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APPROXIMATING LÉVY SEMISTATIONARY PROCESSES VIA
FOURIER METHODS IN THE CONTEXT OF POWER MARKETS

FRED ESPEN BENTH, HEIDAR EYJOLFSSON, AND ALMUT E. D. VERAART

Abstract. The present paper discusses Lévy semistationary processes in the context of
power markets. A Fourier simulation scheme for obtaining trajectories of these processes
is discussed and its rate of convergence is analysed. Finally we put our simulation scheme
to work for simulating the price of path dependent options.

1. Introduction

A Lévy semistationary processes is a continuous time integral process driven by a Lévy
process and a deterministic kernel function on the entire real line which is modulated by
stochastic volatility. Lévy semistationary processes were initially suggested in the context
of modelling turbulence (see Barndorff-Nielsen and Schmiegel [4, 5]) and have also been em-
ployed to model tumor growth (see Jónsdóttir et al. [16]). Moreover, in Barndorff-Nielsen,
Benth and Veraart [2] Lévy semistationary processes (and more generally volatility modu-
lated Lévy-driven Volterra processes) are introduced as a general modelling framework for
electricity spot prices.

It is well known that electricity spot markets display a strong mean reversion effect.
This means that at times when the spot price is high, the price is pushed down by lowered
demand and conversely during periods of low price, the price is pushed up by increased
demand. Modelling commodity spot by means of mean-reverting processes has been stud-
ied by Schwartz [21] and more generally by means of a a sum of Lévy process driven
Ornstein-Uhlenbeck processes, corresponding to different mean-reversion coefficients, has
been studied in Benth, Kallsen and Meyer-Brandis [8] and Klüppelberg, Meyer-Brandis
and Schmidt [17]. The idea behind employing Lévy semistationary processes in the elec-
tricity spot setting is to generalize further to processes which mean revert in the weak
probabilistic sense, i.e. by being stationary. Whenever a Lévy semistationary process is
modulated by a stationary volatility process, the Lévy semistationary process is station-
ary, hence the terminology semistationary. Thus a Lévy semistationary processes which is
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modulated by stationary volatility process can be thought of as a stationary analogue of
Lévy semimartingales of the type t 7→

∫ t

0
σ(s)dL(s).

Benth and Eyjolfsson [10] discuss numerical methods for simulating discrete trajectories
of Lévy semistationary processes, albeit without going into deep analysis of the methods.
The current paper re-introduces an approximation method presented in that paper and
analyses its convergence. The approximation method in question consist of considering
an integral representation of the deterministic kernel function and considering methods to
numerically approximate the corresponding integral. As it turns out, we can under some
conditions interpret the approximation of the integral as a Fourier series, thereby giving
ourselves some tools to analyse its convergence.

The main purpose of this paper is to analyse the Fourier approximation method and to
illustrate its use for simulating prices of derivatives under Lévy semistationary electricity
spot dynamics. We show that in terms of rate of convergence the Fourier simulation method
and numerical integration are similar. However, an advantage of the Fourier simulation
method is that it is an iterative scheme. By which we mean that to simulate a point t+ δ
given a value at t we merely need to simulate the increments in the Lévy and volatility
processes and numerically evaluate a Fourier integral. This contrasts the corresponding
numerical integration approach in which one needs to perform a complete re-integration in
order to obtain the same iterative step. It follows that if the coefficients in the numerical
Fourier integration are fewer than the number of previous time increments, our method is
faster for simulating the incremental value. Moreover the Fourier approximation method
is more flexible in the sense that given the Lévy and volatility processes one can easily
simulate multiple Lévy semistationary processes driven by different kernel functions but
with the same Lévy and volatility processes. Finally we discuss an application of our
method which is simulating derivatives based on path-dependent options, such as Asian
options which have been traded at the Nordic electricity exchange NordPool as OTC
contracts (see Weron [22]).

This paper is structured as follows. In the next section we set the stage by introduc-
ing Lévy semistationary processes and some basic results on them, which shall be used
throughout the paper. In section 3 we introduce the Fourier approximation scheme discuss
methods to obtain trajectories by means of it and put it into context with Fourier series
approximation. Following that, in section 4 we analyse the error induced by our approxi-
mation, in the mean square sense. Next in section 5 we compare our method to the more
direct approach of numerical integration and illustrate the advantages of our approach.
Finally in section 6 we apply our method to simulate prices for path dependent options
and thereby demonstrate our method before arriving at our conclusive remarks.

2. Preliminaries

Let (Ω,F , {Ft}t∈R,P) be a complete filtered probability space which satisfies the usual
conditions, i.e. that the σ-algebras Ft include all the null sets of F and that the filtration
{Ft}t∈R is right-continuous. We define a Lévy semistationary (LSS) process to be a process
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of the type

(2.1) X(t) =

∫ t

−∞
g(t− s)σ(s−)dL(s)

for t ∈ R, where L is a two-sided square integrable Lévy process, g is a real-valued, non-
negative deterministic function on R+ and {σ(t)}t∈R is a càdlàg process adapted to the
filtration {Ft}t∈R. We restrict our attention to LSS processes with a stochastic volatility
process σ(t) where σ(t) is modelled as a stationary process independent of L. Denote for
the sequel the first two moments of the Lévy process L and the volatility process σ by of
σ(t) by

(2.2) mj := E[Lj(1)] and κj := E[σj(0)],

respectively, where j = 1, 2 and we assume that these moments are finite. Furthermore, g
is assumed to be a Borel measurable function on R+, the positive half line including the
origin, such that

(2.3) g ∈ L1(R+) ∩ L2(R+).

We remark that for our purposes if it holds that g is bounded, non-negative and in L1(R+),
then it holds that g ∈ L2(R+). Note also that, as we shall see below, in the case when the
Lévy process L is centered, i.e. when m1 = 0 the milder condition g ∈ L2(R+) is in fact
a sufficient to guarantee that the corresponding LSS process is well defined. However, we
prefer to present the general conditions here, since we want to include LSS processes driven
by non-centered Lévy processes in our analysis. These conditions, which we shall always
assume to hold in what follows, ensure that X(t) is well-defined, and square-integrable (see
Protter [19] and Basse-O’Connor et al. [7]).

The characteristic function of X is easily computed by conditioning on the volatility
process σ:

(2.4) E[exp(iθX(t))] = E[exp(

∫ t

−∞
ψ(θg(t− s)σ(s−))ds)],

where ψ(θ) is the cumulant (i.e., the log-characteristic function) of L(1). Here and in
what follows, the cumulant function ψ(θ) is the unique real solution of exp(ψ(θ)) =
E[exp(iθL(1))]. Note in particular that if σ = 1, then the cumulant function of X(t)
is

log E[exp(iθX(t))] =

∫ ∞

0

ψ(θg(s))ds,

where C =
∫∞

0
ψ(θg(s))ds denotes the unique real solution of exp(C) = E[exp(iθX(t))].

We observe that

E[X(t)] = −iψ′(0)

∫ t

−∞
g(t− s)E[σ(s−)]ds = m1κ1||g||L1(R+).
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Furthermore, we find that the second moment is

E[X2(t)] = −(ψ′(0))2E

[(∫ t

−∞
g(t− s)σ(s−)ds

)2
]
− ψ′′(0)E

[∫ t

−∞
g2(t− s)σ2(s−)ds

](2.5)

= m2
1E

[(∫ t

−∞
g(t− s)σ(s−)ds

)2
]

+ Var(L(1))κ2||g||2L2(R+)

= m2
1

∫ ∞

0

∫ ∞

0

g(u)g(v)E[σ(0)σ(|u− v|)]dudv + Var(L(1))κ2||g||2L2(R+).(2.6)

Notice that (2.6) is not time dependent, hence, X(t) is second order stationary. Notice
also, that in the case where the Lévy process is centered, i.e. when m1 = 0, condition
(2.6) reduces to a square integrability condition on the kernel function, g. Thus for LSS
processes driven by centered Lévy processes the class of kernel functions is observed to be
larger than in the case of non-centered Lévy processes.

