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Abstract

This thesis studies how the multi-core hardware architecture can be efficiently used
for real-world scientific applications that arise from computational cardiology and com-
putational geoscience. The investigation has been carried out from different angles:
numerical algorithms, parallel programming and performance modeling and prediction.
It is shown that high-performance implementations and optimizations must match both
the underlying computations and the target parallel platform. Several good practices
are summarized for parallel programming and performance analysis on the multi-core
architecture, which can be of help to many other scientists.
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Introduction

1 Background

In this section, I first introduce some main challenges of multi-core programming, which
are relevant to my research work. Then some common strategies of parallel computing
and a simple performance model for the multi-core architecture are extracted, which
may be useful for more general-purpose uses.

1.1 Challenges with multi-core programming

The multi-core architecture has emerged as a main-stream design to boost computing
power in a practical way. It brings promising improvement of computing power while
posting many programming challenges. Since the first commercial dual-core processor
was manufactured by IBM [24] in 2001, multi-core has become a widely used processor
architecture with different variations in the last decade. As its name implies, a number
of computing cores are integrated into one processor. Normally, cores in the same
processor have their own L1 caches but share the last level cache. For a computer node
in a cluster, multiple processors may be equipped, which may adopt either the Uniform
Memory Access (UMA) or Non-Uniform Memory Access (NUMA) design. Therefore,
the memory hierarchy of the multi-core architecture is more complex than that of the
conventional single-core CPU.

Before the multi-core era, advances in the processor frequency automatically gave rise
to significant increases in the execution speed of software, with little effort needed from
software developers. The emergence of multi-core processors posts new challenges to
software developers, who must now master programming techniques necessary to fully
exploit the multi-core processing potential [9].

The first challenge to the programmers is to develop parallel programs. Compared
with developing sequential programs, programmers now have to adapt themselves to
carefully coordinate work in a parallel way by considering resource sharing, contention,
task scheduling, etc. Such programs are more error-prone and harder to debug. Beyond
these common issues, when performance is taken into account, the second challenge
emerges: implementing a parallel program with a decent performance on the multi-core
architecture is much more difficult than just implementing a correct one.

Since mathematical and numerical details are given in the subsequent chapters con-
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Introduction 1. Background

taining published papers, the focus of this chapter is on parallel programming for
multi-cores. Only characteristics of multi-core systems related to my work are selected
to depict why they make parallel programming for the multi-core architecture difficult.

Performance bottleneck due to the memory system is not a new problem, which
has existed for decades since the uni-core processor era. Nowadays, multi-core sys-
tems aggravate this issue. Some researchers even think multi-core is bad news for
supercomputers [23]. We may at least agree that while the disparity between memory
access speed and processor speed continuously grows up, multi-core reduces the amount
of cache per thread and introduces competition for the bandwidth to memory [11].
Because the memory bandwidth does not increase linearly when more processor cores
are used, compute-bound codes may become memory bound when many processor
cores are used. This memory competition can be more serious for UMA systems when
exceeding a certain number of cores. In order to relieve this bottleneck while allowing
many cores work together, a widely adopted hardware solution for recent multi-core
systems is to divide the memory into a certain number of regions, each accessed by
a certain processor with the largest bandwidth but by others with lower bandwidth.
When using this NUMA memory configuration, mapping data to different memory
regions can affect performance substantially. The work of [22] shows that a mismatch
between the data access pattern and the physical memory layout incurs a high overhead,
meanwhile it is hard to find a data distribution that matches all possible access patterns.
Programmers now are taking more responsibilities of controlling data locality either
directly or indirectly.

Improving the utilization of cache is not an old topic of optimization for both se-
quential and parallel code. As multi-core processors introduce a more complex cache
hierarchy, which involves both private and shared caches, the performance of parallel
code is becoming more and more sensitive to cache utilization. With the aid of tools like
PAPI [3], programmers can observe cache behaviors using hardware counters, which may
give clues of performance bottlenecks. Meanwhile, some traditional uni-core performance
metrics, such as L1 and L2 cache miss rates, do not adequately capture multi-core
memory issues. This means that effective measurement, analysis, and optimization of
memory performance bottlenecks intrinsic to multicores require a different and more
complex approach than memory bottleneck detection and alleviation in uni-cores [13].
False sharing is another historical cache issue in shared memory systems starting from
multi-processors. Relevant research can be traced back to 80’s and 90’s [12, 14, 27].
In the multi-core era, it still impacts performance severely. Recent work [26] shows
that false sharing can cause performance degradation by 100x and even more. In
general, some techniques like padding can remedy the false sharing problem, but how
the techniques are used varies from case to case.

In summary, multi-core design brings a brilliant improvement on processors’ peak
performance, meanwhile lots of programming effort is required for programmers to
translate a good performance in theory to a good performance in practice. The work of
my thesis tries to be helpful for the above aspects.
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1. Background Introduction

1.2 Mixed programming and parallelization of FDM

As one of the parallel programming methods, mixed programming means combining
shared and distributed-memory programming models in one code. Multi-core based
clusters are distributed-memory systems in term of nodes, meanwhile each node itself is
a shared-memory system. Such a mixed-memory configuration endows such clusters
with a hardware foundation for mixed programing. Let us take the Finite Difference
Method (FDM) as a particular example, which is widely used in scientific research
and engineering fields due to its mathematical simplicity and ease of implementation.
This method normally relies on uniform meshes described via multi-dimensional arrays.
When the actual solution domain is irregular, a typical way for FDM to cope with is to
adopt a uniform mesh large enough to completely include the irregular solution domain.
A 2D example is provided in Figure 1, where the red line describes an irregular solution
domain included by an uniform mesh. Therefore, not all the mesh points belong to
the irregular solution domain. The partitioning of such a domain will be the focus of
parallelizing FDM codes in the remaining part of Section 1.2.

Figure 1: Irregular solution domain included by an uniform mesh.

