

Environment Model-based System Testing of Real-

Time Embedded Systems

Muhammad Zohaib Zafar Iqbal

Thesis submitted for the degree of Ph.D.

Department of Informatics

Faculty of Mathematics and Natural Sciences

University of Oslo

September 2012

© Muhammad Zohaib Zafar Iqbal, 2012

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 1221

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Inger Sandved Anfinsen.
Printed in Norway: AIT Oslo AS.

Produced in co-operation with Akademika publishing.
The thesis is produced by Unipub merely in connection with the
thesis defence. Kindly direct all inquiries regarding the thesis to the copyright
holder or the unit which grants the doctorate.

i

Abstract
Real-time embedded systems (RTES) are part of a vast majority of computing devices

available today. They are widely used in critical domains where high system dependability

is required. These systems typically work in environments comprising of large numbers of

interacting components. The interactions with the environment are often bound by time

constraints. Missing such time deadlines, or missing them too often for soft real-time

systems, can lead to serious failures resulting in threats to human life or the environment.

There is usually a great number and variety of stimuli from the RTES environment with

differing patterns of arrival times. Testing all possible sequences of stimuli is not feasible

and only a fully automated testing approach can scale up to the testing requirements of

industrial RTES. In this thesis, we take a black-box approach for system testing of RTES

based on environment models. Our main motivation is to provide a practical approach to

the model-based testing (MBT) of RTES. To do so, we enable system testers, who are

often not familiar with the system design but are knowledgeable of the application domain,

to model the environment using well-supported modeling standards, to enable test

automation. Once the environment models are developed they can support the automation

of three tasks: the code generation of an environment simulator to enable testing on the

development platform, the selection of test cases, and the evaluation of their expected

results (oracles).

 Given the above objectives, a first contribution of this thesis is a detailed environment

modeling methodology that fits the practical needs for industrial adoption of a RTES

system testing approach. The methodology is based on modeling standards (1) that are at

an adequate level of abstraction, (2) that software engineers are familiar with, and (3) that

are well supported by commercial or open source tools. The methodology uses the Unified

Modeling Language (UML), the profile for Modeling and Analysis of Real-time

Embedded Systems (MARTE), and the Object Constraint Language (OCL). We also

provide extensions to UML and introduce a profile for modeling concepts that are specific

to our context. The models capture only the details in the environment that are visible and

relevant to the SUT, including the nominal behavior and failure behavior of environment

components. The environment behavioral models also capture what we call ‘error states’

that should never be reached if the SUT is implemented correctly. The ‘error states’ act as

oracles for the test cases. The environment modeling methodology is applied on two

industrial case studies. The results show that the modeling notations selected suffice to

ii

model the RTES environments for our test automation. The experiences learned by

applying UML/MARTE in industrial contexts are also summarized in the form of a

framework, which can help practitioners in bridging the gap between the modeling

standards and industrial adoption.

 A second contribution of this thesis is the definition of transformation rules for

environment simulator generation. To convert environment models developed using UML

state machines and class diagrams to their simulator code, we extend the well-known state

pattern for our specific purpose and also resolve a number of UML semantic variation

points. We evaluate the transformation rules by transforming models for five case studies,

including two industrial case studies and use these models for testing. Our empirical

evaluation based on the case studies shows that the developed rules are sufficient and that

they are correct as far as fault detection is concerned. The automated simulator generation

is expected to save a significant amount of effort during system testing.

 The third contribution of this thesis is an efficient approach to solve constraints on the

environment models written using OCL. For this purpose we define a set of heuristics for

search algorithms and empirically evaluate their effectiveness on an industrial case study.

These heuristics play an important role in test case generation from environment models.

Results of the empirical study suggest that even for the most difficult constraints, with

research prototypes and no parallel computations, we obtain test data within 2.96 seconds

on average. This is a significant improvement compared to an existing OCL solver, which

was not able to solve the same constraints even after several hours of execution.

 The final contribution of the thesis is test case generation from environment models

for black-box system testing of RTES. We conducted a number of experiments to

investigate the effectiveness of testing algorithms, specifically, Genetic Algorithms (GA)

and (1+1) Evolutionary Algorithm (EA), Adaptive Random Testing (ART), and Random

Testing (RT) in our context. The goal of testing in our context is to reach an ‘error state’ of

the environment with as few test case executions as possible. For search algorithms we

provide and iteratively improve a fitness function for effective testing. The testing

strategies are evaluated on an industrial case study and a number of artificial problems. On

the industrial case study we were able to automatically find new, critical faults. Based on

the results of our experiments, we propose a hybrid strategy, which combines the strengths

of (1+1) EA and ART, to improve the overall performance of system testing that is

obtained when using each single strategy in isolation. Results show that the hybrid strategy

iii

fares better and, unlike individual algorithms, its performance is not drastically affected by

the characteristics of the environment models (i.e., low variance in results).

iv

Acknowledgements
First of all, I will like to thank my supervisors, Lionel Briand and Andrea Arcuri. Without

their continuous guidance and support, this work would not have been possible. Lionel is

an outstanding supervisor and has been a source of inspiration throughout my PhD. His

passion for research has always motivated me. Andrea is an excellent supervisor and has

always been a great help.

 I will like to thank Simula Research Laboratory and Simula School of Research and

Innovation for giving me the opportunity to work in an excellent environment. I would also

like to thank people at our two industrial partners, WesternGeco and Tomra, who gave me

the opportunity to work with industrial case studies that were fundamental in developing

and evaluating my proposed testing approach.

 I will also like to thank all my colleagues and friends at Simula, especially my office

mate for three years, Amir Raza Yazdanshenas. Special thanks to my best friends Shaukat

Ali, Tao Yue, Rajwinder Panesar-Walawega for all the fun time and discussions we had

together. I would also like to thank Arnaud Gotlieb for all his help.

 Last, but not the least, I will like to thank my family and friends for their continuous

encouragement for my PhD. Special thanks to Prof. Zafar Malik who has always been a

great mentor and a source of guidance and motivation. The acknowledgments will not be

complete if I don’t offer my gratitude to Prof. Jaffar-ur Rehman (late), who is still a great

inspiration and had a key contribution to making me reach where I am today. My dear wife

Amna, our son Zayaan, and my dearest Ammi and Abu Jan deserve my special thanks.

v

List of papers
The following papers are included in this thesis:
Paper 1. Environment Modeling with UML/MARTE to Support Black-Box System Testing for

Real-Time Embedded Systems: Methodology and Industrial Case Studies

M.Z. Iqbal, A. Arcuri, L. Briand
In: Model Driven Engineering Languages and Systems (MODELS), vol. 6394, pp. 286-
300. LNCS, Springer Berlin / Heidelberg, 2010

Paper 2. A Practical Approach to Environment Modeling and Simulation for Automated

Testing of Real-Time Embedded Software

M.Z. Iqbal, A. Arcuri, L. Briand
Revision submitted to Software and Systems Modeling Journal (SoSyM), 2012.

Paper 3. Black-box System Testing of Real-Time Embedded Systems Using Random and

Search-based Testing

A. Arcuri, M.Z. Iqbal, L. Briand
In: Testing Software and Systems (ICTSS), vol. 6435, pp. 95-110. LNCS, Springer
Berlin / Heidelberg, 2010

Paper 4. Empirical Investigation of Search Algorithms for Environment Model-Based Testing
of Real-Time Embedded Software

M.Z. Iqbal, A. Arcuri, L. Briand
In: Proceedings of International Symposium on Software Testing and Analysis
(ISSTA), pp. 199-209. ACM, 2012

Paper 5. Combining Adaptive Random Testing and Search-based Testing Strategies to

Improve Environment Model-Based Testing of Real-Time Embedded Software

M.Z. Iqbal, A. Arcuri, and L. Briand
In: Search Based Software Engineering (SSBSE), vol. 7515, pp. 136-151. LNCS,
Springer Berlin / Heidelberg, 2012

Paper 6. Experiences of Applying UML/MARTE on Three Industrial Projects

M.Z. Iqbal, S. Ali, T. Yue, and L. Briand
In: Model Driven Engineering Languages and Systems (MODELS), LNCS, Springer
Berlin / Heidelberg, 2012 (to appear)

Paper 7. A Search-based OCL Constraint Solver for Model-based Test Data Generation

S. Ali, M.Z. Iqbal, A. Arcuri, and L. Briand.
In: Proceedings of International Conference on Quality Software (QSIC), pp. 41-50.
IEEE, 2011

Paper 8. Generating Test Data from OCL Constraints with Search Techniques

S. Ali, M.Z. Iqbal, A. Arcuri, and L. Briand.
Submitted to IEEE Transaction on Software Engineering (TSE), 2012

vi

The above papers are self-contained and therefore some information might be repeated

across the papers. The papers may also use different abbreviations.

My contributions

For papers except Paper 3, Paper 7, and Paper 8, I was the main contributor. My

supervisors (Andrea Arcuri and Lionel Briand) were involved throughout my PhD work.

For Paper 1, I was the main contributor as I designed the modeling methodology and along

with help of my supervisors applied it to two industrial case studies. For Paper 2, I was

responsible for developing the transformation rules and the tool that generates the

simulator along with writing of the paper. For Paper 4 and Paper 5, I was responsible for

developing the improved testing strategies, designing and conducting the experiments, and

analyzing the results. For Paper 6, I was the main contributor and along with Shaukat Ali

and Tao Yue reported our industrial experiences of applying the modeling standards in

three industrial applications. For Paper 3, I was involved throughout the various stages of

the work, including paper writing, and experimentation. For Paper 7 and Paper 8, along

with Shaukat Ali, I was the main contributor of the work and was involved in developing

the heuristics, designing and conducting the experiments, and writing the paper.

During my PhD, I also worked on three other articles that are not included as part of my

thesis. Paper 9 is related to the thesis as it evaluates test case representation for the testing

we do and performance of ART, but it needs some additional work before it can be

submitted for publication. Paper 10 (which got 2010 ACM Distinguished Paper Award)

and Paper 11 theoretically assess random testing and are not included in the thesis as they

do not fall in line with the focus of the thesis, which is environment model-based black-

box system testing of real-time embedded systems.
Paper 9. Automated System Testing of Real-Time Embedded Systems Based on

Environment Models

M.Z. Iqbal, A. Arcuri, and L. Briand
Simula Research Laboratory, Technical Report (2011)

Paper 10. Formal Analysis of the Effectiveness and Predictability of Random Testing

A. Arcuri, M.Z. Iqbal, and L. Briand
In: Proceedings of International Symposium on Software Testing and Analysis
(ISSTA), pp. 219 – 230. ACM, 2010

Paper 11. Random Testing: Theoretical Results and Practical Implications

A. Arcuri, M.Z. Iqbal, and L. Briand
IEEE Transactions on Software Engineering (TSE), vol. 38(2), pp. 258-277. IEEE, 2012

vii

Contents
Summary .. 1
1 Introduction ... 1
2 Background ... 5

2.1 Testing of Real-time Embedded Systems .. 5
2.2 Unified Modeling Language .. 6
2.3 Object Constraint Language (OCL) ... 6
2.4 MARTE Profile ... 6
2.5 Search-based Testing ... 7
2.6 Adaptive Random Testing ... 8

3 Environment Modeling and Testing of Real-Time Embedded Systems ... 9
3.1 Environment Modeling .. 10
3.2 Environment Simulation .. 11
3.3 Environment Model-Based Testing ... 12

4 Research Methodology ... 14
4.1 Understanding Industrial Problems ... 14
4.2 Literature Survey ... 15
4.3 Developing Methodologies for Modeling, Simulator Generation & Testing 16
4.4 Empirical Studies ... 16

5 Summary of Results .. 17
5.1 Paper 1 ... 17
5.2 Paper 2 ... 18
5.3 Paper 3 ... 20
5.4 Paper 4 ... 21
5.5 Paper 5 ... 24
5.6 Paper 6 ... 25
5.7 Paper 7 ... 26
5.8 Paper 8 ... 26

6 Future Directions .. 28
7 Conclusion .. 29
8 References for the Summary ... 31

Paper 1. Environment Modeling with UML/MARTE to Support Black-Box System Testing for Real-
Time Embedded Systems: Methodology and Industrial Case Studies .. 33
1. Introduction ... 33
2. Related Work .. 36
3. Environment Modeling - Methodology .. 37

3.1. Modeling Structural Details as Environment Domain Model ... 38
3.1.1. Environment Components to be Included. ... 39
3.1.2. Relationships to be Included. .. 39
3.1.3. Properties to be Included. ... 39
3.1.4. Modeling the SUT. .. 40

3.2. Modeling Behavioral Details with UML State Machines & MARTE 40
3.2.1. Identifying Stateful Components. .. 41
3.2.2. States to be Included. .. 41
3.2.3. Modeling Users in the Environment. ... 41
3.2.4. Modeling Abstract Phenomena. .. 42
3.2.5. Modeling Transitions & Action Durations. ... 42
3.2.6. Modeling Non-Determinism. ... 42
3.2.7. Modeling Error & Failure States. ... 44

3.3. Modeling the Constraints ... 45
3.4. Environment Modeling Profile .. 46
3.5. Simulation of Environment Models ... 46

4. Model-based Testing based on Environment Models ... 47
5. Case Studies .. 49
6. Conclusion .. 50
7. References ... 51

viii

Paper 2. A Practical Approach to Environment Modeling and Simulation for Automated Testing of
Real-Time Embedded Software ... 53
1. Introduction ... 53
2. Practical Aspects ... 57
3. Related Work ... 59

3.1. Modeling & Simulation for RTES Testing .. 59
3.2. Environment Modeling and Environment Model-based Testing ... 60
3.3. Code Generation from UML Classes and State Machines ... 61
3.4. Summary .. 63

4. Motivating Example .. 64
5. Environment Modeling Methodology ... 65

5.1. Environment Modeling Profile ... 66
5.2. Domain Modeling .. 67

5.2.1. Environment Components to be Included .. 69
5.2.2. Relationships to be Included .. 69
5.2.3. Properties to be Included ... 69
5.2.4. Modeling the SUT .. 71

5.3. Behavior Modeling ... 71
5.3.1. Identifying Stateful Components .. 72
5.3.2. States to be Included .. 72
5.3.3. Modeling Users in the Environment .. 73
5.3.4. Modeling Events .. 73
5.3.5. Modeling Actions & Action Durations ... 75
5.3.6. Modeling Error & Failure states ... 77
5.3.7. Modeling Non-Determinism ... 78

6. Simulator Generation ... 80
6.1. Simulation Framework ... 80
6.2. An Extended State Pattern for Environment Simulation .. 83
6.3. Transformation of the Domain Model .. 85
6.4. Transformation of Behavioral Models ... 87

6.4.1. Event Handling .. 87
6.4.2. Handling Hierarchical State machines .. 90
6.4.3. Handling Non-Determinism ... 92
6.4.4. Handling Oracle Information .. 93
6.4.5. Handling Guards and Actions ... 93

6.5. Various Design Decisions and Their Rationale .. 94
6.5.1. Object Concurrency Model .. 94
6.5.2. Time Semantics .. 94
6.5.3. Execution Semantics and Order of Events in Queue.. 95
6.5.4. Default Entry & Handling Conflicting Triggers .. 96
6.5.5. Event not satisfying any Trigger .. 96
6.5.6. Event Evaluation Time ... 96
6.5.7. Signal Transmission ... 97

6.6. Automation ... 98
6.7. Interaction with Test Framework ... 98

6.7.1. Search Heuristics ... 100
6.7.2. Simulation Configuration... 102
6.7.3. OCL Constraint Solver .. 103
6.7.4. Test Driver & JUnit Test Case ... 104

7. Case Study ... 105
7.1. Case Study Design ... 105
7.2. Case study procedure ... 108

7.2.1. Completeness of the Transformation Rules.. 108
7.2.2. Effect on Development Effort ... 108
7.2.3. Effectiveness in Test Automation ... 108
7.2.4. Correctness of Transformations .. 109
7.2.5. Completeness of the Modeling Methodology and Profile .. 109

7.3. Results .. 109
7.3.1. Completeness of the Transformation Rules.. 110
7.3.2. Effect on Development Effort ... 110

ix

7.3.3. Effectiveness in Test Automation ... 112
7.3.4. Correctness of the Transformation Rules .. 112
7.3.5. Completeness of the Modeling Methodology and Profile.. 113

8. Limitations .. 113
9. Conclusion .. 114
10. References ... 117

Paper 3. Black-box System Testing of Real-Time Embedded Systems Using Random and Search-based
Testing .. 121
1. Introduction ... 121
2. Related Work .. 124
3. Environment Modeling and Simulation .. 125
4. Automated Testing .. 126

4.1. Test Case Representation ... 126
4.2. Testing Strategies .. 128

5. Empirical Study .. 131
5.1. Case Study ... 131
5.2. Experiments ... 132
5.3. Discussion.. 134
5.4. Practical Guidelines ... 136

6. Threats to validity ... 137
7. Conclusion .. 138
8. References ... 139

Paper 4. Empirical Investigation of Search Algorithms for Environment Model-Based Testing of Real-
Time Embedded Software .. 142
1. Introduction ... 143
2. Background ... 144
3. Related Work .. 145
4. Environment Modeling and Model-based Testing .. 147

4.1 Environment Modeling & Simulation ... 147
4.2 Environment Model-Based Testing ... 148

5. Improved Fitness Function.. 151
5.1 Improved Time Distance (ITD) ... 152
5.2 Time in Risky State (TIR) ... 153
5.3 Risky State Count (RSC) ... 153
5.4 Increase in Coverage (COV) ... 154
5.5 Combination of heuristics .. 154

6. Empirical Study .. 155
6.1 Case Study ... 155
6.2 Experiments ... 157
6.3 Results and Discussion .. 159
6.4 Threats to validity .. 166

7. Conclusion .. 167
8. References ... 168

Paper 5. Combining Adaptive Random Testing and Search-based Testing Strategies to Improve
Environment Model-Based Testing of Real-Time Embedded Software ... 170
1. Introduction ... 170
2. Related Work .. 173
3. Environment Model-based Testing ... 174

3.1. Environment Modeling & Simulation .. 174
3.2. Testing RTES based on Environment Models ... 175

4. Hybrid Strategy by Combining Adaptive Random and Search-based Testing 179
5. Empirical Study .. 181

5.1. Case Study ... 181
5.2. Experiment ... 182
5.3. Results & Discussion ... 185
5.4. Threats to Validity ... 188

6. Conclusion .. 188

x

7. References ... 189

Paper 6. Experiences of Applying UML/MARTE on Three Industrial Projects.................................... 191
1. Introduction ... 191
2. Background.. 193
3. Industrial Applications of UML/MARTE ... 194

3.1. Architectural Modeling and Configuration with UML/MARTE .. 194
3.1.1. Case Study Description .. 194
3.1.2. Problem Description .. 194
3.1.3. Modeling Solution .. 195
3.1.4. Modeling Tool .. 195
3.1.5. Key results ... 196

3.2. Model-based Robustness Testing with UML/MARTE .. 196
3.2.1. Case Study Description .. 196
3.2.2. Problem Description .. 197
3.2.3. Modeling Solution .. 197
3.2.4. Modeling Tool .. 198
3.2.5. Key Results ... 198

3.3. Testing RTES using UML/MARTE environment models ... 199
3.3.1. Case Study Description .. 199
3.3.2. Problem Description .. 199
3.3.3. Modeling Solution .. 200
3.3.4. Modeling Tool .. 201
3.3.5. Key Results ... 201

4. Framework for Applying UML/MARTE in Industry .. 202
4.1. Perform Domain Analysis (A1) .. 202
4.2. Define a Modeling Methodology (A2) ... 204

4.2.1. Identify Notations (A2.1) .. 204
4.2.2. Extend Notations (A2.2) ... 205
4.2.3. Tool Selection (A2.3) ... 207
4.2.4. Define Guidelines (A2.4) ... 208

4.3. Application of Methodology ... 208
4.4. Summary and Discussion ... 209

5. Conclusion ... 210
6. References ... 210

Paper 7. A Search-based OCL Constraint Solver for Model-based Test Data Generation 213
1. Introduction ... 213
2. Background.. 215
3. Related Work ... 215

3.1. OCL-based Constraint Solvers ... 216
3.2. Search-based Heuristics for Model Based Testing ... 217

4. Definition of the Fitness Function for OCL ... 217
4.1. Primitive types ... 219
4.2. Collection-Related Types ... 220
4.3. Equality of collections (=) .. 221
4.4. Operations checking existence of one or more objects in a collection 221
4.5. Branch distance for iterators... 221

5. Case Study: Robustness Testing Of Video Conference System .. 222
5.1. Empirical Evaluation .. 224

5.1.1. Experiment Design ... 224
5.1.2. Experiment Execution .. 225
5.1.3. Results and Analysis .. 225

5.2. Comparision with UMLtoCSP ... 227
6. Tool Support .. 227
7. Threats to Validity ... 228
8. Conclusion ... 229
9. References ... 230

xi

Paper 8. Generating Test Data from OCL Constraints with Search Techniques 233
1. Introduction ... 233
2. Background ... 235
3. Related Work .. 236

3.1 Comparison with OCL Constraints Evaluation ... 236
3.2 OCL-based Constraint Solvers .. 237
3.3 Search-based Heuristics for Model Based Testing .. 240

4. Definition of the Fitness Function for OCL .. 241
4.1 Primitive types ... 242
4.2 Collection-Related Types .. 244

4.2.1 Equality of collections (=) ... 245
4.2.2 Operations checking existence of one or more objects in a collection 248
4.2.3 Branch distance for iterators .. 249

4.3 Tuples in OCL ... 256
4.4 Special Cases ... 256

4.4.1 Enumerations .. 256
4.4.2 oclInState .. 257
4.4.3 oclIsTypeOf(),oclIsKindOf(), and oclIsNew() ... 259
4.4.4 User-defined Operations ... 259

5. Case study: Robustness Testing of Video Conference System ... 260
5.1 Empirical Evaluation ... 261

5.1.1 Experiment Design .. 262
5.1.2 Experiment Execution ... 262
5.1.3 Results and Analysis .. 267

5.2 Comparison with UMLtoCSP.. 269
6. Empirical Evaluation of Optimization Defined as Fitness Functions ... 271

6.1 Experiment Design .. 271
6.2 Experiment Execution ... 273
6.3 Results and Analysis .. 273

7. Overall Discussion .. 275
8. Tool Support ... 277
9. Threats to Validity .. 277
10. Conclusion .. 279
11. References ... 280

1

Summary

1 Introduction
Real-time embedded systems (RTES) are widely used in many different domains, from

integrated control systems to consumer electronics. Already 98% of computing devices are

embedded in nature and it is estimated that, by the year 2020, there will be over 40 billion

embedded computing devices worldwide [1]. These systems typically work in

environments comprising of large number of physical components (e.g., sensors and

actuators) and possibly other RTES systems (e.g., in systems of systems). The interactions

with the environment are usually bounded by timing constraints. For example, if a gate

controller RTES on a railroad intersection is informed by a sensor that a train is

approaching, then the RTES should command the gate to close before the train reaches it.

Missing such time deadlines, or missing them too often for soft real-time systems, can lead

to serious failures leading to threats to human life or the environment. There is usually a

great number and variety of stimuli from the RTES environment with differing patterns of

arrival times. Therefore, the number of possible test cases is usually very large if not

infinite. Testing all possible sequences of stimuli is not feasible. Hence, systematic

automated testing strategies that have high fault revealing power are essential for effective

testing of industry scale RTES.

Because RTES are developed for diverse domains presenting different characteristics

(e.g., different timing, safety, security requirements), different testing approaches are

required to handle the significant variation across domains [2]. Our main target RTES in

this thesis are soft-real time systems with time deadlines in the order of hundreds of

milliseconds, with an acceptable jitter of a few milliseconds in response time. Our testing

2

approach (black-box system level testing) not only encompasses functional correctness of

the system under test (SUT), but also enable to focus testing on particularly critical aspects

of the RTES, e.g., potentially hazardous situations.

The work discussed in this thesis was motivated by the problems faced and practices

followed by two industrial organizations that we worked with, namely WesternGeco AS,

Norway [3] and Tomra AS, Norway [4]. These two organizations were developing RTES

for two different domains; WesternGeco was developing a seismic acquisition system and

Tomra was developing automated recycle machines. Both the RTES were developed to run

in an environment that enforces time deadlines in the order of hundreds of milliseconds

with an acceptable jitter of a few milliseconds in response time. In one of the

organizations, testing the SUT on the development platform with a simulated environment

was considered to be mandatory before deploying the software on the operational

hardware. To achieve this, software engineers were writing application specific simulators

directly in Java. Test cases for system level testing were written by hand by the software

test engineers and were executed on the SUT with the environment simulator. The research

presented in this paper was strongly driven by our investigation of the practical needs of

our industry partners which, based on our experience, are shared by many others in

numerous industry sectors.

Typically, large scale testing of RTES software in real environments and on actual

deployment platforms is not a viable option. It would be expensive, the consequences of

failures might be catastrophic (e.g., in safety critical systems), and the number of variations

in the environment that can be exercised within a reasonable time frame are small.

Moreover, some of the environment components might not be available at the time of

testing, since hardware and software components are typically developed concurrently. To

test RTES software in this kind of situations, a common strategy is to develop a simulator

for these environment components. A simulator enables the execution of the RTES on the

development platform, without requiring actual interactions with its environment. In our

context, a test case is a sequence of stimuli, generated by the environment or its simulator,

that are sent to the RTES. If a user interacts with the RTES, then the user would be

considered as part of the environment as well.

Testing all possible sequences of environment stimuli and state changes is not feasible.

In practice, a single test case of an industrial RTES could last several seconds or even

minutes, executing hundreds of thousands of lines of code, generating hundreds of threads

and processes running concurrently, communicating through TCP sockets and operating

3

system signals, and accessing the file system for I/O operations. Hence, systematic testing

strategies that have high fault revealing power must be devised. The complexity of modern

RTES makes the use of systematic testing techniques, whether based on the coverage of

code or models, difficult to apply without generating far too many test cases. Alternatively,

manually selecting and writing appropriate test cases based on human expertise for such

complex systems would be far too challenging and time consuming. If any part of the

specification of the RTES changes during its development, a very common occurrence in

practice, then many test cases might become obsolete and their expected output would

potentially need to be recalculated manually. The use of an automated oracle is hence

another essential requirement when dealing with complex industrial RTES.

In this thesis, we present a practical approach for automated system testing of RTES

based on its environment models. The main contributions of this thesis are as follows:

 We propose a methodology for modeling environments of RTES for automated system

testing by using international modeling standards: the Unified Modeling Language

(UML) [5], the Modeling and Analysis of Real-Time Embedded Systems (MARTE)

profile [6] and our proposed profile for environment modeling (discussed in Paper 1).

The proposed methodology is applied on two industrial case studies. Based on our

experiences in industrial applications of our methodology, we derive a framework to

help modelers for future industrial applications of UML/MARTE. The framework

provides a set of detailed guidelines on how to apply these standards in industrial

contexts and will help reduce the gap that is to be expected between such modeling

standards and industrial needs

 We present extensions to the state pattern [7] specifically aimed at enabling

environment simulation for system testing and define rules for transforming

environment models to Java code (the simulator). The rules are empirically evaluated

for two industrial case studies and three artificial problems

 A testing approach that uses the environment models to automatically generate test

cases and test oracles for RTES system testing. We tailored ART and defined specific

fitness functions for search-based testing (SBT). For applying SBT, a fundamental

requirement was to solve OCL constraints in the UML models. To fulfill this need the

thesis proposes heuristics for the application of SBT to solve these constraints. We

empirically evaluated these techniques on one industrial case study and a number of

artificial problems. The results of these evaluations lead us to propose a hybrid strategy

that provides the benefits of both ART and SBT. The results of our experiments to

4

evaluate the fault detection effectiveness of this hybrid strategy suggest that it is a

practical strategy to apply, since unlike other strategies, variations in environment

properties do not have a drastic impact on its performance. This makes it a predictable

test strategy.

 Finally, we report our experience of applying UML/MARTE for model-based testing in

industrial contexts and based on such experiences, we propose a framework to guide

future practitioners on applying UML/MARTE in industry.

This thesis has two parts:

Summary: This part provides an overall summary of the thesis and is organized as

follows: Section 2 provides the necessary background information required for the thesis.

Section 3 summarizes the contributions of the thesis, whereas Section 4 discusses the

research methodology that was followed. Section 5 highlights the results of the research

papers that are submitted as part of the thesis. Section 6 provides future research directions

and finally Section 7 concludes the thesis.

Papers: This part provides the published or submitted research papers that are included

in this thesis.

5

2 Background
This section provides the background of the work reported in this thesis.

2.1 Testing of Real-time Embedded Systems
Depending on the goals, RTES testing can be performed at different levels. At the early

stages of the development process for RTES, a typical approach is to model and simulate

the SUT, its hardware and its environment. The aim is to ensure that the model of the SUT

complies with the requirement specifications and does not violate the environment and

hardware assumptions. This approach is sometimes also referred to as “model-in-the-loop”

simulation or testing [2, 8, 9]. Another level of testing is when the actual executable

software is deployed on the real hardware platform (e.g., electronic control unit) and their

combination is tested with a simulated environment (e.g., with the simulation of a plant

model [2]). This approach is generally called “hardware-in-the-loop”' testing [10, 11].

Typically, a prototype of the hardware platform is used at this stage. A variation to

hardware-in-the-loop testing is the case where only the actual processor is used during

testing and the rest of the hardware and environment are simulated. This variation is

widely referred to as “processor-in-the-loop” testing [12].

Before the hardware or the processor is available, the embedded software can also be

tested on the development platform (e.g., Linux or Windows-based machine) with a

simulated environment and hardware platform. This is typically done to ensure that the

developed software works according to the environment assumptions and in hazardous

situations. This is mostly referred to as “software-in-the-loop” [2, 8]. Existing modeling

and simulation languages and their corresponding testing techniques have been developed

and are widely used for the first three types of testing. In these cases the environment

simulation needs to interact with the actual hardware or its simulation. In such cases,

precise simulation of both discrete and continuous phenomena is required and is typically

based on mathematical models.

The approach presented in this thesis can be labeled as a slight variation of the typical

software-in-the-loop testing as we only model and simulate the environment to test the

SUT. We use an adapter for the hardware platform that forwards the signals from the SUT

to the simulated environment.

6

2.2 Unified Modeling Language
Unified Modeling Language (UML) [5] is an international standard for modeling

different aspects of software systems. With a total of 13 diagrams in UML 2.x, the

language enables the modelers to represent software systems at various levels of

abstraction. For modeling the static structure of such systems, it provides class diagram,

object diagram, package diagram, component diagram, composite structure diagram,

deployment diagram, and profile diagram. For modeling the behavior UML provides with

use case diagram, activity diagram, state machine diagram, sequence diagram,

communication diagram, interaction overview diagram and timing diagram. Depending on

the system being model and the purpose of modeling, typically a methodology is defined

which identifies the subset of UML to be used. UML also provides a built-in mechanism to

provide lightweight extensions that do not conflict with its original semantics by

developing UML profiles.

2.3 Object Constraint Language (OCL)
OCL [13] is an international standard language for writing constraints on UML models.

It is a textual language and is based on first order logic and set theory, but is more

expressive as its syntax is closer to higher level programming languages. Since, it is a

specification language, the expression written in OCL do not have any side effects.

Depending on the goals, constraints can be written for different elements of UML models,

ranging, for example, from class invariants to guards on state machines. A subset of this

language can also be used to define constraints on meta-models, which for example is used

to define UML meta-model. The language also provides a standard library that defines a

number of operations on various OCL types, including collections, that are helpfull when

writing constraints.

Constraints written on UML models, as for example, the constraints written as part of

guard conditions on state transitions in state machines, play an important role during

model-based testing. As an example, consider a testing scenario where transition coverage

based on a UML state machine is required. If any of the transitions in the state machine is

guarded (where the guard is written in OCL), then to achieve the required coverage, the

guard needs to be satisfied in order to trigger the transition.

2.4 MARTE Profile
The UML profile for Modeling and Analysis of Real-time Embedded Systems

(MARTE) [6] was defined to provide a number of concepts that modelers can use to

7

express relevant properties of RTES, for example related to performance and

schedulability. MARTE is meant to replace the previously defined UML profile for

Schedulability, Performance, and Time specification (SPT) [14].

At the highest level, MARTE contains three packages. The core package is MARTE

Foundations that contains the sub-packages for modeling non-functional properties (NFP

package), time properties (Time package), generic resource modeling of an execution

platform for RTES (GRM package), and resource allocation (Alloc package). The MARTE

Foundations package contains the core elements that are reused by the other two packages

of the profile: MARTE design model and RealTime&Embedded Analysing (RTEA). The

MARTE design model package contains various sub-packages required for modeling the

design of RTES. This includes the packages to support modeling of component-based

RTES with the Generic Component Model package (GCM), high-level features for RTES

with the High-Level Application Modeling package (HLAM), and for detailed modeling of

software and hardware resources with the Detailed Resource Modeling package (DRM).

The RTEA package contains further concepts related primarily to modeling for analysis.

This includes the Generic Quantitative Analysis Modeling package (GQAM) which

provides generic concepts for resource modeling. These concepts are further specialized by

the Schedulability Analysis Modeling (SAM) package for modeling properties useful for

Schedulability and the Performance Analysis Modeling package (PAM) for modeling

properties useful for performance analysis.

2.5 Search-based Testing
Several software engineering problems can be reformulated as a search problem, such

as test data generation [15]. An exhaustive evaluation of the entire search space (i.e., the

domain of all possible combinations of problem variables) is usually not feasible. There is

a need for techniques that are able to produce “good’’ solutions in reasonable time by

evaluating only a tiny fraction of the search space. Search algorithms can be used to

address this type of problem. Several successful results by using search algorithms are

reported in the literature for many types of software engineering problems [16].

To use a search algorithm, typically a fitness function needs to be defined. The fitness

function should be able to evaluate the quality of a candidate solution (i.e., an element in

the search space). The fitness function is problem dependent, and proper care needs to be

taken for developing adequate fitness functions. The fitness function will be used to guide

8

the search algorithms toward fitter solutions. Eventually, given enough time, a search

algorithm will find a satisfactory solution.

There are several types of search algorithms. Genetic Algorithms (GA) are the most

well-known [16], and they are inspired by the Darwinian evolution theory. A population of

individuals (i.e., candidate solutions) is evolved through a series of generations, where

reproducing individuals evolve through crossover and mutation operators. (1+1)

Evolutionary Algorithm (EA) is simpler than GA, in which only a single individual is

evolved with mutation. To verify that search algorithms are actually necessary because

they address a difficult problem, it is a common practice to use Random Search (or

Random Testing (RT) for testing problems) as a comparison baseline [16].

2.6 Adaptive Random Testing
Adaptive Random Testing (ART) [17] has been proposed as an extension of RT. The

underlying idea of ART is that diversity among test cases should be rewarded, because

failing test cases tend to be clustered in contiguous regions of the input domain. ART can

be automated if one can define a meaningful similarity function for test cases.

9

3 Environment Modeling and Testing of Real-Time
Embedded Systems

The main motivation of the thesis is to provide a practical approach for automated

black-box system testing of RTES based on their environments. Fig. 1 shows a high level

view of the framework for RTES system testing. The major input required by the software

engineer is the environment models. These models are then translated using the simulator

generator to a Java simulator. The software engineer also writes a minimal driver that

configures the Test Framework. Environment models comprise of a domain model and a

number of behavioral models. The domain model represents the overall structure of the

environment, shown as a UML class diagram. The behavioral models represent the

behavior of environment components using UML 2.x state machines. The Simulator

Generator component shown in the figure generates a set of Java files implementing a

Simulator for the environment. A set of classes labeled as External Action Code contain

the code written by the tester containing complex actions and communication related code

between the SUT and its environment (e.g., through UDP/TCP, as it was the case in both

our industrial case studies). An OCL Constraint Solver is used during simulator generation

to resolve any constraints on the environment models in order to generate values for

environment components’ attributes. Later the constraint solver is embedded within the

generated simulator and during simulation it calculates how far a test case is from

satisfying a guard on a transition (i.e., the branch distance used to guide the search

algorithms). The Test Framework is responsible for generating various test cases and

starting up the RTES under test and the environment for each test case. The framework

Fig. 1. Framework for Environment Model-based Testing of RTES

10

allows test case generation using three testing strategies (RT (random testing), ART

(adaptive random testing), SBT (search-based testing), and a hybrid strategy combining

SBT and ART).

