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Abstract

This thesis proposes the use of minimal virtual machines to model larger populations
of instances in different environments, and investigates if a cloud environment is able
to take the populations even further. Finally the thesis wants to investigate if min-
imal virtual machines are suitable to host custom application stacks and are able to
compete with full-sized virtual machines. As virtualization technology has achieved
increased popularity the recent years virtual machines are now used by many busi-
nesses, institutions and consumers for different purposes. Full-sized virtual machines
are large, and demand considerable amounts of computing resources from the Cloud
Resource Pool. This project was able to significantly reduce the size of virtual ma-
chines and the amount of computing resources required to host them. The smallest
virtual machine accomplished in this project had a size of merely 1.5MB allowing a
population of almost 500 times, or at least two orders of magnitude, larger than one
standard-sized Ubuntu Server instance. Custom written software was also created for
each type of virtual machine for the purpose of simulating real-world CPU usage pat-
terns. Several population sizes of minimal virtual machines were deployed and tested
in Hypervisor-on-Hardware and Hypervisor-in-Cloud labs to compare their behavior
and performance in different environments.
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Chapter 1

Introduction

1.1 Motivation

Virtual machines (VMs) have become an important part of the IT industry as
they offer significant benefits to IT companies by allowing multiple operat-
ing systems and applications to run in parallel on a single physical computing
node. Virtualization technology has introduced a new concept where infras-
tructure, applications and storage have been made available to the public over
the Internet which is called cloud computing.

1.1.1 Virtual Machines

VMs may be used for different purposes besides being used in cloud comput-
ing environments. Institutions use them for educational purposes, program-
mers use them to test their applications on different platforms, businesses use
them as a replacement for physical workstations in order to reduce power us-
age and maintenance costs. A common use for system administrators is to use
them for testing different tools and to host different services in a network.

VMs may be used for many purposes, and within academia they are used
to provide students with the means to deploy full-sized machines in a vir-
tual network environment and to solve problems in numerous types of assign-
ments ranging from basic firewall configuration to deploying different services
such as DNS servers and load balancers. However, as most educational insti-
tutions have limited hardware resources and funding this impose a restriction
on the number of VMs which may be distributed to each student, hence nar-
rowing the possibilities of their research.

In 2009 Google began work on a storage and computation system called
Spanner with the purpose of spanning all their data centers. In a keynote held
by Jeff Dean, a Google Fellow in the Systems Infrastructure Group, Google esti-
mated their future data centers to scale from 1,000,000 to 10,000,000 machines
and 1,000,000,000 client machines[1]. Google’s focus on scalability, cloud com-
puting environments and large networks emphasizes the importance of pro-
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1.1. MOTIVATION

viding students with the opportunity of working with large-scale networks
and to provide them with practical assignments dealing with scalability issues.

As full-sized VMs demand a substantial amount of system resources this
limits their full potential as a tool to simulate large-scale environments. This
suggests looking at less resource demanding alternatives such as minimal VMs
which are built around a stripped-down version of an existing kernel, a mi-
crokernel or a minimalistic operating system which requires significantly less
system resources.

1.1.2 Cloud Computing

The Amazon Elastic Compute Cloud (Amazon EC2)[2] and Windows Azure[3]
are examples of public cloud computing platforms using virtualization to al-
low consumers to host and run their own applications in the cloud by rent-
ing VMs. These cloud computing platforms deliver services in a subscription-
based model allowing companies to invest less capital on expensive network
infrastructure, and eliminates the need of setting up basic software infras-
tructures. Minimal VMs would be beneficial in cloud environments for re-
search purposes, and as a platform to provide centralized hosting of software
to its users in a software-as-a-service (SaaS) model. Next to the public clouds
there are private clouds which often serve research and development pur-
poses for products/services such as Dropbox[4], Google Docs[5] and Microsoft
Office365[6]. As more applications are moved to the cloud the infrastructure
must also be able to provide sufficient computing resources to host both these
applications in addition to client machines.

1.1.3 The Benefits of using minimal VMs

Academic institutions such as Oslo University College who wish to perform
research on cloud computing, while at the same time support a large number
of VMs on existing hardware for their students, the use of full-sized VMs is
considered to be a bottleneck due to their resource requirements. As institu-
tions do not have access to the same level of funding as businesses they are not
able to afford the expenses of expanding existing infrastructure and buying the
necessary hardware to support all their needs. This exemplifies the benefits of
less resource demanding VMs as they would be able to open up additional
venues of research while keeping expenses at a minimum.

The need to support a large number of clients, and providing students and
researchers with the possibility of simulating large-scale networks on the same
infrastructure suggests creating two types of VMs. The first type is to be used
for research purposes only and would at least need to support the creation and
simulation of different usage patterns of real-world applications. This type of
VM would be suitable for organization and administration of a large number
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1.1. MOTIVATION

of instances on a network as features such as a command line interface (CLI)
or a graphical user interface (GUI) are not required. By removing most of the
system services and features found in full-sized VMs, the amount of system
resources required by each VM of this type would be reduced substantially,
allowing a significantly larger number of VMs to be deployed on the existing
infrastructure.

The other type of VM is suggested as a multi-purpose instance offering
the same level of usability, extensibility and support of popular application
stacks while demanding less system resources compared with full-sized VMs.
These VMs may also be used as a replacement for existing client machines,
to perform real tasks and to perform communication between instances across
the network. This second type of minimal VM is recognized by its broad scope
and extensibility which allows researchers and students to model a population
of full-sized VMs using minimal VMs while keeping system resource usage at
a minimum.

1.1.4 Business Opportunities

Minimal VMs would also be able to be deployed as ready to run environ-
ments equipped with custom application stacks for the purpose of running
a web server or specific types of services. An example of such a service is
BitNami[7] which deliver self-contained environments using minimal installa-
tions of Ubuntu and openSUSE which are ready to be deployed on Amazon
EC2, Windows, Linux and Mac OS X. As minimal VMs would be greatly re-
duced in size this would reduce the storage space needed on the cloud and
require less computing resources as a large number of services have been re-
moved.

1.1.5 Related Work

As data centers and networks continue to grow in size they become more com-
plex, and designers are in need of simulation tools which are able to deliver
predictable results about the system requirements of the data center. CloudSim
is ”a framework for modeling and simulation of cloud computing infrastruc-
tures and services”[8] and provides a simulation framework for system de-
signers and developers to enable ”seamless modeling, simulation and experimen-
tation with cloud computing infrastructures and management services.”[9, p.1]. By
instantiating each VM as a small java object the tool is able to create a large
number of ”machines” to allow researchers and developers to focus more on
system design issues without having to be concerned about low level details
related to Cloud-based infrastructures and services. The framework gives re-
searchers the possibility of deploying a large number of VMs in a framework
to simulate a variety of different application configurations and to perform ex-
tensive testing in multiple scenarios. However, CloudSim does not provide
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the ability to deploy a large number of real VMs to create small-scale models
of networks and to use them in a real environment as client machines.

The motivational pointers in this chapter show the possibilities of using
minimal VMs for modeling, simulation and cloud services. One feasible ap-
proach to test the hypothesis of this project is to perform research into the use
of µ-kernel technology and minimal operating systems to examine if it is fea-
sible to use minimal VMs as a viable alternative to full-sized VMs by reducing
the amount of system resources required by each VM, hence allowing a larger
number of VMs to be deployed on existing system infrastructure and hard-
ware.

1.2 Problem Statement

The following problem statements were chosen for this project as outlined by
the motivational section.

1. To which extent is it possible to model large populations of full-sized
virtual machines, using minimal virtual machines on fewer hosts?

1.1 To which extent is a public cloud computing environment able to pro-
vide the resources to increase the model-populations even further?

2. Would minimal VMs be able to host custom application stacks as ready
to run environments and be able to compete with full-sized VMs used for
the same purpose?

The main focus of this project is to research to which extent minimal VMs
may be used to model large populations of full-sized VMs.

1.2.1 Modeling large populations of full-sized virtual machines

The keywords for the given problem statement needs to be examined to ex-
press the purpose of the thesis.

To which extent means to examine the feasibility of using a small-scale
model and compare it to the behavior of a real-sized population. To which
degree would it be possible to achieve the behavior of a large population of
full-sized VMs using a small-scale model of minimal virtual machines.

Possible to model means to examine if it would be realistic to create a small
population of VMs as a small-scale model that may be used for the design and
implementation of a full-scale system. The idea is to see whether or not the
results from the small population is able to show the behavior of larger popu-
lations.
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1.2. PROBLEM STATEMENT

Large populations defines the number of VMs to be significant. Its size can
be defined as being the largest possible number of VMs which may be popu-
lated on a system with respect to the limitations imposed by system resources
such as CPU, memory and storage. A

Full-sized virtual machine is a virtual machine of standard size. These are
VMs built on traditional monolithic kernel designs and full-size suggests the
sum of its virtual disk size and memory footprint to be of a significance.

Virtual machine, or VM, deviate from a physical machines as it does not
provide an hardware abstraction layer like other operating systems.[11, p. 4]
The lack of such a layer requires a VM to use partitions of existing hardware
resources from the host in order to simulate its own hardware. Multiple VM
instances are able to run simultaneously next to each other as they are fully
isolated from other VMs as separate processes in user space.

Minimal virtual machine refers to a VM demanding the least amount of
computing resources while being smaller than a standard sized virtual ma-
chine. The definition of minimal in this context is also used for a type of kernel
or operating system which has been stripped down to its core elements.

Fewer hosts describes more than one host, and defines the number of hosts
as being an indefinitely smaller number. In context with the problem state-
ment it describes a population of VMs to be able to exist on fewer physical
machines than full-sized VMs would demand.

1.2.2 Using a cloud to further increase the model-populations

Cloud is the concept of making infrastructure, applications and storage avail-
able to consumers through a service provider such as Microsoft or Amazon.
These service providers own and maintain the cloud infrastructure freeing
companies from the task of low-level hardware configurations and creating
their own software infrastructures.

Able to provide the resources means if the public cloud is able to deliver the
computing resources to host, increase or move the populations from a physical
environment over to the cloud.

Increase the populations of small-scale models even further is the idea of
moving a small-scale population of VMs from a physical host over to the cloud
and at the same time scale up the number of VMs in the population. It also
means to look at which degree a public cloud computing environment is able
to provide the resources to increase the populations of small populations to a
greater extent, and if scalability and behavior of a such a population is an issue
when moving to the cloud.
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1.2.3 Using minimal VMs as ready to run environments

The next problem statement wish to research the possibility of using minimal
VMs to host custom application stacks as ready to run environments similar
to the BitNami[12] model and if they would be able to compete with full-sized
VMs with respects to storage and performance.

Custom application stacks is a term used for describing a suite or group of
software which is typically required to serve a specific purpose. An example
of such a stack would be the LAMP-stack(Linux, Apache, mySQL and PHP) to
provide basic web-service functionality.

Ready to run environment in this context is used to describe a virtual ma-
chine containing application software which comes pre-configured and ready
for deployment on a physical machine or on the cloud. An example is BitNami[12]
which supply consumers with a great number of pre-installed application stacks
on ready to run images which are compatible with the Amazon EC2 cloud
computing environment and are also provided as stand-alone installers sup-
porting the most popular operating systems, such as Linux, Mac OS X and
Windows.

Competing with full-sized VMs is a term used to describe if minimal VMs
would be able to host custom application stacks while at the same time de-
mand less hardware resources than full-sized VMs. It also wish to examine if
minimal VMs are able to offer the same level of performance, extensibility and
usability for the consumers in the same way as full-sized VMs are able to.

Institutions and companies who wish to develop SaaS products similar to
the BitNami model would want to reduce the system requirements of their
VMs as much a possible. The BitNami LAMP stack is installed on a minimal
installation of Ubuntu and requires at least 256MB of memory and a minimum
of 150MB of storage space[13] which suggest a minimal VM would be able to
achieve a much smaller memory footprint and storage requirements as system
services and device drivers have been moved out of kernel space. Instead of
choosing a minimal installation of the Ubuntu distribution there might be even
smaller kernels and operating systems offering a better solution. As a µ-kernel
or a minimalistic OS only provide the user with system critical elements such
as a tiny kernel, a file system, network drivers and a CLI this would support
the idea of being able to create a minimal VM which is able to compete with
full-sized VMs such as the ones provided by companies such as BitNami. The
use of minimal VMs would open up business opportunities for institutions
and companies seeking to increase their profits by being able to deploy a much
larger number of VMs on less hardware than existing alternatives are able to
offer.
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1.3 Summary of the results

Creating a small-scale model with a population of minimal VMs required to do
research into the field of µ-kernel and monolithic kernels. This was necessary
in order achieve an understanding of their design- and behavioral differences
and to decide if they would be able to result in a minimal VM.

Tiny Core Linux, BareMetal OS and the L4 Pistachio was found to be the
most suitable candidates for the purpose of creating a population of minimal
VMs as they are significantly smaller when compared with traditional kernels.
Researching these kernels was the first step towards creating a minimal VM,
and lots of effort was done into learning how to successfully compile the ker-
nels and how to create custom application software for each one.

The minimal VMs created in this project were significantly reduced in size
when compared with a full-sized Ubuntu server image which is currently
684MB. The smallest VM image was L4 Pistachio with a size of 1.5MB, a reduc-
tion in size of at least two orders of magnitude when compared with standard
Ubuntu. BareMetal OS achieved an image size of 32MB and the Tiny Core
Linux image achieved 20MB. In theory, this allows to deploy a population of
at least 500 minimal L4 Pistachio VMs, or at least two orders of magnitude
larger than Ubuntu, and on the same hardware.

Two different types of application software was created for the purpose of
benchmarking each of the kernels. The first type of applications had the task
of simulating three different CPU usage patterns. The second type of appli-
cations generated 100% CPU load by calculating the fibonacci sequence for a
given number of iterations without calling the sleep function. This caused the
CPU to become 100% utilized for the duration of the tests, resulting in a lot
of context switches. The results from these tests were used to examine which
kernel had the least overhead and better performance.

For this project two different labs were used to conduct the tests. The
first lab was a Hypervisor on Hardware lab with KVM virtualization, while
the other was a Hypervisor in Cloud environment offering virtualization of
VMs inside VMs (nested virtualization). Nested virtualization does not offer
the same performance which can be achieved by using a bare metal hypervi-
sor which is why these two environments were chosen for comparison in this
project.

Custom tools were created to assist with the deployment of a large number
of virtual machine simultaneously, to collect system information and to com-
pile the kernels and build their custom application software. A number of tests
were done and the data was analyzed by looking at important metrics such as
CPU- and memory usage to examine the behavior of the populations of VMs
when deployed on the hardware- and cloud labs.
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1.4 Thesis Outline

The structure of this paper is as follows. Chapter one is the introduction chapter
stating the motivational pointers of this thesis, describes the approach and the
problem statements.

Chapter two is the background and literature chapter which mainly goes into
details about the principles and differences of µ-kernels and monolithic ker-
nels and continues on virtualization, clouds, literature and related work.

Chapter three is the approach chapter describing the system design of the
two labs and the different development environments used for this project. It
also elaborates about the approach used to compile, assemble and install the
three different kernels and how to create applications for each one. The end of
the approach chapter talks about how to create different usage patterns as the
approach used to achieve a fair test for all three.

Chapter four is the results chapter which begins by going into detail about
the operationalization of the different tools created for this project. It continues
by presenting the results from the different tests.

Chapter five is the discussion chapter which examine the findings of this
project and discuss what has been achieved and if there is future work to be
done within this research topic.

Chapter six, the final chapter, is the conclusion chapter stating the final con-
clusions for this project.
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Chapter 2

Background and literature

2.1 Data Center Modeling

Data centers keep growing in size and increasing their complexity levels as
they are used for a range of different network services and for hosting client
machines. The design and deployment process of a data center has a signif-
icant lead time as designing the infrastructure involve many different stages
of development and often require the use of simulation tools to assist in the
process. These tools are becoming increasingly more popular among design-
ers and are used to model and display the data center environment by setting
a set of parameters for the infrastructure, such as equipment positioning and
heat distribution. [14, p. 97]

The increased use of simulation tools used for data center modeling sug-
gests the next step would be simulation tools for modeling the client capacity
of the data center. No research could be found where small-scale models of
minimal VMs had been used, and while data centers continue to grow this is
why a simple small-scale model of minimal VMs would be a useful tool in
predicting their client capacity.

A model of a population of minimal VMs may be created by using a variety
of different kernels and operating systems of different architecture and size. A
truly minimal VM may be built on top of µ-kernels which are the smallest
kernels available as they have moved all drivers and system services out of
kernel space and into user space where they can be attached to the kernel as
optional modules in an un-layered structure. This makes the µ-kernel much
smaller than the monolithic kernels which include most of their system ser-
vices in kernel mode in a layered structure and all system services and drivers
are included in the same source code. The difference is illustrated on figure 2.1.
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Figure 2.1: Illustrating the difference between µ-kernels (a) and monolithic
kernels (b). Notice the difference in kernel size.

2.1.1 Microkernels and monolithic kernels

The microkernel

Microkernels are the result of ongoing changes in the computer world during
the 1980s. Especially the development of new device drivers, protocol stacks
and file systems spawned the idea of creating a smaller and more extensible
type of kernel as an alternative to the existing monolithic kernels. Monolithic
kernels are based on a design where all the system services are placed inside
kernel space[15] and executed in the same address space resulting in a large
kernel. This design offer poor extensibility and becomes difficult to maintain
as more functionality is added to the kernel. As a result a simple operation
such as bug fixing require the entire kernel to be recompiled. The limitations
imposed by the monolithic kernels gave birth to the new microkernel where
the idea was to move existing system services out of kernel space into user
space and to make each part of the operating system run as separate servers
which could be worked on monolithically making it easier to customize the
kernel and adding or removal of specific services without working directly
with the kernel itself. The new µ-kernel was to be responsible for performing
only basic tasks such as process communication and I/O control by imple-
menting alternative inter process communication (IPC) mechanisms.

The new generation of kernels contained less than 20,000 lines of source
code resulting in a considerable size reduction and lower fault density when
compared with their monolithic counterpart. Some studies have shown that
source code in general generate between 16 and 75bugs pr 1,000 lines of code.
[16] [17] Smaller kernels generate fewer bugs which makes them more secure
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and more reliable as they do not include device driver code in the kernel which
is shown to have an even higher fault density with three to seven times the er-
ror rate of ordinary binary code[18]. This said, moving device drivers and
services out of kernel space drastically improves reliability, increases perfor-
mance and strengthens the security of the kernel.

As µ-kernels in their earlier years suffered from poor performance as a con-
sequence of their developers trying to implement as many system services as
possible, the next generation became far more efficient. Monolithic kernels re-
quired on an average of 100µs for a short message transfer on a system with
50Mhz clock rate[10, p. 1] and with the development of the L3 µ-kernel[19]
a significantly higher IPC performance was achieved. In 1987 the L3 kernel
was built from scratch on the generalization of the Eumel principles[20] which
was an operating system developed by Jocken Liedtke and was built upon the
principles of persistent processes and data spaces.

The L3 µ-kernel was able to increase IPC performance by an order of mag-
nitude by lowering the message transfer time by a twentyfold optimizing the
IPC time from 100µs to 5µs, which the developers claimed to be the result of a
”synergetic approach in design and implementation on all levels”[10, p. 1]. The suc-
cessor of the L3 µ-kernel, L4Ka::Pistachio, delivered even higher performance
than its predecessor as it introduced better support for multi-processor sys-
tems, looser ties between threads and address spaces, user-level thread control
blocks, virtual registers and had a fast local IPC mechanism.

The Monolithic Kernel

Monolithic kernels are the traditional counterpart next to the µ-kernel. The
kernels are designed to include system services inside kernel space as a part
of the same address space. Examples of such kernels are OpenVMS, Linux and
BSD all of which are able to dynamically load and unload executable modules
at runtime. This modularity does not happen at the architectural level but at
the binary level which mean unloaded modules are not loaded and stored in
memory before they are needed. This flexibility means the operating system
image does not need to reboot in order to load additional modules, but in-
stead loads them as they are needed by the kernel. Such an ability is useful
for embedded devices or in systems running on limited hardware resources.
However, when the code is loaded into memory a small overhead incur which
hurt overall performance but also adds flexibility. This feature has made the
Linux kernel the most popular choice for embedded devices as a core in the
Android operating system[21] which has a high focus on reducing its memory
footprint.

A monolithic kernel, such as Linux, contain support for a large number
of devices by embedding support for a large number of device drivers inside
kernel space which is loaded by the kernel when needed. The extensive num-
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ber of device drivers embedded inside the operating system introduce a large
amount of bugs into the kernel and each bug has the potential to bring down
the entire system. Bug fixing these large kernels requires the entire kernel to be
recompiled which is a time consuming operation in the case of Linux, which
now has reached in the order of 15 million lines of source code[22].

2.1.2 Importance of Context Switching

Processes can be isolated or may cooperate in accomplishing a common ob-
jective as part of a cluster of processes. Sometimes processes also need to
exchange data or synchronize their activities and inter process communica-
tion(IPC) is the mechanism which provide the ability to communicate between
these processes. [23, p. 1-2]

The IPC mechanism implemented by the kernel aims at reducing the CPU
overhead generated by context switching as a result of the communication be-
tween processes, and reducing the overhead is essential in order to increase
kernel performance. A context switch means ”changing currently active memory
mappings and CPU registers to the last saved state of a process”[24, p. 13], in other
words switching from one process to another. When a context switch occurs
a process saves its current process information, which is available in the CPU
registers, and goes from running state into a ready state. While in this wait-
ing state the process waits to be restarted and to receive interrupt instructions.
The time for this communication process to finish requires a certain amount of
time which is called CPU overhead.

Measuring the CPU overhead generated by each kernel is possible by exe-
cuting two identical CPU-intensive tasks and measuring the time required to
complete each task. The time difference needed to complete the task suggests
which kernel generates the most overhead.

2.2 Selecting the right kernel

A number of µ-kernels and tiny operating systems are available and currently
in development which are considered to be mature, small, sufficiently docu-
mented and fast enough to be compete with monolithic kernels . L4Ka::Pistachio[25],
BareMetal OS[26] and Tiny Core Linux [27] have been chosen for this thesis as
they are built on the idea of three different designs such as a µ-kernel (L4 Pis-
tachio), minimal operating system (BareMetal OS) and a monolithic operating
system (TinyCore Linux).
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2.2.1 L4 Pistachio

A cooperation between The System Architecture Group[28] at the University
of Karlsruhe and the DiSy group[29] at the University of New South Wales,
Australia resulted in the L4 Pistachio µ-kernel[25] and introduced several new
concepts to lower IPC costs in order to greatly improve the kernel perfor-
mance. Direct process switching[10, p. 8], lazy scheduling[10, p. 7], synchronous
IPC and using registers when passing parts of, or the entire message[10, p. 8]
are some of the mechanisms implemented in contrast to the first generation
of microkernels which supported both synchronous and asynchronous IPC re-
sulting in poor performance.

The high performance and small size of the L4 Pistachio kernel makes it
suitable as a minimal VM for modeling purposes. The L4 Pistachio kernel is in
the order of 10,000 lines of code which makes it tiny when compared to the cur-
rent Linux kernel which as of kernel 3.2 is in the order of 14,998,651 lines.[22]
The L4 kernel exists in both 32 and 64 bit versions, provides multiprocessor
support and features a local IPC. L4 Pistachio was built from ground up and
is the first available kernel implementation of the L4 Version 4 kernel API and
is the product of seven years of research. Its kernel is written entirely in C++
with emphasis on performance and portability. It is currently in development
and is maintained by the System Architecture Group in cooperation with the
DiSy group.

Because the L4 kernel features an ”ultra fast local IPC” mechanism [30] , is
written in C++ and contain less than 10,000 lines of source code it would sug-
gest it to be a good candidate for a large scale population of VMs as context
switching between the VMs and the CPU happens much faster when com-
pared to traditional monolithic kernels. An important distinction must be
made between L4 Pistachio and a traditional operating system which is that
L4 is regarded as a pure µ-kernel and lacks the basic functions of an OS such as
a file system, command line interface and device drivers. All of these services
must be added to the kernel as modules to classify as an OS. Using a µ-kernel
in a large scale scenario when deploying a large number of virtual machines
would help keeping memory footprint and system resource usage to an ab-
solute minimum allowing a large number of minimal VMs to be deployed.
Though this kernel is not an OS, running the kernel with only a selected num-
ber of custom written user space applications simulating real usage patterns
would make it possible to simulate the real behavior of an OS.

2.2.2 BareMetal

BareMetal OS is a 64-bit operating system written entirely in Assembly. Al-
though the kernel itself is written entirely in assembly code it support appli-
cations written in both Assembly or CC++. It offers a native file system with
readwrite support for FAT16 as well as networking capabilities and monotask-
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ing capabilities with support for up to 128 64-bit processors. To use BareMetal
OS an IntelAMD-based 64-bit CPU is required and with at least 32 MiB avail-
able on the hard drive. In addition the OS itself needs 2MiB of memory as
well as reserving 2MiB of memory per CPU core. BareMetal is an open source
project and also offer online documentation and forums which makes the OS
a good candidate for this thesis.

2.2.3 Tiny Core Linux

Tiny Core Linux[27] is one of the smallest available distribution of the Linux
kernel and is between 1100 and 1400 the size of the most common operating
systems used worldwide. It includes a set of tools such as busybox, offer exten-
sibility by supporting a large number of extensions and features a command
line interface. The current version of TCL at the time of writing support ver-
sion 3.03 of the Linux kernel, is less than 10 megabytes and does not require a
harddrive installation as the operating system is able to run in its entirety with
48MB of RAM. TCL has an active open source community and is led by a team
of developers and also offer a lot of documentation.

2.3 Virtualization

Virtualization had its origins in the 1960’s and was developed by IBM Corpo-
ration as they had one single physical hardware mainframe host and wished
to partition it into several logical instances. Since the 60’s the virtualization
technology has become increasingly more popular and is now recognized as
being an essential part of the IT industry as we know it.

Virtualization is achieved by installing a piece of software which imitates
a selection of hardware components or even the whole computer itself. The
software is installed on a computer and acts as a virtualization layer by using
either a hypervisor or a hosted architecture solution. A hypervisor implements
a virtual operating platform for the guest operating systems by installing the
virtualization layer on a clean x86 system which is dedicated to running guest
operating systems. In contrast, the hosted architecture is installed as an appli-
cation on top of an existing OS and supports the widest variety of hardware
configurations.