In order to check if a mesh point belongs to the solution domain, a data structure for
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Introduction 1. Background

saving this information for all the mesh points is necessary. For this goal, a boolean

array called inSolutionDomain is introduced, which corresponds exactly to the multi-
dimensional uniform mesh. In inSolutionDomain, each array element will be marked as
true or false according to whether its corresponding mesh point lies inside or outside
the solution domain.

When such a mesh needs to be parallelized by the distributed-memory programming
model, partitioning the mesh with cutting planes orthogonal to the dimension axes will
be the most straightforward way. Although a general curved partitioning of the irregular
solution domain can give the best partitioning balance, more complex data structures
have to be introduced for each mesh point to save the partitioning information of its
neighboring points. A parallel implementation of FDM using curved partitioning will
thus become more complex than using the cutting-plane partitioning. Therefore, we
focus on the domain decomposition by partitioning the whole mesh with cutting planes
into a certain number of uniform sub-meshes as evenly as possible. Fewer sub-meshes
means easier and better partitioning balance. This fits very well with the mixed pro-
gramming due to partitioning the mesh with the number of computer nodes other than
the total number of processor cores.

In details, when using m computer nodes, each equipped with n CPU cores, a parallel
implementation solely adopting MPI, termed “flat MPI” in this thesis, will have m× n
MPI processes generating m × n sub-meshes. When mixed programming using the
least MPI processes is adopted, one MPI process is assigned to one computer node,
where MPI process spawns a OpenMP thread for each core of the node. The latter
implementation has only m sub-meshes, which naturally improves the partitioning
balance.

In a more general situation, the computation load of each mesh point belonging to
the solution domain may vary. If the problem is time dependent, the computation load
may vary over time. Thus, a static work partitioning cannot give an ideal load balance
for parallel computing in such a dynamic situation. In each sub-mesh, the parallelism
comes from n OpenMP threads sharing the work load. All threads can be scheduled by
a “dynamic” scheduler of OpenMP.

Furthermore, in each sub-mesh, there will be N nested for-loops standing for the N
dimensional sub-mesh to function as a computing kernel. Parallelizing this kernel using
the OpenMP directive #pragma omp parallel for on the outmost for-loop cannot
give the sufficiently fine parallel granularity for a better load balance. To solve the issue,
these nested for-loops can be collapsed to a long single for-loop that can be parallelized
by OpenMP for a better load balance. In order to achieve this goal, a new clause
collapse has been introduced since OpenMP 3.0 specification [2]. In Figure 2, a 3D
sub-mesh is adopted as an example to show the parallelization with OpenMP, where
three nested for-loops are parallelized via the clause collapse.

Meanwhile, we still prefer to explain the essence of the collapse clause because
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1. Background Introduction

#pragma omp parallel for default(shared), private(i, j, k), \
schedule(dynamic, chunkSize), collapse(3)
for (k = 0; k < z_len; k++)
for (j = 0; j < y_len; j++)
for (i = 0; i < x_len; i++)
if (inSolutionDomain[k][j][i])
computing(i, j, k);

Figure 2: OpenMP parallelization for a nested 3-dimensional for-loop.

the strategy can be applied on other multi-threaded programming models other than
OpenMP and our further optimization in the remaining part cannot be implemented
when using the collapse clause directly. Instead of parallelizing nested 3-dimensional
for-loops, a single for-loop is parallelized in Figure 3, which does the similar work as
the collapse clause.

total_length = z_len * y_len * x_len;

#pragma omp parallel for default(shared), private(idx, i, j, k), \
schedule(dynamic, chunkSize)
for (idx = 0; idx < total_length; idx++) {
mapping1Dto3D(idx, &i, &j, &k);
if (inSolutionDomain[k][j][i])
computing(i, j, k);

}

Figure 3: One for-loop for OpenMP parallelization.

A further optimization can be adopted to remove mesh points outside the solu-
tion domain. This optimization reduces OpenMP scheduling overhead and improves
the load balance of the OpenMP parallelization. We call this approach “compacted
indices”. In the implementation, an integer array compactedIndices is introduced
for each MPI process to save the indices of those mesh points belonging to the solu-
tion domain in each sub-mesh. The optimized computing procedure is shown in Figure 4.

In sum, the mixed programming may deliver a better load balance of the whole parallel
computing than flat MPI due to more balanced mesh partitioning and more flexible
work scheduling in each sub-mesh. An optimization of compacting indices of computa-
tional mesh points continually is also introduced, which can further improve load balance.

1.3 OpenMP implementation of particle movement

Compared with mixing programming and parallelization of FDM (Section 1.2), the work
in this sub-section also concerns OpenMP-based parallel programming but is more com-
plex. For example, for an irregular solution domain described in Section 1.2, although
the access to mesh points in the solution domain is not continuous, the accessing order
is still regular. However, the accessing order may be random in many other application
scenarios. Furthermore, the data structure of each mesh point can be variable because
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len = 0;
for (k = 0; k < z_len; k++)
for (j = 0; j < y_len; j++)
for (i = 0; i < x_len; i++)
if (inSolutionDomain[k][j][i])
compactedIndices[len++] = idx;

#pragma omp parallel for default(shared), private(idx, i, j, k), \
schedule(dynamic, chunkSize)
for (idx = 0; idx < len; idx++) {
mapping1Dto3D(compactedIndices[idx], &i, &j, &k);
computing(i, j, k);

}

Figure 4: OpenMP parallelization on compacted indices.

the property of being computational or non-computational may vary over time, which
is however fixed in the case described in Section 1.2. Therefore, the parallelization
of application scenarios having such dynamic features will not be straightforward for
example due to race condition. Simulating moving particles is a good example, where all
the above issues are involved. The OpenMP parallelization strategy, multi-core based
optimization and data structure design developed for the example is also applicable to
more general-purpose uses.

Let us first introduce the basic details of the movement of particles as a preliminary
background. The physical domain containing the particles will be discretized by a
uniform mesh to form a certain number of same sized cells, each of which is either
a rectangle or a box, respectively when the physical domain is 2D or 3D. Particles
contained in the physical domain is organized cell by cell. The movement of the particles
in one time step can be described as three sequential steps. (1) Inside each non-empty
cell, the particles are first randomly split into a certain number of groups. (2) Then
each group of particles independently moves from its host cell to a target cell following
certain physical laws. (3) At each target cell, the incoming particle groups are inserted
and merged together. From the description of the three steps, three main characteristics
of such a movement scenario are concluded as follows.

