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Abstract. In their paper Barndorff-Nielsen, Benth and Veraart [2] employ so called
Ambit fields to model electricity spot-forward dynamics. We briefly introduce and discuss
Ambit fields in the setting of modelling electricity forward markets, and introduce a novel
method for approximating general ambit fields by a linear combination of ambit fields
driven by exponential kernel functions (as has already been done in the null-spatial case
of Lévy semistationary processes by Benth, Eyjolfsson and Veraart [12]) by representing
the deterministic kernel function as an integral over its Fourier domain. Moreover we shall
study examples of ambit fields with ill behaved kernel functions to illustrate the usefulness
of our method for pricing purposes.

1. Introduction

Recently some effort has been put into studying, and applying so called ambit fields to
model various tempo-spatial phenomena continuously in time and space. Roughly speak-
ing, an ambit field is a tempo-spatial random field which is defined as an integral over
a random measure (a Lévy basis) where the integrand is a deterministic function times
a stochastic volatility/intermittency field. Initially, tempo-spatial ambit fields and their
null-spatial analogues were suggested as tools for modelling turbulence in physics (see
Barndorff-Nielsen and Schmiegel [5, 6]), but have also been successfully applied to model
tumor growth [18].

In the current paper we shall however mostly be concerned with applications coming
from mathematical finance, namely electricity markets. Indeed some very particular fea-
tures of electricity market dynamics such as its non-storability (unless indirectly, e.g. in
water-magazines) and (semi-) heavy tails of logarithmic returns of forward prices call for
the application of non-standard models. Thus effectively traditional buy-and-hold hedg-
ing strategies break down and it is no longer necessary to stay within the semimartingale
framework. In their paper Barndorff-Nielsen, Benth and Veraart [2] suggest using ambit
fields as a general modelling framework for electricity forward contracts. They maintain
that the general structure of ambit fields is very well suited for catching the various id-
iosyncratic features displayed by such markets and illustrate how previously suggested
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modelling frameworks (such as the HJM modelling framework [17]) relate to the ambit
field framework. In particular they show that the very flexible structure of ambit fields
can be employed to model the spot forward dynamics and to price derivatives by means of
evaluating particular expected values over ambit fields.

Since these aforementioned expected values can rarely be evaluated explicitly, a matter
of interest is to develop efficient ways of estimating them. Indeed, supposing that we are
interested in pricing several derivatives depending on a parameter based on some underlying
ambit field spot-forward relationship, it may not be entirely straightforward to do so since
ambit fields can generally not be simulated be means of incremental simulation algorithms.
The reason for this non-applicability of incremental algorithms is that the integrand of a
general ambit field changes with the tempo-spatial parameter, so if one wants to evaluate
a given ambit field on a specific grid one has to perform a complete integration at each
grid point. This contrast the situation where the integrand is the same at each grid point,
since for such integrands it is sufficient to evaluate an incremental integral and add it to
the value at the previous close grid point to obtain the value at each point.

There are however some notable kernel functions that do accommodate incremental
simulation schemes for their corresponding ambit fields despite being dependent on the
tempo-spatial position. The most prominent ones being exponential functions. Indeed,
in their paper Barndorff-Nielsen, Benth and Veraart [2] suggest some ambit field models
with exponential kernel functions, and even outline how such a simulation algorithm can
be obtained for a specific example. In the current paper we shall outline how one can
approximate general ambit fields by means of a sum of finitely many ambit fields driven
by complex-valued exponential functions. This in turn means that we can obtain an
incremental simulation algorithm for general ambit fields.

More specifically, it is our goal is to extend the Fourier approximation methods first
introduced in the setting of power markets by Benth and Eyjolfsson [11] and analysed
further in Benth, Eyjolfsson and Veraart [12] in the setting of null-spatial ambit fields,
called Lévy semistationary processes, to more general ambit fields. Thus we first give a
general introduction to ambit fields and how they are defined, after which we introduce
the Fourier approximation method in the setting of ambit fields. Analogously to the
null-spatial case of Lévy semistationary processes the method consists of representing the
deterministic kernel function as an integral over its Fourier transform and approximating
the integral with a carefully selected finite sum. After which one may commute the sum
with the stochastic integral to obtain an approximation of a general ambit field as a sum
over finitely many ambit fields driven by ambit fields with exponential kernel functions.

As already mentioned, the novelty here is that for a given ambit field one obtains an
approximation of it as a finite sum over ambit fields with exponential kernel functions. Thus
enabling us to consider an iterative simulation scheme which would otherwise have been
impossible due to the tempo-spatial dependency of general kernel functions. Furthermore
we shall consider an example which illustrates the usefulness of our approach.

The paper is structured as follows. We begin with a preliminary section in which we
recount definitions needed to define ambit fields and give appropriate references to more
detailed accounts. This is followed by a section in which we define ambit fields and give
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some results on the L2 continuity of ambit fields with respect to kernel functions and
volatility fields, which are results that will be used throughout the rest of the paper. In
section 4 we introduce and analyse the Fourier representation method for ambit fields. In
section 5 we put our methods to work in the electricity forward setting, before drawing
some conclusive remarks in section 6. Finally in the Appendix we give proofs to some
auxiliary results.

2. Preliminaries

In the current section we shall briefly introduce the tools that are needed to define
ambit fields and give references to relevant papers. We begin by listing the tools needed
to define random measures and Lévy bases, followed by a brief analysis of Lévy bases and
the integral we shall work with in this paper. The main reference for the survey in this
section are Rajput and Rosinski [22] and Walsh [25], but in the setting of ambit processes
this theory is also recounted in e.g Barndorff-Nielsen, Benth and Veraart [4].

Throughout the paper let (Ω,F ,P) denote a probability space. Moreover for a Borel set
S ⊂ Rn, where n ≥ 1 let (S,S,Leb) denote the Lebesgue-Borel space where S = B(S) and
Leb denotes the Lebesgue measure. Now consider the subset of S which contains Borel
sets of bounded Lebesgue measure, Bb(S) = {A ∈ S : Leb(A) <∞}. Clearly it holds that
Bb(S) is a δ-ring, i.e. it is closed under finite union, relative complementation and countable
intersection. Furthermore, there exists an increasing sequence {Sn}n∈N ⊂ Bb such that
∪n∈NSn = S. Now, following Rajput and Rosinski [22], by a random measure M on (S,S)
we mean a family {M(A)}A∈Bb(S) of real-valued random variables on (Ω,F ,P) such that for
any sequence {An}n∈N of disjoint sets in Bb(S) we have that M(∪n∈NAn) =

∑
n∈NM(An)

holds almost surely, where the series converges almost surely. If moreover, for any sequence
{An}n∈N of disjoint sets in Bb(S) the random variables M(A1),M(A2), . . . are independent
then we say that M is an independently scattered random measure. Finally if for any
A ∈ Bb(S) the law of M(A) is infinitely divisible, i.e. if µ denotes the law of M(A) then
for each n ∈ N there exists a law µn such that µ∗nn = µ, where µ∗nn denotes the n-fold
convolution of µn with itself, then we say that M is an infinitely divisible random measure.

We are now ready to define the objects which are used as integrators in general ambit
fields. By a Lévy basis L on (S,S) we mean an independently scattered, infinitely divisible
random measure. We remark that the concept of a Lévy basis generalizes Lévy processes,
since by taking S = [0,∞), letting L({0}) = 0 and assuming stationarity of increments
one obtains a Lévy process by considering t 7→ L([0, t]).

2.1. Rajput and Rosinski’s integration theory. The following notation is useful in
the setting of Rajput and Rosinski’s integration theory. For a given random variable X we
shall throughout the paper employ the notation

C{ζ ‡X} := log(E[exp(iζX)])

to denote the cumulant (i.e. log-characteristic) function of X, where ζ ∈ R. Here and in
the sequel C{ζ ‡X} denotes the unique real solution of exp(C{ζ ‡X}) = E[exp(iζX)].
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Due to infinite divisibility a general Lévy basis has the Lévy-Khinchin representation

(2.1) C{ζ ‡ L(A)} = iζa∗(A)− 1

2
ζ2b∗(A) +

∫
R

(
eiζx − 1− iζx1[−1,1](x)

)
n(dx,A),

where a∗ is a signed measure on Bb(S), b∗ is a measure on Bb(S) and n(dx,A) is a Lévy
measure on R for fixed A ∈ Bb(S) and a measure on Bb(S) for fixed dx (see Rajput and
Rosinski [22]). Another important object is the control measure associated to a given Lévy
basis L with Lévy-Kinchin representation (2.1), which for a given A ∈ Bb(S) is defined by

(2.2) c(A) = |a∗|(A) + b∗(A) +

∫
R

min(1, x2)n(dx,A),

where | · | denotes total variation. Now again, by Rajput and Rosinski [22] it holds that the
Lévy measure n factorises as n(dx, dz) = ν(dx, z)c(dz) where ν(dx,A) is a Lévy measure
on R for fixed A ∈ Bb(S) and a measure on Bb(S) for fixed dx and c is the control measure
(2.2), and that a∗ and b∗ are absolutely continuous with respect to c, so that we may
write a∗(dz) = a(z)c(dz) and b∗(dz) = b(z)c(dz). It is moreover possible to employ the
Lévy-Kinchin formula in differential form to find that

C{ζ ‡ L(dz)} = iζa∗(dz)− 1

2
ζ2b∗(dz) +

∫
R

(
eiζx − 1− iζx1[−1,1](x)

)
n(dx, dz)

=

(
iζa(z)− 1

2
ζ2b(z) +

∫
R

(
eiζx − 1− iζx1[−1,1](x)

)
ν(dx, z)

)
c(dz)

= C{ζ ‡ L′(z)}c(dz),

where ζ ∈ R and L′(z) denotes the Lévy seed of L at z, which is defined as the infinitely
divisible random variable having Lévy-Kinchin representation

(2.3) C{ζ ‡ L′(z)} = iζa(z)− 1

2
ζ2b(z) +

∫
R

(
eiζx − 1− iζx1[−1,1](x)

)
ν(dx, z).