The thesis can be divided into three related parts: (i) methodology for environment

modeling; (ii) simulator generation from environment models; (iii) strategies for testing

based on environment models including test data generation from OCL constraint. In the

following sections, we give a brief overview of these three parts.

3.1 Environment Modeling
The first step is to model the characteristics and behavior of the environment.

Environment models describe both relevant structural and behavioral characteristics of the

environment. Given an appropriate level of detail, defined by our methodology, the models

enable the automatic generation of the environment simulator. These models can also be

used to generate automated test oracles, which are typically modeled as “error states” that

should never be reached by the environment during the execution of a test case. From a

practical standpoint, using the same model as the source for generating simulators and test

cases is very important. Moreover, the models can further be used to automatically select

test cases and sophisticated heuristics are used to automatically do so from the models

without any intervention of the tester. To summarize, the only required artifacts to be

developed by testers is the environment model and the rest of the process is expected to be

fully automated. Incidentally, by using this automated Model-Based Testing (MBT)

technology, one of our industrial partners was able to find new critical faults in their

already tested RTES.

To support environment modeling in a practical fashion, we have selected standard and

widely accepted notation for modeling software systems, the UML and its standard

extensions. We use the MARTE [6] extensions for modeling real-time features and OCL

for specifying constraints. We have also provided lightweight extensions to UML as a

profile, in order to ease its use in our context. The corresponding profile diagram is shown

in Fig. 2. Modeling the environment of industrial RTES using a combination of UML,

MARTE, and OCL has not been addressed in the literature. By using the proposed

methodology, software testers (who are primarily software engineers) can model the

environment with a notation that they are familiar with, using commercial or open source

tools, and at a level of precision required to support automated MBT. The importance of

11

relying on standards for modeling was confirmed on the two industrial case studies across

entirely different domains.

While modeling our industrial cases, we abstracted the functional details of the

environment components to such an extent that only the details visible to the SUT were

included. An environment of a RTES typically features a number of non-deterministic

events (e.g., breakdown of a sensor), which must be modeled. Such events are not common

when modeling the internal behavior of a system.

In the kind of testing this thesis addresses, the focus is on the interactions of the RTES

with the components in its environment, i.e., what are the possible inputs/outputs to/from

the RTES from/to these components at any given point in time? How does the RTES

behave in abnormal situations, such as a hardware failure in any of the environment

components? A test case for a RTES would typically consist of a sequence of actions from

the user(s), signals from/to sensors/actuators, and possibly hardware component

breakdowns. This would correspond, in our context, to non-deterministic events that can

happen during the environment simulations.

3.2 Environment Simulation
Although code generation from models has been widely studied, the context of black-

box RTES system testing poses specific challenges and problems that are not fully

discussed and addressed in the literature. For this purpose we provide extensions to the

original state pattern [7] specifically aimed at enabling environment simulation for system

testing and define rules for transforming environment models to Java code (the simulator).

Fig. 2. RTES Environment Modeling Profile

12

The original state pattern did not address a number of important features of UML state

machines, such as, concurrency, parallel regions, composite states, time events, change

events, and actions (on transition & within state). A number of extensions for the pattern

have been discussed over time to handle missing features (e.g., [18, 19]). But overall, as

discussed in Paper 2, none of the extensions completely meet the needs for RTES

environment simulation to support system testing. We have adopted the extensions

proposed in the literature wherever they were adequate for our needs. We also resolved a

number of UML 2.x semantic variation points related to class diagrams and state machines

for code generation. The model-to-text transformations for generating Java simulators from

environment models are written using MofScript [20]. Fig. 3 shows an architecture

diagram for the simulation framework. The domain model and behavioral model are inputs

and a simulator corresponding to the environment models is one of the outputs of the

framework. Further explanation of the framework is provided in Paper 2.

3.3 Environment Model-Based Testing
For model-based test case generation, we tailored the principles of Adaptive Random

Testing (ART) [17] and Search-based Testing (SBT) [21] (specifically Genetic Algorithms

and (1+1) Evolutionary Algorithm) to our specific problem and context. For our empirical

evaluation, we also used Random Testing (RT) as a comparison baseline. One main

advantage of ART and SBT is that they can be tailored to whatever time and resources are

available for testing: when resources are expended and time is up, we can simply stop their

application without any side effect. Furthermore, ART and SBT attempt, through different

heuristics, to maximize the chances to trigger a failure within time constraints.

In our context, a test case is a sequence of stimuli generated by the environment that is

sent to the RTES that can be taken during the simulation. If a user interacts with the RTES,

then she would be considered part of the environment as well. A test case can also include

Fig. 3 Architecture Diagram of Simulation Framework

13

state changes in the environment that can affect the RTES behavior. For example, with a

certain probability, some hardware components might break, and that affects the expected

and actual behavior of the RTES. A test case can contain information regarding when and

in which order to trigger such changes. So, at a higher level, a test case in our context can

be considered as a setting specifying the occurrence of all these environment events in the

simulator. Explicit “error” states in the models represent states that should never be

reached if the RTES is correct. If any of these error states is reached, then it implies a

faulty RTES. Error states act as the oracle of the test cases, i.e., a test case is successful in

triggering a failure in the RTES if an error state of the environment is reached during

testing.

A fundamental part of the fitness functions devised for SBT is the branch distance. In

our context, the branch distance heuristically evaluates how close the values of a test case

are to satisfy a guard on a transition on environment behavior models. Since the guards are

written in OCL, we developed an OCL constraint solver for this purpose. Paper 7 and

Paper 8 discusses the constraint solver in detail.

Our focus is to devise a practical approach in a system testing context. For this purpose,

we evaluate the proposed modeling methodology and simulation generation on two

industrial case studies. The proposed testing methodology is evaluated on an industrial

case study and a set of artificial problems inspired by two industrial case studies.

14

4 Research Methodology
This thesis reports on industry-driven research aimed at finding applicable solutions to

real, carefully defined problems. Defining such problems, their solutions and evaluations

were, in our context, performed in collaboration with Tomra [4] and WesternGeco [3]. The

research methodology followed for this thesis included understanding industrial problems

in context, assess existing related work in terms of addressing the defined problems,

developing specific modeling and testing methodologies, developing a tool for simulation

and testing, conducting empirical studies for evaluating the methodologies and the tool,

and iteratively improving the methodology and the tool based on the results of these

empirical studies.

4.1 Understanding Industrial Problems
The thesis started by understanding the testing problems faced by our industry partners.

These two partners were developing RTES for two different domains; WesternGeco was

developing a seismic acquisition system and Tomra was developing automated recycle

machines. Both the RTES were developed to run in an environment that enforces time

deadlines in the order of hundreds of milliseconds with an acceptable jitter of a few

milliseconds in response time. In one of the organizations, testing a SUT as a black-box on

the development platform with a simulated environment is considered to be mandatory

before deploying the software on the operational hardware. This is preferably carried out

by independent testers who are application domain experts, but have little or no knowledge

of SUT design and implementation. To achieve this, software engineers were writing

application specific simulators directly in Java. Test cases for system level testing were

written by hand by the software test engineers and were executed on the SUT with the

environment simulator. In practice, a single test case for the type of testing done by our

industry partners lasts several seconds, executing thousands of lines of code, generating

hundreds of threads/processes running concurrently, communicating through TCP sockets

and/or OS signals, and accessing the file system for I/O operations.

Testing all possible sequences of environment stimuli/state changes is not feasible.

Manually selecting and writing appropriate test cases based on human expertise for such

complex systems was very challenging and time consuming. If any part of the specification

of the RTES changed during its development, a very common occurrence in practice, then

15

many test cases became obsolete and their expected output was to be recalculated

manually.

Manually writing an environment simulator using a programming language (e.g., Java

or C) for system testing also posed a number of issues, the main one being that software

engineers had to develop such simulator at a low-level of abstraction while simultaneously

focusing on the logic of the simulator, complex programming constructs (e.g., multiple

threads, handling timers), and the handling of test case configurations (when the simulator

is used for testing). Making this problem even more acute, over the course of the RTES

development, these simulators frequently changed due to changes in the specifications of

the hardware components.

To solve the identified industrial problem, there was a need to devise a systematic

testing methodology that has high fault revealing power. The target systems of the

methodology are RTES having complex environments and soft-real time constraints in the

order of hundreds of milliseconds pertaining to the response time of the SUT and

operations of the environment. The developed methodology should be adaptable and

scalable to the specific complexity of a RTES and available testing resources. To enable

complete automation of the testing methodology, an automated oracle is also required. The

methodology should not only generate meaningful test cases based on RTES environments,

but should also generate automated simulators for the environments, preferably from same

set of specifications/models. The methodology should also be easily transferable to

software engineers working at industry partners in a way that minimum specialized

training is required.

The industrial case studies that we worked on are discussed throughout the papers (esp.

Paper 2) and the steps followed along with our experiences to understand the problems and

devise a solution are reported in Paper 6.

4.2 Literature Survey
Next step after understanding and precisely defining the industrial problem to target was

to survey the literature for works (partially) matching our problem. We did not find any

existing work that was entirely adequate for the needs of our industry partners. The

environment modeling approaches reported in the literature were not based on modeling

standards and not focusing on the type of testing we automate, i.e., automated black-box

system testing of RTES. A number of approaches reported in the literature discuss code

generation from models, but none of the approaches fit the requirement of generating

16

simulators for supporting the system testing of RTES. The results of the survey are

discussed in Paper 2 and Paper 4.

4.3 Developing Methodologies for Modeling, Simulator Generation & Testing
After understanding the industrial problem and conducting the literature survey, the

next step was to develop a modeling methodology for supporting system test automation in

our context. For this we looked at the needs of the industry partners and tried to adopt

standard modeling notations to the maximum extent possible. The step was iterative and

involved feedback from the industry partners and also accommodating the new

requirements that arose after developing the simulation and testing strategies. For simulator

generation, we extended the well-known state pattern [7] according to our needs. For

testing, we followed a step-wise strategy to obtain the best strategy for the type of testing

that we perform. This was based on the results of extensive empirical studies that we

carried out.

4.4 Empirical Studies
A fundamental part of the thesis was to carry out empirical studies to evaluate and later

improve the methodologies for modeling, simulation, and testing. For modeling and

simulation, we applied our methodology and simulator generation rules on two industrial

case studies. For empirically evaluating our testing strategies, we developed thirteen

artificial problems based on these two case studies and a case study discussed in the

literature. We carried out a number of experiments on these artificial problems and the

industrial case study of WesternGeco, which are discussed in Paper 3, Paper 4, and Paper

5. For evaluating our OCL constraint solver in isolation, we conducted a set of experiments

on another industrial case study by Cisco Systems [22], which is discussed in Paper 7 and

Paper 8.

17

5 Summary of Results
In this section, a summary of the key results of the papers submitted as part of this

thesis are presented.

5.1 Paper 1
In this paper, we proposed methodology for modeling the environment of a RTES in

order to enable black-box, system test automation. For practical reasons and to facilitate its

adoption, the methodology is based on standards: UML, MARTE profile, and OCL for

modeling the structure, behavior, and constraints of the environment. We, and this is part

of our methodology, made a conscious effort to minimize the notation subset used from

these standards. The paper also discusses the profile that we proposed for modeling the

environment. The profile provides extensions to UML to model concepts specific to our

approach, including non-determinism – an important characteristic of RTES environments.

The methodology provides in depth guidelines on how to model the environment

structure and behavioral details. The structural details of the environment are captured

using domain model. A domain model captures the structural details of the RTES

environment, such as the environment components, their relationships, and their

characteristics.

The behavior of the environment components is captured by state machines. To

minimize modeling effort, the methodology aims at capturing only the details in the

environment which are visible and relevant to the SUT. This not only includes the nominal

functional behavior of the environment components (e.g., booting of a component) but also

includes their robustness (failure) behavior (e.g., break down of a sensor). The latter are

modeled as failure states in the environment models. The environment behavioral models

also capture what we call error states. These are the states of the environment that should

never be reached if the SUT is implemented correctly (e.g., no incorrect or untimely

message from the SUT to the environment component). Error states act as oracles for the

test cases. For example, recall the example of a system under test that controls a physical

gate on a railroad intersection. The gate should always be down whenever a train is

reaching the intersection and should be raised in other situations. The various trains

approaching the intersection and the gate will together compose the environment of the

SUT. The domain model will comprise of a train component, a gate component, and the

SUT. A state machine each for the train and gate components will specify their behavior. A

18

possible failure state can for example be when the physical gate is stuck in a position (in

which case the trains should be stopped before reaching the intersection) and a possible

error state can be the situation when a train arrives at the gate while it is still open.

An important feature of these environment models is that they capture the non-

determinism of the environment, which is a common characteristic for RTES environments

(for example, the time it takes to change a gate position can have a variation of few

seconds). Non-determinism may include, for example, different occurrence rates and

patterns of signals, failures of components, or user commands. The environment modeling

profile provides special constructs to model non-deterministic behavior of the

environment. Each environment component can have a number of non-deterministic

choices whose exact values are selected at the time of testing. Java is used as an action

language and OCL is used to specify constraints and guards.

We modeled the environments of two industrial RTES in order to investigate whether

our methodology and the notation subsets selected were sufficient to fully address the need

for automated system testing. Results suggested that the methodology was sufficient to

model the details at a level of abstraction that could be used to generate environment

simulators, meaningful test cases, and obtain test oracles. Notations provided by UML,

MARTE, and our proposed profile were sufficient to model the details required by these

case studies (belonging to different domains).

5.2 Paper 2
This paper is a journal extension of Paper 1 with the following differences:

1. The environment modeling profile has been extended based on the needs of more

sophisticated testing strategies

2. A discussion on how the various UML semantic variation points (related to the models

being used) are resolved is added

3. Rules for generating the executable simulator from the environment models and its

integration with the test framework are discussed in detail

4. The empirical evaluation has been improved in the following ways:

a. Three new artificial problems inspired from industrial case studies have been

added to further evaluate the modeling methodology and simulator generation

b. The models of industrial cases have been modified according to the extended

profile. Only that subset of industrial cases that is later used for testing is

discussed.

19

c. The evaluation of transformation rules for simulator generation has been added

Apart from discussing the environment modeling methodology, the paper also discusses

the transformation rules to convert environment models into a Java-based simulator. The

rules are based on an extension of the state pattern [7], which is a well-known way of

implementing state machines. The transformations proposed in the paper are defined to

address the specific requirements for environment simulation and RTES system testing.

The rules discussed include rules for transformation of association, attributes, and non-

determinism modeled in the domain model and rules for transforming various state

machine elements, including various events, hierarchical state machines, and non-

determinism, to their corresponding Java code. A number of design decisions including the

ones that were taken to resolve open semantic variations points of UML are also discussed

in the paper. We followed the Active object model [5] to handle object concurrency. This

is because they operate independently in the RTES environment and can communicate

asynchronously with each other and the SUT. These objects have their own thread of

execution and receive asynchronous messages that are handled using an event queue.

The following research questions are addressed in this paper:

RQ1. Are the transformation rules sufficient to convert environment models of

different complexity levels, and belonging to various domains, to simulator code?

According to results of generating simulators from environment models for five

different cases, including two industrial case studies, the transformation rules are complete.

These test models along with the three artificial problems and two industrial cases covered

all the modeling elements defined in the methodology. The MOFScript transformations

developed were able to generate Java code for all of the UML/MARTE/OCL model

constructs used in the case study artifacts and the test models.

RQ2. Is the automated generation of simulators likely to significantly reduce

development effort?

Based on our experiences of working with two industrial case studies, we expect that

the automated generation of the simulator code can save significant effort to the

developers. Though there is a considerable effort involved in developing environment

models, given the amount and complexity of the source code generated, it is expected to be

less than the effort required for manually developing and maintaining environment

simulator code with concurrency and complex synchronization issues.

RQ3. How effective is the generated simulator in enabling the detection of failures in

RTES system testing?

20

With the generator simulators, the testing framework was able to trigger system failures

corresponding to all the seeded faults in the problems. For an industrial case study, the

testing was able to find a previously undetected critical fault in the RTES. Taken together,

the results of these experiments increased our confidence that the generated simulators are

effective in detecting faults in the SUT when used in combination with various test

automation strategies.

RQ4. Are the transformations implemented correctly?

The results of experiments conducted, manual inspection, and initial testing of the

generated code suggest that it was generated according to the environment models

following the extended state pattern.

RQ5. Are the proposed methodology and profile sufficient for modeling environments

of RTES for the type of testing we are interested in?

For all the five cases, we were able to model the RTES environments with the subset of

UML and MARTE that we identified and the lightweight extensions that we proposed. The

models were sufficient to generate simulators that could be used to support large-scale test

automation. The results of testing the five RTES show that the notations are sufficient for

the type of testing we focused on.

5.3 Paper 3
Paper 3 discusses the first application of RT, ART, and GA for the purpose of RTES

system testing based on environment models. The strategies were evaluated on an

industrial case study and three artificial problems. Based on the results of the empirical

study, we also provided practical guidelines to apply the three testing techniques.

A test case in our context is the setting of simulator generated based on the models. This

setting provides values to non-deterministic options of the environment models (e.g., when

a sensor should fail). RT is the simplest technique to implement and it randomly selects the

values for a new test case. For ART, the paper proposes the use of a specialized distance

function. The distance function is used to select a new test case by calculating its distance

from previously executed test cases. For SBT, a new fitness function was proposed based

on an existing fitness function for model-based testing. The novel fitness function made

used of three heuristics: approach level, branch distance, and time distance. Approach level

suggests how far the executed test case was to reach an error state (i.e., a state reached

when the SUT is faulty). Branch distance suggests that how far was the executed test case

21

to satisfy a guard, and time distance suggests the distance of the executed test case to

trigger a time transition.

The results of the empirical study suggested that no test strategy generally dominates

the others. GA was found to be statistically better on one problem, but worst on the other

two problems. RT is best on the second problem and ART is better on the third one. On the

industrial case study ART showed the best performance.

5.4 Paper 4
Paper 4 improves the fitness function for search-based testing discussed in Paper 3 and

empirically evaluates the performance of the improvements. The empirical study is carried

out on thirteen artificial problems and one industrial case study. The artificial problems

were designed in a way to alter various environment model characteristics in order to

evaluate their impact on the search algorithms. Four new heuristics were defined for the

fitness functions and they were evaluated individually and in combination. Two search

algorithms are evaluated in the paper: GA and (1+1) EA, whereas RT is used as a baseline

for comparison.

The first heuristic was improved time distance (ITD) that improved the way time

distance was calculated earlier. If a transition should be taken after z time units, but it is

not, we calculate the maximum consecutive time c the component stayed in the source

state of this transition (e.g., State2 in the dummy example). To guide the search, we use the

following heuristic: T = z – c, where c ≤ z. Earlier the branch distance was calculated after

an event was triggered. This mechanism worked fine for transitions other than time

transitions, because reducing time distance was not useful when a guard is not satisfied.

This heuristic introduces the concept of a look-ahead branch distance, which represents the

branch distance of OCL guard on a time transition when it is not fired (i.e., the timeout did

not occur). The second heuristic discussed in this paper is “time in risky state” (TIR). TIR

favors the test cases that spent more time in the state adjacent to the error state (i.e., the

risky state). The motivation behind this heuristic is that, the more time spent in a risky

state, the higher the chances of events happening in the environment or SUT that lead to

the error state (e.g., receive a signal from the SUT).

The third heuristic proposed is “risky state count” (RSC). RSC favors the test cases that

enter a risky state more often than those that do so less often. The motivation is similar to

that of TIR, that is, to remain in risky state for as long as possible to increase the chances

of transitioning to the error state. Finally, the fourth heuristic proposed in the paper is

22

“coverage” (COV). COV favors the test cases that cover more environment states. The

idea behind this heuristic is to increase the coverage of the environment models when the

approach level, branch distance and time distance can no longer be improved. The

assumption is that having higher environment coverage will result in more diversity in the

test cases, which might lead to situations that help reach the error state.

The paper answers the following research questions:

RQ1: What is the effect on fault detection of new order functions having each one of

the proposed heuristics: Improved Time Distance (ITD), Time In Risky State (TIR),

Risky State Count (RSC), and Coverage (COV) compared to the previously defined

basic fitness function for GA and (1+1) EA?

The results showed that ITD with (1+1) EA yields significantly better results for two of

the artificial problems. In other cases the performance of the algorithm was the same as

that for the basic algorithm. ITD relies on information regarding guarded time transitions

in the models. Among the thirteen artificial problems, four did not have any guard or time

transition leading to the error state. Even in these cases, ITD shows similar performance to

basic fitness with no significant drawbacks.

When TIR was used with GA, it gave significantly better results in two of the artificial

problems and was worse in one problem. For other problems, the results of the two

algorithms were comparable. When TIR was used with (1+1) EA, it gave significantly

better results for five of the 13 artificial problems. In other cases there were no significant

differences. Hence the use of TIR in the order function seems to be an effective option.

When RSC was used with GA, it gave significantly better results in one of the artificial

problems and showed no significant difference for the other artificial problems. When RSC

was used with (1+1) EA, it gave significantly better results for one artificial problem,

worse results for another one (AP11), and no statistical differences otherwise. RSC

depends on the presence of a loop back to a risky state. Five of the problems had a loop

back to the risky state. For all the problems that have a loop to risky states, RSC heuristic

performed significantly better or similar to the basic fitness function. But for the problems

without such a loop, it can negatively affect performance. When COV was used with GA,

there were no statistical differences between the results. When it was used with (1+1) EA,

it gave significantly worse results for four of the artificial problems and yielded no

significant differences in other cases.

23

RQ2: Which combinations of the proposed heuristics are best in terms of fault

detection?

When the heuristics were executed in combination, we had a total of 16 possible

functions for each search algorithm. Overall, based on the results, (1+1) EA with TIR

proved to be the best algorithm for both Basic and ITD versions of the heuristic. Based on

the results, we concluded that in general search-based algorithms perform significantly

worse than RT for the artificial problems where reaching a risky state in the environment

model is trivial. If we exclude the results of such artificial problems, then in all the other

problems, (1+1) EA with ITD and TIR performed significantly better than other

combinations.

RQ3: Between the two search-based algorithms, GA and (1+1) EA, which one works

better in terms of fault detection with the new heuristics?

According to the results of experiments, (1+1) EA seems overall to perform

significantly better with various combinations when compared to GA using the same

combinations of heuristics. An exception to this is when EA is used with the coverage

heuristic, in which case it performs significantly worse than GA. Even for the problems

with non-trivial approach to risky state, the performance of most of the heuristic

combinations for EA is significantly better than their performance with GA. Hence, we can

conclude that the fault detection effectiveness of (1+1) EA is higher than that of GA for the

kind RTES system testing we focus on.

RQ4: How do the search-based algorithms compare to random testing (RT)?

According to the results of experiments, for simple problems (i.e., where the average

success rate of all the algorithms is high or the approach level is trivial) RT performs

significantly better than both search-algorithms, but for more difficult problems (i.e., lower

success rates or non-trivial approach level), search algorithms perform significantly better.

The best technique (1+1) EA-ITD-TIR has an average success rate of 73% for the 13

problems with an average number of 222 test case executions to find a fault.

RQ5: How does the best combination of the proposed heuristics compare to RT and

GA and (1+1) EA with basic fitness on the industrial case study?

On the industrial case study, the best combination of proposed heuristics, i.e., (1+1) EA-

ITD-TIR, shows significantly better performance over both GA and (1+1) EA. When

compared to RT, there is no significant statistical difference, though the combination has

24

relatively lower success rate (80% compared to 100% for RT). The better performance of

RT can be explained by the fact that in the industrial case study, the approach level to risky

state was trivial.

5.5 Paper 5
In Paper 5, we combined (1+1) EA with ART to improve the overall performance of our

test strategy. The performance of these two algorithms individually is highly dependent on

the characteristics of the problem (as suggested by results of Paper 4). In this paper, we

proposed a way of combining the strengths of these two algorithms in a way that the

dependence on the specifics of the problem is reduced. The proposed hybrid strategy (HS)

starts by applying (1+1) EA. If (1+1) EA does not find fitter test cases after running n

number of test cases, the testing algorithm is switched to ART. All the test cases that were

executed so far are now used for distance calculations in ART. The idea behind switching

from (1+1) EA to ART is that there is not enough time for a random walk to get out of a

fitness plateau. And so, in this scenario, applying ART can yield better results. Running

system test cases is very time consuming, so only few fitness evaluations are feasible

within reasonable time (e.g., 1000 test cases can already take several hours). Therefore, in

case of fitness plateau, it is reasonable to switch strategy, and rather reward diversity

instead of the fitness value. Though the choice of n is arbitrary it can have significant

consequences on the performance of this strategy. The best choice for n is also evaluated in

the paper.

We conducted an empirical study involving an industrial case study and thirteen

artificial problems to answer the following research questions in the paper:

RQ1. Which configuration is best in terms of fault detection for the proposed hybrid

strategy (HS)?

According to the results of the empirical study, using a very low (< 50) or very high

value (>=200) of n causes a degraded performance for HS. With a low value of n, HS

makes the switch from (1+1) EA to ART too early, which does not give sufficient time for

(1+1) EA to converge and hence running HS becomes similar to only running ART. In

cases where ART performs well, such configurations of HS also perform well. Similarly,

when HS switches too late, it does not give enough time to ART and hence running HS is

similar to running (1+1) EA in such cases. These configurations perform well in cases

where (1+1) EA performs well and poor otherwise. The best results are provided for values

between 50 and 100 and the differences in results in this range are not significant. Though

25

the results are not fully consistent across all problems, configuration n = 50 has the best

average rank across all problems and is always very close to the maximum success rates.

RQ2. How the fault detection of the best HS configuration compares with the

performance of ART, (1+1) EA, and RT for (a) the artificial problems and (b) the

industrial case study (IC)?

Based on the results, HS shows significantly better performance in terms of fault

detection (an overall 88% success rate for artificial problems and 100% for the industrial

case study) than the other three algorithms (for artificial problems: ART: 63%, RT: 64%,

and (1+1) EA: 74% and for the industrial case study: ART: 100%, RT, 97%, (1+1) EA:

74%. Unlike the other strategies, variations in environment properties do not have a drastic

impact on the performance of HS and it is therefore the most practical approach, showing

consistently good results for different problems.

5.6 Paper 6
For successful model-driven engineering (MDE) applications, a comprehensive

methodology for modeling should be adopted that is specific to the problem being solved

and adequate for the application domain. This paper discusses our experiences of applying

the Unified Modeling Language (UML) and the UML profile for Modeling and Analysis

of Real-Time Embedded Systems (MARTE) to solve three distinct industrial problems

related to the use of real-time embedded systems (RTES). The work discussed in this

thesis, environment model-based testing of RTES, is one of the addressed problems. The

common experiences from these three problems are merged and summarized into a

framework to guide future industrial applications of UML/MARTE. The framework

provides a set of detailed guidelines on how to apply MARTE in industrial contexts and

will help future modelers reduce the gap between the modeling standards and industrial

needs.

The proposed framework consists of six high level steps that are derived based on our

experience. The first step is a domain analysis of the industrial context in order to

understand the domain and the problem. The second step consists of identifying the proper

set of notations for modeling. UML and MARTE are both international modeling standards

and cater the needs of a large variety of problems and domains. To apply them in a

particular context, identifying a relevant subset of UML/MARTE is a very important task.

The next step is to provide extensions to UML/MARTE according to the requirements of

the domain and problem being handled in the form of a profile. Selection of modeling tools

26

can also greatly impact the success of industrial application in a later stage and this forms

the third step of the framework. Some of the important factors to consider are the cost of

the tool, its supported technologies, and usability of the tool in modeling the selected

subset of UML/MARTE. For a successful application of UML/MARTE, only selecting a

set of notations is not sufficient, rather we also need to define a set of guidelines on how to

use these notations to achieve the goals (for example, as we provided in Paper 1 and Paper

2). This forms the fourth step of the framework. Finally, as a last step of the framework,

we provide guidelines on how to actually apply UML/MARTE in industrial contexts (e.g.,

by conducting live modeling sessions).

5.7 Paper 7
This paper devises novel search heuristics to solve OCL constraints for test data

generation. We evaluated two search-algorithms, GA and (1+1) EA, and used RT as a

comparison baseline. A search-based OCL constraint solver was developed based on the

heuristics and evaluated on an industrial case study. The heuristics are designed for various

elements of OCL expressions, including operations on primitive types and collections.

These heuristics are then evaluated on an industrial case study of a Video Conferencing

Software developed by Cisco Systems. The following research questions were answered in

this paper:

RQ1: Are search-based techniques effective and efficient at solving OCL constraints

in the models of industrial systems?

The results show that (1+1) EA outperformed both RS and GA, whereas GA

outperformed RS. We observed that, with an upper limit of 2000 iterations, (1+1) EA

achieves a median success rate of 80% but GA did not exceed a median roughly 60%. The

success rates for (1+1) EA were above 50% and most of them were close to 100%.

Constraints with the lowest success rates were seven and eight clauses long.

RQ2: Among the considered search algorithms, which one performs best in solving

OCL constraints?

According to the results of the empirical study, there is strong evidence to claim that

(1+1) EA is more successful than both GA and RT. (1+1) EA was not only successful in

solving the constraints with more frequency, but the magnitude of difference with the other

two strategies was also large.

5.8 Paper 8
The paper is a journal extension of Paper 7 with the following differences:

27

1. Additional heuristics have been added in the paper such as heuristics for operations on

collections, special operations (e.g., oclInState), and user-defined operations.

2. The empirical evaluation based on the industrial case study has been improved in the

following ways:

a. The case study is extended with new constraints

b. An additional search algorithm, Alternating Variable Method (AVM), is

included

3. The empirical evaluation of the individual heuristics on several artificial problems has

been added.

4. The empirical evaluation comparing our work with an existing work has been

extended. The evaluation is based on the industrial case study.

The paper discusses the following research questions:

RQ1: Are search-based techniques effective and efficient at solving OCL constraints

in industrial system models?

The results show that AVM outperformed all the other three algorithms, i.e., (1+1) EA,

RS, and GA. AVM also achieved 100% success rate (i.e., number of times it was able to

solve a constraint) compared to 98% of (1+1) EA, 65% of GA, and 49% of RT. This

showed that search-based techniques, specifically AVM and (1+1) EA are effective and

efficient in solving constraints for industrial models.

RQ2: Among the considered search algorithms (AVM, GA, (1+1) EA), which one

fares best in solving OCL constraints and how do they compare to RT?

The results indicate that among the three search algorithms, AVM had highest success

rate, followed by (1+1) EA. GA showed relatively lower success rates. RT in comparison

to these algorithms showed lowest success rate.

RQ3: Does the optimized branch distance calculation improve the effectiveness of

search over non-optimized branch distance calculation?

When AVM and (1+1) EA with fitness function using optimized branch distance were

compared with the ones with fitness function using non-optimized branch distance, the

results showed that for both the algorithms, optimized branch distance showed

significantly better results. In cases where there were no differences in success rates,

algorithms with optimized branch distance took significantly less iterations to solve the

problems.

28

6 Future Directions
Regarding future work, a first step to carry out is an empirical cost-benefit analysis of

the proposed model-based testing approach. The cost of building and modifying the

environment models needs to be compared with that of the manual changes to simulators

and test suites. Intuitively, the latter should be much larger than the former, but it

nevertheless should be investigated. Estimates of the cost of field failures need to be

considered as well to obtain more reliable and complete comparisons of cost-effectiveness

among test strategies.

Since our testing approach was based on the needs of our industry partners, we only

focused on real-time systems with relatively soft deadlines of hundreds of milliseconds. A

possible research direction is to adapt the approach for systems with strict and shorter time

deadlines. For this purpose, we will need to investigate the simulator generation for other

languages and specific platforms (e.g., C).

The work reported in this thesis is restricted to one randomly generated configuration of

the environment structure. Another research direction is to analyze how to properly use the

domain models for effective automated testing of different configurations of the RTES

environment. Strategies can be investigated to generate configurations at run time in a way

that increases the effectiveness of testing algorithms.

29

7 Conclusion
Black-box system testing of Real-time Embedded Systems (RTES) on their development

platforms is required to verify the correctness of these systems without involving the

deployed hardware and other physical components of their environments. This approach

typically involves simulations of the behavior of environment components in a way that is

transparent to the RTES. Such a strategy allows early and fully automated system testing,

even when the hardware is not yet available. It is also helpful in situations where testing

RTES for critical failures in their actual environments is either not feasible, too costly, or

might have catastrophic consequences.

This thesis reports on a model-driven, automated black-box system testing strategy for

real-time embedded systems (RTES) based on their environments. The strategy is

developed while keeping in consideration the practical requirements of two industrial

partners that are, we believe, representative of a wider category of RTES developers. We

purposefully took a practical angle and our approach does not require software engineers to

use additional, specific notations for simulation and testing purposes, but only involves

slight extensions of existing software modeling standards and a specific modeling

methodology. First we developed a precise methodology for environment modeling of

RTES. The methodology is based on standards: UML, MARTE profile and OCL for

modeling the structure, behavior, and constraints of the environment. We, and this is part

of our methodology, made a conscious effort to minimize the notation subset used from

these standards. Our modeling methodology entails the use of constructs (e.g., non-

determinism, error states, and failure states), which are essential to enable fully automated

system testing (i.e., choice, execution and evaluation of the test cases). We modeled the

environment of three artificial problems and two industrial RTES in order to investigate

whether our methodology and the notation subsets selected were sufficient to fully address

the need for automated system testing. Our experiences showed that this was the case.

Lessons learned from industrial applications of the methodology were also summarized to

guide future practitioners.

Secondly, based on a careful analysis of the literature, we concluded that none of the

existing code generation approaches in the literature address the constructs required to

support the testing of RTES through environment simulation. We implemented the code

generation rules for the simulator using model-to-text transformations with

MOFScript, thus producing a set of Java classes. Our empirical evaluation, based on our

30

five case studies, shows that the developed rules are sufficient and that they are correct as

far as fault detection is concerned. The automated simulator generation is expected to save

a significant amount of effort, although empirical studies in industrial contexts will be

necessary to support such a claim with increased confidence. By using our environment

models and the generated simulators, it was possible to automatically find new, critical

faults in one of the industrial case studies using fully automated, random and search-based

testing.

The third part of the thesis concerned OCL constraint solving, for which, we defined

search heuristics involving branch distance functions for various types of expressions in

OCL to guide the search algorithms. We demonstrated the effectiveness and efficiency of

our search-based constraint solver to generate test data in the context of the model-based,

robustness testing of an industrial case study of a video conferencing system. Even for the

most difficult constraints, with research prototypes and no parallel computations, we

obtained test data within 2.96 seconds on average.

Last but not least, we discussed various strategies for test case generation based on

environment models. We defined and iteratively improved fitness functions for search-

based algorithms. We also evaluated the use of adaptive random testing (ART) and random

testing (RT) in our context. The experiments were conducted on an industrial case study

and a number of artificially created problems with varying properties. Based on the results

of initial experiments, we proposed a hybrid strategy (HS) for testing that combined (1+1)

Evolutionary Algorithm (EA) and ART. The strategy was developed to combine the

benefits of both algorithms, since their individual results varied greatly depending on the

failure rate of the system under test and the properties of its environment. The ultimate

goal was to obtain a strategy with consistently good results. Overall, the results indicate

that HS shows significantly better performance in terms of fault detection (an overall 88%

success rate for artificial problems and 100% for the industrial case study) than the other

three algorithms (for artificial problems: ART: 63%, RT: 64%, and (1+1) EA: 74% and for

the industrial case study: ART: 100%, RT, 97%, (1+1) EA: 74%). Unlike the other

strategies, variations in environment properties do not have a drastic impact on the

performance of HS and it is therefore the most practical approach, showing consistently

good results for different problems.

31

8 References for the Summary
[1] Artemis. (2011, June 13, 2011). Artemis Joint Undertaking - The public private

partnership for R & D Embedded Systems. Available: http://artemis-
ju.eu/embedded_systems

[2] B. M. Broekman and E. Notenboom, Testing Embedded Software: Addison-Wesley
Co., Inc., 2003.