2.3.1 Kernel-based Virtual Machines

Kernel-based Virtual Machines (KVM) is a full virtualization solution for Linux
on x86 hardware supporting extensions such as Intel VT or AMD-V.[31] Virtual
machine monitors require the use of such extensions and they enable running
fully isolated virtual machines at native hardware speeds, with the exception
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for some workloads. KVM allows unmodified Linux or Windows images to
be used as virtual machines as each machine recognizes virtualized hardware
such as network cards, disks and graphics adapters and supports 64 bit pro-
cessors. A slightly modified QEMU program is used by KVM to execute the
virtual machine as a regular process which can be managed by top, kill, taskset
and other tools. Using KVM in a production environment recommends the
use of KVM modules shipped together with the Linux distribution to avoid
critical errors and instability. As previously mentioned, the KVM VM instance
is seen as a process by the operating system and a command such as kill -9
would kill the process and reclaim all the resources it used to have.
KVM is open source and included as a kernel component in the Linux kernel
from version 2.6.20 and higher which makes implementation easy. Their web-
site also include an extensive amount of documentation combined with the
use of multimedia which makes usability and documentation one of KVMs
strong sides.

2.3.2 Cloud Computing

Cloud computing environments such as Amazon EC2[2] and Windows Azure[3]
are examples of public clouds which provide consumers with virtual resources
available over the Internet. Clouds use the following service models:

Software as a Service(SaaS): The cloud service provider deliver software as
a service to the consumer according to their requirements.

Platform as a Service(PaaS): Consumers are given platform access on the
cloud enabling them to move custom software and different types of applica-
tions onto the cloud.

Infrastructure as a Service(IaaS): Basic computing resources such as storage
and network capacity is granted to the consumer. This provides the consumer
with the possibility of managing operating systems and network connectivity
on the cloud.

The Cloud makes it possible for anyone to gain access to their own personal
VM on the Internet by using web service APIs. Having root access to a VM on
the Cloud offers the same level of control as with any other physical machine.
Public clouds such as the Amazon EC2 is flexible as it offers the choice of de-
ploying multiple instance types, operating systems and software packages as a
subscription based service where you pay as you use the service. In addition it
is also possible to choose from a variety of different memory, CPU and storage
configurations for each VM.

Using the Amazon EC2 cloud is relatively inexpensive when compared
to using physical systems since customers pay a low rate for the processing
power. There are three types of instances to choose from, and their economic
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models range from payment by the hour, a one time payment for each in-
stance and spot instances where you bid on unused Amazon capacity and let
the instances run until the bid meets or exceeds the current spot price.

In addition to the different instance types it is also possible to deploy VMs
on multiple geographically dispersed locations sorted into different regions
and availability zones. The advantage of locating multiple instances in differ-
ent geographical locations across the globe is protection from a single point
of failure of one single region or location. Regions are dispersed availabil-
ity zones are placed in separate geographic areas; US East, US West, EU, Asia
Pacific (Singapore), Asia Pacific(Tokyo) South America and AWS GovCloud, all of
which adhere to the Amazon Ec2 Service Level Agreement of 99,95% avail-
ability. [32]

Consumers are able to choose from a variety of different instance types to
meet their needs. The standard family of instances in the Amazon EC2 Cloud
will be suitable for most uses and deliver from 1.7-7.5GB of memory and 1-8
EC2 Compute Units. Other instance types are high-memory instances which
offer a large amount of memory to support high throughput applications such
as databases. High-CPU instances are designed to meet the demands of con-
sumers requiring the support for compute-intensive applications.

Preconfigured Amazon Machine Images (AMIs) are provided to the con-
sumers by Amazon but it is also possible to upload custom operating systems
and both Linux and Windows operating systems are supported.

2.4 Virtual machines as ready to run environments

With the increasing popularity of cloud computing environments such as Ama-
zon EC2, new products have started emerging such as VMs with ready to
run environments delivering pre-installed bundles of the most popular open
source web applications, frameworks and their dependencies.

BitNami[12] is one provider of such services where a minimal installation
of Ubuntu and openSUSE is used to host the application stack free of charge to
consumers. The goal of BitNami is to make open source software more avail-
able which is why their stacks are available as native installers, VM images
and Amazon EC2 cloud images. BitNami also has plans to release cloud im-
ages supporting additional clouds in the near future. Current stacks are avail-
able for all the major operating systems such as Linux, Windows and Mac OS
X and are compatible with virtualization software packages such as VMWare
and VirtualBox.
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2.4.1 BitNami Amazon Cloud Images

BitNami Cloud Images are a collection of applications and its dependencies.
These images are pre-configured and ready to be deployed on the Amazon
Elastic Compute Cloud (EC2). Consumers choosing to use these images on
the cloud does not need to invest in hardware or to install the applications
on a physical machine. The minimum requirement on the consumer’s side
is signing up for an account at Amazon EC2 after which launching the cloud
image is an automatic process without the need of uploading the image to the
cloud. Once started the instance is operated as any other instance hosted on
the cloud by using the web interface of EC2 to start and stop the instance when
needed.

2.4.2 BitNami Virtual Machine Images

Minimal Linux operating systems are used as operating systems for these
images which come pre-installed and configured with a BitNami application
stack. These images are delivered as ready to run VMs compatible with VMware
and Virtualbox and enables consumers to start and stop VMs as any other ap-
plication without having to install anything besides the virtualization software
on their machine.

2.5 Related Work

2.5.1 CloudSim

CloudSim[8] is a tool used by researchers to design and manage large data cen-
ters and is also used to simulate large populations of VMs. The tool is used for
several purposes such as evaluation of resource allocation algorithms for HP’s
Cloud data centers, energy-efficient management of Data Centers, evaluating
design and application scheduling in Clouds, SLA oriented management and
optimization of Cloud computing environments and investigation on work-
flow scheduling in Clouds. [33, p.22]

The tool is able to simulate millions of VMs by instantiating them as tiny
java objects. Benchmarks show deploying a population of 1,000,000 hosts
required approximately 12 seconds and memory usage never grew beyond
320MB.[33, p.18]. CloudSim is able to offer researchers with a framework re-
quiring only a fraction of the hardware resources needed to simulate a large
scale environment in environments such as a Cloud. However, it is not able to
create real VMs for simulation purposes.

However, as java objects are not real VMs, the use of minimal alternatives
for simulation purposes is an important research topic as this approach may
prove as a viable alternative for simulating real environments. Minimal VMs
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would provide students and researchers with a tool to deploy large popula-
tions of VMs and to simulate scalability, network connectivity and real-world
problems.
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Chapter 3

Approach

This chapter states the different system designs used in this projects. It ex-
plains how to create the minimal VMs for L4 Pistachio, BareMetal OS and TCL
and continues on how to develop custom applications for each kernel. It be-
gins with suggesting a preliminary specification of the different tools required
to fulfill the requirements of the project. A description of the operationaliza-
tion of the final tools are explained later in the Results chapter.

As L4 Pistachio and BareMetal OS are active research projects their doc-
umentation was not able to provide all the details necessary about how to
create build environments, Qemu images, applications or how to install appli-
cations onto the images to make them available for the kernel. The purpose
of this chapter is to show the steps required to successfully compile/assemble
the kernels, how to create applications for each of them, how to create Qemu
images and how to install the applications onto these images. As the task of
installing files onto the images proved to be a complex and time consuming
task custom tools had to be created to speed up the process.

3.1 Required Tools

Two different tools have been suggested as a minimum for this project; one
should have the responsibility of deploying virtual machines while the other
has the responsibility of collecting system information from the host. The pro-
gramming language Perl is a good candidate for the task as it is suitable for
gathering system information, performing file operations, handling user in-
put and is able to execute system commands.

3.1.1 Automatically Booting Virtual Machines

The script must accept input from the user such as the name of the Qemu-
image, the number of virtual machines to be deployed and the type of VMs to
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boot. Before each VM is deployed a mechanism in the script might be imple-
mented to check CPU and memory usage to prevent more VMs to be deployed
if the system is running out of available resources.

A loop could be used to boot one VM until a stop condition terminates the
initialization of additional VMs. The stop condition is suggested as being the
same as the maximum number of VMs decided by the user upon execution of
the tool.

To initialize multiple VMs each VM should be booted with a universally
unique identifier (UUID). The script should generate as many UUIDs as the
requested number of deployed VMs and store each ID in an array or a file.
There is a Linux tool available which is used generate valid UUIDs called uuid-
gen and generates a string similar to 84da4f5f-b884-441d-b9e5-5ff37e866973. This
tool may be executed inside its own loop at the beginning of the script, before
the actual deployment of VMs, where the loop must iterate an equal amount
of times as the desired number of VMs in order to create a unique identifier
for each instance. To be able to boot multiple instances using the same VM
image it is necessary to give each VM instance unique process IDs and process
names which also helps to identify each VM. The following naming scheme is
suggested and use only a string and a counter to achieve the following format;
vm process 1, (...) vm process 12. These names may be achieved by inserting the
VM- and process-names in the Qemu command used to execute each VM by
using the following Qemu-options: -name l4 12,process=l4 process 12.

After generating the UUIDs the script is suggested to collect system infor-
mation such as CPU and memory and calculate system critical levels to decide
if there are enough available system resources for deploying additional VM on
the system. This is a useful feature if one wishes to avoid saturation of memory
or CPU by not allowing additional VMs to boot if the CPU load is too high or
the amount of available memory is too low. Standard Linux system tools such
as top and free, or the CPAN Perl module Sys::Statistics::Linux may be used to
gather CPU and memory information to be used for this purpose.

As different VM instance types are decided by user input the script should
check the input to decide which Qemu image to load. This decision can be
achieved by comparing the user input in an if-test to decide the appropriate
command to execute.

To keep the loop from deploying all of the VMs immediately a delay func-
tion is suggested. This could be achieved by using a sleep timer to allow
enough time for the current VM to finish its boot process and to let the CPU
and memory finish its operations and to avoid queuing and slowdown of the
system during the boot phase.

Using the system(), exec() or backticks “ functions of Perl may be used to
issue the appropriate Qemu-commands to boot the VMs. The difference be-

29



3.1. REQUIRED TOOLS

tween the three methods are that system() will execute a command specified
in $command by calling ”/bin/sh -c $command”, and returns after the com-
mand has been completed, waits for the command to finish and only returns
the exit status of the executable ignoring any output. Using exec() will return
an error code only if it cannot find the executable and ignores any output or
return values, while using the backticks “ method should be used only if it re-
quires to collect the output generated by running the command. Using the
system() function is suggested as the most suitable function to use as booting
a VM requires only the execution of a command ”/bin/sh”, wait for the com-
mand to have been executed and then ignore any output. It also returns the
exit status of the command making it possible to exit the script if something
unexpectedly occur such as a VM crashing during boot. The loop should keep
iterating an equal amount of times as there are UUIDs in the array or in the
output file.

3.1.2 Statistics Script

A script is suggested to be developed to collect statistics about system resource
usage on the host. By comparing these data one should be able to decide which
of the kernels would be suitable for creating the largest population of VMs.
Analyzing CPU and memory usage while the VMs are running suggest the
script to accept user input such as the number of data samples to collect, the
delay in seconds between each collected sample, name of the log file and name
of the process to search for to allow counting the number of running VMs. The
results in the collected samples should be printed into a comma separated log
file for readability and would be useful for later analysis and for generating
graphs.

A variety of metrics are suggested to be collected such as CPU usage and
averages, paging, memory, processes and swap statistics to be able to measure
how the different VMs behave on different environments. As the VMs are sug-
gested to execute a selection of custom made applications with the purpose of
generating real usage patterns, increasing the amount of VMs and comparing
the data from running a smaller population should be able to tell if the VMs
are behaving in a predictable way.

Linux offer multiple tools which may provide information about system
resource usage such as free, uptime, top, pidstat. These are tools which may
be executed inside the script in order to gather the output, however, they
require a lot of additional CPU and memory resources when they are exe-
cuted. Counting the number of VMs is important to verify how many VMs
that were active while collecting the data samples and counting these pro-
cesses may be achieved by searching through active processes using the VM
process name using parsing of output from running the ”top” command. Exe-
cuting these tools using the and capturing its output using backticks “ is rather
resource demanding and is not recommended. However, a faster and more
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appropriate method of collecting these data is to use the CPAN Perl module,
Sys::Statistics[34], which collects data from the virtual proc filesystem instead
of using the aforementioned Linux tools. The CPAN module is also able to
search through running processes on the system, which is a better solution
than collecting output from other more resource demanding system utilities.

The documentation of Sys::Statistics::Linux CPAN module recommends set-
ting a sleep timer of minimum 1 second to be implemented to force a delay
between the data collecting in order to let the module complete its collection
process.

The user should provide the number of data samples to collect when call-
ing the script which suggest to use a loop which uses the number of data sam-
ples to collect as its stop condition. Calling a subroutine in each loop iteration
is suggested as being a convenient method as it moves a lot of code outside
of the loop and results in better readability of the source code. Each time the
subroutine is called it should collect the requested type of system information
from the procfs filesystem and store the data in the output file specified by the
user.

Relevant Data To Collect From The Host

This section suggests, and explains, five categories of relevant system informa-
tion to be collected by the script using the Sys::Statistics::Linux module.

1. CPU Usage

2. CPU Load

3. Memory Usage

4. Swap Usage

5. Paging

CPU Usage statistics includes the following subcategories:

• user

• system

• idle

• total

The ”user” category collects a summary of the percentage of CPU utiliza-
tion happening at user level and these values are related to processes running
at user level, which are processes belonging to applications. Each guest VM
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on the host is regarded as an application by the system and will show up in
this category. For all the subcategories, with the exception for ”idle”, a value
of 100 means the CPU is constantly busy, and a value of 0(zero) means there
are no CPU activity.

CPU utilization occurring at the system(kernel) level show up in the cat-
egory ”system” and the values show a summary of the percentage of CPU
utilization. The summary does not include time spent servicing interrupts or
softirqs.

Time spent by the CPU in idle mode show up in the ”idle” category which
show percentage of time the CPU spends in idle state. A value of 0 means the
CPU is constantly busy, while 100 means the CPU is idling.

The final subcategory, ”total”, adds up the total percentage of CPU utiliza-
tion at both user and system levels.

As the CPU usage may be significant when collected by the script the burst
of activity might occur at just that specific moment which is why CPU load

must also be collected. CPU load average is the average of the actual load
on the CPU, and there are three load-average values possible to collect from
Linux, the 1-minute, 5-minute and 15-minute averages. Measuring the CPU
load is the same as measuring the trend in CPU utilization instead of a single
snapshot. Additionally it includes a complete measurement of the entire CPU
demand instead of a what the demand was at one given time. For each CPU
core the number should stay below 1.00, which mean that for a dual core sys-
tem the maximum number is 2.00, while on a quad core CPU the number is
4.00.

Collecting information about memory is important in order to examine
how the different VMs use memory resources, and the following four sub-
categories have been suggested:

• Total

• Used

• Free

• Cached

Memory total is the total amount of memory available on the system and
does not change during the test. The most important data is collected from
the Used category which tell how much memory is being used in the order of
kilobytes.
The ”cached” values tell how much data is stored in a temporary reserved
area in RAM in order to increase the processing speed, while ”free” show how
much memory is available.
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The swap category is suggested to collected the same categories as for
memory:

• Total

• Used

• Free

• Cached

The first subcategory, ”Total”, show the total size of swap space available
on the host while ”Used” and ”Free” show the size of swap space which is
either used or available and all values are collected in kilobytes. Swapping oc-
cur when applications use all available memory and stores data on the disk or
another location during transfer. This decrease system reliability and is useful
data to collect to examine if some of the kernels suddenly show a decrease in
performance.

Sharing memory among multiple user space processes simultaneously is
achieved by paging. Processes are allocated fixed sized memory pages each
having its own logical memory space used to process data, which is key to ef-
fective memory utilization. A a high number of page faults indicates degraded
performance of either a program or an operating system and a low number in-
dicates the opposite. Collecting information about the number of page faults
occurring on a system is important in order to compare the different kernels
with respects to optimization and performance.

Collecting information about ”minor” and ”major” page faults are sug-
gested. Minor page faults require the page fault handler in the operating
system to tell the memory management unit to point to the page, indicate it
as being loaded in memory but does not require the contents to be read into
memory. The major page are more expensive than minor faults as the the page
fault handler needs to find a free page, read the data to that page, mark it as
not being loaded into memory and read the data for that page into the page it-
self. THe memory management unit is then told to make an entry for that page
pointing to the page in memory and finally indicate that the page is loaded in
memory. Major faults are used by an operating system when the amount of
memory available on demand needs to be increased.

3.2 System Design

This section states the design and system requirements for the build-, and de-
velopment environments and the virtualization labs. It also explains the ap-
proach on how to build and configure L4 Pistachio, BareMetal OS, how to
install TCL and how to develop basic applications for each of the three.

33



3.2. SYSTEM DESIGN

Type Description

PC Dell Dimension 920 Workstation

CPU Intel(R) Core(TM)2 Quad CPU
Q6600 @ 2.40GHz. 1 CPU, 4 cores,
4 threads, L1 Cache=32KiB,L2
Cache=8MiB

RAM 2x2GiB DIMM DDR. Synchronous
800 MHz (1.2 ns).

Table 3.1: Hypervisor on Hardware system specifications

3.2.1 Hypervisor on Hardware

A Dell Dimension 9200 workstation with an Intel Core2 Quad-CPU Q6600 @
2.4Ghz.and 4GiB of DIMM DDR 800Mhz memory is used as a Hypervisor on
Hardware (HoH) lab and is also used as to hold the development environments
for the three kernels. It is configured as a dual-boot system in order to be used
as both a 64-bit virtualization lab and build environment for BareMetal OS and
as a 32-bit development environment for L4 Pistachio and Tiny Core Linux.
Two separate hard disks are installed for storage each with its separate OS to
allow dual booting Ubuntu Server 11.10 in 32-bit, and 64-bit distributions.

Table 3.1 lists the system specifications:

3.2.2 Build and Development Environments

Build- and development environments for L4 Pistachio, BareMetalOS and Tiny-
CoreLinux require a dual-boot system to be created for this project. L4 Pistachio
needs to use a x86-x32 Gnu/Linux system for this project in order to success-
fully compile a 32-bit version of its kernel and its binaries. BareMetal OS needs
a 64-bit environment to assemble its kernel and its custom applications. Using
a 64-bit system is to avoid creating a 32-bit cross compiler toolchain which is
a complex approach. TinyCoreLinux is able to be used on both 32- and 64-bit
environments as does not require its core to be compiled, but requires 32-bit
build options to be enabled when compiling its applications.

The HoH lab uses KVM virtualization and to make sure the CPU supports
hardware virtualization two commands can be used to verify that KVM is sup-
ported:

1: egrep -c ’(vmx|svm)’ /proc/cpuinfo

2: kvm-ok

If the CPU supports hardware virtualization command A should show 1

it KVM is enabled and 0 if not. The second command should provide the
following output:

INFO: Your CPU supports KVM extensions
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Type Description

EC2 VM High-CPU Extra Large Instance.
Suitable for compute intensive ap-
plications.

CPU 26 EC2 Compute Units with 8 vir-
tual cores. (2.5 EC2 Compute Units
pr. core)

RAM 7GiB Total

Disk 298GiB

OS 64-bit Ubuntu 11.10 Server

Table 3.2: Hypervisor in Cloud system specifications

HoH is used both as a 64-bit and 32-bit virtualization lab using the Ubuntu
11.10 distribution. The KVM documentation website[35] recommends using a
64 bit kernel as a hypervisor of two reasons. First, using a 64-bit OS will allow
to serve more than 2GB of RAM for the VMs, and second a 64 bit kernel may
host both 32 bit and 64 VMs.

3.2.3 Hypervisor in Cloud

Hypervisor In Cloud (HiC) is a 64-bit Ubuntu 11.10 Amazon EC2 instance and
has the purpose of serving as a virtualization lab and offer 20 EC2 Compute
Units for a total of 8 CPU cores and 7 GB of memory. System specifications for
the HiC lab is listed in table 3.2.

3.3 Getting started with L4 Pistachio

This show the approach used to successfully build a 32-bit L4 Pistachio ker-
nel and how to develop a simple Hello World root-task application. The proce-
dure involves configuring and compiling the kernel, configuring and installing
user-level files, creating the Hello World root-task binary and explains how to
make the kernel bootable. Compiling the kernel involves four steps where the
first is to configure and compile the kernel3.3.2, next the Hello World applica-
tion is created3.3.3, the third step is to configure and install user-level code3.3.4
and the final step is to create a bootable floppy disk image by installing GRUB
legacy onto the image file.3.3.5.

Table 3.3 lists all the system requirements for creating the L4 build envi-
ronment.

Ubuntu 11.10 comes with GRUB 2 as its default boot loader which is a re-
placement for the previous GRUB version 0.9x, now known as GRUB Legacy.
Creating a bootable floppy disk image for Qemu requires GRUB Legacy to
be installed on the host. This is necessary in order to install GRUB files onto
the image. GRUB2 (v1.99) is the default boot loader and manager used in
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Software Version

OS A: Ubuntu Server 32bit 11.10

qemu-kvm 0.14.1

build-essential 11.5ubuntu1

Grub 0.97

autoconf 2.68

Table 3.3: L4 Pistachio build environment Specifications

Ubuntu since version 9.10 and as no documentation exists on how to use
GRUB2 with the L4 Pistachio kernel reverting to GRUB Legacy was necessary
for this project. The procedure on how to revert to GRUB legacy may be found
on the GRUB2 documentation webpage[36].

The package Autoconf is necessary to create the file configure during the
build procedure and may be installed using apt-get:

apt-get install autoconf

L4 Pistachio source files may be downloaded from its Github repository[37]
and unzipped into your source directory on the build machine. Unzip the con-
tents of the zip file in your user’s home directory and rename it to l4ka-pistachio
and the source files should now be located in /home/$USER/l4ka-pistachio/.

Qemu is not required for building L4 Pistachio but is required to test the
VMs to verify if the build was successful and the VM works. The documen-
tation for L4 Pistachio recommends the use of GCC version 3.2 or later, and
version 4.6.1 was found to successfully compile the kernel. GCC and other
build tools are delivered through the build-essential package and these soft-
ware packages does not require additional configuration before compiling the
kernel.

Before compiling L4 Pistachio the dependencies in table 3.3 is assumed to
have been installed on an x86-x32 Gnu/Linux system.

3.3.1 The Several Components of L4 Pistachio

The Kernel

The L4 kernel source code is located in the ”kernel” directory of its source files
and is configured by executing the command make menuconfig which opens up
a configuration program where parameters for Hardware, Kernel and Debug-
ger can be set.
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Kickstart

The kickstart module is a generic and extensible boot-strapper for the L4 Pis-
tachio kernel. It supports the IA32 and AMD64 systems and is responsible for
loading and configuring the kernel with architectural configuration parame-
ters including available and reserved memory areas. Other responsibilities in-
clude loading and registering the initial server’s memory location, and it also
starts the kernel.

Sigma0

Sigma0 is the memory manager for L4 Pistachio which owns the entire address
space during startup. It is responsible for resolving page faults for the root task
which is the first task run by the kernel. It runs in unprivileged mode, but can
also be seen as part of the kernel.

The Roottask

A root task is the first address space created at boot time and can perform priv-
ileged system calls and can control system resources such as threads, address
spaces and physical memory.

3.3.2 Building the L4 Kernel

This states the approach used to successfully compile the L4 kernel source code
located in the ”l4-source/kernel” directory resulting in the binary kernel file
x86-kernel and explains the configuration parameters which have to be set be-
fore the build process is initiated. The steps will be explained thoroughly to
allow replicating the same settings used for this project.

Throughout this approach it is assumed the source files of L4 Pistachio
have been extracted to the ”/home/$USER/l4ka-pistachio/” directory. Enter
the kernel directory and while inside the directory create the build directory
where the binary kernel will be built:

cd /home/$USER/l4ka-pistachio/kernel

make BUILDDIR=/home/$USER/l4ka-pistachio/x86-x32-kernel-build

The next step is to configure the kernel according to the same settings
used for this project. Enter the kernel build directory created by the ”BUILD-
DIR” command and execute the following commands which will configure
and make the kernel:

cd /home/$USER/l4ka-pistachio/x86-x32-kernel-build

make menuconfig

make
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The following options were used when running the make menuconfig com-
mand inside the ”kernel” directory.

• Hardware

X86

32 bit CPU

Pentium 1

PC99 compatible

• Kernel

Disable debugging mode

Leave all other options disabled
After running make the kernel binary has been successfully compiled and

placed in the path of the BUILDDIR directory set earlier.

3.3.3 L4 Pistachio ”Hello World” application

The following explain the approach used to create a simple roottask applica-
tion whose single purpose is to print a single line of text in a certain time in-
terval. This is the same approach which is used to create custom applications
later in this project and is explained thoroughly as the online documentation
does not mention how to create programs for L4 Pistachio. Creating an L4
root-task requires basic knowledge about programming in CC++. For con-
veniency the complete code and the structure of its Makefile is provided in
appendix A and B. Place both the source code and its Makefile inside a direc-
tory in /home/$USER/l4ka-pistachio/user/apps/hello.

The following files will have to be edited to set the location of the appli-
cation source files and its Makefile required for the compiler to compile the
application:

/home/$USER/l4ka−pistachio/user/apps/Makefile.in
/home/$USER/l4ka−pistachio/user/apps/user/configure
/home/$USER/l4ka−pistachio/user/apps/user/configure.in

Find the following line in Makefile.in, add the hello directory but keep the
l4test directory as it contain some applications which may be useful to verify
that L4 has been successfully compiled. This step has to be performed so the
compiler can find the hello world application files during the make process:

1 SUBDIRS= l4test hello

Next, go to line 3105 in the file configure which should look like the line be-
low and add the string ”apps/hello/Makefile” which should point to the loca-
tion where the compiler may expect to find the hello world application Makefile:
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1 ac config files=”$ac config files config.mk Makefile lib/Makefile lib/l4/Makefile
lib/io/Makefile serv/Makefile serv/sigma0/Makefile apps/Makefile
apps/bench/Makefile apps/bench/pingpong/Makefile apps/grabmem/Makefile
apps/l4test/Makefile apps/hello/Makefile util/Makefile util/kickstart/Makefile
util/grubdisk/Makefile util/piggybacker/Makefile util/piggybacker/ofppc/Makefile
util/piggybacker/ofppc64/Makefile contrib/Makefile contrib/elf−loader/Makefile”

In the same file go to line 3823 and add the following line:

1 apps/hello/Makefile”) CONFIG FILES=”$CONFIG FILES apps/hello/Makefile” ;;

Finally open the file configure.in, go to line 353 and add apps/hello/Makefile
on a new line just below the other applications which are already listed.

