. The phase portrait in
the case of y = —2,w = 0 and wg = —1 is shown in Fig. This is an unstable
point as expected from the stability condition, (w — wg)/3 > 7.
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Figure 4.5 Phase portrait in the case of 7 = 0.25, w = 0 and wg = —1 for the fixed point

0. The center is the origin and the axes are .5 and §{2g, respectively. It

is an unstable point.

3and Qp =

S:

e aye
Y ¥ LS

Figure 4.6 Phase portrait in the case of v = —0.25, w = 0 and wg = —1 for the

0. The center is the origin and the axes are 4.5 and 6{)g,

respectively. It is an unstable point as well.

fixed point S = 3 and Qp
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S = 3 and Qg = 0. The center is the origin and the axes are §.5 and J{2p, respectively. It
is an unstable point as well.
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Figure 4.8 Phase portrait in the case of v = —2.1,w = 0 and wg = —1 for the fixed point
S = 3 and Qp = 0. The center is the origin and the axes are J.5 and 62, respectively. It
is a saddle point.
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Figure 4.9 Phase portrait in the case of 7 = 0.25, w = 0 and wg = —1 for the fixed point

0. The center is the origin and the axes are §.5 and d{2g, respectively.

This shows a typical behavior of an unstable point.

S = —3and Qg

Figure 4.10 Phase portrait in the case of v = —0.25, w = 0 and wg = —1 for the

0. The center is the origin and the axes are 4.5 and §Q)g,

respectively. This shows a typical behavior of an unstable point as well.

fixed point S = —3 and (g
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Figure 4.11 Phase portrait in the case of v = 2, w = 0 and wg = —1 for the fixed point

respectively.

0. The center is the origin and the axes are §.5 and d(g,

This shows a typical behavior of a saddle point diverging horizontally and converging

vertically.
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4.1.3 The anisotropic fixed point I

(we—y-Dwp+3y-1) _ 67
(wp + v —1)? T gty -1
It shows a balanced expansion in different directions. The eigenvalues are
{3(MB+7_ 4ry? )’ 3(wB—7—1)(wB+3'y—1)}
wp+7y—1 2w +v—1)
For convenience we assume w = 0 and restrict only wg < w. We have a stable
node if either wp + v > 1 or it satisfies both

2 <1467 + \/1+16wB(wB—1)

0=0, QO =

(4.6)

and

1467 < 2wp + 2¢/1+ 16wp(wp — 1)
We find a saddle point if either

wp <1479 A 1467+ +/1+16wp(wp —1) < 2ws

or

wp+37<1 A 2wp+ /14 16wp(wg —1) <146y

The fixed point becomes unstable if either 1 + v < wp or

3y+wp>1 AN y+wp <1

| [ stable point
[ saddle point
1 || unstable point

_3} ‘ ‘ ; ; ; .
-30 -25 -20 -15 -10 -05 0.0

wp

Figure 4.13 Region plot of the anisotropic fixed point It shows the stability of the
fixed point according to dark energy parameter wg and . x axis is wp and y axis is . The
darkest region represents the range of having a stable point. The second darkest region
corresponds to the area of having a saddle point. The brightest region represents the range
of having an unstable point.
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Since the condition in mathematical description is rather complicated, the region
plot gives a better visualization here. The region plot of the anisotropic fixed
point 4.1.3] is shown in Fig. #.13] It shows the stability of the fixed point ac-
cording to dark energy parameter wg and 7. wp is restricted by the assumption
wp < w = 0. If wg and ~y are in the darkest region the fixed point is a stable point.
In the gray area (the second darkest one), the fixed point becomes a saddle point.
The fixed point is an unstable point in the rest region (the brightest one).

4.1.4 The anisotropic fixed point 1T

3
Q=0, Qp=-217 g 3wst7) 4.7)
4y 2y

We can find two eigenvalues as below

5 \/714 [ 6934+72(3 + 2wp)+27(2 — 3wp)wp —2(wp —1)w} |
2|1+
1 7

Again assuming wg < 0, it is a saddle point if either 0 < wp + v < 1 or

7 <0 A 2wp <1467+ +/1+16wp(wg —1)

or

¥>0 A 146y <2wp+/1+ 16wg(wp — 1)

The fixed point becomes a stable point under the certain condition as well. How-
ever the stability condition for this fixed point is too long so it is not written here,
but is shown in Fig. [4.14] It shows the stability of the fixed point according to dark
energy parameter wg and . In the given assumptions, the fixed point is an attractor
when wp and + stay in the darker region. The fixed point become a saddle point
when they are in the brighter area.