[3] WesternGeco. Available: http://www.slb.com/services/westerngeco.aspx
[4] Tomra AS. Available: http://www.tomra.no
[5] OMG, "Unified Modeling Language Superstructure, Version 2.3,

http://www.omg.org/spec/UML/2.3/," ed, 2010.
[6] OMG, "Modeling and Analysis of Real-time and Embedded systems (MARTE),

Version 1.0, http://www.omg.org/spec/MARTE/1.0/," ed, 2009.
[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements of

reusable object-oriented software, 1995.
[8] P. M. Kruse, J. Wegener, and S. Wappler, "A highly configurable test system for

evolutionary black-box testing of embedded systems," presented at the Proceedings
of the 11th Annual conference on Genetic and evolutionary computation, Montreal,
Canada, 2009.

[9] F. Lindlar, A. Windisch, and J. Wegener, "Integrating Model-Based Testing with
Evolutionary Functional Testing," presented at the Proceedings of the 2010 Third
International Conference on Software Testing, Verification, and Validation
Workshops, 2010.

[10] F. Lindlar and A. Windisch, "A Search-Based Approach to Functional Hardware-in-
the-Loop Testing," presented at the Proceedings of the 2nd International Symposium
on Search Based Software Engineering, 2010.

[11] M. Short and M. J. Pont, "Assessment of high-integrity embedded automotive
control systems using hardware in the loop simulation," J. Syst. Softw., vol. 81, pp.
1163-1183, 2008.

[12] G. Francis, R. Burgos, P. Rodriguez, F. Wang, D. Boroyevich, R. Liu, and A. Monti,
"Virtual Prototyping of Universal Control Architecture Systems by means of
Processor in the Loop Technology " presented at the Twenty Second Annual IEEE
Applied Power Electronics Conference, APEC 2007 - Twenty Second Annual IEEE
2007

[13] (2010). Object Constraint Language Specification, Version 2.2. Available:
http://www.omg.org/spec/OCL/2.2/

[14] (2010). UML Profile for Schedulability, Performance and Time. Available:
http://www.omg.org/technology/documents/profile_catalog.htm

[15] M. Harman, S. Mansouri, and Y. Zhang, "Search based software engineering: A
comprehensive analysis and review of trends techniques and applications,"
Department of Computer Science, King's College London, TR-09-032009.

[16] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, "A Systematic
Review of the Application and Empirical Investigation of Search-Based Test Case
Generation," IEEE Transactions on Software Engineering, vol. 99, 2009.

[17] T. Chen, F. Kuo, R. Merkel, and T. Tse, "Adaptive Random Testing: The ART of
test case diversity," Journal of Systems and Software, vol. 83, pp. 60-66, 2010.

[18] M. Samek, Practical UML statecharts in C/C++: event-driven programming for
embedded systems: Newnes, 2009.

[19] L. Ferreira and C. Rubira, "The reflective state pattern," presented at the Proceedings
of the Pattern Languages of Program Design, Monticello, Illinois-USA, 1998.

32

[20] J. Oldevik, "MOFScript user guide," Version 0.6 (MOFScript v 1.1. 11), 2006.
[21] P. McMinn, "Search-based Software Test Data Generation: A Survey," Software

Testing Verification and Reliability, vol. 14, pp. 105-156, 2004.
[22] Cisco Inc. Available: http://www.cisco.com

33

Environment Modeling with UML/MARTE to
Support Black-Box System Testing for Real-
Time Embedded Systems: Methodology and
Industrial Case Studies
Muhammad Zohaib Iqbal, Andrea Arcuri, Lionel Briand

In: Proceedings of the ACM/IEEE 13th International Conference on Model Driven

Engineering Languages and Systems (MODELS), Model Driven Engineering Languages

and Systems. Springer Berlin / Heidelberg, 2010, pp. 286-300

Abstract–The behavior of real-time embedded systems (RTES) is driven by their

environment. Independent system test teams normally focus on black-box testing as they

have typically no easy access to precise design information. Black-box testing in this

context is mostly about selecting test scenarios that are more likely to lead to unsafe

situations in the environment. Our Model-Based Testing (MBT) methodology explicitly

models key properties of the environment, its interactions with the RTES, and potentially

unsafe situations triggered by failures of the RTES under test. Though environment

modeling is not new, we propose a precise methodology fitting our specific purpose, based

on a language that is familiar to software testers, that is the UML and its extensions, as

opposed to technologies geared towards simulating natural phenomena. Furthermore, in

our context, simulation should only be concerned with what is visible to the RTES under

test. Our methodology, focused on black-box MBT, was assessed on two industrial case

studies. We show how the models are used to fully automate black-box testing using

search-based test case generation techniques and the generation of code simulating the

environment.

1. Introduction
Real-Time Embedded Systems (RTES) are largely used in critical domains where high

system dependability is required and expected. The basic characteristic of RTES is that

they react to external events within certain time constraints. Extensive testing of such

systems is important in order to verify their correct behavior under different timing

constraints and adverse situations of the environment (or context). It is also important to

34

verify that the system under test (SUT) does not lead the environment to a hazardous state.

Testing RTES is particularly challenging since they operate in a physical environment

composed of possibly large numbers of sensors and actuators. There is usually a great

number and variety of stimuli with differing patterns of arrival times. Therefore, the

number of possible test cases is usually very large if not infinite. Testing all possible

sequences of stimuli/events is not feasible. Hence, systematic testing strategies that have

high fault revealing power must be devised. Manually writing appropriate test cases for

such complex systems would be a far too challenging and time consuming task. If any part

of the specification of the RTES changes during its development, a very common

occurrence in practice, then the expected output of many test cases would potentially need

to be recalculated manually. Automated test-generation and the use of an automated oracle

are essential requirements when dealing with complex industrial RTES.

Moreover, testing the RTES in the real environment usually entail a very high cost and

in some cases the consequences of failures would not be acceptable, for example when

leading to serious equipment damages or safety concerns. In many cases the hardware,

e.g., sensors and actuators, is not yet available at the time of testing as software and

hardware are typically developed concurrently in RTES development. Since testing RTES

on the real environment is not a viable solution, the use of a simulator is a common

alternative.

In our work, we address the above issues by devising a comprehensive, practical

methodology for black-box, model-based testing (MBT). The main contributions of this

paper are as follows: It provides an environment modeling methodology based on

industrial standards and targeted at MBT, and evaluates it on two industrial case studies.

The models describe both the structural and behavioral properties of the environment.

Given an appropriate level of detail, defined by our methodology, they enable the

automatic generation of the environment simulator. The models can also be used to

generate automated test oracles. These could, for example, be invariants and error states

that should never be reached by the environment during the execution of a test case.

Moreover, the models can further be used to automatically choose test cases. Sophisticated

heuristics to choose appropriate test cases are automatically derived from the models

without any intervention of the tester. To summarize, the only required artifacts to be

developed by testers is the environment model and the rest of the process is expected to be

35

fully automated. By using this automated MBT technology, one of our industrial partners

was able to find new critical faults in their RTES. This paper focuses on how to make

environment modeling as easy as possible for the purpose of supporting black-box, MBT,

and shows its use for test automation. Due to space constraints, we only briefly discuss the

details for code generation.

To support environment modeling in a practical fashion, we have selected standard and

widely accepted notation for modeling software systems, the UML and its standard

extensions. We use the MARTE [1] extensions for modeling real-time features and OCL

for specifying constraints. We have also provided lightweight extension to UML to make it

more useful in our context. As we will discuss later, environment modeling is not a new

concept. But, most of the approaches use non-standardized notations or grammars for

modeling, which makes them difficult to apply from a practical standpoint. To the best of

our knowledge, modeling the environment of industrial RTES systems using a combination

of UML, MARTE, and OCL has not been addressed in the literature. By using the

proposed methodology, the software testers (who are primarily software engineers) can

model the environment with a notation that they are familiar with and at a level of

precision required to support automated MBT.

The importance of selecting standards for modeling was highlighted by the application

of methodology on the two industrial case studies that belonged to completely different

domains. An alternative to using standard notations for modeling could have been to create

a Domain Specific Language (DSL) for environment modeling. Since the methodology

needed to be generic for RTES irrespective of their application domain, making a DSL was

not feasible. Making a DSL would have also reduced the benefits that we obtained from

using standards and could have only been justified if existing standards did not fit our

needs. Our case studies were developed using Enterprise Architect and IBM Rational

Software Architect, though any of the widely available UML tools could have been used

for this purpose.

The rest of the paper is organized as follow. Section 2 discusses the related work on

environment modeling and testing based on environment models. The environment

modeling methodology and simulation is discussed in Section 3. Section 4 describes the

use of the environment modeling methodology for automated testing. Section 5 discusses

36

the case studies on which the methodology was applied on and finally Section 6 concludes

the paper.

2. Related Work
There are a few approaches reported in the literature for the environment modeling of

embedded systems. Kishi and Noda [2] present an approach for modeling the environment

of an embedded system using an aspect-oriented modeling technique. Karsai et al. [3]

propose a new language for modeling the environment of an embedded system. Choi et al.

[4] use annotated UML class and sequence diagrams for modeling and simulation of

environment. Kreiner et al. [5] present a process to develop environment models for

simulation of automatic logistic systems and its environment. Axelsson [6] evaluates how

UML can be used to model real-time features and provides extension to UML for modeling

of real-time systems and their environments. Gomaa [7] discusses the use of a context

diagram for modeling the relationship between an RTES and its external entities.

Friedentahl et al. use the concept of SysML block diagram and activity diagrams to

represent the system and its interfaces with environment components [8].

There are a few works reported in literature that discuss testing based on the

environment of a system. Auguston et al. [9] discuss the development of environment

behavioral models using Attributed Event Grammar for testing of RTES. Bousquet et al.

[10] present an approach for testing of synchronous reactive software by representing the

environmental constraints using temporal logic. Larsen et al. [11] propose an approach for

online testing of RTES based on time automata and environmental constraints. Heisel et al.

[12] propose the use of a requirement model and an environment model using UML state

machines along with the model of the SUT for testing. Adjir et al. [13] discuss a technique

for testing RTES based on the model of the system and model of intended assumptions in

the environment in Labeled Prioritized Timed Petri Nets.

As discussed above, there are approaches in literature that deal with modeling the

environment of a system for various purposes. Most of these approaches are only limited to

modeling the static structure of the environment, as they do not focus on test automation.

The approaches that deal with modeling of behavioral aspects either use notations with

which the software engineers are not familiar, or provide extensions for environment

modeling that do not have well-defined semantics. Moreover, the properties of the

37

environment, such as its timeliness and non-determinism, are not modeled in a standard

way. The environment models should be compatible with other standard techniques

available for model manipulation, e.g., model transformations, consistency checking. For

this reason, the modeling language should have well-defined constructs. All environment

modeling approaches aimed at supporting testing, except by Heisel et al. [12], use non-

standard languages for modeling. Heisel et al. models both the SUT and the environment,

which does not fit our purpose: black-box, system testing. Moreover, they model the

concepts of probabilities and time using non-standard notations, without using the UML

extension mechanisms. Last but not least, none of the relevant work assesses their

environmental methodology on an actual RTES system, which we believe is a requirement

to assess the credibility and applicability of any MBT approach.

3. Environment Modeling - Methodology
If environment models are to be used for RTES, they should not only be sufficiently

detailed, but should also be easy to understand and modify as the environment and RTES

evolve. To handle the complexity of realistic RTES environments, the modeling language

should have provision for modeling at various levels of abstraction. The modeling

language should also have well-defined syntax and semantics for the tools to analyze the

models and for the humans to accurately understand them. The language should also

provide features (or allow possible extensions) for modeling real world concepts, real-time

features, and other concepts, such as non-determinism, required by the environment

components. The UML, MARTE profile, and the OCL together fulfill the important

requirements of an environment modeling language.

Even though we are using the same notations to model the environment that are used for

modeling software systems, it is important to note that the methodology for environment

modeling is significantly different from system modeling. While modeling for the

industrial cases, we abstracted the functional details of the environment components to an

extent that only the details visible to the SUT were included. For environment behavior

modeling, non-determinism is widely used, which is not nearly as common when modeling

the internal behavior of a system.

For testing the system based on its environment, the behavior details of the environment

are as important as its structural details. Structural details of the RTES environment are

38

important to understand the overall composition of the environment (e.g., number and

configuration of sensors/actuators), the characteristics of various components, and their

relationships. We choose to model these details in the form of a Domain Model developed

using UML class diagrams. The behavioral details of environment components are

required to specify the dynamic aspects of the environment, for example, to determine the

possible environment states, before and after its interactions with the SUT, and to specify

the possible interactions between the SUT and its environment. For behavioral details, we

used the UML State Machines augmented with the MARTE profile.

In the following subsections, we discuss the methodology for modeling the environment

of a RTES. We also discuss various guidelines based on our experience of applying the

methodology on two industrial case studies.

3.1. Modeling Structural Details as Environment Domain Model

The environment domain model provides information of the components of the

environment, their characteristics, their relationships with one another and the SUT, and

information regarding signal sending and reception. The various components modeled in

the domain model together form the overall environment of the SUT. This means that all

these components (their instances) will run in parallel with each other. Each component in

the domain model can have a number of instances in the RTES environment. The

information about the number of possible instances of a component in the environment is

modeled as cardinalities on the associations between different components in the domain

model. Therefore, the domain model can be used to obtain a number of potential

configurations of the environment. Fig. 1 shows the partial domain model for the

environment of one of our industrial cases, the sorting machine (named as SortingBoard in

the figure). The sorting machine is part of an automated bottle recycling system and further

details of the case study can be found in Section 5. The model shows various motors,

sensors, mechanical devices taking part in sorting, and other systems the SortingBoard

communicates with.

Note that the domain model that we develop is different from the ones commonly

discussed in literature (e.g., [14]). The components represented as classes in the

environment domain model will not necessarily relate to software classes. They may

correspond to systems, users and concepts related to various natural phenomena. Domain

39

modeling here is not a starting point for software analysis. The identification of

components in the domain model, their properties, and their relationships is also different

from what is commonly done for software analysis. Following, we further discuss various

guidelines for modeling the structural details of a RTES environment.

3.1.1. Environment Components to be Included.

Initially, all the environment components that are directly interacting with the SUT are

included in the domain model. Then, each of these components is further refined to a level

where we are certain to cover the important details for simulating the environment needed

to test the SUT. If at any time the behavior of an environment component was getting too

complex, when possible, we decomposed the component and divided its behavior into

multiple concurrent state machines. This is especially useful if a component can be divided

into components that are similar to existing components, so that we can specialize existing

state machines. We used the stereotype <<context>> to represent components of the

environment in the domain model. The components of the environment are made to

communicate with each other and the SUT through signals, and are modeled as active

objects.

3.1.2. Relationships to be Included.

All those associations representing the physical or logical relationships among various

environment components, or that were needed for components to communicate, should be

included. A number of components in the environment might be similar to each other (e.g.,

various types of sensors). It is useful to relate these components (and their behavior) using

the generalization/specialization relationship for simplifying the model, as our experience

shows that such domain models get highly complex. For example, in the sorting machine

case study, we modeled the association of the SortingBoard with the SortingArm, which is

controlled by the board, and the ItemSensor that reports arrival of an Item (e.g., bottle). We

used generalization in multiple places, including motors and sensors as shown in Fig. 1.

3.1.3. Properties to be Included.

From all properties that may characterize environment components, it is important to

include only those properties that are visible to the SUT (or have an impact on a

40

component that is visible to the SUT). These may include attributes that have a relationship

to the inputs of the SUT, that constrain the behavior of a component with respect to the

SUT, or that contribute to the state invariant of a component that is relevant to the SUT. In

Fig. 1, all the modeled properties of Item are either visible to the SortingBoard or are used

by other components. For example, the serialNum and materialType of Item is assigned by

VendingMachine and is used by the SortingBoard.

Fig. 1. Partial environment domain model showing properties and relationships of the sorting machine
case study

3.1.4. Modeling the SUT.

It is important to include the SUT in the environment domain model, so that its relationship

with the other environment components can be specified. It is also useful to include the

details of signal receptions by the SUT from other environment components. The SUT is

stereotyped as <<system>>. The stereotype was used initially by Gomaa [7] to refer the

system in a context diagram. The SUT modeled in the domain model should represent the

SUT and its execution platform, as a single component.

3.2. Modeling Behavioral Details with UML State Machines & MARTE

For modeling the behavior details of the environment that have an impact on the SUT, we

developed the UML State Machines with MARTE real-time extensions for various

components in the environment. As discussed earlier, the environment components run in

parallel to form the environment of the RTES. The components can send signals to each

other and to the SUT. We can also view the environment as having one state machine with

orthogonal regions, one for each component. Fig. 2 shows the state machine of a

component for one of the industrial case studies. We have abstracted out the concepts for

41

confidentiality reasons. Following, we discuss the details of the methodological guidelines

we followed.

3.2.1. Identifying Stateful Components.

Components whose states either affect the SUT or are affected by the SUT should be

modeled with state machines. Apart from these components, it is also useful to model the

behavior of other components on which we would like control during the simulation.

Overall, the environment should be modeled in a way that enables, after the initial

configuration and provision of input data (parameters and guards), the full simulation of

the interactions with the SUT. All the context components shown in Fig. 1 are stateful

components of the sorting machine case study. For example, the SortingArm component

was modeled as stateful since it receives signals from the SortingBoard and reacts

differently based on its current state.

3.2.2. States to be Included.

It is important to determine the right level of abstraction for a component state machine. If

we want to precisely model the behavior of an environment component, this might lead to

a large number of states. We are, however, only interested in state changes that have an

impact on the SUT. A single state in an environment model state machine may correspond

to a large number of concrete or physical states. For example, in the sorting machine, the

Item states that were modeled were all related to its movement through the sorting machine

whereas its other possible states were not of interest as an environment component of the

SortingBoard.

3.2.3. Modeling Users in the Environment.

Generally, for software system modeling users are only modeled as sources of inputs and

data. The behaviors of users with respect to the system are mostly not considered. In the

environment modeling methodology, it is useful to model the behavior of users in the

environment to have a control over the inputs/outputs of the various components or the

SUT. If a user participates in multiple roles, it is useful to model each role a user plays as a

separate component. In the sorting machine case study, we modeled two different users

(the operator and the persons who enter the items for sorting), each of them had

42

considerable non-deterministic behavior. In certain cases it can be interesting to model

both the expected and unexpected behavior of users using the proposed methodology.

3.2.4. Modeling Abstract Phenomena.

Sometimes it is necessary to model abstract physical concepts, such as temperature, heat,

voltage, and current. Mostly, information regarding these phenomena can be obtained and

controlled through sensors and controllers, such as a temperature controller or sensor.

Modeling of such concepts explicitly as environment components can be useful if a change

in the state of these concepts impacts multiple components simultaneously, or if it is not

possible to identify a related component in the environment that can act as a controller or

sensor of this concept for simulation. As an example, consider a RTES on a vehicle that

indicates its driver the time for a pit stop. The tires of a vehicle can burst when the

temperature of the road gets too high. If there is no sensing mechanism available in the

environment, then it is useful to make a state machine of temperature, with possibly two

states representing below and above danger temperatures.

3.2.5. Modeling Transitions & Action Durations.

Most of the transitions in the state machines of the components will either be based on

signal events or time events. Timeout transitions are an important concept in RTES

environment models. The MARTE TimedEvent concept is used to model timeout

transitions, so that it is possible for them to explicitly specify a clock. Each environment

component may have its own clock or multiple components may share the same clock for

absolute timing. The clocks are modeled using the MARTE’s concept of clocks.

Specifying a threshold time for an action execution or for a component to remain in a state

is possible using the MARTE TimedProcessing concept. This is also a useful concept and

can be used, for example, to model the behavior of an environment component when the

RTES expects a response from it within a time threshold. When a SortingArm is signaled

to move, after staying some time in the Moving state, it transitions to the Not Moving state

(see Fig. 2).

3.2.6. Modeling Non-Determinism.

Non-determinism is a particularly important concept for environment modeling and is one

43

of the fundamental differences between models for system modeling and models for

environment modeling. Following we discuss different types of non-determinism that we

have modeled for our case studies.

Specifying exact value for timeout transitions might not always be possible for RTES

environment components. To model their behavior in a realistic way, it is often more

appropriate to specify a range of values for a possible timeout, rather than an exact value.

Moreover, the behavior of humans interacting with the RTES is by definition non-

deterministic. For modeling this behavior, we can add an attribute in the environment

component and use OCL to constrain the possible set of values of the attribute and then use

this attribute as a parameter of a timeout transition. In the sorting machine case study, the

SortingArm may reach a sorting location from its center between 5 sec and 6 sec,

depending on various physical conditions. This is modeled through the attribute

movingTime, which is passed as a parameter to the change event on the transition from

Moving to Not Moving. Legal values for the attributes are constrained using OCL.

Another important form of non-determinism is to assign probabilities to the transitions

of state machines. In an RTES environment, we sometimes only know the probability of a

component to go into a particular state over time and we are not sure about the exact

occurrence of such conditions. For example, we can say that the probability of a car engine

to overheat after running continuously for 10 hours is 0.05, but we cannot be certain about

the exact instance in time when this situation will happen. We can model this in the engine

state machine with a transition going from Normal Temperature state to Overheated state,

during an interval of 10 hours, with probability of 0.05. For modeling these scenarios, we

assigned a probability on the transitions using the property prob of the MARTE GaStep

concept. Whenever a timeout transition has the gaStep stereotype applied with a non-zero

value of prob, the combination will be comprehended as the probability of taking the

transition over time of timeout transition. In the sorting machine case study, a SortingArm

can get stuck in a position (e.g., because of a bottle blocking it or the arm jamming) with a

probability 0.02 in a minute if it is not moving and a higher probability when it is moving.

This can be modeled as shown in Fig. 2 by the transitions from Not Moving and Moving to

Sorter Stuck. The sending of non-deterministic signals can also be modeled using this type

of transitions, by placing them in the actions of such transitions.

44

Fig. 2. State Machine of the SortingArm component in the sorting machine case study

Another type of probability that we modeled in our case studies is for the situations

where one event can lead to multiple possible scenarios, but all of them are mutually

exclusive. For example, we might want to represent the fact that during the communication

with the SUT there is a chance that signals are received with or without distortion. To

make the models more realistic, we assigned probabilities to each of such scenarios in the

environment component. In terms of UML state machines, this means that multiple

transitions are outgoing from one state based on the same event (maybe with identical

guard). For modeling these scenarios, we assigned the MARTE gaStep stereotype to each

of the multiple possible outgoing transitions. The example of communication with the SUT

can be modeled by having two transitions going out of the environment component state on

receiving of a signal, one labeled with a probability that the signal was corrupted and the

other with the probability that the signal was fine. Modeling the distribution of event

arrivals and timeout transitions can be useful for validation purposes, but is out of the

scope of this paper, since our goal is verification of the SUT. Nevertheless, this type of

information can be easily expressed in the model using the MARTE profile.

3.2.7. Modeling Error & Failure States.

In the environment models, two types of states play a particularly important role: the error

states and the failure states.

Environment error states are those states that the environment goes into because of

unwanted response(s) (or lack of) from the SUT. Every component in the environment may

have error states. If any component of the environment reaches one of these error states,

then it means that the SUT is faulty. We use the stereotype <<error>> for such states in

the environment model. For a SortingArm, an Item should not arrive while the arm is

45

moving. This is an error state of the environment and can be caused if arm is not made to

move on time by the SortingBoard. In Fig. 2, this has been modeled with the Item Arrival

Error state.

Failure states model possible failures of environment components. A component may

fail in several different ways with different consequences for the SUT. The SUT should

appropriately behave under known, failing conditions. A failure can happen at any time

during the execution of a component, e.g., a sensor may break at any time, and is modeled

as non-deterministic behavior (as discussed). We use the stereotype <<failure>> for these

failure states. The Sorter Stuck state discussed earlier, in which the SortingArm is stuck and

cannot change its position, is a failure state of the environment.

3.3. Modeling the Constraints

To apply constraints on the relationships and restrictions on various value combinations (or

state combinations) of objects, we have used the Object Constraint Language (OCL). We

have also used OCL for representing the guards on the state machines, various state

invariants and general constraints on the relationships of environment components.

RTES environment consists of a number of components including some real-world

concepts (e.g., temperature, air pressure). If we consider all the various components of

environment together, it is important to restrict the possible state combinations of these

components to avoid infeasible situations (e.g., reverse and forward movement of motors is

not possible at the same time). In our methodology, we have used OCL to specify

constraints for such scenarios. For example, for the sorting machine, if a SortingArm is

moving then only one DiskMotor and PositionMotor should be running at a given time. If

the arm is not moving, both the motors should not be running. There can be a number of

such constraints and it is important to model them to have a realistic simulation and testing

based on the models. Otherwise, the models would end up in states that are not practically

possible.

State invariants in the environment also play a significant role. Based on the values of

the attributes of the component, the state invariants are used to evaluate the current state of

the environment and derive state oracles (i.e., is the environment in the expected state?).

We have used OCL to specify the state invariants. We also used OCL to specify the overall

46

set of values that an attribute of an environment component can take. Last, the OCL

constraints were also used for modeling non-determinism as discussed earlier.

3.4. Environment Modeling Profile

Our goal was to model the environment based only on the standard UML and its existing

extensions as much as possible. We applied the standard notations and based on our needs

for those case studies, where required, we provided light weight extensions to UML. In this

section we will discuss the subsets of UML and MARTE that we used and the lightweight

extensions that we have provided for environment modeling. From a practical standpoint, it

was important to identify these subsets for the methodology, since the UML and MARTE

standards are very large and most organizations would be reluctant to adopt such large

notations.

We used the concept of Context, System, Error, and Failure under the form of UML

stereotypes. Context is used to represent an environment component and is applied on the

classes of the domain model. Similarly, System is also applied on the classes of the domain

model and represents the SUT. Error represents the states of environment component that

are only taken if there is an error in the SUT. Failure is also applied on the states and

represents a failure in the environment. Within UML, we used the concept of Class

diagram, State Machines. From MARTE, we only used the Time package and the GaStep

concept from the GQAM package as shown in Fig. 3. This small subset of UML and

MARTE was sufficient for modeling our two industrial case studies for the purpose of

automated black-box testing.

3.5. Simulation of Environment Models

Due to size constraints, we cannot go into the details of the simulation and only briefly

discuss it. The environment models developed using our methodology with UML and the

MARTE profile are transformed into a RTES environment simulator in Java using a model

to text transformation. The transformation was based on an extended version of the state

pattern that accounts for asynchronous communication, time events, and change events.

The simulator is used to test a RTES in conditions similar to its real environment. Since

the standard for a concrete syntax of the UML Action Language is still not finalized, we

made use of Java to specify actions. Once there is a standard UML Action Language, the

47

actions can be written in that language and then translated into the target language of the

RTES. For our case studies, the actions are written in Java and are converted into Java

method calls.

Fig. 3. Profile diagram showing various stereotypes and references

4. Model-based Testing based on Environment
Models

In this section we briefly discuss how our modeling methodology is used to achieve

automated system testing. Further details can be found in [15].

The UML/MARTE models of the environment are used to automatically generate a

simulator for it. The simulator is used to test the RTES on the development platform. The

information from the models is used to guide the generation of test cases and for

generating automated oracles, which enable fully automated testing. Once test case and

oracle generation is completely automated, it is possible to execute and evaluate a large

number of test cases.

In our methodology, a test case is the setting used for the simulator. The information of

what to configure in the simulator is automatically derived from the models and it is given

as input to the test engine. Two types of setting are necessary:

- Number and relations of the environmental components. For example, given a state

machine representing a sensor, the Domain Model is used to determine how many

sensors can be connected to the RTES (and so, we would know how many running

instances we need for that state machine). Several different combinations are

possible.

- Each state machine can have non-deterministic events. The models are used to

specify them and to provide details of their type. When the simulator is running,

48

every time it requires a value to calculate a non-deterministic event, it then queries

the test engine to obtain such values.

At the current moment, we have not investigated different configurations based on the

Domain Models. We have focused on testing the behavior of the RTES given a single

configuration. The goal of the testing is to provide a valid setting for the non-deterministic

events such that an environmental error state (Section 3.2) is reached during the

simulation, if any fault is present.

The simplest testing technique would be to provide (valid) random values each time the

simulator queries the test engine for values to use in non-deterministic events. But more

sophisticated techniques that exploit the information in the models can be used. For

example, reaching the error state during simulation can be represented as a

search/optimization problem, so Search Based Testing (SBT)[16] can be used. From the

models we can automatically generate a fitness function to guide the search. Common

heuristics such as approximation level and branch distance of the OCL constraints would

be used for the fitness function. Due to size constraints, the investigated testing strategies

are reported in [15], where we also proposed a novel fitness function that exploits the time

properties of the UML/MARTE models.

The use of models for SBT in the case of RTES system testing is essential. In fact, to

have effective heuristics (i.e., the fitness function) we need to have precise knowledge of

the error states. This information is easily added in the models using stereotypes (Section

3.4). All the relevant states/transitions that lead to those error states can be exploited for

the automatic derivation of the fitness function. On the other hand, if we have a simulator

but no model, it is unlikely that it would be possible to automatically reverse-engineer all

this necessary information from the code alone. Therefore, the fitness function would be

necessarily written by hand, with all the related downsides that this choice brings.

In some relevant cases [15], it is possible to automatically derive very precise fitness

functions. This happens when time constraints need to be satisfied (a typical case in

RTES), e.g., a signal should be received within 10 milliseconds. A test case for which that

signal is received after nine milliseconds gives more information than a test case in which

the same signal is immediately received after one millisecond (notice that in both cases the

constraint is satisfied). SBT can automatically exploit this information by focusing the

search on simulator configurations that are more likely to yield a deadline miss. A tester

49

does not need to write these heuristics, they are in fact automatically derived from the

environment models. This is essential, because in general software testers do not have the

expertise to write proper fitness functions for search algorithms.

The results in [15] show that our modeling methodology can be used for a fully

automated system testing that is effective in revealing faults in industrial RTES. Although

different testing strategies can be designed (e.g., Random Testing and SBT), the

environment modeling methodology described here would still remain the same.

5. Case Studies
To evaluate the proposed methodology for environment modeling, we applied it on two

industrial RTES. The application domains of the systems were entirely different. Because

we cannot provide full details of the systems due to confidentiality restrictions, we are

providing only a brief description. One of the RTES case studies (Case A) was a sorting

system, which was part of an automated bottle recycling machine (developed by Tomra).

The system communicated with a number of sensors and actuators to guide recycled items

through the recycling machine to their appropriate destinations. The second RTES was a

marine seismic acquisition system (Case B). One of the responsibilities of that system was

to control the movement of seismic cables, where each cable had a large number of sensors

and seismic vibrators, among other equipments. The system regularly communicated with

these components and was responsible for managing the life cycle and connections for

these components (among other things). We provide a summary of the environment

models developed for both the case studies in Table 1.

For Case A, the RTES was configurable as three different types of systems; therefore

the number of environment components was large. But most of the components’ behavior

could be modeled with a couple of states. The highest number of states was 18. Many

components inherited a parent component behavior, i.e., its state machine. That was the

case for example for DiskMotor and Motor in Fig. 1.

Though the number of components for Case B was more limited than for Case A, the

number of instances for some of the components in the environment was very large (e.g.,

thousands of sensors of the same type communicating with the SUT), thus leading to many

instances of executing state machines during simulation. The complexity of component

state machines was also on average much higher than for Case A.

50

One important conclusion is that, in both cases, we were able to model the RTES

environments with the subset of UML and MARTE that we identified and the lightweight

extensions that we proposed. The models were sufficient to generate simulators that could

be used to support large-scale test automation. In one of our industrial case study, using

random testing and the SBST strategy described above, combined with using the

environment model to identify error states (oracle), new critical faults were detected.

For both case studies, the number of components identified at the time of domain

modeling was larger than what was finally required. During successive revisions and based

on insight obtained through behavioral modeling, some components turned out to be

unnecessary and were removed from the domain model. One practical challenge is that it

was not easy in practice to identify the right level of abstraction to model the behavior of

environment components. Sub-machines were widely used to incrementally refine the

behavioral models until the right level of detail was achieved to simulate the behavior of

component from the viewpoint of the SUT.
Table 1. Summary of the environment models of the two industrial RTES.

Industry Case # of env.

components

Stateful

components

Average

of states

Max states in

a component

Max transitions

in a component

Case A 55 43 ~3 18 40

Case B 5 4 ~12 19 29

6. Conclusion
In this paper, we have discussed a methodology for modeling the environment of a Real-

Time Embedded System (RTES) in order to enable black-box, system test automation,

which is usually performed by test engineers who are not informed of the design specifics

of the RTES. For practical reasons and to facilitate its adoption, the methodology is based

on standards: UML, MARTE profile, and OCL for modeling the structure, behavior, and

constraints of the environment. We, and this is part of our methodology, made a conscious

effort to minimize the notation subset used from these standards. We briefly discussed how

the environment models are used to generate automated system test cases and a simulator

of the environment to enable testing on the development platform. One advantage is that

the methodology also allows more focus on the testing for critical and hazardous

conditions in the RTES environment as environment failures and possible error states due

to faults in the RTES implementation are explicitly modeled.

51

We modeled the environment of two industrial RTES in order to investigate whether

our methodology and the notation subsets selected were sufficient to fully address the need

for automated system testing. Our experience showed that was the case. In particular, by

using our environment models to derive test cases and oracles, it was possible to

automatically find new, critical faults in one of the industrial case studies using fully

automated, large scale random and search-based testing.

Acknowledgements
The work presented in this paper was supported by Norwegian Research Council and was

produced as part of the ITEA 2 VERDE project. We are thankful to Christine Husa, Tor

Sjøwall, John Roger Johansen, Erling Marhussen, Dag Kristensen, and Anders Emil Olsen,

all from Tomra, for their crucial support.

7. References
[1] OMG, "Modeling and Analysis of Real-time and Embedded systems (MARTE),

Version 1.0, http://www.omg.org/spec/MARTE/1.0/," ed, 2009.
[2] T. Kishi and N. Noda, "Aspect-oriented Context Modeling for Embedded Systems,"

presented at the Workshop on Early Aspects: Aspect-Oriented Requirements
Engineering and Architecture Design, 2004.

[3] G. Karsai, S. Neema, and D. Sharp, "Model-driven architecture for embedded
software: A synopsis and an example," Science of Computer Programming, vol. 73,
pp. 26-38, 2008.

[4] K. S. Choi, S. C. Jung, H. J. Kim, D. H. Bae, and D. H. Lee, "UML-based Modeling
and Simulation Method for Mission-Critical Real-Time Embedded System
Development," presented at the IASTED International Conference Proceedings,
2006.

[5] C. Kreiner, C. Steger, and R. Weiss, "Improvement of Control Software for
Automatic Logistic Systems Using Executable Environment Models," presented at
the EUROMICRO '98: Proceedings of the 24th Conference on EUROMICRO, 1998.

[6] J. Axelsson, "Unified Modeling of Real-Time Control Systems and Their Physical
Environments Using UML," presented at the Eighth Annual IEEE International
Conference and Workshop on the Engineering of Computer Based Systems (ECBS
'01), 2001.

[7] H. Gomaa, Designing Concurrent, Distributed And Real-Time Applications With
UML: Addison-Wesley Educational Publishers Inc, 2000.

[8] S. Friedenthal, A. Moore, and R. Steiner, A Practical Guide to SysML: The Systems
Modeling Language: Elsevier, 2008.

[9] M. Auguston, M. J. B, and M. Shing, "Environment behavior models for automation
of testing and assessment of system safety," Information and Software Technology,
vol. 48, pp. 971-980, 2006.

52

[10] L. Du Bousquet, F. Ouabdesselam, J. L. Richier, and N. Zuanon, "Lutess: a
specification-driven testing environment for synchronous software," presented at the
ICSE '99: Proceedings of the 21st International Conference on Software Engineering,
Los Angeles, California, United States, 1999.

[11] K. G. Larsen, M. Mikucionis, and B. Nielsen, "Online Testing of Real-time Systems
Using Uppaal," in Formal Approaches to Software Testing. Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, 2005.

[12] M. Heisel, D. Hatebur, T. Santen, and D. Seifert, "Testing Against Requirements
Using UML Environment Models," in Fachgruppentreffen Requirements
Engineering und Test, Analyse & Verifikation, 2008, pp. 28-31.

[13] N. Adjir, P. Saqui-Sannes, and K. M. Rahmouni, "Testing Real-Time Systems Using
TINA," in Testing of Software and Communication Systems. Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, 2009.

[14] C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and the Unified Process: Prentice Hall PTR Upper Saddle
River, NJ, USA, 2001.