It will be convenient to generalize the LSS processes introduced above to allow for
complex-valued kernel functions. Thus, for a complex-valued kernel functions g such that
Re g, Im g ∈ L1(R+) ∩ L2(R+), and real-valued volatility and Lévy processes, σ and L, we
define a complex-valued LSS process as

(2.7) X(t) =

∫ t

−∞
Re g(t− s)σ(s−)dL(s) + i

∫ t

−∞
Im g(t− s)σ(s−)dL(s),

and shall denote it by (2.1) as before.
The next Lemma concerns continuity of LSS processes with respect to the kernel function

g and the stochastic volatility function σ.

Lemma 2.1. Consider the complex LSS processes X(t) =
∫ t

−∞ g(t−s)σ(s−)dL(s), Y (t) =∫ t

−∞ h(t− s)σ(s−)dL(s) and Z(t) =
∫ t

−∞ g(t− s)ρ(s−)dL(s). Then,

i)

E
[
|X(t)− Y (t)|2

]
≤ 2m2

1κ2||g − h||2L1(R+) + Var(L(1))κ2||g − h||2L2(R+),

where equality is obtained when the Lévy process is centered, i.e. when m1 = 0.
ii)

E
[
|X(t)− Z(t)|2

]
≤
(
2m2

1||g||2L1(R+) + Var(L(1))||g||2L2(R+)

)
sup

s∈(−∞,t]

E
[
|σ(s−)− ρ(s−)|2

]
.

Proof. The first part of the proof goes by a straightforward calculation using (2.6), (2.7)
and E[σ(0)σ(h)] < κ2 for any h > 0:

E
[
|X(t)− Y (t)|2

]
= E

[∣∣∣∣Re

∫ t

−∞
(g(t− s)− h(t− s))σ(s−)dL(s)

∣∣∣∣2 +

∣∣∣∣Im ∫ t

−∞
(g(t− s)− h(t− s))σ(s−)dL(s)

∣∣∣∣2
]
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≤ m2
1κ2(||Re g − Reh||2L1(R+) + || Im g − Imh||2L1(R+))

+ Var(L(1))κ2(||Re g − Reh||2L2(R+) + || Im g − Imh||2L2(R+))

≤ 2m2
1κ2||g − h||2L1(R+) + Var(L(1))κ2||g − h||2L2(R+).

Similarly for the second part, notice first that for a real-valued g it holds that

E

[(∫ t

−∞
g(t− s)(σ(s−)− ρ(s−))ds

)2
]
≤
(∫ t

−∞
g(t− s)ds

)2

sup
s∈(−∞,t]

E
[
|σ(s−)− ρ(s−)|2

]
.

Thus by (2.5) it holds that

E
[
|X(t)− Z(t)|2

]
= E

[∣∣∣∣Re

∫ t

−∞
g(t− s)(σ(s−)− ρ(s−))dL(s)

∣∣∣∣2 +

∣∣∣∣Im ∫ t

−∞
g(t− s)(σ(s−)− ρ(s−))dL(s)

∣∣∣∣2
]

≤
(
m2

1

(
||Re g||2L1(R+) + || Im g||2L1(R+)

)
+ Var(L(1))

(
||Re g||2L2(R+) + || Im g||2L2(R+)

))
sup

s∈(−∞,t]

E
[
|σ(s−)− ρ(s−)|2

]
≤
(
2m2

1||g||2L1(R+) + Var(L(1))||g||2L2(R+)

)
sup

s∈(−∞,t]

E
[
|σ(s−)− ρ(s−)|2

]
.

Hence, the Lemma follows. �

In practice, for a given LSS spot price model, we would estimate the kernel function
g from observed price data in the market. Such estimates are prone to statistical error,
and hence we find gε rather than g itself, where ε is the error induced from statistical
estimation, being a function of the number of data n at hand. The above result shows that
the variance of X(t) is robust towards this estimation error.

Let us consider an example of an approximation of a singular kernel g coming from ap-
plications to turbulence (see Barndorff-Nielsen and Schmiegel [5]). Suppose L is a centered
Lévy process and g is of the form

(2.8) g(x) = xν−1e−αx ,

where 1/2 < ν < 1 and α > 0. Note that g is singular at the origin, and X(t) is thus, in
general (unless L has bounded variation, see Basse and Pedersen [6]), not a semimartingale
process. By Lemma 2.1 we may approximate X(t) with a semimartingale LSS process that
has the non-singular kernel function

gε(x) =

{
g(x) if x ≥ ε
g(ε) if x ∈ [0, ε].

We easily find that∫ ∞

0

(g(x)− gε(x))
2 dx ≤ 2

∫ ε

0

x2ν−2e−2αx dx+ 2ε2ν−1e−2αε
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≤ 2ε2ν−1

2ν − 1
+ 2ε2ν−1 =

4νε2ν−1

2ν − 1
.

Thus we have the rate

||g − gε||2L2(R+) ≤
4νε2ν−1

2ν − 1
,

from which we may observe that the closer ν is to 1/2, the slower the rate is. If we want
to simulate from X(t), one would do numerical integration of g(t− s) with respect to the
paths of L(s) and σ(s) for s ≤ t. To avoid problems around the singularity s = t, we can
use hε rather than g in the numerical integration, with an error that we can control.

Another application of Lemma 2.1 is to view the LSS process X(t) as a sliding window.
To this end, fix τ > 0, and for a real-valued non-negative kernel function g consider

(2.9) Xτ (t) :=

∫ t

t−τ

g(t− s)σ(s−) dL(s) .

Since,

Xτ (t) =

∫ t

−∞
g(t− s)1(τ ≥ t− s)σ(s−) dL(s)

we find from the Lemma that

(2.10) E
[
|X(t)−Xτ (t)|2

]
≤ m2

1κ2

∫ ∞

τ

g(x)dx+ Var(L(1))κ2

∫ ∞

τ

g2(x)dx.

By (2.3), the integrals on the right hand side will tend to zero as τ increases. This gives
the interpretation of LSS processes as limits of moving average over a sliding window.

3. Fourier methods

In this section we discuss an alternative way of representing the kernel function g in
order to allow for easy simulation of LSS process trajectories. Indeed, since the kernel
function g in (2.1) is t dependent, i.e. changes with t, simulating a trajectory of X on
a predefined set of points given a starting point, the Lévy and volatility processes using
numerical integration requires that we evaluate a new integral at each point, and not just
an increment.

To this end, for a given LSS process and t, r ∈ R such that r ≤ t consider the sum

(3.1) X(t) =

∫ r

−∞
g(t− s)σ(s−)dL(s) +

∫ t

r

g(t− s)σ(s−)dL(s).

By the integrability condition (2.3) it holds that

lim
r→−∞

E

[∣∣∣∣∫ r

−∞
g(t− s)σ(s−)dL(s)

∣∣∣∣2
]

= 0.

It follows that at a fixed time t ∈ R what happened in the past at time r < t becomes less
and less relevant for the present as t − r becomes larger. Thus suppose we are interested
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in simulating a discrete trajectory X(t0), X(t1), . . . , X(tM) of a particular LSS process X.
Then it follows that simulating a discrete trajectory Xr(t0), Xr(t1), . . . , Xr(tM) where

(3.2) Xr(t) :=

∫ t

r

g(t− s)σ(s−)dL(s),

and r ≤ t, yields an adequate approximation with an error we can make arbitrarily small.
In what follows we introduce a simulation algorithm for efficiently simulating trajectories
of (3.2).