Having introduced the control measure, Rajput and Rosinski [22] proceed to introduce a
general integration theory for deterministic integrands integrated with respect to random
measures. For a given Lévy basis L on (S,S) this is achieved by first defining the integral
for simple integrands of the type f =

∑n
j=1 xj1Aj

, where Aj ∈ Bb(S) for j = 1, . . . , n are
disjoint as ∫

A

fdL :=
n∑

j=1

xjL(A ∩ Aj),

for any A ∈ S. Next consider the class of L-measurable functions, which are defined as
measurable functions f : (S,S) → (R,B(R)) such that there exists a sequence {fn} of
simple functions such that fn → f c-a.e. (where c is the control measure of L) and for
every A ∈ S the sequence {

∫
A
fndL} converges in probability as n→∞. Now for the class

of L-measurable functions, define∫
A

fdL := P− lim
n→∞

∫
A

fndL,
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for any A ∈ S. It can be shown that the integral is well defined in the sense that it does not
depend on the approximating sequence {fn}. Moreover, necessary and sufficient conditions
for the existence of the integral for a given integrand f : (S,S) → (R,B(R)) and Lévy basis
L with control measure (2.2) and Lévy seed (2.3) are as follows (see Rajput and Rosinski
[22], Theorem 2.7):

(2.4)

∫
S

|V1(f(z), z)|c(dz) <∞,

∫
S

|f(z)|2c(dz) <∞,

∫
S

|V2(f(z), z)|c(dz) <∞,

where for %(x) := x1[−1,1](x),

V1(u, z) := ua(z) +

∫
R
(%(xu)− u%(x))ν(dx, z), V2(u, z) :=

∫
R

min(1, |xu|2)ν(dx, z).

Finally (by Proposition 2.6 in Rajput and Rosinski [22]) if f is L-measurable and A ∈ S
then

C

{
ζ ‡
∫

A

fdL

}
=

∫
A

C{ζf(z) ‡ L′(z)}c(dz).

From which it follows that

(2.5) E
[∫

A

fdL

]
=

∫
A

f(z)E[L′(z)]c(dz)

and

(2.6) E

[(∫
A

fdL

)2
]

=

(∫
A

f(z)E[L′(z)]c(dz)

)2

+

∫
A

f 2(z) Var(L′(z))c(dz),

where A ∈ S. Thus in the case when the Lévy seed has zero-mean, E[L′(z)] = 0 for all
z ∈ S, the second moment (2.6) equation resembles an Itô isometry. Although we highlight
that here we are only dealing with deterministic f .

2.2. Walsh’s integration theory. Now let us summarize the integration theory of Walsh
[25], which as opposed to the integration theory of Rajput and Rosinski [22] is more liberal
in the sense that it allows stochastic integrands, but more restrictive in the sense that it
imposes a square integrability condition on the Lévy basis.

First of all, time and space are treated separately and we restrict the domain of the Lévy
basis to a bounded Borel set. Thus, suppose that L is a Lévy basis on (S × [0, T ],B(S ×
[0, T ])) where S is a bounded Borel subset in Rd, where d ≥ 1 denotes the space dimension,
and T > 0 is the finite time horizon. Then, we introduce a natural ordering induced by
time, by defining

Lt(A) = L(A, t) = L(A× (0, t]),

for any A ∈ Bb(S) and 0 ≤ t ≤ T . Now in order to employ the measure valued process
Lt(·) as an integrator analogously to standard stochastic integrals we impose that Lt(·) is
square integrable with zero mean. That is

Assumption 1. Lt(A) ∈ L2(Ω,F ,P) and E[Lt(A)] = 0 for all A ∈ Bb(S).
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Note that the zero mean part of the assumption can easily be circumvented by considering
the Lévy basis Lt(·) := Lt(·)−E[Lt(·)] in case Lt(·) has non-zero mean. Next, consider the
right-continuous filtration {Ft}t∈[0,T ] which is given by

Ft =
∞⋂

n=1

F0
t+1/n, where F0

t = σ{Ls(A) : A ∈ Bb(S), 0 ≤ s ≤ t} ∨ N

and N denotes the P-null sets of F . Now by adding the assumption L0(A) = 0 a.s. it
holds that {Lt(A)}t≥0,A∈Bb(S) is a so-called martingale measure with respect to the filtra-
tion {Ft}0≤t≤T (see Walsh [25]). Furthermore for t ∈ [0, T ] and disjoint A,B ∈ Bb(S)
the random variables Lt(A) and Lt(B) are independent. Thus in the setting of Walsh
[25] {Lt(A)}t≥0,A∈Bb(S) is an orthogonal martingale measure, and thus worthy, which is a
property that makes them suitable as integrators. Under Assumption 1 this implies that
for each A ∈ Bb(S), t 7→ Lt(A) is a square integrable martingale with respect to the filtra-
tion {Ft}t∈[0,T ] and that Lt(A) and Lt(B) are independent whenever A ∩ B = ∅ for any
0 ≤ t ≤ T . Finally we need to define the covariance measure Q which is given by the
quadratic covariation

(2.7) Q(A× [0, T ]) = 〈L(A)〉t ,
for t ∈ [0, T ] and A ∈ Bb(S).

Now Walsh [25] defines stochastic integration in the L2 sense as follows. For an elemen-
tary random field

ζ(ξ, s) = X1(a,b](s)1A(ξ),

where 0 ≤ a < t, a ≤ b, X is bounded and Fa-measurable and A ∈ Bb(S) the stochastic
integral with respect to L is defined as∫ t

0

∫
B

ζ(ξ, s)L(dξ, ds) := X(Lt∧b(A ∩B)− Lt∧a(A ∩B)),

for every B ∈ Bb(S). Letting T denote the set of simple random fields, i.e. finite linear
combinations of elementary random fields, we extend the definition of the integral to T by
defining the integral of elements in T as the corresponding linear combination of integrals
of elementary random fields. Now denote by P the σ-algebra generated by T , we say that
a random field is predictable if it is P-measurable. Then given the predictable random
fields consider the Hilbert space PL := L2(Ω× [0, T ]×S,P , Q) of predictable random fields
which fulfill ||ζ||2L <∞, where

||ζ||2L := E
[∫

[0,T ]×S

ζ2(ξ, s)Q(dξ, ds)

]
.

For simple integrands ζ ∈ T the following Itô isometry holds:

(2.8) E

[(∫
[0,T ]×S

ζ(ξ, s)L(dξ, ds)

)2
]

= ||ζ||2L.

Walsh [25] shows that T is dense in PL. Thus for for ζ ∈ PL there exists a Cauchy
sequence {ζn}n∈N ⊂ T such that ||ζ − ζn||L → 0 as n→∞. But due to the isometry (2.8)
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the sequence {
∫

[0,t]×A
ζn(ξ, s)L(dξ, ds)}n∈N is a Cauchy sequence in L2(Ω,F ,P) for any

0 ≤ t ≤ T and A ∈ Bb(S). Thus we define the stochastic integral of ζ as the L2(Ω,F ,P)
limit of the corresponding approximating sequence of integrals of simple functions. Finally
Walsh [25] proves that the Itô isometry (2.8) also holds for predictable integrands ζ ∈ PL,
and moreover it holds that the integral is a martingale measure.

Now consider weakening Assumption 1 to assume that Lt(A) ∈ L2(Ω,F ,P) is not neces-
sarily zero-mean and denote by Lt(·) := Lt(·)− E[Lt(·)] the centered process which fulfills
Assumption 1 and let Q be defined as before with L. Then, since the integral with respect
to L is a zero mean martingale for each B ∈ Bb(S) it holds that

(2.9) E
[∫

[0,T ]×S

ζ(ξ, s)L(dξ, ds)

]
= E

[∫
[0,T ]×S

ζ(ξ, s)E[L(dξ, ds)]

]
and

E

[(∫
[0,T ]×S

ζ(ξ, s)L(dξ, ds)

)2
]

= E

[(∫
[0,T ]×S

ζ(ξ, s)E[L(dξ, ds)]

)2
]

+ ||ζ||2L

+ 2E
[∫

[0,T ]×S

ζ(ξ, s)E[L(dξ, ds)]

∫
[0,T ]×S

ζ(ξ, s)L(dξ, ds)

]
.(2.10)

Notice in particular that when the integrand ζ is deterministic, the martingale condition
of the stochastic integral implies that

(2.11) E

[(∫
[0,T ]×S

ζ(ξ, s)L(dξ, ds)

)2
]

=

(∫
[0,T ]×S

ζ(ξ, s)E[L(dξ, ds)]

)2

+ ||ζ||2L.

In the setting of deterministic integrands it is particularly interesting to compare the
moments (2.9) and (2.11) to the moments (2.5) and (2.6) we obtained before in the setting
of Rajput and Rosinski [22].

2.3. Comparison of integration concepts. Now let us briefly study the similarities
and differences of the two proposed integration concepts, in particular the second moment
structure of the stochastic integrals.

Recall that the first and second moments of the Rajput and Rosinkski’s integral are
given by (2.5) and (2.6). By the Lévy-Kinchin representation (2.3) of the Lévy seed it
moreover holds that

E[L′(z)] = a(z) +

∫
|x|>1

xν(dx, z) and Var(L′(z)) = b(z) +

∫
R
x2ν(dx, z).

So by separating the time and space variables and integrating f = 1 over [0, T ]× S where
S is a bounded Borel set it follows that

(2.12) E[L(dξ, ds)] =

(
a(ξ, s) +

∫
|x|>1

xν(dx, ξ, s)

)
c(dξ, ds)
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and

(2.13) Q(dξ, ds) =

(
b(ξ, s) +

∫
R
x2ν(dx, ξ, s)

)
c(dξ, ds)

on [0, T ]× S. Thus, we reiterate what has already been pointed out by Barndorff-Nielsen
et al [1], namely that due to the above measure equivalence the weak integration concept of
Rajput and Rosinski is a generalisation of that of Walsh as long as deterministic integrands
are considered. On the other hand the integral due to Walsh is more suitable for studying
dynamic properties, such as martingale properties, since it is derived in the spirit of the
Itô integral as a tool to study stochastic partial differential equations (see Walsh [25]).