Note that when wp + v > 0, (2 becomes negative. A fixed point does not exist
physically for parameter values which would result in negative energy densities.

4.1.5 The scaling solution

q — 37> + (1 +w — 2wp) + (w — wp)(wp — 1)
- 4y ’ (4.8)
(1-w)(w—ws—") 3(wp —w+7)

Qp = S =
B 42 ’ 2y

It is a physically distinct fixed point from the former, since the universe has matter.
When 0 < 2 < 1 we have a scaling solution since the matter energy density scales




38 CHAPTER 4. FIXED POINTS IN A FLAT GEOMETRY

] M stable point
[ saddle point
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wp

Figure 4.14 Region plot of the anisotropic fixed point It shows the stability of the
fixed point according to dark energy parameter wg and . x axis is wp and y axis is . The
darker region represents the range of having a stable point. The brighter region represents
the range of having a saddle point.

with the other components so that their relative amount is kept constant. We can
find two eigenvalues from the fixed point as below

3 Wi
HCEE)
where

w? = 411 -w) [6')/3 — ~7%(5w — 2wp — 3)
—27(w — 3wp + 2)(w — wp) — 2(w — wp)*(wp — 1)]

However the assumption wg < w = 0 makes it exactly the same as a fixed
point @.7) for S and Qp. It turns out to have exactly the same stability condi-
tions as well in this limit. Here we present the perturbation equations of this fixed
point without assumptions for parameters :

3(1 - w)(v? +27(w — wp) — (w — wp)?)

B]_ - — 472 ’
B, — Iy +w —wB)(3’y—w+wB)’
4y
.- _( —w)(27? +7(1 —w) = (1 —w)(w —wp))(y —w +ws)
3 — 473 )
B, — 301 —w)(y —w+ wp)?

42
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where By, B2, B3 and By are the coefficients of the perturbed terms of 4.5 and §{2g
as defined in (3.36)). If we assume w = 0, then these reduce to the coefficients of
the perturbed terms in former fixed point exactly.

4.2 Numerical solutions

Now we can compare our analytical considerations with the numerical computa-
tions. Since our two evolution equations (3.26)) and (3.28)) are the ordinary differen-
tial equations, it can be solved for time. In order to solve this, the initial conditions
are needed. We can study the relevant solutions for the dark energy problem by
setting a dust-dominated universe, w = 0 as our initial condition. The results only
depend on dark energy properties, wg and 7.

The phase portrait in the case of v = 0.25 and wg = —1 is shown in Fig. 4.13]
The solution is shown at the origin. Trajectories converge towards the origin
horizontally, but diverge vertically which make it a saddle point as expected. The
solution (#.3)) is an unstable point, which is at (-3, 0). Trajectories starting around
this fixed point move away from the starting point. The solution is a stable
point as expected from the stability condition. The calculated value of (@.6) is
(—0.857,0.918) which attracts trajectories from everywhere. This figure agrees
completely with the analysis of each fixed point, Figure .1} {.5]and [4.9]

1.0

\\V/ %

0.8

0.6
Qg
0.4
0.2
0.0
-3 -2 -1 0 1 2 3
S

Figure 4.15 Phase portrait in the case of v = 0.25 and wg = —1. The axes are .S and g,
respectively.
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The phase portrait in the case of v = —0.25 and wg = —1 is shown in Fig. [#.16]
It shows mostly similar behavior for the solutions @.2)), @.3) and {.6). The cal-
culated value of (£.6) is (0.666,0.951). This figure agrees completely with the

analysis of each fixed point, Figure 4.2 [d.6]and [@.10}

1.0 d ) T N\ \‘W 2

0.8
0.6
Qg

0.4

0.2

Figure 4.16 Phase portrait in the case of v = —0.25 and wg = —1. The axes are S and
g, respectively.

1.0
0.8
0.6

Qg

0.4

f/x

0.0
-3 -2 -1 0 1 2 3

Figure 4.17 Phase portrait in the case of v = 2 and wg = —1. The axes are S and (g,
respectively. This is a scaling solution.