[15] A. Arcuri, M. Z. Iqbal, and L. Briand, "Black-box System Testing of Real-Time
Embedded Systems Using Random and Search-based Testing," Technical Report,
Simula Research Laboratory, 2010.

[16] P. McMinn, "Search-based Software Test Data Generation: A Survey," Software
Testing Verification and Reliability, vol. 14, pp. 105-156, 2004.

121

Black-box System Testing of Real-Time
Embedded Systems Using Random and Search-
based Testing
Andrea Arcuri, Muhammad Zohaib Iqbal, and Lionel Briand

In: Proceedings of the 22nd IFIP International Conference on Testing Software and

Systems. Springer Berlin / Heidelberg, 2010, pp. 95-110

Abstract–Testing real-time embedded systems (RTES) is in many ways challenging.

Thousands of test cases can be potentially executed on an industrial RTES. Given the

magnitude of testing at the system level, only a fully automated approach can really scale

up to test industrial RTES. In this paper we take a black-box approach and model the

RTES environment using the UML/- MARTE international standard. Our main motivation

is to provide a more practical approach to the model-based testing of RTES by allowing

system testers, who are often not familiar with the system design but know the application

domain well-enough, to model the environment to enable test automation. Environment

models can support the automation of three tasks: the code generation of an environment

simulator, the selection of test cases, and the evaluation of their expected results (oracles).

In this paper, we focus on the second task (test case selection) and investigate three test

automation strategies using inputs from UML/MARTE environment models: Random

Testing (baseline), Adaptive Random Testing, and Search-Based Testing (using Genetic

Algorithms). Based on one industrial case study and three artificial systems, we show how,

in general, no technique is better than the others. Which test selection technique to use is

determined by the failure rate (testing stage) and the execution time of test cases. Finally,

we propose a practical process to combine the use of all three test strategies.

1. Introduction
Real-time embedded systems (RTES) represent a major proportion of the software being

developed [1]. The verification of their correctness is of paramount importance,

particularly when these RTES are used for business or safety critical applications (e.g.,

controllers of nuclear reactors and flying systems). Testing RTES is particularly

challenging since they operate in a physical environment composed of possibly large

numbers of sensors and actuators. The interactions with the environment can be bound by

122

time constraints. For example, if the RTES of a gate is informed by a sensor that a train is

approaching, then the RTES should command the gate to close down before the train

reaches the gate. Missing such time deadlines can have disastrous consequences in the

environment in which the RTES works. In general, the timing of interactions with the real-

world environment in which the RTES operates can have a significant effect on the

resulting behavior of test cases.

In this paper our objective is to enable the black-box, automated testing of RTES based

on environment models. More precisely, our goal is to make such environment modeling

as easy as possible, and allow the testers to automate testing without any knowledge about

the design of the RTES. This is typically a practical requirement for independent system

test teams in industrial settings. In addition, the test must be automated in such a way to be

adaptable and scalable to the specific complexity of a RTES and available testing

resources. By adaptable, we mean that a test strategy should enable the test manager to

adjust the amount of testing to available resources, while retaining as high a fault revealing

power as possible.

The system testing of a RTES requires interactions with the actual environment or,

when necessary and possible, a simulator. Unfortunately, testing the RTES in the real

environment usually entails a very high cost and in some cases the consequences of

failures would not be acceptable, for example when leading to serious equipment damage

or safety concerns. In our context, a test case is a sequence of stimuli, generated by the

environment or its simulator, that is sent to the RTES. If a user interacts with the RTES,

then the user would be considered as part of the environment as well. There is usually a

great number and variety of stimuli with differing patterns of arrival times. Therefore, the

number of possible test cases is usually very large if not infinite. A test case can also

contain changes of state in the environment that can affect the RTES behavior. For

example, with a certain probability, some hardware components might break, and that has

effect on the expected and actual behavior of the RTES. A test case can contain

information regarding when and in which order to trigger such changes.

Testing all possible sequences of environment stimuli/state changes is not feasible. In

practice, a single test case of an industrial RTES could last several seconds/minutes,

executing thousands of lines of code, generating hundreds of threads/processes running

concurrently, communicating through TCP sockets and/or OS signals, and accessing the

123

file system for I/O operations. Hence, systematic testing strategies that have high fault

revealing power must be devised.

The complexity of modern RTES makes the use of systematic testing techniques,

whether based on the coverage of code or models, difficult to apply without generating far

too many test cases. Alternatively, manually selecting and writing appropriate test cases

based on human expertise for such complex systems would be far too challenging and time

consuming. If any part of the specification of the RTES changes during its development, a

very common occurrence in practice, then many test cases might become obsolete and their

expected output would potentially need to be recalculated manually. The use of an

automated oracle is hence another essential requirement when dealing with complex

industrial RTES.

In this paper we present a Model-Based Testing (MBT) [2] methodology to carry out

system testing of RTES in a fully automated, adaptable, and scalable way. We tailor the

principles of Adaptive Random Testing (ART) [3] and Search-Based Testing (SBT) [4] to

our specific problem and context. For our empirical evaluation, we use Random Testing

(RT) [5] as baseline. One main advantage of ART and SBT is that it can be tailored to

whatever time and resources are available for testing: when resources are expended and

time is up, we can simply stop their application without any side effect. A coverage-based

strategy could not be, for example, interrupted at any time. Furthermore, ART and SBT

attempt, through different heuristics, to maximize the chances to trigger a failure within

time constraints. We will also see how their combined use can be helpful to gain the most

out of testing resources in practice. The RTES under test (SUT) is treated as a black box:

no internal detail or model of its behavior is required, as per our objectives. The first step is

to model the environment using the UML standard and its MARTE profile, the latter being

necessary to capture real-time properties. The use of international standards rather than

academic notations is dictated by the fact that our solutions are meant to be applied by our

industry partners. Environment models support test automation in three different ways:

 The environment models describe some of the structural and behavioral properties of

the environment. Given an appropriate level of detail, they enable the automatic

generation of an environment simulator to satisfy the specific needs of software

testing.

124

 The models can be used to generate automated oracles. These could for example be

invariants and error states that should never be reached by the environment during the

execution of a test case (e.g., an open gate while a train is passing). In general, error

states can model unsafe, undesirable, or illegal states in the environment. We used

error states as oracles in our case studies.

 Test cases can be automatically selected based on the models, using various heuristics

to maximize chances of fault detection. In our case studies we use ART and SBT.

In this paper we focus on the third item above and assess RT, ART, and SBT on the

production code of a real industrial RTES. Due to space constraints, and because our focus

in this paper is test automation, we do not explain in detail how to use UML/- MARTE to

model the environment of a RTES and how simulator code can be automatically generated

(which we investigated in [6]). To the best of our knowledge, no MBT automation results

for ART and SBT on an actual RTES have ever been reported in the research literature.

Since no freely available RTES was available, we also constructed three different artificial

RTES in order to extend our investigation and better understand the influence of various

factors on test cost-effectiveness such as the failure detection rate. The use of publicly

available artificial RTES will also facilitate future empirical comparisons with our work

since, due to confidentiality constraints, our industrial case study cannot be made public.

The paper is organized as follows. Section 2 provides an overview of related work. How

the context is modeled and simulated is shortly discussed in Section 3. Section 4 describes

the different strategies we used to generate test cases. Their empirical validation is

described in Section 5 and threats to validity are discussed in Section 6. Finally, Section 7

concludes the paper.

2. Related Work
A large body of literature has been dedicated to test RTES. For reason of space, here we

can only give a very brief and incomplete overview.

Most of the approaches to test RTES are based on violating their timing constraints [7]

or checking their conformance to a specification [8]. The specification is generally a

formal model of the system and this model is then used to generate test cases. A number of

approaches have been proposed over the years to address the above problem. The most

125

widely discussed approaches model the system using Timed Automata [9]. A number of

Timed Automata extensions, such as Timed I/O Automata [10], have also been used for

conformance testing. For the same purpose, UML statechart [11], Extended Finite State

Machines [12] and Attributed Event Grammar [13] have also been used.

There are several works using SBT techniques for testing different aspects of RTES

[14], as for example identify deadline misses [15] and testing functional properties [16].

The work presented here is significantly different from most the above approaches as

we adopt, for practical reasons presented above, a black-box approach to system testing

that relies on modeling the RTES environment rather than its internal design properties. As

noted above, this is of practical importance as independent system test teams usually do

not have easy access to precise design information.Most existing work does not focus on

system testing, hence their emphasis on modeling the RTES internal behavior and

structure. Another difference of practical importance, though this is not detailed in this

paper, is that we use UML and its standard extensions for modeling the environment. Last

but not least, as opposed to published case studies (e.g., [13, 12]), we assess our test

strategies on the actual production code of an industrial RTES.

3. Environment Modeling and Simulation
For RTES system testing, software engineers would typically be responsible for

developing the environment models. Therefore, the modeling language should be familiar

to them and therefore based on software engineering standards. In other words, it is

important to use a modeling language for environment modeling that is widely accepted

and used by software engineers. Furthermore, standard modeling languages are widely

supported in terms of tools and training. The Unified Modeling Language (UML) and its

extensions are therefore a natural choice to consider in our context. Several modeling and

simulation languages are available and can be used

Several modeling and simulation languages are available and can be used for modeling

and simulating the context (e.g., DEVS [17]). But in our case using these simulation

languages raises a number of issues, including the fact that software engineers in the

development team are usually not familiar with the notations and concepts of such

languages.

126

Higher level programming languages (such as Java or C) can also be used as simulation

languages. The major problem with the use of such languages is the low level of

abstraction at which they “model” the environment. The software engineers will have to

deal with all the programming language constructs (such as threads) while at the same time

trying to focus on the details of the environment itself.

RTES testing through an environment simulator faces the question of how time is

handled. Indeed, many properties of the RTES depend on whether some time constraints

are fulfilled or not. Ideally, we would like to be able to simulate the passing of time in a

deterministic way, but it is not always possible for large and complex RTES.

The opposite approach to time simulation would be to run the RTES with its simulated

environment using the real clock of the CPU used to run the empirical analysis. On one

hand, it has the benefit that we do not have any particular constraint on the type of RTES

that can be analyzed. On the other hand, it adds noise and variance in the scheduled time

events. If time constraints of the RTES are very tight (e.g., in the order of few

milliseconds), then this approach is not a viable option.

In our work, we have used UML/MARTE as a simulation language. Models are

developed in UML as classes and their state-machines. These models are then transformed

into Java using model to text transformations. The activities and actions are written in Java

and are converted into Java method calls. This was appropriate for the RTES considered in

this paper. For other types of RTES, different programming languages could be necessary.

Notice that our methodology is general. We chose Java only for practical reasons. In

particular, in our empirical analyses we did not face the problem of the garbage collector

interfering with time properties. The garbage collector was never called during the

execution of a test case.

4. Automated Testing
4.1. Test Case Representation

In our context, a test case execution is akin to executing the environment simulator. Each

state machine represents a component of the environment. There can be more instances of

a state machine with different settings to represent different sensors/actuators of the same

type. For example, in a gate controller RTES, we can have a state machine representing the

127

trains. For each simulated train we will have an independent running instance of that state

machine. The domain model is used to identify how many instances can or should run in

parallel for each state machine. Based on the domain model, there could be different

possible configurations of the environment, but in this paper we focus only on one fixed

configuration.

In the behavioral models of the environment (i.e., the state machines) there can be non-

deterministic parts. For example, a timeout transition could be triggered within a minimum

and a maximum time value but the exact value cannot be determined. This is very typical

when real-world components are modeled, in which for example there is always a natural

variance when time-related properties are represented. Another example is when we assign

probabilities p in the models to represent failure scenarios, as for example the breakdown

of sensors/actuators. In our context, input data of a test case are the choice of the actual

values to use in these non-deterministic events.

In our modeling methodology, we have non-deterministic choices only in the transitions

between states. They can be in the trigger, the guard and the action of the transition. A

transition might be taken several times, and this number might be unknown before

executing the test case. Therefore, for each instance of the environment state machines, for

each non-deterministic choice, we allocate in the test case a vector of possible values. The

length of this vector is l. Each time such non-deterministic choice needs to be made, a

value from the corresponding vector is selected. Because the vector has finite length l, it is

used as a ring: The values are taken in order, and after l request for values, it starts again

from the beginning of the vector. Figure 1 shows an example.

Let the transition C → D have a non-deterministic choice in [0,1], for example the

timeout T ∈ [0,1]. Given for example l = 2, we would have a data vector containing for

example {0.4, 0.32}. The first time the transition C → D is taken, the value 0.4 is used for

Figure 1. Example of a reduced UML/MARTE state machine

128

the non-deterministic choice. The second time, the value 0.32 is used. The third time, the

value 0.4 is used again, and so on.

Given n state machine instances, and m non-deterministic choices in each of them (for

simplicity, because in general instances of different machines will have a different number

of non-deterministic choices), we would have that each test case contains L = n * m * l

values, which can be represented as a vector. The choice of l is arbitrary but has significant

consequences. On one hand, a small number of possible values could make it impossible to

represent sequences of event patterns that lead to failures in the RTES. On the other hand,

a high number of possible values will lead to long vectors and might harm the

effectiveness of test selections techniques such as ART and SBT (discussed in more details

in the next sections).

In our case studies, the values to include in the test case data are chosen before the

execution of the test cases. This means that the domain of these values should be static and

not depending on the dynamic execution of the test cases. For example, if a variable is

constrained within a minimum and maximum limit, then these boundaries should be

known before test execution. This is the case for the industrial RTES analyzed in this paper

and for other RTES we have worked with. When this is not the case, we would need to

enable the choice of non-deterministic options at runtime.

4.2. Testing Strategies

As described in the previous section, a test case can be seen as a vector V. Elements in this

vector can be of different types, but their domain of valid values should be known. Given

D(i) the domain of the ith variable in V, we obtain that the number of possible valid test

cases is ∏|D(i)|, which is an extremely large number. An exhaustive execution of all

possible test cases is infeasible.

In this paper we consider the testing problem of sampling test cases to detect failures of

the RTES with automated oracles derived from the environment models. For all test

strategies, the oracle checks whether a transition to an error state specified in the model

occurs during test execution. We choose and execute test cases one at a time. We stop

sampling test cases as soon as a failure has been found. A test strategy that requires the

sampling of fewer test cases to detect failures should obviously be preferred.

129

The simplest, automated technique to choose test cases is Random Testing (RT). For

each variable in V, we simply sample a value from its domain with uniform probability.

Although RT can be considered to be a naive technique, it has been shown to be effective

in many testing situations [18, 19].

Another technique that we investigate is Adaptive RT (ART) [3], which has been

proposed as an extension of RT. The underlying idea of ART is that diversity among test

cases should be rewarded, because failing test cases tend to be clustered in contiguous

regions of the input domain. ART can be automated if one can define a meaningful

similarity function for test cases. To the best of our knowledge, we are aware of no

previous application of ART to test RTES. In this paper we use the basic ART algorithm

described in [3].

Because in our case studies all the variables in V are numerical, for the distance between

two test case data vectors V1 and V2 we use the following dis(V1, V2) ∑= abs(V1(i) -

V2(i))/|D(i)|. We sum the absolute difference of each variable weighted by the cardinality

of the domain of that variable. Often, these variables represent the time in timeout

transitions. Therefore, ART rewards diversity in the triggering time of events.

In this paper we also investigate the use of search algorithms to tackle the testing of

RTES. In particular we consider the use of Genetic Algorithms (GAs), which are the most

used search algorithms in the literature on search-based testing (SBT) [14]. To use search

algorithms to tackle a specific problem, a fitness function needs to be defined tailored to

solve that problem. Search algorithms exploit the fitness function to guide the search

toward promising areas of the search space. The fitness function is used to heuristically

evaluate how “good” a test case is. In our case, the fitness function is used to estimate how

close a test case is from triggering a failure in the RTES, that is when at least one

component of the environment enters an error state. This is once again determined by

analyzing the environment models.

To tackle the testing problem described in this paper, we developed a novel fitness

function f that can be seen as an extension of the fitness functions that are commonly used

for structural testing [4] and MBT [20]. In our case, the goal is to minimize the fitness

function f. If at least one error state is reached when a test case with test data V is executed,

then f(V) = 0. For each error state E in each state machine instance we employ the so called

approach level A and branch distance B. The approach level calculates the minimum

130

number of transitions in the state machine to reach an error state from the closest executed

state. The branch distance is used to heuristically score the evaluation of the Object

Constraint Language (OCL) constraints in the closest executed state from which the

approach level is calculated. The branch distance is used to guide the search to find test

data that satisfy those OCL constraints. A transition could be triggered several times but

never executed because the guard fails. For the branch distance, we calculate it every time

but then we only consider the minimum value it obtains. Because the branch distance is

less important than the approach level, it is normalized in the range [0,1]. We use the

following normalizing function: nor(x) = x/(x+1), which has been shown to be better than

other normalizing functions used in the literature [21]. Notice that, in the case of MBT, it is

not always possible to calculate the branch distance when the related transition has never

been triggered. In these cases, we assign to the branch distance B its highest possible value.

The extension of the fitness function we make in this paper exploits the time properties

of the RTES. Some of the transitions are triggered when a time-threshold is violated. For

example, an error state could be reached if a sensor/actuator does not receive a message

from RTES within a time limit. If such transitions exist on the path toward the execution of

the error states, then we need a way to reward test data that get the execution closer to

violate those time constraints. If a transition is taken after a threshold z, then we calculate

the maximum consecutive time t the state machine stays in the state from which that

transition can be triggered (this would be the same state from which the approach level is

calculated from). Then, to guide the search we can use the following heuristic T = z – t,

where t ≤ z.

Finally, the fitness function f for a test data vector V is defined as:

f(V) = minE AE(V) + nor (TE(V)) + nor (BE(V)))

Notice that, to collect information such as the approach level, the source code of the

simulator needs to be instrumented. This is automatically done when this code is generated

from the environment models.

Once the fitness function is defined, we can use it to guide the GA to select test cases.

But GAs have many parameters that need to be set. In this paper we use a Steady State GA

[4]. We employ rank selection with bias 1.5 to choose the parents. A single point crossover

is employed with probability Pxover = 0.75. This operator chooses a random point inside the

data vectors V of the parents sx and sy. The elements in the data vector after that splitting

131

point are swapped between the two parent solutions. Each of the L elements in a data

vector is mutated with probability 1/L. A mutation consists of replacing a value with

another one at random from the same domain. The population size is chosen to be 10. The

optimal configuration of search algorithms is in general problem dependent [22]. Due to

the large computational cost of running our empirical analysis, we have not tuned the GA.

We simply use reasonable parameter values given in the literature of GAs.

5. Empirical Study
5.1. Case Study

To validate the novel approach presented in this paper, we have applied it to test an

industrial RTES. The analyzed system is a very large and complex controller that interacts

with several sensors/actuators. The company that provided the system is a market leader in

its field. For confidentiality reasons we cannot provide full details of the system.

Information of the environment models of this RTES is provided in Table 1. Notice that for

this case study there are several state machines, and for each of them there can be one or

more instances running in parallel at the same time. For each test case, 23 instances of state

machines run in parallel, each of them can start several threads. The total number of non-

deterministic choices (NDCs) is 82. The UML/MARTE context models were developed in

IBM Rational Software Architect. Constraints, such as guards, were expressed in OCL.

To facilitate future comparisons with the techniques described in this paper, it would be

necessary to also employ a set of benchmark systems that are freely available to

researchers. Unfortunately, we have not found any RTES satisfying this criterion.

Therefore, in addition to our industrial case study, we have designed three artificial RTES,

called AP1, AP2 and AP3. Two of them are inspired by the industrial RTES used in this

paper, whereas the third is inspired by the control gate system described in [12]. The RTES

are written in Java to facilitate their use on different machines and operating systems. For

Table 1. Summary of the state machines of the environment of the industrial RTES. NDC stands for
“Non-Deterministic Choice”.

132

the same reason, the communications between the RTES and their environments are

carried out through TCP. The use of TCP was also essential to simplify the connection of

the RTES with its environment. For example, if the simulator of the environment is

generated from the models using a different target language (e.g., C/C++), then it will not

be too difficult to connect to the artificial RTES written in Java. These RTES are all

multithreaded. Table 2 summarizes the properties of these artificial RTES. In each of them,

there is only one error state. We introduced by hand a single non-trivial fault in each of

these RTES.

5.2. Experiments

We have carried out two different sets of experiments. One for the artificial problems, and

one for the industrial RTES. In all these experiments, the value l for the nondeterministic

choices is set to l = 3. This means that the number of input variables in each test case is 60

for AP1, 12 for AP2, 54 for AP3 and finally 246 for the industrial RTES.

In the first step of the experiments, we ran RT, ART and GA on each of the three

artificial problems. Because the execution of a single test case takes 10 seconds, we stop

each algorithm after 1000 sampled test case or as soon as one of the error state is reached.

Notice that the value 10 seconds is fixed, and it does not depend on the used execution

platform. Using faster hardware would not change the amount of time required to run these

experiments. The only requirement is that the hardware used for the experiments is fast

enough to sustain the CPU load without introducing delays higher than a few milliseconds.

Because in these simulations most of the time the CPU is in idle state, the computers used

in the experiments were appropriate.

For each test strategy and each case study, we ran the algorithms 100 times with

different random seeds. Because these algorithms are randomized, a large number of

experiments is required to obtain statistically significant results. The total number of

sampled test cases is hence at most 3 * 3 * 1000 * 100 = 900,000, which can take up to 104

days on a single computer. To cope with this problem, we used a cluster to run these

Table 2. Properties of the three artificial problems. LoC stands for “Lines of Code”, whereas NDC
stands for “Non-Deterministic Choice”.

133

experiments.

Given an upper bound of 1000 test cases, it is not always the case that any of the test

strategies is able to trigger a failure in the RTES. In Table 3 we report how many times

each algorithm was able to do so out of the 100 experiments. Because the process of

detecting failures in 100 experiments can be considered to be a binomial process with

unknown probability [23], we use the Fisher Exact test to compare the success rate of RT

with the ones of ART and GA. The significance level of the tests is set to 0.05. Results

show that the only case in which there is no significant difference in the success rate is for

problem AP2 when RT is compared to ART.

The second set of experiments has been carried out on an industrial RTES. In system

testing of RTES, the simulation of the environment can in general be run for any arbitrary

amount of time. But there should be enough time to render possible the execution of all the

functionalities of the RTES. For example, in the RTES for a train/gate controller, we

should run the simulation at least long enough to make it possible for a train to arrive and

then leave the gate. Choosing for how long to run a simulation (i.e., a test case) is

conceptually the same as the choice of test sequence length in unit testing [24] (i.e., many

short test cases or only few ones that are long?). But in contrast to unit testing in which

often the execution time of a test case is in the order of milliseconds, in the system testing

of RTES we have to deal with much longer execution time. In this paper, we run each test

case for 20 seconds. This choice has been made based on the properties of the RTES and

discussions with its software testers.

We evaluated the use of RT, ART and GA to find failures in this RTES. We could not

run this empirical analysis on a cluster due to technical reasons. We used a single dedicated

computer, and it took nearly ten days to run these experiments. The failure rate of the SUT

Table 3. Success rate (out of 100 runs) for the three artificial problems.

Table 4. Success rate (out of 100 runs) for the three artificial problems.

134

in these experiments was quite high, so we did not use any upper bound for the number of

sampled test cases. The results of experiments are shown in Table 4.

To analyze the results in a sound manner we carried out a set of statistical tests on the

data presented in Table 4. We used parametric t-tests to see whether there is any statistical

difference between the mean values of sampled test cases among the three analyzed

algorithms. The scientific or practical significance of these differences is evaluated using

the Cohen D coefficient. We also carried out non-parametric Mann- Whitney U tests to see

whether any of the results of these algorithms is stochastically greater than the others. The

scientific significance of this test is measured with the Vargha-Delaney A statistic. For

both t-tests and Mann-Whitney U tests the significant level is set to 0.05. For the Cohed D

coefficient (value d), we classify the effect size as follows [25]: small for abs(d) = 0.2,

medium for abs(d) = 0.5, and finally large for value abs(d) = 0.8. In the case of Vargha-

Delaney A statistic (value a), we use the following classification [26]: small for abs(a -

0.5) = 0.06, medium for abs(a - 0.5) = 0.14 and large for abs(a - 0.5) = 0.21. Table 5

summarizes the results of these statistical tests.

5.3. Discussion

In the results of the experiments on the artificial problems shown in Table 3, we can see

that no testing technique generally dominates the others. GA is statistically better on the

first problem, but it is the worst on the other two problems. Regarding RT and ART, they

are equivalent on the second problem, but RT is best on the first, whereas ART is best on

the third problem.

The results in Table 3 for GA can be precisely explained. Covering all the nonerror

states and transitions in the environment models of these problems is very easy, practically

all test strategies achieve this. The only difficult part is the transition to the error state. For

the first problem AP1, that transition is a time transition with no guard. After a time

threshold, that transition is triggered. The novel fitness function proposed in this paper can

take advantage of this information, rewarding test cases that get closer to violate that time

Table 5. Results of the statistical tests for the data in Table 4

135

constraint. In fact, for each test case we can automatically calculate the time that it spends

in the state that could lead to the error state. This automated fitness function produces an

easy fitness landscape that can be efficiently searched by GA. This explains the fact that

GA gets to the error state 90% of the time, whereas RT reaches it only in 6% of the time.

However, why do we obtain so much worse results in the other two problems AP2 and

AP3? The reason is that the fitness function in these cases is practically a needle-in-the-

haystack function. In the transition to the error state, there is a guard that is checking

whether one Boolean variable is equal to true. The value of this variable depends on the

interactions with the SUT, particularly whether a specific message has been received or

not. This type of guard in search-based testing is a known, very difficult problem denoted

as the flag problem [27]. In this case, the fitness function provides no gradient, and this

makes the search difficult. Unfortunately, testability transformations [27] cannot be used in

this case, because in our context the SUT is a black box. Even if we had access to the SUT,

it would still be problematic, because we are aware of no work dealing with the flag

problem for the system testing of concurrent programs. Though the above issue is a

limitation, in practice, we can automatically determine before running GA whether it will

work.

Though we can explain why GA does not work well on AP2 and AP3, why does it

behave even worse than RT? The reason is exactly the same for which ART is better than

RT: the diversity of the test cases. If there is no gradient in the fitness function, all the

sampled test cases would have same fitness value (i.e., the fitness landscape would have a

large plateau). So any new sampled test case would be accepted and added to the next

generation in GA. The crossover operator does not produce any new value in the data

vector V , it simply swaps values between two parent test cases. The mutator operator does

only small changes to a data vector, because on average only one variable is mutated.

During the search, the offspring have genetic material (i.e., the data vectors) that is similar

to the one of the parents. Therefore, the diversity of test cases during GA evolution is much

lower than the one of RT. If the hypothesis of contiguous regions of faulty test cases is true

for a RTES, then, when there is no gradient in the fitness function, we would a-priori

expect this following relationship regarding the performance of testing strategies: GA ≤ RT

≤ ART. For problems AP2 and AP3, this is verified in the results of Table 3.

136

In the experiments on the industrial RTES, we can see that GA is statistically worse

than the other approaches, although the difference is only small/medium in size from a

scientific point of view. The results on the industrial RTES shown in Table 4 are important

to stress out that the choice of a testing strategy is also heavily dependent on when the SUT

is tested. The version of the industrial RTES used in this paper was not a finished product.

It was in an early phase of development. The types of failure scenarios introduced with our

models were not something that was fully tested before. This explains the high failure rate

shown in Table 4. Notice that the failure rate θ can be simply estimated from the mean

value of RT, i.e. θ = 1/mean(RT). The reason is that RT follows a geometric distribution

with parameter θ, therefore mean(RT) = 1/ θ. In our case, we have θ = 1/131.9 = 0.007,

which can be considered to be a high failure rate.

5.4. Practical Guidelines

For high failure rates, it makes sense to use a simple RT instead of more sophisticated

techniques, since the expected number of sampled test cases would be low on average. In

practice, we would expect high failure rates at the beginning of the testing phase. The

failure rate would hence be expected to decrease throughout the development process as

faults get fixed. Therefore, we would expect to get good results for RT at the beginning,

but then more sophisticated techniques could be required at later stages.

Our results lead us to suggest the following heuristics to apply RT, ART, and SBT in

practice: In the early stages of development and testing, when failure rates are still high,

one should use RT as it will be very efficient and quick to detect the first failure, without

requiring any overhead like ART or SBT. One exception to this rule is when the time of

executing a test case is high (e.g., in the order of several seconds or minutes), where we

then suggest to use ART as one should enforce test execution diversity to prevent the

execution of too many test cases. Once the failure rate decreases due to the fixing of easy-

to-detect faults, then use SBT, but only if a proper fitness function can be derived

automatically from the models, that is a fitness function that is likely to provide effective

guidance for the search of failing test cases. Otherwise, use RT. ART should not be used

when the failure rate is low as the overhead of distance calculations would get too high,

due to the large number of test cases executed.

137

Figure 2 summarizes the above heuristic in a decision tree and it shows when to apply

each testing technique. We provide practical advice regarding when to switch from ART to

RT below. But for the switch from RT to SBT, we need more empirical/theoretical

analyses to provide practical guidelines.

In the literature, it has been shown that ART can be twice as fast as RT [3]. Let us

consider ttc the execution time of a test case, tdis the execution time of a distance calculation

with d the total number of distances computed, θ the failure rate, E[RT] and E[ART] the

expected number of test cases sampled by RT and ART. We know that E[RT] = 1/θ and

that, under optimal conditions, E[ART] = E[RT]/2. We can develop a heuristic that is

based on the following equation: E[RT]·ttc = E[ART]·ttc + d·tdis, which is a loose

approximation to determine the failure rate θ above which ART is going to yield better

results than RT. From that equation, it follows θ* ≈ tdis/4·ttc. This optimal threshold for

ART for the failure rate can be estimated before test execution. Finally, we can suggest to

run ART for ½ θ* iterations, but only as long as the number of sampled test cases is not

high enough to make the decision to switch to SBT. The above recommendations are

heuristics and will need to be evaluated and refined as we gather more empirical data.

6. Threats to validity
Due to the complexity of the industrial RTES used in the empirical study of this paper,

we could not run the RTES and its simulated environment in such a way to obtain a precise

and deterministic handling of clock time. We used the CPU clock instead. This could be

unreliable if time constraints in the RTES are very tight, as for example in the order of

milliseconds, because these constraints could be violated due to unpredictable changes of

load balance in the CPU because of unrelated processes. Although the time constraints in

Figure 2. Decision tree and and application timeline of the three analyzed testing strategies.

138

this paper were in the order of seconds, the problem could still remain. To evaluate

whether our results are reliable, we hence selected a set of experiments, and we re-ran

them again with exactly the same random seeds. We obtained equivalent results. For

example, if RT for a particular seed obtained a failing test case after sampling 43 test

cases, then, when we ran it again with the same seed, it was still requiring exactly 43 test

cases. However, the experiments were not exactly the same. For example, for debugging

purposes we used time stamps on log files. In these time stamps, small variances of a few

milliseconds were present, but this did not have any effect on the testing results. Notice

that our novel methodology can obviously be applied also when time clocks are simulated.

7. Conclusion
In this paper we proposed a black-box system testing methodology, based on

environment modeling and various heuristics for test case generation. The focus on black-

box testing is due to the fact that system test teams are often independent from the

development team and do not have (easy) access to system design expertise. Our objective

is to achieve full system test automation that scales up to large industrial RTES and can be

easily adjusted to resource constraints. The environment models are used for code

generation of the environment simulator, selecting test cases, and the generation of

corresponding oracles. The only incurred cost by human testers is the development of the

environment models. This paper, due to space constraints, has focused on the testing

heuristics and an empirical study to determine the conditions under which they are

effective, plus guidelines to combine them in practice.

In contrast to most of the work in the literature, the modeling and the experiments were

carried out on an industrial RTES in order to achieve maximum realism in our results.

However, in order to more precisely understand under which conditions each test heuristic

is appropriate and how to combine them, we complemented this industrial study with

artificial case studies, that will be made publicly available to foster future empirical

analyses and comparisons.

We experimented with different testing heuristics, which have the common property to

be easily adjustable to available time and resources: Random Testing (RT), Adaptive

Random Testing (ART) and Search-Based Testing using Genetic Algorithms (GAs). All

these techniques can be adjusted to project constraints as they can be run as long as time

139

and access to CPU are available. Though RT was originally used as comparison baseline, it

turned out to be the best alternative under certain conditions.

On the artificial problems, in one case GA is the best search algorithm, and the

difference is very large. But on the other two cases, GA has the worst results, which are

due to poor fitness functions. In one case RT and ART are equivalent, but in the other two,

RT is better in one case and worse in the other.

However, on the industrial RTES, results are quite different from the artificial case

studies: there is no statistical difference between RT and ART, whereas GA is slightly

worse than the others (the effect size is between small and medium). After investigation,

this was found to be due to the RTES high failure rate and a fitness function that offered

little guidance to the search due to a Boolean guard condition. To support the claims

above, we followed a rigorous experimental method based on five types of statistical

analyses.

Based on our results, we have provided practical guidelines to apply the three testing

techniques described in this paper, i.e. RT, ART, and GA. In fact, none of them dominates

the others in all testing conditions and they must be, in practice, combined to achieve better

results. However, more empirical and theoretical studies are needed to develop more

precise, practical guidelines.

One current limitation of our testing approach is that the domains of valid values for the

non-deterministic test inputs need to be static: they should be known before test case

execution. Research will need to be carried out to design novel testing strategies for non-

deterministic inputs that can only be determined at runtime.

Acknowledgements
The work described in this paper was supported by the Norwegian Research Council. This

paper was produced as part of the ITEA-2 project called VERDE.

8. References
[1] Douglass, B.P.: Real-time UML: developing efficient objects for embedded systems.

Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA (1997)
[2] Utting, M., Legeard, B.: Practical model-based testing: a tools approach. Elsevier

(2007)

140

[3] Chen, T.Y., Kuoa, F., Merkela, R.G., Tseb, T.: Adaptive random testing: The art of
test case diversity. Journal of Systems and Software (JSS) (2010) (in press).

[4] McMinn, P.: Search-based software test data generation: A survey. Software Testing,
Verification and Reliability 14(2) (2004) 105–156

[5] Myers, G.: The Art of Software Testing. Wiley, New York (1979)
[6] Iqbal, M.Z., Arcuri, A., Briand, L.: Environment Modeling with UML/MARTE to

Support Black-Box System Testing for Real-Time Embedded Systems: Methodology
and Industrial Case Studies. In: ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems (MODELS). (2010)

[7] Clarke, D., Lee, I.: Testing real-time constraints in a process algebraic setting. In:
IEEE International Conference on Software Engineering (ICSE). (1995) 51–60

[8] Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Formal
Methods in System Design 34(3) (2009) 238–304

[9] Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Science
126 (1994) 183–235

[10] En-Nouaary, A.: A scalable method for testing real-time systems. Software Quality
Journal 16(1) (2008) 3–22

[11] Miicke, T., Huhn, M.: Generation of optimized testsuites for UML statecharts with
time. In: IFIP international conference on testing of communicating systems. (2004)
128–143

[12] Zheng, M., Alagar, V., Ormandjieva, O.: Automated generation of test suites from
formal specifications of real-time reactive systems. Journal of Systems and Software
(JSS) 81(2) (2008) 286–304

[13] Auguston, M., Michael, J.B., Shing, M.T.: Environment behavior models for
automation of testing and assessment of system safety. Information and Software
Technology (IST) 48(10) (2006) 971–980

[14] Harman, M., Mansouri, S.A., Zhang, Y.: Search based software engineering: A
comprehensive analysis and review of trends techniques and applications. Technical
Report TR-09-03, King’s College (2009)

[15] Garousi, V., Briand, L.C., Labiche, Y.: Traffic-aware stress testing of distributed
real-time systems based on uml models using genetic algorithms. Journal of Systems
and Software (JSS) 81(2) (2008) 161–185

[16] Lindlar, F., Windisch, A., Wegener, J.: Integrating model-based testing with
evolutionary functional testing. In: International Workshop on Search-Based
Software Testing (SBST). (2010)

[17] Zeigler, B.P., Praehofer, H., Kim, T.G.: Theory of modeling and simulation.
Academic press New York, NY (2000)

[18] Duran, J.W., Ntafos, S.C.: An evaluation of random testing. IEEE Transactions on
Software Engineering (TSE) 10(4) (1984) 438–444

[19] Arcuri, A., Iqbal, M.Z., Briand, L.: Formal analysis of the effectiveness and
predictability of random testing. In: ACM International Symposium on Software
Testing and Analysis (ISSTA). (2010)

[20] Lefticaru, R., Ipate, F.: Functional search-based testing from state machines. In:
IEEE International Conference on Software Testing, Verification and Validation
(ICST). (2010) 525–528

[21] Arcuri, A.: It does matter how you normalise the branch distance in search based
software testing. In: IEEE International Conference on Software Testing,
Verification and Validation (ICST). (2010) 205–214

141

[22] Wolpert, D.H.,Macready,W.G.: No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation 1(1) (1997) 67–82

[23] Feller, W.: An Introduction to Probability Theory and Its Applications, Vol. 1. 3 edn.
Wiley (1968)

[24] Arcuri, A.: Longer is better: On the role of test sequence length in software testing.
In: IEEE International Conference on Software Testing, Verification and Validation
(ICST). (2010) 469–478

[25] Cohen, J.: A power primer. Psychological bulletin 112(1) (1992) 155–159
[26] Vargha, A., Delaney, H.D.: A critique and improvement of the CL common language

effect size statistics of McGraw and Wong. Journal of Educational and Behavioral
Statistics 25(2) (2000) 101–132

[27] Harman, M., Hu, L., Hierons, R.,Wegener, J., Sthamer, H., Baresel, A., Roper, M.:
Testability transformation. IEEE Transactions on Software Engineering 30(1) (2004)
3–16

142

Empirical Investigation of Search Algorithms for
Environment Model-Based Testing of Real-Time
Embedded Software

Muhammad Zohaib Iqbal, Andrea Arcuri, Lionel Briand
In: Proceedings of the International Symposium on Software Testing and Analysis (ISSTA),
ACM, 2012 (to appear).