3. Ambit fields

In the current section we shall employ the integration concepts discussed in the previous
section to define ambit fields. Here we follow the definition of Barndorff-Nielsen et al
[1, 4]. As mentioned in Barndorff-Nielsen et al [4] ambit fields were initially defined using
the integration concept of Rajput and Rosinski [22]. We review how this can be achieved
before we discuss how one may employ Walsh’s [25] integration concept to define ambit
fields. Having done this, we shall give an overview of the similarities and differences of
the two respective approaches. We shall see that the integration concept of Walsh has the
advantage of allowing more general stochastic integrands as well as being more suitable
for studying dynamic properties, such as martingale properties, as already mentioned.
Whereas the integration concept due to Rajput and Rosinski is more flexible in the sense
that it does not impose any conditions on the Lévy basis. Finally we finish the section with
a result which is important in our setting, in which we employ the second order structure of
the integrals to prove a result on the L2-proximity of two different ambit processes driven
by the same integrator. A result which is formulated generally, so that it may be employed
for ambit fields defined by means of either Rajput and Rosinski’s theory, using the control
measure, or Walsh’s theory, using the quadratic covariation (see Lemma 3.1). We shall use
this result repeatedly throughout this paper.

Now let us state what we mean by an ambit field, before we discuss in what way we
define an ambit fields rigorously. Fix a spatial dimension d ≥ 1. An ambit field is a
tempo-spatial random field on the form

(3.1) Y (x, t) =

∫
A(x,t)

g(x, t; ξ, s)σ(ξ, s)L(dξ, ds),

where (x, t) ∈ Rd×R, A(x, t) ⊂ Rd×R is the so-called ambit set over which the integration
is performed for each (x, t) ∈ Rd × R, g : Rd × R× Rd × R → R is a deterministic kernel
function, σ is a non-negative stochastic space-time volatility field and L is a Lévy basis
defined on a suitable Borel subset of Rd×R. For a given curve $(θ) = (x(θ), t(θ)) ∈ Rd×R
we call

Xθ =

∫
A(θ)

g(x(θ), t(θ); ξ, s)σ(ξ, s)L(dξ, ds),

where A(θ) = A(x(θ), t(θ)), the corresponding ambit process.
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In many applications it is natural to assume that the ambit process is stationary in
time and nonanticipative and homogeneous in space. These effects can be achieved by
considering ambit fields of the type

(3.2) Y (x, t) =

∫
A(x,t)

g(x− ξ, t− s)σ(ξ, s)L(dξ, ds),

where (x, t) ∈ Rd × R, σ is a non-negative stochastic volatility field and L is a Lévy basis
and the ambit set is on the form A(x, t) = A+ (x, t) where A only involves negative time
coordinates.

For our analysis later it will moreover be convenient to extend the definition (3.1) of
ambit processes to allow complex kernel functions. Thus for a complex kernel function g a
Lévy basis L, volatility field σ and an ambit set A(x, t) we simply define a complex ambit
field Y (x, t) as the sum
(3.3)

Y (x, t) =

∫
A(x,t)

Re g(x, t; ξ, s)σ(ξ, s)L(dξ, ds) + i

∫
A(x,t)

Im g(x, t; ξ, s)σ(ξ, s)L(dξ, ds),

as long as the real-part (x, t) 7→
∫

A(x,t)
Re g(x, t; ξ, s)σ(ξ, s)L(dξ, ds) and imaginary-part

(x, t) 7→
∫

A(x,t)
Im g(x, t; ξ, s)σ(ξ, s)L(dξ, ds) ambit fields are well defined as real valued

ambit fields. For such a complex ambit field, we shall employ the notation (3.1), as before.

3.1. Ambit fields via Rajput and Rosinski. Recall from the previous section that
in the setting of Rajput and Rosinski the integrand is deterministic. Therefore we can
not directly apply the theory of Rajput and Rosinski to give meaning to ambit fields. If
however we assume that the stochastic volatility field and the Lévy basis are independent,
we may employ conditioning to define the ambit field. We shall therefore need the following
assumption.

Assumption 2. The stochastic volatility field σ is independent of the Lévy basis L.

Now consider the σ-algebra

Fσ
t (x) := σ{σ(ξ, s) : (ξ, s) ∈ A(x, t)}

which is generated by the history of σ in the ambit set A(x, t). Then, for a given a Lévy
basis L on (S,S) with control measure c, we may extend the integration theory of the
previous section to measurable integrands of the type f : (Ω× S,Fσ

t (x)⊗S) → (R,B(R))
by conditioning on the σ-algebra Fσ

t (x). Thus under Assumption 2 we give meaning to
the ambit field concept for any fixed (x, t) ∈ Rd × R.

3.2. Ambit fields via Walsh. In the setting of Walsh, by contrast, we have restricted
ourselves to Lévy bases on bounded domains, i.e. S×[0, T ] where S ⊂ Rd is a bounded Borel
set. However, extensions to unbounded S and infinite time intervals follow by standard
arguments (see Walsh [25], p. 289). Moreover, following Barndorff-Nielsen et al [4] we
need the following assumption.
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Assumption 3. For a Lévy basis L on (−∞, T ]×S, where S ∈ B(Rd) consider the centered
Lévy basis L := L− E[L]. We extend the definition of the covariation measure (2.7) of L
to an unbounded domain and define a Hilbert space PL as before with norm || · ||L extended
to an unbounded domain and an Itô isometry of the type (2.8). For fixed (x, t) ∈ Rd × R
it holds that

ζ(ξ, s) = 1A(x,t)(ξ, s)g(x, t; ξ, s)σ(ξ, s)

is integrable, ζ ∈ PL, where

||ζ||2
L

= E
[∫

Rd×R
ζ2(ξ, s)Q(dξ, ds)

]
<∞ and

∫
Rd×R

|ζ(ξ, s)|E[L(dξ, ds)] <∞.

Given the above assumption we may employ the integration theory of Walsh to define
ambit fields (for more details see Barndorff-Nielsen et al [4]).

3.3. Comparison and L2-proximity. At this point we have given two different defini-
tions of the ambit field concept. In this subsection we shall investigate to what extent they
are compatible and introduce L2-approximation results. In order to ease the notation, let
us first introduce the following function spaces.

For a given Lévy basis L, with Lévy seed L′ and control measure c, and an ambit set
A(x, t) let

L1 = L1(c, L′, A(x, t)) := L1(Rd × R,B(Rd × R), 1A(x,t)(ξ, s)|E[L′(ξ, s)]|c(dξ, ds))

and

L2 = L2(c, L′, A(x, t)) := L2(Rd × R,B(Rd × R), 1A(x,t)(ξ, s) Var[L′(ξ, s)]c(dξ, ds))

denote weighted L1 and L2 spaces in space-time and denote their norms by || · ||L1 and
|| · ||L2 respectively.

Now let us briefly study the ambit field concept, which we have just defined via two dif-
ferent approaches. First of all in the case of deterministic integrands and square integrable
Lévy bases the integrals coincide, since L2-convergence implies convergence in probability.
Moreover, when dealing with deterministic integrands, the Rajput and Rosinski integral
can be viewed as an extension of the Walsh integral, in the sense that it allows more gen-
eral Lévy bases as integrators, i.e. Lévy bases which are not necessarily square integrable.
For stochastic integrands which are independent to the Lévy basis, i.e. in the case when
Assumption 2 is fulfilled, it moreover holds that the resulting integrals have the same first
moment. To see this notice first that the first integral moment by means of Rajput and
Rosinski obtained by using (2.5) to conclude that for given real-valued ambit field Y (x, t)
given by (3.1) it holds that

E [Y (x, t)] = E [E [Y (x, t)|Fσ
t ]]

= E [||g(x, t; ·, ·)σ||L1 ] ,

which due to the measure equivalence (2.12) is equal to the moment (2.9) obtained by
means of Walsh. As for the second moment, in the setting of Rajput and Rosinski notice



AMBIT FIELDS VIA FOURIER METHODS IN THE CONTEXT OF POWER MARKETS 11

that we may employ conditioning and (2.6) to obtain

E
[
Y 2(x, t)

]
= E

[
E
[
Y 2(x, t)

]
|Fσ

t

]
= E

[
||g(x, t; ·, ·)σ||2L1

]
+ E

[
||g(x, t; ·, ·)σ||2L2

]
.(3.4)

However, this second moment may not be equal to the corresponding second moment
obtained by means of Walsh. Indeed unless the cross term (2.10) of the second moment
as obtained by Walsh is equal to zero, the second moments are not equal. The cross term
in turn is equal to zero whenever the corresponding Lévy basis L is centered, i.e. as zero
mean, or if the integrands are deterministic, as we have already mentioned. Finally note
that the Walsh integral is more general in the sense that it is well defined regardless of the
dependence structure between the stochastic volatility field and the Lévy basis.

Now let us state and prove a result on the L2-continuity of ambit fields with respect
to kernel functions and volatility fields. We shall need the following square integrability
assumption on the volatility field of a given complex ambit field (3.3). There exist a
constant κ2 > 0 such that

(3.5) E[σ(ξ, s)σ(ξ̃, s̃)] < κ2

holds for all (ξ, s), (ξ̃, s̃) ∈ A(x, t). We have the following result.

Lemma 3.1. Consider a complex ambit field Y (x, t) given by (3.3) and let

Z(x, t) =

∫
A(x,t)

h(x, t; ξ, s)σ(ξ, s)L(dξ, ds) and Z̃(x, t) =

∫
A(x,t)

g(x, t; ξ, s)ρ(ξ, s)L(dξ, ds)

denote complex ambit fields with a different kernel and volatility field respectively. Then

(1) if the condition (3.5) is fulfilled it holds that

E[|Y (x, t)− Z(x, t)|2] ≤ 2κ2(2||g(x, t; ·, ·)− h(x, t; ·, ·)||2L1 + ||g(x, t; ·, ·)− h(x, t; ·, ·)||2L2),

(2)

E
[∣∣∣Y (x, t)− Z̃(x, t)

∣∣∣2] ≤ 2(2||g(x, t; ·, ·)||2L1+||g(x, t; ·, ·)||2L2) sup
(ξ,s)∈A(x,t)

E
[
|σ(ξ, s)− ρ(ξ, s)|2

]
.