4.2. NUMERICAL SOLUTIONS 41

The phase portrait in the case of v = 2 and wg = —1 is shown in Fig. This is
a scaling solution. Trajectories starting from the one of the solution (4.3) at (3, 0)
all go towards the origin which proves that it is an unstable point. The origin,
solution of is stable point. The other fixed point of at (—3,0) is a saddle
point. Trajectories starting from the positive numbers of bottom curve to the origin.
This figure agrees completely with the analysis of each fixed point, Figure {.3]
and as well.

The phase portrait in the case of v = —2 and wg = —1 is shown in Fig. F.18] It
can be easily checked that all trajectories from the bottom converge to the certain
point. The solution of (4.2) is a saddle point converging horizontally and diverging
vertically. One of the solution at (3,0) is another saddle point. Trajectories
beginning from the bottom at the left side of this point move to left, on the other
hand trajectories coming down from the top at the right side slide to right. The
other solution of (4.3) at (—3,0) an unstable point. The solution of shows
very interesting behavior. In this case, the eigenvalues of are complex con-
jugates. According to the stability condition, the sign of the real part determines a
behavior. Here it is negative and it is an attractor. The calculated value of is
(2.25,0.188). This figure agrees completely with the analysis of each fixed point,

Figure {.4 [4.8]and [4.12]as well.
1.0 /
0.8

0.6

Qg

0.4

0.2

0.0
-3

Figure 4.18 Phase portrait in the case of ¥ = —2 and wg = —1. The axes are S and (g,
respectively.
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0.6

0.4

0.2

Figure 4.19 Contour plot of {25 according to wg and + in a flat universe. It represents
the asymptotic state of dark energy in the universe starting from a matter-dominated state.
The axes are v and wg, respectively. The contour represents the value of the dark energy
density paramter (2g.

The contour plot of () according to wg and v in a flat universe is shown in
Fig. [F19] It represents the asymptotic state of dark energy in the universe start-
ing from a matter-dominated state. The future is determined by the dark energy
parameters wg and . The contour represents the value of the dark energy density
paramter {)g. The darkest area (red area) corresponds to an isotropically expanding
matter-dominated universe, since there is no dark energy in that universe eventu-
ally, it will be matter-dominated forever. The brightest area (yellow area) represents
when there is no matter in it. Therefore the universe is dominated by dark energy
and expands anisotropically forever when (25 = 1. Otherwise it exhibits a scaling
model between 0 < Qp < 1.

The contour plot of 2 according to wg and + is shown in Fig. [#.20, Note that
here does not mean the total energy density of the universe. As it has been used so
far, it is a parameter of dark matter (perfect fluid). It shows the asymptotic state of
dark matter in the universe. FRLW universe is used as an initial condition. Even
though the sum of €2 and {25 does not become simply one due to the presence of
shear S, mostly overall figure shows the opposite state of (2p.

The contour plot of shear S according to wg and ~ is shown in Fig. .21} It
describes the asymptotic state of shear in the universe starting from a matter-
dominated state. The red area of Figure [.19] and the yellow area of Figure {.20]
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corresponding to v4+wp > 0 in this plot means isotropization, .S = 0. The possible
range of shear S is obtained from the generalized Friedmann equation (3.23).

Zf 1 0

I 1.0
n ]

I 0.8

wp Of 0.6

_1: 0.4

I 0.2
_27

I 0
31

Figure 4.20 Contour plot of {2 according to wg and . The axes are y and wg, respectively.
The contour represents the value of the dark energy density paramter 2.

Figure 4.21 Contour plot of shear S according to wg and ~. It describes the asymptotic
state of shear in the universe starting from a matter-dominated state. The axes are -y and
wg, respectively. The contour represents the value of the dark energy density paramter S.
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Chapter 5

Fixed points in a curved geometry

5.1 Analytical stability analysis

Let us finally include curvature in the system. There has been various ideas about
the possibility that the present horizontal scale can be related to the anisotropies.
Also, if anisotropy and the curvature have a common cosmological origin with
accelerating expansion of the universe, it will explain the possible properties of
dark energy (Koivisto et al.[2011). Here, we consider a curved geometry with a
preferred axis which is classified into two cases. When k is positive, we have the
Kantowski-Sachs metric

ds® = —dt* + b*(t)dy* + a*(t) [de + Vil sin2(\k\§§)d¢2} (5.1)

and when £ is negative, we have the Bianchi III metric

1
ds® = —dt® + b*(t)dy® + a*(t) [de + ] sinh2(|k|%§)d¢2} (5.2)
To find a fixed point for a curved geometry mostly similar computations are con-
ducted as a flat case. However due to the presence of a curvature we have a pertur-
bation equation for K
K =Ky+ 0K (5.3)

where K is the background value which is our fixed point. Also we have an
additional assumption K’ = 0 K’ = 0. In the process of getting rid of 2 by using
Friedmann equation, €2 is needed to be newly defined from (3.33)