(i) Most of cells in the physical domain are empty in the whole simulation time.

(ii) The number and location of non-empty cells vary over time, which is full of
dynamic.

(iii) For any non-empty cell, it needs a complex data structure to save values of velocity,
acceleration, mass, etc., for particle groups, which can be substantial on memory
use.

1.3.1 Data structure design

For each non-empty cell, to study all its resident particles as one unity, a complex data
structure is needed per cell to store information such as the cell position in the physical
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1. Background Introduction

domain, physical quantities of particles, etc. A naive implementation is to create a
multi-dimensional array, which is of the same dimension as the background mesh, such
that each array entry is a data structure mentioned above. Each array index naturally
corresponds to the cell position in the physical domain while each array element is a
complex data structure to save physical quantities. This design has deficiencies in the
sense that the memory utilization is low because most of cells, i.e. array elements, are
empty in the whole simulation time. Meanwhile, with the progress of the simulation,
the physical distance between a source cell and a target cell may be reflected as large
memory jumps when moving a group of particles.

In order to improve the memory utilization, a more practical design is to use com-
pressed data structures solely storing those non-empty cells. Thus, a short 1D array
called compressedData, of which each entry corresponds to a non-empty cell, is adopted
for this goal. Because the indices of compressedData cannot tell the physical positions
of the non-empty cells in this design, the position information will be stored in a separate
1D array of integers, named Nidx, of same length of the compressedData array. The
value of Nidx[i] records the physical position of the i’th non-empty cell inside array
compressedData.

In connection with implementing a particle group’s movement from its host cell to a
target cell, there is the need for quickly checking whether the target cell is empty or
not. Moreover, if the target cell is non-empty, we need to know where its associated
data structure can be found inside compressedData, so that the incoming particle
group can be added. An assistant array named lookup is therefore introduced. The
length of the 1D lookup array equals the total number of cells in the background
mesh, each entry of lookup is an integer, and we have chosen a convention such that
lookup[i]<0 means cell number i of the background uniform mesh is empty. Otherwise,
compressedData[lookup[i]] returns the associated data structure of the non-empty
cell i.

For simplicity, a 2D scenario is selected for an example without loss of generality. In
Figure 5, the 2D domain is divided into 10 × 10 cells while Nidx is of the length 10.
As illustrated in Figure 5, the mapping between Nidx and lookup can be expressed as
lookup[Nidx[i]]=i.

Although searching the Nidx array can also tell us whether a specific cell is occupied,
which is the main function of lookup, we have chosen to use lookup for the performance
concern.

Because time dependent simulations normally are conducted via updating relevant vari-
ables from the current time step to the next one, two copies of Nidx and compressedData

are needed. We denote the status of the current time step by compressedDataCurrent

and NidxCurrent while using compressedDataNext and NidxNext for the next time
step. To save memory, only one copy of lookup is used. At the start of each time step,
the old content of lookup is typically erased so lookup is refilled to correctly record

7



Introduction 1. Background

Figure 5: An illustration of the mapping between Nidx and lookup.

the current occupancy of cells.

1.3.2 Parallelizing particle movement

As mentioned earlier, at the start of every time step, the particles that reside inside each
non-empty cell randomly form a few particle groups. (The number of particle groups per
host cell is stored as an integer variable called numParticleGroups.) The computation
associated with forming particle groups is easily parallelized by adding # pragma omp

parallel for ahead of a for-loop that iterates over the entire compressedDataCurrent
array.

However, it is not straightforward to parallelize the remaining computations that are
related to moving the particle groups from each host cell to the diverse target cells.
To demonstrate the difficulty, let us first show the sequential implementation in Figure 6.

From the code segment shown in Figure 6, one can see that it is not feasible to
directly parallelize, by using “pragma omp parallel for”, the loop of for (int i=0;

i<nonEmptyCells; i++). The difficulty arises from a high possibility of race condi-
tions. More specifically, there are two types of race conditions, (1) updating lookup and
NidxNext contained in the if block, (2) the call to addParticles that reads particle
groups in a host cell and respectively adds them in the corresponding target cells. For
the sake of parallelization, the computations shown in Figure 7 can be divided into two
steps, the first step being carried out by a single OpenMP thread, whereas the second
step modifies the original sequential algorithm to enable parallel execution by multiple
threads.

8



1. Background Introduction

nonEmptyCellsNext = 0;
for (int i=0; i<nonEmptyCells; i++) {
for (int j=0; j<compressedDataCurrent[i].numParticleGroups; j++) {
targetCell = computeTargetCell( compressedDataCurrent[i].particleGroup[j] );
if (lookup[targetCell] < 0) {
lookup[targetCell] = nonEmptyCellsNext;
NidxNext[nonEmptyCellsNext] = targetCell;
nonEmptyCellsNext++;

}
addParticles( compressedDataCurrent[i], j,

compressedDataNext[ lookup[targetCell] ] );
}

}

Figure 6: A serial algorithm of particle movement.

(i) First, the new storage places of all non-empty cells after the particle movements
are updated in the compressed data structures by a serial code. Specifically, the
master thread increases the nonEmptyCellsNext counter and fills arrays lookup
and NidxNext with new entries. In addition, for each outgoing particle group, the
master thread also calls a new function named register, which only records two
integers into the target cell’s data structure. (The first integer records the particle
group’s host cell index, while the second integer records the particle group’s
local group index within its host cell.) The registerInTargetCell function
actually requires a small extension of the original cell data structure, necessary
for parallelizing the following step.