Abstract–System testing of real-time embedded systems (RTES) is a challenging task and

only a fully automated testing approach can scale up to the testing requirements of industrial

RTES. One such approach, which offers the advantage for testing teams to be black-box, is to

use environment models to automatically generate test cases and oracles and an environment

simulator to enable earlier and more practical testing. In this paper, we propose novel

heuristics for search-based, RTES system testing which are based on these environment

models. We evaluate the fault detection effectiveness of two search-based algorithms, i.e.,

Genetic Algorithms and (1+1) Evolutionary Algorithm, when using these novel heuristics and

their combinations. Preliminary experiments on 13 carefully selected, non-trivial artificial

problems, show that, under certain conditions, these novel heuristics are effective at bringing

the environment into a state exhibiting a system fault. The heuristic combination that showed

the best overall performance on the artificial problems was applied on an industrial case study

where it showed consistent results.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging

General Terms

Experimentation, Verification.

Keywords

Automated model-based testing, real-time embedded systems, search-based software

engineering, branch distance.

143

1. Introduction
Real-time embedded systems (RTES) are part of a vast majority of computing devices

available today. They are widely used in critical domains where high system dependability is

required. These systems typically work in environments comprising of large numbers of

interacting components. The interactions with the environment can be bound by time

constraints. For example, if a gate controller RTES on a railroad intersection is informed by a

sensor that a train is approaching, then the RTES should command the gate to close before the

train reaches it. Missing such time deadlines, or missing them too often for soft real-time

systems, can lead to serious failures leading to threats to human life or the environment. There

is usually a great number and variety of stimuli from the RTES environment with differing

patterns of arrival times. Therefore, the number of possible test cases is usually very large if

not infinite. Testing all possible sequences of stimuli is not feasible. Hence, systematic

automated testing strategies that have high fault revealing power are essential for effective

testing of industry scale RTES. The system testing of a RTES requires interactions with the

actual environment. Since, the cost of testing in actual environments tends to be high,

environment simulators are typically used for this purpose.

In our earlier work, we proposed an automated system testing approach for RTES software

based on environment models [1, 2]. The models are developed according to a specific

strategy using the Unified Modeling Language (UML) [3], the Modeling and Analysis of

Real-Time Embedded Systems (MARTE) profile [4] and our proposed profile for environment

modeling [5]. These models of the environment were used to generate an environment

simulator [6], test cases, and obtain test oracle [1, 2]. We applied various testing strategies to

generate test cases, including search-based strategies, which turned out not to work very well

as even Random Testing (RT) [7] fared better.

In our context, a test case is a sequence of stimuli generated by the environment that is sent

to the RTES. If a user interacts with the RTES, then she would be considered part of the

environment as well. A test case can also include changes of state in the environment that can

affect the RTES behavior. For example, with a certain probability, some hardware components

might break, and that affects the expected and actual behavior of the RTES. A test case can

contain information regarding when and in which order to trigger such changes. So, at a higher

level, a test case in our context can be considered as a setting specifying the occurrence of all

144

these environment events in the simulator. Explicit “error” states in the models represent states

that should never be reached if the RTES is correct. If any of these error states is reached, then

it implies a faulty RTES. Error states act as the oracle of the test cases, i.e., a test case is

successful in triggering a fault in the RTES if an error state of the environment is reached

during testing.

In this paper, we further extend the fitness function proposed in [1] to improve the

disappointing results we had obtained with search-based testing. For this purpose, we present

four new heuristics that are aimed to exploit potentially useful characteristics of the

environment models. We evaluate the fault detection effectiveness of the new heuristics and

their combinations by first performing a series of experiments on 13 artificial RTES that we

developed based on the specifications of two industrial case studies. For all heuristics, we used

two search algorithms: Genetic Algorithms (GA) and (1+1) Evolutionary Algorithms (EA).

We also ran RT on the problems as a comparison baseline. We then ran the heuristic

combination that on average showed best results for the artificial problems on an industrial

case study of a marine seismic acquisition system, which was developed by a company

leading in this industry sector. We only ran the best combination because executing test cases

on the industrial case study is very time consuming and we could not, for technical reasons,

run it on a cluster. We compared the performance of RT and this heuristic combination when

used with GA and (1+1)EA on the industrial case study.

The rest of the paper is organized as follows: Section 2 provides a background of the work.

Section 3 discusses related work. Section 4 provides an introduction to the earlier proposed

environment modeling methodology and testing approach. Section 5 discusses the new search

heuristics, whereas Section 6 discusses the empirical study carried out to evaluate the new

search heuristics. Finally, Section 7 concludes the paper.

2. Background
Several software engineering problems can be reformulated as a search problem, such as test

data generation [8]. An exhaustive evaluation of the entire search space (i.e., the domain of all

possible combinations of problem variables) is usually not feasible. There is a need for

techniques that are able to produce “good’’ solutions in reasonable time by evaluating only a

tiny fraction of the search space. Search algorithms can be used to address this type of

145

problem. Several successful results by using search algorithms are reported in the literature for

many types of software engineering problems [9].

To use a search algorithm, typically a fitness function needs to be defined that is used to

guide the search algorithms toward fitter solutions. The fitness function should be able to

evaluate the quality of a candidate solution (i.e., an element in the search space). The fitness

function is problem dependent, and proper care needs to be taken for developing adequate

fitness functions. Eventually, given enough time, a search algorithm will find a satisfactory

solution.

There are several types of search algorithms. Genetic Algorithms (GA) are the most well-

known [9], and they are inspired by the Darwinian evolution theory. A population of

individuals (i.e., candidate solutions) is evolved through a series of generations, where

reproducing individuals evolve through crossover and mutation operators. (1+1) Evolutionary

Algorithm (EA) is simpler than GAs, in which only a single individual is evolved with

mutation.

To cope with several problems related to combining together different heuristics/objectives

with different priorities, we rather use an order function h. An order function takes two

solutions as parameters and returns whether the first is better, equivalent, or worse than the

second solution (e.g., by returning 1, 0, and -1 respectively). For a search algorithm, an order

function h can always replace a fitness function f as long as the raw fitness values are not used

besides comparing solutions’ fitness. For example, h can be used in a GA using tournament or

rank selection, but not for fitness proportional selection. For more details, examples and

discussions regarding order functions for search algorithms in software testing can be found in

[10].

3. Related Work
Depending on the goals, testing of RTES can be performed at different levels: model-in-the-

loop, hardware-in-the-loop, processor-in-the-loop, and software-in-the-loop [11]. Our

approach falls in the software-in-the-loop testing category, in which the embedded software is

tested on the development platform with a simulated environment. The only variation is that,

rather than simulating the hardware platform, we use an adapter that forwards the signals from

the system under test (SUT) to the simulated environment. This helps focus on testing the

146

embedded software. This approach is especially helpful when the software is to be deployed

on multiple hardware platforms or the target hardware platform is stable (such as the case with

our industry partners, working in the area of marine seismic acquisition and automated bottle

recycling machines).

A large body of research has been carried out for RTES testing. Most of these approaches

are based on testing the violation of timing constraints [12] or checking their conformance to a

specification [13]. The specification is generally a formal model of the system and this model

is then used to generate the test cases. As specification of the system, a number of approaches

use Timed Automata or one of its extensions (e.g., [14]). For the same purpose, UML

statechart [15], Extended Finite State Machines [16] and Attributed Event Grammar [17] have

also been used. There are also several works using search-based testing techniques for testing

different aspects of RTES, as for example identify deadline misses [18]. Most of the work on

search-based software testing has been focused on unit testing [19], and not system level

testing as we do in this paper.

There are also a few works discussing RTES testing based on environment models rather

than system models. Auguston et al. [17] discusses the development of environment

behavioral models using an event grammar for testing of RTES. The behavioral models

contain details about the interactions with the SUT and possible hazardous situations in the

environment. Heisel et al. [20] propose the use of a requirement model and an environment

model along with the model of the SUT for testing. Adjir et al. [21] discuss a technique for

testing RTES based on the system model and assumptions in the environment using Labeled

Prioritized Timed Petri Nets. Larsen et al. [22] propose an approach for online RTES testing

based on time automata to model the SUT and environmental constraints. Peleska et al. [23]

present a benchmark model for testing RTES in the automotive domain. Their testing

methodology uses information from environment models and system models to obtain test

cases.

The work presented here is significantly different from most the above approaches as we

adopt, for practical reasons, a black-box approach to system testing that relies exclusively on

modeling the RTES environment rather than its internal design properties. This is of practical

importance as independent system test teams usually do not have easy access to precise design

information. Most existing works do not focus on system testing, hence their emphasis is on

147

modeling the RTES internal behavior and structure. Another difference of practical

importance, though this is not in the focus of this paper, is that we use UML and its standard

extensions for modeling the environment [5].

4. Environment Modeling and Model-based Testing
This section introduces our previous work on which we build in this paper.

4.1 Environment Modeling & Simulation
For RTES system testing, as we observed among our industry partners, software engineers

familiar with the application domain would typically be responsible for developing the

environment models. Therefore, we selected UML and its extensions as the environment

modeling language. As a standard modeling language, it is widely taught and accepted by

software engineers and supported by a broad range of tools and training material, all of which

being important considerations for successful industry adoption.

The environment models consist of a domain model and several behavioral models. The

domain model captures the structural details of the RTES environment, such as the

environment components, their relationships, and their characteristics. The behavior of the

environment components is captured by state machines. These models are developed, based on

our earlier proposed methodology by using UML, MARTE, and our proposed profile for

environment modeling [5]. These models not only include the nominal functional behavior of

the environment components (e.g., booting of a component) but also include their robustness

(failure) behavior (e.g., break down of a sensor). The latter are modeled as failure states in the

environment models. The behavioral models also capture what we call error states. These are

the states of the environment that should never be reached if the SUT is implemented correctly

(e.g., no incorrect or untimely message from the SUT to the environment components).

Therefore, error states act as oracles for the test cases.

An important feature of these environment models is that they capture the non-determinism

in the environment, which is a common characteristic for most RTES environments Non-

determinism may include, for example, different occurrence rates and patterns of signals,

failures of components, or user commands. The environment modeling profile provides

special constructs to model non-deterministic behavior of the environment. Each environment

148

component can have a number of non-deterministic choices whose exact values are selected at

the time of testing. Java is used as an action language and OCL (Object Constraint Language)

is used to specify constraints and guards. In general, for the type of system testing we do, a

communication layer is needed to make the simulated environment communicate with the

actual RTES (e.g., to receive stimuli and to send responses). Such a communication layer is

written by the software engineer separately from the models. This allows for the simulators

and models to be independent of the language in which SUT is written.

Using model to text transformations, the environment models are automatically

transformed into environment simulators implemented in Java. The transformations follow

specific rules that we discussed in detail in [6]. During simulation a number of instances can

be created for each environment component, which interact with each other and the SUT (for

example multiple instances of a sensor component). The generated simulators are linked with

the test framework that provides the appropriate values for each simulation execution. For all

our case studies, the generated simulators communicate with the SUT using TCP sockets. The

choice of Java and TCP is based on actual requirements of one of our industrial partners,

where the RTES under study involves soft real-time constraints.

Environment simulation is an important feature for the type of testing that we do. Our

target systems are typically reactive systems and depending on their internal states, they may

behave differently to the same environment stimuli. Therefore, in some cases, the exact

response from the SUT to a particular environment event cannot be determined before

execution. Environment models are developed in a way that they accept different responses of

the SUT that may be triggered as a result of the environment events, including invalid

responses that lead to error states. The simulation allows the environment to handle such non-

determinism in the SUT, since depending on the response of SUT, the environment can

simulate any of the modeled behavior.

4.2 Environment Model-Based Testing
In our context, a test case execution is akin to executing the environment simulator. The

domain model represents various components in the RTES environment. As mentioned earlier,

during a simulation there can be multiple instances for each of the environment components

and multiple components run in parallel to form the RTES environment. During the

simulation, values are required for the non-deterministic choices in the environment models. A

149

test case in our context provides information for both the number of instances for each

component (which we refer to as the environment configuration) and the values for various

non-deterministic choices (referred to as the simulation configuration). For the scope of this

paper, we only consider one fixed environment configuration; therefore in the rest of the

paper, a test case is alternatively used for referring to a simulation configuration.

A test case can be seen as a test data matrix, where each row provides a series of values for

a non-deterministic choice of the environment component (the number of rows is equal to the

number of non-deterministic choices). Each time a non-deterministic choice needs to be made,

a value from the corresponding matrix row is selected. During simulation, a query for a non-

deterministic choice can be made several times and the number of queries cannot be

determined before simulation. To resolve this problem, each matrix row (a data vector) can be

represented in two possible forms: a fixed length ring or a variable length vector. On one hand,

in the fixed-length ring vector, the vector is considered as a ring and upon reaching the end/tail

of the vector. Then, the values are again selected from the start/head of the vector. On the

other hand, in the variable size vector, whenever the end of a vector is reached, its size is

increased at run time and new values are added. In our earlier work [2], we evaluated the

effect of the representations and starting lengths of the test data vectors on the fault detection

effectiveness.

In our earlier work, we applied various testing strategies to generate test cases from the

environment models [1]. For search-based testing, we developed a new fitness function f that

can be seen as an extension of the fitness function developed for model-based testing based on

system specifications [24]. The original fitness function uses the so-called “approach level”

and normalized “branch distance” to evaluate the fitness of a test case. For environment

model-based testing, we introduced the novel concept of normalized “time distance”. In our

context, the goal is to minimize the fitness function f, which heuristically evaluates how far a

Figure 1. A dummy state machine to explain search heuristics

150

test case is from reaching an error state. If a test case with test data m is executed and an error

state of the environment model is reached, then f(m) = 0.

The approach level (A) refers to the minimum number of transitions in the state machine

that are required to reach the error state from the closest executed state. Figure 1 shows a

dummy example state machine to elaborate the concept. The state named Error is the error

state. Events e1, e2, and e3 are signal events, whereas events after “t, s”, after “t1, ms”, and

after “t2, ms” are time events with t, t1, and t2 as the time values and ms and s as time units.

Events e3 and after “t, s” are guarded by constraints using OCL. If the desired state is Error

and the closest executed state was State5, then the approach level is 1.

The approach level rewards test case executions that get closer to an error state, but it does

not provide any gradient (guidance) to solve the possible guards on the state transitions. The

branch distance (B) is used to heuristically score the evaluation of the guards (if any) on the

outgoing transitions from the closest executed state. In [25] we have defined a specific branch

distance function for OCL expressions that is reused here for calculating the branch distance.

In the dummy state machine in Figure 1, we need to solve the guard “y > 0” so that whenever

e4 is triggered, then the simulation can transition to the Error state. Note that branch distance

is less important than approach level, since it is required only when the transition towards an

error state is guarded and the approach level cannot be reduced any further. Therefore, we

normalized the branch distance in the range of 0 to 1 [10].

The third important part of the fitness function is the time distance (T), which comes into

play when there are timeout transitions in the environment models. For example, in Figure 1,

the transition from State2 to Error is a timeout transition. If a transition should be taken after z

time units, but it is not, we calculate the maximum consecutive time c the component stayed in

the source state of this transition (e.g., State2 in Figure 1). To guide the search, we use the

following heuristic: T = z – c, where c ≤ z. Again, the importance of time distance is less than

that of approach level, therefore it is normalized in the range 0 to 1. The fitness function f

using these three heuristics for a test data matrix m is defined as:

f(m)= mine ((Ae(m) + nor(Te(m)) + nor(Be(m))) (1)

where for an error state e, Ae represents the approach level, Te represents the time distance, and

Be represents the branch distance. nor() is the normalizing function. For guarded time

transitions, Be was only calculated after the corresponding time event was triggered. Since,

151

there can be multiple error states in the environment models, the function f(m) only takes the

minimum value over all error states (represented by mine in (1)).

The results when using this fitness function, as reported in [1], were disappointing. The

branch distance was calculated for the guards only after an event was triggered and this

worked fine for signal events. But for time events, this meant that to get the branch distance,

we first needed to trigger the time event. For this we focused first on reducing the time

distance and then calculated the branch distance. It turned out that this assumption of favoring

reduction of time distance whenever there is a time transition was naive. In situations where

the time transition had a guard, a test case with less time distance but with a greater branch

distance was considered to be better than a test case with greater time distance but lower

branch distance. However, there is no purpose in reducing the time distance (i.e., the error

state will not be reached) if at the end the transition is not fired because the guard is false.

5. Improved Fitness Function
In this section, we present novel improvements in the fitness function f for environment

model-based testing of RTES. As mentioned earlier, for problems related to combining

various heuristics/objectives with different priorities, we can replace the use of a fitness

function f with an order function h. For two test data matrices m1 and m2, the function h will

return 1, 0, or -1 if m1 is better, equal, or worse than m2, respectively.

Following, based on f(m) we define a basic order function h for two test data matrices (m1,

m2) that will be reused for definition of order functions for the three new heuristics: Time In

Risky State (TIR), Risky State Count (RSC), and Coverage (COV).

where for a set of error states es, Amin(m) is defined as the minimum approach level for the

matrix m over es, Bmin(m) as the minimum branch distance for m over es, and Tmin(m) as

minimum time distance for m over es. Amin takes precedence on Bmin and Tmin, and Bmin takes

precedence on Tmin. This is simply reflecting the relative importance of these three heuristics.

h(m1,m2)=

1 if Amin(m1)<Amin(m2) or (Amin(m1)=Amin(m2) and
 Bmin(m1) < Bmin(m2)) or (Amin(m1)=Amin(m2) and
 Bmin(m1)= Bmin(m2) and Tmin(m1) < Tmin(m2))

0 if Amin(m1)=Amin (m2) and Bmin(m1)= Bmin(m2) and
 Tmin(m1)=Tmin(m2))

-1 otherwise (2)

152

5.1 Improved Time Distance (ITD)
We improved the way the basic time distance was calculated in the earlier fitness function.

The motivation behind the improved time distance is that to avoid fitness plateaus, a test case

with a lower branch distance for a time transition should be preferred over the one having

greater branch distance, irrespective of the time distance. This is due to the fact that during

environment simulation, changing the values of a test case often has a direct impact on the

time distance and it should therefore be easier to reduce it than the branch distance. For

example in Figure 1, the time transition after “t, s” is guarded by [x > 0]. A test case with a

positive value greater than 0 for x will be considered better than a test case with a negative or

0 value for x, irrespective of the value of t. The value of t is considered only after the branch

distance of the guard equals 0. For this, we introduced the concept of a look-ahead branch

distance (LB) for time transitions, which represents the branch distance of OCL guard on a

time transition when it is not fired (i.e., the timeout did not occur). Because OCL evaluations

are free from side-effects [25], this does not lead to any particular problem. The order function

for two test data matrices m1 and m2 using this heuristic is:

where for the set of error states es and a given error state e es, Amin(m) represents the

minimum approach level for matrix m over es, Bmin(m) is the minimum branch distance for m

over es, LBe(m) represents the look-ahead branch distance for m for the error state e, and Te(m)

represents the time distance for m over e.

h(m1,m2)=

ITDe(m1,m2)=

1 if Amin(m1)<Amin(m2) or (Amin(m1)=Amin(m2) and Bmin(m1)
< Bmin(m2)) or (Amin(m1)=Amin(m2) and Bmin(m1)=
Bmin(m2) and ITDmin(m1,m 2) = 1)

0 if Amin(m1)=Amin (m2) and Bmin(m1)= Bmin(m2) and
ITDmin(m1, m2)=0)

-1 otherwise (3)

1 if LBe (m1) < LBe (m2) or (LBe (m1) = LBe (m2) and
Te(m1) < Te(m2))

0 if (LBe (m1) = LBe (m2) and Te(m1) = Te(m2))

-1 otherwise

153

5.2 Time in Risky State (TIR)
A “risky state” is defined as a state adjacent to the error state (i.e., approach level = 1). For the

order function, when two test cases have the same Amin, Bmin, and Tmin, then a test case that

spends more time in risky states should have higher fitness. The motivation behind this

heuristic is that, the more time spent in a risky state, the higher the chances of events

happening in the environment or SUT leading to the error state (e.g., receive a signal from the

SUT). For example, for the state machine shown in Figure 1, this heuristic will favor the test

cases that spend more time in the risky states State2 or State5. For instance in State2, it is

possible to increase the value of t1 in the time event after “t1, ms”, which will increase the

time spent in this state. The overall order function based on h defined in (2), is given as:

where TIRsum(m) is the sum of time spent in risky states for all error states and the test data

matrix m.

5.3 Risky State Count (RSC)
This heuristic is also based on utilizing the concept of risky states: When two test cases have

the same Amin, Bmin, and Tmin, then a test case that enters a risky state more often should be

preferred over a test case that does so less often. For example, for the state machine shown in

Figure 1, this heuristic will assign higher fitness to the test cases that make the component

enter State2 more often, i.e., transitions to State4 and come back. This would for instance

result in minimizing the values of t1 and t2 for the timeout transitions after “t1,s” and after

“t2,s” to increase the risky state count. Note that the heuristic will only be useful for the cases

that allow a loop back to a risky state. The overall order function based on the basic order

function h defined in (2) is:

h'(m1,m2)=

h'(m1,m2)=

h(m1, m2) if h(m1, m2) != 0

1 if h(m1, m2) = 0 and TIRsum(m1) > TIRsum(m2)

0 if h(m1, m2) = 0 and TIRsum(m1) = TIRsum(m2)

-1 otherwise

h(m1, m2) if h(m1, m2) != 0

1 if h(m1, m2) = 0 and RSCsum(m1) > RSCsum(m2)

0 if h(m1, m2) = 0 and RSCsum(m1) = RSCsum(m2)

-1 otherwise

154

where RSCsum(m) is total count of transitions made to all risky states for the test data matrix m.

5.4 Increase in Coverage (COV)
This heuristic is based on the concept of coverage of environment models. This heuristic,

when two test cases have the same Amin, Bmin, and Tmin, calculates the environment coverage

and assign higher fitness to the test cases that cover more environment states.

The idea behind this heuristic is to increase the coverage of the environment models when

the approach level, branch distance and time distance can no longer be improved. The

assumption is that having higher environment coverage will result in more diversity in the test

cases, which might lead to situations that help reach the error state. For example in Figure 1,

this heuristic will favor a test case that visited State4 over a test case that did not. The idea is

to explore more states and transitions in the environment models. The overall order function

for COV based on h (2) is:

where COVsum(m) is the total coverage for all error states.

5.5 Combination of heuristics
Apart from the individual heuristics, we also investigate their combinations. In total, for the

latter three heuristics (TIR, RSC, and COV) there are eight possible combinations. They can be

combined with the basic order function h and an order function containing the improved time

distance ITD instead of T in h, which results in a total of 16 possible combinations

where comb(m) is a given combination of the heuristics.

When combining these heuristics, we follow the Pareto dominance principle - a key

concept for multi-objective optimization in evolutionary algorithms [26]. In our context this

means that, given a combination of heuristics, a test data matrix m1 will dominate another

h'(m1,m2)=

h'(m1,m2)=

h(m1, m2) if h(m1, m2) != 0

1 if h(m1, m2) = 0 and COVmin(m1) > COVmin(m2)

0 if h(m1, m2) = 0 and COVmin(m1) = COVmin(m2)

-1 otherwise

h(m1, m2) if h(m1, m2) != 0

1 if h(m1, m2) = 0 and comb (m1) > comb(m2)
0 if h(m1, m2) = 0 and comb (m1) = comb(m2)

-1 otherwise

155

matrix m2, if it is better than m2 for at least one heuristic and is not worse than m2 in any of the

other heuristics. The reasons for using a Pareto dominance is that, in contrast to approach level

and branch distance, we do not know which is the most important heuristic among the three

that were proposed: this is a research question that we address in this paper.

6. Empirical Study
The objective of this empirical study is to evaluate the effectiveness, in terms of fault

detection, of the proposed heuristics and their combinations. We selected two search

algorithms for this empirical study: Genetic Algorithms (GA) and (1+1)Evolutionary

Algorithm (EA). Though (1+1) EA is simpler than GA, it has shown better results in our

previous testing works (e.g., [25]). We use the convention Algorithm-Heuristic to denote an

algorithm using a heuristic or its combination. For example, to denote that GA is used with the

basic fitness function defined in (1), we use the terms GA-Basic.

6.1 Case Study
For the sake of experimenting with diverse environment models and RTES, we developed 13

different artificial RTES that were inspired by two industrial cases we have been involved

with [5] and one case study discussed in the literature [16]. Since, there are no benchmark

RTES available to researchers, we specifically designed these artificial problems to conduct

our experiments (called AP1 – AP13). The goal while developing the models of these RTES

was to vary various characteristics of the environment models (e.g., guarded time transitions,

loops) in order to evaluate the impact of these characteristics on the test heuristics. We could

not have covered such variations in environment models with one or even a few industrial case

studies, hence the motivation to develop artificial cases. Nine of these artificial problems were

inspired by a marine seismic acquisition system developed by one of our industrial partners.

These problems covered various subsets of the environment of the industrial RTES. Three of

the 13 problems were inspired by the behavior of another industrial RTES (part of an

automated recycling machine) developed by another industrial partner. The thirteenth artificial

problem was inspired by the train control gate system described in [16].

The industrial case study we also report on is a very large and complex seismic acquisition

system that interacts with several sensors and actuators. The timing deadlines on the

156

environment are in the order of hundreds of milliseconds. The company that provided the

system is a market leader in its field. For confidentiality reasons we cannot provide full details

of the system. The SUT consists of two processes running in parallel, requiring a high

performance, dedicated machine to run.
Table 1. Summary of environment models*

Problem Guard on
Path

Time
transition on

Path

Loop to
Risky State

Guard on Error
Transition

Tine Transition
to Error State

Approach to
Risky State

AP1 Yes Yes No Yes Yes Non-trivial
AP2 Yes Yes No Yes Yes Non-trivial
AP3 No Yes No No Yes Non-trivial
AP4 No Yes No No Yes Non-trivial
AP5 No Yes No No Yes Non-trivial
AP6 Yes Yes Yes Yes Yes Non-trivial
AP7 Yes Yes Yes Yes Yes Non-trivial
AP8 Yes Yes Yes Yes Yes Non-trivial
AP9 No No Yes No No Trivial
AP10 Yes Yes Yes Yes Yes Trivial
AP11 Yes Yes No Yes Yes Trivial
AP12 Yes Yes No Yes Yes Trivial
AP13 Yes Yes No Yes Yes Trivial
IC Yes Yes Yes Yes Yes Trivial

To facilitate the discussion of our results, a summary of relevant characteristics for the

environment models of the RTES under study is provided in Table 1. The columns ‘Guard on

Path’ and ‘Time transition on Path’ represent whether these features were present on a path to

the error state. The column ‘Loop to Risky state’ reports whether there was a loop back to a

risky state (i.e., an outgoing transition to a state and then returning back to the risky state). The

columns ‘Guard to Error Transition’ and ‘Time transition to Error’ show whether these

features were present on the transition from the risky state to the error state. The column

‘Approach’ shows if the approach to the risky state (i.e., obtaining a test case in which the

closest executed state is the risky state) is trivial or not. It is considered to be trivial if a risky

state is reached on average by the first ten randomly executed test cases. The row in Table 1

with problem IC summarizes the characteristics of the environment models for the industrial

case study.

These RTES are written in Java to facilitate their use on different machines and operating

systems. The communication between the RTES and their environments is carried out through

157

TCP. All these RTES are multithreaded. Each of the artificial problems had one error state in

their environment models and non-trivial faults were introduced by hand in each of them. We

could have rather seeded those faults in a systematic way, as for example by using a mutation

testing tool [27]. We did not follow such procedure because the SUTs are highly multi-

threaded and use a high number of network features (e.g., opening and reading/writing from

TCP sockets), which could be a problem for current mutation testing tools. Furthermore, our

testing is taking place at the system level, and though small modifications made by a mutation

testing tool might be representative of faults at the unit level, it is unlikely to be the case at the

system level for RTES. On the other hand, the faults that we manually seeded came from our

experience with the industrial RTES and from the feedback of our industry partners. For the

industrial case study, we did not seed any fault and the goal was to find the real fault that we

initially uncovered in [1].
Table 2. Success rates of various heuristic for GA & EA

Problem

Basic ITD TIR RSC COV
GA EA GA EA GA EA GA EA GA EA

AP1 0.3 0 0.05 0.15 0.9 1 0.2 0.05 0.4 0
AP2 0.65 0.3 0.5 0.5 11 1 0.65 0.55 0.6 0.25
AP3 0.4 1 0.5 0.9 0.5 0.9 0.45 0.9 0.5 1
AP4 0.9 1 0.95 1 1 1 0.95 1 0.95 0.95
AP5 0 0.55 0.05 0.6 0.05 0.95 0.05 0.5 0.05 0.6
AP6 0.65 0.5 0.85 0.9 0.65 0.75 0.4 0.35 0.5 0.15
AP7 1 0.9 1 0.9 1 1 0.95 0.9 0.95 0.3
AP8 0.15 0.1 0.15 0.55 0 0.3 0 0.05 0 0.05
AP9 0.75 0.65 0.8 0.45 0.6 0.4 0.9 1 0.45 0.45
AP10 1 0.9 1 0.85 1 0.9 1 0.95 0.85 0.15
AP11 0.55 0.75 0.75 0.8 0.6 0.7 0.65 0.45 0.65 0.45
AP12 0.25 0.25 0.3 0.1 0.25 0.05 0.25 0 0.15 0.1
AP13 0.95 1 1 1 0.85 0.9 0.95 0.85 1 0.75
Average 0.58 0.61 0.61 0.67 0.65 0.76 0.57 0.58 0.54 0.4

6.2 Experiments
In this paper, we want to answer the following research questions: RQ1: What is the effect on

fault detection of new order functions having each one of the proposed heuristics: Improved

Time Distance (ITD), Time In Risky State (TIR), Risky State Count (RSC), and Coverage

(COV) compared to the previously defined basic fitness function for GA and (1+1) EA? RQ2:

Which combinations of the proposed heuristics are best in terms of fault detection? RQ3:

158

Between the two search-based algorithms, GA and (1+1) EA, which one works better in terms

of fault detection with the new heuristics? RQ4: How do the search-based algorithms compare

to random testing (RT)? RQ5: How does the best combination of the proposed heuristics

compare to RT, GA-Basic, and (1+1) EA-Basic on the industrial case study?

To answer the research questions RQ1 – RQ4, we carried out a series of experiments on the

above-mentioned thirteen artificial problems. For RQ5, we conducted the experiments on the

industrial case study. We ran two search algorithms, (1+1) EA and GA, to answer these

research questions. We also used RT as a comparison baseline for RQ2, RQ4, and RQ5, as it

is the simplest solution to implement. For GA, we employ rank selection with bias 1.5 to

choose the parents, the initial population size is 10 and a single point crossover is used with

probability Pxover = 0.75. Different settings of these parameters could lead to different

performance, but we selected reasonable parameter values following recommendations in the

GA literature [28].

For the experiments, we ran RT, GA, (1+1) EA on each of the 13 problems. We have three

order functions for the individual heuristics and can combine them in 12 different ways (as

described in Section 5.5). We ran these combinations with both the basic order function

(defined in (2)) and the order function using ITD (defined in (3)). In total we therefore

executed 2 * (8 * 2) *13 + 13 = 429 experiment configurations (two search algorithms, 16

order functions, 13 artificial problems, on which RT is also run). The execution time of each

test case was fixed to 10 seconds and we stopped each algorithm after 1000 sampled test cases

or as soon as we reached any of the error states. The choice of running each test case for 10

seconds was based on the properties of the RTES and the environment models. The objective

was to allow enough time for the test cases to reach an error state. For each of these 429

experiment configurations, we ran each algorithm 20 times with different random seeds. The

total number of sampled test cases was 7,676,635, which required around 888 days of CPU

resources. Therefore, we performed the experiments on a cluster of computers.

To answer the research question RQ5, we carried out experiments on the industrial case

study. We run each test case for 60 seconds, where 1000 test case executions (fitness

evaluations) can take more than 16 hours. This choice has been made based on the properties

of the RTES and discussions with the actual testers. Due to the large amount of resources

required, we only ran the combination of heuristics that on average gave best results for the

159

thirteen artificial problems. We compared its fault detection rate with that of GA-Basic, (1+1)

EA-Basic, and RT. We carried out 20 runs for each of these four experiment configurations.

The total number of sampled test cases was 42,073, which required over 29 days of

computation on a single, high-performance, dedicated machine.

To analyze the results, we used the guidelines described in [29] which recommends a

number of statistical procedures to assess randomized test strategies. First we calculated the

success rates of each algorithm: the number of times it was successful in reaching the error

state out of the total number of runs. These success rates are then compared using the Fisher

Exact test, quantifying the effect size using an odds ratio (ψ) with a 0.5 correction (p-values of

this test are denoted as p in the tables showing the results). When the differences between the

success rates of two algorithms were not significant, we then looked at the average number of

test cases that each of the algorithms executed to reach the error state. We used the Mann-

Whitney U-test and quantified the effect size with the Vargha-Delaney A12 statistics (p-values

of this test are denoted as it-p in the tables showing the results). The significance level for

these statistical tests was set to 0.05. In all the tables showing the odds ratio and A12 statistics,

when comparing two algorithms, say q and r, a bold-faced font shows that q is significantly

better than r and an italicized font shows that q is significantly worse than r. Table cells with a

‘-’ denote no significant results for the comparison.
Table 3. Results of ITD compared with basic fitness function

Problem GA-ITD vs. GA EA-ITD vs. EA
AP6 - p=0.0138, ψ =7.4
AP8 - p=0.0057, ψ =8.96

Table 4. Results of TIR compared with basic fitness function

Problem GA-TIR vs. GA EA-TIR vs. EA
AP1 p= 0.00024, ψ = 16.51 p=1.45e-11, ψ =1681
AP2 p= 0.00832, ψ = 22.78 p=3.34e-06, ψ = 91.46
AP3 - it-p = 0.00167, A12 = 0.8
AP5 - p=0.00836, ψ = 10.74
AP6 it-p= 0.03125, A12 = 0.24 -
AP10 - it-p= 0.02677, A12 = 0.7

6.3 Results and Discussion
We decompose RQ1 into four sub questions (RQ1a - RQ1d), one for each heuristic. Table 2

shows the success rates for the 13 artificial problems and the four heuristics with GA and

(1+1) EA.