1 1
Q=1-Og—-8*--K 5.4
B 95 5 5.4

45
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Then new perturbation equations are expanded to first order as it is done before

58" = Ci05+C500 +C30K
59;3 =Cy0S +C5608 +Cs0K (5.5
SK' = C7388 + Cs 608 + Co 6K

which can be written in a matrix form :

55’ Ci Cy C3\ [6S
s | =(cs ¢ Cs| (69 (5.6)
5K’ C; Cs Cy) \ 6K

Now we can find the eigenvalues from the characteristic euqation to figure out how
fixed points behavior under the perturbations. Our system with curvature turns out
to have 3 fixed points.

5.1.1 An anisotropically expanding empty universe

3 9
Oa B 05 S 9’ 4 ( )
There is neither perfect nor imperfect fluid in this universe. With curvature param-

eter K we can find three eigenvalues as follow

3
(2 5 )

The solution is a stable node if both w > 0 and wg > 0, otherwise it is a saddle
point.

5.1.2 An anisotropically expanding matter-dominated universe

9
Q=-3w, Qp=0, S:%(H&J), K=—(1-w)(l+3w) (58

We have three eigenvalues

3
{B(w + 3w — wg), ~21 (1 —wEt /(1 -wld+Tw+ 24w2))}
If w = —1/3, density parameter for matter {2 becomes unity and all other variables
become zero. In that case, this recovers FLRW universe (4.2). If w = 0, this
becomes exactly the same as the previous empty universe case (5.7). Generally the
solution becomes a stable node if

W — W

3w

1
—§<w<0 ANy >
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otherwise it is a saddle point except for when

w>1 A 'y;éwB_w

3w

Figure 5.1 3D region plot of the fixed point The mesh region in the box represents a
stable region. If w, wp and ~ have values in this region, the fixed point becomes an attractor.
If they have values outside the mesh region, but still remain in the box, then the solution
becomes a saddle point. The box does not include the region where w > 1.

5.1.3 The anisotropic fixed point

Q =0,
Qp = _ﬁg?
(1+3y)
o _ 3(1+3y+ ) (5.9)
2(1+3y)
o _ 9Bwi+2ws(3y - 1) — (1+37)%)

4(1 + 3v)?
We find three eigenvalues as below

3wp 3 [wB £ 7«
3w, - | — -1
1+ 3y 4\ 143y

2= (1+37)* +6(1+37)(1 + 4y)wp + (17 — 487)wi — 24wi

where

Recall the physical requirement of positive energy density parameters. The param-
eter region for which Qg < 0 is probably not physically consistent. A general
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stability solution for this fixed point is very complicated. Here we look at the fol-
lowing conditions of our interest.

(a) First we assume w = 0 and restrict only wg < w as before. Then the
solution becomes a stable node if both

wp +2v/(wp — 1)wp < 1+ 37

1 —1
wp>—= || 143y < wp+4v2wply )
8 8wp — 1

It is a saddle point if either

0<1+4+3y < wB+2\/(wB—1)wB

or at the same time if it satisfies both 1 4+ 3y < 0 and

1 wB—l
> —— — 42 “—<1 3
wp > 3 || WB \/_|w]3| Sop —1 = + 3y

The region plot of the anisotropic fixed point [(a)| is shown in Fig. [5.2] It
shows the stability of the fixed point according to dark energy parameter wg
and . In the given assumptions, the fixed point is an attractor when wp and
~ have values in the darker region. The fixed point becomes a saddle point
when they have values in the brighter region.

and

3F

\e]

—_

| [ stable point
[ saddle point

—3! : ‘ ‘ ‘ ‘ /]
-30 -25 -20 -15 -10 -05 0.0

wp

Figure 5.2 Region plot of the anisotropic fixed point It shows the stability of the fixed
point according to dark energy parameter wg and . x axis is wg and y axis is . The
darker region represents the range of having a stable point. The brighter region represents
the range of having a saddle point.
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(b) The second interesting case is found by assuming w = 1/3 and wp < w.