1 apps/l4test/Makefile
2 apps/hello/Makefile
3 util/Makefile

3.3.4 Configuring User-Level

This explains the approach used to configure and install user-level code. The
first step is to change to the ”user”” directory where the commands ”auto-
header” and ”autoconf”” must be executed which will create the files con-
fig.h.in and the configure script.

cd /home/$USER/l4ka-pistachio/user

autoheader

autoconf

Enter the L4 source file top directory and create a new sub directory which
will contain the temporary user-level build files:

mkdir /home/$USER/l4ka-pistachio/x86-x32-user-build

cd /home/$USER/l4ka-pistachio/x86-x32-user-build

While inside the above mentioned directory execute the configure com-
mand below to execute the ”configure” script which will configure the soft-
ware and check for dependencies:

../user/configure −−without−comport −−with−kickstart−linkbase=0x148030
−−with−s0−linkbase=0x20000 −−with−roottask−linkbase=0xEA60
−−prefix=/home/$USER/L4/l4ka−pistachio/x86−x32−user−install
−−with−kerneldir=/home/$USER/L4/l4ka−pistachio/x86−x32−kernel−build/

Linkbase commands are necessary to link kickstart, s0 and roottask (hello
world) to a different base in order to reduce memory footprint. Without the
linkbase parameters the kernel will require at least 16MB of RAM to boot suc-
cessfully. The linkbase values are hexadecimal and reflect the memory alloca-
tion size of each module which require these values to be changed according
to the size of each binary.
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Setting the kickstart linkbase to a value lower than 1MB (1 048 576 bytes)
results in a warning saying setting the value lower than 1MB is not allowed.
Setting the kickstart value to lower than 0x148030 also caused the kernel to
crash on some occations. Setting the sigma0 linkbase to lower than 0x20000
(131 072 bytes) also makes the kernel un-bootable, and 0x2000 was found to be
the minimum value. Setting the roottask linkbase looks to be a matter of con-
verting the size of the binary from size in bytes converted into hexadecimal
values. Since the binary size of the hello world code in appendix A is 38966
bytes it was decided to use a linkbase of 0xEA60 which is 60 000 bytes to be
sure the binary would have enough memory allocated to execute.

After the configuration of the user-level code has completed, run the fol-
lowing commands inside the ”/home/$USER/l4ka-pistachio/x86-x32-user-
build” directory to begin the software installation.

make

make install

The final command will place all the user-level binaries in the directory
passed in the ”–prefix” option:

/home/$USER/l4ka-pistachio/x86-x32-user-install/libexec/l4

3.3.5 Grub Legacy

Make sure the build environment is using GRUB legacy as there are issues
making Grub2 work with L4Ka-pistachio. As ubuntu versions later than v9.10
use GRUB2 as boot loader it is recommended to read the following guide[36]
on how to revert to the previous GRUB legacy.

The first step in making L4 bootable using GRUB Legacy is to create a tem-
porary directory structure which will contain the files needed for creating a
bootable floppy disk image for qemu-kvm. This step involves creating a di-
rectory structure where the kernel, kickstart, sigma0, roottask and the GRUB
Legacy files will be placed.

mkdir /home/$USER/l4ka−pistachio/fdsource
mkdir /home/$USER/l4ka−pistachio/fdsource/boot
mkdir /home/$USER/l4ka−pistachio/fdsource/boot/grub
touch /home/$USER/l4ka−pistachio/fdsource/boot/grub/menu.lst

All the binaries and Grub files must then be copied to the fdsource directory.

cp /home/$USER/l4ka−pistachio/x86−x32−kernel−build/x86−kernel
/home/$USER/l4ka−pistachio/fdsource/

cp /home/$USER/l4ka−pistachio/x86−x32−user−install/libexec/l4/sigma0
/home/$USER/l4ka−pistachio/fdsource/

cp /home/$USER/l4ka−pistachio/x86−x32−user−install/libexec/l4/kickstart
/home/$USER/l4ka−pistachio/fdsource/

cp /home/$USER/l4ka−pistachio/x86−x32−user−install/libexec/l4/hello
/home/$USER/l4ka−pistachio/fdsource/
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cp /boot/grub/stage1 /home/$USER/l4ka−pistachio/fdsource/boot/grub
cp /boot/grub/stage2 /home/$USER/l4ka−pistachio/fdsource/boot/grub
touch /home/$USER/l4ka−pistachio/fdsource/boot/grub/menu.lst

Edit ”menu.lst” add the following lines and be sure to enter a new line after
the last entry.

1 root (fd0)
2 default=0
3 timeout=3
4
5 title L4Ka::Pistachio
6 kernel /kickstart
7 module /x86−kernel
8 module /sigma0
9 module /hello

3.3.6 Creating an L4 Bootable Qemu Image

This part explains how to create a bootable floppy disk image with enough
space to hold the kernel, user-level, root task and GRUB Legacy files.

Create the floppy disk image inside the L4 Pistachio source code directory
by following the steps below.

dd if=/dev/zero of=fdimage.img bs=512 count=2880

/sbin/losetup /dev/loop0 fdimage.img
/sbin/mke2fs /dev/loop0

mkdir /mnt/fda
mount /dev/loop0 −o loop /mnt/fda
chmod 777 /mnt/fda

cp −aR /home/$USER/l4ka−pistachio/fdsource/* /mnt/fda/

umount /mnt/fda

cat <<EOF | /usr/sbin/grub −−batch −−device−map=/dev/null
> device (fd0) /dev/loop0
> root (fd0)
> setup (fd0)
> quit
> EOF

# Unmount loop device
/sbin/losetup −d /dev/loop0

The L4 image is now a compatible Qemu virtual machine image can be
booted by using the kvm command below:

qemu−system−x86 64 −cpu pentium −m 2 −fda fdimage.img −net none
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Software Version

Ubuntu Server 64bit 11.10
qemu-kvm 0.14.1
build-essential 11.5ubuntu1
Pure64 Image v0.5.0
BareMetal OS Source 0.5.3
Newlib C Library 1.20.0
kpartx 0.4.9-2
NASM 2.09.08

Table 3.4: BareMetal OS build environment

3.4 Getting Started with BareMetal OS

3.4.1 BareMetal Environment

BareMetal OS build environment is recommended to be created on a 64-bit
x86 64 GNULinux system in order to avoid building a cross compiler. BareMetal
OS does not accept the standard C headers but comes with support of its
own library and also support the Newlib C library. Building applications for
BareMetal OS require 64-bit compiler tools and also requires linking GCC to
the BareMetal OS library or Newlib headers.

Table 3.4 lists the required software needed for creating a working 64-bit
build environment.

3.4.2 Assembling the Kernel

When executing an application made for BareMetal OS and implementing its
native sleep function ”b delay” encounters a bug where the CPU utilization
stays at 100% when the function is called. Fixing this behavior is possible us-
ing a simple hack in the BareMetal OS source code in the two files ”misc.asm”,
”interrupt.asm” and consists of a 2-line fix.

The fix is to add a call to ”os smp wakeup all” to broadcast whenever the
RTC interrupt fires. This will wake up all CPU cores instead of the one that is
waiting so it is to be regarded as a simple ”hack” until the developer imple-
ments something more ideal.

To implement these changes it is necessary to re-assemble the BareMetal
OS kernel using NASM and place the new binary (”kernel64.sys”) on a work-
ing Pure64 Qemu image. There is a Qemu compatible image available on the
website of Pure64[38] and is located inside the zip file as an ”.img” file.

Download and extract the BareMetal OS source files to your harddrive
which is available at the BareMetal OS Github project website[39].

After extracting the source files edit ”misc.asm” in the ”os delay” function
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and make the following changes to modify the loop to ’hlt’ until an interrupt
is received:

1 os delay loop:
2 hlt
3 cmp qword [os ClockCounter], rax ; Compare it against our end time
4 jle os delay loop ; Loop if RAX is still lower

Finally, in ”interrupt.asm” in the ”rtc function” edit the following:

1 rtc end:
2 mov al, 0x0C ; Select RTC register C
3 out 0x70, al ; Port 0x70 is the RTC index, and 0x71 is the RTC data
4 in al, 0x71 ; Read the value in register C
5 mov rsi, [os LocalAPICAddress] ; Acknowledge the IRQ on APIC
6 xor eax, eax
7 mov dword [rsi+0xB0], eax
8 call os smp wakeup all ; A simple but ”terrible” hack

After having made the changes in the two files the new BareMetal OS ker-
nel must be assembled:

nasm kernel64.asm -o kernel64.sys

After having assembled the kernel it must be copied to the Pure64 disk
image:

mkdir /mnt/pure64

kpartx -av Pure64.img

mount /dev/mapper/loop0p1 /mnt/pure64

cp kernel64.sys /mnt/pure64

umount /mnt/pure64

kpartx -d Pure64.img

The image now contains the new BareMetal OS kernel without the bug
causing the CPU to stay at 100% when ”b delay” is called.

3.4.3 How to compile Newlib for use with BareMetal OS

BareMetal OS may use the functions provided by the Newlib C library when
compiling applications. It requires additional packages in order to success-
fully compile and running the following command will fetch and install the
required dependencies:

apt−get install autoconf libtool sed gawk bison flex m4 texinfo texi2html unzip make

After these packages have been installed a directory must be created to
hold the Newlib source files which must be downloaded from the Redhat web-
site. Finally a fresh BaremetalOS zipball must be downloaded from Github
and extracted on your harddrive.

mkdir newlib
cd newlib
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wget ftp://sources.redhat.com/pub/newlib/newlib−1.20.0.tar.gz
tar xf newlib−1.20.0.tar.gz
wget https://github.com/ReturnInfinity/BareMetal−OS/zipball/master
unzip master
mkdir build

After having downloaded Newlib and BareMetalOS some files must be edited
to specify the location of the BareMetalOS source files.

Modify the following files:

newlib−1.20.0/config.sub
@ Line 1334

| −sym* | −kopensolaris* \
| −amigaos* | −amigados* | −msdos* | −newsos* | −unicos* | −aof* \
| −aos* | −aros* \

+ | −baremetal* \
| −nindy* | −vxsim* | −vxworks* | −ebmon* | −hms* | −mvs* \
| −clix* | −riscos* | −uniplus* | −iris* | −rtu* | −xenix* \
| −hiux* | −386bsd* | −knetbsd* | −mirbsd* | −netbsd* \

newlib−1.20.0/newlib/configure.host
@ Line 506

z8k−*−coff)
sys dir=z8ksim
;;

+ x86 64−*−baremetal*)
+ sys dir=baremetal
+ ;;

esac

newlib−1.20.0/newlib/libc/sys/configure.in
@ Line 46

tic80) AC CONFIG SUBDIRS(tic80) ;;
w65) AC CONFIG SUBDIRS(w65) ;;
z8ksim) AC CONFIG SUBDIRS(z8ksim) ;;

+ baremetal) AC CONFIG SUBDIRS(baremetal) ;;
esac;

fi

In newlib-1.20.0/newlib/libc/sys create a directory called ”baremetal” and
copy the contents of the ”newlib/baremetal” directory from the BareMetal OS
code into the ”newlib/libc/sys/baremetal” directory.

mkdir newlib−1.20.0/newlib/libc/sys/baremetal
cd newlib−1.20.0/newlib/libc/sys
autoconf
cd baremetal
autoreconf
cd ../../../../..
cd build/
../newlib−1.20.0/configure −−target=x86 64−pc−baremetal −−disable−multilib

When inside the ”build” directory edit the Makefile and remove all in-
stances of ”x86 64-pc-baremetal-” in the FOR TARGET section but keep the
rightmost part of the line containing the name of the tools. Changing these pa-
rameters will tell the compiler to use the default applications instead of look-
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ing for specific cross-compiler tools for the x86 64-pc-baremetal tools which
does not exist.

AR_FOR_TARGET=x86_64-pc-baremetal-ar

AS_FOR_TARGET=x86_64-pc-baremetal-as

CC_FOR_TARGET=$(STAGE_CC_WRAPPER) x86_64-pc-baremetal-cc

etc...

Change to:

AR_FOR_TARGET=ar

AS_FOR_TARGET=as

CC_FOR_TARGET=$(STAGE_CC_WRAPPER) cc

etc...

Also remember to add -fno-stack-protector to the ”CFLAGS FOR TARGET”
and ”CXXFLAGS FOR TARGET” variables and compile Newlib using the fol-
lowing command:

make

When the build process has completed there should be two new folders
inside the ”build” directory called ”etc” and ”x86 64-pc-baremetal”. The com-
piled Newlib C library which is now ready for linking with BareMetal OS pro-
grams can be found in ”build/x86 64-pc-baremetal/newlib/libc.a”. The size
of libc.a is 5 MiB but can be shrunk to about 1.2MiB by running the following
command:

strip --strip-debug libc.a

3.4.4 Creating a BareMetal ”Hello World” Application

Compiling BareMetal applications using the Newblib C library gives the ap-
plications access to the standard set of C library calls like ”printf()”, ”scanf()”
etc. and the gcc -I (capital i) argument can be used to point to the ”newlib-
1.20.0/newlib/libc/include” directory which is the directory containing the
Newlib headers.

The unzipped zipball from Github containing the BareMetal OS code con-
tain a directory called ”programs”, which will be the working directory for de-
veloping your applications, and a directory called ”newlib” which contain the
linker script ”app.ld”. The linker script, ”libc.a” and the Pure64 image must be
copied to the ”programs” directory in order to use it during the compilation
of your applications.

When inside the ”programs” directory, create a bash script ”build.sh” to
compile the applications:

1 #!/bin/bash
2 # Name: build.sh
3
4 # Compiles the BareMetal application using Newlib and BareMetal headers
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5 gcc −I /newlib/newlib−1.20.0/newlib/libc/include −c newlib hello.c −o newlib hello.o
6 gcc −L . −l libBareMetal.h −c libBareMetal.c −o libBareMetal.o
7 ld −T app.ld −o newlib hello.app newlib hello.o libc.a libBareMetal.o
8
9 # Compiles the BareMetal application using only libBareMetal.h headers

10 gcc −−verbose −m64 −nostdblib −nostartfiles −nodefaultlibs −mno−red−zone −o
bare hello.o bare hello.c

11 libBareMetal.c −DBAREMETAL −Ttext=0x200000
12 objcopy −O binary bare hello.o bare hello.app

The ”programs” directory should contain the following files:

• bare hello.c

• newlib hello.c

• app.ld

• libc.a

• libBareMetal.h

• libBareMetal.c

• build.sh

• BareMetal.img

The above script (build.sh) compiles two different Hello world applications
and their source code is provided as appendix E and F. For the first program
the compiler is told to point to the directory containing the Newlib C head-
ers by using the -I parameter while the ld command links to the linker script
”app.ld” which divides the code into different memory regions and finally in-
cludes the C library file ”libc.a”.The end result is a BareMetal Newlib applica-
tion with the name ”newlib hello.app” which must be added to the BareMetal
file system.

The procedure for the native BareMetal application is different and use
the tool objcopy with the option ”-O binary” which tells objcopy to write the
output file in the binary object format. The final result is an application with
the name ”bare hello.app”.

3.4.5 Moving Applications To the Image

Having built the BareMetal OS applications they also need to be transferred
to the BareMetal file system which is achieved by mounting the Qemu image
using the tool ”kpartx” and mounting the new device on the system using the
”mount” command.

Make sure the Pure64 image is placed inside the same directory as your
BareMetal applications directory and create the following script which will
copy the applications to the image and start the VM. Place this script in the
same directory as the Pure64 image.
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#!/bin/sh
kpartx −av BareMetal.img
mkdir /mnt/baremetal
mount /dev/mapper/loop0p1 /mnt/baremetal
cp newlib hello.app /mnt/baremetal
cp bare hello.app /mnt/baremetal
ls −la /mnt/baremetal
umount /mnt/baremetal
kpartx −d BareMetal.img
qemu−system−x86 64 −m 16 −hda BareMetal.img −net none −M pc

When BareMetal boot has completed, list the contents of the directory by
using the ”dir” command and execute the application by typing in the name
of the application on the CLI: ”NEWLIB HELLO”. This should output ”I’m
Newlib” and wait 5 seconds before printing ”Goodbye”, and the same behav-
ior will apply for the ”BARE HELLO” application. Notice that Newlib does
not include the sleep function, so the headers of BareMetal will be used to offer
this functionality.

To start an application automatically after the boot process has finished
follow the same procedure but rename the application to ”startup.app”.

3.5 Getting Started with Tiny Core Linux

This section explains how to install Tiny Core Linux (TCL) and how to create
a working Qemu-image and how to create a ”Hello World” application. TCL
can be used on the same environment as L4 Pistachio as it is a 32-bit kernel, but
the process of creating a Qemu image and transferring files to the file system
is different and will be explained in this section of the report.

TCL use a pre-compiled Linux kernel and will be installed onto a Qemu-
image by mounting the image file as a hard disk device where TCL will be
installed onto. A script was developed in the programming language Perl to
help with this procedure, see Appendix H. This script performs the mounting
and copying of the applications over to the image. Table 3.5 lists the required
software used for creating a development environment for TCL for this project.

Software Version

Ubuntu Server 32bit 11.10
qemu-kvm 0.14.1
build-essential 11.5ubuntu1
CorePlus-current.iso 4.4
kpartx 0.4.9-2

Table 3.5: Tiny Core Linux build environment specifications
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3.5.1 Installing Tiny Core Linux

As Tiny Core Linux comes pre-compiled the system needs to be installed onto
a qemu disk image that can be mounted on your harddisk and will hold Tiny
Core Linux and your applications.

The first step is to create a Qemu image by using the tool qemu-img to cre-
ate a 20MB image file with the name ”tinycore default.img” by running the
following command:

qemu−img create tinycore default.img 20M

Download CorePlus-current.iso which contains the installation program
for Tiny Core Linux and issue the command below to start the installation
procedure. 1 The command will mount the iso file as a cd-rom device and
mount the img file as a harddisk which will be detected as device ”sda” by the
installation program. This disk will hold the core and the applications when
the installation has completed and is Qemu compliant.

qemu −hda tinycore default.img −m 256 −cdrom CorePlus−current.iso

When prompted, choose to boot Core Plus with the ”default FLWM top-
side” option which will start the graphical desktop environment and click on
the ”TC Install” icon to start the installation process.

Step 1 Select the qemu image disk by the checking the ”Frugal” and ”Whole
Disk” options which will make the image appear as ”sda” in the ”Select disk
for core” window. Select it and check ”Install boot loader”.

Step 2 Select ”ext4” in the ”Formatting options” screen.

Step 3 The next step configures the boot options found in the ”Boot Options
Reference List”. Enter the following:

vga=769 nodhcp noswap norestore text waitusb=0 base superuser

This configuration will speed up the boot process by disabling certain ser-
vices during the boot.

Step 4 Choose to install ”Core Only (Text Based Interface)” and check the
”Non-US keyboard layout support”.

Step 5 Initialize the installation by clicking ”Proceed” and wait for the instal-
lation to finish.

1"http://distro.ibiblio.org/tinycorelinux/4.x/x86/release/CorePlus-current.

iso"
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3.5.2 TCL Hello World

Compiling and building an application which is able to execute on Tiny Core
Linux requires the Linux kernel versions to be fairly close on both machines
and that the GNU Standard C Library is at the same version level. After having
transferred the application to the TCL machine the permissions of the binary
must be set to executable in order to make it run.

The ”Hello World” application for Tiny Core Linux can be found in ap-
pendix G and the program must be compiled using the following command:

gcc −o hello hello.cc

This compiles into a binary file called ”hello” and must be transferred to
the TCL file system.

3.5.3 Mounting the Filesystem

Transferring an application to the TCL file system and making it execute auto-
matically at boot is a lengthy procedure. It involves mounting the qemu image,
copying the TCL core file ”core.gz” to the Ubuntu machine and mounting it as
a file system. The application is then copied onto the file system and the TCL
boot file ”bootlocal.sh” must be edited to include the command to automati-
cally execute the application at boot. Finally the filesystem must be repacked
into a new TCL core file before copying it back onto the image file replacing
the existing core and finally unmounting the image using the ”umount” and
”kpartx -d” commands.

To simplify and speed up this procedure a tool was made using the pro-
gramming language Perl and will require the user to enter the name of the ap-
plication to be transferred as well as the name of the qemu image. The script
must be called with the command:

./tcl add file.pl −p hello −i tinycore default.img

The ”-p” and ”-i” flags are mandatory and the script will exit if the script
is initialized without them.

To start an application automatically after boot the script edits the file ”/op-
t/bootlocal.sh” adding the command to start the start the executable file.

#!/bin/sh
# /opt/bootlocal.sh
/etc/init.d/hello

3.6 Building application software for simulation purposes

To make L4, Tiny Core Linux and BareMetal OS simulate real system activity
a suggestion is to create applications for each system programmed to replicate
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real-world CPU usage patterns. Since all systems depend to some degree on
different headers and libraries it is essential keeping the code and libraries as
simple and similar as possible in order to collect comparable metrics.

The suggested approach is to build custom application software designed
to generate varying bursts of CPU activity for the purpose of simulating real-
world usage patterns. These applications are suggested to calculate the Fi-
bonacci sequence in order to generate CPU activity allowing to compare the
performance between the different types of VMs. The software is suggested to
calculate a given Fibonacci sequence number, n, in a combination with differ-
ent sleep values to generate periods of CPU- and background activity.

3.6.1 Real-World Usage Patterns

Pattern A on figure 3.1 illustrates low background activity which brief periods
of CPU activity which could be due to short bursts of user activity. The ratio
between background activity and usage activity in this profile should be low
in order to keep the CPU load minimal. This is an example of a pattern seen
by web sites requiring additional compute cycles periodically as well as lower
throughput applications.
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CPU Profile A - Few Spikes

Figure 3.1: Pattern A - Short and intense periods of CPU activity

Pattern B, as illustrated on figure 3.2 intends to simulate the behavior of
a typical data-crunching application requiring continuous CPU resources but
has longer periods of no background activity. This might be an example of an
compute-intensive application collecting information from a database period-
ically such as for generating business reports and to generate live statistics.
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Figure 3.2: Pattern B - Longer periods of higher CPU activity

Pattern C illustrated on figure 3.3 simulate the behavior of a system with
frequent application activity. There is a higher frequency of CPU activity when
compared with patterns A and B, and the ratio between background- and
CPU-activity for this profile is higher in favor of CPU utilization. This is typ-
ical behavior of a busy web server or an application collecting data from a
database regularly.

3.6.2 Designing a Fair Test for all Kernels

Creating fair tests for L4, BareMetal OS and Tiny Core Linux based on differ-
ent CPU patterns suggests developing applications performing the same tasks.
The approach is to use the same source code for all kernels and using as few
additional libraries as possible to keep each OS from implementing features
unique for that specific system. Any additional libraries may cause additional
function calls which do not occur in the other systems which is why the code
must be as similar as possible to achieve comparable results.

Using the same code on all systems would suggest creating identical pat-
terns is an easy task. However, as Tiny Core Linux and BareMetal OS are
defined as operating systems while L4 Pistachio is a pure µ-kernel with a dif-
ferent architectural design this suggests slight changes have to be made in the
source code for each kernel.

The first task would be to create applications to achieve the patterns illus-
trated in figure 3.1, 3.2 and 3.3. The approach is to experiment with different
sleep- and fibonacci sequence values until these patterns have been achieved.
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CPU Profile C - Frequent Spikes

Figure 3.3: Pattern C - Short and frequent bursts of CPU activity

Fibonacci Sequence

The Fibonacci sequence in mathematics are the numbers in the following inte-
ger sequence:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... Based on looking at the sequence above
it is clear that by definition, the first two numbers are 0 and 1, while the next
number is the sum of the previous two. This is formally expressed by using
the formula below:

Fn = Fn 1 + Fn 2

The recursive implementation in the programming language C below is an
example of a poor approach to calculate the sequence as it makes two function
calls to itself which in turn leads to an exponential time complexity during
calculation of n.

1 int fib(int n)
{

3 if (n==0 || n==1)
return 1;

5 else
return fib(n−1)+fib(n−2);

7 }

Choosing a recursive implementation creates many function calls and may
lead to stack overflow problems caused by running out of memory if the value
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to be calculated is too large.

The following implementation is the iterative version of calculating the Fi-
bonacci sequence:

1 int Fib I (int i) {
int Fib, Fib 1, Fib 2,j;

3
if (i == 0) {

5 Fib = 0;
} else if (i < 3) {

7 Fib = 1;
} else {

9 Fib 1 = 1;
Fib 2 = 1;

11 j = 3;
while (j <= i) {

13 Fib = Fib 1 + Fib 2;
Fib 2 = Fib 1;

15 Fib 1 = Fib;
++j;

17 }
}

19 return Fib;
}

Looking at the implementations above it is to be noticed that the iterative
function is more complex, and also faster as it does not call itself, but instead
remembers the current result and moves on.

Iteration and Recursion

Both iterative and recursive implementations were considered for this project
to generate the different usage patterns.

When using recursion the variables loaded by the 1st and n-th function call
cannot affect each other directly. One should be careful using this approach as
a substantial number of function calls require lots of memory eventually lead-
ing to stack overflow errors. In the case of the recursive Fibonacci implemen-
tation a stop condition such as ”if(n==0 —— n==1) return 1;” must be used to
stop the calculation process from iterating forever.