(ii) Then, the contents of those new non-empty cells in the compressed data structure
are updated in parallel. Concretely, after the master thread has rearranged
places of non-empty cells in the compressed data structures, for each target cell,
minimalistic information about all its incoming particle groups (i.e., two integers
per incoming group), a for-loop can iterate over all the target cells one by one.
This for-loop has the purpose of letting each entry of the compressedDataNext
array to call the computationally heavy addParticles function, for merging
all its incoming particle groups, whose complete information is fetched from
compressedDataCurrent. There is no risk of race condition with such a for-loop,
which can therefore be parallelized by enforcing #pragma omp parallel for.

The above two steps can be implemented as shown in Figure 7.

It is actually possible to involve multiple OpenMP threads to partially parallelize
Step 1, while still avoiding race conditions, as shown in Figure 8. This only applies to
calls of function registerInTargetCell. As before, we can first let the master thread
to increment the nonEmptyCellsNext counter and fill new values in arrays lookup and
NidxNext. Thereafter, we can parallelize the calls to registerInTargetCell. Time
measurements show that such a partial parallelization of Step 1 does pay off, in compar-
ison with letting a single OpenMP thread to execute the entire Step 1.

9
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//Step 1
nonEmptyCellsNext = 0;
for (int i=0; i<nonEmptyCellsCurrent; i++) {
for (int j=0; j<compressedDataCurrent[i].numParticleGroups; j++) {
targetCell = compressedDataCurrent[i].particleGroup[j].targetCell;
if (lookup[targetCell] < 0){
lookup[targetCell] = nonEmptyCellsNext;
NidxNext[nonEmptyCellsNext] = targetCell;
nonEmptyCellsNext++;

}
registerInTargetCell(compressedDataNext[lookup[targetCell]], i, j);

}
}

//Step 2
#pragma omp parallel for default(shared) private(cell_id, group_id)
for (int i=0; i<nonEmptyCellsNext; i++) {
for (int j=0; j<compressedDataNext[i].numIncomingParticleGroups; j++) {
getSource(compressedDataNext[i].enteredGroups[j], &cell_id, &group_id);
addParticles(compressedDataCurrent[cell_id], group_id,

compressedDataNext[i]);
}

}

Figure 7: A parallel implementation of particle movement.

1.3.3 Memory performance enhancements

When studying the data access patterns involved in the above OpenMP parallel im-
plementation, we can see that the main memory is likely accessed with large and
potentially irregular jumps. These memory jumps happen when recording the two
integers from each particle group, whose data resides in the compressedDataCurrent
array, into its target cell that has its data residing in the compressedDataNext array.
Similarly, irregular jumps in the memory also happen when we later iterate over the
compressedDataNext array and repeatedly call the registerInTargetCell function,
which needs to fetch data from the compressedDataCurrent array.

Moreover, if consecutive cells within the compressedDataCurrent array in fact spread
randomly out in the physical domain, consecutive cells within the resulting compressed-

DataNext array will likely spread out more randomly. Such random physical locations of
the consecutive cells inside compressedDataCurrent will aggravate the memory jumps
described above.

As a partial remedy to the aggravated memory jumps, we have adopted a sorting
procedure (shown in Figure 9) that reshuffles NidxCurrent and compressedDataCur-

rent, such that the entries of the reshuffled NidxCurrent array has an increasing order.
The rationale behind this simple sorting procedure is that consecutive cells within
compressedDataCurrent should become somewhat closer to each other in the physical
domain. If, in addition, particles do not move not very far (from host to target cells)
per time step, consecutive cells within the resulting compressedDataNext array will
not be too far from each other in the physical domain either. Therefore, after using the
sorting procedure, the memory jumps will likely become smaller and less irregular, thus
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//Step 1.1
nonEmptyCellsNext = 0;
for (int i=0; i<nonEmptyCellsCurrent; i++)
for (int j=0; j<compressedDataCurrent[i].numParticleGroups; j++) {
targetCell = compressedDataCurrent[i].particleGroup[j].targetCell;
if (lookup[targetCell] < 0) {
lookup[targetCell] = nonEmptyCellsNext;
NidxNext[nonEmptyCellsNext] = targetCell;
nonEmptyCellsNext++;

}
}

//Step 1.2
#pragma omp parallel default(shared)
{

//Calculating the index range for the current thread.
int thread_id = omp_get_thread_num();
int num_threads = omp_get_num_threads();
int index1 = (thread_id * nonEmptyCellsNext) / num_threads;
int index2 = ((thread_id+1) * nonEmptyCellsNext) / num_threads;

for (int i=0; i<nonEmptyCellsCurrent; i++)
for (int j=0; j<compressedDataCurrent[i].numParticleGroups; j++) {
targetCell = compressedDataCurrent[i].particleGroup[j].targetCell;
if (index1 <= targetCell && targetCell < index2)
registerInTargetCell(compressedDataNext[lookup[targetCell]], i, j);

}
}

Figure 8: A partial parallelization of Step 1.

benefiting the cache usage. The sorting algorithm is depicted in Figure 9.

int tcounter = 0;
int tPos;
for (int i = 0; i<size; i++)
if ((tPos = lookup[i]) > -1) {
compressedDataNext[tcounter].data = compressedDataCurrent[tPos].data;
NidxNew[tcounter] = i;
tcounter++;

}

Figure 9: Sorting of “Nidx” and “compressedData”.

It should be remarked that the above sorting procedure aims to improve the memory
and cache performance, but the simple sorting criterion can not of course guarantee to
minimize the memory jumps. Moreover, there is overhead associated with reshuffling
NidxCurrent and compresseDataCurrent. This means that the sorting procedure
should probably not be called every time step.

As a second memory performance enhancing strategy, which applies to NUMA sys-
tems, we have adopted the strategy of First Touch [16] to initially place the data of
compressedData evenly across multiple NUMA regions, as shown in Figure 10. More
specifically, #pragma omp parallel for schedule(static, chunksize) is added to
the for-loop that initializes the compressedData array. Although subsequent particle

11



Introduction 1. Background

movements will eventually destroy the perfect initial data distribution of compressed-
Data among multiple NUMA regions, numerical experiments suggest that performing
the First Touch always pays off, in comparison with letting the entire compressedData
initially reside on a single memory region.