In that case, we have an attractor if either[(D)] or[2)] or[3)]
@® if both wg < —1/8 and

wp — 1
1+ 37 +2¢/(wp — Dwn <wp < 1437 +4v2wp|y/
\ 8o =

—1
@ if wB+2m<l+3’YSWB+4\/§‘WB‘\/;B71
WB —

® ifboth —1/8 < wp < 0 and
1+3y+2y(wp — Dwp <wp || ws+2y(wp—1wp <1+ 3y

The solution is a saddle point if either [(D] or [@)] or
(D ifboth wg < 0 and

1
14+3v+2y(wp— 1w <wp A 7<—§

(@ if both wg < 0 and

1 1
—7<’y<7(wB—1+2\/(wB—1)wB)

3 3
@ ifboth 0 <wp < 1/3 and 1+ 3y # 0.

The region plot of the anisotropic fixed point [(b)| is shown in Fig.[5.3] It
shows the stability of the fixed point according to dark energy properties wp
and ~. In the given assumption, the fixed point is a stable point when wp and
~ stay in the darker region. The fixed point become a saddle point when they
are in the brighter region.

(c) Next, we look at the cases of wg +v = —1/3 and wg < w.
The solution is a stable node if w > —1/3 and wp > —1/2.
It is a saddle point if at least one of the conditions [(1)| - [(4)| given below is
true.
@© ifboth w < —1/3 and wp > —1/2
@ ifw=-1/3
@ ifboth w <0 and wg > —1/3
® ifboth w > 0 and

<wp<0 || wg>0

L =
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| @ stable point
[ saddle point

-3L ‘ ‘ ‘ ‘ ‘ ‘
-30 -25 -20 -15 -10 -05 00

wp

Figure 5.3 Region plot of the anisotropic fixed point It shows the stability of the fixed
point according to dark energy properties wg and . x axis is wg and y axis is . The
darker region represents the range of having a stable point. The brighter region represents
the range of having a saddle point.

(d)

This solution corresponds to a shear-free condition. In this case, the mat-
ter stresses cancel the effect of anisotropic curvature as a generator of the
shear. Such models thus allow significantly larger anisotropies, which how-
ever can be constrained by the anisotropic modulation of the distance mea-
surements, such as the directional dependence of the luminosity-distance re-
lation that can be probed by the supernovae Ia light curves
2011). These models thus provide an interesting alternative to the usual
Friedmann-Robertson-Walker cosmology. Here, we can take a look at the
issue of the stability of the shear-free condition. In realistic models, in ad-
dition to the anisotropically stressed fluid that supports the shear-free condi-
tion, there would also be usual isotropic matter source.

The region plot of the anisotropic fixed point [(c)| is shown in Fig.[5.4] It
shows the stability of the fixed point according to the equation of state pa-
rameters wp and w. In the given assumption, the fixed point is a stable point
when wp and w stay in the darker region. The fixed point become a saddle
point when they are in the brighter region.

More specifically, we assume wg = —1/3 and wp < w.
The fixed point is a stable node if either [(D)] or[2)] or [3)}
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Figure 5.4 Region plot of the anisotropic fixed point Here w and wp are the axes.
In the given assumptions, the fixed point is an attractor when w and wg have values in
the darker region. The fixed point becomes a saddle point when they have values in the
brighter region.
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Figure 5.5 Region plot of the anisotropic fixed point|(d)} Here v and w are the axes. In the
given assumptions, the fixed point is an attractor when y and w have values in the darker
region. The fixed point becomes a saddle point when they have values in the brighter
region.
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The region plot of the anisotropic fixed point[(d)]is shown in Fig. [5.5]
It shows the stability of the fixed point according to w and . In the
given assumption, the fixed point is a stable point when w and ~ stay
in the darker region. The fixed point becomes a saddle point when they
are in the brighter region.
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Figure 5.6 Contour plot of dark energy density 25 according to wg and < in a curved
universe. It represents the asymptotic state of dark energy in the universe starting from a
matter-dominated state. The axes are v and wg, respectively. The contour represents the
value of the dark energy density paramter (2.

5.2 Numerical solutions

Now we can compare our analytical considerations with the numerical computa-
tions. Since our three evolution equations (3.26)), (3.28)) and (3.29) are the ordinary
differential equations, it can be solved for time. In order to solve this, the initial
conditions are needed. We can study the relevant solutions for the dark energy
problem by setting a dust-dominated universe, w = 0 as our initial condition. The
results only depend on dark energy properties, wg and +.