Showing the limits of using recursion is best express by the following ex-
ample; If the fib(n) function is called with n = 20 it returns the sum of calling
the function fib(19) and fib(18), these two function calls will call a set of new
fib functions with fib(18) fib(17), and fib(17) fib(16) and continues to generate a
tree of function calls. Each time a function is called a small amount of memory
is set aside, which in this case will happen 13,529 times. Even a small num-
ber such as 20 demands 13,529 function calls in 10945 steps which shows why
recursion is not the optimal approach for calculating the Fibonacci sequence.
Calculating a large sequence number increases the depth in function calls may
eventually lead to stack overflow errors when running out of available mem-
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ory.

Iteration works much faster than recursion in the case of the Fibonacci se-
quence as it calculates a sum, remembers it and moves on to the next calcula-
tion. Iteration removes the need of recalculations and in comparison require
19 steps instead of the 10,945 required by recursion.

Deciding on which implementation to choose depends on the problem at
hand as some problems are best solved using recursion while others are best
solved using iteration. In the case of the Fibonacci sequence the use of iteration
is the better approach as using recursion to calculate a high sequence number
would demand a substantial number of function calls, hence increased time
complexity and eventually leading to buffer overflow errors if the depth is too
great.

Despite of iteration being the better approach for calculating the Fibonacci
sequence, recursion was chosen for this project as the purpose was to generate
CPU activity. As low sequence numbers were used for this project the risk of
buffer overflow errors was regarded as improbable as the number of function
calls would never achieve a substantial depth.
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Chapter 4

Results

This is the results chapter in which all the different tools, applications and tests
are presented.

4.1 Result 1: Tools

Different tools were developed in the programming language Perl to help with
the process of booting multiple virtual machines, compiling applications, gath-
ering system statistics, creating images and transferring files onto them. Some
of the tools have been developed specifically for each type of VM while others
are common for all. Especially tools related to compilation, mounting images
and transferring files are examples of tools which had to be custom made due
to the different layout of the images and their file systems.

4.1.1 Mass Deployment of Virtual Machines

A script was developed to automatically boot VM instances on the labs by
using user input to decide the number of VMs to boot, the type of operating
system or kernel and the number of VMs to boot. The final script is provided
in appendix C.

The script uses the following CPAN library modules to enable user input,
and to inspect contents of scalars or reference variables.

• Getopt::Std

• Data::Dumper

To pass arguments to the boot-script the Perl module Getopt::Std imple-
ments the getopts() function which accepts switches defined by the user in a
predefined list. The user is warned if an unrecognized option was passed to it
and returns true if an invalid option was not passed. The boot script accepts
the input options -i, -t, -n and -h which are short for image, type and number of
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VMs to boot and help.

When the script is called the input is parsed through the getopts() function
which will filter the input up against the list of allowed options. If one of the
options are missing, or an option other than the ones specified in the list have
been passed to the script it will exit. To allow multiple instances of virtual
machines running on the same host using the same image a set of universally
unique identifiers (UUIDs) must be generated for each guest. The script will
use the value passed using the -n parameter to generate an equal amount of
UUIDs as there are guests and store these in a text file on the hard drive which
will be opened and read by the script when booting the virtual machines.

After the UUIDs have been stored in the text file on the hard drive the file
is opened for reading and a variable ”$vm id” is then initialized to the integer
number 1 and used as a part of the process name and id when the VMs are
booted. This variable is finally incremented by 1 at the end of every loop in
the next part of the script.

Booting the virtual machines begins with a foreach loop which reads through
the UUIDs file, one line at a time, passing one ID into a variable named ”$id”
which is later used in the command to boot the VMs using the command line
option -uuid $id.

Two additional variables are initialized at the beginning of the loop named
”$vm name” and ”$vm process” where the former will set the name of the
guest and the latter will set the top visible process name in Linux. Setting
these variables makes it possible for the statistics tool script to count the num-
ber of virtual machines running on the system.

Before the actual boot process is initialized a statistics script4.1.2 is exe-
cuted to collect a number of data samples during the tests. The script is dis-
cussed in section 4.1.2.

The foreach loop has three if tests which checks the input given by the user
in the -t option and checks if the input is one of either ”l4”, ”bm” or ”tcl”. If
a match to one of these strings occur a custom Qemu command is executed
using the Linux system() call to execute a command by using /bin/sh -c com-

mand. The options specified in the command is mostly the same for both L4
Pistachio, BareMetal OS and TinyCore Linux with only a few exceptions such
as RAM and disk type options. Notice that L4 requires the option -fda to be
used instead of -hda as the image is made in floppy disk format and also that
the memory option -m is set to 5MB for L4, 16MB for BareMetalOS and 50MB
for Tiny Core Linux. Additionally the -cpu pentium is used with L4 to ensure
that Qemu defaults to simulating an intel CPU as this is the CPU architecture
chosen during the build process of the kernel. BareMetal OS and TinyCore
Linux does not require the use of the -cpu option.

To disable additional devices to be emulated by Qemu, such as a network
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interface card (NIC), multiple CPU cores and graphical display unit (GPU) the
options -net none and -nographic will disable the NIC and GPU. Disabling addi-
tional devices keeps the memory usage of the virtual machine to a minimum as
well as it helps keeping the kernel busy with as few services as possible. To en-
sure that Qemu does not automatically compute and assign more than one sin-
gle CPU core for each VM the option -smp 1[,cores=1][,threads=1][,sockets=1]
[,maxcpus=1] is used to constrict simulation to 1 CPU. The last option, -M pc,
tells Qemu to emulate a standard PC machine.

The script executes VMs with three different version of the command below:

if($TYPE eq ”<TYPE>”){
2 print ”Executing <TYPE> instance..\n”;

system( ”qemu−system−x86 64 −m [5,16 or 50] [−cpu pentium] [−fda or
−hda] $IMAGE −uuid $id −name $vm name,process=$vm process
−net none −M pc −smp 1,sockets=1,cores=1,threads=1,maxcpus=1
−nographic &” );

4 print ”Sleeping 10 seconds\n”;
sleep (10);

6 print ”Done sleeping..\n\n”;
}

After each VM has booted the script waits for 10 seconds to enable guests to
be executed at different times. This makes the VMs execute their applications
at different times and is more similar to real system behavior from real users
rather than if the VMs were executed simultaneously.

4.1.2 Data Collection

A tool was developed to collect system statistics for the duration of the tests.
The script perf.pl, found in appendix I, was developed using the programming
language Perl and implements a number of useful CPAN Perl modules which
have been especially developed for the purpose of collecting system informa-
tion and to allow a user to initialize the script with input options.

The following Perl modules are used by perf.pl:

• Sys::Statistics::Linux;

• Time::HiRes qw/gettimeofday/;

• Data::Dumper;

• Getopt::Std;

Sys::Statistics::Linux reads the virtual /proc filesystem (procfs) and should
work with the major Linux distribution on kernel version 2.4 and/or 2.6 and
later and requires the desired procfs features to be enabled in the kernel. The
user may also enter input options when initializing the script where the mod-
ule Getopt::Std handles the user input. The module Data::Dumper was used to
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inspect contents of scalars or reference variables available by using the Sys::Statistics::Linux
module, and produced a human readable print of the different reference vari-
ables available and is not responsible for collecting any system information.

The script is initialized with user input with the options, where ”[]” specify
optional parameters, [-h elp], -d elay, [-D ebug], -[o] utput file, -s amples and [-t]
ype of VM.

Some of the options are mandatory, such as the output file and type of VM
and must be passed to the script by the user, and if one of the options are not
provided the script will exit. The script has been configured to set the number
of samples to collect to 30 and a delay of 1 second as default values to simplify
the initialization of the script. As 30 samples and a 1 second delay has a limited
use in most scenarios it is possible to suppress the default values by providing
the options -d and -s with custom values. The smallest delay time is recom-
mended to be no less than 1 second to allow the module Sys::Statistics::Linux
to read from procfs, and is also the minimum recommended value found in the
documentation.

Once user input has been accepted the script creates an output file in the
current directory with the first line in the file being a header row containing 23
names corresponding to the type of system information to be gathered by the
script.

After having created the output file a for loop will loop a number of times
which correspond to the value provided by the user with the -s option when
initializing the script. The first line inside the loop executes a subroutine, get-
Stats($TYPE, $DELAY), which accepts the values provided with the -t and -d
options.

Collecting system information from Sys::Statistics::Linux is done inside the
subroutine getStats() and is achieved by requesting a number of statistics by
using a Sys::Statistics::Linux compilation object. The method get() will prepare
and return the requested statistics and update the initial statistics. The sub-
routine accepts ”$TYPE” and ”$DELAY” as input which the user must provide
with the -t and -d options. The former variable will be used to search the sys-
tem for process names matching the given VM type, while the latter controls
the frequency of the statistics collection by controlling how long the subroutine
sleeps between each sample. As some tests will utilize 100% of the CPU the
script might be affected so that the script is not able to collect statistics every
second. To ensure that each data set collects comparable metrics the module
”Time::HiRes” is used to convert the current unix timestamp into milliseconds
which is printed in the log file and stored along with each data sample. To
decide the duration of a test the number of milliseconds may be used to draw
an exact timeline making the script more reliable.

1 my $lxs = Sys::Statistics::Linux−>new(
cpustats => 1,

3 pgswstats => 1,

59



4.1. RESULT 1: TOOLS

memstats => 1,
5 processes => 1,

loadavg => 1
7 );

9 sleep($delay);

11 my $stat = $lxs−>get;

The script requests CPU, Paging, Memory, processes and CPU Load aver-
age using the Sys::Statistics::Linux compilation object as seen in the code above,
sleeps for at least 1 second between each data sample and executes the get()
method which extracts the data from the system. All the statistics are collected
and stored inside the $stat variable:

1 my $cpu = $stat−>cpustats−>{cpu};
$cpu usr = $cpu−>{user};

3 $cpuavg one = $stat−>loadavg−>{avg 1};
$page fault = $stat−>pgswstats−>{pgfault};

5 (...)

Collecting the number of virtual machine processes running on the system
is done by using the $stat->search() method which searches through all the
process names running on the host machine and using a regular expression
to match the process names. All the process names are stored in a hash and
counting the number of keys in the hash is done to get the total number of
processes.

Finally the values are written into the output file and the loop continues to
collect another sample of data from the system until the stop condition, ”i ¡ -s
samples”, is reached.

4.1.3 Automated Build Tool for L4 Pistachio

A tool was developed in Perl to automatically perform compilation of L4 and
all its binaries as well as adding files into to the L4 image. The manual proce-
dure is a lengthy as it involves many steps in order to complete the configu-
ration and installation of the kernel and its applications which is why the tool
was created. The tool performs all of the required steps automatically without
the need of user interaction other than setting the initial directory pathsand
linkbase values in the beginning of the script. The script may be found in ap-
pendix D and will be explained in detail.

The tool has the following operationalization, and performs a clean instal-
lation of L4 and its binaries:

1. Clean the system of the previous build

2. Configuring the new software package

3. Building the software
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4. Installing the software

5. Copying compiled binaries and Grub 0.97 stage1, stage2 and menu.lst
files to a temporary directory

6. Mount the L4 Qemu image as a loop device

7. Mount the loop device in a mount directory

8. Copy binaries and grub files from the temporary directory to the mount
directory

9. Install Grub on the loop device

10. Unmount the looop device

11. Remove the mountdir

12. Lists the files inside the temporary directory

The first part of the script is a configuration section where variables are
used to set the locations of the L4 directories which is required by the instal-
lation process. Setting the directory locations in variables is done to make it
easy to install the software in other locations if necessary. These variables may
be freely customized to reflect a different directory structure.

After the configuration variables have been configured by the user to re-
flect the directory structure of L4 step 1 performs the initial clean-up operation
to remove previous executable files and all the object files by executing the
”make clean” command.

Step 2 executes a script named ”configure” located in the ”<l4-sourcedir
>/user/” directory which is a script packaged with L4 that checks details
about the host machine on which the software is being installed onto. It also
checks the system for dependencies to make sure the software works properly
and the script will exit immediately if some dependencies are missing on the
system. Installing the missing dependencies are required in order to continue
the installation process.

The code below shows the structure of the script of how it uses the variables to-
gether with the ”configure” script to perform step 2:

1 my $srcdir = ”/project/L4/l4ka−pistachio”;
my $installdir = ”$srcdir/x86−user−install”;

3 my $kerneldir = ”$srcdir/x86−kernel”;
my $kickbase = ”0x148030”;

5 my $sigbase = ”0x20000”;
my $rootbase = ”0xEA60”;

7 (...omitted lines...)
system(”../user/configure −−without−comport −−with−kickstart−linkbase=$kickbase

−−with−s0−linkbase=$sigbase −−with−roottask−linkbase=$rootbase
−−prefix=$installdir −−with−kerneldir=$kerneldir”);
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The script passes options to the configure script to configure the software
with different settings which will be further explained. To disable console out-
put from being redirected to a serial port the option –without-comport is used.
This option will force the L4 virtual machine to show its output inside the
virtual machine console instead of being redirected to a console on your own
system.

The linkbase options are used to suppress the default linkbase values of
sigma0, roottask and kickstart. These values are architecture-dependent and
the settings used for an ”ia32” system must be changed if configuring the soft-
ware for a 64-bit system, so a bit of experimentation might be necessary as the
documentation on how to set the minimum allowed linkbase values are not
available.

The default linkbase values are located in the file ”l4-sourcedir/user/configure.in”
and are expressed in hexadecimal format:

ia32)
2 default kickstart linkbase=00800000 // 8 388 608 bytes

default sigma0 linkbase=00020000 // 131 072 bytes
4 default roottask linkbase=00400000 // 4 194 304 bytes

;;

As the default values require L4 to receive at least 12 713 984 bytes of
memory from the host system in order to boot these values were changed in
the ”makescript.pl” to pass smaller values reducing the amount of memory
needed to a much lower 1 534 608 bytes, a reduction of 11 179 376 bytes(!). As
Grub also demands a small amount of additional memory the L4 VM was able
to boot with only 1.68MB of RAM, or 1 761 607.68 bytes. Using these settings
the VM is smaller than any other virtual machine found on the Internet, and
understanding how the linkbase values work will be essential in keeping the
VM as small as possible.

Kickstart linkbase: 0x800000 (8 388 608 bytes) changed to 0x148030 (1 343 536 bytes)
Sigma0 linkbase: 0x20000 (131 072 bytes) changed to 0x20000 (131 072 bytes)
Roottask linkbase: 0x400000 changed to 0xEA60 (60 000 bytes)

The ”–prefix=installdir”and”−−with− kerneldir =kerneldir” options pro-
vide the locations of the installation directory where the compiled binaries will
be installed, and the directory containing the L4 kernel binary. When the ”con-
figure” script has completed it has created a file named Makefile which is go-
ing to be used in the next step when calling ”make”.

Step 3 and 4 in the script calls ”make” and ”make install” to perform the
building and installation of L4.

Running ”make” reads the Makefile in the current directory in which you
run make. Make reads the directions found inside the Makefile and then pro-
ceeds with the installation. The recipe tells Linux the sequence to build various
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components of L4 and includes checking dependencies which have to be in
place on the system. If some dependencies are not met when running ”make”
the installation will exit and the dependencies have to be installed before con-
tinuing. After step 3 has completed the program code and the executables
have been compiled. If ”make” is successful the script calls ”make install”
which will place the executables and other files into the final directories on the
machine.

After having successfully compiled and installed L4 the script moves on to
step 5 which perform the copying of the executables to a temporary directory
be used to hold the files which will be copied to the L4 Qemu image.

Step 6 and step 7 in the script is responsible for mounting the image as
a loop device and creating a mount directory where the loop device will be
mounted. All files which are located in the temporary directory are then copied
to the mount directory which is the same as placing the files onto the image,
which is performed in step 8.

When all the files have been copied to the mount directory GRUB must be
installed on the loop device to make it bootable, and a tool, ”grub.sh” is called
by the script to install GRUB Legacy using GRUB batch mode. The script is
located in appendix J and completes step 9.

Step 10 unmounts the mount directory and step 11 deletes the directory
and all files located in it.

The final step is number 12 which list all the files located inside the tem-
porary directory to visually present the files which have been copied by the
script. This is an optional step and can be safely removed if needed as it has
nothing to do with compiling L4.

4.1.4 BareMetal OS Tools

Compiling BareMetal OS applications and transferring them onto the VM im-
ages became a time consuming process which is why two different tools were
created to automate the procedure. These tools are presented in this section
and are provided as appendix K and L.

Compiling BareMetal Applications

A bash script was developed to perform the compilation of applications for
BareMetal OS. The script is called ”build.sh” and is located in appendix K.
The script does not accept any user input and is only responsible for compiling
applications and a typical set of compilation instructions for each applications
look like the following:
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1 #!/bin/bash
2
3
4 # CPUA − Iterative Fibonacci application, CPU profile A
5 gcc −−verbose −c cpua.c −o cpua.o
6 gcc −−verbose −L . −l libBareMetal.h −c libBareMetal.c −o libBareMetal.o
7 ld −−verbose −T app.ld −o cpua.app cpua.o libBareMetal.o
8
9 (...)

10 rm *.o

When the script has completed the binaries are called ”*.app” and are
placed in the current directory.

Transferring Files To the BareMetal VM Image

After compiling the executable files they are transferred to the BareMetal OS
Qemu VM-images which is achieved by another bash script. The tool ”mount.sh”,
located in appendix L copies a default image and mounts it as a loop device
using the tool ”kpartx”. The loop device is then mounted on a mount direc-
tory on the local file system before the executable file is copied to the mount
directory and unmounts the mount directory.

The script has the following structure with changes made in the names of
the images and applications for each image:

1 cp BareMetal new.img BareMetal sprint iter 20.img
2 kpartx −av BareMetal sprint iter 20.img
3 mount /dev/mapper/loop0p1 /mnt/baremetal
4 cp /sdc/project/BM/programs/CPU/sprint iter 20.app /mnt/baremetal/startup.app
5 echo ”Listing contents SPRINT 20:”
6 ls −la /mnt/baremetal
7 umount /mnt/baremetal
8 kpartx −d BareMetal sprint iter 20.img

4.1.5 Tiny Core Linux Tools

This section describes the tool used for this project used to add applications to
TCL Qemu VM-images. The script is provided as appendix H

Transferring Files to Tiny Core Linux

A tool was used to transfer executable files to the file system of Tiny Core
Linux. The script was programmed in Perl and is located in appendix H.

The Perl module ”Getopt::Std” is used by the script to handle user input
and the script requires the user to execute the script using the options ”-p”
and ”-i”. The former will be the name of the executable file to transfer to the
file system, while the latter is the name of the image where the executable file
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will be transferred to. Both options are mandatory upon executing the script.
Failing to provide one of the options causes the script to exit with an error.

The name of the executable file and the name of the image are provided
as input from the user when the script is executed and the values are stored
in variables inside the script which are used to mount the image and to copy
the executable files onto it. The script then checks if the mount directory exists
and deletes the directory if it is present. This is done to ensure that no old files
are present to achieve a clean modification of the Tiny Core Linux file system.

When the mount directory has been deleted the script then creates an empty
mount directory which will be used by the script to mount the image. A
temporary directory containing a subdirectory ”extract” is then created by
the script to hold the Tiny Core Linux file system and once created the script
mounts the image as a loop device using the tool ”kpartx” inside the subdirec-
tory. The command ”kpartx -av $IMAGE” is executed in backticks to capture
the output generated. The output is stored inside an array and the script then
searches through the output searching for the name of the loop device the im-
age was mounted on. Having the name of the correct loop device enables the
script to automatically mount the Tiny Core Linux image on the correct loop
device.

The script then mounts the loop device in the empty mount directory and
copies ”core.gz” containing the file system from the ”mountdir/tce/boot/”
directory into the temporary directory. Next, the script enters the subdirectory
”extract” and unpacks the Tiny Core Linux file system by executing the com-
mand ”zcat ../core.gz — sudo cpio -i -H newc -d”.

The entire Tiny Core Linux filesystem with the familial Linux directory
structure is now visible inside the ”extract” directory and the executable file is
then copied into the ”/etc/init.d/” directory. To make the executable start au-
tomatically after the boot process has completed the script edits the file ”boot-
local.sh” located in the ”extract/opt” directory with the appropriate command
to start the application:

1 chdir(”$tempdir/extract/opt/”);
2 open FILE, ”>$tcl boot file” or die $!;
3 print FILE ”#!/bin/sh\n”;
4 print FILE ”# Add startup commands in this file\n”;
5 print FILE ”/etc/init.d/$PROGRAM\n”;
6 close FILE;

Once the executable file and the startup command has been added the old
”core.gz” file is backed up in case something goes wrong and then re-packs
the file system in a new ”core.gz” file. The command ”find — sudo cpio -o
-H newc — gzip -2 ¿ ../core.gz” will create the file in the temporary directory
before it copies it into the mount directory in ”mountdir/tce/boot” replacing
the original.
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Finalizing the operation the script unmounts the mount directory and is-
sues the command ”kpartx -d $IMAGE” to unmount the loop device itself.

4.2 Result 2: Fair Test

The purpose of creating real-world usage patterns was to perform fair tests
on L4 Pistachio, BareMetal OS and TCL. The results are used to analyze their
behavior when scaling from a smaller to a larger population of VMs and also
if they behave differently when used for different tasks. The latter is espe-
cially valuable when used as minimal VMs equipped with custom application
stacks, such as a LAMP stack. This chapter describe the results from creating
a fair test for each CPU profile.

As calculating the Fibonacci sequence could be achieved using both iter-
ative and recursive implementations both were initially tested to see if the
CPU patterns were easier to resemble using one of the approaches. Recur-
sion proved to be the easiest implementation for this project as lower fibonacci
numbers could be used. The iterative approach also required the source code
for each kernel to be modified more than when using the recursive approach.
Recursion involve more of the OS itself which is part of the decision to why
this approach was chosen instead of the iterative approach. When using the it-
erative code, the compiler options used by L4 Pistachio during compilation of
the applications optimized the code in such a way that the function call to the
iterative subroutine were lost resulting in inconclusive results. To prevent the
compiler from optimizing the L4 application code the keyword ”volatile” had
to be used which would result in a different source code when compared with
the other kernels. Even though iterative implementations is the preferred ap-
proach when calculating the Fibonacci sequence in general it was not chosen
as the purpose of the tests were not to benchmark each kernel with respects to
their speed.

The decision to abandon the iterative approach in favor of recursion en-
abled the possibility to implement nearly the same source code for all appli-
cations with the only difference being L4 Pistachio and BareMetal using their
own native libraries while Tiny Core Linux used the standard GNU C library.

The details for each test is presented in table 4.1 and lists the name of each
system, the type of pattern, the Fibonacci number to be calculated, how often
the application sleeps and finally the number of virtual machines which For
the duration of the tests a statistics tool4.1.2 collected a total of 200 data sam-
ples. Table 4.1 lists the fair tests performed on each system. The table shows
the name of the kernel, the CPU pattern (A,B or C), the fibonacci sequence
number to be calculated, the number of seconds to sleep between each calcu-
lation and the number of VMs used in the test.
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Kernel Pattern Type Fibonacci of
n

Sleep (sec-
onds)

Num. VMs

TCL A 40 20 1

TCL B 43 40 1

TCL C 40 5 1

BareMetal A 40 20 1

BareMetal B 43 40 1

BareMetal C 40 5 1

L4 Pist. A 41 20 1

L4 Pist. B 44 40 1

L4 Pist. C 41 5 1

Table 4.1: CPU Pattern test chart

The results show Tiny Core Linux and BareMetal OS to achieve similar
CPU profiles as illustrated on figure 4.1 and 4.2. However, there were some
abnormalities when looking at the L4 Pistachio results as seen on figure 4.3
as the bursts of CPU activity occur more frequently. To achieve a fair test the
frequency of CPU activity bursts must be similar for all systems in order to
assume identical CPU patterns have been created. The source code for the
fair tests for Tiny Core Linux is attached as appendix R and BareMetal OS as
appendix Q.
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Figure 4.1: CPU pattern A, B and C on Tiny Core Linux

Version 1 of the source code for the L4 Pistachio CPU patterns calculated
the fibonacci sequence number 40 for pattern A and C, 43 for pattern B. These
values were changed to 41 and 44 before a second test was initiated to compare
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Figure 4.2: CPU pattern A, B and C on BareMetal OS

if the patterns would be more similar to the other two systems. Version 1 of
the source code is attached in appendix O and the updated code is attached as
appendix P.
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Figure 4.3: Test results from version 1 of CPU pattern A, B and C on L4 Pista-
chio
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The initial results showed a fair test had not been achieved. However, ver-
sion 2 of the L4 source code resulted in a CPU pattern matching TinyCore
Linux and BareMetal OS. The results from the updated test on L4 are illus-
trated on figure 4.4.
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Figure 4.4: Test using version 2 of CPU pattern A, B and C on L4 Pistachio

Comparing the results show CPU pattern A to have an occurrence of 9
bursts of CPU activity for all three systems, 4 bursts for profile B and 25 bursts
for pattern C which suggested a fair test had been achieved.

4.3 Result 3: Scalability of minimal VMs

This section show how the minimal VMs behaved in different population sizes
on the HoH and HiC labs. The tests were performed by utilizing 100% CPU
load on different sized models of L4 Pistachio, BareMetal OS and TCL. Fully
utilizing the CPU required all CPU cores being used requiring a minimum of
4 VMs on the HoH3.1 and 8 VMs on the HiC3.2 lab to be deployed. As the
HoH lab used a quad-core CPU is was decided to deploy population sizes of
4,8,16 and 32 virtual machines while the HiC lab had twice the number of (vir-
tual)CPU cores allowing 8,16,32 and 64 VMs in order to utilize all CPU cores
on both labs. All VMs were booted simultaneously and the applications had
a 60 seconds sleep delay before they began the calculations in order to let the
boot process complete.

The purpose of these tests were to create many context switches, hence gen-
erating additional CPU overhead. Measuring CPU overhead was achieved by
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measuring the total time spent by L4 Pistachio, BareMetal OS and TinyCore
Linux in milliseconds necessary to complete an equal amount of work. The
results of these tests were compared between HoH and HiC to examine if the
kernels performed differently when using KVM or not.