Proof. Let us first prove (1). To that end first assume that the ambit fields Y (x, t) and
Z(x, t) are real valued. Then in the case of Rajput and Rosinski we apply (3.4) and in the
case of Walsh the elementary inequality (x+ y)2 ≤ 2(x2 + y2), x, y ∈ R applied to

Y 2(x, t) =

(∫
A(x,t)

g(x, t; ξ, s)σ(ξ, s)E[L(dξ, ds)] +

∫
A(x,t)

g(x, t; ξ, s)σ(ξ, s)L(dξ, ds)

)2

,

together with the isometry (2.8) and (3.5) to conclude that

E[|Y (x, t)− Z(x, t)|2]
≤ 2(E

[
||(g(x, t; ·, ·)− h(x, t; ·, ·))σ||2L1

]
+ E

[
||(g(x, t; ·, ·)− h(x, t; ·, ·))σ||2L2

]
)

≤ 2κ2(||g(x, t; ·, ·)− h(x, t; ·, ·)||2L1 + ||g(x, t; ·, ·)− h(x, t; ·, ·)||2L2).
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Now for a complex ambit fields, notice that it holds that

E[|Y (x, t)− Z(x, t)|2] = E[|ReY (x, t)− ReZ(x, t)|2] + E[| ImY (x, t)− ImZ(x, t)|2]
So (1) follows by observing that |Re f |, | Im f | ≤ |f | holds for any complex valued function
f . Similarly (2) follows by observing that for real-valued ambit fields it holds that

E[|Y (x, t)− Z̃(x, t)|2]
≤ 2(E

[
||g(x, t; ·, ·)(σ − ρ)||2L1

]
+ E

[
||g(x, t; ·, ·)(σ − ρ)||2L2

]
)

≤ 2(||g(x, t; ·, ·)||2L1 + ||g(x, t; ·, ·)||2L2) sup
(ξ,s)∈A(x,t)

E
[
|σ(ξ, s)− ρ(ξ, s)|2

]
and extending the argument to complex ambit fields. �

Now let us explore what the Lemma implies in the case of ambit fields (3.2) that are
stationary in time and nonanticipative.

Corollary 3.2. Suppose that the kernel functions g and h in Lemma 3.1 are on the form

g(x, t; ξ, s) = g(x− ξ, t− s) and h(x, t; ξ, s) = h(x− ξ, t− s),

and that the ambit set is on the form A(x, t) = A+ (x, t) where A ⊂ Rd ×R is a bounded
set, and furthermore that the control measure c is absolutely continuous with respect to the
Lebesgue measure with Radon-Nikodym derivative fc such that

E[L′(ξ, s)] ∨ Var(L′(ξ, s)) ∨ fc(ξ, s) < K

holds for all (ξ, s) ∈ A(x, t) where K > 0 is a constant. Then

(1) if the condition (3.5) is furthermore fulfilled it holds that

E[|Y (x, t)− Z(x, t)|2] ≤ 2κ2(2K
4 Leb(−A) +K2)||g − h||2L2(−A)

(2)

E
[∣∣∣Y (x, t)− Z̃(x, t)

∣∣∣2] ≤ 2(2K4 Leb(−A) +K2)||g||2L2(−A) sup
(ξ,s)∈A(x,t)

E
[
|σs(ξ)− ρs(ξ)|2

]
,

where the integration in L1(−A) and L2(−A) is with respect to the Lebesgue measure.

Proof. We prove the first part of the Corollary, the second part is similar. By applying the
translational change of variables φ : Rd×R → Rd×R, (y, u) 7→ (x−y, t− u), Lemma 3.1
and the Cauchy-Schwarz inequality:

E[|Y (x, t)− Z(x, t)|2] ≤ 2κ2(2K
4||g − h||2L1(−A) +K2||g − h||2L2(−A))

≤ 2κ2(2K
4 Leb(−A) +K2)||g − h||2L2(−A).

�

We end this section by introducing a particular regularity condition on Lévy bases, under
which it follows that the corresponding control measure becomes absolutely continuous with
respect to the Lebesgue measure. Thus, obtaining a Corollary to our Lemma 3.1 under
the regularity condition.
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More specifically, for a given spatial dimension d ≥ 1 assume that S is a bounded Borel
set and that T > 0 is the finite time horizon such that the Hilbert space

H := L2(S × [0, T ],B(S × [0, T ]),Leb),

is separable. By separability the Hilbert space H has a countable orthonormal basis, which
we denote by {en}∞n=1. Now, as in the theory of Walsh, consider a Lévy basis L on the
space-time product space (S × [0, T ],B(S × [0, T ])). Assume moreover that the Lévy basis
L has nuclear covariance, meaning that

(3.6)
∞∑

n=1

E

[(∫
S×[0,T ]

en(ξ, s)L(dξ, ds)

)2
]
<∞.

Here the integrals over the basis functions are understood in the sense of Rajput and
Rosinski. We have the following Proposition which restates and reformulates results from
section 2.3.3 in Barndorff-Nielsen et al [1] for our setting, for the sake of completeness we
also give the proof.

Proposition 3.3. Suppose that L is a Lévy basis which has nuclear covariance (3.6). Then
for every A ∈ B(S) and t ∈ [0, T ] it holds that L(A, t) ∈ L2(Ω,F ,P) and that that L is
absolutely continuous with respect to Leb with Radon-Nikodym derivative L̇ ∈ H.

Proof. For A ∈ B(S) and t ∈ [0, T ] it holds that 1A×[0,t] ∈ H, so 1A×[0,t] has the represen-
tation

1A×[0,t](ξ, s) =
∞∑

n=1

(1A×[0,t], en)Hen(ξ, s),

from which it follows that

L(A, t) =

∫
S×[0,T ]

1A×[0,t](ξ, s)L(dξ, ds) =
∞∑

n=1

(1A×[0,t], en)H

∫
S×[0,T ]

en(ξ, s)L(dξ, ds).

Now by the Cauchy-Schwarz inequality for sums and Parseval’s identity, it holds that

E
[
L2(A, t)

]
≤

∞∑
n=1

∣∣(1A×[0,t], en)H

∣∣2 ∞∑
n=1

E

[(∫
S×[0,T ]

en(ξ, s)L(dξ, ds)

)2
]

= ||1A×[0,t]||2H
∞∑

n=1

E

[(∫
S×[0,T ]

en(ξ, s)L(dξ, ds)

)2
]
<∞.

Now consider the linear functional in the dual space, I ∈ H∗, which is defined by

φ 7→
∫

S×[0,T ]

φ(ξ, s)L(dξ, ds).

Then I is bounded, since for a φ ∈ H with representation φ =
∑∞

n=1(φ, en)Hen it holds
that

I(φ) =
∞∑

n=1

(φ, en)H

∫
S×[0,T ]

en(ξ, s)L(dξ, ds),
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so again, by the Cauchy-Schwarz inequality for sums and Parseval’s identity it follows that

E
[
|I(φ)|2

]
≤ ||φ||2H

∞∑
n=1

E

[(∫
S×[0,T ]

en(ξ, s)L(dξ, ds)

)2
]
<∞.

Thus the integral is finite a.s. and I is a bounded linear functional on H. By a property of
Hilbert spaces it follows that there exists a unique function L̇ ∈ H such that I(φ) = (φ, L̇)H

holds for all φ ∈ H. In particular, since S × [0, T ] is bounded in Rd × R this implies that

L(A, t) =

∫
A×[0,t]

L̇(ξ, s)dξds,

for A ∈ B(S) and t ∈ [0, T ]. �

Given the above Proposition and Lemma 3.1 we also have the following Corollary.

Corollary 3.4. Suppose that L is a Lévy basis on a bounded domain (S×[0, T ],B(S×[0, T ])
which has nuclear covariance (3.6). Suppose that Y (x, t) is a complex ambit field given by
(3.3) and let

Z(x, t) =

∫
A(x,t)

h(x, t; ξ, s)σ(ξ, s)L(dξ, ds) and Z̃(x, t) =

∫
A(x,t)

g(x, t; ξ, s)ρ(ξ, s)L(dξ, ds)

denote complex ambit fields with a different kernel and volatility field respectively. Then

E
[
|Y (x, t)− Z(x, t)|2

]
≤ E

[
||1A(x,t)σ·(·)L̇||2H

]
||1A(x,t)(g(x, t; ·, ·)− h(x, t; ·, ·))||2H

and

E
[∣∣∣Y (x, t)− Z̃(x, t)

∣∣∣2] ≤ ||1A(x,t)g(x, t; ·, ·)||2HE
[
||1A(x,t)(σ − ρ)L̇||2H

]
.

Proof. Follows from the Cauchy-Schwarz inequality. �

4. Fourier representation

In this section we shall put to work the results which we have derived on ambit fields so
far. More specifically, we shall for a given ambit field approximate its kernel function by
a finite sum which in turn allows us to approximate general ambit fields as a finite sum of
complex ambit fields with exponential kernel functions. Thus representing the ambit field
as a finite sum of ambit fields which demonstrate an incremental property (see Proposition
4.6).

4.1. Series representation of kernel functions. Let Y (x, t) denote a general ambit
field (3.1). In this subsection our goal is to identify conditions which allow us to rep-
resent the kernel function g as a convergent series and to analyse the proximity of the
corresponding ambit fields as we truncate the series.

To that end consider the ambit field (x, t) 7→ Y (x, t) on some bounded domain D ⊂
Rd×R in space time. Associated to the ambit field is the corresponding sequence of ambit
sets {A(x, t)}(x,t)∈D over which we integrate at each point (x, t) ∈ D in space time. In
general there are no restrictions on the structure of the ambit sets A(x, t) where (x, t) ∈ D.
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For our purposes we shall however require that the union ∪(x,t)∈DA(x, t) is bounded in
space time Rd×R. If this is not true, then we may approximate Y (x, t) arbitrarily well in
each (x, t) ∈ D by ambit fields that have bounded ambit sets {A(x, t) ∩ A}(x,t)∈D, where
A ⊂ Rd × R is bounded, by employing the approximation Lemma 3.1. Thus we have
reduced the domain of the kernel function g : Rd × R × Rd × R → R to a bounded set
D × ∪(x,t)∈DA(x, t) ⊂ Rd × R× Rd × R.

Moreover we need to impose some constraints on the kernel function g. Since it is
our intention to represent the kernel function as an integral over a Fourier transform, the
kernel function must comply with the conditions that are required for this to be possible. In
particular we shall require that the kernel function is continuous, since indeed the Fourier
inversion theorem states that for an integrable function f which has an integrable Fourier
transform, the function f agrees almost everywhere with a continuous function given by
inverting the Fourier transform.