Suppose that we fix the time horizon of Xr, i.e. we consider Xr on a bounded interval
[t0, T ] where T < ∞. The key observation here is that the truncated LSS process (3.2)
only evaluates the kernel function g on the bounded interval [0, T − r]. It follows that we
may adjust the kernel function as we wish outside the interval [0, T − r]. To that end, for
fixed τ0, τ such that 0 < τ0 < τ and T − r ≤ τ0 consider the function h : R → R, defined
by

(3.3) h(x) =

 g(|x|) if |x| ≤ τ0
φ(|x|) if |x| ∈ (τ0, τ ]
0 if |x| > τ

where φ : [τ0, τ ] → R is a continuous interpolating function such that φ(τ0) = g(τ0) and

φ(τ) = 0. Notice in particular that g = h on [0, T − r] so Xr(t) =
∫ t

r
h(t − s)σ(s−)dL(s)

on [t0, T ]. Further, since h has a bounded support it holds for any given λ > 0 that

(3.4) hλ(x) := h(x)eλ|x| ∈ L1(R).

Now, let the Fourier transform of hλ be (see Folland [14])

ĥλ(y) =

∫
R
hλ(x)e

−ixydx

and suppose furthermore that

ĥλ ∈ L1(R).

Then the inverse Fourier transform exists, and we have (see Folland [14])

(3.5) h(x) =
e−λ|x|

2π

∫
R
ĥλ(y)e

iyxdy.

Note however, that since the Fourier transform maps integrable functions to continuous
functions that vanish at infinity, i.e. F(L1(R)) ⊂ C0(R), we shall require that h ∈ C0(R).
We remark that in the case when the kernel function g of interest is discontinuous, e.g. if
it has a singularity, we need to approximate it, in the L2 sense, with a continuous kernel
function. We shall illustrate this with an example later. Now that we have an integral
representation (3.5), we investigate to what extent we can estimate it, given the Fourier

transform ĥλ. By construction for a given λ > 0 the function hλ is even which implies

that the resulting Fourier transform, ĥλ is also even and real-valued. Thus the domain of
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integration in the integral representation of h is reduced to the non-negative real numbers
and may be approximated as

(3.6) h(x) =
e−λ|x|

π

∫ ∞

0

ĥλ(y) cos(yx)dy ≈ e−λ|x|

π

N∑
n=0

ĥλ(ξn) cos(ξnx)∆yn,

where 0 = y0 < y1 < · · · < yN+1 < ∞, ∆yn = yn+1 − yn and ξn ∈ [yn, yn+1] for all
n = 0, . . . , N . As a function on the domain [−τ, τ ] the function h is continuous and even
around the origin. Observe that in (3.6) the non-periodic function h is approximated by
a finite sum of periodic functions. But since we are merely interested in approximating h
on a bounded interval we may think of h as a periodic function on the entire real line with
period 2τ . Now let us investigate which parameters in the finite sum numerical integration
(3.6) constitute a good choice for the purpose of approximating h adequately on [0, T − r].

It is essential for our approach that we select parameters which allow us to represent the
finite sum approximation of the kernel function, h, as an orthogonal expansion. Meaning
that {cos(ξnx)}N

n=0 is such that

(3.7)

∫ τ

−τ

cos(ξjx) cos(ξkx)dx =

 0 if j 6= k
2τ if j = k = 0
τ if j = k ≥ 1

for j, k = 0, . . . , N . Given τ > 0 the orthogonality condition (3.7) is satisfied if ξn = nπ/τ
for n = 0, . . . , N . Thus yielding an equidistant evaluation grid 0 = ξ0 < ξ1 < · · · < ξN
with step size ∆ξ = π/τ . Furthermore, under the assumption (3.7), choosing parameters
c0, c1, . . . , cN to minimize the least squares integral

(3.8)

∫ τ

−τ

(
hλ(x)−

N∑
n=0

cn cos(ξnx)

)2

dx

by differentiating with respect to cn and using the orthogonality relation (3.7) for n =
0, . . . , N yields

c0 =
ĥλ(ξ0)

2τ
and cn =

ĥλ(ξn)

τ
for n = 1, . . . , N.

Together with (3.6) this suggests that if we take ∆y0 = π/(2τ) and ∆yn = π/τ , for
n = 1, . . . , N , then under (3.7) the approximation (3.6) is optimal in the least squares
sense. On the other hand it is easy to see that if the orthogonality condition (3.7) is not

fulfilled, then the least squares sum (3.8) is no longer minimized by taking cn = cĥλ(ξn) for

a constant c. Indeed, cn will in general be a function of ĥλ(ξ0), ĥλ(ξ1), . . . , ĥλ(ξN), which
is inconsistent with the approximation (3.6), which we have made. Therefore in the sequel
we shall work under the orthogonality assumption (3.7) together with

ξn = nπ/τ for n = 0, . . . , N,

∆y0 = π/(2τ) and ∆yn = π/τ for n = 1, . . . , N.
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Furthermore denoting by

an = ĥλ(nπ/τ)/τ for n = 0, . . . , N

the approximation (3.6) may be written as

(3.9) h(x) ≈ e−λ|x|

(
a0

2
+

N∑
n=1

an cos(nπx/τ)

)
and is in the least squares sense the optimal orthogonal expansion of the family {cos(ξnx}N

n=0

on its domain. Furthermore the expression on the right hand side is the Nth partial Fourier
series of hλ times e−λ|x|, if it is extended as a periodic function from [−τ, τ ] to the entire
real line (see e.g. Folland [14]). Notice here that, since we have defined hλ as a continuous
function we avoid the Gibbs phenomenon in the partial Fourier series, which would cause
increased error in our approximations.

Now applying what we have just found to simulate a trajectory of the integral (3.2) for
a fixed r ∈ R, we find that∫ t

r

g(t− s)σ(s−)dL(s) ≈
∫ t

r

e−λ(t−s)

(
a0

2
+

N∑
n=1

an cos(nπ(t− s)/τ)

)
σ(s−)dL(s)

=
a0

2
X̂λ,r(t, 0) + Re

N∑
n=1

anX̂λ,r(t, nπ/τ),(3.10)

where

X̂λ,r(t, y) =

∫ t

r

e(−λ+iy)(t−s)σ(s−)dL(s).

Note that since λ > 0, X̂λ,r(t, y) is a (complex-valued) LSS process for each y ∈ R. We

observe that for λ = 0, the definition of X̂0(t, y) fails since the complex exponential has
norm 1 (except under stronger conditions on σ than we have assumed here). Whereas for
any λ > 0 and r < T we have by Lemma 2.1 that

E
[∣∣∣X̂λ,r(t, y)

∣∣∣2] ≤ 2m2
1κ2

(∫ ∞

0

e−λxdx

)2

+ Var(L(1))κ2

∫ ∞

0

e−2λxdx

=
2m2

1κ2

λ2
+

Var(L(1))κ2

2λ
.(3.11)

Thus for an arbitrary kernel function g (under our conditions) we represent the LSS process
(3.2) as an approximation of an integral in the Fourier domain, where the integrand is a
deterministic Fourier transform times a complex valued LSS process driven by an exponen-

tial kernel function that varies with t. Now, assuming the Fourier transform ĥλ is relatively
easy to evaluate, this presents us with the advantage of employing the nice properties of
the exponential function, when simulating a trajectory of an LSS process, such as being
able to evaluate a trajectory stepwise, as follows.



10 BENTH, EYJOLFSSON, AND VERAART

Fix δ > 0, and we find

X̂λ,r(t+ δ, y) =

∫ t+δ

r

e(−λ+iy)(t+δ−s)σ(s−)dL(s)

= e(−λ+iy)δX̂λ,r(t, y) + e(−λ+iy)δ

∫ t+δ

t

e(−λ+iy)(t−s)σ(s−)dL(s).(3.12)

Now, the residuals can e.g. be simulated by the approximation

(3.13)

∫ t+δ

t

e(−λ+iy)(t−s)σ(s−) dL(s) ≈ σ(t−)∆L(t),

where ∆L(t) = L(t + δ) − L(t). One can show that the variance of the error in this
approximation is independent of y, and is of order δ. In principle, we could simulate

X̂λ(t, y) exactly. For example, if σ(s) = 1, we have that the residual is an independent
outcome of a random variable Z with cumulant

log E[exp(iθ

∫ t+δ

t

exp((−λ+ iy)(t− s))dL(s))] =

∫ δ

0

ψ(θe(−λ+iy)u)du.