To achieve fair tests each population of VMs executed different versions
of the same applications to perform the same calculations for a total of 1536
times. A loop was used to perform the calculations and a stop condition was
used to limit the maximum number of calculations to end the loop. The five
applications were configured to calculate the fibonacci sequence 384(4 VMs),
192(8 VMs), 96(16 VMs), 48(32 VMs) and 24 times (64VMs) adding up to a total
of 1536 calculations for each of the population sizes. However, the L4 Pistachio
applications were slightly changed to calculate a different fibonacci sequence
than the other kernels as mentioned in Chapter 2: Fair Test. In short, the change
had to be done as L4 spent less time on calculating the fibonacci sequence
when compared to the other systems resulting in the CPU being utilized in a
shorter amount of time resulting in an unfair test. Changing the number from
40 to 41 made L4 spend an equal amount of time when compared with Tiny
Core Linux and BareMetal OS suggesting a fair test had been achieved.

The statistics tool4.1.2 collected system information for 1500 samples on
the hardware lab, and between 3000 and 4500 data samples on the cloud lab
as the tests took longer time in order to complete.

4.3.1 Explaining the data

The following sections use graphs to present the results from these tests. The
lines in the graph has been skewed to the left eliminating boot times, and a
grey vertical zero line indicates where the calculations began. The vertical
lines to the right of the zero line indicates the calculations have completed.
The CPU activity to the left of the zero line express boot times and is regarded
as irrelevant data as the calculations have not yet been initiated. Each graph
use the same color scheme where red is used for identifying Tiny Core Linux,
black for BareMetal OS and blue for the L4 Pistachio Kernel. Dotted and solid
lines are used to distinguish between the HoH and HiC labs where the former
is dotted and the latter is presented by solid lines.

As the number of data samples vary, the lines in each graph also differ and
is why some of the lines end abruptly in the middle of the graphs. The reason
for the different lengths was that the first round of tests were performed on the
HoH lab which finished these tests in less time than the HiC lab.
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4.3.2 Hypervisor on Hardware vs. Hypervisor in Cloud

This section present the results from scaling up the number of virtual machines
from the HoH to the HiC lab. The results are compared between each of the
labs and presented in graphs to see if it is possible to recognize predictable
behavior when the kernels are scaled up to twice the original population size.

The results from the tests performed on a population size of 4 VMs on the
HoW lab and 8 VMs on the HiC lab are illustrated in graph 4.5 and shows
many differences with regards to elapsed time and CPU utilization between
the kernels on the two different labs.

On the hardware lab Tiny Core Linux complete the tests in less time than
the other kernels and also use the least amount of CPU when idling. L4 Pista-
chio completes the test next after Tiny Core Linux, while BareMetal OS is the
slowest of the three. However, L4 Pistachio requires significantly higher CPU
load than both BareMetal OS and Tiny Core Linux during idling. The graph
show the CPU utilization of L4 Pistachio to differ significantly when compared
with the other kernels.

The results on the cloud lab show a significant change in the time required
to complete tests when compared with the hardware lab. Especially Tiny Core
Linux show a significantly higher performance hit on the cloud lab than the
other kernels. However, L4 Pistachio improved its performance compared
with the other kernels by completing the tests within the shortest amount of
time, and also looks to achieve similar CPU utilization levels as the two other
kernels when idling. By looking at the cloud results Tiny Core Linux show
erratic CPU utilization levels before dropping to a slightly lower usage when
compared with the others.

Figure 4.6 compares the results between the HoH lab having a population
size of 8 VMs and the HiC lab with a population of 16 VMs. Looking at the
results on the hardware lab it shows Tiny Core Linux to continue to complete
the tests before the other kernels, which is coherent with previous results on
graph 4.5. Also notice the increase in L4 Pistachio CPU levels when compared
with the previous population size as illustrated by the blue dotted lines in the
graphs. Comparing the CPU utilization of L4 Pistachio between these two
populations shows the CPU utilization increase to almost be twice as high on
the largest population.

The cloud results also show all the kernels to significantly increase the time
needed to complete the tests when increasing the population size. However,
Tiny Core Linux increase the most and BareMetal OS the least. Looking at the
CPU levels for L4 Pistachio and Tiny Core Linux they suddenly show signif-
icantly larger levels after completing the tests when compared with the pre-
vious results, as seen on figure 4.5. BareMetal OS, however, show a slight
increase but does not have the varying CPU levels as seen on the other kernels.
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Figure 4.5: Time in milliseconds spent for a population of 4 and 8 virtual ma-
chines.
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Figure 4.6: Time in milliseconds spent for a population of 8 and 16 virtual
machines on the HoH and HiC lab respectively.
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The results for a population size of 16 virtual machines on the HoH lab
versus 32 VMs on the HiC lab are illustrated on figure 4.7. The graph shows a
coherence with previous results where Tiny Core Linux continue to complete
the calculations first on the hardware lab while last on the cloud lab.

Notice on the results for the hardware lab that L4 Pistachio begins to spend
significantly more time on the tests and almost spend the same time as BareMetal
OS. During idling the CPU utilization for BareMetal OS and TinyCore Linux
is still at similar levels while L4 Pistachio continue to increase with each pop-
ulation size. Comparing the hardware lab results for L4 Pistachio with pre-
vious results on figure 4.5 and 4.6, L4 Pistachio continues to require a signif-
icantly longer time in order to complete the tests when increasing the popu-
lation sizes. BareMetal OS and Tiny Core Linux, however, does not show the
same significant changes as L4 Pistachio.

On the cloud lab results on figure 4.7 Tiny Core Linux continue to increase
the time to complete the tests with a significantly larger increase when com-
pared with the other kernels. Looking at the CPU utilization for all the kernels
L4 Pistachio show a significant change while BareMetal OS show a slight rise
in the CPU levels as seen on figure 4.5 and 4.6. Notice how the varying CPU
levels for L4 Pistachio and Tiny Core Linux, as seen on 4.6, seems to have sta-
bilized. These results may indicate that the changing behavior of the cloud
affected the tests and shows the difficulty of performing repeatable tests on a
cloud.

The maximum population size deployed on the HoH lab was 32 VMs and
64 VMs on the HiC lab. The results are illustrated in figure 4.8.

Looking at the dotted lines on the graph representing the hardware lab, L4
Pistachio now spend slightlymore time than BareMetal OS suggesting the lat-
ter to perform better than the former when increasing the population of VMs.
BareMetal OS does not show the same increase as L4 Pistachio and Tiny Core
Linux continues to spend the least amount of time as it did on the previous
tests. The results also show L4 Pistachio to continue increasing its CPU uti-
lization levels when the tests were done. L4 Pistachio might therefore be un-
suitable for modeling large populations of VMs as it would require substantial
amount of CPU resources by just idling. Tiny Core Linux still spends the least
amount of time on completing the tests and also show the least amount of CPU
utilization, suggesting it to handle scalability well. BareMetal OS show a slight
increase in CPU levels but does not increase significantly when compared with
Tiny Core Linux and has a low overall CPU utilization level suggesting it also
to be suitable for large scale populations on a hardware lab environment.

The cloud results on figure 4.8 show the same trend as seen on the pre-
vious populations as illustrated on figures 4.5, 4.6 and 4.7; L4 continues to
increase the CPU utilization levels but still completes the tests before the other
kernels. BareMetal OS require slightly more CPU resources after completing
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Figure 4.7: Time in milliseconds spent for a population of 16 and 32 virtual
machines on the HoH and HiC lab respectively.

the tests. However, the CPU increase is not significant and suggests the kernel
to be suitable for large populations on a cloud environment. Tiny Core Linux
show the least CPU utilization after completing the tests but continues to be
the slowest kernel, suggesting a full-sized VM does not offer the same perfor-
mance as minimal VMs. The results show L4 Pistachio to spend less time than
BareMetal OS to complete the tests suggesting the use of minimal VMs on a
cloud environment has performance benefits when compared with full-sized
VMs.

The source code for the BareMetal tests are found in appendix T, L4 Pista-
chio as appendix S and Tiny Core Linux as appendix U.

Summary of the results

Summarizing the results for the hardware lab, Tiny Core Linux and BareMetal
OS VMs complete each test with similar results for every population increase,
suggesting minimal BareMetal OS VMs to be able to compete with full-sized
VMs and would be suitable for small-scale modeling in an hypervisor on hard-
ware environment.

Tiny Core Linux VMs show to complete all the tests faster than BareMetal
OS VMs, however, it might be possible that one of the VMs have a slightly
larger increase in the time needed to complete the tests. If BareMetal OS in-
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Figure 4.8: Time in milliseconds spent for a population of 32 and 64 virtual
machines on the HoH and HiC lab respectively.

crease less than Tiny Core Linux over time this will suggest minimal VMs are
able to compete with full-sized VMs as the latter would require more comput-
ing resources if using a large population of VMs. The results also show L4
Pistachio requires a vast amount of CPU resources on a hypervisor on hard-
ware environment when performing basic idling. This suggests L4 Pistachio
is an unlikely candidate for large-scale populations of VMs. BareMetal OS
finishes last in the tests performed on the smallest population sizes, but for
populations of more than 32 VMs L4 Pistachio spends slightly more time to
complete the tests. All kernels show an increase in amount of time needed to
complete the tests at each population increase which show the impact of con-
text switching when deploying larger populations of VMs.

The current results asks for another test to be done for a population of 64
VMs on the hardware lab to confirm if L4 Pistachio will continue to slow down
when compared with the other kernels. The new test will also show if L4 Pista-
chio will pass BareMetal OS by a wide margin on the next population increase
and should provide a an answer to if L4 Pistachio is unsuitable to be used for
large-scale population modeling purposes.

Results from the hypervisor in cloud lab show that the L4 Pistachio VMs
completes all the tests faster than Tiny Core Linux and BareMetal OS VMs. The
graphs also show the CPU utilization level for L4 Pistachio to keep increasing
with every population increase. However, it does not increase as significantly
as seen on the hardware lab.. Tiny Core Linux VMs look to have the largest
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increase in time needed to complete the tests while BareMetal OS looks to in-
crease the least with L4 Pistachio showing a slightly larger increase than the
latter.

4.4 Result 4: Usage Patterns

This section examines the CPU and memory usage when testing CPU patterns
A, B and C for a population of 10 virtual machines on the HoH and HiC labs.
Each VM was booted with a 5 second boot delay to start each calculation at
different times to simulate real-world behavior. The statistics script collected a
total of 1500 data samples on each lab and the results were compared between
the different types of kernels analyzing CPU and memory usage for each VM.

It was important to compare differences in behavior between the minimal
VMs when deployed on different environments to see if it would be possible to
show how a small-scale model on a hardware lab would behave when moved
onto the cloud. The results would also be able to tell if minimal VMs would be
able to compete with full-sized VMs by comparing their behavior and system
resource usage. Especially memory footprints and CPU usage were examined
to see how the minimal VMs compared with full-sized VMs.

4.4.1 CPU Usage

The graphs illustrating CPU total, system and user levels are included in ap-
pendix M and M. The grey lines show the CPU activity occurring at user level
while the green line displays the average of total CPU usage which includes
both system and user level activity. To reduce the large number of data points
to a more practical number they were reduced from 1500 to 15 points where
each point contained the average of 100 data samples.

The results from the HoH lab show a high level of CPU activity occurring
at system level during boot of the VMs which was expected as KVM is enabled
on this lab. By comparing the graphs for L4 Pistachio, included in appendix
M.7, M.8 and M.9, these graphs show system level activity to decrease as the
CPU workload increase. Comparing the system level activity for TinyCore
Linux in appendix M.4, M.5, M.6 and BareMetal OS in appendix M.1, M.2, M.3
show system level activity to remain close to zero, suggesting these kernel to
demand less communication with the kernel. Looking at the user level activ-
ity for all the kernels, L4 Pistachio and TCL show a larger variation in CPU
activity especially at the end of the tests when using pattern A and B, when
compared with BareMetal OS.

The CPU averages for the HoH lab are illustrated in graph 4.9 and show
the sum of both system and user level activity for all three kernels for all the
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CPU patterns. Notice the similarity in CPU usage between TinyCore Linux
and BareMetal OS on pattern A and B and how L4 Pistachio deviate from the
two other kernels by utilizing a significantly larger amount of CPU. This dif-
ference seems to level out when looking at the lines representing pattern C.

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000

Elapsed Time (in milliseconds)

0

20

40

60

80

100

C
P

U
 U

ti
liz

a
ti
o

n
 -

 %

L4 HoH (Pattern A) - CPU Total Average
L4 HoH (Pattern B) - CPU Total Average
L4 HoH (Pattern C) - CPU Total Average
TCL HoH (Pattern A) - CPU Total Average
TCL HoH (Pattern B) - CPU Total Average
TCL HoH (Pattern C) - CPU Total Average
BM HoH (Pattern A) - CPU Total Average
BM HoH (Pattern B) - CPU Total Average
BM HoH (Pattern C) - CPU Total Average

CPU Average, Hypervisor on Hardware

Figure 4.9: Graph showing the total CPU usage average for a population of
10 virtual machines on the hardware lab. Each of the 15 points contain the
average of 100 data samples.

The results from the HiC lab are illustrated in figure 4.10 and show Tiny-
Core Linux to have a higher CPU usage when compared with BareMetal OS
and L4 Pistachio. L4 Pistachio has a lower CPU utilization than the other ker-
nels for all three tests and also show the average to be more even than the other
kernels.

4.4.2 Memory Usage

Graph 4.11 illustrates the memory footprints created by each kernel during
the tests on the HoH lab while figure 4.12 shows the memory footprints on the
cloud.

Graph 4.11 illustrates the memory usage of the hardware lab, and shows
L4 Pistachio and BareMetal OS to have a significantly lower memory footprint
when compared with TCL.

The average memory footprint of the host operating system was 321249kB
for the L4 Pistachio tests, and the memory usage peaked to a maximum aver-
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Figure 4.10: Graph showing the total CPU usage average for a population of
10 virtual machines on the cloud lab. Each of the 15 points contain the average
of 100 data samples.

age of 380546kB during boot. However, for the remainder of the test the com-
bined memory footprint of these 10 VM instances was on average 35338kB,
or an average memory footprint for each VM of 3533.8kB, or 3.45MB. The av-
erage memory footprint of the host operating system was 321165kB for the
BareMetal OS tests, and the memory usage peaked to an average maximum of
394740kB during boot. Average memory footprint of the 10 VM instances was
36249kB, or an average memory footprint for each VM of 3624.9kB, or 3.53MB.
For Tiny Core Linux the host had an average memory footprint of 322088kB,
and reached its average maximum at 872649kB. When the boot process had
completed the memory footprint dropped to an average of 576306kB for the
remainder of the tests. Subtracting the host memory footprint these results
show 10 TCL VMs to have a total memory footprint of 254218kB, an average
footprint for each VM of 25421.8kB, or 24.82MB.

The memory usage on the HiC lab is illustrated on figure 4.12 and show
all of the kernels have a higher memory footprint than on the hardware lab.
Notice on the graph that BareMetal OS and L4 Pistachio VMs has the same
memory footprints which coheres with the behavior seen on the hardware lab
tests.

The average memory footprint of the operating system for the L4 Pistachio
tests was 174413kB. When booting the L4 Pistachio VMs the memory usage
reached an average maximum of 255028kB but dropped to and average foot-
print of 232029kB for the duration of the tests. The total memory footprint
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Figure 4.11: Graph showing the memory usage in kilobytes on the hardware
lab for all tests with a population of 10 virtual machines.

created by a population of 10 VMs of L4 Pistachio was 57616kB, an average
of 5761.6kB, or 5.62MB for each VM. Average memory footprint of the host
operating system for the BareMetal OS tests was 174574kB. At boot time of
these VMs the memory footprint reached an average maximum of 265137kB,
but dropped to an average memory footprint of 231429kB. The total memory
footprint of 10 BareMetal OS VMs was 56855kB, an average of 5685.5kBs, or
5.55MB for each VM. Results for the Tiny Core Linux VMs showed the host
operating system to have an average memory footprint of 174018kB. Booting
the TCL VMs reached an average maximum of 888668kB during boot of the
VMs, but dropped to an average of 598110kB for the duration of the tests. The
total memory footprint of 10 Tiny Core Linux VMs was 424092kB, an average
of 42409.2kBs, or 41.41MB for each VM.
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Figure 4.12: Graph showing the memory usage in kilobytes on the cloud lab
for all tests with a population of 10 virtual machines.





Chapter 5

Discussion and Analysis

This chapter discuss different parts of the project and aims to provide the
reader with a retrospective view of the entire process from beginning to end,
and with an understanding of what has been achieved. The final sections talk
about the performance of the minimal VMs and suggests future work.

5.1 Evaluating the choices made in the project

5.1.1 Minimal Virtual Machines

The idea behind this project was to see if it would be possible to model large
populations of full-sized VMs by using a population of minimal VMs on fewer
hosts. As full-sized VMs require a lot of computing resources they are not
suitable candidates for modeling large populations of VMs as computing re-
sources are usually limited on most systems. Especially within academia fund-
ing does not allow large investments to be made in expensive hardware to sup-
port a large number of VMs. The motivation behind this project was to be able
to provide researchers and academia in general with the possibility of using
real VMs in their work while at the same time using existing infrastructure.
To be able to deploy large populations of VMs while being confined by the
limitations of existing infrastructure this project wanted to take a closer look
at the possibility of using µ-kernel technology and minimal operating systems
as VMs to reduce the overall size and system requirements of full-sized VMs.

Virtual machines as a product

With cloud computing we have started to see new and original products emerge
offering custom VMs for consumers packaged as ready-to-run environments
with the most popular web-applications provided as application stacks. This
project wanted to investigate if minimal VMs could be used for the same pur-
pose, and if they would be able to compete with full-sized VMs. The obvious
advantages of using minimal VMs when compared with full-sized instances
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is their reduced size and impact on computing resources such as CPU and
memory. For a cloud service provider such as Amazon EC2, minimal VMs
would result in using less computing resources while increasing the number
of client machines supported on the same infrastructure. Minimal VMs could
also open new and exciting business opportunities such as simulating large-
scale networks on the Cloud without further increasing the capacity of the data
centers.

Cloud computing services such as Amazon EC2 and Windows Azure pro-
vide customers with different types of cloud services ranging from SaaS, IaaS
and PaaS. As computing resources are delivered by the cloud service providers
based the needs of each customer this project wanted to research into which
extent a public cloud computing environment would be able to provide the
resources needed to increase a small-scale population model even further.

The minimal VMs created for this project were able to achieve a significant
size reduction, and application software was built and installed onto the VM
images. However, using these VMs to host different application stacks proved
difficult as they were not able to offer the same system calls and services as
full-sized VMs, thus limiting the possibilities of their use for hosting many of
the most common applications.

The L4 Pistachio VMs were found to be unsuitable for such purposes as
the kernel would require its own file system, supporting a network interface
and a command line interface to allow configuration of the services while the
VM is running. Using L4 Pistachio for this purpose does not seem feasible at
this point as it is a pure µ-kernel and would require lots of additional work in
order to increase its usability and to achieve support for mainstream applica-
tion software. Currently, it is only regarded as suitable for modeling purposes
to simulate real-world usage patterns using custom made applications and to
model populations of VMs in a cloud environment.

The results from this project show BareMetal OS VMs to be suitable for
modeling purposes, however, its file system has a flat file structure and limited
system calls which makes it unable to support application stacks. BareMetal
OS is designed around a mono-tasking kernel which makes it unsuitable for
multitasking purposes. As there looks to be no future plans to add multi-
tasking capabilities to the kernel, this suggest BareMetal VMs are suitable for
executing a single application at a time and would therefore be unable to com-
pete with full-sized VMs.

Tiny Core Linux has a file system with much the same structure as main-
stream Linux distributions. It supports running multitasking and is able to
host the most popular applications including the popular LAMP stack. Al-
though it was found to have poor performance on the cloud, it was able to
outperform L4 Pistachio and BareMetal OS on the hardware lab. This shows
Tiny Core Linux to be able to compete with full-sized VMs for the purpose of
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hosting custom application stacks while having a significantly smaller mem-
ory footprint.

The experiences from this project show it is feasible to use minimal VMs
for the purpose of hosting custom application stacks.

5.1.2 System Design

To provide answers to the problem statements, a hardware lab and a cloud
lab was regarded as a requirement for this project. Deploying a hardware lab
would offer the benefits of a bare metal hypervisor on the host and the use
of Kernel-based Virtual Machine (KVM) as a virtualization infrastructure. Us-
ing a cloud lab would enable the possibility to deploy VMs inside other VMs
(Nested Virtualization) and to compare the performance and behavior of VMs
with and without the use of a bare metal hypervisor.

The computing resources on the hardware lab (Hypervisor on Hardware)
for this project was approximately half of that of the cloud lab (Hypervisor in
Cloud) in order for the latter. In theory this would allow doubling the pop-
ulation sizes and to compare scalability and performance of the populations
when comparing the hardware and cloud environments.

The main benefit of choosing a lab environment with support for KVM was
the use of a bare metal hypervisor, and as KVM is already part of the Linux ker-
nel this makes KVM a commodity in the IT world as there are a large number
of Linux installs in todays data centers. The results from this project would
therefore be regarded as useful for the research community. KVM is also cur-
rently the only Linux kernel-integrated hypervisor, hence offering support of
the same hardware which is offered by Linux device driver support.

A drawback of this system design is its modest computing resources when
compared with the hardware used by well-funded researchers and businesses.
However, it is able to show it is possible to create small-scale populations of
VMs and repeating the same tests. The chosen design shows a single physical
workstation may be used for the purpose of developing minimal VMs and to
deploy small-scale populations without major investments in expensive hard-
ware.

5.1.3 Choosing the right kernels

The first step towards creating minimal VMs for this project was to select suit-
able kernels. At the beginning of the project lots of effort was made into re-
searching the most suitable candidates, and the approach was to select kernels
of different designs in order to study their performance and differences. By
comparing different types of kernels and studying their behavior the idea was
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to be able to tell if they could be used for different purposes, such as hosting
application stacks, modeling purposes and deployment on a cloud.

The choice were three different kernels; L4 Pistachio, BareMetal OS and
Tiny Core Linux, as they represented three types of designs. The former is a
pure µ-kernel written in C/C++, BareMetal OS is a mono-tasking OS with a
kernel written entirely in Assembly and the latter use the traditional mono-
lithic Linux kernel. These kernels were thought to be able to offer a signifi-
cant reduction of memory footprints, system resource usage and overall size
of VMs.

Three kernels was decided as a suitable number for this project to be able
to stay within the time limitations for the project.

Why choose The L4 Pistachio µ-kernel?

The smallest kernel selected for this project was the L4 Pistachio µ-kernel. It
was chosen for numerous reasons, but the obvious benefits was the availabil-
ity of its source code, an active research community and online documenta-
tion. The kernel was considered to be mature enough for this project as it is
the result of the last seven years of research within the field of microkernel
technology and is actively maintained by the System Architecture Group at
the University of Karlsruhe.

The strengths of L4 Pistachio is its focus on performance and portability
and its small size which is in the order of 10,000 lines of source code. It sup-
ports C/C++ applications by allows implementing its own library. As support
for C applications was required for this project this played an important part of
the decision process. A 32-bit version of the kernel was chosen for this project
as the strengths of choosing a 32-bit kernel would allow deployment of VMs
on both 64- and 32-bit virtualization environments. Overall, its tiny size, elabo-
rate documentation, Qemu compatibility and support for C applications made
it an excellent choice of kernel as it met all the requirements for this project.

The weak points of L4 Pistachio µ-kernel is its lack of extensibility and us-
ability as it does not deliver the same features as is expected of a complete op-
erating system. It does not provide a CLI, file system or device drivers which
suggests the kernel to be a good candidate to be used for modeling purposes
by simulating real-world usage patterns. Using L4 Pistachio for simulating
real networks with network connectivity would also require custom made de-
vice drivers to be developed which is a tedious task.

Choosing this kernel for this project proved to be useful as it was able to
significantly reduce the size of the virtual machine. Looking back on the ex-
periences gained from using L4 Pistachio it has shown a great deal of work is
involved when choosing a µ-kernel for such a project. However, the work paid
off with the smallest virtual machine in the project. The results also show that
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it performs better than traditional kernels on a cloud environment, and has ac-
ceptable performance in populations of up to 32 VMs on a hardware lab. It is
suggested adding a file system and network drivers to L4 Pistachio and test its
performance as a operating system in even larger populations. As the kernel
allows to be configured for several CPU architectures it suggests testing the
performance using different CPUs and on several cloud environments.

Why choose BareMetal OS?

BareMetal OS, a minimal 64-bit operating system was chosen as its kernel is
written completely in assembly code and offer more functionality and exten-
sibility than L4 Pistachio. Noticeable features of BareMetal OS is the imple-
mentation of a CLI, focus on mono-tasking, and its own file system (BMFS)
optimized for large files by dividing the disk into 2 MiB blocks, making it suit-
able for being used for CPU intensive tasks such as working with large data
sets.

The strengths behind BareMetal OS is the philosophy behind the OS. It is
designed as a mono-tasking OS to offer reduced complexity when compared
with multitasking systems. It also allows sub-tasks to be submitted to multi-
ple CPUs, supporting multiprocessor systems with up to 128 x86 64 proces-
sors. Comparing its performance with a µ-kernel and a Linux kernel would
provide valuable knowledge about its performance and if it would be able to
compete with full-sized VMs.

The weak sides of BareMetal OS is the flat file structure of its file system
which makes it difficult to organize files into separate directories, hence re-
ducing its usability. As the entire kernel is written in Assembly code this also
increase the difficulty for programmers in modifying the kernel as it requires
knowledge about Assembly programming. Converting the kernel code into
C/C++ would make the kernel more suitable for this type of research as it
would allow a larger community to be a part of the development process, fur-
ther increasing the performance, security, stability and extensibility of the ker-
nel.

This kernel was a good choice for this project when looking back on the
results. It showed to perform better than the Linux kernel on the cloud en-
vironment and had the least increase in CPU overhead between the different
population sizes. Together with L4 Pistachio it achieved the smallest memory
footprint during the tests, but performed better on population sizes larger than
32 VMs. The experiences and results from this project show BareMetal OS to
be a good candidate for future research on a larger scale on both hardware-
and cloud environments as its performance does not vary significantly sug-
gesting it to be a highly optimized kernel.
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Why choose Tiny Core Linux?

A full-sized kernel had to be chosen next to L4 Pistachio and BareMetal OS
for comparison reasons. Tiny Core Linux is a stripped down version of the
Linux core and supports more than 3200 extensions to provide the support of
additional features. It is also available for download in 3 variants of ”cores”;
TinyCore and CorePlus and Core offering both new and experienced users with
the options to choose from using just the core system or a version offering a
range of extensions.