Therefore we shall henceforth assume that g is a continuous function. If this is not the
case then we assume that one may approximate g arbitrarily well in the L1 and L2 norms
presented in the previous section by a function that is continuous. We remark that this
assumption is quite reasonable in light of the fact that the space of continuous functions
on a Euclidean space with compact support is dense in any Lp(µ) space where 1 ≤ p <∞
and µ is a Radon measure (see Proposition 7.9 in Folland [15]), and thus in particular any
Borel measure µ that is finite on compact sets.

As a final remark on the structure of general kernel functions g, consider the following.
In the previous section we introduced a class ambit fields (3.2) having kernel functions of
the type (x, t, ξ, s) 7→ g(x−ξ, t− s). Thus effectively reducing the dimension of the kernel
function domain from 2d + 2 to d + 1. To represent this dimension reduction we shall
therefore assume that a given kernel function g on a bounded domain can be represented
as

(4.1) g = h ◦ p
where for some 1 ≤ n ≤ 2d+ 2, p : Rd×R×Rd×R → Rn is a linear map and h : Rn → R
is a continuous function such that for a given 0 < τ0 < τ where

(4.2) p
(
D × ∪(x,t)∈DA(x, t)

)
⊂ [0, τ0]

n,

(4.3) h|Rn\(τ,τ)n = 0 and h(u1, . . . , uk, . . . , un) = h(u1, . . . ,−uk, . . . , un)

holds for all 1 ≤ k ≤ n where u = (u1, . . . , un) ∈ Rn. In particular when no dimension
reduction occurs one can take n = 2d + 2 and let p be the identity map, whereas in the
case where the ambit field in question is given by (3.2) one could take n = d + 1 and
p(x, t, ξ, s) = (x− ξ, t− s).

We summarize our hypothesis on general ambit fields (3.1) as follows.

Assumption 4. Let Y (x, t) be a given ambit field on a bounded domain D. We assume
that the kernel function g has the form (4.1) where (4.2) and (4.3) hold. It moreover holds
that the Lévy seed, L′, in question has bounded first and second moments

E[L′(ξ, s)] ∨ Var(L′(ξ, s)) < K
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for all (ξ, s) ∈ ∪(x,t)∈DA(x, t) where K > 0 is a constant and (3.5) holds.

Now for a given λ ∈ Rn, under Assumption 4, such that λ > 0 assume that

hλ(u) := h(u)eλ·(|u1|,...,|un|) ∈ L1(Rn,B(Rn),Leb),

where for any u,v ∈ Rn, u · v = u1v1 + · · · + unvn denotes the dot product in Rn. Then
by construction hλ is also symmetric around 0 in each coordinate, i.e.

hλ(u1, . . . , uk, . . . , un) = hλ(u1, . . . ,−uk, . . . , un)

holds for all 1 ≤ k ≤ n where u = (u1, . . . , un) ∈ Rn. Assume that

(4.4) hλ ∈ L1(Rn,B(Rn),Leb).

Then the Fourier transform of hλ is well defined (see Folland [15]) and is given by

ĥλ(v) =

∫
Rn

hλ(u)e−iu·vdu.

If we furthermore suppose that ĥλ ∈ L1(Rn,B(Rn),Leb) then the inverse Fourier transform
exists and we have that

h(u) =
e−λ·(|u1|,...,|un|)

(2π)n

∫
Rn

ĥλ(v)eiu·vdv.

Thus, under our conditions, we have obtained a representation of h as an integral in the
Fourier transform domain.

Given the above integral representation of h let us consider approximating it. To that
end we employ the integral approximation

(4.5) h(u) ≈ e−λ·(|u1|,...,|un|)

(2π)n

∑
α∈I

ĥλ(vα)eivα·u∆v1 · · ·∆vn,

where {vα}α∈Zn is a grid in Rn which is equidistant in each coordinate with positive step
sizes ∆v1, . . . ,∆vn and I is a finite subset in Zn. In our ambit field setting we aim to
employ approximations of the type (4.5) to approximate ambit field kernel functions g in
(3.1) by means of Lemma 3.1 and Assumption 4. By introducing hλ notice that we obtain
an approximation which is an exponential function times a finite sum over exponential
functions. Thus enabling us to exploit a nice property of the exponential function, which
is that ez+w = ezew holds for all z, w ∈ C. In particular for u ∈ [0, τ0]

n the above
approximation (4.5) implies that

(4.6) h(u) ≈ 1

(2π)n

∑
α∈I

ĥλ(vα)e(−λ+ivα)·u∆v1 · · ·∆vn.

Now let us identify the parameters which minimize the distance of the approximation (4.6)
for a given finite parameter set I ⊂ Zn. To that end we need to define exactly what it is
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we want to minimize. Suppose that we denote the right hand side of (4.6) with h̃(u) and
let

Y (x, t) =

∫
A(x,t)

g(x, t; ξ, s)σs(ξ)L(dξ, ds) and Ỹ (x, t) =

∫
A(x,t)

g̃(x, t; ξ, s)σs(ξ)L(dξ, ds)

denote ambit fields driven by the different kernel functions g = h ◦ p and g̃ := h̃ ◦ p with
the same Lévy bases, volatility fields and ambit sets. Then, it follows by Lemma 3.1 and
the Cauchy-Schwarz inequality that

E
[∣∣∣Y (x, t)− Ỹ (x, t)

∣∣∣2] ≤ 2κ2(2||g(x, t; ·, ·)− g̃(x, t; ·, ·)||2L1 + ||g(x, t; ·, ·)− g̃(x, t; ·, ·)||2L2)

≤ 2κ2(2K
2c(A(x, t)) +K)

∫
A(x,t)

|g(x, t; ξ, s)− g̃(x, t; ξ, s)|2c(dξ, ds).(4.7)

So, for a given finite subset I ∈ Zn, our task at this stage is to attempt to identify the
parameters {vα}α∈I and ∆v1, . . . ,∆vn that minimize the integral

(4.8) Z(x, t) :=

∫
A(x,t)

|g(x, t; ξ, s)− g̃(x, t; ξ, s)|2c(dξ, ds),

for all (x, t) ∈ D. To that end consider the following.
Let µ denote a Borel measure that is absolutely continuous with respect to the Lebesgue

measure, with a Radon-Nikodym derivative fµ which is symmetric around 0 in each coor-
dinate. That is, we assume that

fµ(u1, . . . , uk, . . . , un) = fµ(u1, . . . ,−uk, . . . , un)

holds for all 1 ≤ k ≤ n where u = (u1, . . . , un) ∈ Rn. It is essential to our approach that
we restrict ourselves to finite sums over orthogonal families. By which we mean that the
family {eivα·u}α∈I is such that

(4.9)

∫
[−τ,τ ]n

eivα·ueivβ ·uµ(du) =

{
0 if α 6= β
2nµ([0, τ ]n) if α = β

for all α, β ∈ I. Given τ > 0 the orthogonality condition is satisfied if

(4.10) vα =
(α1π

τ
, . . . ,

αnπ

τ

)
for all α ∈ I.

Under the orthogonality condition (4.9) consider choosing parameters {vα}α∈I to minimize
the integral ∫

[−τ,τ ]n

(
hλ(u)−

∑
α∈I

cαeivα·u

)2

µ(du)

in the least squares sense. For a given β ∈ I differentiation with respect to cβ together
with the orthogonality relation (4.9) implies that taking

(4.11) cα =
ĥλ(vα)

2nµ([0, τ ]n)
,
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where vα is given by (4.10) for all α ∈ I is optimal in the least squares sense. Together
with (4.5) this suggests that taking

(4.12) ∆vk =
π

µ([0, τ ]n)1/n
for k = 1, . . . , n,

and letting {vα}α∈Zn be given by (4.10) yields an optimal approximation in the mean
square sense. So for a given finite set I ⊂ Zn and u ∈ [0, τ0]

n the mean square optimal
approximation (4.6) is

(4.13) h(u) ≈
∑
α∈I

cαe(−λ+ivα)·u,

where the cα coefficients are given by (4.11) and {vα}α∈I is given by (4.10).
Now before applying the above observations in the ambit field setting, let us make a few

additional observations. For a given Borel measure µ, consider the Hilbert space

(4.14) H(µ) := L2([−τ, τ ]n,B([−τ, τ ]n), µ).

By amending Theorem 8.20 from Folland [15] (and its proof) it follows that the family

(4.15) {eα(u)}α∈Zn :=

{
eivα·u

2nµ([0, τ ]n)

}
α∈Zn

where {vα}α∈Zn is given by (4.10) constitutes an orthonormal basis for H(µ). Given a
finite subset I ⊂ Zn, denote by

(4.16) M = sp{eα(u) : α ∈ I}
the closed linear subspace of H(µ) which contains all linear combinations of the finite
family {eα(u)}α∈I , where each eα is given by (4.15). Then it holds that

H(µ) = M⊕M⊥,

i.e. that for given f ∈ H(µ), f can be expressed uniquely as f = φ+ψ, where φ ∈M and
ψ ∈ M⊥. Moreover it holds that φ and ψ are the unique elements of M and M⊥ whose
distance to h is minimal (see Folland [15], Theorem 5.24). For our purposes this implies
that for a given hλ ∈ H, the linear combination

(4.17) φλ(u) =
∑
α∈I

ĥλ(vα)eα(u),

where {eα(u)}α∈I is given by (4.15), is the unique element of M which best approximates
hλ. In fact φλ is a partial sum of the Fourier series which converges to hλ in H. Let us
summarize our observations in the following Proposition.

Proposition 4.1. Given a function hλ ∈ H(µ), the function (4.17) is the unique element
of M which best approximates hλ in H(µ). If moreover {Ik}∞k=1 is an increasing sequence
of subsets of Zn in the sense that I1 ⊂ I2 ⊂ · · · and ∪∞k=1Ik = Zn and {Mk}∞k=1 is the
corresponding increasing sequence of linear subspaces of H(µ) defined by (4.16) then it
holds that

lim
k→∞

||φk
λ − hλ||H(µ) = 0,
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where φk
λ is given by (4.17) with I = Ik for all k ≥ 1.

Now let us employ these observations in the ambit field setting. Consider the control
measure c (2.2) associated to the Lévy basis L. We shall henceforth work under the
following assumption.