Thus, error is from numerical integration in Fourier domain only, and not connected to the
simulations which are in principle exact. Notice furthermore that by approximating the
above cumulant with δψ(θ) we get the cumulant function of ∆L(t), which can be used to
warrant the residual approximation (3.13).

Hence, to simulate a discrete trajectory Xr(t0), Xr(t1), . . . , Xr(tM) given all information
available at time t0, we do the following: For each tj where j = 1, . . . ,M .

(1) Simulate ∆L(tj)

(2) For each n = 0, . . . , N , simulate X̂λ,r(tj, nπ/τ) from X̂λ,r(tj−1, nπ/τ) and ∆L(tj)

(3) Compute numerically the inverse Fourier transform in (3.10) where an = ĥλ(nπ/τ)/τ
for n = 0, . . . , N .

Note the advantages here: We have the same residual term for every yn, except from a

deterministic scaling by a complex exponential. This means that to simulate X̂λ(tj, y), we
simulate the outcome of one random variable Z, and then compute

X̂λ,r(tj, y) = exp((−λ+ iy)δ)
{
X̂λ,r(tj−1, y) + Z

}
.

Hence, in step 2 above, we just need to have stored the N + 1 values of X̂λ(tj−1, yn) from
the previous time tj−1 along with the simulated Z, in order to compute the next iterative
step. Notice also that the number of sampling points N depends on the damping properties

of ĥλ. The faster ĥλ(y) decays to zero for large values of y, the smaller N can be chosen.
Further we have seen that the points of evaluation {ξn}N

n=0 are optimally chosen under our
orthogonality condition (3.7). We can also easily change the kernel function g, without
having to redo the whole simulation algorithm, since the first steps are independent of g.
This may prove advantageous in estimation studies, where one may want to simulate over
parametric g’s in order to find the optimal one. Finally, another advantage compared to
direct numerical integration is that with the latter, the accuracy is linked to how many
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sample points we simulate the Lévy process in time, whereas with the Fourier technique
this is converted into sampling an integral over space instead.

4. Error estimation

In the previous section we introduced a method for simulating LSS processes by means
of representing the kernel function as an integral and approximating the resulting integral.
Furthermore we have seen that by splitting a general LSS process into the sum (3.1)
and focusing on the latter integral there is an optimal way of approximating the latter
integral in mean square under our assumptions. In the present section we shall employ
the assumptions we made in the previous section together with Lemma 2.1 to analyse the
error induced by our approximation and compare it to the error induced by employing a
step function to approximate the kernel function. To that end for a fixed λ > 0 and N ≥ 1
we denote by

(4.1) hN(x) = e−λ|x|

(
a0

2
+

N∑
n=1

an cos(nπx/τ)

)
the Nth partial Fourier series of hλ times e−λ|x|, as introduced in the previous section.
Since hλ is integrable, it is represented by eλ|x|hN(x) on [−τ, τ ] in the sense that

(4.2) lim
N→∞

∫ τ

−τ

∣∣∣∣∣hλ(x)−
a0

2
−

N∑
n=1

an cos(nπx/τ)

∣∣∣∣∣
2

dx = 0

(see Folland [14]). We may employ the sum representation (3.1), and Lemma 2.1 to get

E

[∣∣∣∣X(t)−
∫ t

t0

hN(t− s)σ(s−)dL(s)

∣∣∣∣2
]

≤ 2E

[∣∣∣∣∫ t0

−∞
g(t− s)σ(s−)dL(s)

∣∣∣∣2
]

+ 2E

[∣∣∣∣∫ t

t0

(g(t− s)− hN(t− s))σ(s−)dL(s)

∣∣∣∣2
]
.

By Lemma 2.1 it holds that

E

[∣∣∣∣∫ t0

−∞
g(t− s)σ(s−)dL(s)

∣∣∣∣2
]

≤ 2m2
1κ2||g(t− t0 + ·)||2L1(R+) + Var(L(1))κ2||g(t− t0 + ·)||2L2(R+)(4.3)

and

E

[∣∣∣∣∫ t

t0

(g(t− s)− hN(t− s))σ(s−)dL(s)

∣∣∣∣2
]

≤ 2m2
1κ2||g − hN ||2L1([0,t−t0]) + Var(L(1))κ2||g − hN ||2L2([0,t−t0]).(4.4)
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Clearly by (2.3), it holds that (4.3) tends to zero as t− t0 increases, with the rate of con-
vergence being controlled by the decay of the corresponding kernel function g, whereas the
error (4.4) is controlled by the L1 and L2 convergence of Fourier series approximating the
corresponding kernel function. By employing the L2 convergence (4.2) and the elementary
inequality |a+ b|2 ≤ 2(|a|2 + |b|2) we find that

||g − hN ||2L2([0,t−t0]) =

∫ t−t0

0

e−2λx

∣∣∣∣∣hλ(x)−
a0

2
−

N∑
n=1

an cos(nπx/τ)

∣∣∣∣∣
2

dx

≤ 2

∫ t−t0

0

e−2λx

∣∣∣∣∣
∞∑

n=N+1

an cos(nπx/τ)

∣∣∣∣∣
2

dx

≤ 2

∫ t−t0

0

e−2λx

(
∞∑

n=N+1

|an cos(nπx/τ)|

)2

dx

≤ 1− e−2λ(t−t0)

λ

(
∞∑

n=N+1

|an|

)2

.

Similarly by using the Cauchy-Schwarz inequality we furthermore find that

||g − hN ||2L1([0,t−t0]) ≤
1− e−2λ(t−t0)

2λ

∫ t−t0

0

∣∣∣∣∣hλ(x)−
a0

2
−

N∑
n=1

an cos(nπx/τ)

∣∣∣∣∣
2

dx

≤ (t− t0)
1− e−2λ(t−t0)

λ

(
∞∑

n=N+1

|an|

)2

.

Combining these findings with (4.4) we thus find that

E

[∣∣∣∣∫ t

t0

(g(t− s)− hN(t− s))σ(s−)dL(s)

∣∣∣∣2
]

≤
(
2m2

1(t− t0) + Var(L(1))
)
κ2

1− e−2λ(t−t0)

λ

(
∞∑

n=N+1

|an|

)2

.(4.5)

Thus, unsurprisingly, the Fourier series kernel function approximation (3.9) is most de-
pendent on the choice of λ > 0 and how many terms N we use to approximate h with its
corresponding partial Fourier series. The following question arises: How many terms in the
numerical integration (3.9) yield an adequate approximation in terms of the error bound
(4.5). Or to rephrase, what is the order of an, n ≥ 1? Let us take a closer look at the
coefficients an, n = 1, . . . , N . Assuming that the kernel function h is sufficiently smooth,
integration by parts yields

τan =

∫ τ

−τ

hλ(x) cos(nπx/τ)dx



APPROXIMATING LSS PROCESSES VIA FOURIER METHODS 13

= 0− τ

nπ

∫ τ

−τ

h′λ(x) sin(nπx/τ)dx(4.6)

=
( τ

nπ

)2

2(−1)nh′λ(τ)−
( τ

nπ

)2
∫ τ

−τ

h′′λ(x) cos(nπx/τ)dx.(4.7)

Thus if h′λ(τ) 6= 0 the first surviving term of an will be of the order n−2, whereas if

(4.8) h′λ(τ) = 0

then the first term will be of the order n−4. Thus if (4.8) holds then the |an| terms decrease
at a faster rate, speeding up the convergence of our method, since (4.8) and (4.7) combined
yield

(4.9) |an| ≤
τ ||h′′λ||L1([−τ,τ ])

π2

1

n2
.