The strengths of choosing Tiny Core Linux CorePlus was the implementa-
tion of a CLI, an installer as well as a range of extensions to support window
managers and wireless support. It also uses the Linux kernel which is able to
show how the performance and behavior of one of the most commonly used
kernels when used compared with minimal VMs for modeling purposes.
.

The use of Tiny Core Linux for this project showed it to be difficult to mod-
ify the files on its filesystem as it is contained within a single file. Addition-
ally, there are a large number of minimal Linux distributions available which
proved it difficult to know if the most extensible and minimal distribution had
been chosen for the project. The results from the hardware and cloud lab also
indicate KVM to be able to recognize the use of a Linux kernel and was able
to perform some sort of optimization for these types of VMs. As the lack of
KVM resulted in a significant performance hit when compared with the other
kernels this suggests future work to focus on testing the same populations on
the hardware lab with and without the use of KVM.

5.1.4 The process of building the kernels

After selecting the kernels for this project the next task was to compile and
assemble the kernels and compile custom applications for each one. Before
beginning work on this project the author had no previous knowledge about
C programming and the use of compiler tools which proved to be the most
significant challenge. It was therefore especially rewarding, and regarded as
a personal achievement, to acquire knowledge about the operationalization of
compiler tools and how to create applications in the C language.

It was especially challenging during this project to create a working en-
vironment for the L4 Pistachio kernel as the 32-bit Linux Debian distribution
which was initially used for this purpose did not seem to successfully compile
a working kernel. The kernel was unable to boot on both VMware, Virtualbox
and Qemu despite trying different versions of the GCC compiler and it was
thought to be the result of Debian not using the most recent version of GCC.
As lots of time and effort was put into compiling the L4 Pistachio kernel these
problems almost made the author abandon the kernel.
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The same problems were not encountered with BareMetal OS as the devel-
oper provided a working Qemu image for download on its project website.
The biggest problem encountered with this kernel was a bug which resulted
in 100% CPU load when using the sleep function ”d delay()” when building
the application software. This bug was solved by contacting the developer of
BareMetal OS for suggestions on how to resolve it. The response from the de-
veloper was a 2-line fix which solved the problems and required the source
code to be modified and the kernel had to be re-assembled. After applying the
fix an image file containing Pure64, the software loader for BareMetal OS, had
to be downloaded and the new kernel had to be transferred onto it. As this
bug was encountered in the middle of the project this could have easily elim-
inated the kernel from the project as it would have been impossible to create
the same applications for this kernel as for the others.

Tiny Core Linux was able to be installed using an installer and did not
require any specific development environment as its kernel was already com-
piled. However, a 32-bit compiler had to be used to build the custom applica-
tions. This kernel proved to require the least amount of time in getting to work
and also was the only kernel supporting the GNU C library making it easier to
develop custom applications.

The task of compiling the kernels proved to be a time consuming and com-
plex task as little, or no documentation existed to explain the exact details of
the approach. The experiences suggests previous knowledge about the opera-
tionalization of compiler tools is necessary in order to increase the efficiency in
this part of the project. The approach documented in this report also provide
others with valuable knowledge about how to compile and configure these
kernels which is beneficial for others wishing to use the same kernels for their
own research. The tool developed for L4 Pistachio was especially useful as it
automates the entire process of building the kernel and its applications and
only requires a few variables to be set at the beginning of the script. As no
other tools like this exists for L4 Pistachio this is regarded as an important
contribution for future research projects.

5.1.5 The process of creating minimal virtual machines

As the kernels used for this project had to be used for simulation purposes
in the form of minimal VMs they had to be transferred onto bootable Qemu
images to make them into minimal VMs. There were several challenges when
creating these images and making them bootable, as each kernel required a dif-
ferent approach. The image files had to be manually created for L4 Pistachio
and Tiny Core Linux while the image for BareMetal OS was already available
for download from the project website.

As previously mentioned there was a bug in the BareMetal kernel which
caused the CPU usage to rise to 100% and required to download a Pure64 im-

88



5.1. EVALUATING THE CHOICES MADE IN THE PROJECT

age containing a 64-bit software loader which had the purpose of loading the
BareMetal kernel when booting the VM. There were no additional problems
in making a BareMetal VM and the final result was a VM of 32MBs VM image
size able to boot on 16MBs of virtual memory.

The instructions found on the website of L4 Pistachio mentioned the ap-
proach to create the image and how to make it bootable. As the instructions
found on the L4 website explained how to make the image bootable using
GRUB Legacy the author tried to find a way to install GRUB2 on the image as
this is the default version of GRUB on recent Linux distributions. This attempt
proved to be unsuccessful. The problems of making GRUB2 work on the im-
age resulted in following the existing documentation and reverting to GRUB
Legacy. In addition to installing GRUB Legacy onto the image the image had
to be mounted as a loop device and the kernel and binaries had to be copied
to the image. The final result was a minimal VM of 1.5MBs being able to boot
using a minimum of 1.68Mbs of virtual memory.

Creating a VM image for Tiny Core Linux was easier as it cam with an in-
staller. The approach required to tell Qemu to boot from the ISO file and use
the image as a hard-drive. The problems which were encountered were mostly
regarding with experimenting with the different image sizes to allow enough
disk space for the file system while achieving the smallest size. The final result
was a 20MB image file and a VM able to boot with a minimum of 48MBs of
memory.

What was learned from this? Even though only three kernels were used
they show how only a small number of kernels require different approaches
and that it looks feasible to create minimal VMs for most types of kernels given
enough time and effort. It also shows it is possible to create minimal VMs
which are able to compete with mainstream Linux distributions.

5.1.6 Process of creating a fair test

The main focus of the project had been on creating minimal VMs for the pur-
pose of competing with full-sized VMs which proved feasible. But in order
to make them simulate real-world behavior they had to perform some type of
task to be able to tell if they would react or perform differently when perform-
ing real work. The idea was to create applications which were able to simulate
real-world application patterns and automatically boot these applications af-
ter the boot of each VM.

In order to create a fair test all usage patterns had to be identical for each
kernel. Because of time restrictions for this project it was decided to create
three different CPU patterns. Effort was made into using code which required
as few additional headers as possible and would allow to use the same source
code for all three kernels. The decision was made to calculate the fibonacci
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sequence recursively as it did not require the use of any additional head-
ers which made the code identical. The only difference was the inclusion of
kernel-specific headers providing the sleep functions. Using the iterative ap-
proach when calculating the fibonacci sequence was also experimented with,
but when compiling the source code for L4 Pistachio the compiler optimized
the code in such a way that the test never initialized. Effort was made into
making iterative calculations work with L4 Pistachio and the community was
also asked for suggestions without any answers leading to a final solution to
the problem.

Three patterns were tested for each VM instance and the results showed
BareMetal OS and Tiny Core Linux to achieve identical behavior. However, L4
Pistachio deviated slightly from the other two suggesting the source code had
to be modified. Inspecting the results it showed the problem was related to
L4 Pistachio spending slightly less time on calculating the fibonacci sequence
number which indicated the fibonacci sequence number had to be slightly in-
creased to match the time of the other VMs.

The process of creating fair tests showed that the difference between the
kernels makes it difficult to create fair tests using the same source code. The
reason for these subtle changes in results might be one of several. The most
probable reason is that the configure script for L4 Pistachio performs optimiza-
tion on the code during build time of the application software, hence causing
a slight difference in the compiled code.

5.2 Performance analysis and tools

The performance of the VMs are discussed in this section and shows the total
time spent by the same population sizes for each of the three types of VMs.
These results are illustrated in figure 5.1 and 5.2. As suggested in section 4.3.2
in the Results chapter, an additional population of 64 VMs was deployed on
the hardware lab to see if the results were able to show an overall trend. It
continues discussing the trend when increasing the population sizes and talks
about the results from the usage pattern tests.

5.2.1 Time required to complete the tests

Figure 5.1 illustrates the total time spent in milliseconds for each kernel to com-
plete the tests on the hardware lab. The hardware clock on the host was used
to collect timestamps for each data sample and was used to give an accurate
estimation of the time required in completing these tests.

All the VMs show an increase in the total time needed to complete the tests
with each population increase , however, L4 Pistachio show a significantly
larger increase when compared to TinyCore Linux and BareMetal OS. L4 Pis-
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tachio show the highest increase of 389876ms, TinyCore Linux 108480ms and
BareMetal OS to have the lowest increase of 54375ms. The results suggest
BareMetal VMs to be surpassed by TinyCore Linux at some given popula-
tion size. The results also show L4 Pistachio to have a significantly higher
performance hit when compared to the other kernels on populations greater
than 32 VMs suggesting it to be a poor candidate for large-scale models while
BareMetal OS is the most stable kernel as it increases the least in total time as
the population size increases.
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Figure 5.1: Comparison of the total time spent in completing the tests for pop-
ulations of 4,8,16, 32 and 64 virtual machines on the hardware lab. The time is
shown in milliseconds.

The results for the cloud lab is illustrated in figure 5.2. Examining the re-
sults show all VMs to spend more time as the population size increases. How-
ever, there were some unexpected data when looking at the results from the
L4 population of 16 VMs. This result showed the total time needed to com-
plete the tests was higher than for a population size of 32 VMs, suggesting
the L4 16VMs result might be the result of varying conditions on the cloud at
the time when the test was performed. As the bar chart illustrates, TinyCore
Linux increase the most with a total time of 402341ms, L4 Pistachio increase
by 155689ms and BareMetal OS show the least increase of 139158ms.

Summary of the results

The results were expected to show an increase in the time needed to complete
the tests when the population sizes increased as they generate more context
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Figure 5.2: Comparison of the total time spent to complete the tests for pop-
ulations of 4,8,16, 32 and 64 virtual machines on the cloud lab. The time is
shown in milliseconds.

switches than small populations.

Tiny Core Linux VMs were able to complete all the tests on the hardware
lab within the shortest amount of time when compared with the other VMs.
However, comparing these with the cloud results showed Tiny Core Linux to
finish last on all the tests. L4 Pistachio VMs completed the tests before the
BareMetal VMs on the hardware lab up until a population of 16 VMs, but
when reaching a population of 32 VMs the former spent more time than the
latter. Analysis of the results show L4 Pistachio to complete all the tests in a
shorter amount of time than BareMetal VMs for all the tests. Worth noticing is
the difference of the Tiny Core Linux VMs as they go from requiring the least
amount of time on the hardware lab to spend the longest time on the cloud
tests. There might be a possibility that KVM is able to recognize that these
VMs are using the Linux kernel and therefore is able to perform some sort of
optimization to increase the performance.

These results are useful as they are able to determine the population limits
of each VM and show minimal BareMetal VMs to perform better than L4 Pis-
tachio VMs when the model is larger than 32 VMs. As the L4 Pistachio VMs
performs better than BareMetal OS in populations smaller than 32 VMs this
suggests the former VM to be used for simulation purposes in populations be-
low 32 VMs on the hardware lab, and allow the cloud to take the population
even further.

The results also tell us that the performance of the three types of minimal
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VMs vary between population sizes, and additional tests have to be performed
on different hardware and with more kernels in order to find the most optimal
environment for modeling purposes. L4 Pistachio is able to exemplify the po-
tential of future minimal VMs as its image size was only 1.44MBs. This is
a significant reduction of 2.67 orders of magnitude when compared with the
standard Ubuntu image which is 684MBs. As this project selected only three
out of the many available kernels and was able to achieve a working minimal
VM within a short amount of time, this suggests the possibilities are endless
as to creating even smaller VMs.

5.2.2 The overall trend when increasing population sizes

The bar charts in section 5.2 illustrated the total time spent by each minimal
VM population size to complete the same amount of work. However, these
bar graphs were unable to accurately depict the time difference for each popu-
lation and type of VM. The purpose of this section is to illustrate this difference
and to discuss the results.

Figure 5.3 shows the difference in time required to complete the tests on
the hardware lab for different population sizes. Each VM has its correspond-
ing trend line illustrating this difference, and by looking at the line represent-
ing BareMetal OS it is clear that these VMs have predictable performance with
each population increase. Tiny Core Linux show a slight linear growth until
a population size of 32 after which the line shows a sudden and significant
increase when scaling to 64 VMs. L4 Pistachio show a small, but sudden, in-
crease when scaling from 8 to 16 VMs and then continues on a much steeper
linear increase for the other populations.

The trend lines for the cloud lab is illustrated on figure 5.4. By looking at
the BareMetal OS trend line it is clear that the increase has predictable results
for all the population increases. There are no sudden or major increases in the
time needed to complete the tests when increasing the population sizes, and
the line shows a slight curve suggesting BareMetal OS handles scalability on
the cloud nicely. Also, notice the trend line for L4 Pistachio which shows a
sudden increase when scaling to a population of 16VMs before dropping and
continuing on almost the same path as BareMetal OS when reaching a popula-
tion of 32 VMs. At this point the L4 pistachio trend line continues on a similar
path as the BareMetal OS trend line.

As a result of the abnormal test result as seen in the results for L4 Pistachio
for a population of 16 VMs the test was repeated in order to see if the new
results would drop to a lower level. However, as all the tests illustrated in the
graph were performed two days before the data was analyzed additional tests
proved inconclusive. The new results showed an even larger increase which
was most likely as a result of varying cloud conditions. The Tiny Core Linux
trend line shows a significant difference with every increase in the population
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Figure 5.3: Graph shows how much longer each population size required in
order to complete the same work and shows the difference for population sizes
of 4 to 8, 16, 32 and 64 virtual machines on the hardware lab. Y-axis is the
difference in milliseconds.

size when compared with the other kernels, and additional tests with larger
population sizes would be required to tell if this behavior will continue to in-
crease at the same rate or if it will start showing signs of slowing down.

These results shows how minimal VMs built on less traditional kernel de-
signs are capable of competing with the Linux kernel when increasing the pop-
ulation sizes. Especially comparing the results from BareMetal OS with Tiny
Core Linux shows the former to require less additional time to complete each
test when increasing the population size. What we have learned from these
results are that minimal VMs are well suited to be used for modeling larger
populations of VMs and they should also be well capable of competing with
full-sized VMs.

5.2.3 Usage Patterns

The source code of all the three patterns for L4 Pistachio was slightly modi-
fied to calculate a fibonacci number higher than the two other kernels and the
results were analyzed to see if the patterns had changed. The results showed
the modifications had achieved its purpose, and all three kernels had the same
behavior for all three patterns. The results from the usage pattern tests show
it is possible to create software applications for minimal VMs with much the
same code for the purpose of simulating real-world usage patterns, and that

94



5.2. PERFORMANCE ANALYSIS AND TOOLS

6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66

Population Size (number of VMs)

0

100000

200000

300000

400000
M

ill
is

e
c
o

n
d

s
Tiny Core Linux (HiC)

BareMetal OS (HiC)

L4 Pistachio (HiC)

Trend when scaling up the population size on the HiC lab. Y-axis show the increase in time

Figure 5.4: Graph shows how much longer each population size required in
order to complete the same work and shows the difference for population sizes
of 8 to 16, 32 and 64 virtual machines on the cloud lab. Y-axis is the difference
in milliseconds.

each VM is able to execute these programs successfully. This feature would be
especially useful for researchers and students wishing to create their own us-
age patterns to simulate different behavior on minimal VMs. The results also
indicated fair tests had been achieved for all three kernels.

Looking at the results from the usage pattern tests the cpu usage aver-
age is more predictable on the hardware lab than on the cloud. The results
seen on figure 4.9 and 4.10 in section 4.4.1 show how the CPU averages on
the hardware lab remain more or less at the same level for the duration of the
tests, while the results on the cloud show the load averages to have variations
throughout the tests. Such behavior was expected and shows the behavior of
cloud environments where the performance vary with the current number of
users on the cloud, which directly affects the computing resources available for
each VM. However, the variations were not significant and suggests a popula-
tion of minimal VMs can be deployed on a hardware lab and behave similarly
on the cloud. This is useful knowledge when deciding to increase the model
populations from a hardware lab to a cloud environment.

Memory usage was also analyzed in section 4.4.2, and results show there
are significant memory footprint differences between Tiny Core Linux and the
two other kernels on both labs. On the hardware lab the results from fig-
ure 4.11 showed the average memory footprint for L4 Pistachio VMs to be
3.45MB, BareMetal VMs 3.53MB while each Tiny Core Linux had a footprint
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of 24.82MB. The results from the cloud lab, as seen on figure 4.12, showed all
the kernels to have significantly increased their memory footprints when com-
pared with the hardware lab to a total of 5.60 MBs for L4 Pistachio, BareMetal
5.54MB, and 41.41MBs for each TCL VM. Tables 5.1 and 5.2 lists the memory
footprints for each pattern and the averages for each VM.

Memory footprints - Hypervisor on Hardware

Pattern L4 Pistachio BareMetal OS Tiny Core Linux

A 3.48MB 3.54MB 24.55MB

B 3.41MB 3.52MB 25.26MB

C 3.46MB 3.55MB 24.66MB

Average 3.45MB 3.53MB 24.82MB

Table 5.1: Footprints for pattern A, B and C on the hardware lab. The bottom
row shows the average memory footprint for each VM.

Memory footprints - Hypervisor in Cloud

Pattern L4 Pistachio BareMetal OS Tiny Core Linux

A 5.62MB 5.52MB 41.48MB

B 5.57MB 5.48MB 41.48MB

C 5.68MB 5.65MB 41.27MB

Average 5.62MB 5.55MB 41.41MB

Table 5.2: Footprints for pattern A, B and C on the cloud lab. The bottom row
shows the average memory footprint for each VM.

The disadvantage of changing the fibonacci sequence number was that the
source code was no longer identical. To be sure the problem was not related to
the specific source code used for the tests, several other types of calculations
were tested on all the kernels. Factorials, Iterative fibonacci implementation
and counting every integer produced the same difference between L4 Pista-
chio and the other kernels. As the purpose of these patterns was to give the
CPU an equal amount of work to be able to produce identical patterns it was
decided to stay with the recursive implementation of the fibonacci sequence
and slightly modifying the code to produce the same CPU load.

The benefits of testing only the CPU patterns instead of both CPU and
memory combinations was that the VMs would only utilize the CPU which
kept the memory footprint of the VMs at a minimum throughout the tests.
The data was able to show the average memory footprint for all VMs, which
is useful knowledge when wanting to increase the model population further.
This project has proven it is feasible to create such patterns, hence researchers
would be able to use even more advanced patterns future projects.
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5.2.4 Tools created for the project

Many different tools were used during the project. Most of the tools perform
simple tasks, such as compiling applications and adding them onto an image.
Other tools performed more advanced tasks such as booting multiple VMs and
collecting system information. All of the tools have proved valuable for the
project by automating many of the manual procedures allowing more focus
on the task at hand. Table 5.3 lists all the different tools which were developed
during this project, and they are also found in the Appendix.

Name Description

Bootscript.pl A script made for the purpose of
booting multiple VMs.

Build.sh Shell-script which compiles all the
applications created for BareMetal
OS.

Mount.sh A script made for the purpose of
mounting an empty BareMetal OS
image and transfer applications onto
it.

Perf.pl A script for collecting system infor-
mation.

tcl add files.pl A script to add an application to a
Tiny Core Linux image.

Makescript.pl A script to automatically configure
and compile the L4 Pistachio kernel
and its software applications. It also
adds the binaries onto the image and
calls the script ”grub.sh” to make the
image bootable.

grub.sh A script for installing GRUB on the
L4 image

Table 5.3: List of the different tools used in this project.

Especially the development of the ”Makescript” tool is regarded as the
most useful tool for this project as it greatly simplify the process of building
the L4 Pistachio VMs. By using the tool the entire VM is automatically cre-
ated which is valuable for researchers wishing to spend their time on research
rather than on entering build commands and manually transferring applica-
tion software to the images.

The project also provides a tool to automatically boot the VMs, simplify-
ing the deployment of large models. The tool ”Bootscript” takes care of this
project and gives the researcher control of the number of VMs to deploy and
also automatically executes the script ”Perf” which collects statistics from the
host system while the model is deployed.

97



5.3. FUTURE WORK

The other tools perform simpler tasks such as building the software and
transferring it to the VMs.

Developing these tools allowed more focus on analyzing the behavior of
the VMs and the results instead of spending the time on building them. The
weak sides of some of the tools are that they would have to be customized in
order to work with other kernels, but this should not require too many changes
to be made.

5.3 Future Work

5.3.1 Even smaller minimal VMs

The size reduction which was achieved for this project within the short amount
of time available suggests future research would be able to provide even smaller
virtual machines, further increasing the population sizes. There are still a
large number of kernels available for this type of research, such as Minix3[40],
µ-velOSity[41] and [42]. Future research into additional kernels such as the
aforementioned is suggested.

5.3.2 Tiny Core Linux and application stacks

There is still lots of work having to be done where the Tiny Core Linux VMs
must be equipped with the stacks and tested under different scenarios to find
the most optimal performance. This is suggested as future work as this project
focused on the feasibility of using minimal VMs with application stacks, and
not the actual implementation of application stacks.

5.3.3 Improve the fair tests

Creating fair tests for the different kernels require choosing code which is as
simple and similar as possible requiring the least amount of changes. L4 Pis-
tachio had a slight performance difference when compared to BareMetal OS
and Tiny Core Linux when the source code for all three kernels was identical.
This difference might be the result of the compiler optimizing the L4 Pistachio
source code during compile time, or some unique features of the kernel itself.
This exemplifies the difficulties of creating an identical cross-kernel fair test
without making slight changes in the source code. However, it should be pos-
sible to create fair tests which behave equally on all kernels when using the
same code, but the time limitations for this project suggests this to be future
work.
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5.3.4 Additional lab environments

The results are able to show it is feasible to deploy minimal VMs on different
environments and being able to compare their performance by using the same
tests. On the other hand, these results do not provide answers to the behavior
on other types of hardware and how the varying cloud conditions affected the
tests performed in this project. Repeating these tests on private clouds and
additional hardware is suggested as future research.

5.3.5 More Complex usage patterns

Only three usage patterns were created for this project, and it is suggested
for future work to increase the number of patterns. One suggestion would
be to monitor real usage on a web server and simulate the same patterns on
the VMs. Memory patterns should also be created, either as isolated tests, or in
combination with CPU usage in order to measure the overall impact on system
resources. This is suggested as future work as it would be valuable knowledge
on how minimal VMs would perform and compete with full-sized VMs when
doing ”real” work.
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Chapter 6

Conclusion

The main goal of this project was to investigate to which extent it is possible
to model large populations of full-sized virtual machines, using minimal virtual ma-
chines on fewer hosts.. Closely related to this problem statement the project also
investigated to which extent a public cloud computing environment is able to pro-
vide the resources to increase the model-populations even further.. Finally the project
wanted to see if minimal VMs would be able to host custom application stacks as
ready to run environments and be able to compete with full-sized VMs used for the
same purpose.

During this project the following has been achieved:

• Minimal VMs were created using kernels still in the early research stages

• Custom application software was built specifically for each kernel

• New tools have been developed

• Small-scale populations were created

• Both hardware- and cloud environments were tested

• Results have been produced and analyzed

The project was able to create minimal VMs significantly smaller than full-
sized VMs, and also showed it was possible to build custom application soft-
ware able to generate different CPU usage patterns. Minimal VMs were de-
ployed in small populations and scaled up to 16 times the original population
size on both a hardware- and a cloud environment, and were able to outper-
form the Linux kernel on the cloud.

Using minimal VMs for custom application stacks, such as LAMP, does not
seem feasible for L4 Pistachio and BareMetal OS at this moment. These ker-
nels are currently active research projects and it would be cumbersome work
to achieve support for such stacks. Currently these VMs may only be used
for modeling purposes as they lack many of the system calls necessary to host
such stacks. However, Tiny Core Linux can be used for such purposes as it use
the Linux kernel which supports many of the same applications as mainstream
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Linux distributions.

The following are some notable achievements accomplished during this
project:

• The smallest VM created was for L4 Pistachio with a image size of 1.5MB
and required a minimum of 1.68MBs of memory to boot

• Tiny Core Linux VMs were found to be the most extensible minimal VM,
and able to support custom application stacks

• BareMetal OS VMs had the most predictable performance on both the
hardware and the lab environment when increasing populations sizes
(Table 5.3 and 5.4)

• A population of almost 500 minimal L4 Pistachio VMs equals a popula-
tion of one Ubuntu Server (currently 684MBs).