#pragma omp parallel for default(shared)
for (int i = 0; i<MaxNonEmptyCells; i++) {
compressedDataNext[i].data = 0;
compressedDataCurrent[i].data = 0;

}

Figure 10: Using “First Touch” via a parallel initialization for evenly distributing data on all NUMA
regions.

1.4 Performance modeling

Parallel programs normally have a much longer life than that of parallel computers, it is
therefore important to study means of evaluating programs’ performance on not only ex-
isting machines but also future ones [10]. Many performance modeling approaches have
been studied in previous work with different focuses. For examples, Performance Evalu-
ating Virtual Parallel Machine (PEVPM) [15] adopts statistical means to analyze MPI
communication but is only dedicated for MPI programs, while [30] is capable of coping
with MPI, OpenMP and their hybrid programs but the model heavily relies on measure-
ments and lacks depiction of estimating computing time on core level. The approach
[18] used by Performance and Architecture Laboratory parameterizes source codes via
a full analyzation and hardware through measurements, which is not straightforward
to be applied on complex codes. The survey work [10] points out most of approaches
are capable of coping with small programs meanwhile it is impractical to apply them
on those complex codes. As a simpler alternative, [29] introduces a means focusing on
“bound and bottleneck analysis”, which may provide valuable insight into how the critical
bottlenecks affect the performance of computer systems through quantified methods [19].

In this thesis, we proposed a model framework for two practical goals: (1) a model
concept can be easily used for predicting run times of various complex codes by different
means of using cache bandwidths for different multi-core structures, and (2) it should
be able to reflect performance bottlenecks to guide performance tuning. Different from
[15], [30] and other similar work, the model concept proposed in this thesis is applicable
for both sequential and parallel codes. Our model needs simply counting memory traffic
and floating operations and parameterizing machines via measurements, which is similar
to [18]. Meanwhile, different from [18], we don’t need to fully analyze source code.
In essence, our model is close to [29]. Through focusing on bandwidths of different
memory hierarchies, our model predicts low-bound of run time that is either memory or
computing bound.

On recent multi-core architectures, memory bandwidth is a key for performance
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modeling, e.g. [30] and [20]. Our model parameterizes memory system via standard
benchmark software, such as STREAM and STREAM2 [4]. Although this kind of
performance modeling needs some initial running on the target computer system, it is
still very useful for code optimization and can be used as a reference when the target
computer system is changed.

The whole model is based on a simple philosophy of adopting simplified assumptions.
Thanks modern hardware features, e.g. pipeline and prefetching, the data transfer
through multiple level caches and main memory can proceed simultaneously with exe-
cuting floating operation on cores. Most modern multi-core processors contain up to 3
level caches that differ on reading/writing bandwidth. For the purpose of predicting
bound of computing time, we assume the following parts can fully overlap with each
other. The first part is the time consumed on executing floating operations on CPUs
where data only come from CPU registers. The second part is the time of transferring
data between L1 cache and CPU registers. The third part is thus for transferring data
between L2 cache and CPU registers. Similarly, the fourth is the data transferring
between L3 cache and CPU registers and the fifth part is that between main memory
and CPU registers.

As we assumed the above five parts can proceed simultaneously, the whole running
time should be determined by the maximum one. For generality consideration, we
assume the problem size is larger than L3 cache size to ensure forementioned five parts
will be all included in the following discussion.

As to the L1 cache, all data saved in registers have to be read/written from/to L1 cache,
which has the maximum data transferring volume meanwhile the maximum bandwidth.
Without thinking of register reuse, the L1 reading/writing is straightforward to count,
which comes directly from code expression. As to the L2 and L3 caches, the intermediate
levels of memory hierarchies, it is difficult to count reading/writing precisely in general
when problem size is larger than L3 cache size because the cache utilization will be
affected by memory access pattern, mesh size, mesh shape, etc., many factors. Regarding
the main memory, which is the last memory hierarchy, one can desire a lower bound
estimation on the data volume that needs to be transferred into registers. For good feasi-
bility in practice, L2 and L3 caches can be ignored although it causes some precision loss.

The same philosophy also fits for the case, where the problem size is less than a
certain level of cache. The last part of memory hierarchy can be notated as the involved
Last Level Memory (LLM) and thus LLM can be either L2 cache, L3 cache or main
memory depending on problem size.

1.4.1 Sequential performance model

When constructing the sequential model, hardware can be abstracted to a group of
parameters as follows without considering its multi-core structure.
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(i) The peak performance of the core, i.e. the number of floating-point operations
can be executed per second without need of data outside of CPU registers, is
denoted as F .

(ii) The bandwidth of reading data from L1 cache to CPU registers is represented as
Br

L1. Similarly, Bw
L1 is used for writing register data to L1 cache.

(iii) The reading/writing bandwidth between registers and LLM is denoted as Br
LLM

and Bw
LLM .

The corresponding program characteristics also need to be abstracted in the similar
way showing as follows.

(i) The total number of floating operations can be denoted by nflop.

(ii) We denote the reading volume from L1 cache by nr
L1 and writing volume to L1

cache by nw
L1.

(iii) Similarly, reading volume from LLM can be represented by nr
LLM while writing

volume to LLM can be represented by nw
LLM .

Considering reading and writing can proceed in parallel in L1 cache for most of CPUs
while they perform sequentially in other lower memory hierarchies, then we can derive
the following formula from the above assumptions and definitions.

Trun = max(
nflop

F
,
nr
L1

Br
L1

,
nw
L1

Bw
L1

,
nr
LLM

Br
LLM

+
nw
LLM

Bw
LLM

). (1)

Furthermore, reading is more than writing in most of scientific computing codes,
e.g. solving diffusion equations and wave equations. Thus, Equation 1 can be more
simplified as follows.

Trun = max(
nflop

F
,
nr
L1

Br
L1

,
nr
LLM

Br
LLM

+
nw
LLM

Bw
LLM

). (2)

Let’s start from a concrete case to explain how to apply this model, of which the
problem size is larger than the size of L3 cache, thus where LLM is the main memory. Fig-
ure 11 shows a small piece of kernel code of solving heat diffusion equation on 2D domain.