Assumption 5. There exists a Borel measure µ : B(Rn) → R+ which is absolutely con-
tinuous with respect to the Lebesgue measure, with a Radon-Nikodym derivative fµ which
is symmetric around 0 in each coordinate, i.e. such that

fµ(u1, . . . , uk, . . . , un) = fµ(u1, . . . ,−uk, . . . , un)

holds for all 1 ≤ k ≤ n.

The above Assumption is really an assumption on the structure of the control measure
c. For example in the case when the ambit field in question is given by (3.2), Assumption
5 is fulfilled if c << Leb with a Radon-Nikodym derivative which is symmetric in each
coordinate, by taking µ = c. While in the case when n > d + 1, Assumption 5 is fulfilled
if c << Leb with a Radon-Nikodym derivative which is symmetric in each coordinate by
taking µ = c× Leb, or µ = c× ν where ν is such that c× ν fulfills Assumption 5.

Now let us reconsider the integral (4.8). Suppose that

(4.18) g̃(x, t; ξ, s) = e−λ·p(x,t;ξ,s)φλ(p(x, t; ξ, s)),

where φλ is given by (4.17). Then for a given (x, t) ∈ D it follows that

Z(x, t) ≤
∫

[−τ,τ ]d+1

e−2λ·p(x,t;ξ,s)|hλ(x, t; ξ, s)− φλ(x, t; ξ, s)|2c(dξ, ds),

and moreover for the measure µ introduced in Assumption 5 it follows by the elementary in-
equality |x+y|2 ≤ 2(|x|2+|y|2), Proposition 4.1 and the inequality |

∑
α fα|2 ≤ 2(

∑
α |fα|)2,

where f is a complex valued function that

||e−λ·p(hλ − φλ)||2H(µ)

≤ 2

||e−λ·p(hλ −
∑
α∈Zn

ĥλ(vα)eα)||2H(µ) + ||e−λ·p
∑

α∈Zn\I

ĥλ(vα)eα||2H(µ)


≤

||e−λ·p||2H(µ)

2n−2|µ([0, τ ]n)|

 ∑
α∈Zn\I

|ĥλ(vα)|

2

.(4.19)

We summarize the consequences of this in the case of general ambit fields of the type (3.1)
as follows.

Proposition 4.2. Suppose that Y (x, t) =
∫

A(x,t)
g(x, t; ξ, s)σ(ξ, s)L(dξ, ds) is a general

ambit field which fulfills Assumptions 4 and 5. Then if

Ỹ (x, t) =

∫
A(x,t)

g̃(x, t; ξ, s)σ(ξ, s)L(dξ, ds),



20 HEIDAR EYJOLFSSON

where g̃ is given by (4.18) and µ in Assumption 5 is given by µ = c× ν, it holds that

(1)

||Y − Ỹ ||2L2(P×ν) ≤
κ2(2K

2 sup(x,t)∈D c(A(x, t)) +K)||e−λ·p||2H(c×ν)

2n−3|(c× ν)([0, τ ]n)|

 ∑
α∈Zn\I

|ĥλ(vα)|

2

,

where the integration in || · ||L2(P×ν) is over Ω×D.
(2) If the ambit field has a kernel function on the form (3.2) it moreover holds that

E
[∣∣∣Y (x, t)− Ỹ (x, t)

∣∣∣2] ≤ κ2(2K
2c(A(x, t)) +K)||e−λ·p||2H(c)

2n−3|c([0, τ ]n)|

 ∑
α∈Zn\I

|ĥλ(vα)|

2

.

Proof. Follows by the inequalities (4.7) and (4.19). �

Thus at this point it is of interest to study the convergence rate of the series

(4.20)
∑

α∈Zn\I

|ĥλ(vα)|.

To that end consider the following. Suppose that h is C2 in each coordinate. Then if
∂jhλ(u)|uj=τ = 0 for a particular 1 ≤ j ≤ n and vαj

6= 0 we may employ integration by
parts to obtain that∫ τ

−τ

hλ(u)e−iujvαj duj = 0 +
τ

iαjπ

∫ τ

−τ

∂jhλ(u)e−iujvαj duj

=

(
τ

αjπ

)2(
0−

∫ τ

−τ

∂2
jhλ(u)e−iujvαj duj

)
.

This can be employed together with the following representation result to obtain more
precise error estimates in particular cases.

Lemma 4.3. Let n ≥ 1 and consider a sequence {γα}α∈Zn which is such that γα ≥ 0 and

γ(α1,...,αk,...,αn) = γ(α1,...,−αk,...,αn)

for all α = (α1, . . . , αn) ∈ Zn and k = 1, . . . , n, assume furthermore that∑
α∈Zn

γα <∞.

Then it holds that ∑
α∈Zn

γα = γ0 +
n∑

m=1

2m

(n
m)∑

j=1

∑
α∈Nm

γρn,m
j (α),

where N = {1, 2, . . .} denotes the natural numbers and ρn,m
j : Nm → Nn is the function that

embeds Nm to the coordinates determined by the jth m-combination of Nn and is 0 in the
other coordinates.
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Remark 4.4. That is, for the j = 1, . . . ,
(

n
m

)
possible ways of selecting m elements from a

set with n elements we associate the functions {ρn,m
j }j which embed Nm in the coordinates

determined by the jth m-combination with 0 in the other coordinates. Thus for instance if
n = 2, we can take ρ2,1

1 (α) = (α1, 0), ρ2,1
2 (α) = (0, α2) and ρ2,2

1 (α) = α, for α ∈ N2.

Example 4.5. In the case when n = 2 we can for a given N ≥ 1 set

γ(k1,k2) =

{
0 if |k1|, |k2| ≤ N

|ĥλ

(
π
τ
(k1, k2)

)
| otherwise

and employ the above Lemma to conclude that∑
|k1|>N

∑
|k2|>N

|ĥλ

(π
τ

(k1, k2)
)
|

= 2
∞∑

k=N

(|ĥλ

(π
τ

(k, 0)
)
|+ |ĥλ

(π
τ

(0, k)
)
|) + 4

∞∑
k1=N

∞∑
k2=N

|ĥλ

(π
τ

(k1, k2)
)
|.

If furthermore it holds that hλ is Cm1,m2 where m1,m2 ≥ 2 and that ∂lk
k hλ(u)|uk=τ = 0 for

lk = 1, . . . ,mk − 1 and k = 1, 2, then
∞∑

k=N

(|ĥλ

(π
τ

(k, 0)
)
|+ |ĥλ

(π
τ

(0, k)
)
|)

≤
∞∑

k=N

((τ
π

)m1 ||∂m1
1 hλ||L1([−τ,τ ]2)

km1
+
(τ
π

)m2 ||∂m2
2 hλ||L1([−τ,τ ]2)

km2

)
,

and
∞∑

k1=N

∞∑
k2=N

|ĥλ

(π
τ

(k1, k2)
)
| ≤

∞∑
k1=N

∞∑
k2=N

(τ
π

)m1+m2 ||∂m1
1 ∂m2

2 hλ||L1([−τ,τ ]2)

km1
1 km2

2

.

So ∑
|k1|>N

∑
|k2|>N

|ĥλ

(π
τ

(k1, k2)
)
|

≤

((τ
π

)m1

||∂m1
1 hλ||L1([−τ,τ ]2)

∞∑
k=N

1

km1
+
(τ
π

)m2

||∂m2
2 hλ||L1([−τ,τ ]2)

∞∑
k=N

1

km2

)

+
(τ
π

)m1+m2

||∂m1
1 ∂m2

2 hλ||L1([−τ,τ ]2)

∞∑
k=N

1

km1

∞∑
k=N

1

km2
.

4.2. Incremental approximation. By employing the grid (4.10) for a given I with the
step sizes (4.12), we have the following integral representation and approximation of the
kernel function g in (3.1)

g(x, t; ξ, s) =
e−λ·p(x,t;ξ,s)

(2π)n

∫
Rn

ĥλ(v)eiv·p(x,t;ξ,s)dv
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≈ 1

2nµ([0, τ ]n)

∑
α∈I

ĥλ(vα)e(−λ+ivα)·p(x,t;ξ,s),(4.21)

for p(x, t; ξ, s) ∈ [0, τ0]
n. Thus for a general ambit field of the type (3.1), by (4.21) it holds

that

Y (x, t) =

∫
A(x,t)

e−λ·p(x,t;ξ,s)

(2π)n

(∫
Rn

ĥλ(v)eiv·p(x,t;ξ,s)dv

)
σs(ξ)L(dξ, ds)

≈ 1

2nµ([0, τ ]n]

∑
α∈I

ĥλ(vα)Ŷλ(x, t,vα),(4.22)

where

(4.23) Ŷλ(x, t,v) =

∫
A(x,t)

e(−λ+iv)·p(x,t;ξ,s)σs(ξ)L(dξ, ds).

The field (4.23) has an important incremental property.

Proposition 4.6. Let ∆x ≥ 0 and ∆t ≥ 0 denote increments in space and time respec-
tively, then

Ŷλ(x + ∆x, t+ ∆t,v) = Cλ(∆x,∆t,v)
(
Ŷλ(x, t,v) + ελ(x,∆x, t,∆t,v)

)
holds where

Cλ(∆x,∆t,v) = e(−λ+iv)·p(∆x,∆t;0,0)

and

ελ(x,∆x, t,∆t,v) =

∫
A(x+∆x,t+∆t)\A(x,t)

e(−λ+iv)·p(x,t;ξ,s)σs(ξ)L(dξ, ds).