The following achievements have also been made:

• The smallest average physical memory footprint achieved on the hard-
ware lab was L4 Pistachio VMs with 3.45MB (Table 5.1)

• The smallest average physical memory footprint on the cloud lab was
Bare Metal OS with 5.54MB (Table 5.2)

• Tiny Core Linux had the best performance on the hardware lab (Table
5.1)

• L4 Pistachio had the best performance on the cloud lab (Table 5.2 )

• A public cloud has shown to deliver varying performance compared
with a hardware environment, which may cause noise in measurements
(Figure 5.4)

Minimal VMs have proven they are a viable approach to simulating real
behavior of full-sized VMs. They are able to give researchers and students
the tool needed to deploy large populations of VMs on limited computing re-
sources. The results show it is possible to use minimal VMs for the purpose
of hosting popular application stacks as they are able to offer the same level of
extensibility as full-sized VMs. Minimal VMs can deliver better performance
and achieve significantly lower memory footprints than Linux-kernel VMs on
a cloud environment, which shows that cloud environments are able to pro-
vide the resources needed to take the model populations even further. This
project has shown the many possibilities which exists within this research topic
and that there is still lots of research needed to be done. Most importantly, the
project has proven large populations of virtual machines can be modeled by
using minimal virtual machines as they are significantly smaller and are able
to outperform full-sized VMs .
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Appendix A

L4 Hello World, hello.cc

1 #include <l4io.h>
2 #include <l4/ipc.h>
3
4 int main (void)
5 {
6 int i=0;
7 //sleeping for 60 seconds
8 //timeout = L4 TimePeriod(1140000000);
9 //L4 Sleep (timeout);

10 L4 Time t timeout;
11 timeout = L4 TimePeriod(20000000);
12
13 printf(”Starting infinite loop\n”);
14 while(true){
15 printf (”Sleeping. Count %i \n”,i++);
16 //sleeping for 10 seconds
17 L4 Sleep (timeout);
18 };
19
20 return 0;
21 }
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Appendix B

L4 Hello World Makefile,
Makefile.in

1 srcdir= @srcdir@
2 top srcdir= @top srcdir@
3 top builddir= @top builddir@
4
5 include $(top srcdir)/Mk/l4.base.mk
6
7
8 PROGRAM= hello
9 PROGRAM DEPS= $(top builddir)/lib/l4/libl4.a \

10 $(top builddir)/lib/io/libio.a
11
12 SRCS= crt0−$(ARCH).S hello.cc
13
14 LIBS+= −ll4 −lio
15 LDFLAGS+= −Ttext=$(ROOTTASK LINKBASE)
16
17 CFLAGS powerpc+= −fno−builtin −msoft−float
18 CXXFLAGS powerpc+= −fno−rtti
19
20 include $(top srcdir)/Mk/l4.prog.mk
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Appendix C

Deploy Multiple VMs,
bootscript.pl

1 #! /usr/bin/perl
2
3 # Needed Packages
4 use Getopt::Std;
5 use strict ”vars”;
6 use warnings;
7 use Sys::Statistics::Linux;
8 use Data::Dumper;
9

10
11
12 # Letters followed by ”:” are mandatory
13 my $opt string = ”i:t:n:”;
14
15 getopts(”$opt string”, \my %opt ) or usage() and exit 1;
16
17 # Print help message if −h is invoked
18 if( $opt{’h’} ){
19 usage();
20 exit 0; # Zero means everything is OK.
21 }
22
23 my $NUMID;
24 my $TYPE;
25 my $IMAGE;
26
27
28 my ($mem total, $mem used, $mem cached, $mem free, $cpu usr, $cpu total, $cpu idle,

$cpu sys);
29
30 # Handle user input
31 # $NUMID = 1 if $opt{’d’};
32 $NUMID = $opt{’n’};
33 $TYPE = $opt{’t’};
34 $IMAGE = $opt{’i’};
35 die ”Image name is mandatory.” unless $IMAGE;
36 die ”Number of machiness to create is mandatory” unless $NUMID;
37 die ”Type is mandatory (bm or l4)” unless $TYPE;
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38
39 # my $uuid;
40 my $uuid;
41
42 my $idfile = ”uuid.txt”;
43 open FILE, ”>$idfile” or die $!;
44
45 for(my $i = 0; $i < $NUMID; $i++){
46 $uuid = ‘uuidgen >> uuid.txt‘;
47 # $uuid = ‘uuidgen‘;
48 }
49 close FILE;
50
51 my $command;
52
53 open FILE, ”$idfile” or die $!;
54
55 my $vm id = 1;
56
57 # Number of data samples to collect
58 my $samples = 4000;
59
60 print ”Starting statistics script. Collecting $samples samples...\n”;
61 system(”/usr/bin/perl ./perf.pl −t $TYPE −o $TYPE\ baseline perf.log −s $samples −d 1

&”);
62 print ”Waiting 10 seconds before booting first VM. Allows system to ”breathe”...\n”;
63 sleep(10);
64
65 foreach my $id (<FILE>){
66
67 chomp($id);
68
69 my $vm name = ”$TYPE\ $vm id”;
70 my $vm process = ”$TYPE\ process $vm id”;
71 print ”ID: $id Name: $vm name Process: $vm process\n”;
72
73 if($TYPE eq ”l4”){
74 print ”Executing L4 Pistachio instance..\n”;
75 system( ”qemu−system−x86 64 −m 5 −cpu pentium −fda $IMAGE −uuid $id

−name $vm name,process=$vm process −net none −M pc −smp
1,sockets=1,cores=1,threads=1,maxcpus=1 −nographic &” );

76 print ”Sleeping 10 seconds\n”;
77 sleep (10);
78 print ”Done sleeping..\n\n”;
79 }
80
81 if($TYPE eq ”bm”){
82 print ”Executing BareMetal OS instance..\n”;
83 system( ”qemu−system−x86 64 −m 16 −hda $IMAGE −uuid $id −name

$vm name,process=$vm process −net none −M pc −smp
1,sockets=1,cores=1,threads=1,maxcpus=1 −nographic &”);

84 print ”Sleeping 10 seconds\n”;
85 sleep (10);
86 print ”Done sleeping..\n\n”;
87 }
88
89 if($TYPE eq ”tcl”){
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90 print ”Executing Tiny Core Linux instance..\n”;
91 system( ”qemu−system−x86 64 −m 50 −hda $IMAGE −uuid $id −name

$vm name,process=$vm process −net none −M pc −smp
1,sockets=1,cores=1,threads=1,maxcpus=1 −nographic &”);

92 print ”Sleeping 10 seconds\n”;
93 sleep (10);
94 print ”Done sleeping..\n\n”;
95 }
96
97 $vm id++;
98
99 }

100 close FILE;
101
102 sub getstats{
103
104 my $type = $ [0];
105 ## print ”INPUT IS: $type\n”;
106
107 my $lxs = Sys::Statistics::Linux−>new(
108 cpustats => 1,
109 pgswstats => 1,
110 memstats=> 1,
111 processes=> 1
112 );
113
114 sleep(1);
115 my $stat = $lxs−>get;
116
117 ## print Dumper($stat);
118
119 ## Read CPU stats
120 my $cpu = $stat−>cpustats−>{cpu};
121 $cpu usr = $cpu−>{user};
122 $cpu sys = $cpu−>{system};
123 $cpu idle = $cpu−>{idle};
124 $cpu total = $cpu−>{total};
125
126 ## Read Memory stats
127 ### Memory
128 $mem total = $stat−>memstats−>{memtotal};
129 $mem used = $stat−>memstats−>{memused};
130 $mem free = $stat−>memstats−>{memfree};
131 $mem cached = $stat−>memstats−>{cached};
132
133 my $time = $lxs−>gettime;
134
135 }
136
137
138 exit 0;
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Appendix D

L4 Compiler tool, makescript.pl

1 #!/usr/bin/perl
2 use File::Find;
3
4 # Paths must be kept absolute
5 my $srcdir = ”/project/L4/l4ka−pistachio”;
6
7 my $kerneldir = ”$srcdir/x86−kernel”;
8 my $builddir = ”$srcdir/x86−user−build”;
9 my $installdir = ”$srcdir/x86−user−install”;

10 my $libexecdir = ”$srcdir/x86−user−install/libexec/l4”;
11 my $fdsourcedir = ”$srcdir/fdsource”;
12 my $mountdir = ”/mnt/fda”;
13 my $scriptdir = ”/project/L4/scripts”;
14 # Image and kernel name
15 my $imagedir = ”/project/L4/images”;
16 my $default imagedir = ”/project/L4/images/default”;
17 my $default image = ”fdimage.img”;
18 my $new image = ”new fdimage.img”;
19 my $kernel = ”x86−kernel”;
20 my $cmd;
21 my $kerneldir = ”$srcdir/x86−kernel”;
22 my $kickbase = ”0x148030”;
23 my $sigbase = ”0x20000”;
24 my $rootbase = ”0xEA60”; ## 0xEA60 == 50 000, 0x7A120 == 500 000
25 my $programdir = ”$srcdir/user/apps”;
26 ##### Contents of menu.lst for L4 must be:
27 # root (fd0)
28 # default=0
29 # timeout=3
30 #
31 # title L4Ka::Pistachio
32 # kernel /kickstart
33 # module /x86−kernel
34 # module /sigma0
35 # module /hello
36 ####
37
38
39 ## Compile L4
40 print ”Entering directory ===> $builddir\n”;
41 chdir(”$builddir”);
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42 system(”make clean”);
43 system(”../user/configure −−without−comport −−with−kickstart−linkbase=$kickbase

−−with−s0−linkbase=$sigbase −−with−roottask−linkbase=$rootbase
−−prefix=$installdir −−with−kerneldir=$kerneldir”);

44 system(”make”);
45 system(”make install”);
46
47 # Checking if all files were compiled sucessfully
48 print ”===> Checking if all files were compiled...\n”;
49 my @files = (”kickstart”, ”sigma0”, ”hello”, ”$kernel”, ”math”, ”cpua”, ”cpub”, ”cpuc”);
50
51 foreach my $file (@files){
52 print ”Checking file: \”$libexecdir/$file\”\n”;
53
54 if( ”$file” ne ”$kernel”){
55 unless ( −e ”$libexecdir/$file”){
56 die ”Error: File \”$libexecdir/$file\” was not found... Re−compile and try

again...\n”;
57 }
58 }
59
60 if(”$file” eq ”$kernel”){
61 unless ( −e ”$kerneldir/$kernel”){
62 die ”Error: File: \”$kerneldir/$kernel\” was not found... Re−compile and try

again...\n”;
63 }
64 }
65 }
66
67
68 #### Done compiling L4
69 print ”\n===> Checking if mount directory \”$mountdir\” exists...\n”;
70
71 if (−d ”$mountdir”){
72 print ”\tMountdir \”$mountdir\” exists...\n”;
73 system(”umount /mnt/fda”);
74 print ”\tSuccessfully unmounted: \”$mountdir\”\n”;
75 system(”rm −r $mountdir”);
76 print ”\tSuccessfully removed: \”$mountdir\”\n”;
77 }else{
78 print ”\t\”$mountdir\” does not exist...\n”;
79 }
80 print ”\tDone...\n”;
81
82 print ”\n===> Creating \”$mountdir\”...\n”;
83 unless ( −d ”$mountdir” ){
84 system(”mkdir $mountdir”);
85 print ”\tSetting permissions to \”777\” on \”$mountdir\”...\n”;
86 system(”chmod 777 $mountdir”);
87 }
88
89 if ( −d ”$mountdir” ){
90 print ”\tMountdir: \”$mountdir\” was successfully created ...\n”;
91 }
92 print ”\tDone...\n”;
93
94 # Set up $fdsourcedir
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95 #
96 # If fdsourcedir exists, remove it (cleanup)
97 print ”\n===> Checking if \”$fdsourcedir\” exists and creating if necessary...\n”;
98 if ( −d ”$fdsourcedir” ){
99 print ”\tRemoving: $fdsourcedir\n”;

100 system(”rm −r $fdsourcedir”);
101 }
102
103 # Creates directory structure for all files
104 unless ( −d ”$fdsourcedir” ){
105 print ”\tCreating: $fdsourcedir/boot/grub/\n”;
106 system(”mkdir −p $fdsourcedir/boot/grub”);
107 }
108 print ”\tDone...\n”;
109 sleep(1);
110 # Copy default image to work with
111 print ”\n===> Copying default image\n”;
112 system(”cp $default imagedir/$default image $imagedir/$new image”);
113 print ”\t\”$default imagedir/$default image\” \”$imagedir/$new image\”\n”;
114 print ”\tDone...\n”;
115 sleep(1);
116
117 # Set up loop device to use fdimage.img
118 print ”\n===> Setting up loopdevice to use $new image...\n”;
119 system(”/sbin/losetup /dev/loop0 $imagedir/$new image”);
120 print ”\tDone...\n”;
121 sleep(1);
122 # Mount loop device on /mnt/fda
123 print ”\n===> Mounting loopdevice on $mountdir...\n”;
124 system(”mount /dev/loop0 −o loop $mountdir”);
125 print ”\tDone...\n”;
126 #### Copy binaries to $fdsourcedir
127 #
128 sleep(1);
129 print ”\n===> Copying binaries...\n”;
130 system(”cp $libexecdir/kickstart $fdsourcedir/”);
131 print ”\t\”kickstart\” \”$fdsourcedir\”\n”;
132
133 system(”cp $libexecdir/sigma0 $fdsourcedir/”);
134 print ”\t\”sigma0\” \”$fdsourcedir\”\n”;
135
136 system(”cp $libexecdir/hello $fdsourcedir/”);
137 print ”\t\”hello\” \”$fdsourcedir\”\n”;
138
139 system(”cp $libexecdir/cpua $fdsourcedir/”);
140 print ”\t\”cpua\” \”$fdsourcedir\”\n”;
141
142 system(”cp $libexecdir/cpub $fdsourcedir/”);
143 print ”\t\”cpub\” \”$fdsourcedir\”\n”;
144
145 system(”cp $libexecdir/cpuc $fdsourcedir/”);
146 print ”\t\”cpuc\” \”$fdsourcedir\”\n”;
147
148 system(”cp $kerneldir/$kernel $fdsourcedir/”);
149 print ”\t\”$kernel\” \”$fdsourcedir\”\n”;
150
151 system(”cp $libexecdir/cpu iterative a $fdsourcedir/”);
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152 print ”\t\”cpu iterative a\” \”$fdsourcedir\”\n”;
153
154 system(”cp $libexecdir/cpu iterative b $fdsourcedir/”);
155 print ”\t\”cpu iterative b\” \”$fdsourcedir\”\n”;
156
157 system(”cp $libexecdir/cpu iterative c $fdsourcedir/”);
158 print ”\t\”cpu iterative c\” \”$fdsourcedir\”\n”;
159
160 system(”cp $libexecdir/sprint iter 200 $fdsourcedir/”);
161 print ”\t\”sprint iter 200\” \”$fdsourcedir\”\n”;
162
163 system(”cp $libexecdir/sprint iter 20 $fdsourcedir/”);
164 print ”\t\”sprint iter 20\” \”$fdsourcedir\”\n”;
165
166 system(”cp $libexecdir/math $fdsourcedir/”);
167 print ”\t\”math\” \”$fdsourcedir\”\n”;
168
169 ##system(”cp $libexecdir/ram a $fdsourcedir/”);
170 ##print ”\t\”ram a\” \”$fdsourcedir\”\n”;
171
172
173 print ”\tDone...\n”;
174 ###
175
176 #### Installing Grub legacy files
177 #
178 print ”\n===> Installing Grub files...\n”;
179 system(”cp $scriptdir/menu.lst $fdsourcedir/boot/grub”);
180 print ”\t\”$scriptdir/menu.lst\” \”$fdsourcedir/boot/grub/\”\n”;
181
182 system(”cp /boot/grub/stage1 $fdsourcedir/boot/grub”);
183 print ”\t\”/boot/grub/stage1\” \”$fdsourcedir/boot/grub/\”\n”;
184
185 system(”cp /boot/grub/stage2 $fdsourcedir/boot/grub”);
186 print ”\t\”/boot/grub/stage2\” \”$fdsourcedir/boot/grub/\”\n”;
187 print ”\tDone...\n”;
188 ###
189
190 #### Copy all files to mountdir /mnt/fda
191 print ”\n===> Copy all files to \”$mountdir\”...\n”;
192 system(”cp −aR $fdsourcedir/* $mountdir”);
193 print ”Done...\n”;
194 ####
195 sleep(2);
196 # Unmount /mnt/fda
197 print ”\n===> Unmounting \”$mountdir\”...\n”;
198 system(”umount $mountdir”);
199 print ”\tDone...\n”;
200 sleep(1);
201 print ”\n===> Setting permissions to \”777\” on \”$new image\”\n”;
202 system(”chmod 777 $imagedir/$new image”);
203 print ”\tDone...\n”;
204
205 print ”\n===> Setting up grub...\n”;
206 system(”$scriptdir/grub.sh”);
207 print ”\tDone...\n”;
208
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209 sleep(3);
210
211 # Unmount loop device
212 print ”\n===> Unmounting loop device...\n”;
213 system(”/sbin/losetup −d /dev/loop0”);
214 print ”\tDone...\n”;
215 # Cleaning up
216 print ”\n===> Removing mountdir...\n”;
217 system(”rm −r $mountdir”);
218 print ”\tDone...\n”;
219
220 print ”\n===>Printing contents of \”$fdsourcedir\”:\n”;
221 $” = ”\n”;
222 my @FDToRead = ”$fdsourcedir”;
223
224 if (!@FDToRead)
225 {@FDToRead = ”.”;}
226
227 my @allFiles = readdirR (@FDToRead);
228 @allFiles = sort @allFiles;
229
230 foreach my $file (@allFiles){
231 print ”\t$file\n”;
232 }
233
234 ##print ”\t@allFiles\n”;
235 print ”\tDone...\n”;
236 ############### SUBROUTINES #####
237 # Accepts one argument: the full path to a directory.
238 # Returns: A list of files that end in ’.html’ and have been
239 # modified in less than one day.
240
241 sub readdirR{
242 my @FDList = @ ;
243
244 my $first = shift @FDList;
245
246 if (!$first){
247 return ();
248 }
249 elsif (−f $first){
250 return ($first, readdirR (@FDList));
251 }
252 elsif (−d $first){
253 opendir DIR, $first || warn ”Cannot open directory $first: $!”;
254 my @files = readdir DIR ;
255 closedir DIR;
256 @files = grep {$ !˜ /ˆ[.]{1,2}$/} @files;
257 @files = map {”$first/$ ”} @files;
258 return ($first, readdirR (@files), readdirR(@FDList));
259 }
260 }
261
262 ####main program###########
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Appendix E

BareMetal native Hello World,
bare hello.c

1 // Hello world application for BareMetal using native headers
2 // found in libBareMetal.h
3
4 #include ”libBareMetal.h”
5
6 int main (void)
7 {
8 b print string(”I’m BareMetal\n”);
9 // Sleep 1 second (8 = 1 second, 16 = 2 seconds)

10 b delay(8)
11 b print string(”Goodbye\n”)
12 return 0;
13 }
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Appendix F

BareMetal Hello World Newlib
C library, newlib hello.c

1 // Hello world application for BareMetal using Newlib C library
2 // Newlib does not include sleep or nanosleep functions
3 // so bareMetal headers will be used as well
4 #include <stdio.h>
5 #include ”libBareMetal.h”
6
7 int main (void)
8 {
9 printf(”I’m Newlib\n”);

10 b delay(8)
11 printf(”Goodbye\n”)
12 return 0;
13 }
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Appendix G

TCL Hello World, hello.cc

1 #include <stdio.h>
2 #include <unistd.h>
3
4 int main (void)
5 {
6 printf(”Hello World\n”);
7 sleep(5);
8 printf(”Goodbye\n”);
9 return 0;

10 }
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Appendix H

TCL Add file to filesystem,
tcl add files.pl

1 #! /usr/bin/perl
2
3 use Getopt::Std;
4 use strict ”vars”;
5
6
7 #### Input handling #########
8 #
9 # Letters followed by ”:” are mandatory

10 my $opt string = ”hp:i:”;
11
12 getopts(”$opt string”, \my %opt ) or usage() and exit 1;
13
14 my $IMAGE;
15 my $PROGRAM;
16
17 # Print help message if −h is invoked
18 if( $opt{’h’} ){
19 usage();
20 exit 0; # Zero means everything is OK.
21 }
22
23 $IMAGE = $opt{’i’};
24 $PROGRAM = $opt{’p’};
25
26 die ”Image name is mandatory.” unless $IMAGE;
27 die ”Program name to include on TCL is mandatory” unless $PROGRAM;
28
29 ##############################
30
31 # Print path of current directory
32 my $tcldir = ‘pwd‘;
33 chomp($tcldir);
34
35 my $cmd;
36 my $tempdir = ”$tcldir/temp”;
37 my $mountdir = ”/mnt/tcl”;
38 my $programdir = ”$tcldir”;
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39 my $tcl boot file = ”bootlocal.sh”;
40 #### Cleaning up before mounting TCL
41
42 # Unmount mountdir
43 system(”umount $mountdir”);
44 print ”Unmounted: $mountdir\n”;
45 system(”kpartx −d $IMAGE”);
46
47 if ( −e $mountdir){
48 print ”Mountdir exists.. Deleting..\n”;
49 system(”rm −r $mountdir”);
50 }
51
52 # Create mount directory if it doesn’t exist
53 unless ( −d $mountdir ){
54 print ”Creating directory: $mountdir\n”;
55 system(”mkdir $mountdir”);
56 }
57
58 # If tempdir exists, delete it.
59 if ( −e ”$tempdir”){
60 print ”$tempdir exists. Deleting\n”;
61 system(”rm −r $tempdir”);
62 }
63
64 # Create directories
65 unless( −d $tempdir){
66 print ”Creating: $tempdir\n”;
67 system(”mkdir −p $tempdir/extract”);
68 }
69
70 # Mount image and read name of mounted loop device
71 my @cmd = ‘kpartx −av $IMAGE‘;
72 my $match;
73
74 foreach my $line (@cmd){
75 if($line =˜ m/\w+\s+\w+\s+(.+)\s+\(/){
76 $match = $1;
77 chomp($match);
78 }
79 }
80
81 sleep(2);
82
83 # Mounting mount directory
84 system(”mount /dev/mapper/$match $mountdir”);
85 print ”Mounted $match on $mountdir\n”;
86 sleep(2);
87 # Copying TCL core (core.gz) from tiny core linux mount directory
88 system(”cp $mountdir/tce/boot/core.gz $tempdir”);
89 print ”Copied core.gz to $tempdir\n”;
90
91 # Extracting core and mounting filesystem in <tempdir>/extract
92 chdir(”$tempdir/extract”) or die $!;
93
94 system(”zcat ../core.gz | sudo cpio −i −H newc −d”);
95 sleep(3);
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96 # Copying program to /etc/init.d
97 chdir(”$programdir”);
98 system(”cp $PROGRAM $tempdir/extract/etc/init.d”);
99

100 chdir(”$tempdir/extract/opt/”);
101
102 # Adding startup command for program to make TCL automatically boot it
103 open FILE, ”>$tcl boot file” or die $!;
104 print FILE ”#!/bin/sh\n”;
105 print FILE ”# Add startup commands in this file\n”;
106 print FILE ”/etc/init.d/$PROGRAM\n”;
107 close FILE;
108
109 # Copying old core to backup file
110 system(”mv $tempdir/core.gz $tempdir/1core.gz”);
111 chdir(”$tempdir/extract”);
112
113 # Re−packing TCL filesystem which now include the program
114 system(”find | sudo cpio −o −H newc | gzip −2 > ../core.gz”);
115 chdir(”$tempdir”);
116
117 # Copy the new TCL core to the mountdir
118 system(”cp core.gz $mountdir/tce/boot/”);
119 print ”Done copying core.gz to $mountdir/tce/boot/\n”;
120 sleep(2);
121 # Unmount mountdir then the image
122 system(”umount $mountdir”);
123 print ”Unmounted: $mountdir\n”;
124 sleep(2);
125 chdir(”..”);
126 system(”kpartx −d $IMAGE”);
127
128 #### Subroutine
129
130 sub usage{
131
132 print ”Usage:\n”;
133 print ”−h Usage information. (Optional)\n”;
134 print ”−i Image name. (Required)\n”;
135 print ”−p Program name. (Required)\n”;
136
137
138 }
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Appendix I

Statistics Script, perf.pl

1 #! /usr/bin/perl
2 ## PERFSCRIPT
3 use strict;
4 use warnings;
5 use Sys::Statistics::Linux;
6 use Data::Dumper;
7 use Time::HiRes;
8 use Getopt::Std;
9

10
11 ##### Global Variables
12 #
13 my $TYPE;
14 my $FILE;
15 my $SAMPLES = 30;
16 my $DEBUG = 0;
17 my $VERBOSE = 0;
18 my $DELAY = 1;
19
20 ##### Initializing variables
21 #
22 # General
23 my ($vm num,$time get,$time start,$time);
24 ## CPU
25 my ($cpu usr,$cpu sys,$cpu idle,$cpu total);
26 # LoadAvg
27 my ($cpuavg one,$cpuavg five,$cpuavg fifteen);
28 ## RAM
29 my ($mem total,$mem used,$mem free,$mem cached);
30 # Swap
31 my ($swap total,$swap used,$swap free,$swap cached);
32 # Pages
33 my ($page fault,$page majfault, $page pgin,$page pgout,$page pswpin,$page pswpout);
34 ##### Handle User Input
35 #
36 my $opt string = ’hd:Dvo:s:t:’;
37 getopts( ”$opt string”, \my %opt ) or usage () and exit 1;
38
39 if ( $opt{’h’} ){
40 usage();
41 exit 0;
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42 }
43
44
45 $VERBOSE = 1 if $opt{’v’};
46 debug(”Verbose: $VERBOSE”);
47 $DEBUG = 1 if $opt{’D’};
48 debug(”Debug: $DEBUG”);
49 $DELAY = $opt{’d’} if $opt{’d’};
50 debug(”Delay: $DELAY”);
51 $SAMPLES = $opt{’s’} if $opt{’s’};
52 debug(”Samples: $SAMPLES”);
53 $FILE = $opt{’o’} if $opt{’o’};
54 debug(”File: $FILE”);
55 $TYPE = $opt{’t’};
56 debug(”VM Type: $TYPE”);
57
58 die ”Error: Missing parameter: ’−t’. See −h for usage info.” unless $TYPE;
59 die ”Error: Missing parameter: ’−o’. See −h for usage info.” unless $FILE;
60
61
62 ##### File handling
63 #
64 my $file = ”$FILE”;
65 open LOG, ”>$file” or die $!;
66
67 # Making filehandle HOT to disable buffering
68 ##{ my $ofh = select OUTPUT;
69 # $| = 1;
70 # select OUTPUT;
71 ##}
72 print LOG ”Samples,VM num,CPU usr,CPU sys,CPU total,CPU idle,CPUavg one,
73 CPUavg five,CPUavg fifteen,MEM total,MEM used,MEM free,MEM cached,
74 SWAP total,SWAP used,SWAP free,SWAP cached,PAGE fault,PAGE majfault,
75 PAGE pgin,PAGE pgout,PAGE pswpin,PAGE pswpout\n”;
76
77 ##### Gather statistics
78
79 for (my $sample = 0; $sample < $SAMPLES; $sample++){
80 &getcpu($TYPE, $DELAY);
81 debug(”$sample,$vm num,$cpu usr,$cpu sys,$cpu total,$cpu idle,
82 $cpuavg one,$cpuavg five,$cpuavg fifteen,$mem total,$mem used,
83 $mem free,$mem cached,$swap total, $swap used,$swap free,$swap cached,
84 $page fault,$page majfault,$page pgin,$page pgout,$page pswpin,
85 $page pswpout”);
86 print LOG ”$sample,$vm num,$cpu usr,$cpu sys,$cpu total,$cpu idle,
87 $cpuavg one,$cpuavg five,$cpuavg fifteen,$mem total,$mem used,
88 $mem free,$mem cached,$swap total,$swap used,$swap free,$swap cached,
89 $page fault,$page majfault,$page pgin,$page pgout,$page pswpin,
90 $page pswpout\n”;
91 }
92
93 close LOG;
94
95 ############ SUBROUTINES #################################################
96 ##########################################################################
97
98 sub getcpu{