It is very important in our model to distinguish reading/writing in L1 cache and LLM,
which incurs different values. From Figure 11, one can easily count 5 readings and 1
writing for each grid point. But what we want to emphasize is that without thinking of
register reuse, this kind of counting actually gives the values of reading or writing data
from/to in L1 cache level. As to LLM level, i.e. main memory in this case, there are
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// time loop
for ( it = 1; it <= num_steps; it++ ) {

// spatial loop on a 2D grid
for ( j = 1; j <= Y_WIDTH; j++ )
for ( i = 1; i <= X_WIDTH; i++ )
un[j][i] = C1*(u[j-1][i]+u[j][i-1]+u[j][i+1]+u[j+1][i])+C2*u[j][i];

//swap array pointers
swap(&u, &un);

}

Figure 11: The computing kernel of heat diffusion on a 2D domain.

one read for u and one write for un. As to the array u, we count it as one read based
on a low-bound estimation that the whole array should be read from memory to CPU
registers at least one time in each time step. In this case, we thus have the following
values:

(i) nflop = 6×X WIDTH × Y WIDTH × num steps,

(ii) nr
L1 = S × 5×X WIDTH × Y WIDTH × num steps,

(iii) nw
L1 = S ×X WIDTH × Y WIDTH × num steps,

(iv) nr
LLM = S ×X WIDTH × Y WIDTH × num steps,

(v) nw
LLM = S ×X WIDTH × Y WIDTH × num steps,

where S is the size of each array element normally having value of 4 or 8 bytes for single
or double precision.

1.4.2 Parallel performance model

The parallel model is derived from its sequential counterpart. More hardware parameters
reflecting multi-core structure are added. Although multi-core structures vary, the way
of constructing a corresponding model is similar. Here, we adopt a typical multi-core
structure that each core has its own L1 and L2 caches while all cores in the same
processor share a L3 cache. One of the popular multi-core based processor families using
this structure is Nehalem from Intel. The following are updated hardware parameters
for the parallel performance model.

(i) The total number of cores in each node is denoted as p while its peak performance
of each core is still represented as F .

(ii) The bandwidth of reading data from each private L1 cache to CPU registers is
represented as Br

L1. Writing bandwidth is ignored for the same reason stated in
sequential model.
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(iii) The bandwidth of reading and writing data from LLM to CPU registers is
respectively represented as Br,p

LLM and Bw,p
LLM , where p represents the bandwidth

when p cores launch reading simultaneously. More specific, in the case of a non-
uniform memory access architecture when LLM is the main memory, we only
consider the the BLLM as transferring data between registers and its closest main
memory module.

When part of cores in a node are used, these working cores can be on either one
processor or all processors, which depends on mapping strategy of the OS and causes
the model expression correspondingly changed. In addition, considering end users are
more interested in full-core performance, the formula using all cores of one node will be
depicted as follows. As we have mentioned, the multi-core architecture enables a private
L1 for each core, thus the aggregate effect of L1 cache scales linearly. The model varies
when LLM respectively stands for L2, L3 or main memory. When the problem size of
each core is large enough to get involved in using the main memory (i.e. LLM is the
main memory), a parallel performance model can be found as

Trun = max

(
nflop

pF
,
nr
L1

pBr
L1

,
nr
LLM

Br,p
LLM

+
nw
LLM

Bw,p
LLM

)
. (3)

The modeling concept proposed here follows a simple philosophy, which is capable
of identifying the performance bottleneck without analyzing cache misses. For specific
cases, the formula may be refined but is still derived from the same idea.

2 Summary of Papers

All the following reviews will mainly focus on my work related to parallel programming
and parallel computing. The details about the physics, mathematics and numerics of
the simulations can be found in the subsequent chapters.

2.1 Paper I

Mathematical modeling of cardiac cells has been a great success, where models are highly
nonlinear systems containing a large number of ordinary differential equations (ODEs)
to describe the kinetics of ion channels, pumps, exchangers and ionic homeostasis. Such
level of computing requires state-of-the-art parallel computing techniques and hardware.
In addition, the scan resolution of cardiac cells improves fairly fast, which further boosts
computing demand.

In this paper, we conducted a three dimensional full-scale simulation of propagating
Ca2+ waves in a ventricular myocytes, which was the first of this kind in the world.
The real data used in our case, stored within a 3D mesh of 120 × 120 × 570 points,
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was obtained by using a combination of confocal imaging and image processing [25].
The main difficulties of obtaining the data were related to the limitations of confocal
imaging. The main unknown, the Ca2+ concentration, is modeled by a diffusion-based
PDE coupled with two ODEs. (Some of the computation is governed by a probability
function based on the Ca2+ concentration.) Through using FDM and the Forward
Euler method, respectively, in the spatial and temporal discretization, a serial code
and its MPI-based parallel counterpart were developed, where the probability function
was implemented as a self-developed rand48 function. Running the parallel code on a
multi-core based cluster with 256 cores, the simulation time was reduced from about
five days to less than one hour.

In this application scenario, the 3D computational domain has an irregular shape.
In order to allow the finite difference approximation involving a standard seven-point
stencil, the 3D irregular domain is “immersed” into a box-shaped uniform mesh of
120×120×570 points. In Figure 12, the red part in the 3D cube represents the irregular
solution domain. (Each mesh point that lies outside the solution domain is marked
as non-computational.) A general 3D partitioning of the box-shaped uniform mesh
can lead to a work load imbalance because the sub-meshes may contain substantially
different numbers of computational mesh points. Meanwhile one can find that the
shape of the computational domain in the longitudinal axis doesn’t change sharply (see
Figure 12), therefore a 1D partitioning of the 3D box-shaped mesh by using cutting
planes orthogonal to the longitudinal axis was adopted. Our parallel solution is to
use the flat MPI approach for the sake of simplicity, which ignores the shared-memory
property of each multi-core based cluster node.