Now for our purposes, recalling the definition (3.3), this means that the interpolating
function φ should fulfill

φ′λ(τ) = 0.

Thus, selecting a smooth interpolation function is generally a good idea, since it will speed
up the convergence of the corresponding Fourier series and thus reduce the computational
burden in approximating the kernel function by numerical integration in the Fourier do-
main. Our findings are summarized, and slightly generalized, in the following proposition.

Proposition 4.1. Suppose that h defined by (3.3) is a C2k function for some k ≥ 1, such

that h
(2n−1)
λ (τ) = 0 for n = 1, . . . , k. Then it holds that

E

[∣∣∣∣∫ t

t0

(g(t− s)− hN(t− s))σ(s−)dL(s)

∣∣∣∣2
]

≤
(
2m2

1(t− t0) + Var(L(1))
)
κ2

1− e−2λ(t−t0)

λ

τ 4k−2||h(2k)
λ ||2L1([−τ,τ ])

π4k

(
∞∑

n=N+1

1

n2k

)2

.

From the above Proposition it is clear that the rate of convergence of is controlled by
three main factors. The most apparent factor is the infinite series

(4.10)
∞∑

n=1

1

n2k
,

where k ≥ 1. This series is convergent for all k ≥ 1 and is in fact equal to ζ(2k) for a
given k ≥ 1, where ζ denotes the Riemann zeta function. Thus for instance it holds that
ζ(2) = π2/6 and ζ(4) = π4/90. In figure 1 we illustrate the convergence rates of the series
(4.10) for k = 1, 2 respectively. Clearly the convergence of the series is considerably faster
for k = 2 than for k = 1.

The size of the parameter k ≥ 1 is determined by the hλ function, which in turn is deter-
mined by the original kernel function g and, perhaps to a bigger extent, the interpolation
function φ. Indeed since the conclusion of Proposition 4.1 holds if h is a C2k function and



14 BENTH, EYJOLFSSON, AND VERAART

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

N

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

N

Figure 1. The convergence rate of the series (4.10) for k = 1, 2. Above:

N 7→ π2/6−
∑N

n=1 n
−2. Below: N 7→ π4/90−

∑N
n=1 n

−4.

h
(2n−1)
λ (τ) = 0 for n = 1, . . . , k, which translates into φ

(2n−1)
λ (τ) = 0 for n = 1, . . . , k. Thus

the selection of the interpolation function is paramount for our approach. Clearly it may
be selected in a number of different ways, but perhaps the simplest way would be to let φ
be an appropriately selected polynomial. Let us outline how this can be achieved. Suppose
that g is a C2k function and let φ be the 4k + 1 degree polynomial

(4.11) φ(x) =
4k+1∑
j=0

cjx
j,

where the coefficients cj, j = 0, . . . , 4k + 1 are determined by the conditions

(4.12) φ(j)(τ0) = g(j)(τ0) and φ(j)(τ) = 0, for j = 0, . . . , 2k.

Equipped with this interpolation function h (and thus hλ) is a C2k function such that

h
(2n−1)
λ (τ) = 0 for n = 1, . . . , k and h

(2k)
λ ∈ L1([−τ, τ ]).

Finally the parameter λ > 0 clearly has an impact on the convergence rate in Proposition

4.1. However, the set of admissible λ > 0 is limited by the condition ĥλ ∈ L1(R), which
should be fulfilled in each case as we have assumed in the previous section. In fact it always
holds if hλ ∈ C2 and h′λ, h

′′
λ ∈ L1 (see Folland [14], section 8.4). But on the other hand a

high λ > 0 usually leads to high values of ||h(2k)
λ ||2L1([−τ,τ ]). It follows that letting λ be “too

high” can in fact increase the error, so one needs to pay some attention to the parameter
selection.

Now, let us turn our attention to the estimation∫ t+δ

t

e(iy−λ)(t−s)σ(s−)dL(s) ≈ σ(t−)∆L(t),
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which we make since in practice we may not be able to simulate X̂λ exactly. We find that

X̂λ,r(t+ ∆t, y) = e(−λ+iy)∆t

(
X̂λ,r(t, y) +

∫ t+∆t

t

e(−λ+iy)(t−s)σ(s−)dL(s)

)
≈ e(−λ+iy)∆t

(
X̂λ,r(t, y) + ε(t,∆t, y)

)
,(4.13)

where

ε(t,∆t, y) ≈
∫ t+∆t

t

e(−λ+iy)(t−s)σ(s−)dL(s)

denotes the residual approximation, which we assume to be dependent on σ and L on the
incremental interval [t, t + ∆t]. Now let us attempt to estimate the mean square error
which arises from making this assumption, i.e. by making the estimation (4.13). To this
end, let us assume a equidistant time grid r = t0 < t1 < · · · < tM , with constant step size
∆t > 0. By iterating (4.13) we observe that for a given 1 ≤ j ≤M and any y ∈ R it holds
that

X̂λ,r(tj, y) =

j∑
k=1

e(−λ+iy)(j+1−k)∆t

∫ tk

tk−1

e(−λ+iy)(tk−1−s)σ(s−)dL(s)

≈
j∑

k=1

e(−λ+iy)(j+1−k)∆tε(tk−1,∆t, y).

Now suppose that

(4.14) ε(t,∆t, y) = σ(t−)∆L(t),

then it furthermore holds that

X̂λ,r(tj, y) ≈
∫ tj

t0

j∑
k=1

e(−λ+iy)(j+1−k)∆tσ(tk−1−)1[tk−1,tk)(s)dL(s)

=

∫ tj

t0

j∑
k=1

e(−λ+iy)(j+1−k)∆t1[tk−1,tk)(s)σ(s−)dL(s)

+

∫ tj

t0

j∑
k=1

e(−λ+iy)(j+1−k)∆t(σ(tk−1−)− σ(s−))1[tk−1,tk)(s)dL(s).

Observe that by Lemma 2.1, the Cauchy-Schwarz inequality and Lipschitz continuity of
the exponential function it holds that

E

∣∣∣∣∣
∫ tj

t0

(
e(−λ+iy)(tj−s) −

j∑
k=1

e(−λ+iy)(j+1−k)∆t1[tk−1,tk)(s)

)
σ(s−)dL(s)

∣∣∣∣∣
2

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≤ 2m2
1κ2

(∫ tj

t0

∣∣∣∣∣e(−λ+iy)(tj−s) −
j∑

k=1

e(−λ+iy)(j+1−k)∆t1[tk−1,tk)(s)

∣∣∣∣∣ ds
)2

+ Var(L(1))κ2

∫ tj

t0

∣∣∣∣∣e(−λ+iy)(tj−s) −
j∑

k=1

e(−λ+iy)(j+1−k)∆t1[tk−1,tk)(s)

∣∣∣∣∣
2

ds

≤ (2m2
1(tj − t0) + Var(L(1)))κ2

∫ tj

t0

∣∣∣∣∣e(−λ+iy)(tj−s) −
j∑

k=1

e(−λ+iy)(j+1−k)∆t1[tk−1,tk)(s)

∣∣∣∣∣
2

ds

≤ (2m2
1(tj − t0) + Var(L(1)))κ2(λ

2 + y2)

∫ tj

t0

∣∣∣∣∣s−
j∑

k=1

tk−11[tk−1,tk)(s)

∣∣∣∣∣
2

ds

= (2m2
1(tj − t0) + Var(L(1)))κ2(λ

2 + y2)j
(∆t)3

3

= (2m2
1(tj − t0) + Var(L(1)))κ2(λ

2 + y2)(tj − t0)
(∆t)2

3
.

Furthermore it holds by Lemma 2.1 that

E

∣∣∣∣∣
∫ tj

t0

j∑
k=1

e(−λ+iy)(j+1−k)∆t(σ(tk−1−)− σ(s−))1[tk−1,tk)(s)dL(s)

∣∣∣∣∣
2


≤ (2m2
1(tj − t0) + Var(L(1)))(tj − t0)E

[
|σ(t0−)− σ(t1−)|2

]
.