The contour plot of dark energy density {25 according to wg and -y in a curved uni-
verse is shown in Fig.[5.6] It represents the asymptotic state of dark energy in the
universe starting from a matter-domiated state. Therefore the future is determined
by the dark energy parameters wp and «y. The contour represents the value of the
dark energy density paramter (2g. The darkest area (red area) corresponds to an
isotropically expanding matter-dominated universe, since there is no dark energy
in that universe eventually, it will be matter-dominated forever. The brightest area
(yellow area) represents when there is no matter in it. Therefore the universe is
dominated by dark energy and expands anisotropically forever when 2 = 1. Oth-
erwise it exhibits a scaling model between 0 < g < 1. Generally it shows a
similar behavior with a flat case.
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Figure 5.7 Contour plot of dark matter density €2 according to wg and < in a curved
universe. It represents the asymptotic state of dark matter density in the universe starting
from a matter-dominated state. The axes are v and wg, respectively. The contour represents
the value of the dark matter density paramter €.

The contour plot of dark matter density parameter {2 according to wg and  in a
curved universe is shown in Fig.[5.7} FRLW universe is used as an initial condition
as well. Generally it shows a similar behavior with a flat case.

The contour plot of shear S according to wg and -y in a curved universe is shown in
Fig.[5.8] FRLW universe is used as an initial condition as well. The possible range
of shear S is obtained from the generalized Friedmann equation (3.23)). Generally
it shows a similar behavior with a flat case.

Figures [5.9/and[5.10|depict the variation of density parameters versus cosmic time
t as example case%L For better comparison shear .S and curvature K terms can
be transformed as a form of density parameter by making use of the generalized
Friedmann equation in[3.23] The generalized Friedmann equation can be rewritten
as

1 1
Q+QB+§S2+§K=1 (5.10)

'In these plots, a specific time ¢ does not have a significant importance. Here we let time evolve
enough so that it can reach asymptotic state if it is possible in that model.
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Figure 5.8 Contour plot of shear S according to wg and  in a curved universe. It repre-
sents the asymptotic state of shear in the universe starting from a matter-dominated state.
The axes are v and wg, respectively. The contour represents the value of shear S.

which yields[]
1 1
Qs = 532 and Qg = 2K (5.11)

In order to avoid confusion, here dark energy density €2 is newly defined as .
These figures show how each density parameters vary as time evolves depend-
ing on different dark energy properties in anisotropic curved universe. A matter-
dominated flat universe is used as an initial condition.

The plot in case of w = 0,wg = —1 and v = —2 is shown in Fig.[5.9] Roughly
shear and dark energy grow and dark matter decays. In detail, curvature parameter
decrease gradually but it is relatively very small compared to other parameters. As
a consequence, all the density parameters become stable. This model ends up with
fairly high quantity of shear property.

The plot in case of w = 0,wp = —1 and v = 2/3 is shown in Fig.|5.10} This case
satisfies a shear-free condition. A curvature parameter grows to a high degree with
a dark energy parameter. On the other hand, shear does not grow. More specifically
a shear term grows, relatively very small though, but it dies out as a curvature term

Note that the sign of newly defined curvature paramter as in relative density parameter form
is negative. It can conflict with a formal definition of curvature paramter in Chapter 1. However
it is purely derived from our phase variable K and for simplicity makes the sum of all the density
parameters be 1.
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Figure 5.9 Plot of density parameters as a function of time. It is a log-linear plot. This is
one of the example case w = 0,wp = —1 and v = —2

grows. Dark matter decays as time evolves. This model ends up with fairly high
amount of curvature.

Let us take a look at more realistic cosmological models which resemble the uni-
verse we live in. Figures[5.11)and [5.12]are in e-folding time scale N which makes
today N = 0. The evolution of universe model in the case w = 1/3,wp = —1 and
v = 0.05 is shown in Fig.[5.11] Hence, here {2\ actually represents a radiation
density parameter. Shear parameter decays as time goes by, therefore this model
isotropizes at late times. This figure shows that in this model, a universe is domi-
nated by shear at early times and then is dominated by radiation. Later it goes over
to the accelerating stage.