Main Results. Because it could take several days for the serial code to finish a
complete simulation, a serial simulation of 20ms was adopted for estimation, which
took 3332.5 seconds wall time on a single core of a Xeon E5420 2.5 GHz proces-
sor. For a full-scale simulation of 2.5 seconds, the serial code would have taken
2.5/0.02× 3332.5 = 416562 seconds wall time. For the corresponding parallel simulation,
32 compute nodes interconnected via a Gigabit ethernet were used. Each node was
equipped with two quad-core Xeon E5420 2.5 GHz processors, thus in total 256 cores
were used. The full-scale parallel simulation of 2.5 seconds using 256 cores took 2501.71
seconds wall time, which can be translated to a speedup of 166.5.

2.2 Paper II

The work of this paper is an extension of Paper I using the same mathematical model and
data. The extension adopted mixed programming, i.e. MPI combined with OpenMP,
and associated optimizations for a better computing load balance.

For the same reason as explained in Paper I, a 1D partitioning along the longitudinal
axis was used with 2D cutting planes. Meanwhile, mixed programming is adopted for
better load balance, which has been explained in Section 1.2. Specifically, if flat MPI is
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Figure 12: The irregular solution domain .

applied to such a case, where the number of mesh points in the longitudinal direction
is fixed as 570, the maximum number of MPI processes cannot exceed this number.
Another deficiency of using flat MPI in such a case is that the partitioning can be quite
imbalanced when many CPU cores are used. For an example, when 32 computer nodes
are used, each having 8 cores (i.e. 256 cores in total), most cores are given two x-y
planes while others get three. This leads to a 50% load difference. This deficiency can
be improved by a mixed programming approach dedicated to multi-core architecture
consideration.

When using a mixed programming mode on 32 nodes, one MPI process is typically
assigned to each node, where 8 OpenMP threads will be spawned. Instead of using 256
cores to partition the 570 x-y planes, the mixed programming code uses 32 nodes to
do the partitioning. The number of planes allocated for each MPI process is 17 or 18,
which only has a 5.88% load difference.

OpenMP Optimization for Multi-core. For the reasons we explained in Sec-
tion 1.2, a loop nest of three levels iterating the 3D subdomain should be collapsed
to one long for-loop for finer parallel granularity of OpenMP. A further optimization
called “compacted indices” well explained in Section 1.2 is adopted here mainly for a
better load balance, which also reduces the overhead of checking if a mesh point is
computational or not.

For further performance enhancement, we have used non-blocking MPI send and
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receive calls (instead of blocking MPI calls) to overlap communication with computation.
Table 1 compares the speed of the three parallelization approaches for carrying out a
2.5-second simulation of calcium wave propagation. The time step is Δt = 10−5s, the
box-shaped global computational mesh has 570 points in the longitudinal direction,
and 120 points in each of the two other spatial directions. Time usage measurements
were obtained on a cluster using Gigabit Ethernet as the interconnect. Each compute
node has two Xeon E5420 2.5GHz quad-core processors, i.e., eight cores per node. We
can see from Table 1 that the first mixed MPI-OpenMP approach using blocking MPI
calls is only advantageous over the flat MPI approach from [21] when the number of
subdomains is large. The second approach of mixed MPI-OpenMP parallelization,
which overlaps communication with computation, consistently outperforms the other
two parallelization approaches.

Number of Flat MPI MPI+OpenMP MPI+OpenMP

blocking MPI calls blocking MPI calls nonblocking MPI calls

cores used subdomains wall time subdomains wall time subdomains wall time

32 32 14590.80 4 14136.46 4 13750.94

64 64 7330.12 8 7343.90 8 7075.45

128 128 4130.34 16 3932.86 16 3673.53

256 256 2502.88 32 2258.35 32 2058.95

Table 1: Comparison of three parallelization approaches, where the approach 1 and 2 respectively
stands for non-overlapped and overlapped communication.

Main Results. In this paper, we have studied how to improve and optimize a parallel
code using mixed programming with multi-core consideration, for a case coming from the
real world. The new code using mixed programming achieves a much better computing
load balance, which can run considerably faster than the flat MPI version used in Paper I.

2.3 Paper III

A new numerical strategy, denoted as the lumped particle model, is proposed in [8]. It
can be used to simulate particle movements that are caused by dispersion and diffu-
sion. In both types of movement, particles are studied in term of groups rather than
individually. The new model inherits the advantages of both continuous and discrete
models, which are the traditional numerical strategies for simulating particle movements.
Parallel computing is also of great importance for this lumped particle model, due to
the following reasons. (1) The computation load may rise significantly when multiple
particle-laden flows are considered at the same time. (2) High grid resolution is necessary
for accurate simulations of debris flows. (3) 3D simulations, which are considerably
more computationally challenging, are needed for many realistic applications.
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In this paper, we effected an OpenMP parallel implementation of the lumped particle
model in a 2D scenario. Optimizations were adopted for multi-core systems, and perfor-
mance comparison was conducted on three different hardware platforms.

Parallel Computing and Optimization. As mentioned, the lumped particle
model describes two physical phenomena, dispersion and diffusion. Both phenomena
cause particle movements that can be simulated using the parallel algorithm introduced
in Section 1.3. It should be remarked that the particle movement caused by diffusion
is more regular than that caused by dispersion. For diffusion-induced movement, the
particles in each cell split up symmetrically and move into its eight nearest neighboring
cells. The entire physical process, containing both dispersion and diffusion, is divided
into five software tasks in each time step. Here we briefly explain these tasks relative to
the parallel algorithm described in Section 1.3.

(i) Related to dispersion, this step calculates the target cell for each particle group
and temporally stores this information in compressedDataCurrent. Its OpenMP
parallelization is straightforward and corresponds to the initial process before Step
1 mentioned in Section 1.3.

(ii) Similar to Step 1 described in Section 1.3, the actual movement of dispersed
particle groups is further divided into two sub-steps, corresponding to Step 1.1
and Step 1.2. The former is completely serial while the latter is parallelized.