160

Results when applying ITD (RQ1a) to the artificial problems with GA and EA are shown in

Table 3 and are compared with results obtained when using the basic fitness function. The

table shows the p-values and odds ratio when success rates were significantly different and

otherwise, the p-value and the A12 statistics on the difference in the number of test case

executions to reach the error state. Using ITD with (1+1) EA yields significantly better results

for two of the artificial problems. In other cases the performance of the algorithm with this

order function was the same as that for the basic algorithm. ITD relies on information

regarding guarded time transitions in the models. Among the thirteen artificial problems, AP3

– AP5 and AP9 did not have any guard or time transition leading to the error state. Even in

these cases, ITD shows similar performance to basic fitness with no significant drawbacks. To

answer RQ1a, using the fitness function with ITD can bring improvements in fault detection

effectiveness for (1+1) EA and has no significant difference when used with GA.

Turning now to Table 4, when TIR was used with GA (RQ1b), it gave significantly better

results in two of the artificial problems and was worse in one problem (AP6). For other

artificial problems, the results of the two algorithms were comparable. When TIR was used

with (1+1) EA, it gave significantly better results for five of the 13 artificial problems. In other

cases there were no significant differences. To answer RQ1b, TIR performs better or similar to

the basic fitness for all but one of the artificial problems, whereas the performance of TIR with

EA is better or equal to the (1+1) EA-Basic in all the cases. Hence the use of TIR in the order

function seems to be an effective option in most cases.

Table 5 addresses RQ1c and evaluates the RSC heuristic. When RSC was used with GA, it

gave significantly better results in one of the artificial problems (AP10) and showed no

significant difference for the other artificial problems. When RSC was used with (1+1) EA, it

gave significantly better results for one artificial problem (AP9), worse results for another one

(AP12), and no statistical differences otherwise. RSC depends on the presence of a loop back

to a risky state. According to the information in Table 1, AP6 – AP10 had a loop back to the

risky state. Hence, we can answer RQ1c by stating that for all the problems that have a loop to

risky states, an order function using the RSC heuristic performs significantly better or similar

to the basic fitness function. But for the problems without such a loop, it can negatively affect

performance. Table 6 addresses RQ1d and evaluates the Coverage (COV) heuristic. When

COV was used with GA, there were no statistical differences between the results. When it was

161

used with (1+1) EA, it gave significantly worse results for four of the artificial problems and

yielded no significant differences in other cases. To answer RQ1d, using the order function

with coverage only can result in significant deterioration in the performance of (1+1) EA.

To summarize the comparison of proposed heuristics with basic fitness (RQ1), we can state

that ITD and TIR heuristics shows significant improvements for (1+1) EA and in most cases

for GA. RSC shows improvements in cases where there is a loop to risky states, otherwise it

can negatively affect the performance. Finally the COV heuristic shows worse performance

for (1+1) EA and no difference for GA.

Next, we answer RQ2, for which we evaluate the various combinations of the four

proposed heuristics. As discussed we had a total of 16 possible order functions for each search

algorithm. Table 7 provides the relative ranking based on the statistical difference of the

compared configurations. Configurations which are statistically equivalent (i.e., p-values

above 0.05) are expected to show a similar ranking. This is done by assigning scores based on

pairwise comparisons of configurations. Whenever a configuration is better than the other and

the difference is statistically significant, its score is increased. Then, based on the final scores,

each configuration is assigned ranks ranging from 1 (best configuration) to 33 (worst

configuration). In case of ties, ranks are averaged. The configurations in the table are sorted by

their average ranking (last column) in an ascending order.

Overall, based on the average ranks for the 13 artificial problems, (1+1) EA with TIR

proved to be the best algorithm for both Basic and ITD versions of the heuristic. Analyzing the

results of Table 7 according to the characteristics of artificial problem, we can conclude that in

general search-based algorithms perform significantly worse than RT for the artificial

problems where the approach to risky states is trivial (see discussion for RQ4 and a plausible

detailed explanation at the end of this section). If we exclude the results of such artificial

problems (i.e., AP9 – AP13), then in all the other problems, (1+1) EA with ITD and TIR

performed significantly better than other combinations. According to the ranks shown, the

only exception seems to be AP7, but even in that case, though the number of test case

executions is significantly less for other order functions, the success rate of (1+1) EA with

both the order functions (Basic-TIR and ITD-TIR) was 100%. If we only consider GA, then

the best two algorithms were GA-ITD-TIR and GA-ITD-TIR-RSC. The good overall

performance of TIR is likely to be due to the fact that it focuses on making the environment

162

spend more time in the risky states, thus increasing the occurrence of situations that lead to the

error state. When we compared the performance of (1+1) EA-Basic-TIR with (1+1) EA-ITD-

TIR, there were no significant differences in the results. But looking at the results in Table 7,

where for various combinations used with (1+1) EA-ITD and (1+1) EA-Basic, the

combinations used with (1+1) EA-ITD showed better or statistically equal results. This further

confirms the findings of RQ1a, which suggested to use (1+1) EA-ITD over (1+1) EA-Basic.
Table 5. Results of RSC compared with basic fitness function

Problem GA-RSC vs. GA EA-RSC vs. EA
AP9 - p=0.00831, ψ =22.78
AP10 it-p= 0.0073, A12 = 0.74 -
AP12 - p=0.047, , ψ =22.78

Table 6. Results of COV compared with Basic fitness function

Problem GA-COV vs. GA EA-COV vs. EA
AP6 - p = 0.0407, ψ = 5
AP7 - p = 0.0002, ψ =16.5
AP10 - p = 3.36e-06, ψ =37
AP13 - p = 0.0471, ψ =14.5

Regarding RQ3 (about the comparison of GA and (1+1) EA), based on Table 7, (1+1) EA

seems overall to provide significantly better results with various combinations when compared

to GA using the same combinations of heuristics. An exception to this is when EA is used with

the coverage heuristic, in which case it performs significantly worse than GA. Even for the

problems with non-trivial approach level, the performance of most of the heuristic

combinations for EA is significantly better than their performance with GA. Hence, we can

conclude that the fault detection effectiveness of (1+1) EA is higher than that of GA for the

kind RTES system testing we focus on.

To answer RQ4 (comparison of RT with EA and GA), we compare RT with the heuristic

combinations giving the best results for GA and EA. According to RQ3, for (1+1) EA, EA-

ITD-TIR and EA-Basic-TIR and for GA, GA-ITD-TIR and GA-ITD-TIR-RSC were the best

combinations. Table 8 shows a comparison of RT with these four algorithms. The statistics for

the situations where RT is significantly worse than these algorithms are bold faced and the

situations where it is significantly better are italicized. It can be observed that for all the

artificial problems that have a trivial approach level (Table 1: AP9–AP13), RT performs

significantly better than both search algorithms. But in other cases, where the approach level is

163

hard, EA and GA perform significantly better. This is especially true for EA who performs

better in all the other problems, except AP7. For AP7, over 90% of the heuristics combinations

had a 100% success rate and the remaining had a success rate of over 85%. Therefore, AP7

can also be considered to be a simple problem. Hence, we can answer RQ4 by stating that for

simple problems (i.e., where the average success rate of all the algorithms is high or the

approach level is trivial) RT performs significantly better than both search-algorithms, but for

more difficult problems (i.e., lower success rates or non-trivial approach level), search

algorithms perform significantly better. The best technique (1+1) EA-ITD-TIR has an average

success rate of 73% for the 13 problems with an average number of 222 test case executions to

find a fault. If we only consider the problems where approach level was non-trivial (i.e.,

excluding AP9 – AP13), then the average success rate is 84%. The worst success rate is 35%

(AP8), which suggests that with r runs of the technique, we would achieve a success rate of 1 -

(1-0.35)r. For example with only five runs (r = 5), we would obtain a success rate above 99%.

RQ5 is about comparing the best combination of heuristics with GA-basic, (1+1) EA-Basic

and RT on the industrial case study. According to RQ2, the combination showing on average

the best results for artificial problems was (1+1) EA-ITD-TIR. Table 9 shows the comparative

results of running (1+1) EA-ITD-TIR, (1+1) EA-Basic, GA-Basic, and RT on the industrial

case study. Table 10 shows the details of the results of this experiment including the average

success rate (SR) and the average number of test case executions to find a fault (ATE). We can

see that (1+1) EA-ITD-TIR shows significantly better performance over both GA-Basic and

(1+1) EA-Basic. When compared to RT, there is no significant statistical difference. The best

combination has relatively lower success rate (0.8 compared to 1 for RT), but it finds the fault

with a lower, average number of test case executions (250 compared to 295 for RT). The

better performance of RT can be explained by the fact that in the industrial case study, the

approach level to risky state was again trivial as shown in Table 1 (i.e., on average it could be

reached in less than 10 random test cases).

Following, we provide a plausible explanation as to why RT shows better performance

when the approach level to risky state is trivial. The transition from a risky state to the error

state represents the erroneous behavior of the SUT and will only be triggered if the interaction

of the SUT with the environment was at some point incorrect. Therefore, triggering this

transition is dependent on the behavior of the SUT. Once the environment reaches a risky state

164

and is not able to proceed to the error state, a possible option is to try to maximize the

diversity in the environment behavior (e.g., by using entirely different values for the test data

matrix, irrespective of their effect on the fitness). Maximizing diversity could result in

execution of a behavior of the environment that causes the SUT to interact in an erroneous

way which will in turn result in the transition to the error state. When the approach to risky

state is trivial then we can simply use RT (or a similar technique) to try to maximize diversity,

instead of using a technique like (1+1) EA that generates similar individuals (which makes it

hard for search algorithms to be successful in such cases).
Table 7. Rank of each heuristic combination on 13 artificial problems (sorted by average rank)

Algorithm AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8 AP9 AP10 AP11 AP12 AP13 Avg.
EA-Basic-TIR 2.5 2.5 4 4 1 3 26.5 8.5 31 12.5 17.5 24.5 23 12.35
EA-ITD-TIR 2.5 2.5 2 3 2.5 2 22 5.5 23.5 18.5 23.5 30 27 12.65
GA-ITD-TIR 7 5 24.5 21 26 7.5 1 25 25 2.5 10.5 3.5 12 13.12
EA-ITD-TIR-RSC 2.5 2.5 1 1 9.5 7.5 19 3.5 26 20.5 22 30 31 13.54
GA-ITD-TIR-RSC 10 9 24.5 21 26 7.5 8 16 3 4 26 17.5 4 13.58
GA-ITD-RSC-COV 17 18.5 24.5 12.5 26 13 4 21 4 9 17.5 2 14.5 14.12
RT 14.5 9 33 33 26 32 8 31 1 2.5 1 1 1 14.85
EA-ITD-TIR-RSC-COV 5 9 9 2 9.5 7.5 4 1.5 22 30 32 30 32.5 14.92
EA-ITD-RSC-COV 28 29 14 14.5 9.5 4 20 3.5 21 22 5 8.5 18.5 15.19
GA-ITD-RSC 19.5 22 24.5 17 26 22.5 12 16 19.5 9 2 5 3 15.23
GA-ITD-TIR-COV 23 13.5 24.5 26 26 10 12 16 16.5 9 7.5 8.5 6 15.27
EA-ITD 23 27 15.5 6 14.5 1 21 1.5 32 20.5 6 17.5 20.5 15.85
GA-Basic-TIR-RSC 11 9 24.5 21 26 17 8 25 8 12.5 20 17.5 10.5 16.15
EA-ITD-RSC 19.5 18.5 12 6 14.5 11 24 5.5 12 18.5 20 24.5 24.5 16.19
GA-Basic-RSC-COV 26.5 24.5 24.5 28.5 17.5 22.5 2 16 7 9 14.5 3.5 14.5 16.19
EA-Basic-TIR-RSC 2.5 2.5 9 9 5 20.5 24 10.5 29.5 16 23.5 30 29 16.23
GA-Basic-RSC 23 22 24.5 21 26 26 18 31 6 1 3.5 8.5 5 16.58
EA-ITD-TIR-COV 7 13.5 9 10.5 5 5 24 10.5 23.5 29 33 30 22 17.08
GA-Basic 18 22 24.5 24 26 14.5 8 16 14.5 16 14.5 8.5 17 17.19
GA-ITD-COV 26.5 18.5 24.5 27 17.5 14.5 15.5 16 10 14 14.5 17.5 8 17.23
GA-Basic-TIR-COV 13 18.5 24.5 30 26 17 14 25 5 5 14.5 17.5 14.5 17.27
GA-Basic-TIR 7 9 24.5 31 26 28.5 17 31 16.5 9 10.5 8.5 8 17.42
GA-ITD 30 27 24.5 28.5 26 12 8 16 12 16 10.5 8.5 10.5 17.65
GA-ITD-TIR-RSC-COV 23 15.5 24.5 25 26 20.5 12 16 14.5 24 7.5 17.5 8 18.00
GA-Basic-TIR-RSC-COV 14.5 15.5 24.5 32 26 24.5 15.5 25 12 6 10.5 17.5 14.5 18.31
EA-Basic-TIR-COV 12 9 4 17 5 28.5 29.5 25 9 31 26 24.5 27 19.04
GA-Basic-COV 16 24.5 24.5 21 26 27 4 31 28 23 3.5 17.5 2 19.08
EA-Basic-RSC-COV 23 30 13 14.5 16 17 31.5 8.5 18 26 26 17.5 20.5 20.12
EA-Basic-TIR-RSC-COV 9 9 6 12.5 2.5 30.5 31.5 31 19.5 28 31 30 32.5 21.00
EA-Basic-RSC 30 27 9 10.5 9.5 30.5 26.5 25 2 25 29 30 24.5 21.42
EA-Basic 32.5 31 15.5 8 9.5 24.5 29.5 16 27 27 30 12 18.5 21.62
EA-ITD-COV 30 32.5 4 17 9.5 19 28 7 33 32.5 20 24.5 27 21.85
EA-Basic-COV 32.5 32.5 9 6 13 33 33 25 29.5 32.5 28 17.5 30 24.73

165

If this is not the case and approach to risky state is not trivial, then a likely reason for not

reaching the risky state is a guard on the transition and/or a time transition. The heuristics for

search-based algorithms that we discussed in this paper are specifically designed to deal with

these cases and are more suitable for such cases than RT. Our previous results on solving

constraints written in OCL, lead us to the conclusion that search-based algorithms are an order

of magnitude better than randomized algorithms for this purpose [25]. Hence, if the guard on

the transition can be solved by directly changing the values of attributes of the environment

components or the transition is a time transition, then our best chance is to use the search

algorithms (and more specifically in our context, (1+1) EA-ITD-TIR).

From a practical standpoint, a possible solution to deal with the above mentioned situations

that arise due to the nature of environment models is to apply RT at the start of testing and

evaluate whether risky states are easy to reach. If this is the case, and if the OCL guard on the

transition does not provide gradient (i.e., the so called flag problem [30]), then RT is most

likely to trigger the transition to the error states compared to search algorithms (because of the

reasons discussed above). In case the approach is not trivial, then one should use (1+1) EA-

ITD-TIR, which is the best combination to use in the cases when there are guards on time

transitions located on the path to the error state and is at the same time no worse than its

corresponding Basic version (i.e., (1+1) EA-Basic-TIR). One limitation to this can be

situations in which the approach level is not trivial and at the same time the transition leading

to the risky state is only triggered in response to a particular SUT behavior (e.g., a guard that

is set based on interactions with the SUT). This case will be similar to scenarios with a trivial

approach to risky state in a way that the best chances of getting the SU===T to behave in the

required way are by invoking diverse environment behaviors. This, as we discussed earlier, is

better done by RT than by the search algorithms with the proposed order functions. A possible

solution to situations like these is to combine random testing with search-based algorithms and

apply adaptive mechanisms based on the feedback from the executed test cases, which we will

address in our future work.

In light of all the results and discussions, we can conclude that when applying our

environment model-based testing approach in practice, one can achieve good results by

combining RT and (1+1) EA-ITD-TIR. This can be done by running RT first and then, if no

error state is reached within a short time, by running (1+1) EA-ITD-TIR for a few runs. Based

166

on the results reported in this paper, this strategy would be expected to achieve a success rate

close to 100%.

6.4 Threats to validity
Although the artificial problems that we developed were based on industrial RTES and are not

trivial (they are multithreaded and hundreds of lines long), these artificial problems are not

necessarily representative of complex RTES. To reduce this threat, we used artificial problems

inspired by three actual RTES and intentionally varied the properties of their environments in

ways which could affect the search algorithms.

A typical problem when testing RTES is accurate simulation of time. Our approach focuses

on RTES with soft time deadlines in the order of hundreds of milliseconds with an acceptable

jitter of a few milliseconds. Therefore, we used the CPU clock to represent time. This might

be unreliable if time constraints in the RTES were very tight (e.g., nanoseconds) since they

could be violated because of unpredictable changes of load balance in the CPU in the presence

of unrelated process executions. To be on the safe side, to evaluate whether our results are

reliable, we selected a set of experiments and ran them again with exactly the same random

seeds. We obtained equivalent results with a small variance of a few milliseconds, which in

our context did not affect the testing results.
Table 8. Comparison of RT with best combinations of GA and (1+1)EA on artificial problems*

Problem RT vs. GA1 RT vs. GA2 RT vs. EA1 RT vs. EA2
AP1 p=0.0012, ψ =15.74 - p = 0.0001, ψ = 49.63 p = 0.0001, ψ = 49.63

AP2 - - it-p = 0.002,
A12 = 0.2137

it-p = 0.0038,
A12= 0.2312

AP3 0.0202, ψ = 18.38 p = 0.0005, ψ = 41 p = 3.3e-09, ψ = 303.40 p = 1.5e-11,
ψ = 1681.00

AP4 - - p = 0.0083, ψ = 22.78 p = 0.0083, ψ = 22.78
AP5 - - p = 3.0e-10, ψ = 533.00 p = 3.3e-06, ψ = 91.46
AP6 p = 1.7e-05, ψ = 27.13 p = 8.7e-05, ψ = 18.33 p = 0.0012, ψ = 10.33 p = 8.7e-05, ψ = 18.33

AP7 - - it-p = 0.0053,
A12 = 0.759

it-p = 0.0425,
A12 = 0.689

AP8 - - p = 0.0201, ψ = 18.38 p = 0.0083, ψ = 22.78
AP9 p=0.0004, ψ = 41 p=0.0202, ψ = 18.38 p = 4.5e-05, ψ = 60.29 p = 0.0004, ψ = 41.00

AP10 - - - it-p = 0.0114,
A12 = 0.738

AP11 p = 0.0471, ψ = 14.55 p = 4.5e-05, ψ = 60.29 p = 0.0201, ψ = 18.38 p = 0.0001, ψ = 49.63

AP12 p = 1.3e-05, ψ = 73.80 p = 2.6e-08 , ψ =
205.00 p = 3.0e-10, ψ = 533.00 p = 1.4e-11,

ψ = 1681.00

AP13 - - it-p = 0.0081,
A12 = 0.7528 p = 0.0202, ψ = 18.38

* GA1 = GA-ITD-TIR, GA2 = GA-ITD-TIR-RSC, EA1 = EA-Basic-TIR, EA2 = EA-ITD-TIR

167

Table 9. Comparison of four algorithms on industrial case

Algorithm (1+1)EA-Basic (1+1)EA-ITD-TIR RT GA-Basic

(1+1)EA-Basic × ψ= 0.40 , A12= 0.74 ψ= 0.036 , A12= 0.75 ψ= 1.78 , A12= 0.82

(1+1)EA-ITD-TIR ψ= 3.40 , A12= 0.26 × ψ= 0.089 , A12= 0.44 ψ= 4.44 , A12= 0.42
RT ψ= 27.88 , A12= 0.25 ψ= 11.18, A12= 0.56 × ψ= 49.63 , A12= 0.47
GA-Basic ψ= 0.56, A12= 0.18 ψ= 0.23, A12= 0.71 ψ= 0.02 , A12= 0.53 ×

Table 10. Details of each algorithm on the industrial case*

Algorithm Success Rate
Avg. Fitness
Evaluations

Standard
Deviation Median Skewness Kurtosis

(1+1)EA-Basic 0.6 559 270.18 615.5 -0.8 3.03

(1+1)EA-ITD-TIR 0.8 250.12 235.44 166 1.35 3.25

RT 1 295.2 279.1 225 1.24 3.42

GA-Basic 0.45 273.22 186.97 246 0.18 1.88

7. Conclusion
In this paper, we proposed four new heuristics for search-based, black-box automated testing of Real-

Time Embedded Systems (RTES) based on a model of their environment. The heuristics were developed

to exploit various properties of these environment models in an attempt to reach environments states

indicating a fault in the RTES (Error states). We provide an extensive empirical evaluation on an

industrial case study and thirteen artificial RTES that we developed based on two industrial case studies

belonging to different domains. The models of these artificial problems present varying properties that

may affect the performance of these heuristics and are meant to help us understand the conditions under

which they are beneficial. We evaluated the individual heuristics and their 16 combinations with two

search algorithms, Genetic Algorithms (GA) and (1+1) Evolutionary Algorithm (EA). We also used

Random Testing (RT) as a comparison baseline.

Results show that when reaching a state adjacent to the error state (risky state) is not trivial (i.e.,

reached by random test cases), RT is significantly worse than any of the proposed search algorithms. In

this case, the best results are obtained when using (1) a heuristic favoring test cases maximizing the time

spent in risky states and (2) (1+1) EA as a search algorithm, which showed to be overall superior to GA.

However, the heuristic that favored higher coverage of states in the environment model (coverage)

showed significantly poorer performance with (1+1) EA in four of the thirteen problems. Based on the

results, we proposed a way to combine RT with (1+1) EA in order to achieve high fault detection rates

in practice.

168

Acknowledgments
The work presented in this paper was supported by the Norwegian Research Council and was produced

as part of the ITEA 2 VERDE project. We are thankful to our industrial partners at Tomra and

WesternGeco for their support throughout the project.

8. References
[1] A. Arcuri, M. Iqbal, and L. Briand, "Black-Box System Testing of Real-Time Embedded Systems

Using Random and Search-Based Testing," in Testing Software and Systems. Springer Berlin /
Heidelberg, 2010, pp. 95-110.

[2] M. Z. Iqbal, A. Arcuri, and L. Briand, "Automated System Testing of Real-Time Embedded
Systems Based on Environment Models," Simula Research Laboratory, Technical Report (2011-
19) 2011.

[3] OMG, "Unified Modeling Language Superstructure, Version 2.3,
http://www.omg.org/spec/UML/2.3/," ed, 2010.

[4] OMG, "Modeling and Analysis of Real-time and Embedded systems (MARTE), Version 1.0,
http://www.omg.org/spec/MARTE/1.0/," ed, 2009.

[5] M. Z. Iqbal, A. Arcuri, and L. Briand, "Environment Modeling with UML/MARTE to Support
Black-Box System Testing for Real-Time Embedded Systems: Methodology and Industrial Case
Studies," in Model Driven Engineering Languages and Systems. Springer Berlin / Heidelberg,
2010, pp. 286-300.

[6] M. Z. Iqbal, A. Arcuri, and L. Briand, "Code Generation from UML/MARTE/OCL Environment
Models to Support Automated System Testing of Real-Time Embedded Software," Simula
Research Laboratory, Technical Report (2011-04) 2011.

[7] A. Arcuri, M. Z. Iqbal, and L. Briand, "Random Testing: Theoretical Results and Practical
Implications," IEEE Transactions on Software Engineering, vol. 38, pp. 258-277, 2012.

[8] M. Harman, S. Mansouri, and Y. Zhang, "Search based software engineering: A comprehensive
analysis and review of trends techniques and applications," Department of Computer Science,
King's College London, TR-09-032009.

[9] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, "A Systematic Review of the
Application and Empirical Investigation of Search-Based Test Case Generation " IEEE
Transactions on Software Engineering, vol. 36, pp. 742-762, 2010.

[10] A. Arcuri, "It really does matter how you normalize the branch distance in search-based software
testing," Software Testing, Verification and Reliability, doi: 10.1002/stvr.457, 2011.

[11] B. M. Broekman and E. Notenboom, Testing Embedded Software: Addison-Wesley Co., Inc.,
2003.

[12] D. Clarke and I. Lee, "Testing real-time constraints in a process algebraic setting," in Proceedings
of the 17th International Conference on Software Engineering, 1995, pp. 51-60.

[13] M. Krichen and S. Tripakis, "Conformance testing for real-time systems," Formal Methods in
System Design, vol. 34, pp. 238-304, 2009.

[14] B. Nielsen and A. Skou, "Automated test generation from timed automata," International Journal
on Software Tools for Technology Transfer, vol. 5, pp. 59-77, 2003.

[15] T. Mucke and M. Huhn, "Generation of optimized testsuites for UML statecharts with time," in
Testing of Communicating Systems. Springer Berlin / Heidelberg, 2004, p. 128.

169

[16] M. Zheng, V. Alagar, and O. Ormandjieva, "Automated generation of test suites from formal
specifications of real-time reactive systems," The Journal of Systems & Software, vol. 81, pp. 286-
304, 2008.

[17] M. Auguston, M. J. B, and M. Shing, "Environment behavior models for automation of testing and
assessment of system safety," Information and Software Technology, vol. 48, pp. 971-980, 2006.

[18] L. Briand, Y. Labiche, and M. Shousha, "Using genetic algorithms for early schedulability
analysis and stress testing in real-time systems," Genetic Programming and Evolvable Machines,
vol. 7, pp. 145-170, 2006.

[19] P. McMinn, "Search based software test data generation: a survey," Software Testing, Verification
and Reliability, vol. 14, pp. 105-156, 2004.

[20] M. Heisel, D. Hatebur, T. Santen, and D. Seifert, "Testing Against Requirements Using UML
Environment Models," in Fachgruppentreffen Requirements Engineering und Test, Analyse &
Verifikation, 2008, pp. 28-31.

[21] N. Adjir, P. Saqui-Sannes, and K. M. Rahmouni, "Testing Real-Time Systems Using TINA," in
Testing of Software and Communication Systems. Lecture Notes in Computer Science, Springer
Berlin / Heidelberg, 2009.

[22] K. G. Larsen, M. Mikucionis, and B. Nielsen, "Online Testing of Real-time Systems Using
Uppaal," in Formal Approaches to Software Testing. Lecture Notes in Computer Science, Springer
Berlin / Heidelberg, 2005.

[23] J. Peleska, F. Lapschies, E. Vorobev, H. Loeding, P. Smuda, H. Schmid, and Z. C., "A real-world
benchmark model for testing concurrent real-time systems in the automotive domain," in Testing
Software and Systems. Springer Berlin Heidelberg, 2011, pp. 146-161.

[24] R. Lefticaru and F. Ipate, "Functional search-based testing from state machines," in Proceedings of
the International Conference on Software Testing, Verification, and Validation, 2008, pp. 525-
528.

[25] S. Ali, M. Z. Iqbal, A. Arcuri, and L. Briand, "A Search-based OCL Constraint Solver for Model-
based Test Data Generation," presented at the 11th International Conference on Quality Software,
2011.

[26] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms: John Wiley and Sons,
2001.

[27] J. Andrews, L. Briand, Y. Labiche, and A. Namin, "Using mutation analysis for assessing and
comparing testing coverage criteria," IEEE Transactions on Software Engineering, vol. 32, pp.
608-624, 2006.

[28] A. Arcuri and G. Fraser, "On Parameter Tuning in Search Based Software Engineering " in
International Symposium on Search Based Software Engineering (SSBSE), 2011.

[29] A. Arcuri and L. Briand, "A Practical Guide for Using Statistical Tests to Assess Randomized
Algorithms in Software Engineering," in 33rd International Conference on Software Engineering
(ICSE), 2011, pp. 1 - 10

[30] M. Harman, L. Hu, R. Hierons, J. Wegener, H. Sthamer, A. Baresel, and M. Roper, "Testability
transformation," IEEE Transactions on Software Engineering, vol. 30, pp. 3-16, 2004.

170

Combining Search-based Testing and Adaptive
Random Testing to Improve Environment Model-
based Testing of Real-time Embedded Systems
Muhammad Zohaib Iqbal, Andrea Arcuri, Lionel Briand

Submitted to a conference, 2012

Abstract – Effective system testing of real-time embedded systems (RTES) requires a fully

automated approach. One such black-box system testing approach is to use environment

models to automatically generate test cases and test oracles along with an environment

simulator to enable early testing of RTES. In this paper, we propose a hybrid strategy,

which combines (1+1) Evolutionary Algorithm (EA) and Adaptive Random Testing

(ART), to improve the overall performance of system testing that is obtained when using

each single strategy in isolation. An empirical study is carried out on a number of artificial

problems and one industrial case study. The novel strategy shows significant overall

improvement in terms of fault detection compared to individual performances of both

(1+1) EA and ART.

1. Introduction
Real-time embedded systems (RTES) are widely used in critical domains where high

system dependability is required. These systems typically work in environments

comprising of large numbers of interacting components. The interactions with the

environment are typically bounded by time constraints. Missing these time deadlines, or

missing them too often for soft real-time systems, can lead to serious failures leading to

threats to human life or the environment. There is usually a great number and variety of

stimuli from the RTES environment with differing patterns of arrival times. Therefore, the

number of possible test cases is usually very large if not infinite. Testing all possible

sequences of stimuli is not feasible. Hence, systematic automated testing strategies that

have high fault revealing power are essential for effective testing of industry scale RTES.

The system testing of RTES requires interactions with the actual environment. Since, the

171

cost of testing in actual environments tends to be high, environment simulators are

typically used for this purpose.

In our earlier work, we proposed an automated system testing approach for RTES

software based on environment models [1, 2]. The models are developed according to a

specific strategy using the Unified Modeling Language (UML) [3], the Modeling and

Analysis of Real-Time Embedded Systems (MARTE) profile [4] and our proposed profile

[5]. These models of the environment were used to automatically generate an environment

simulator [6], test cases, and obtain test oracle [1, 2].

In our context, a test case is a sequence of stimuli generated by the environment that is

sent to the RTES. A test case can also include changes of state in the environment that can

affect the RTES behavior. For example, with a certain probability, some hardware

components might break, and that affects the expected and actual behavior of the RTES. A

test case can contain information regarding when and in which order to trigger such

changes. So, at a higher level, a test case in our context can be considered as a setting

specifying the occurrence of all these environment events in the simulator. Explicit “error”

states in the models represent states of the environment that are only reached when RTES

is faulty. Error states act as the oracle of the test cases, i.e., a test case is successful in

triggering a fault in the RTES if any of these error states is reached during testing.

In previous work, we investigated several testing strategies to generate test cases. We

used random testing (RT) [7] as baseline, and then considered two different approaches:

Search-based Testing (SBT) [8] and Adaptive Random Testing (ART) [1]. For SBT, an

order function was defined that utilizes the information in environment models to guide the

search toward the error states. In contrast, with ART, test cases are rewarded based on their

diversity. The results indicated that, apart from the failure rate of the system under test

(SUT), the effectiveness of a testing algorithm also depends on the characteristics of the

environment models. For problems where the environment model is easier to cover or

where the failure rate of the RTES is high, even RT outperforms SBT. However, for more

complex problems, SBT showed much better performance than RT. This raised the need

for a strategy that combines the individual benefits of the two strategies and utilizes

adaptive mechanisms based on the feedback from executed test cases.

In this paper, we extend our previous work by devising such a hybrid strategy that aims

at combining the best search technique, i.e., (1+1) Evolutionary Algorithm (EA) in our

experiments and ART (which is the algorithm that gave best results in our earlier

172

experiments in [2]) in order to achieve better overall results in terms of fault detection. We

defined two different strategies for combining these algorithms, but due to space

constraints, in this paper, we only discuss the strategy that showed the best results. The

hybrid strategy (HS) discussed here starts with running (1+1) EA and switches to ART

when (1+1) EA stops yielding fitter test cases. The decision of when to switch (referred to

as configuration) can have significant impact on the performance of the strategy and one

main objective of this paper is to empirically investigate different configuration options.

The other combination strategy started by running ART and later switched to (1+1) EA if

consecutive test cases generated through ART showed better fitness compared to

previously executed test cases. It did show improvements over the individual algorithms,

but fared worse than HS.

We evaluate the fault detection effectiveness of HS by performing a series of

experiments on 13 artificial problems and an industrial case study. The RTES of the

artificial problems were based on the specifications of two industrial case studies. Their

environment models were developed in a way to vary possible modeling characteristics so

as to understand their effect on the performance of the test strategies. We could not have

covered such variations in environment models with one or even a few industrial case

studies, hence the motivation to develop artificial cases. The industrial case study used is

of a marine seismic acquisition system, which was developed by a company leading in this

industry sector. For all these cases, we compared the performance of HS (with best

configuration) with that of ART, (1+1) EA, and RT. The results suggest that in terms of

success rates (number of times an algorithm found a fault within a given test budget), for

the problems where RT/ART showed better performance over (1+1) EA, HS results are

similar to ART/RT and for the problems where (1+1) EA was better, HS results are similar

to those of (1+1) EA, thus suggesting that HS combines the strength of both algorithms.

The rest of the paper is organized as follows. Section 2 discusses the related work, while

Section 3 provides an introduction to the earlier proposed environment model-based

system testing methodology that we improve in this paper. Section 4 describes the

proposed hybrid strategy, whereas Section 5 reports on the empirical study carried out for

evaluation purposes. Finally, Section 6 concludes the paper.

173

2. Related Work
Depending on the goals, testing of RTES can be performed at different levels: model-in-

the-loop, hardware-in-the-loop, processor-in-the-loop, and software-in-the-loop [9]. Our

approach falls in the software-in-the-loop testing category, in which the embedded

software is tested on the development platform with a simulated environment. The only

variation is that, rather than simulating the hardware platform, we use an adapter for the

hardware platform that forwards the signals from the SUT to the simulated environment.

This approach is especially helpful when the software is to be deployed on multiple

hardware platforms or the target hardware platform is stable.

There are only a few works in literature that discuss RTES testing based on

environment models rather than system models. Auguston et al. [10] discusses the

modeling of environment behaviors for testing of RTES using an event grammar. The

behavioral models contain details about the interactions with the SUT and possible

hazardous situations in the environment. Heisel et al. [11] propose the use of a requirement

model and an environment model along with the model of the SUT for testing. Adjir et al.

[12] discuss a technique for testing RTES based on the system model and assumptions in

the environment using Labeled Prioritized Timed Petri Nets. Larsen et al. [13] propose an

approach for online RTES testing based on time automata to model the SUT and

environmental constraints. Iqbal et al. [5] propose an environment modeling methodology

based on UML and MARTE for black-box system testing. Fault detection effectiveness of

testing strategies based on these models was evaluated and reported in [8], including

RT/ART [1], GA, and (1+1) EA. The results indicate that SBT show significantly better

performance over RT for a number of cases and significantly worse performance than RT

for a number of other cases.

There has been some work to combine SBT with RT. Andrews et al. propose the use of

GA to tune parameters for random unit testing [14]. An evolutionary ART algorithm that

uses the ART distance function as a fitness function for GA is proposed in [15]. In [16],

the authors propose a search-based ART algorithm by using a variant of ART distance

function as the fitness function for Hill Climbing to optimize the results of ART when the

input domains are more than two dimensional.

The work presented here improves the work on environment model-based testing

presented in [8] by combining the strengths of both ART and (1+1) Evolutionary

174

Algorithm. Approaches discussed in the literature for combining ART/RT with SBT are

restricted to improving ART or tuning RT by using search techniques. In contrast, here we

want to use (1+1) EA to generate test cases that exploit the characteristics of environment

models as well as benefit from the test diversity generated by ART, thus combining the

two approaches.

3. Environment Model-based Testing
In this section, we discuss in more details the various components of our environment

model-based testing approach.

3.1. Environment Modeling & Simulation
For RTES system testing, as we observed with our industry partner, software engineers

familiar with the application domain would typically be responsible for developing the

environment models. Therefore, we selected UML and its extensions as the environment

modeling language, which is a standard modeling language that is widely taught and

accepted by software engineers, in addition to be widely supported in terms of tools and

training material. These are important considerations for successful industry adoption.

The environment models consist of a domain model and several behavioral models. The

domain model, represented as a class diagram, captures the structural details of the RTES

environment, such as the environment components, their relationships, and their

characteristics. The behavior of the environment components is captured by state

machines. These models are developed, based on our earlier proposed methodology by

using UML, MARTE, and our proposed profile for environment modeling [5]. These

models not only include the nominal functional behavior of the environment components

(e.g., booting of a component) but also include their robustness (failure) behavior (e.g.,

break down of a sensor). The latter are modeled as “failure” states in the environment

models. The behavioral models also capture what we call “error” states. These are the

Figure. 1. A dummy state machine to explain search heuristics

175

states of the environment that should never be reached if the SUT is implemented correctly

(e.g., no incorrect or untimely message from the SUT to the environment components).