Proof. This follows by

e(−λ+iv)·p(x+∆x,t+∆t;ξ,s) = e(−λ+iv)·p(∆x,∆t;0,0)e(−λ+iv)·p(x,t;ξ,s)

and the linearity of the integral. �

Given the above Proposition it is of interest to consider the increment fields

ελ(x,∆x, t,∆t,v)

on a given domain. Indeed given a space time grid {(xj, tj)}J
j=0 ⊂ Rd×R let (∆xj,∆tj) :=

(xj − xj−1, tj − tj−1) where j = 1, . . . , J denote the increments in the space time domain,

where we assume that (∆xj,∆tj) ≥ (0, 0) for all j = 1, . . . , J . Suppose that Ŷλ(x0, t0,v) =
0 for all v. Then we find by iteration that

Ŷλ(xJ , tJ ,v) =
J∑

j=1

Cλ(xJ − xJ−j, tJ − tJ−j,v)ελ(xJ−j,∆xJ+1−j, tJ−j,∆tJ+1−j,v).
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Thus we have obtained an approximation of a general ambit field as a finite sum of the ελ
fields, which are in turn complex ambit fields driven by an exponential function. Consider
further approximating the ελ field by

ελ(x,∆x, t,∆t,v) ≈ e(−λ+iv)·p(x,t;x∗,t∗)σ(x∗, t∗)∆L(x, t),

where (x∗, t∗) ∈ A(x + ∆x, t+ ∆t) \ A(x, t) and ∆L(x, t) = L(A(x + ∆x, t + ∆t) \
A(x, t)). In particular in the case when when p(x, t; ξ, s) = (x − ξ, t − s) and (x, t) ∈
A(x + ∆x, t+ ∆t) \ A(x, t) one can take (x∗, t∗) = (x, t) which yields the approximation

ελ(x,∆x, t,∆t,v) ≈ σ(x, t)∆L(x, t),

which is independent of v! Now given our space time grid and the corresponding (x∗j , t
∗
j) ∈

A(xj+1, tj+1) \ A(xj, tj), to ease the notation we introduce

ψj(v) := e(−λ+iv)·p(xJ ,tJ ;x∗
J−j ,t∗J−j),

and

Aj := A(xJ−j+1, tJ−j+1) \ A(xJ−j, tJ−j)

for j = 1, . . . , J . Now let

(4.24) AJ :=
J⋃

j=1

Aj = A(xJ , tJ) \ A(x0, t0)

and let

(4.25) ŶJ(v) :=

∫
AJ

e(−λ+iv)·p(xJ ,tJ ;ξ,s)σs(ξ)L(dξ, ds)

denote a truncated approximation of the field Ŷλ(xJ , tJ ,v). Now observe that by employing
our approximation we get that

ŶJ(v) ≈
∫
AJ

J∑
j=1

1Aj
(ξ, s)ψj(v)σ(x∗J−j, t

∗
J−j)L(dξ, ds)

=

∫
AJ

J∑
j=1

1Aj
(ξ, s)ψj(v)σ(ξ, s)L(dξ, ds)

+

∫
AJ

J∑
j=1

1Aj
(ξ, s)ψj(v)(σ(x∗J−j, t

∗
J−j)− σ(ξ, s))L(dξ, ds).

By Lemma 3.1 it follows that

E

∣∣∣∣∣
∫
AJ

(
e(−λ+iv)·p(xJ ,tJ ;ξ,s) −

J∑
j=1

1Aj
(ξ, s)ψj(v)

)
σ(ξ, s)L(dξ, ds)

∣∣∣∣∣
2

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= E

∣∣∣∣∣
∫
AJ

(
e(−λ+iv)·p(xJ ,tj ;ξ,s) −

J∑
j=1

1Aj
(ξ, s)e(−λ+iv)·p(xJ ,tJ ;x∗

J−j ,t∗J−j)

)
σ(ξ, s)L(dξ, ds)

∣∣∣∣∣
2


≤ 2κ2

(
2||e(−λ+iv)·p(xJ ,tJ ;·,·) −

J∑
j=1

1Aj
(·, ·)e(−λ+iv)·p(xJ ,tJ ;x∗

J−j ,t∗J−j)||2L1

+ ||e(−λ+iv)·p(xJ ,tJ ;·,·) −
J∑

j=1

1Aj
(·, ·)e(−λ+iv)·p(xJ ,tJ ;x∗

J−j ,t∗J−j)||2L2

)
≤ 4κ2E[L2(AJ)] max

1≤j≤J
|e(−λ+iv)·p(xJ ,tJ ;xj−1,tj−1) − e(−λ+iv)·p(xJ ,tJ ;xj ,tj)|2.

At this point we apply the following result.

Lemma 4.7. Suppose that n ≥ 1 and consider the function f : Rn → C, x → ez·x where
z ∈ Cn is such that Re z < 0. Then

|f(x)− f(y)|2 ≤ 4||z||2||x− y||2

holds for all x,y ∈ Rn, where ||w||2 :=
∑n

k=1 |wk|2 denotes the Euclidean norm for all
w ∈ Cn.

Thus we may conclude by the above Lemma and the preceding calculations that

E

∣∣∣∣∣
∫
AJ

(
e(−λ+iv)·p(xJ ,tJ ;ξ,s) −

J∑
j=1

1Aj
(ξ, s)ψj(v)

)
σ(ξ, s)L(dξ, ds)

∣∣∣∣∣
2


≤ 16κ2E[L2(AJ)]|| − λ + iv||2 max
1≤j≤J

||(∆xj,∆tj)||2.

Furthermore by Lemma 3.1 it holds that

E

∣∣∣∣∣
∫
AJ

J∑
j=1

1Aj
(ξ, s)ψj(v)(σ(x∗J−j, t

∗
J−j)− σ(ξ, s))L(dξ, ds)

∣∣∣∣∣
2


≤ 4E[L2(AJ)] max
1≤j≤J

E
[
|σ(xj−1, tj−1)− σ(xj, tj)|2

]
.

Thus by employing the notation

(4.26) ηJ(v) :=

∫
AJ

J∑
j=1

1Aj
(ξ, s)ψj(v)σ(x∗J−j, t

∗
J−j)L(dξ, ds),

we have the following results.

Lemma 4.8. It holds that

E[|ŶJ(v)− ηJ(v)|2] ≤ 4E[L2(AJ)]

(
8κ2|| − λ + iv||2 max

1≤j≤J
||(∆xj,∆tj)||2
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+2 max
1≤j≤J

E
[
|σ(xj−1, tj−1)− σ(xj, tj)|2

])
,

where ŶJ is given by (4.25) and η is given by (4.26).

Proposition 4.9. Let {(xj, tj)}J
j=0 ⊂ Rd×R be a space time grid and denote by (∆xj,∆tj) :=

(xj − xj−1, tj − tj−1) where j = 1, . . . , J the increments in the space time domain, where
(∆xj,∆tj) ≥ (0, 0) holds for all j = 1, . . . , J . For g̃I given by (4.18) for a given I ⊂ Zn

and AJ given by (4.24), it holds that

E

∣∣∣∣∣
∫
AJ

g̃I(xJ , tJ ; ξ, s)σ(ξ, s)L(dξ, ds)−
∑
α∈I

cαηJ(vα)

∣∣∣∣∣
2


≤ 24E[L2(AJ)]

4κ2

||λ||2(∑
α∈I

|cα|

)2

+
(π
τ

)2
(∑

α∈I

|cα|||α||

)2
 max

1≤j≤J
||(∆xj,∆tj)||2

(∑
α∈I

|cα|

)2

max
1≤j≤J

E
[
|σ(xj−1, tj−1)− σ(xj, tj)|2

] ,

where the cα coefficients are given by (4.11) and || · || is the Euclidian norm on Cn.

Proof. By Minkowski’s inequality and Lemma 4.8 it follows thatE

∣∣∣∣∣
∫
AJ

g̃I(xJ , tJ ; ξ, s)σ(ξ, s)L(dξ, ds)−
∑
α∈I

cαηJ(vα)

∣∣∣∣∣
2
1/2

=

E

∣∣∣∣∣∑
α∈I

cα

(
ŶJ(vα)− ηJ(vα)

)∣∣∣∣∣
2
1/2

≤
∑
α∈I

|cα|
(

E
[∣∣∣ŶJ(vα)− ηJ(vα)

∣∣∣2])1/2

≤ 2
(
E[L2(AJ)]

)1/2
∑
α∈I

|cα|
(

8κ2|| − λ + ivα||2 max
1≤j≤J

||(∆xj,∆tj)||2

+2 max
1≤j≤J

E
[
|σ(xj−1, tj−1)− σ(xj, tj)|2

])1/2

.

Furthermore using that
√
x2 + y2 ≤ x+y holds for non-negative x, y ≥ 0, and the triangle

inequality it follows that(
8κ2|| − λ + ivα||2 max

1≤j≤J
||(∆xj,∆tj)||2 + 2 max

1≤j≤J
E
[
|σ(xj−1, tj−1)− σ(xj, tj)|2

])1/2



26 HEIDAR EYJOLFSSON

≤ 2|| − λ + ivα||
(

2κ2 max
1≤j≤J

||(∆xj,∆tj)||2
)1/2

+
√

2

(
max
1≤j≤J

E
[
|σ(xj−1, tj−1)− σ(xj, tj)|2

])1/2

≤ 2(||λ||+ ||vα||)
(

2κ2 max
1≤j≤J

||(∆xj,∆tj)||2
)1/2

+
√

2

(
max
1≤j≤J

E
[
|σ(xj−1, tj−1)− σ(xj, tj)|2

])1/2

.

From which by applying the elementary inequality (x+ y + z)2 ≤ 3(x2 + y2 + z2) that

E

∣∣∣∣∣
∫
AJ

g̃I(xJ , tJ ; ξ, s)σ(ξ, s)L(dξ, ds)−
∑
α∈I

cαηJ(vα)

∣∣∣∣∣
2


≤ 4E[L2(AJ)]

{
2
∑
α∈I

|cα|(||λ||+ ||vα||)
(

2κ2 max
1≤j≤J

||(∆xj,∆tj)||2
)1/2

+
√

2
∑
α∈I

|cα|
(

max
1≤j≤J

E
[
|σ(xj−1, tj−1)− σ(xj, tj)|2

])1/2
}2

≤ 24E[L2(AJ)]

4κ2

||λ||2(∑
α∈I

|cα|

)2

+

(∑
α∈I

|cα|||vα||

)2
 max

1≤j≤J
||(∆xj,∆tj)||2

+

(∑
α∈I

|cα|

)2

max
1≤j≤J

E
[
|σ(xj−1, tj−1)− σ(xj, tj)|2

] .

�

5. Application to forward pricing

In the current section we shall demonstrate the usefulness of the approximation method
described in this paper by means of constructing an example.

To that end consider the problem of simulating the ambit field

(5.1) Y (x, t) =

∫ t

−∞

∫ ∞

0

g(t− s+ x)ϕ(ξ)σs(ξ)L(dξ, ds).