(iii) This step slightly extends Step 2 of Section 1.3, which for each non-empty cell
first merges all the incoming particle groups and then splits the particles again
into a certain number of groups, following the physical principle of dispersion.

(iv) Related to diffusion, this step uses a simplified version of Step 1 from Section 1.3.
In essence, each particle group is symmetrically split up and ready to move into
the nearest neighboring cells.

(v) The step concludes diffusion and uses a simplified version of Step 2 from Section 1.3.

Main Results. The OpenMP implementation gives decent parallel performance and
shows that the implicit control on data locality via Parallel First Touch is important
for OpenMP scalability on the NUMA architecture. The “sorting” optimization results
in a better cache utilization, which further improves the overall performance.

2.4 Paper IV

In this paper, we discretized and parallelized a dual-sediment transport model, which
is constructed by two coupled diffusion based PDEs. Specifically, we developed two
numerical methods, i.e. fully-explicit and semi-implicit methods and effected their
parallel implementations using MPI, to solve the non-linear sedimentation model. The
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numerical stability, scalability and speed of the two parallel implementations are com-
pared on a multi-core based cluster.

The parallelization strategy is straightforward, where we apply 2D partitioning on
the whole solution domain. MPI is adopted for inter-subdomain communication. A
third party parallel numerical package Trilinos [5] is used in the semi-implicit method
to solve linear systems of the two PDEs respectively with the CG and GMRES solvers.

Main Results. Through a case adopting real bathymetry data of Lake Okeechobee,
southern Florida, a 10, 000-year simulation successfully diffused material along a river-
channel and into the lake. The semi-implicit method has demonstrated a superior
stability in all our numerical experiments.

The speed of the fully-explicit scheme is around 100 times faster than that of semi-
implicit because the latter is much more complex due to solving two linear systems
per time step, which are typically memory bound. The fully-explicit scheme has better
parallel efficiency when using small numbers of cores, while the semi-implicit scheme
scales better on large numbers of cores. This is due to the unfavorable computation-
communication ratio of the fully-explicit scheme.

2.5 Paper V

This paper is an extension of Paper IV. The new work mainly consists of two parts,
which respectively focus on numerical methods and performance modeling.

In the first part, in addition to the fully-explicit and semi-implicit methods from
Paper IV, we developed another semi-implicit method using the Crank-Nicolson scheme,
which can achieve second-order accuracy in the temporal direction. Meanwhile, two
fully-implicit methods based on the Newtwon-Raphson method were also developed,
which are first/second-order accurate in the temporal direction. In this part, we also
developed a set of methodologies about how to select a suitable numerical method and
find the corresponding time step size when the total simulation error is indirectly given.
Through the set of methodologies, specifically, we showed how to analyze the spacial and
temporal errors of related numerical methods and compared their numerical stability
through numerical experiments.

In the second part, we proposed a simple performance model to predict the overall
computation time on the multicore architecture, applicable to many numerical implemen-
tations. As we have explained in Section 1.4, the main philosophy of the performance
model is to predict a lower bound of time usage by a parallel application.

Main Results. High-resolution bathymetric data of Monterey Bay is adopted as a
case for all the numerical experiments. Regarding the implementation, the fully-explicit
method is the easiest and does not need the external software, while it has the worst
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stability that restricts the time step size seriously. The two fully-implicit methods are
complex to implement and heavy for execution. The semi-implicit scheme without
Crank-Nicolson has the best numerical stability that allows large time steps. Further
more, both semi-implicit methods are practical to be extended to a multi-lithology sedi-
mentation model. Their memory usage does not increase when solving more sediments,
because the linear system of each sediment will be solved one by one while reusing the
same data structures.

Tianhe-1A Hunan Solution [6], a supercomputer ranked No. 26 in TOP 500 of 2012,
was adopted to verify the performance model. The predicted result of speed comparison
between the full-explicit and two semi-implicit methods matches the actual measurement.

3 Future work

The following aspects of the PhD work may be worth pursuing in future.

With the development of scan techniques of cardiac cells, super-high resolutions
of nano-scale structures have been available [17]. The work of Paper I and Paper II
may be extended to the super-high resolutions, which may need dozens of thousands
of processor cores. Meanwhile, another promising hardware for parallel computing,
Graphics Processing Unit (GPU), should be adopted by using Compute Unified Device
Architecture (CUDA) [7] or Open Computing Language (OpenCL) [1].

As we have learnt from Paper III, the simple sorting procedure introduced there can
considerably improve the performance. However, we lack a quantitative understanding.
Further analyses, together with a quantitative model of the incurred data access patterns,
can be carried out as future work. The purpose is to improve the sorting procedure for
achieving even better performance.

The work of Paper IV and Paper V can be extended from three avenues. First, the
semi-implicit methods should be applied to cases with three or more lithologies. The
semi-implicit strategy is inherently superior to its fully-implicit counterpart in this
respect, because adding one lithology brings an additional equation of the same type
as the s-equation. The software components of the semi-implicit methods can thus be
readily reused, unlike the fully-implicit methods that have to solve larger and larger
nonlinear/linear systems. Second, for computations whose L1↔L2 and L2↔L3 data
traffic can be quantified, the proposed performance prediction model should be extended
to consider these data movements as well. Such an extended model avoids gravely
optimistic predictions, when the actual performance bottleneck is between L1 and L2
or between L2 and L3. Third, the same simple philosophy of performance prediction
should be extended to GPUs. In the collaboration work [28] that is not included in
this thesis, a pure GPU implementation and a GPU-CPU hybrid implementation of
the fully-explicit method have been developed. In order for the GPU-CPU hybrid
implementation to automate the work division between CPUs and GPUs for the best
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load balance, performance models for both devices are needed.

In conclusion, possible long-term targets are (1) a quantitative model of the data
access patterns involved in computations related to Paper III, (2) improvements of the
performance prediction model for CPUs, while also extending it to cover GPUs, and
(3) extensions of the parallel semi-implicit methods to handle challenging real-world
sedimentation models that involve more than two lithologies.
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