Therefore, error states act as oracles for the test cases.

An important feature of these environment models is that they capture the non-

determinism in the environment, which is a common characteristic for most RTES

environments. Non-determinism may include, for example, different occurrence rates and

patterns of signals, failures of components, or user commands. Each environment

component can have a number of non-deterministic choices whose exact values are

selected at the time of testing. Java is used as an action language and OCL (Object

Constraint Language) is used to specify constraints and guards.

Using model to text transformations, the environment models are automatically

transformed into environment simulators implemented in Java. The transformations follow

specific rules that we discussed in detail in [6]. During simulation a number of instances

can be created for each environment component, which can interact with each others and

the SUT (for example multiple instances of a sensor component). The generated simulators

communicate with the SUT through a communication layer (e.g., TCP layer), which is

written by software engineers. They are also linked with the test framework that provides

the appropriate values for each simulation execution. The choice of Java as target language

is based on actual requirements of our industrial partner, where the RTES under study only

involves soft real-time constraints.

3.2. Testing RTES based on Environment Models
In our context, a test case execution is akin to executing the environment simulator. During

the simulation, values are required for the non-deterministic choices in the environment

models. A test case, in our context, can be seen as a test data matrix, where each row

provides a series of values for a non-deterministic choice of the environment component

(the number of rows is equal to the number of non-deterministic choices). Each time a non-

deterministic choice needs to be made, a value from the corresponding matrix row is

selected.

During the simulation, a query for a non-deterministic choice can be made several times

and the number of queries cannot be determined before simulation. To resolve this

problem, each matrix row (a data vector) is represented as a variable size vector so that

whenever the end of a vector is reached, its size is increased at run time and new values are

176

added. In our earlier work [2], we evaluated the effect of the representations and starting

lengths of the test data vectors on the fault detection effectiveness and showed that such a

variable size vector is a suitable solution to this problem. In [1], we applied various testing

strategies to generate test cases from the environment models, including ART, RT, and

Genetic Algorithms (GA).

Given a test data matrix, a test case can be run for any arbitrary length of time (e.g., 10

seconds, one hour). The choice of the duration has high impact on the testing performance.

Is it better to have many quick simulations, or fewer longer ones? This is conceptually

similar to the choice of test length in test data generation of object-oriented software. In

this paper, we choose a fixed duration based on the properties the models (e.g., if there are

time transitions that take 10 seconds, then we should have test cases running for at least 10

seconds, otherwise those transitions will never be taken).

To calculate the distance between two test data matrices m1 and m2 for ART we use the

function dis(m1, m2) = ∑r∑c abs(m1[r,c] – m2[r,c])/ |D(r)|, where r and c represent the

rows and columns of the matrices. In other words, we sum the absolute difference of each

variable weighted by the cardinality of the domain of that variable. Often, these variables

represent the time in timeout transitions. Therefore, ART rewards diversity for the values

of non-deterministic choices. The results of the first experiments we conducted showed

that RT/ART perform better than SBT [1].

For search-based testing, rather than using a fitness function, we use an order function.

An order function is used to determine whether one solution is better than another, without

having the problem of defining a precise numerical score (this is often difficult when

several objectives need to be combined and tight budget constraints do not allow a full

multi-objective approach). The new order function h can be seen as an extension of the

fitness function developed for model-based testing based on system specifications [17].

The original fitness function uses the so-called “approach level” and normalized “branch

distance” to evaluate the fitness of a test case. For environment model-based testing, we

introduced the concept of “time distance” with a look-ahead branch distance and the

concept of “time in risky states” [8].

In our context, the goal is to minimize the order function h, which heuristically

evaluates how far a test case is from reaching an error state. If a test case with test data m is

executed and an error state of the environment model is reached, then h(m) = 0. The

approach level (A) refers to the minimum number of transitions in the state machine that

177

are required to reach the error state from the closest executed state. Figure. 1 shows a

dummy example state machine to elaborate the concept. The state named Error is the error

state. Events e1, e2, and e3 are signal events, whereas events after “t, s”, after “t1, ms”,

and after “t2, ms” are time events with t, t1, and t2 as the time values and ms and s as time

units referring to milliseconds and seconds. Events e3 and after “t, s” are guarded by

constraints using OCL. If the desired state is Error and the closest executed state was

State5, then the approach level is 1.

The approach level is helpful to reward test case executions that get closer to an error

state, but it does not provide any gradient (guidance) to solve the possible guards on the

state transitions. The branch distance (B) is used to heuristically score the evaluation of the

guards on the outgoing transitions from the closest executed state. In previous work [18],

we have defined a specific branch distance function for OCL expressions that is reused

here for calculating the branch distance. In the dummy state machine in Figure. 1 we need

to solve the guard “y > 0” so that whenever e4 is triggered, then the simulation can

transition to Error. Note that branch distance is less important than approach level, since it

is required only when the transition towards an error state is guarded and the approach

level cannot be reduced any further.

The third important part of the order function is the time distance (T), which comes into

play when there are timeout transitions in the environment models. For example, in Figure.

1, the transition from State2 to Error is a timeout transition. If a transition should be taken

after z time units, but it is not, we calculate the maximum consecutive time c the

component stayed in the source state of this transition (e.g., State2 in the dummy example).

To guide the search, we use the following heuristic: T = z – c, where c ≤ z. For transitions

other than time transitions, we initially decided to calculate branch distance after an event

is triggered. As investigated in our earlier work [8], this is not suitable for time transitions

and therefore the concept of a look-ahead branch distance (LB) was introduced. LB

represents the branch distance of OCL guard on a time transition when it is not fired (i.e.,

the timeout did not occur). Because OCL evaluations are free from side-effects [18], this

approach is feasible in our context.

The fourth important part of the order function is “time in risky states” (TIR). TIR

favors the test cases that spent more time in the state adjacent to the error state (i.e., the

risky state). The motivation behind this heuristic is that, the more time spent in a risky

state, the higher the chances of events happening in the environment or SUT that lead to

178

the error state (e.g., receive a signal from the SUT). For example, for the state machine

shown in Figure. 1, this heuristic will favor the test cases that spend more time in the risky

states State2 or State5. For instance in State2, it is possible to increase the value of t1 in the

time event after “t1, ms”, which will increase the time spent in this state. TIR is less

important than the other three heuristics and is only used when the other heuristics fail to

guide the search. The order function h using the four previously described heuristics, given

two test data matrices m1 and m2 as input, is defined as:

where for an error state e, Amin(m) represents the minimum approach level over all error

states, Bmin(m) represents the minimum branch distance, Te represents the time distance,

LBe is the look-ahead branch distance for an error state e, and TIRsum(m) is the sum of time

spent in risky states for all error states for test data matrix m.

The results, based on our extensive experiments evaluating various heuristics [8],

suggested that (1+1) EA with the order function in (1) gave best results in cases where the

approach to a risky state was non-trivial (i.e., simulation cannot reach a risky state in <5

random test cases). But in cases where the approach was easy, RT outperformed

evolutionary algorithms.

h(m1,m2)=

v(m1,m2)=

1 if LBe (m1) < LBe (m2) or (LBe (m1) = LBe (m2) and Te(m1) <
Te(m2))

0 if (LBe (m1) = LBe (m2) and Te(m1) = Te(m2))

-1 otherwise

v(m1, m2) if v(m1, m2) != 0

1 if v(m1, m2) = 0 and TIRsum(m1) > TIRsum(m2)

0 if v(m1, m2) = 0 and TIRsum(m1) = TIRsum(m2)

-1 otherwise (1)

1 if Amin(m1)<Amin(m2) or (Amin(m1)=Amin(m2) and Bmin(m1) <
Bmin(m2)) or (Amin(m1)=Amin(m2) and Bmin(m1)= Bmin(m2)
and ITDmin(m1,m 2) = 1)

0 if Amin(m1)=Amin (m2) and Bmin(m1)= Bmin(m2) and
ITDmin(m1, m2)=0)

-1 otherwise

ITDe(m1,m2) =

179

4. Hybrid Strategy by Combining Adaptive Random
and Search-based Testing

In this section we present our proposed hybrid strategy (HS) that combines (1+1) EA and

ART to improve the overall fault detection effectiveness of our system testing approach.

As discussed earlier (Section 3), previous studies showed that, in some cases, RT/ART

could perform better than SBT. The difference between their performances was mostly

significant and at times even extreme. In [2] and [8], we identified two possible reasons for

this behavior. First of all, for the problems with high failure rates, randomized algorithms

were found to be much better than SBT [2]. For high failure rates, there is no need for

search, as solutions are anyway found quickly. Crossover produces similar genes, while

mutation only performs small modifications. This can have a negative effect as, given just

few fitness evaluations, only similar solutions are evaluated (in contrast to RT/ART).

Secondly, the performance of the algorithms also depended on the properties of

environment models, and in particular how easy is it to traverse the models in order to

reach the error states. In other words, by combining ART and (1+1) EA, we hope to

achieve is a consistently good result regardless of the properties of the SUT or its

environment.

In the environment models, there are transitions on paths leading to error states that

depend only on the behavior of the SUT (i.e., they can only be triggered when the SUT

behaves in a certain way). Transition from a risky state to an error state is one such

example as it is only triggered when the SUT behaves in an erroneous way. Another

example can be when a guard on a transition depends on a specific response from the SUT.

To execute this behavior of SUT, the overall environment (combination of environment

components) needs to behave in a particular way. This particular behavior of the

environment that is required to trigger SUT behavior cannot be determined before

simulation, since for practical reasons discussed earlier the design of the SUT is not

visible. Hence, the information of what should be executed in the environment to trigger

this behavior is not available in the environment models. The fitness function for SBT

(which exploits the environment models to guide the search towards error states) in this

case does not give enough gradient to generate fitter test cases (i.e., a search plateau). In

these cases maximizing the diversity of the environment behavior (e.g., by using entirely

different values for the test data matrix, irrespective of their effect on the fitness) appears

180

to be a better option, thus favoring RT/ART. This can explain the scenarios where

RT/ART show better results than (1+1) EA.

On the other hand, if in the environment models, there are transitions on the path to

error states which are triggered by specific behaviors of the environment (e.g., a transition

triggered as a result of a specific non-deterministic event in the environment, such as a

failure of an environment component) or time transitions, then fitness function for SBT is

specifically designed to deal with these cases and are more suitable for such cases than RT.

For example, in the fitness function, the time distance heuristic is defined specifically for

time transitions and favors test cases that are closer to executing the transitions (i.e., with a

value of c closer to z, see Section 3.2). OCL constraints in guards that are independent of

SUT behavior but dependent on the state of environment components (e.g., a constraint

requiring a sensor to be broken), can be solved by directly changing the values of these

components’ attributes. For such constraints, our previous results showed that SBT are an

order of magnitude better than RT [18].

HS combines ART, which showed best results in our initial experiments [2], with our

proposed SBT strategy that showed best performance [8], i.e., (1+1) EA with improved

time distance and the “time in risky state” heuristic (ITD-TIR). The strategy is designed to

combine the strengths of both (1+1) EA and ART. This strategy starts by applying (1+1)

EA. If (1+1) EA does not find fitter test cases after running n number of test cases, the

testing algorithm is switched to ART. All the test cases that were executed so far are now

used for distance calculations in ART. Figure. 2 shows the pseudo-code for HS. The idea

behind switching from (1+1) EA to ART is that there is not enough time for a random walk

to get out of a fitness plateau. And so, in this scenario, applying ART can yield better

results. Running system test cases is very time consuming, so only few fitness evaluations

are feasible within reasonable time (e.g., 1000 test cases can already take several hours).

Therefore, in case of fitness plateau, it is reasonable to switch strategy, and rather reward

diversity instead of the fitness value. Though the choice of n is arbitrary it can have

significant consequences on the performance of this strategy. A too small value of n will

result in an early switch to ART. If the given problem matches the case where (1+1) EA

performs better, then the performance of HS will be affected. Similarly, if n is too large

then the remaining testing budget might not be sufficient for ART to perform well.

181

Figure. 2 Pseudo code of the proposed hybrid strategy (HS)

5. Empirical Study
The objective of this empirical study is to evaluate the fault detection effectiveness of the

proposed hybrid strategy.

5.1. Case Study
To enable experimentation with diverse environment models and RTES, we developed 13

different artificial RTES that were inspired by two industrial cases we have been involved

with [2] and one case study discussed in the literature [19]. Since, there are no benchmark

Algorithm HybridStrategy(mx, n, w)
Input mx: number of maximum fitness evaluations
 n: number of consecutive test cases with no improved fitness
 w: number of random test-cases to generate for comparison in ART
Declare Y: set of executed test cases = {}, W: set of randomly generated test cases = {}
 ev: number of fitness evaluations performed = 0
 z: number of consecutive test cases with no improved fitness found so far = 0
 Tc: a random test case, Tm: mutated test case, Tw: a test case from W, Te test case
 from W selected according to ART criteria
 Dw: minimum distance of test case Tw with all the test cases in Y
 d: stores the maximum value of Dw obtained over W
1. begin
2. Generate a random test case Tc
3. Execute Tc and evaluate whether environment error state is reached
4. Add Tc to Y
5. while environment error state not reached OR ev <= mx OR z <= n
6. Mutate Tc to get Tm
7. Execute Tm and evaluate whether environment error state is reached
8. Add Tm to Y
9. Increment ev
10. if fitness(Tm) >= fitness(Tc)
11. then Tc = Tm , z = 1
12. else
13. Increment z
14. while environment error state not reached OR ev <= mx
15. Sample w random test cases and add them to W
16. d = 0
17. for each Tw ∈ W
18. Calculate Dw
19. if Dw > d
20. then d = Dw, Te = Tw
21. Execute Te and evaluate whether environment error state is reached
22. Add Te to Y
23. Increment ev
24. end

182

RTES available to researchers, we specifically designed these artificial problems to

conduct our experiments (called P1 – P13). The goal while developing the models of these

RTES was to vary various characteristics of the environment models (e.g., guarded time

transitions, loops) that were expected to have an impact on the test heuristics. Nine of these

artificial problems were inspired by a marine seismic acquisition system developed by one

of our industrial partners. They covered various subsets of the environment of that RTES.

Three problems were inspired by the behavior of another industrial RTES (automated

recycling machine) developed by another industrial partner. The thirteenth artificial

problem was inspired by the train control gate system described in [19].

These RTES are multithreaded, written in Java and they communicate with their

environments through TCP. Each of the artificial problems had one error state in their

environment models and non-trivial faults were introduced by hand in each of them. We

could have rather seeded the faults in a systematic way, as for example by using a mutation

testing tool [20] but opted for a different procedure since the SUTs are highly multi-

threaded and use a high number of network features (e.g., opening and reading/writing

from TCP sockets), features that are not handled by current mutation testing tools.

Furthermore, our testing is taking place at the system level, and though small modifications

made by a mutation testing tool might be representative of faults at the unit level, it is

unlikely to be the case at the system level for RTES. On the other hand, the faults that we

manually seeded came from our experience with the industrial RTES and from the

feedback of our industry partners.

The industrial case study we also report on (called IC) is a very large and complex

seismic acquisition system (mentioned above) that interacts with many sensors and

actuators. The timing deadlines on the environment are in the order of hundreds of

milliseconds. The company that provided the system is a market leader in its field. For

confidentiality reasons we cannot provide full details of the system. The SUT consists of

two processes running in parallel, requiring a high performance, dedicated machine to run.

For the industrial case study, we did not seed any fault and the goal was to find the real

fault that we uncovered earlier [1].

5.2. Experiment
In this paper, we want to answer the following research questions:

183

RQ1. Which configuration is best in terms of fault detection for the proposed hybrid

strategy (HS)?

RQ2. How the fault detection of the best HS configuration compares with the performance

of ART, (1+1) EA, and RT for (a) the artificial problems (P1-13) and (b) the industrial case

study (IC)?

To answer these research questions, we have conducted two distinct sets of

experiments, one for the artificial problems (to answer RQ1 and RQ2a) and one for the

industrial RTES (to answer RQ2b). For test case representation in these experiments we

used a dynamic representation with a length equal to 10 for the test cases (which

correspond to each row of the test data matrix m). In our earlier experiments this setting

showed the best results [2]. For (1+1) EA we calculated the mutation rate as 1/k, where k is

the number of total elements in a test data matrix. This strategy is widely used for SBT and

was initially suggested in [21]. We used the fitness function that performed best in our

previous experiments [8], as discussed in Section 4: Improved Time Distance with Time in

Risky State (ITD-TIR).

To answer RQ1, we used 12 different values for the number of test cases which fitness

should be considered before switching from (1+1) EA to ART: n {10, 20, 50, 60, 70, 80,

90, 100, 200, 300, 400, 500}. We ran these 12 configurations on each of the 13 artificial

problems. To answer RQ2a, we selected the configuration of HS that gave the best result in

terms of fault detection for the 13 artificial problems. We compared this configuration with

the results of (1+1) EA, ART, and RT on these problems. RT was used as a comparison

baseline.

For the artificial problems, the execution time of each test case was fixed to 10 seconds

and we stopped each algorithm after 1000 sampled test cases or as soon as we reached any

of the error states. The choice of running each test case for 10 seconds was based on the

properties of the RTES and the environment models. The objective was to allow enough

time for the test cases to reach an error state. We ran each of the strategies 20 times on

each artificial problem with different random seeds. The total number of sampled test cases

was 1,561,390, which required around 180 days of CPU resources. Therefore, we

performed these experiments on a cluster of computers.

To answer RQ2b, we carried out experiments on the described seismic acquisition

system. We run each test case for 60 seconds, where 1000 test case executions (fitness

184

evaluations) can take more than 16 hours. This choice has been made based on the

properties of the RTES and discussions with the actual testers. Due to the large amount of

resources required, we only ran the configuration that on average gave best results for the

artificial problems (i.e., n=50) and compared its fault detection rate with that of (1+1) EA,

ART, and RT. We carried out 39 runs for each of these four test strategies. The total

number of sampled test cases was 55,283, which required over 55 days of computation on

a single, high-performance, dedicated machine.

Table 1. Success Rates (SR) for 12 configurations of HS on the 13 problems

Configurations →
Problems ↓

10 20 50 60 70 80 90 100 200 300 400 500

P1 0.5 0.75 0.95 1 1 1 1 1 1 1 1 1
P2 0.85 0.95 1 1 1 1 1 1 0.9 1 1 1
P3 1 1 1 1 1 1 1 1 0.9 0.8 0.6 0.5
P4 0.05 0.2 0.8 0.85 0.7 0.75 0.9 0.9 1 1 0.9 1
P5 0.85 1 1 1 1 1 1 1 1 1 1 1
P6 0 0.15 0.45 0.4 0.45 0.5 0.45 0.6 0.7 0.7 0.5 0.6
P7 0.3 0.4 0.8 0.8 0.85 0.95 0.8 0.8 0.8 0.8 0.8 1
P8 1 1 1 1 1 1 1 1 1 1 0.95 1
P9 0.05 0.05 0.45 0.55 0.55 0.35 0.6 0.4 0.8 0.45 0.5 0.55
P10 1 1 1 1 0.95 0.85 1 0.95 0.65 0.55 0.4 0.45
P11 1 1 1 0.95 0.95 0.9 1 0.9 0.65 0.05 0.1 0.4
P12 1 1 1 1 0.95 1 1 1 0.9 0.9 0.75 0.65
P13 1 1 1 1 1 1 1 1 0.9 0.7 0.95 0.85
Average SR 0.66 0.73 0.88 0.89 0.88 0.87 0.9 0.89 0.86 0.77 0.73 0.77
Average Rank 6.38 6.73 5.19 5.77 5.23 6.31 6.50 6.19 6.73 8.46 7.73 6.69

To analyze the results, we used the guidelines described in [22] which recommends a

number of statistical procedures to assess randomized algorithms. First we calculated the

success rates of each algorithm: the number of times it was successful in reaching the error

state out of the total number of runs. These success rates are then compared using the

Fisher Exact test, quantifying the effect size using an odds ratio (ψ) with a 0.5 correction.

When the differences between the success rates of two algorithms were not significant, we

then looked at the average number of test cases that each of the algorithms executed to

reach the error state. We used the Mann-Whitney U-test and quantified the effect size with

the Vargha-Delaney A12 statistics. The significance level for these statistical tests was set

to 0.05.

185

Table 2. Success Rates of HS (Best configuration), RT, ART, and (1+1) EA

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 Avg. IC
HS 0.95 1 1 0.8 1 0.45 0.8 1 0.45 1 1 1 1 0.88 1
ART 0.4 0.75 1 0 0.95 0 0.15 1 0 1 1 1 1 0.63 1
EA 1 1 0.5 1 1 0.7 0.85 1 0.35 0.45 0 0.7 0.95 0.73 0.74
RT 0.45 1 1 0 0.65 0 0.2 1 0 1 1 1 1 0.64 0.97

Table 3. Comparison of best HS configuration with RT, ART, & (1+1)EA*

Problem HS vs. (1+1) EA HS vs. RT HS vs. ART
P1 - p = 0.0012, ψ =15.74 p = 0.0004, ψ =19.12
P2 - it-p = 0.0065, A12 = 0.25 p = 0.047, ψ =14.55
P3 p = 0.0004, ψ = 41.00 - it-p = 0.013, A12 = 0.73
P4 - p = 1.5e-07, ψ = 150.33 p = 1.5e-07, ψ = 150.33
P5 - p = 0.0083, ψ = 22.78 -
P6 - p = 0.0012, ψ = 33.87 p = 0.0012, ψ = 33.87
P7 - p = 0.0004, ψ = 13.44 p = 8.7e-05, ψ = 18.33
P8 - it-p = 0.009, A12 = 0.74 it-p = 0.0004, A12 = 0.825
P9 - p = 0.0012, ψ = 33.87 p = 0.0012, ψ = 33.87
P10 p = 0.0001, ψ = 49.63 it-p = 0.0006, A12 = 0.81 it-p = 0.0002, A12 = 0.85
P11 p = 1.4e-11, ψ = 1681.00 - it-p = 0.0032, A12 = 0.77
P12 p = 0.02, ψ = 18.38 it-p = 0.0016, A12 = 0.79 it-p = 0.0008, A12 = 0.81
P13 - it-p = 0.0199, A12 = 0.71 it-p = 0.021, A12 = 0.71
IC p = 0.0004, ψ = 28.83 - it-p = 0.015, A12 = 0.66

5.3. Results & Discussion
Table 1 provides the success rates (in terms of fault detection) for various HS

configurations. The last row of the table shows the average ranking of each configuration

based on the statistical differences among them. Configurations that are statistically

equivalent (i.e., p-values above 0.05) are assigned a similar ranking. This is done by

assigning scores based on pairwise comparisons of configurations. Whenever a

configuration is better than the other and the difference is statistically significant, its score

is increased (for details, see [22]). Then, based on the final scores, each configuration is

assigned ranks ranging from 1 (best configuration) to 12 (worst configuration). In case of

ties, ranks are averaged. As the success rates and average rankings indicate, using a very

low (< 50) or very high value (>=200) of n results in a degraded performance for HS. With

a low value of n, HS makes the switch from (1+1) EA to ART too early, which does not

give sufficient time for (1+1) EA to converge and hence running HS becomes similar to

only running ART. In cases where ART performs well, such configurations of HS also

perform well (see Table 2 for the performance of ART on artificial problems). For

186

instance, for n = 10, the average success rate is 66% and average ranking is 6.38. Similarly,

when HS switches too late, it does not give enough time to ART (given the upper bound of

1000 iterations) and hence running HS is similar to running (1+1) EA in such cases. These

configurations perform well in cases where (1+1) EA performs well (Table 2) and poor

otherwise. The best results are provided for values between 50 and 100 and the differences

in results in this range are not significant. Though the results are not fully consistent across

all problems, configuration n = 50 has the best average rank across all problems and is

always very close to the maximum success rates. We can hence answer RQ1 by stating

that, overall, n=50 shows the best results for HS and therefore this configuration can be

used when applying HS on new problems.

For RQ2a we compared the best HS configuration (n = 50) with RT, ART, and (1+1)EA.

Table 2 shows the corresponding success rates of these algorithms and Table 3 shows a

comparison of HS with the other three algorithms based on statistical tests. The statistics

for the situations where HS is significantly better are bold-faced and are italicized where it

is significantly worse. Table cells with a ‘-’ denote no significant differences. P-values

obtained as a result of Fisher Exact test on the success rates are denoted as p and odds ratio

as ψ. In cases where there is no statistical difference in success rates, the number of

iterations is considered and the p-values of the Mann-Whitney U-test are denoted as it-p

and corresponding effect sizes by A12.

When compared to (1+1) EA, HS showed better fault detection performance in four of the

artificial problems (P3, P10 – P12) and had similar results otherwise. These are the

problems where (1+1) EA, when ran in isolation, showed poor results when compared to

RT and ART (as visible from Table 2). For example in the case of P11, (1+1) EA was not

able to find the a in any of the runs. On the other hand it is 100% for HS, RT, and ART,

which means that these strategies were able to find a fault in every run. Hence, HS shows

significant improvement over (1+1) EA.

When compared to RT, HS showed significantly better results in terms of success rates for

six artificial problems (P1, P4, P5, P6, P7, and P9) and had similar results for all the other

problems. Similarly with ART, in terms of success rates, HS showed better results for six

artificial problems (P1, P2, P4, P6, P7, and P9) and had similar results for the rest. P1, P4,

P6, P7, and P9 are the problems where ART and RT showed poor results when compared

to (1+1) EA (Table 2). For example in the cases of P4, P6, and P9, the success rate of both

RT and ART is 0, but that of (1+1) EA and HS is 1 and 0.8, respectively. Hence, in terms

187

of success rates, HS shows significantly better results when compared to RT and ART.

However, in terms of number of iterations required to detect the fault, HS is significantly

worse than RT in four problems (P8, P10, P12, and P13) and significantly worse than ART

in six problems (P3, P8, P10, P11, P12, and P13). But, for all these problems, the success

rate of HS, RT, and ART is 1, which means that whenever these algorithms run they find

the fault (within the budget of 1000 test cases). Therefore, we can answer RQ2a by stating

that HS shows overall significantly better performance than ART, RT, and (1+1) EA in

terms of fault detection, but was slower than RT/ART in finding faults for problems where

these two algorithms perform better than (1+1) EA. But since the success rate of HS is

100%, and therefore the first run is expected to reach the error state, this difference in

execution time has limited practical impact.

For RQ2b we compared the performance of the best configuration of HS (n = 50) with that

of ART, RT, and (1+1) EA on the industrial case study. The last row of Table 3 shows a

comparison of the results of the four strategies on this case study (IC) and the last column

of Table 2 shows the corresponding success rates. The results are similar to that obtained

for those artificial problems where RT and ART perform better than (1+1) EA. HS

outperformed (1+1) EA. When compared with the results of ART and RT, there is no

significant difference though (100% success rate). These results are consistent with RQ2a

and we can therefore answer RQ2 by stating that, overall, HS shows significantly better

results when compared to (1+1) EA, RT, and ART. However, as for RQ2a, for problems

where ART performed much better than (1+1) EA, though the success rates of HS and

ART are similar, ART find the faults faster than HS.

HS starts with (1+1) EA and switches only when fifty consecutive test cases do not

show better fitness. Fitness evaluations make HS slower than ART/RT but its effectiveness

considerably improves over ART/RT for the problems where they showed poor results. In

the light of these results, we can conclude that when applying our testing approach, using

HS seems to be the most practical choice as its performance, unlike that of (1+1) EA,

ART, and RT, is not drastically affected by the properties of the SUT and its environment

models. As a result, testers can apply this strategy in confidence, knowing it will perform

well in most circumstances.

188

5.4. Threats to Validity
Although the artificial problems that we developed were based on industrial RTES and are

not trivial to test (they are multithreaded and hundreds of lines long), these artificial

problems may not be representative of complex RTES. To reduce this threat, we used

artificial problems inspired by actual RTES and intentionally varied the properties of their

environments in ways that could affect the testing strategies.

A typical problem when testing RTES is the accurate simulation of time. Our approach

focuses on RTES with soft time deadlines in the order of hundreds of milliseconds with an

acceptable jitter of a few milliseconds. Therefore, we used the CPU clock to represent

time. This might be unreliable if time constraints in the RTES were very tight (e.g.,

nanoseconds) since they could be violated due to unpredictable changes of load balance in

the CPU in the presence of unrelated process executions. To be on the safe side, to evaluate

whether our results are reliable, we selected a set of experiments and ran them again with

exactly the same random seeds. We obtained equivalent results with a small variance of a

few milliseconds, which in our context did not affect the testing results.

6. Conclusion
In this paper, we proposed a hybrid strategy (HS) that combines (1+1) Evolutionary

Algorithm (EA) and Adaptive Random Testing (ART) for black-box automated system

testing of real-time embedded systems (RTES). The strategy was developed to combine the

benefits of both algorithms, since their individual results varied greatly depending on the

failure rate of the system under test and properties of its environment. The ultimate goal

was to obtain a strategy with consistently good results. The proposed strategy starts with

running (1+1) EA and switches to ART when the (1+1) EA search stops yielding fitter test

cases. We empirically investigated when to switch to ART and identified an optimal

setting for HS. Results indicate that switching too early or too late than the identified

setting has a negative impact on the performance of the strategy. Based on the experiments,

when using HS in practice, we propose switching to ART after (1+1) EA generates 50

consecutive test cases that do not improve fitness. We evaluated the proposed strategy and

compared its performance with that of running (1+1) EA and ART individually. We also

use random testing (RT) as a comparison baseline. The empirical evaluation uses an

industrial case study and 13 artificial problems that were developed based on two industrial

189

case studies belonging to different domains. The models of these artificial problems were

developed in order to vary their characteristics, thus potentially affecting the performance

of the evaluated testing strategies. Overall, the results indicate that HS shows significantly

better performance in terms of fault detection (an overall 88% success rate for artificial

problems and 100% for the industrial case study) than the other three algorithms (for

artificial problems: ART: 63%, RT: 64%, and (1+1) EA: 74% and for the industrial case

study: ART: 100%, RT, 97%, (1+1) EA: 74%). Unlike the other strategies, variations in

environment properties do not have a drastic impact on the performance of HS and it is

therefore the most practical approach, showing consistently good results for different

problems.

7. References
[1] A. Arcuri, M. Iqbal, and L. Briand, "Black-Box System Testing of Real-Time

Embedded Systems Using Random and Search-Based Testing," in Testing Software
and Systems. Springer Berlin / Heidelberg, 2010, pp. 95-110.

[2] M. Z. Iqbal, A. Arcuri, and L. Briand, "Automated System Testing of Real-Time
Embedded Systems Based on Environment Models," Simula Research Laboratory,
Technical Report (2011-19) 2011.

[3] OMG, "Unified Modeling Language Superstructure, Version 2.3,
http://www.omg.org/spec/UML/2.3/," ed, 2010.

[4] OMG, "Modeling and Analysis of Real-time and Embedded systems (MARTE),
Version 1.0, http://www.omg.org/spec/MARTE/1.0/," ed, 2009.

[5] M. Z. Iqbal, A. Arcuri, and L. Briand, "Environment Modeling with UML/MARTE
to Support Black-Box System Testing for Real-Time Embedded Systems:
Methodology and Industrial Case Studies," in Model Driven Engineering Languages
and Systems. Springer Berlin / Heidelberg, 2010, pp. 286-300.

[6] M. Z. Iqbal, A. Arcuri, and L. Briand, "Code Generation from UML/MARTE/OCL
Environment Models to Support Automated System Testing of Real-Time Embedded
Software," Simula Research Laboratory, Technical Report (2011-04) 2011.

[7] A. Arcuri, M. Z. Iqbal, and L. Briand, "Random Testing: Theoretical Results and
Practical Implications," IEEE Transactions on Software Engineering, vol. 38, pp.
258-277, 2012.

[8] M. Z. Iqbal, A. Arcuri, and L. Briand, "Empirical Investigation of Search Algorithms
for Environment Model-Based Testing of Real-Time Embedded Software " in
International Symposium on Software Testing and Analysis (ISSTA), 2012.

[9] B. M. Broekman and E. Notenboom, Testing Embedded Software: Addison-Wesley
Co., Inc., 2003.

[10] M. Auguston, M. J. B, and M. Shing, "Environment behavior models for automation
of testing and assessment of system safety," Information and Software Technology,
vol. 48, pp. 971-980, 2006.

190

[11] M. Heisel, D. Hatebur, T. Santen, and D. Seifert, "Testing Against Requirements
Using UML Environment Models," in Fachgruppentreffen Requirements
Engineering und Test, Analyse & Verifikation, 2008, pp. 28-31.

[12] N. Adjir, P. Saqui-Sannes, and K. M. Rahmouni, "Testing Real-Time Systems Using
TINA," in Testing of Software and Communication Systems. Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, 2009.

[13] K. G. Larsen, M. Mikucionis, and B. Nielsen, "Online Testing of Real-time Systems
Using Uppaal," in Formal Approaches to Software Testing. Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, 2005.

[14] J. H. Andrews, T. Menzies, and F. C. H. Li, "Genetic algorithms for randomized unit
testing," IEEE Transactions on Software Engineering, vol. 37, pp. 80-94, 2011.

[15] A. F. Tappenden and J. Miller, "A novel evolutionary approach for adaptive random
testing," IEEE Transactions on Reliability, vol. 58, pp. 619-633, 2009.

[16] C. Schneckenburger and F. Schweiggert, "Investigating the dimensionality problem
of Adaptive Random Testing incorporating a local search technique," in IEEE
International Conference on Software Testing Verification and Validation Workshop
(ICSTW '08), 2008, pp. 241-250.

[17] R. Lefticaru and F. Ipate, "Functional search-based testing from state machines," in
Proceedings of the International Conference on Software Testing, Verification, and
Validation, 2008, pp. 525-528.

[18] S. Ali, M. Z. Iqbal, A. Arcuri, and L. Briand, "A Search-based OCL Constraint
Solver for Model-based Test Data Generation," presented at the 11th International
Conference on Quality Software, 2011.

[19] M. Zheng, V. Alagar, and O. Ormandjieva, "Automated generation of test suites
from formal specifications of real-time reactive systems," The Journal of Systems &
Software, vol. 81, pp. 286-304, 2008.

[20] J. Andrews, L. Briand, Y. Labiche, and A. Namin, "Using mutation analysis for
assessing and comparing testing coverage criteria," IEEE Transactions on Software
Engineering, vol. 32, pp. 608-624, 2006.

[21] H. Mühlenbein, "How genetic algorithms really work: I. mutation and hillclimbing,"
Parallel problem solving from nature, vol. 2, pp. 15-25, 1992.

[22] A. Arcuri and L. Briand, "A Practical Guide for Using Statistical Tests to Assess
Randomized Algorithms in Software Engineering," in 33rd International Conference
on Software Engineering (ICSE), 2011, pp. 1 - 10

 191

Experiences of Applying UML/MARTE on Three
Industrial Projects
Muhammad Zohaib Iqbal, Shaukat Ali, Tao Yue, Lionel Briand

Submitted to a conference, 2012

Abstract – MARTE (Modeling and Analysis of Real-Time and Embedded Systems) is a

UML profile, which has been developed to model concepts specific to Real-Time and

Embedded Systems (RTES). In previous years, we have we have applied UML/MARTE to

three distinct industrial problems in various industry sectors: architecture modeling and

configuration of large-scale and highly configurable integrated control systems, model-

based robustness testing of communication-intensive systems, and model-based

environment simulator generation of large-scale RTES for testing. In this paper, we report

on our experiences of solving these problems by applying UML/MARTE on four industrial

case studies. Based on our common experiences, we derive a framework to help

practitioners for future applications of UML/MARTE. The framework provides a set of

detailed guidelines on how to apply MARTE in industrial contexts and will help reduce the

gap between the modeling standards and industrial needs.

Keywords: UML, MARTE, Real-time Embedded Systems, Architecture Modeling,

Model-based Testing

1. Introduction
Model Based Engineering (MBE) consists in using models as the primary artifacts in

various development phases of software systems, including, for example, configuration

and software testing. The Unified Modeling Language (UML) [1] and its extensions (via

its profiling mechanism) are the most widely used modeling notations for software systems

in diverse domains.