In the sequel, for a given λ > 0 and an equidistant time grid r = t0 < t1 < · · · < tM with
constant step size ∆t > 0, let us denote by

(4.15) ηj(y) :=

j∑
k=1

e(−λ+iy)(j+1−k)∆tσ(tk−1−)∆L(tk−1)

the time series which approximates X̂λ,r(tj, y), for j = 1, . . . ,M for any y ∈ R by means
of the assumption (4.14). We summarize our findings in the following Lemma.

Lemma 4.2. Given an equidistant grid r = t0 < t1 < · · · < tM , with constant step size
∆t > 0, it holds that

E[|X̂λ(tj, y)− ηj(y)|2]

≤ (2m2
1(tj − t0) + Var(L(1)))(tj − t0)

(
κ2(λ

2 + y2)
(∆t)2

3
+ E

[
|σ(t0−)− σ(t1−)|2

])
,

where η is defined by (4.15).

In Proposition 4.1 we quantified the error induced by the approximation (3.10). Moreover
with Lemma 4.2 we have studied the error caused by employing the residual approximation
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(3.13). The next result employs what we have just found to complement Proposition 4.1, in
the sense that together with Proposition 4.1 it characterizes the error induced by employing
our Fourier approximation method which we introduced in the previous section.

Proposition 4.3. Given an equidistant grid r = t0 < t1 < · · · < tM , with constant step
size ∆t > 0, it holds that

E

∣∣∣∣∣
∫ tj

t0

hN(tj − s)σ(s−)dL(s)− a0

2
ηj(0)− Re

N∑
n=1

anηj(nπ/τ)

∣∣∣∣∣
2


≤ (2m2
1(tj − t0) + Var(L(1)))(tj − t0)

κ2λ
2

(
|a0|
2

+
N∑

n=1

|an|

)2

(∆t)2

+κ2

(π
τ

)2
(

N∑
n=1

|an|n

)2

(∆t)2 + 3

(
|a0|
2

+
N∑

n=1

|an|

)2

E
[
|σ(t0−)− σ(t1−)|2

] ,

where η is defined by (4.15).

Proof. This follows from Lemma 4.2. Since by an application of Minkowski’s inequality it
holds thatE

∣∣∣∣∣
∫ tj

t0

hN(tj − s)σ(s−)dL(s)− a0

2
ηj(0)− Re

N∑
n=1

anηj(nπ/τ)

∣∣∣∣∣
2
1/2

=

E

∣∣∣∣∣a0

2
(X̂λ,r(tj, 0)− ηj(0))− Re

N∑
n=1

an(X̂λ,r(tj, nπ/τ)− ηj(nπ/τ))

∣∣∣∣∣
2
1/2

≤ |a0|
2

(
E
[∣∣∣X̂λ,r(tj, 0)− ηj(0)

∣∣∣2])1/2

+
N∑

n=1

|an|
(

E
[∣∣∣X̂λ,r(tj, nπ/τ)− ηj(nπ/τ)

∣∣∣2])1/2

≤
(
(2m2

1(tj − t0) + Var(L(1)))(tj − t0)
)1/2

{
|a0|
2

(
κ2λ

2 (∆t)2

3
+ E

[
|σ(t0−)− σ(t1−)|2

])1/2

+
N∑

n=1

|an|
(
κ2(λ

2 + (nπ/τ)2)
(∆t)2

3
+ E

[
|σ(t0−)− σ(t1−)|2

])1/2
}
.

Now by noticing that
√
x2 + y2 ≤ x + y for any non-negative real numbers x, y ≥ 0 it

furthermore holds that(
κ2(λ

2 + (nπ/τ)2)
(∆t)2

3
+ E

[
|σ(t0−)− σ(t1−)|2

])1/2

≤
(κ2

3

)1/2 (
λ2 + (nπ/τ)2

)1/2
∆t+

(
E
[
|σ(t0−)− σ(t1−)|2

])1/2
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≤
(κ2

3

)1/2

(λ+ nπ/τ) ∆t+
(
E
[
|σ(t0−)− σ(t1−)|2

])1/2
,

for all n = 0, . . . , N . Thus by the elementary inequality (x + y + z)2 ≤ 3(x2 + y2 + z2) it
holds that

E

∣∣∣∣∣
∫ tj

t0

hN(tj − s)σ(s−)dL(s)− a0

2
ηj(0)− Re

N∑
n=1

anηj(nπ/τ)

∣∣∣∣∣
2


≤
(
(2m2

1(tj − t0) + Var(L(1)))(tj − t0)
){(κ2

3

)1/2

λ

(
|a0|
2

+
N∑

n=1

|an|

)
∆t

+
(κ2

3

)1/2 π

τ

N∑
n=1

|an|n∆t+

(
|a0|
2

+
N∑

n=1

|an|

)(
E
[
|σ(t0−)− σ(t1−)|2

])1/2

}2

≤
(
(2m2

1(tj − t0) + Var(L(1)))(tj − t0)
)κ2λ

2

(
|a0|
2

+
N∑

n=1

|an|

)2

(∆t)2

+κ2

(π
τ

)2
(

N∑
n=1

|an|n

)2

(∆t)2 + 3

(
|a0|
2

+
N∑

n=1

|an|

)2

E
[
|σ(t0−)− σ(t1−)|2

]
�

The above Proposition is the final piece in our puzzle in the sense that it characterizes the
error of our Fourier approximation in terms of the step size in the time domain. Whereas
Proposition 4.1 characterizes the error induced by making the Fourier series approximation.
Thus giving us the complete picture. Moreover an application of Bessel’s inequality gives
us the following result.

Corollary 4.4. Suppose that hλ ∈ C2 is such that h′λ(τ) = 0, then given an equidistant
grid r = t0 < t1 < · · · < tM , with constant step size ∆t > 0, it holds that

E

∣∣∣∣∣
∫ tj

t0

hN(tj − s)σ(s−)dL(s)− a0

2
ηj(0)− Re

N∑
n=1

anηj(nπ/τ)

∣∣∣∣∣
2


≤ (2m2
1(tj − t0) + Var(L(1)))(tj − t0)

{
κ2λ

2

(
|a0|2 +

τ 2

3
||h′λ||2L2([−τ,τ ])

)
(∆t)2

+κ2
τ 2

6
||h′′λ||2L2([−τ,τ ])(∆t)

2 + 3

(
|a0|2 +

τ 2

3
||h′λ||2L2([−τ,τ ])

)
E
[
|σ(t0−)− σ(t1−)|2

]}
,

where η is defined by (4.15).
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Proof. By the Cauchy-Schwarz inequality, the identity (4.6), Bessel’s inequality and
∑∞

n=1 n
−2 =

π2/6 it follows that(
|a0|
2

+
N∑

n=1

|an|

)2

≤ |a0|2 + 2

(
N∑

n=1

|an|

)2

≤ |a0|2 + 2

(
N∑

n=1

1

n2

)(
N∑

n=1

|ann|2
)

= |a0|2 +
2

π2

(
N∑

n=1

1

n2

)(
N∑

n=1

|ĥ′λ(nπ/τ)|
2

)

≤ |a0|2 +
τ 2

3
||h′λ||2L2([−τ,τ ]).

Similarly by the Cauchy-Schwarz inequality, the identity (4.7), Bessel’s inequality and∑∞
n=1 n

−2 = π2/6 it holds that(
N∑

n=1

|an|n

)2

≤

(
N∑

n=1

1

n2

)(
N∑

n=1

|ann
2|2
)

=
τ 2

π4

(
N∑

n=1

1

n2

)(
N∑

n=1

|ĥ′′λ(nπ/τ)|
2

)

≤ 1

6

τ 4

π2
||h′′λ||2L2([−τ,τ ]).