The evolution of universe model in the case w = 0,wg = —1 and v = 0.05 is
shown in Fig. [5.12] Here, Qy represents a matter density parameter as usual. A
shear parameter behaves similarly with Fig. however in this model it starts to
decay early and then isotropizes. A stage transition from shear to matter and from
matter to dark energy is shown clearly. The density parameter values for today
correspond to the observations as well. It seems interesing that the future for both
cases will reach dark energy domination.
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Figure 5.10 Density parameters as a function of time. It is a log-linear plot. This is
another example case w = 0,wp = —1 and v = 2/3. It is a shear-free condition as well.
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Figure 5.11 Plot of density parameters as a function of e-folding time scale N. This is
one of the example case w = 1/3,wp = —1 and v = 0.05
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Figure 5.12 Plot of density parameters as a function of e-folding time scale N. This is
one of the example case w = 0,wp = —1 and v = 0.05



Chapter 6

Conclusions

In this work, we studied the possibility that the expansion of the universe in an
accelerating rate is caused by an anisotropic equation of state. The motivation of
this work comes from the CMB observations which seems to suggest the statistical
anisotropy of our universe and the need to test the basic assumptions of cosmology.
From the investigation of the anisotropic background dynamics we found that there
exists an anisotropic scaling solution for a flat universe and there is no scaling
solution for a curved universe.

6.1 Summary and conclusions

We started by parameterization for anisotropic metric which includes three differ-
ent space-times in their axisymmetric limit. Furthermore we considered a two-fluid
system, where only one of the fluids is responsible for possible anisotropic proper-
ties. This anisotropic fluid is considered as a background of the system. The equa-
tion of state parameter for perfect fluid is defined as w and for anisotropic fluid wg.
Depending on curvature, the metric is described by the Bianchi I (flat), Bianchi III
(negatively curved) and Kantowski-Sachs (positively curved) geometry in terms of
the skewness parameter . Background dynamical system is constructed in terms
of new phase variables, shear S, energy density of perfect fluid €2, energy den-
sity of anisotropic fluid (2, and curvature K. Rewriting the Einstein equations
in terms of the new phase variables yields the evolution equations for each phase
variable with respect to e-folding time scale INV. The next step is to obtain the fixed
points by solving these evolution equations. The stability of the fixed points was
checked under the small perturbations around the fixed point for a flat universe and
curved universe separately. In particular, for a curved geometry, the stability of the
shear-free condition is checked. The generic asymptotic evolution of the universe
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in a simple case is obtained as well. A scaling solution was found both within the
matter dominated epoch as well as during an accelerated expansion phase in a flat
universe. Additionally, a numerical solution was found which agrees well with the
analytical solutions.

The results of this work is summarized in Table and

Solution 0O O S
FLRW 1 0 ;
Empty 0 0 »

DEI 0 (ws 7&:32 Eyoigltgy,l) _ fl,l
DE I 0 ~ wfyt” 3(w237;r7)
R, Y

Table 6.1 Fixed points in a flat geometry in the limit of axisymmetry in terms of equations
of state w, wp and skewness paramter . Depending on the evolution of expansion of the
universe, the names of solutions are the FLRW, Empty, Dark Energy (DE) and Scaling
solution. The fixed point corresponds to an anisotropic expansion unless .S = 0.

Solution Q Qp S K
3 9
Empty 0 0 5 -3
Matter — —3w 0 3(1+ 3w) Hw—1)(Bw+1)
DE 0 __ 3ws 3(1+3v+3ws) 9(3wa+2wp (37—1)—(1+3v)?)
(1+37)2 2(1+37) 4(1437)?

Table 6.2 Fixed points in a curved geometry in the limit of axisymmetry in terms of equa-
tions of state w, wg and skewness paramter . Depending on the evolution of expansion of
the universe, the names of solutions are the Empty, Matter, Dark Energy (DE) solution.

6.2 Outlook

This work is done in phenomenological and theoretical aspects. An approach in
aspect of cosmological observations would help to understand it better. In par-
ticular, explicit constraints can be derived from the amplitude of the quadrupole
anisotropy in the CMB. Moreover, the luminosity distance-redshift relationship of
the supernovae of type Ia can be used to constrain it. Therefore, within the bounds
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from observational data, the anisotropy can be beneficial as a potential explanation
of various anomalies in the CMB at the largest angles. What’s more, the possibility
of an anisotropic generalization of the cosmological constant and inhomogeneous
cosmology of anisotropic model for a curved geometry can be studied as well.
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