In the setting of a general ambit field (3.1) this translates into d = 1 with an ambit set on
the form

A(x, t) = {(ξ, s) ∈ R2 : ξ ≥ 0, s ≤ t},
for t ∈ R, x ≥ 0. We remark that this particular choice of ambit set is the same Barndorff-
Nielsen et al. [2] make for their electricity forward modelling framework. Moreover the
above specification of the kernel function is motivated by their paper, since they specify
two possible factorisations of kernel functions

g(x, t; ξ, s) = ψ(t− s)ϕ(ξ, x) and g(x, t; ξ, s) = ψ(t− s, x)ϕ(ξ),

for suitable functions ψ and ϕ, and analyse ambit fields having the respective factorisations.
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Suppose that we are interested in simulating a field {Y (x, t)}(x,t)∈D where D ⊂ R2 is
a bounded domain. We assume that we may discretise the domain D to the finite set
{(xj, tk)}J,K

j=0,k=0 where 0 = x0 < x1 < · · · < xJ and t0 < t1 < · · · < tK for some constants
J,K ≥ 1. If 0 < τ0 < τ are constants such that tK + xJ ≤ τ0 and h defined by (4.3), then
for Y given by (5.1) and a given λ > 0 and N ≥ 1 we employ the approximation (4.22)

with I = {n ∈ Z : |n| ≤ N} and employ that ĥλ is symmetric around 0 to write

Y (x, t) ≈ c0
2
Ŷλ(x, t, 0) + Re

N∑
n=1

cnŶλ(x, t, nπ/τ),

where cn = ĥλ(nπ/τ)/τ for n = 0, . . . , N ,

(5.2) Ŷλ(x, t, v) =

∫ t

−∞

∫ ∞

0

e(−λ+iv)(t−s+x)ϕ(ξ)σs(ξ)L(dξ, ds),

and (x, t) = (xj, tk) for some 0 ≤ j ≤ J and 0 ≤ k ≤ K. Thus we obtain the discrete field

{Y (xj, tk)}J,K
j=0,k=0 be means of a finite linear combination of the complex ambit fields (5.2)

which can easily be simulated by means of an iterative algorithm based on Proposition 4.6.
In the setting of Proposition 4.6 we regard Lϕ :=

∫
· ϕ(ξ)L(dξ, ds) as the driving Lévy basis,

and furthermore assume that the discretised domain is equidistant in time and space with
step sizes ∆x = xj − xj−1 > 0 and ∆t = tk − tk−1 > 0 for j = 1, . . . , J and k = 1, . . . , J .
Thus obtaining the incremental identities

Ŷλ(xj, tk, v) = e(−λ+iv)∆t

(
Ŷλ(xj, tk−1, v) +

∫ tk

tk−1

∫ ∞

0

e(−λ+iv)(tk−1−s+xj)σs(ξ)Lϕ(dξ, ds)

)
for all j = 0, . . . , J and k = 1, . . . , K, and

(5.3) Ŷλ(xj, tk, v) = e(−λ+iv)∆xŶλ(xj−1, tk, v)

for all j = 1, . . . , J and k = 0, . . . , K. Using these identities and the approximation∫ tk

tk−1

∫ ∞

0

e(−λ+iv)(tk−1−s+x)σs(ξ)Lϕ(dξ, ds) ≈
∫ ∞

0

e(−λ+iv)xjσtk−1
(ξ)Lϕ(dξ, tk − tk−1)

for all k = 1, . . . , K we may for given v0, . . . , vN obtain the fields {Ŷλ(xj, tk, vn)}J,K,N
j=0,k=0,n=0

by means of the approximation recursion relation

Ŷλ(0, tk, vn) ≈ e(−λ+ivn)∆t

(
Ŷλ(0, tk−1, vn) +

∫ ∞

0

σtk−1
(ξ)Lϕ(dξ, tk − tk−1)

)
,

which holds for all k = 1, . . . , K and n = 0, . . . , N and employ (5.3) to obtain the incre-
ments in the space direction.

Now let us consider a specific example, suppose that

(5.4) g(u) = uν−1e−αu, ϕ(u) = e−βu, and σ = 1

for constants 1/2 < ν < 1 and α, β > 0 and L is a Gaussian Lévy basis such that
L(A) ∼ N(0,Leb(A)) for all A ∈ B(R2). Here the choice of the gamma kernel g in



28 HEIDAR EYJOLFSSON

Figure 1. A simulated ambit field (5.1) with integrals truncated at t = 0
and x = 15, where (5.4) holds with ν = 0.75, α = 0.2 and β = 0.1, with a
Gaussian ambit field L(A) ∼ N(0,Leb(A)), for all A ∈ B(R2). Here λ = 0.3
and N = 50, with step sizes ∆t = ∆x = 0.05.

(5.4) is intended to demonstrate that our method can handle ill behaved kernel functions
having a singularity at the origin. In Figure 1 we have simulated the ambit field (5.1)
with integrals truncated at t = 0 and x = 15 by means of the method described in this
section, where (5.4) holds with ν = 0.75, α = 0.2 and β = 0.1, with a Gaussian ambit field
L(A) ∼ N(0,Leb(A)), for all A ∈ B(R2). Here we have chosen λ = 0.3 and N = 50, and
step sizes are given by ∆t = ∆x = 0.05. Moreover we have truncated the kernel function in
its singularity point at the origin and in its tail by means of replacing it with the function

h(x) =

 φ0(x) if x ∈ [0, ε]
g(x) if x ∈ (ε, τ0)
φ1(x) if x ∈ [τ0, τ ]

where ε = 0.01, τ0 = 25, τ = 26 and φ0, φ1 are 5th degree interpolating polynomials

with coefficients determined by φ
(j)
0 (0) = g(j)(ε) and φ

(j)
0 (ε) = g(j)(ε) for j = 0, 1, 2 and

φ
(j)
1 (τ0) = g(j)(τ0) and φ

(j)
1 (τ) = 0 for j = 0, 1, 2 respectively. We remark that our method

tends to be quite sensitive to the choice of λ, I and the function h. So one should always
attempt to choose the parameters which makes the approximation (4.21) as accurate as
possible before starting the simulation algorithm.

Figure 1 is obtained by simulating in Matlab, and in Figure 2 we compare the method
described in the current section to obtain the field (5.1) to the more straightforward ap-
proach of employing numerical integration. By which we mean that for each (xj, tk) where
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Figure 2. The difference YFourier − YNumInt between the simulated ambit
field in Figure 1 as obtained by the described method versus numerical inte-
gration.

j = 0, . . . , J and k = 0, . . . , K we approximate Y (xj, tk) by

Y (xj, tk) ≈
j∑

j′=0

k∑
k′=0

g(tk − tk′ + xj)ϕ(xj′)σtk′
(xj′)L((xj′ , xj′+1), (tk′ , tk′+1)).

In Figure 2 we can see that the two methods give reasonably similar fields, but that for
values of x close to 0 the difference increases, which is caused by the singularity of the
kernel function. Moreover we report that obtaining the field in Matlab by means of the
Fourier method took 0.2587 seconds, whereas obtaining the field by means of the numerical
integration approach took 17.2070 seconds. We remark that the computational time may be
reduced even further, since in our calculations we used a for loop in the Fourier computation
and a double for loop in the numerical integration computation. However by employing a 2
dimensional convolution in the Fourier case and a convolution for each xj in the numerical
integration case we could write a routine with no for loop in the Fourier case and one for
loop (over the space dimension) in the numerical integration case. Even so it is apparent
that computationally the Fourier method is more time efficient. Another advantage of the
Fourier method is that at a given point in space time it is easy to compute an increment in
a space and/or time direction by simply just computing the corresponding increments of

Ŷλ and numerically integrate over the Fourier domain. Whereas a complete re-integration
is required in the numerical integration case.
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6. Conclusion

After giving a brief introduction to ambit fields, we have presented a general method
for approximating ambit fields by means of a linear combination of ambit fields driven
by complex exponential functions. Thus, by the factorisation property of the exponential
function we can obtain a incremental simulation algorithm for general ambit fields by
means of considering a Fourier transform of the kernel function of the original ambit field.
Finally, as we demonstrated by an example, the existence of such a simulation algorithm
makes the simulation of ambit fields more efficient, which in turn can be applied to get
more efficient algorithms to simulate price of derivatives where the underlying is modelled
using ambit fields.

Appendix A. Proofs of auxiliary results

Proof of Lemma 4.3. We proceed by induction on n. In the case when n = 1, the Lemma
holds, since ∑

α∈Z

γα = γ0 + 2
∑
α∈N

γα.

Now suppose that the Lemma holds for a particular n ≥ 1. Then∑
α∈Zn+1

γα =
∑
α′∈Z

∑
α∈Zn

γ(α,α′)

=
∑
α′∈Z

γ(0,α′) +
n∑

m=1

2m

(n
m)∑

j=1

∑
α∈Nm

γ(ρn,m
j (α),α′)


= γ0 + 2

∑
α′∈N

γ(0,α′) + 2
n∑

j=1

∑
α∈N

γ(ρn,1
j (α),0)

+
n∑

m=2

2m

(n
m)∑

j=1

∑
α∈Nm

γ(ρn,m
j (α),0) +

n+1∑
m=2

2m

( n
m−1)∑
j=1

∑
α∈Nm−1

∑
α′∈N

γ(ρn,m−1
j (α),α′)

= γ0 +
n+1∑
m=1

2m

(n+1
m )∑

j=1

∑
α∈Nm

γρn+1,m
j (α),

which completes the proof. �

Proof of Lemma 4.7. Given x,y ∈ Rn let φ : [0, 1] → R, t 7→ Re f(tx + (1 − t)y) and
ψ : [0, 1] → R, t 7→ Im f(tx + (1− t)y). Then by applying the mean value theorem to the
functions φ and ψ there exist constants c1, c2 ∈ (0, 1) such that

f(x)− f(y) = (∇Re f(c1x + (1− c1)y) + i∇ Im f(c2x + (1− c2)y)) · (x− y).
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Let γk := ckx + (1 − ck)y, for k = 1, 2. By applying the Cauchy-Schwarz inequality and
noticing that |Re f |, | Im f | < 1 it follows that

|f(x)− f(y)|2 ≤ ||∇Re f(c1x + (1− c1)y) + i∇ Im f(c2x + (1− c2)y)||2||x− y||2

=
n∑

k=1

(
(Re zk Re f(γ1)− Im zk Im f(γ1))

2

+(Re zk Im f(γ2) + Im zk Re f(γ2))
2
)
||x− y||2

≤ 4||z||2||x− y||2.
�
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