The proof is concluded by Proposition 4.3. �

5. Comparison to numerical integration

In the present section we will present the advantages of employing the Fourier method
to simulate paths of LSS processes. Let us begin by recalling the more standard approach
of numerical integration given an equidistant grid r = t0 < t1 < · · · < tM with a constant
step size ∆t > 0 which consists of the approximation

Xr(tj) ≈
j−1∑
k=0

g(tj − tk)σ(tk)∆L(tk)

=

∫ tj

t0

j−1∑
k=0

g(tj − tk)σ(tk)1[tk,tk+1)(s)dL(s).(5.1)
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Then by Lemma 2.1 and the Cauchy-Schwarz inequality it holds that

E

∣∣∣∣∣
∫ tj

t0

(
g(t− s)−

j−1∑
k=0

g(tj − tk)1[tk,tk+1)(s)

)
σ(s−)dL(s)

∣∣∣∣∣
2


≤ 2m2
1κ2

(∫ tj

t0

∣∣∣∣∣g(t− s)−
j−1∑
k=0

g(tj − tk)1[tk,tk+1)(s)

∣∣∣∣∣ ds
)2

+ Var(L(1))κ2

∫ tj

t0

∣∣∣∣∣g(t− s)−
j−1∑
k=0

g(tj − tk)1[tk,tk+1)(s)

∣∣∣∣∣
2

ds

≤ (2m2
1(tj − t0) + Var(L(1)))κ2

∫ tj

t0

∣∣∣∣∣g(t− s)−
j−1∑
k=0

g(tj − tk)1[tk,tk+1)(s)

∣∣∣∣∣
2

ds(5.2)

and furthermore that

E

∣∣∣∣∣
∫ tj

t0

j−1∑
k=0

g(tj − tk)1[tk,tk+1)(s)(σ(tk)− σ(s−))dL(s)

∣∣∣∣∣
2


≤

2m2
1

(
j−1∑
k=0

g(tj − tk)∆t

)2

+ Var(L(1))

j−1∑
k=0

g2(tj − tk)∆t

E
[
|σ(t0−)− σ(t1−)|2

]
.

(5.3)

So by joining the above manipulations with

E

∣∣∣∣∣Xr(t)−
∫ tj

t0

j−1∑
k=0

g(tj − tk)σ(tk)1[tk,tk+1)(s)dL(s)

∣∣∣∣∣
2


≤ 2E

∣∣∣∣∣
∫ tj

t0

(
g(t− s)−

j−1∑
k=0

g(tj − tk)1[tk,tk+1)(s)

)
σ(s−)dL(s)

∣∣∣∣∣
2


+ 2E

∣∣∣∣∣
∫ tj

t0

j−1∑
k=0

g(tj − tk)1[tk,tk+1)(s)(σ(tk)− σ(s−))dL(s)

∣∣∣∣∣
2


one obtains a bound for the error induced by numerical integration. Thus, the rate of
convergence for numerical integration is determined by the L2 kernel function rate (5.2)
and the L2 volatility function continuity (5.3). So for instance in the case when the kernel
function g is Lipschitz continuous with a Lipschitz constant C > 0 then the right hand
side of (5.2) is bounded by

(2m2
1(tj − t0) + Var(L(1)))κ2C

2(tj − t0)(∆t)
2.
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This yields a convergence rate of (∆t)2, the same as for our method from the previous
section. However, we would like to make the following points, which we believe make our
method more feasible.

Firstly the Fourier simulation scheme is an iterative method, by which we mean that at
each step we can simulate the next step by means of simulating the increments in the Lévy
and volatility processes and evaluating a Fourier sum. Because of the t dependence of the
kernel function g this is however not the case for the numerical integration scheme. Indeed
for each time increment one needs to employ all the increments of the Lévy and volatility
processes to compute the next step.

Secondly the Fourier simulation scheme offers greater flexibility in that it first uses the
increments of the Lévy and volatility processes to simulate the

(5.4) {X̂λ(tj, nπ/τ)}M,N
j=0,n=0

field of complex LSS processes which have exponential kernel functions. This field can
in turn be employed to simulate LSS process trajectories for multiple choices of kernel
functions. Since by means of calculating different a0, a1, . . . , aN coefficients corresponding
to multiple choices of kernel functions one may reuse the field (5.4) to simulate trajectories
of multiple LSS processes. For instance one can easily simulate a parametric family of LSS
processes driven by a joint Lévy process and modulated by a joint volatility process but
with different kernel functions {gθ}θ∈Θ.

6. Pricing path dependent options

In this section we aim to employ our results for path dependent option pricing. More
specifically, we shall be concerned with pricing options of the type

(6.1) P (T ) = f

(∫ T

0

X(t)dt

)
,

where f is a Lipschitz continuous function with Lipschitz constant C > 0. We remark
that, selecting f(x) = max(x/T − K, 0) and f(x) = max(K − x/T, 0) respectively yield
so-called Asian call and put options with strike price K > 0. Options of this type have
been traded at the Nordic electricity exchange NordPool for some time around the year
2000 (see Weron [22]). Here, X(t) denotes deseasonalised spot price and we shall assume
arithmetic spot dynamics, that is, that the spot is modelled as an LSS process

(6.2) X(t) =

∫ t

−∞
g(t− s)σ(s−)dL(s).

Under a given risk-neutral measure Q such that P (T ) ∈ L1(Q), and given a risk-free asset
(a bank account) yielding a continuously compounded rate of return r > 0 Benth et al.
[12] define the option price P (T ) at time t ≤ T as

(6.3) P (T ) = e−r(T−t)EQ

[
f

(∫ T

0

X(t)dt

)
|Ft

]
.
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Suppose that X̃(t) is an approximation of the spot price dynamics X(t), e.g. obtained by
the method proposed in the previous section. We have the following result.

Proposition 6.1. Given two LSS processes X(t) and X̃(t) and a Lipschitz continuous
function f , with Lipschitz constant C > 0, it holds that

E
[∣∣∣∣f (∫ T

0

X(t)dt

)
− f

(∫ T

0

X̃(t)dt

)∣∣∣∣] ≤ CT 1/2

(∫ T

0

E
[
|X(t)− X̃(t)|2

]
dt

)1/2

.

Proof. By the Lipschitz continuity of f , the Cauchy-Schwarz inequality, Jensen’s inequality
and Fubini it follows that

E
[∣∣∣∣f (∫ T

0

X(t)dt

)
− f

(∫ T

0

X̃(t)dt

)∣∣∣∣] ≤ CE
[∣∣∣∣∫ T

0

(X(t)− X̃(t))dt

∣∣∣∣]
≤ CT 1/2E

[(∫ T

0

|X(t)− X̃(t)|2dt
)1/2

]

≤ CT 1/2

(∫ T

0

E
[
|X(t)− X̃(t)|2

]
dt

)1/2

.