126



99
100 my $type = $ [0];
101 my $delay = $ [1];
102 chomp($type, $delay);
103
104 ##print ”INPUT IS: $type\n”;
105
106 my $lxs = Sys::Statistics::Linux−>new(
107 cpustats => 1,
108 pgswstats => 1,
109 memstats => 1,
110 processes => 1,
111 loadavg => 1
112 );
113
114 sleep($delay);
115
116 # $time start = Time::HiRes::time();
117 # $time = sprintf (”%.6f”, $time start);
118
119
120 ##$time = $time get;
121 # print $time;
122 ##my $time;
123 ## print ”$time get\n”;
124 ##return($time get);
125
126 my $stat = $lxs−>get;
127
128 # print Dumper($stat);
129 ## exit 0;
130 #####
131 #
132 ### CPU stats
133 # print ”CPU\n”;
134 my $cpu = $stat−>cpustats−>{cpu};
135 $cpu usr = $cpu−>{user};
136 $cpu sys = $cpu−>{system};
137 $cpu idle = $cpu−>{idle};
138 $cpu total = $cpu−>{total};
139 debug(”CPU usr: $cpu usr”);
140 debug(”CPU sys: $cpu sys”);
141 debug(”CPU idle: $cpu idle”);
142 debug(”CPU total: $cpu total”);
143
144 ##### Load Average
145 #
146 # print ”AVG\n”;
147 $cpuavg one = $stat−>loadavg−>{avg 1};
148 $cpuavg five = $stat−>loadavg−>{avg 5};
149 $cpuavg fifteen = $stat−>loadavg−>{avg 15};
150 debug(”CPUavg one: $cpuavg one”);
151 debug(”CPUavg five: $cpuavg five”);
152 debug(”CPUavg fifteen: $cpuavg fifteen”);
153 ##print ”$cpuavg one and $cpuavg five and $cpuavg fifteen\n”;
154 ##### Read Memory stats
155 #
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156 ### Swap
157 # print ”SWAP\n”;
158 $swap total= $stat−>memstats−>{swaptotal};
159 $swap used= $stat−>memstats−>{swapused};
160 $swap free= $stat−>memstats−>{swapfree};
161 $swap cached= $stat−>memstats−>{swapcached};
162 debug(”SWP total: $swap total”);
163 debug(”SWP used: $swap used”);
164 debug(”SWP free: $swap free”);
165 debug(”SWP cached: $swap cached”);
166 #####
167 #
168 ### Memory
169 # print ”RAM\n”;
170 $mem total = $stat−>memstats−>{memtotal};
171 $mem used = $stat−>memstats−>{memused};
172 $mem free = $stat−>memstats−>{memfree};
173 $mem cached = $stat−>memstats−>{cached};
174 debug(”RAM total: $mem total”);
175 debug(”RAM used: $mem used”);
176 debug(”RAM free: $mem free”);
177 debug(”RAM cached: $mem cached”);
178 #####
179 #
180 ### Paging
181 # Avail. from kernel 2.6 and above
182 $page fault = $stat−>pgswstats−>{pgfault};
183 debug(”Number of page faults pr. sec: $page fault”);
184 $page majfault = $stat−>pgswstats−>{pgmajfault};
185 debug(”Number of major page faults pr. sec: $page majfault”);
186 #
187 $page pgin = $stat−>pgswstats−>{pgpgin};
188 debug(”Number of pages paged in from disk pr.sec: $page pgin”);
189 $page pgout = $stat−>pgswstats−>{pgpgout};
190 debug(”Number of pages paged out to disk pr. sec: $page pgout”);
191 $page pswpin = $stat−>pgswstats−>{pswpin};
192 debug(”Number of pages swapped in from disk pr. sec: $page pswpin”);
193 $page pswpout = $stat−>pgswstats−>{pswpout};
194 debug(”Number of pages swapped out to disk pr. sec: $page pswpout”);
195
196
197
198 ## Processes
199 # Search for this process name
200 # print ”PROCS\n”;
201 $type = ”$type\ process”;
202
203 my %hash = $stat−>search({
204 processes => {
205 cmd => qr/($type)/
206 }
207 });
208
209 $vm num = 0;
210 foreach my $cmd ( keys %hash){
211
212 while (my ($key, $value) = each %{ $hash{$cmd}} ) {
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213 $vm num++;
214 ##print ”Key: $key Value: $value\n”;
215 }
216
217 }
218 my $time = $lxs−>gettime;
219 }
220
221 sub usage{
222
223 print ”Usage:\n”;
224 print ”−h Usage information. (Optional)\n”;
225 print ”−v Output is verbose. (Optional)\n”;
226 print ”−D Enable debugging. (Optional)\n”;
227 print ”−t <l4|bm> VM Type. (Required)\n”;
228 print ”−s <num> Number of samples. Default: 30\n”;
229 print ”−d <seconds> Sample delay. Default: 1\n”;
230
231 }
232
233 sub verbose{
234 print ”VERBOSE: $ [0]\n” if ( $VERBOSE or $DEBUG );
235 }
236
237 sub debug{
238 print ”DEBUG: $ [0]\n” if ( $DEBUG );
239
240 }
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Appendix J

L4 GRUB Installation Script,
grub.sh

1 #! /bin/bash
2
3 cat <<EOF | /usr/sbin/grub −−batch −−device−map=/dev/null
4 device (fd0) /dev/loop0
5 root (fd0)
6 setup (fd0)
7 quit
8 EOF
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Appendix K

BareMetal Application Build
script, build.sh

1 #!/bin/bash
2
3 # Backup lines if something goes haywire
4 #gcc −−verbose −I/newlib/newlib−1.20.0/newlib/libc/include/ −c cpua.c −o cpua.o
5 #gcc −−verbose −L . −l libBareMetal.h −c libBareMetal.c −o libBareMetal.o
6 #ld −−verbose −T app.ld −o cpua.app cpua.o libBareMetal.o
7
8 # rm *.o
9

10 # CPUA − Recursive fibonacci, profile A
11
12 gcc −−verbose −c cpua.c −o cpua.o
13 gcc −−verbose −L . −l libBareMetal.h −c libBareMetal.c −o libBareMetal.o
14 ld −−verbose −T app.ld −o cpua.app cpua.o libBareMetal.o
15
16 rm *.o
17
18 # CPUB − Recursive fibonacci, profile B
19 gcc −−verbose −c cpub.c −o cpub.o
20 gcc −−verbose −L . −l libBareMetal.h −c libBareMetal.c −o libBareMetal.o
21 ld −−verbose −T app.ld −o cpub.app cpub.o libBareMetal.o
22
23 rm *.o
24
25 # CPUC − Recursive fibonacci, profile C
26 gcc −−verbose −c cpuc.c −o cpuc.o
27 gcc −−verbose −L . −l libBareMetal.h −c libBareMetal.c −o libBareMetal.o
28 ld −−verbose −T app.ld −o cpuc.app cpuc.o libBareMetal.o
29
30 rm *.o
31
32 # Fib iterative A − Iterative fibonacci, profile A
33 gcc −−verbose −c iterative a.c −o iterative a.o
34 gcc −−verbose −L . −l libBareMetal.h −c libBareMetal.c −o libBareMetal.o
35 ld −−verbose −T app.ld −o iterative a.app iterative a.o libBareMetal.o
36
37 rm *.o
38
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39 # Fib iterative B − Iterative fibonacci, profile B
40 gcc −−verbose −c iterative b.c −o iterative b.o
41 gcc −−verbose −L . −l libBareMetal.h −c libBareMetal.c −o libBareMetal.o
42 ld −−verbose −T app.ld −o iterative b.app iterative b.o libBareMetal.o
43
44 rm *.o
45
46 # Fib iterative C − Iterative fibonacci, profile C
47 gcc −−verbose −c iterative c.c −o iterative c.o
48 gcc −−verbose −L . −l libBareMetal.h −c libBareMetal.c −o libBareMetal.o
49 ld −−verbose −T app.ld −o iterative c.app iterative c.o libBareMetal.o
50
51 rm *.o
52
53 # Sprint Iter 200 − Iterative fibonacci, 1 VM calculating fib(n) 200 times
54 # with n = 2147483646
55 gcc −−verbose −c sprint iter 200.c −o sprint iter 200.o
56 gcc −−verbose −L . −l libBareMetal.h −c libBareMetal.c −o libBareMetal.o
57 ld −−verbose −T app.ld −o sprint iter 200.app sprint iter 200.o libBareMetal.o
58
59 rm *.o
60
61 # Sprint Iter 20 − Iterative fibonacci, 10 VMs calculating fib(n) 20 times
62 # simultaneously with n = 2147483646
63 gcc −−verbose −c sprint iter 20.c −o sprint iter 20.o
64 gcc −−verbose −L . −l libBareMetal.h −c libBareMetal.c −o libBareMetal.o
65 ld −−verbose −T app.ld −o sprint iter 20.app sprint iter 20.o libBareMetal.o
66
67 rm *.o
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Appendix L

BareMetal OS, Mounting images
and transferring files, mount.sh

1 #!/bin/sh

3 # Cleaning image
kpartx −av BareMetal new.img

5 mount /dev/mapper/loop0p1 /mnt/baremetal
echo ”Listing contents DEFAULT IMAGE:”

7 ls −la /mnt/baremetal
umount /mnt/baremetal

9 kpartx −d BareMetal new.img
echo ”\n\n\n”

11 #qemu−system−x86 64 −m 16 −hda BareMetal cpua.img −net none −M pc
sleep 1

13

15 # Creating Default Images
cp BareMetal new.img BareMetal cpua.img

17 cp BareMetal new.img BareMetal cpub.img
cp BareMetal new.img BareMetal cpuc.img

19 cp BareMetal new.img BareMetal hello.img
cp BareMetal new.img BareMetal iterative a.img

21 cp BareMetal new.img BareMetal iterative b.img
cp BareMetal new.img BareMetal iterative c.img

23 cp BareMetal new.img BareMetal sprint iter 200.img
cp BareMetal new.img BareMetal sprint iter 20.img

25

27
kpartx −av BareMetal cpua.img

29 mount /dev/mapper/loop0p1 /mnt/baremetal
cp /sdc/project/BM/programs/CPU/cpua.app /mnt/baremetal/startup.app

31 echo ”Listing contents CPUA:”
ls −la /mnt/baremetal

33 umount /mnt/baremetal
kpartx −d BareMetal cpua.img

35 echo ”\n\n\n”
#qemu−system−x86 64 −m 16 −hda BareMetal cpua.img −net none −M pc

37 sleep 1
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39 kpartx −av BareMetal cpub.img
mount /dev/mapper/loop0p1 /mnt/baremetal

41 cp /sdc/project/BM/programs/CPU/cpub.app /mnt/baremetal/startup.app
echo ”Listing contents CPUB:”

43 ls −la /mnt/baremetal
umount /mnt/baremetal

45 kpartx −d BareMetal cpub.img
#qemu−system−x86 64 −m 16 −hda BareMetal new.img −net none −M pc

47 echo ”\n\n\n”
sleep 1

49
kpartx −av BareMetal cpuc.img

51 mount /dev/mapper/loop0p1 /mnt/baremetal
cp /sdc/project/BM/programs/CPU/cpuc.app /mnt/baremetal/startup.app

53 echo ”Listing contents CPUC:”
ls −la /mnt/baremetal

55 umount /mnt/baremetal
kpartx −d BareMetal cpuc.img

57 #qemu−system−x86 64 −m 16 −hda BareMetal new.img −net none −M pc
echo ”\n\n\n”

59 sleep 1

61 kpartx −av BareMetal hello.img
mount /dev/mapper/loop0p1 /mnt/baremetal

63 cp /sdc/project/BM/programs/CPU/hello.app /mnt/baremetal/startup.app
echo ”Listing contents HELLO:”

65 ls −la /mnt/baremetal
umount /mnt/baremetal

67 kpartx −d BareMetal hello.img
#qemu−system−x86 64 −m 16 −hda BareMetal new.img −net none −M pc

69 echo ”\n\n\n”
sleep 1

71
kpartx −av BareMetal iterative a.img

73 mount /dev/mapper/loop0p1 /mnt/baremetal
cp /sdc/project/BM/programs/CPU/iterative a.app /mnt/baremetal/startup.app

75 echo ”Listing contents ITERATIVE A:”
ls −la /mnt/baremetal

77 umount /mnt/baremetal
kpartx −d BareMetal iterative a.img

79 #qemu−system−x86 64 −m 16 −hda BareMetal new.img −net none −M pc
echo ”\n\n\n”

81 sleep 1

83 kpartx −av BareMetal iterative b.img
mount /dev/mapper/loop0p1 /mnt/baremetal

85 cp /sdc/project/BM/programs/CPU/iterative b.app /mnt/baremetal/startup.app
echo ”Listing contents ITERATIVE B:”

87 ls −la /mnt/baremetal
umount /mnt/baremetal

89 kpartx −d BareMetal iterative b.img
#qemu−system−x86 64 −m 16 −hda BareMetal new.img −net none −M pc

91 echo ”\n\n\n”
sleep 1

93
kpartx −av BareMetal iterative c.img

95 mount /dev/mapper/loop0p1 /mnt/baremetal
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cp /sdc/project/BM/programs/CPU/iterative c.app /mnt/baremetal/startup.app
97 echo ”Listing contents ITERATIVE C:”

ls −la /mnt/baremetal
99 umount /mnt/baremetal

kpartx −d BareMetal iterative c.img
101 #qemu−system−x86 64 −m 16 −hda BareMetal new.img −net none −M pc

echo ”\n\n\n”
103 sleep 1

105 kpartx −av BareMetal sprint iter 200.img
mount /dev/mapper/loop0p1 /mnt/baremetal

107 cp /sdc/project/BM/programs/CPU/sprint iter 200.app /mnt/baremetal/startup.app
echo ”Listing contents SPRINT 200:”

109 ls −la /mnt/baremetal
umount /mnt/baremetal

111 kpartx −d BareMetal sprint iter 200.img
#qemu−system−x86 64 −m 16 −hda BareMetal new.img −net none −M pc

113 echo ”\n\n\n”
sleep 1

115
kpartx −av BareMetal sprint iter 20.img

117 mount /dev/mapper/loop0p1 /mnt/baremetal
cp /sdc/project/BM/programs/CPU/sprint iter 20.app /mnt/baremetal/startup.app

119 echo ”Listing contents SPRINT 20:”
ls −la /mnt/baremetal

121 umount /mnt/baremetal
kpartx −d BareMetal sprint iter 20.img

123 #qemu−system−x86 64 −m 16 −hda BareMetal new.img −net none −M pc
echo ”\n\n\n”

125 sleep 1
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Appendix M

CPU Profile Tests - Hardware
Lab
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Figure M.1: Graph showing the CPU utilization of BareMetal OS at user and
system level with 10 VMs testing pattern A on the hardware lab.
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Figure M.2: Graph showing the CPU utilization of BareMetal OS at user and
system level with 10 VMs testing pattern B on the hardware lab.
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Figure M.3: Graph showing the CPU utilization of BareMetal OS at user and
system level with 10 VMs testing pattern C on the hardware lab.
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Figure M.4: Graph showing the CPU utilization of TinyCore Linux at user and
system level with 10 VMs testing pattern A on the hardware lab.
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Figure M.5: Graph showing the CPU utilization of TinyCore Linux at user and
system level with 10 VMs testing pattern B on the hardware lab.
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Figure M.6: Graph showing the CPU utilization of TinyCore Linux at user and
system level with 10 VMs testing pattern C on the hardware lab.
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Figure M.7: Graph showing the CPU utilization of L4 Pistachio at user and
system level with 10 VMs testing pattern A on the hardware lab.
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Figure M.8: Graph showing the CPU utilization of L4 Pistachio at user and
system level with 10 VMs testing pattern B on the hardware lab.
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Figure M.9: Graph showing the CPU utilization of L4 Pistachio at user and
system level with 10 VMs testing pattern C on the hardware lab.
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Appendix N

CPU Profile Tests Cloud lab
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Figure N.1: Graph showing the CPU utilization of BareMetal OS at user and
system level with 10 VMs testing pattern A on the cloud lab.
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Figure N.2: Graph showing the CPU utilization of BareMetal OS at user and
system level with 10 VMs testing pattern B on the cloud lab.
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Figure N.3: Graph showing the CPU utilization of BareMetal OS at user and
system level with 10 VMs testing profile C on the cloud lab.
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Figure N.4: Graph showing the CPU utilization of TinyCore Linux at user and
system level with 10 VMs testing pattern A on the cloud lab.
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Figure N.5: Graph showing the CPU utilization of TinyCore Linux at user and
system level with 10 VMs testing pattern B on the cloud lab.
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Figure N.6: Graph showing the CPU utilization of TinyCore Linux at user and
system level with 10 VMs testing pattern C on the cloud lab.
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Figure N.7: Graph showing the CPU utilization of L4 Pistachio at user and
system level with 10 VMs testing pattern A on the cloud lab.
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Figure N.8: Graph showing the CPU utilization of L4 Pistachio at user and
system level with 10 VMs testing pattern B on the cloud lab.
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Figure N.9: Graph showing the CPU utilization of L4 Pistachio at user and
system level with 10 VMs testing pattern C on the cloud lab.
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Appendix O

L4 Pistachio Usage Patterns,
L4 patterns.cc

1 /*********************************************************************
2 *
3 * Author 2012, Hvard Ostnes
4 *
5 * File path: /
6 * Description: OLD CPU patterns for the L4Ka::Pistachio
7 * Sleep value of 1 000 000 = 1 second
8 * Pattern specific settings:
9 * Pattern A: fibsleeper = 20000000; i = 40;

10 * Pattern B: fibsleeper = 40000000; i = 43;
11 * Pattern C: fibsleeper = 5000000; i = 40;
12 ********************************************************************/
13 #include <l4io.h>
14 #include <l4/ipc.h>
15
16 int fib(int n);
17
18 int main(void)
19 {
20 L4 Time t fibsleeper;
21 fibsleeper = L4 TimePeriod(20000000);
22
23 for(int i = 40; i <= 50; i++)
24 {
25 if( i == 41)
26 {
27 fib(i);
28 L4 Sleep(fibsleeper);
29 }
30
31 if( i == 50)
32 {
33 // Resetting loop.
34 i = 39;
35 }
36 }
37 return 0;
38 }
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39
40 int fib(int n)
41 {
42 if (n==0 || n==1)
43 return 1;
44 else
45 return fib(n−1)+fib(n−2);
46 }
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Appendix P

L4 Pistachio Usage Patterns,
L4 patterns.cc

1 /*********************************************************************
2 *
3 * Author 2012, Hvard Ostnes
4 *
5 * File path: /
6 * Description: NEW CPU patterns for the L4Ka::Pistachio
7 * Sleep value of 1 000 000 = 1 second
8 * Pattern specific settings:
9 * Pattern A: fibsleeper = 20000000; i = 41;

10 * Pattern B: fibsleeper = 40000000; i = 44;
11 * Pattern C: fibsleeper = 5000000; i = 41;
12 ********************************************************************/
13 #include <l4io.h>
14 #include <l4/ipc.h>
15
16 int fib(int n);
17
18 int main(void)
19 {
20 L4 Time t fibsleeper;
21 fibsleeper = L4 TimePeriod(20000000);
22
23 for(int i = 40; i <= 50; i++)
24 {
25 if( i == 41)
26 {
27 fib(i);
28 L4 Sleep(fibsleeper);
29 }
30
31 if( i == 50)
32 {
33 // Resetting loop.
34 i = 39;
35 }
36 }
37 return 0;
38 }
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39
40 int fib(int n)
41 {
42 if (n==0 || n==1)
43 return 1;
44 else
45 return fib(n−1)+fib(n−2);
46 }
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Appendix Q

BareMetal OS Usage Patterns,
BM patterns.c

1 /*********************************************************************
2 *
3 * Author 2012, Hvard Ostnes
4 *
5 * File path: /
6 * Description: Usage Pattern A for BareMetal OS
7 * A sleep value of 8 is 1 second.
8 * Example: 8 = 1 second, 80 = 10 seconds
9 *

10 * Settings for all patterns:
11 * Pattern A: sleeper = 160; i = 40;
12 * Pattern B: sleeper = 320; i = 43;
13 * Pattern C: sleeper = 40; i = 40;
14 ********************************************************************/
15 #include ”libBareMetal.h”
16
17 int fib(int n);
18
19 int start(void)
20 {
21 // 8 == 1 second, 160 == 20 sec
22 int sleeper = 160;
23 int i;
24
25 for(i = 40; i <= 50; i++)
26 {
27 if( i == 40 )
28 {
29 fib(i);
30 b delay(sleeper);
31 }
32
33 if( i == 50 )
34 {
35 i = 39;
36 }
37 }
38 return 0;
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39 }
40
41
42 int fib(int n)
43 {
44 if (n==0 || n==1)
45 return 1;
46 else
47 return fib(n−1)+fib(n−2);
48 }
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Appendix R

Tiny Core Linux Usage Patterns,
TCL patterns.cc

1 /*********************************************************************
2 *
3 * Author 2012, Hvard Ostnes
4 *
5 * File path: /
6 * Description: Usage Pattern A for Tiny Core Linux
7 *
8 * Settings for all patterns:
9 * Pattern A: sleeper = 20; i = 40;

10 * Pattern B: sleeper = 40; i = 43;
11 * Pattern C: sleeper = 5; i = 40;
12 ********************************************************************/
13 #include <stdio.h>
14 #include <unistd.h>
15
16 int fib(int n);
17
18 int main(void)
19 {
20 // Change i and sleeper to achieve the desired usage pattern
21 int sleeper = 5;
22
23 for(int i = 40; i <= 50; i++)
24 {
25 if( i == 40)
26 {
27 fib(i);
28 sleep(sleeper);
29 }
30
31 if( i == 50)
32 {
33 // Resetting loop.
34 i = 39;
35 }
36 }
37 return 0;
38 }
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39
40 int fib(int n)
41 {
42 if (n==0 || n==1)
43 return 1;
44 else
45 return fib(n−1)+fib(n−2);
46 }
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Appendix S

L4 Pistachio Performance Test
Application, L4 context apps.cc

1 /*********************************************************************
2 *
3 * Author 2012, Hvard Ostnes
4 *
5 * File path: /
6 * Description: CPU Simulation application for L4 Pistachio
7 *
8 * Population sizes and number of laps used:
9 * 4 VMs: laps = 384;

10 * 8 VMs: laps = 192;
11 * 16 VMs: laps = 96;
12 * 32 VMs: laps = 48;
13 * 64 VMs: laps = 24:
14 *
15 ********************************************************************/
16 #include <l4io.h>
17 #include <l4/ipc.h>
18
19 int fib(int n);
20
21 int main(void)
22 {
23 int input = 41;
24 int laps = 384;
25 int i;
26 L4 Time t fibsleeper;
27 // Sleep 60 seconds
28 fibsleeper = L4 TimePeriod(60000000);
29 L4 Sleep(fibsleeper);
30 // SLeep 2000 seconds
31 fibsleeper = L4 TimePeriod(2000000000);
32 for(i = 0; i < laps; i++)
33 {
34
35 fib(input);
36 if(i == laps−1)
37 {
38 //sleeps to show test is done
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39 L4 Sleep(fibsleeper);
40 }
41
42 }
43 return 0;
44 }
45
46
47 int fib(int n)
48 {
49 if (n==0 || n==1)
50 return 1;
51 else
52 return fib(n−1)+fib(n−2);
53 }
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Appendix T

BareMetal OS Performance Test
Application, BM context apps.c

1 /*********************************************************************
2 *
3 * Author 2012, Hvard Ostnes
4 *
5 * File path: /
6 * Description: CPU Simulation application for BareMetal OS
7 *
8 * Population sizes and number of laps used:
9 * 4 VMs: laps = 384;

10 * 8 VMs: laps = 192;
11 * 16 VMs: laps = 96;
12 * 32 VMs: laps = 48;
13 * 64 VMs: laps = 24:
14 *
15 ********************************************************************/
16 #include ”libBareMetal.h”
17
18 int fib(int n);
19
20 int start(void)
21 {
22 int input = 40; // Takes ˜3 seconds
23 int laps = 12; // 300 laps == 900 seconds
24 int i;
25
26 // Sleep 60 seconds
27 b delay(480);
28
29 for(i = 0; i < laps; i++)
30 {
31
32 fib(input);
33 if(i == laps−1)
34 {
35 //sleeps to show test is done
36 b delay(16000);
37 }
38
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39 }
40 return 0;
41 }
42
43
44 int fib(int n)
45 {
46 if (n==0 || n==1)
47 return 1;
48 else
49 return fib(n−1)+fib(n−2);
50 }
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Appendix U

Tiny Core Linux Performance
Test Application ,
TCL context apps.cc

1 /*********************************************************************
2 *
3 * Author 2012, Hvard Ostnes
4 *
5 * File path: /
6 * Description: CPU Simulation application for Tiny Core Linux
7 *
8 * Population sizes and number of laps used:
9 * 4 VMs: laps = 384;

10 * 8 VMs: laps = 192;
11 * 16 VMs: laps = 96;
12 * 32 VMs: laps = 48;
13 * 64 VMs: laps = 24:
14 *
15 ********************************************************************/
16 #include <stdio.h>
17 #include <unistd.h>
18
19 int fib(int n);
20
21 int main(void)
22 {
23 int input = 40; // Takes ˜3 seconds
24 int laps = 384; // 300 laps == 900 seconds
25 int i;
26
27 // Sleep 60 seconds
28 sleep(60);
29
30 for(i = 0; i < laps; i++)
31 {
32
33 fib(input);
34 if(i == laps−1)
35 {
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36 //sleeps to show test is done
37 sleep(2000);
38 }
39
40 }
41 return 0;
42 }
43
44
45 int fib(int n)
46 {
47 if (n==0 || n==1)
48 return 1;
49 else
50 return fib(n−1)+fib(n−2);
51 }
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