�

The above Proposition together with Propositions 4.1 and 4.3 give us a convergence rate
for employing our method to price path dependent options. So, in particular we are able
approximate the options (6.1) in L1 by means of simulating the spot price dynamics using
the method presented in the previous section. Now, recalling our LSS process approxima-
tion (3.10) and using the notation of section 4, we approximate the spot price X(t) by
means of

X(t) ≈ a0

2
X̂λ,r(t, 0) + Re

N∑
n=1

anX̂λ,r(t, nπ/τ),

for any t ∈ R. This yields

(6.4)

∫ T

0

X(t)dt ≈ a0

2

∫ T

0

X̂λ,r(t, 0)dt+ Re
N∑

n=1

an

∫ T

0

X̂λ,r(t, nπ/τ)dt,

for any T > 0. Now furthermore for any y ∈ R we may employ Fubini to conclude that∫ T

0

X̂λ,r(t, y)dt =

∫ T

0

∫ t

r

e(iy−λ)(t−s)σ(s−)dL(s)dt

=

∫ T

r

∫ T

s∨0

e(iy−λ)(t−s)dtσ(s−)dL(s)

=
1

iy − λ

(
X̂λ,r(T, y)− X̂λ,r(0, y)−

∫ T

0

σ(s−)dL(s)

)
.
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Thus, plugging this into (6.4) yields∫ T

0

X(t)dt ≈ a0

2

X̂λ,r(T, 0)− X̂λ,r(0, 0)−
∫ T

0
σ(s−)dL(s)

−λ

+ Re
N∑

n=1

an

X̂λ,r(T, nπ/τ)− X̂λ,r(0, nπ/τ)−
∫ T

0
σ(s−)dL(s)

inπ/τ − λ
,

for any T > 0. Now let us illustrate the error induced by this estimation by considering
an example. Note that we may employ Fubini to conclude that∫ T

0

X(t)dt =

∫ T

0

∫ t

−∞
g(t− s)σ(s−)dL(s)dt

=

∫ T

−∞

∫ T

0

1[0,t](s)g(t− s)σ(s−)dtdL(s)

=

∫ T

−∞

∫ T

s∨0

g(t− s)dtσ(s−)dL(s) =:

∫ T

−∞
G(T, s)σ(s−)dL(s),(6.5)

thus in general yielding a volatility modulated Volterra (VMV) process with kernel function

G(T, s) =
∫ T

s∨0
g(t− s)dt. For the sequel note in particular we note that

(6.6) A(T ) =
1

T

∫ T

0

X(t)dt =
1

T

∫ T

−∞
G(T, s)σ(s−)dL(s),

where A(T ) denotes the average of the spot over [0, T ]. We shall use the above calculations
as a benchmark in simulation studies below, when we apply our own method. To illustrate
that let us consider applying our proposed simulation scheme from the previous sections to
simulate the spot price dynamics. As a benchmark, let us consider the case when L = W
is standard Brownian motion, σ = 1 and f(x) = max(x/T − K, 0). Then it holds that∫ T

0
X(t)dt =

∫ T

−∞G(T, s)dW (s) is a Gaussian process and the option we want to price is
an Asian call option. It holds that

E
[
max

(
1

T

∫ T

0

X(t)dt−K, 0

)
|Ft

]
= E

[
max

(
1

T

∫ T

t

G(T, s)dW (s)−
(
K − 1

T

∫ t

−∞
G(T, s)dW (s)

)
, 0

)
|Ft

]
.

Now let us assume that the conditional probability measure P(·|Ft) = E[1·|Ft] generated by
the conditional expectation operator is regular (see e.g. Ash and Doléans-Dade [1]). Then

under P(·|Ft) for each ω ∈ Ω it holds that the random variable T−1
∫ T

t
G(T, s)dW (s)−(K−

T−1
∫ t

−∞G(T, s)dW (s)) is normally distributed with mean K − T−1
∫ t

−∞G(T, s)dW (s, ω)

and variance T−2
∫ T

t
G2(T, s)ds under the probability measure P(·|Ft)(ω). Thus for our

purposes, note that if Z is a normally distributed random variable with mean µ and variance
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ρ2 it holds that

E[max(Z, 0)] =
1√
2πρ

∫ ∞

0

ue
− (u−µ)2

2ρ2 du

=
1√
2π

∫ ∞

−µ/ρ

(µ+ ρx)e−
x2

2 dx

= µ(1− Φ(−µ/ρ)) +
ρ√
2π

∫ ∞

−µ/ρ

xe−
x2

2 dx

= µΦ(µ/ρ) +
ρ√
2π

exp(−µ2/(2ρ2)),

where Φ denotes the cumulative distribution function of the standard normal distribution.
Thus we conclude that

E
[
max

(
1

T

∫ T

0

X(t)dt−K, 0

)
|Ft

]
= E

[
max

(
1

T

∫ T

t

G(T, s)dW (s)−
(
K − 1

T

∫ t

−∞
G(T, s)dW (s)

)
, 0

)
|Ft

]
= µt,T Φ(µt,T/ρt,T ) +

ρt,T√
2π

exp(−µ2
t,T/(2ρ

2
t,T )),(6.7)

where

(6.8) µt,T = K − 1

T

∫ t

−∞
G(T, s)dW (s) and ρ2

t,T =
1

T 2

∫ T

t

G2(T, s)ds

denote the mean and variance processes respectively. Thus yielding an explicit pricing
formula in the Gaussian case.

To illustrate this let us consider a Brownian motion driven LSS process, with σ = 1,
driven by a scaled gamma kernel (2.8), on the form

g(x) = Cxν−1e−αx,

where C > 0 is a constant, 1/2 < ν < 1 and α > 0. In this case we find that if s ≥ 0

G(T, s) =
C

αν
γ(ν, α(T − s)),

where γ(ν, x) =
∫ x

0
uν−1e−udu denotes the lower incomplete gamma function. From which

we may easily (numerically) evaluate the variance ρ2
t,T for any given t ≤ T . Notice that due

the singularity of the gamma kernel function at zero, we need to amend it in a neighborhood
close to the origin, to make our method applicable. We achieve this for a given ε > 0 by
means of considering the function

gε(x) =

{
φ0(x) if x ∈ [0, ε]
g(x) if x ≥ ε

where φ0 is a 5th degree interpolating polynomial with coefficients determined by φ
(j)
0 (0) =

g(j)(ε) and φ
(j)
0 (ε) = g(j)(ε) for j = 0, 1, 2. Furthermore, as described above by (4.11) and
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Figure 2. The price curve T 7→ E[max(A(T ) − K, 0)|Ft], where A(T ) is
given by (6.6), K = 1, t = 0, L = W on [0, 10] and L = 0 on (−∞, 0), σ = 1
and g(x) = Cxν−1e−αx, where C = 10, α = 1 and ν = 0.55. As obtained by
the explicit Gaussian formula (6.7), numerically integration to evaluate X(t)
and the approximation (6.4), with λ = 1.9, ∆t = 0.05 and N = 30, where
the expectations are obtained by averaging over 1000 Brownian motion paths.

(4.12) with k = 1 we interpolate gε to zero in the tail from τ0 = 10 to τ = 11. In figure 2
we see that by means of applying our method with λ = 1.9, ∆t = 0.05 and N = 30 and
comparing to the explicit path one can get a better result by using the Fourier method
than by using numerical integration. The reason for the difference on this scale is the
singularity in the kernel function, but one must however take some care when selecting
λ > 0, since not every choice of it will yield a good approximation. To this end one could
use the convergence rate results of the current paper as guidelines in the search for the
optimal λ.

Obtaining the path in Matlab by means of numerical integration using a convolution
routine took 0.1182 seconds, whereas obtaining the path by means of the Fourier method
using a two dimensional convolution took 2.7791 seconds. The calculations were performed
on a standard laptop computer. However, as pointed out in the previous section one can re-
use the field (5.4) to simulate the price for different kernel function. Thus if one is interested
in the price for a LSS process where the kernel function depends on a parameter, then the
Fourier method has an advantage. Furthermore if one wants to simulate the next time step,
then this is more easily accomplished by our method than numerical integration. Finally,
as we have seen, by selecting an appropriate λ > 0 one may get a better approximation by
means of the Fourier method than the by means of numerical integration.
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7. Conclusion

We have introduced numerical simulation scheme for LSS processes which is based on
considering a Fourier integral representation of the corresponding kernel function and ap-
proximating it by means of a sum. We have analysed the convergence rate of the method
and compared it to numerical integration. Finally we have applied our method to price
path dependent options and benchmarked our method and numerical integration against
the explicit price.

In future studies we aim to apply our findings to study how this can be applied to
simulating forward price fields (as derived by Barndorff-Nielsen et al. [2]), by means of a
parametric family of LSS processes, with varying kernel functions.
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[14] Folland, G. B. Real Analysis – Modern Techniques and their Applications, J. Wiley& Sons, (1984).
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