Real-time embedded systems (RTES) are widely used in many different domains, as for

example from integrated control systems to consumer electronics. Already 98% of

computing devices are embedded in nature and it is estimated that, by the year 2020, there

will be over 40 billion embedded computing devices worldwide [2]. Modeling for such

192

systems requires constructs that deal with characteristics specific to RTES (such as

resource modeling, timeliness, schedulability). The recent UML profile for Modeling and

Analysis of Real-Time Embedded Systems (MARTE) [3] is an effort to address the

growing modeling needs of RTES.

In software engineering, like any engineering discipline, the usefulness of a new

concept must ultimately be evaluated by applying it in real-life scenarios. To successfully

apply MBE in practice, selecting a modeling language is not sufficient; rather we need to

provide a detailed methodology on how to use the selected notations, which is a piece of

information usually missing from language specifications and varies from problem to

problem. This paper reports the experiences of four such applications on industrial RTES

and based on the experiences layouts the guidelines that can be used for future successful

application of UML/MARTE for RTES.

There are very few works discussing the experiences of using UML/MARTE.

Demathieu et al [4] discuss their experiences of applying UML and MARTE on an

academic case study for software resource modeling, hardware resource modeling, and

modeling for logical system decomposition. Briand et al [5] discuss their experiences of

applying MBE to three industrial cases belonging to maritime and energy domains using

UML and MARTE. The work focuses on providing guidelines to improve collaboration

between industry and researchers. Yue et al [6] discuss their experience of conducting a

systematic and industrial domain analysis and the feasibility of applying model-based

product line engineering methods for architecture modeling and configuration of large-

scale integrated control systems. Espinoza et al [7] evaluate MARTE after applying it to a

project in the automobile domain. Middleton et al [8] present their experiences about

applying UML and MARTE for stochastic modeling of two interactive applications.

Our work discusses experiences of applying UML/MARTE on four industrial RTES

belonging to different domains. We report our experiences of solving three industrial

problems over the span of four years. The first problem was about architecture modeling

and configuration of large-scale and highly configurable integrated control systems for

FMC[9] Subsea Production Systems. The second problem was of model-based robustness

testing of a video conferencing system at Cisco Systems [10]. The third problem was of

environment model-based testing for a marine seismic acquisition system at WesternGeco

[11] and an automated bottle recycling system at Tomra [12]. Based on our common

experiences in the projects, we derived a comprehensive framework to successfully use

193

MARTE in future industrial applications. The framework, which is the first of its kind,

aims at providing detailed guidelines and steps on how to apply and extend UML/MARTE

in industrial contexts. .

The rest of the paper is organized as follows. Section 2 provides the background, while

Section 3 discusses the contexts, modeling solutions and key results for the four selected

industrial problems. Section 4 discusses the proposed framework based on our experiences

from these four cases. Finally, Section 5 concludes the paper.

2. Background
The MARTE profile was defined to provide a number of concepts that modelers can use to

express relevant properties of RTES, for example related to performance and

schedulability. MARTE is meant to replace the previously defined UML profile for

Schedulability, Performance, and Time specification (SPT) [13].

At the highest level, MARTE contains three packages. The core package is MARTE

Foundations that contains the sub-packages for modeling non-functional properties (NFP

package), time properties (Time package), generic resource modeling of an execution

platform for RTES (GRM package), and resource allocation (Alloc package). The MARTE

Foundations package contains the core elements that are reused by the other two packages

of the profile: MARTE design model and RealTime&Embedded Analysing (RTEA). The

MARTE design model package contains various sub-packages required for modeling the

design of RTES. This includes the packages to support modeling of component-based

RTES with the Generic Component Model package (GCM), high-level features for RTES

with the High-Level Application Modeling package (HLAM), and for detailed modeling of

software and hardware resources with the Detailed Resource Modeling package (DRM).

The RTEA package contains further concepts related primarily to modeling for analysis.

This includes the Generic Quantitative Analysis Modeling package (GQAM) which

provides generic concepts for resource modeling. These concepts are further specialized by

the Schedulability Analysis Modeling (SAM) package for modeling properties useful for

Schedulability and the Performance Analysis Modeling package (PAM) for modeling

properties useful for performance analysis.

194

3. Industrial Applications of UML/MARTE
This section discusses three UML/MARTE applications in different industrial contexts.

For each of the three applications, we provide the case study description, the problem

description, the modeling solution, the modeling tool, and the key results of the

application. This information will subsequently be used to propose a framework meant to

provide guidance to future users of UML/MARTE.

3.1. Architectural Modeling and Configuration with UML/MARTE

3.1.1. Case Study Description
Integrated Control Systems (ICSs) are heterogeneous systems-of-systems, where software

and hardware components are integrated to control and monitor physical devices and

processes, such as process plants or oil and gas production platforms. FMC Technologies,

Inc is a leading global provider of technology solutions for the energy industry. FMC’s

Subsea Production Systems (SPSs) are large-scale, highly-hierarchical, and highly-

configurable ICSs for managing exploitation of oil and gas production fields. One of its

key technologies is subsea production systems, used to develop new energy reserves and

for managing and improving producing fields. They are composed of hundreds of

mechanical, hydraulic, and electrical components and configured software to support

various field layouts ranging from single satellite wells to large multiple-well sites (more

than 50 wells). The main components of the system are subsea control modules, which

contain software, electronics, instrumentation, and hydraulics for safe and efficient

operation of subsea tree valves, chokes, and downhole valves.

3.1.2. Problem Description
The research question of this project is to devise a product line architecture modeling

methodology, including modeling notations, guidelines and tool support, for the purpose of

facilitating the systematic and automated product configuration of ICSs such as FMC’s

SPSs. The ultimate goal is to improve the overall quality and productivity of the product

development lifecycle of ICSs. Specifically, selected/tailored modeling notations of such a

methodology should have the following characteristics: (i) It should contain both hardware

and software modeling notations and the hardware modeling notations should be

expressive enough to capture different types of hardware components and elements; (ii)

The interactions between software and hardware components should be captured, such as

195

the deployment of a software component to its hardware computing resources; (iii) The

consistency between hardware and software components should be maintained in the

context of supporting configuration; (iv) The variability modeling notation should enable

automated configuration and configuration reuse. We have proposed such a produce line

architecture modeling methodology, named SimPL [14], to facilitate automated

configuration of families of ICSs.

3.1.3. Modeling Solution
In addition to satisfy the modeling requirements described above, there are a number of

practical requirements that affect the selection of existing modeling languages: 1) the

modeling notation should be easy to learn and apply for industrial partners; 2) the

modeling notation should have available tool support. Therefore our modeling solution is

based on UML/MARTE, with a minimum extension through the UML profiling extension

mechanism.

To facilitate automated configuration, the modeling notation we proposed for modeling

the product line architecture uses UML classes, properties, and relationships (i.e.,

generalization relationships, and several types of association relationships) resulting in

base models of hardware and software. In the SimPL methodology we use the following

four stereotypes from MARTE to create hardware models and to model software to

hardware bindings/allocations. To distinguish between hardware and software classes, any

class in the hardware sub-view should be stereotyped by one of the following four MARTE

stereotypes: 1) «HwComputingResource» is used to distinguish those electrical hardware

components on which software is deployed; 2) «HwDevice» is used to distinguish those

hardware devices that are controlled by, or in general interact with, software; 3)

«HwComponent» characterizes hardware classes representing hardware components that

physically contain other devices and execution platforms; 4) «Assign» models the

deployment, allocation, or binding of a structure (e.g., software class) in the software sub-

view to a resource (e.g., a hardware component) in the hardware sub-view. UML templates

and packages, along with six stereotypes from our newly proposed profile, named SimPL,

are used to model the product line architecture.

3.1.4. Modeling Tool
IBM Rational Software Architect (RSA) [15] was used to model the architecture.

196

3.1.5. Key results
The resulting product-line model contained a total of five views and sub-views and is

visualized using 17 class diagrams. The model contains a total of 71 classes, including 46

software classes, 24 classes belonging to the hardware sub-view, and a class representing

the topmost element, FMCSystem.

The software sub-view contains configurable software classes related to the selected

components of the FMC family, their attributes, their relationships, and supporting

containment and taxonomic hierarchies. The hardware sub-view captures a subset of

devices (i.e., only those devices that are controlled by software classes captured in the

software sub-view), their attributes, and the supporting containment and taxonomic

hierarchies. The result is a hardware sub-view with 24 hardware components and devices,

including 11 computing resources. Two types of relationships between the software and

hardware classes (i.e., allocation of software to hardware and software controlling

hardware) are captured in the allocation view.

The variability view contains 22 configuration units, corresponding to 22 configurable

classes in software and hardware sub-views. A total of 109 variability points are organized

using these configuration units. In addition, a total of 34 dependencies stereotyped with the

SimPL profile were created to complete the variability model. A total of 16 OCL

constraints are captured in the variability view modeling the dependencies between

variability points, mainly the dependencies between variability points introduced by

software and those introduced by hardware.

3.2. Model-based Robustness Testing with UML/MARTE
We applied UML/MARTE to support automated, model-based robustness testing of a core

subsystem of a video conferencing system developed by Cisco Systems, Norway.

3.2.1. Case Study Description
Our case study is a commercial Video Conferencing System (VCS) called Saturn

developed by Cisco Systems Inc, Norway. The core functionality of Saturn manages the

sending and receiving of multimedia streams. Audio and video signals are sent through

separate channels and there is also a possibility of transmitting presentations in parallel

with audio and video. Presentations can be sent by only one conference participant at a

time and all others receive it. In total, Saturn consists of 20 subsystems such as audio and

197

video subsystems. Each subsystem can run in parallel to the subsystem implementing the

core functionality dealing with establishing videoconferences.

3.2.2. Problem Description
Our case study is part of a project aiming at supporting automated, model-based robustness

testing of Saturn. A system should be robust enough to handle the possible abnormal

situations that can occur in its operating environment and invalid inputs. For example,

Saturn should be robust against hostile environment conditions (regarding the network and

other communicating VCSs), such as high percentage of packet loss and high percentage of

corrupt packets. Saturn should not crash, halt, or restart in the presence of, for instance, a

high percentage of packet loss. Furthermore, Saturn should continue to work in a degraded

mode, such as continuing the videoconference with lower audio and video quality. In the

worst case, Saturn should return to the most recent safe state instead of bluntly stopping

execution. Such behavior is very important for a commercial VCS and must be tested

systematically and automatically to be scalable.

3.2.3. Modeling Solution
Following, we discuss our modeling solution to support automated robustness testing.

To model the functional behavior, for each subsystem, we modeled a class diagram to

capture APIs and state variables. In addition, we modeled one or more state machines to

capture the behavior of each subsystem. Due to confidentiality restrictions, we do not

provide details of the subsystems. However, on average each subsystem has five states and

11 transitions, with the biggest subsystem having 22 states and 63 transitions. It is

important to note that, though the complexity of an individual subsystem may not look

high in terms of number of states and transitions, all subsystems run in parallel to each

other and therefore the spaces of system states and possible execution interleavings are

very large. Saturn’s implementation consists of more than three million lines of C code.

Robustness behavior is typically crosscutting many parts of the system functional model

and, as a result, modeling such behavior directly within the functional models is not

practical since it leads to many redundancies and hence results in large, cluttered models.

To cope with this issue, we decided to adopt Aspect-Oriented Modeling (AOM) [16] and

more specifically a UML profile for AOM called AspectSM [17]. With it, we model each

aspect as a UML state machine with stereotypes (aspect state machine). The modeling of

198

aspect state machines is systematically derived from a fault taxonomy [17] categorizing

different types of faults (faults in the environment such as communication medium and

media streams that lead to faulty situations in the environment). Each aspect state machine

has a corresponding aspect class diagram modeling different properties of the environment

using the MARTE profile, whose violations lead to faulty situations in the environment.

More specifically, we used the NFPs package to model properties of the operating

environment of Saturn.

Table 1. Summary of features of MARTE and other profiles applied

Robustness
Behavior

Stereotypes Existing
MARTE NFPs

Newly
introduced
NFPs

NFP GRM RobustProfile

Media Quality 2 1 19 19 2
Network
Communication

4 1 13 21 3

Illegal Inputs - - 1 2 -

Saturn’s non-functional behaviors consist of five aspect class diagrams and five aspect

state machines modeling various robustness behaviors. The largest aspect state machine

specifying robustness behavior has three states and ten transitions, which would translate

into 1604 transitions in standard UML state machines if AspectSM was not used.

3.2.4. Modeling Tool
IBM RSA was used for modeling class diagrams, UML state machines, and aspect state

machines. In addition, we also defined AspectSM in the same tool.

3.2.5. Key Results
Table 1 summarizes the features of the MARTE profile and other profiles, which we used

in conjunction with MARTE in our case study. The first column shows various robustness

behaviors we modeled in this case study. The first one is related to modeling faulty

situations in media, i.e., audio and video, the second behavior is about constraining

parameters of events on transitions, which is used to generate test cases exercising the

system robustness with illegal inputs, and the third robustness behavior models the

behavior of a system in the presence of various network faults. Columns two and three

show that we used stereotypes from MARTE NFP and GRM packages. For instance, to

model network communication we used four stereotypes from the NFP package (e.g.,

NfpType), whereas we used one stereotype from the GRM package, CommunicationMedia.

199

The fourth column shows the stereotypes from other profiles used in conjunction with

MARTE. In our case study, we used stereotypes from RobustProfile [17], which allows

modeling various properties of faults (e.g., severity) to assist in defining robustness test

strategies. For example, for modeling media quality we used in total 19 stereotypes such as

AudioFault and VideoFault from RobustProfile. The fifth column shows the number of

existing NFPs we used that are already defined in MARTE for each of the robustness

behaviors. For media quality, we used 19 existing NFPs, e.g., NPF_Percentage. The last

column shows the number of new NFPs we defined in our case study. For instance, in case

of media quality, we defined two new NFPs based on the existing NFPs defined in

MARTE, e.g., PacketLoss in the case of modeling network communication.

3.3. Testing RTES using UML/MARTE environment models
We applied our approach for model-based testing of RTES to two industrial case studies,

involving WesternGeco AS and Tomra AS, both in Norway.

3.3.1. Case Study Description
The case study at WesternGeco is of a very large and complex control system for marine

seismic acquisition. The system controls tens of thousands of sensors and actuators in its

environment. The timing deadlines on the environment are in the order of hundreds of

milliseconds. WesternGeco is a market leader in the field of such seismic systems. The

system was developed using Java.

The other case study is an automated bottle-recycling machine developed by Tomra AS.

The system under test (SUT) was an embedded device ‘Sorter’, which was responsible to

sort the bottles into their appropriate destinations. The system communicated with a

number of components to guide recycled items through the recycling machine to their

appropriate destinations. It is possible to cascade multiple sorters with one another, which

results in a complex recycling machine. The SUT was developed using C.

Both the RTES were running in environments that enforce time deadlines in the order of

hundreds of milliseconds with acceptable jitters of a few milliseconds in response time.

3.3.2. Problem Description
RTES typically work in environments comprising large numbers of interacting

components. The interactions with the environment can be bound by time constraints.

Violating such time constraints, or violating them too often for soft real-time systems, can

200

lead to serious failures leading to threats to human life or the environment. There is usually

a great number and variety of stimuli from the RTES environment with differing patterns

of arrival times. Therefore, the number of possible test cases is usually very large if not

infinite. Testing all possible sequences of stimuli is not feasible. Hence, systematic

automated testing strategies that have high fault revealing power are essential for effective

testing of industry scale RTES. The system testing of a RTES requires interactions with the

actual environment. Since, the cost of testing in real conditions tends to be high,

environment simulators are typically used for this purpose. For the industrial systems of

WesternGeco and Tomra, we applied one such approach for black-box system level testing

based on the environment models of the systems. These models were used to generate an

environment simulator [18], test cases, and obtain test oracles. For test case generation, we

applied various testing strategies, including search-based testing and adaptive random

testing [19].

3.3.3. Modeling Solution
The environment models were developed using our proposed UML & MARTE Real-time

Embedded systems Modeling Profile (REMP) [20]. REMP provided extension to the

standard UML class diagram and state machine notations and used the MARTE Time

package and GQAM package for modeling timing details and non-deterministic events,

respectively. One of the major aims while developing REMP was to keep it as simple as

possible. We only used those notations and concepts from UML/MARTE that were

essential to model the two industrial case studies. Even though the notation subset was

minimal, the goal was to keep REMP generic and applicable to the testing of soft RTES

belonging to various domains. This was the motivation to apply the methodology to two

case studies that belonged to entirely different domains.

The structural details of a RTES environment were modeled as an environment domain

model, which captures the information of various environment components, their

properties, and their relationships. For the domain model, we used the UML class diagram

notation and annotated class diagram elements with REMP. The behavioral details of the

environment were modeled using the state machine notation annotated with REMP. Each

environment component has one associated state machine. Such state machines contain

information of the nominal behavior of the components, their robustness behavior (e.g.,

break down of a sensor), and “error states” that should never be reached (e.g., hazardous

201

situations). If any of these error states is reached, then it implies a faulty RTES. Error

states act as the oracle of the test cases, i.e., a test case is successful in triggering a fault in

the RTES if an error state of the environment is reached during testing.

3.3.4. Modeling Tool
For initial interactive sessions with experts, we used a sketching tool to model the domain.

Later on when we had sufficient details of the system, we used Enterprise Architect for

modeling Tomra’s case study (because that was the tool they already used) and IBM RSA

for modeling WesternGeco. Later on due to various limitations of Enterprise Architect, we

migrated the models to IBM RSA.

3.3.5. Key Results
For Tomra’s case, we had a total of 55 environment components, out of which 43 have a

corresponding state machine. For testing, we only focused on a subset of the SUT, for

which we only use four of the environment components with a total of 23 states and 38

transitions. For the subset of environment models for WesternGeco’s case, a total of three

environment components have a state machine. In total for these components, we modeled

27 states and 46 transitions. In both cases, environment components have a large number

of instances during test case execution. For example, in WesternGeco, one of the

components could have up to thousands of instances.

From MARTE, we mostly used the concepts of TimedEvent and TimedProcessing from

the Time Package. The MARTE TimedEvent concept is used to model timeout transitions,

so that it is possible for the time events to explicitly specify a clock (if needed). Each

environment component may have its own clock or multiple components may share the

same clock for absolute timing. Clocks are modeled using the MARTE’s concept of clocks.

According to REMP, if no clock is specified, then by default the notion of time is

considered to be according to the physical time. Specifying a threshold time for an action

execution or for a component to remain in a state is done using the MARTE

TimedProcessing concept. This is also a useful concept and can be used, for example, to

model the behavior of an environment component when the RTES expects a response from

it within a time threshold.

From the GQAM package of MARTE, we used the concept of GaStep to model non-

determinism. Whenever a timeout transition is labeled with «gaStep» and a non-zero value

202

for the prob property, this is interpreted as the probability of taking the transition over the

time of the test case execution. This stereotype was used to model scenarios where the

modeler wants to specify exact probabilities of an event occurrence. For non-determinism,

REMP provides other stereotypes too that give more control to the testing engine to specify

the probability of event occurrences.

In our methodology, we chose Java as the action language for writing actions. The

decision to choose Java as the action language at the model level is due to the lack of tool

support for the UML action language (ALF) [21] at the time our tool was developed.

Testers of the SUT are also expected to be more familiar with Java (consistent with our

experience of applying the approach in two industrial contexts), rather than with a newly

approved, standard language. Moreover, ALF does not provide support for specifying time

related actions (e.g., corresponding to the MARTE’s concept of an RTAction to specify an

atomic action). It was also not possible to specify time delays with ALF. Both these

concepts were used repeatedly while modeling the environment of both industrial cases.

4. Framework for Applying UML/MARTE in
Industry

In this section, we present a framework we devised by combining our experiences in

applying UML/MARTE on the industrial problems described above. This framework can

help practitioners in future application of UML/MARTE in industrial contexts. At a high

level, the framework is presented as a UML activity diagram shown in Figure 1.

Following, we briefly discuss each of these activities.

4.1. Perform Domain Analysis (A1)
Each of our industrial applications started from performing a domain analysis. Domain

analysis is defined as “the process by which information used in developing software

systems within the domain is identified, captured, and organized with the purpose of

making it reusable (to create assets) when building new products” [22]. Typically, the

domain analysis results in a domain model [23] that captures domain concepts and the

relationships among them. A domain model can be described using different notations,

UML being a frequently used one. For all the three applications, we used the UML class

diagram notation for domain modeling.

203

Figure 1. Framework for UML/MARTE applied to industrial applications

The objective of the domain analysis that we performed was different from what is

typically presented in OOAD methods [24]. More specifically, our domain analysis is not

the start of the software analysis phase but its usage depends on the problem at hand. For

architectural modeling, the domain model was later used as a basis to derive the product

line architecture modeling methodology, including a UML profile and modeling guidelines.

For both the model-based testing projects, the domain analyses resulted in the definition of

either environment or system static structure models (as class diagrams), which were used,

later on together with state machines, to facilitate automated test-case generation.

To derive the domain models, we followed an iterative process during which we had

multiple sessions with our industry partners. In some cases, we initially used sketching

tools and simple drawings on white boards for ease of understanding. We started by just

capturing the concepts first and later introduced associations and attributes in the domain

models. Last, we also added OCL constraints on the domain model concepts. Detailed

discussions on how the domain analysis was performed in each of the applications are

provided in [6] for architectural modeling, in [17] for robustness testing, and in [20] for

model-based testing of RTES.

In all the three cases, the domain analysis was useful in the following ways: (i) It helped

us in understanding and specifying (as a domain model) the complexities of large-scale

systems having characteristics of multiple disciplines (e.g., electrical, mechanical, and

software) and involving multiple stakeholders; (ii) It was instrumental in understanding the

needs of industry partners and served as a communication medium with them; (iii) It

formed a basis for other activities that we carried out at later stages of the projects, such as

defining the modeling methodology and identifying the language and notations for the

modeling solution.

204

4.2. Define a Modeling Methodology (A2)
After performing the domain analysis, we defined a specific modeling methodology to

tackle each problem, keeping in mind the requirements of the domain. To apply

UML/MARTE in practice, just identifying a set of notations is not sufficient. We need to

define a proper process and guidelines, select proper modeling tools, and train the industry

partners regarding all these aspects. Following, we discuss the various sub-activities of

defining a methodology.

4.2.1. Identify Notations (A2.1)
The first activity for each of the applications was to identify the modeling notations. In all

our industrial applications, we carefully selected a subset of UML and MARTE for

modeling. The reasons for using UML are as follows: (i) it is a modeling standard; (ii) it

has industrial strength tool support ranging from open source (e.g., Papyrus) to commercial

(e.g., IBM RSA); (iii) it has sufficient training material available to help train industry

partners; (iv) it provides a rich set of notations to model a system from different

perspectives; (v) it is extensible for various application domains. Though MARTE is a

relatively new profile, we have observed significant progress in tool support and training

material available over the last couple of years. Plus it has a rich set of concepts, which can

be selected and used for various modeling purposes in the context of real-time, embedded,

and concurrent systems.

Despite the above-mentioned advantages, UML is still a challenge to apply in industrial

settings without clear objectives and a well-defined methodology. UML is a general

purpose, standard modeling language that is meant to cater for different application domain

and problems, and is as a result quite large. The entire language is not meant to be used to

solve a particular problem in a particular domain. Therefore one of the key requirements to

make UML successful in industry is to select a proper subset of the language matching the

needs. In our projects, we systematically aimed to identify such a minimal subset. Figure 2

shows the packages of UML that were used for our applications. We used UML class

diagrams for modeling the domains for all the industrial case studies. Other notations were

selected based on individual needs of the target industrial problem and domain. For

architectural modeling we used UML package and class diagram, and for both model-

based testing applications, we used UML state machines to model system behavior. In total,

205

we only used four out of fourteen UML diagrams (including the UML profile diagram that

we used to create profiles as part of activity A2.2).

MARTE is a comprehensive UML profile covering different aspects for modeling

RTES (Section 2). Similar to UML, the set of concepts provided by MARTE are fairly

large to cater to a wide variety of analysis needs and it is also important to clearly identify

the required subset of MARTE for a specific problem and domain. Figure 3 shows the six

MARTE packages we used (highlighted in grey), a selected subset of the concepts which

were used to model our four industrial case studies. In our experience, using

UML/MARTE showed to be an adequate combination considering our industrial

application domains.

4.2.2. Extend Notations (A2.2)
After we identified the subset of UML and MARTE, the next step was to find out whether

the identified notations were sufficient to address our problems. Various steps that we

performed in this activity are summarized as an activity diagram in Figure 4. First we

evaluated whether the identified MARTE subset was sufficient. If this was not the case, we

tried to extend MARTE using the defined constructs (e.g., by adding a new NFP). When

required, we further defined guidelines on how to extend MARTE (for example, see [17])

in the future. We then evaluated whether the identified subsets of UML, MARTE, and its

extensions were sufficient for our modeling purposes. If this was not the case, we extended

UML by creating UML profiles. One of the important decisions was to decide whether to

go for a profile or a domain specific language (DSL). In all our cases, we decided to opt for

UML profiles over DSL since, in our applications as in many others, minimizing

extensions to UML is expected to ease practical adoption and technology transfer. In [25],

two main approaches for profile creation are discussed. The first approach directly

implements a profile by defining key concepts of a target domain, such as what was done

to define SysML [26]. The second approach first creates a conceptual model outlining the

key concepts of a target domain followed by creating a profile for the identified concepts,

such as what was done to define SPT [13] and MARTE. We used the second approach to

define profiles in our context, since it is more systematic as it clearly separates the profile

creation process into two distinct stages.

We found the MARTE NFP package and the extension mechanism sufficient for our

industrial application of model-based robustness testing. The NFP package provides

206

different data types such as NFP_Percentage and NFP_DataTxRate, which are helpful to

model properties of the environment, for instance jitter and packet loss in networks. When

the built-in data types of MARTE are not sufficient, the open modeling framework of

MARTE can be used to define new NFP types by either extending the existing NFPs or by

defining completely new NFPs. For instance, we extended MARTE’s NFPs and define

several properties of the environment when modeling echo in audio streams and modeling

synchronization mismatch between audio and video streams coming to a video

conferencing system. From our experience in using MARTE, in addition to the advantages

of using a standard, we can conclude that the MARTE profile and its open modeling

framework were sufficient to model relevant properties of the Saturn operating

environment (Section 3.2). However, for our specific problem of robustness testing, we

defined a UML profile called RobustProfile [17] to model faults and their properties. In

addition, the profile supports the modeling of recovery mechanisms when a fault has

occurred and the modeling of states that a system can transition to when it has recovered.

Since these features were not part of MARTE, a profile was required.

Figure 2. UML packages used in industrial case studies (highlighted in grey)

Figure 3. MARTE packages used in industrial case studies (highlighted in grey)

207

For architecture modeling, we proposed the use of 6 new concepts as stereotypes to

extend UML. For model-based robustness testing, we proposed 30 new stereotypes to

extend UML and MARTE, and for the environment model-based testing profile, we

proposed 8 new stereotypes to extend UML concepts. Overall, we can see that a limited

number of stereotypes were required to extend UML for all the three projects. For

robustness testing, most of the new stereotypes were based on a fault model and were

extending MARTE NFPs.

Figure 4. Sub-activities under the activity A2.2 Extend Notations

4.2.3. Tool Selection (A2.3)
An important consideration for the practical adoption of our proposed methodologies in

industrial settings is the selection of an adequate modeling tool. This is important since the

models developed are meant to support automation (e.g., software test automation). The

modeling tool should provide support to export the models in a standard format which can

later be processed by other MDE tools (e.g., for model transformations and OCL parsers).

According to the MARTE official website [27], the MARTE profile is available in four

tools: IBM RSA [15], IBM Rhapsody [28], Papyrus UML [29], and MagicDraw [30].

Among these tools, only IBM RSA and Papyrus UML are EMF-based and hence can be

used with other EMF based tools (e.g., Kermeta for model transformations). For Papyrus

UML, we faced serious usability problems in modeling state machines, since most of the

interface of the tool is based on the assumption that the modeler is aware of the underlying

UML metamodel. IBM RSA comes with a high price tag to be used in small to medium

sized companies. Even IBM RSA has usability issues, for example, it is not possible to

directly link action on a modeling element, such as sending of a signal, in the action code

written as part effects in the state machines. Similarly, the MARTE profile is only

compatible with RSA version 7.0 and if used with later versions, it does not support the

Value Specification Language (VSL) editor. Due to this reason and that a complete parser

of VSL was not available at the time we worked on the industrial projects, we used OCL to

specify values for NFPs and other MARTE types.

208

For one of the projects, we also worked with Enterprise Architect [31]. Initially for the

domain model we used a sketching tool. It was easier for the industry partners to work with

it, because it did not enforce any constraint on the modeling and was good for initial

domain modeling. Though Enterprise Architect is cheap and affordable for smaller

companies, migrating its models to a form compatible to EMF-based tools is not trivial.

Overall, we found IBM RSA as the most viable modeling tool in terms of usability and

its interoperability with third party MBE tools (such as model transformation tools).

4.2.4. Define Guidelines (A2.4)
The next step after tool selection was to define modeling guidelines for each of the

methodologies. As discussed earlier, only specifying a set of notations is not sufficient and

we need a proper methodology to help modelers determine what to model, in which order,

and at what level of detail. The guidelines are not generic and are, to some extent, specific

to each domain and application. For example, for the environment model-based testing

approach, we defined guidelines to help modelers in identifying test-relevant environment

concepts and their relationships [20] in the context of embedded systems. According to our

experience, such guidelines are crucial for modelers to correctly and effectively apply our

modeling notations.

4.3. Application of Methodology
Once the methodology was defined, numerous training sessions took place, which ranged

from acquiring basic UML modeling skills to more advanced methodology specific

training. Training was conducted in an interactive manner, where the attendees were given

exercises based on their own domain and systems. This last point is very important as

people more easily understand and adopt technologies that have shown to apply to their

environment.

Training must be complemented by workshops where we model the solution to a

representative (sub)problem with them, thus reducing the initial learning curve with respect

to the modeling tool and notations. Later, when the first modeling activities are undertaken,

mentoring is also required, at least in the initial stages, until a certain level of comfort is

attained. A natural tendency is for people to revert to previous practices when faced with a

seemingly intractable problem.

209

4.4. Summary and Discussion
For the three industrial projects, we used the UML class, package and state machine

diagrams for modeling the different aspects of software systems. From MARTE, we used

concepts from the MARTE Time, NFP, GQAM, Alloc, GRM and HRM packages. Over

the years, a number of researchers and industry practitioners have raised the issue that

UML is too large [32] [33]. Recently, the same has been written about MARTE [7]. In our

opinion and based on our practice, UML and MARTE are meant to provide an

encompassing set of modeling notations catering diverse needs. To successfully apply

these standards to industrial projects, we need a complete methodology that identifies the

subset of UML and MARTE to be used to address specific problems in specific contexts

and guidelines to help people apply such standards in a systematic and consistent manner.

A complete methodology based on UML/MARTE should be derived for a specific

purpose, to address a particular problem in a particular domain. To do so, we found that a

thorough domain analysis is an important step, which, as we discussed in Section 4.1, is a

necessary basis not just for the analysis but also to make decisions during other activities.

Depending on the complexity of the domain under analysis and the nature of the problem,

the domain analysis activities and effort required vary significantly from case to case. The

next steps are to carefully select a minimal subset of UML and MARTE notations and if

needed, extend MARTE, for example by defining new NFPs, and extend UML by defining

a profile. Though the selection of a modeling tool might seem to be a trivial process, in our

experience, this can have large impact on adoption by the industry partners. If needed, the

modeling tool should be customized based on the modeling notations selected, so that

concepts of UML and MARTE that are not relevant are also not visible to the end user.

Along with the notations, we found it an essential step to provide a set of modeling

guidelines for the end user, which will help her to properly use these notations.

Integrating UML and MARTE can be challenging too, especially when it comes to

bridging the semantic gap between the two. For example, when «HwComponent» was used

on a class in a class diagram to represent a hardware component, the meaning of its

association with another class not carrying any stereotype becomes ambiguous. This is

because UML is typically used to model software. Without having any stereotype applied,

a class by default implies that it is a software class. Then the association between the

hardware component class and the software class should be given a specific meaning, like

210

the deployment of the software to its hardware platform. In our cases, we address such

semantic gaps in our modeling guidelines.

In our experience, there is limited action language support for MARTE concepts, such

as time delays between actions and the concept of RTAction (e.g., required to model atomic

actions). Even in the recently released Action Language for Foundational UML (ALF) [21],

such concepts are not supported. We used Java as an action language, which provided the

concepts of real-time actions that we required.

For model-based robustness testing of RTES, we defined a profile for modeling faults

and their properties, recovery mechanisms, and faulty states. These are based on well-

defined fault models in the literature and are applicable to RTES in general. These

concepts can be a good addition as they align with the goals of the MARTE profile, though

this requires further investigation.

5. Conclusion
Applying Model-based Engineering (MBE) notations and methodologies to real-life

industrial problems is a challenging task and very few articles in the research literature

report on such experiences. For successful MBE application, a comprehensive

methodology for modeling should be adopted that is specific to the problem being solved

and adequate for the application domain. This paper discusses our experiences of applying

Unified Modeling Language (UML) and the UML profile for Modeling and Analysis of

Real-Time Embedded Systems (MARTE) to solve three distinct industrial problems related

to the use of real-time embedded systems (RTES) in four different industry sectors. The

industrial problems that we tackled were related to architectural modeling and

configuration, model-based robustness testing, and environment model-based testing of

RTES. Based on these experiences, we derived a framework to guide practitioners in their

application of UML/MARTE in industrial contexts. This will help practitioners bridge the

gap between modeling standards and the modeling needs of industrial RTES.

6. References
[1] OMG, "Unified Modeling Language Superstructure, Version 2.3,

http://www.omg.org/spec/UML/2.3/," ed, 2010.
[2] Artemis. (2011). Artemis Joint Undertaking - The public private partnership for R &

D Embedded Systems. Available: http://artemis-ju.eu/embedded_systems

211

[3] OMG, "Modeling and Analysis of Real-time and Embedded systems (MARTE),
Version 1.0, http://www.omg.org/spec/MARTE/1.0/," ed, 2009.

[4] S. Demathieu, A. F. Thomas, A. C. Andre, S. Gerard, and F. Terrier, "First
Experiments Using the UML Profile for MARTE," in Proceedings of the 2008 11th
IEEE Symposium on Object Oriented Real-Time Distributed Computing, 2008, pp.
50-57.

[5] L. Briand, D. Falessi, S. Nejati, M. Sabetzadeh, and T. Yue, "Research-Based
Innovation: A Tale of Three Projects in Model-Driven Engineering," Simula
Research Laboratory, Technical Report (2011-18)2011.

[6] T. Yue, L. Briand, B. Selic, and Q. Gan., "Experiences with Model-based Product
Line Engineering for Developing a Family of Integrated Control Systems: an
Industrial Case Study," Simula Research Laboratory, Technical Report(2012-
06)2012.

[7] H. Espinoza, K. Richter, and S. Gérard, "Evaluating MARTE in an Industry-Driven
Environment: TIMMO's Challenges for AUTOSAR Timing Modeling," in
Proceedings of Design Automation and Test in Europe (DATE), MARTE, 2008.

[8] S. E. Middleton, A. Servin, Z. Zlatev, B. Nasser, J. Papay, and M. Boniface,
"Experiences using the UML profile for MARTE to stochastically model post-
production interactive applications," in eChallenges 2010, 2010, pp. 1-8.

[9] FMC Technologies. Available: http://www.fmctechnologies.com
[10] Cisco Inc. Available: http://www.cisco.com
[11] WesternGeco. Available: http://www.slb.com/services/westerngeco.aspx
[12] Tomra AS. Available: http://www.tomra.no
[13] (2010). UML Profile for Schedulability, Performance and Time. Available:

http://www.omg.org/technology/documents/profile_catalog.htm
[14] R. Behjati, T. Yue, L. Briand, and B. Selic, " SimPL: A Product-Line Modeling

Methodology for Families of Integrated Control Systems " Technical Report 2011-14
(ver.2), Simula Research Laboratory, 2012.

[15] IBM Rational Software Architect. Available:
http://www.ibm.com/software/awdtools/architect/swarchitect/

[16] R. Yedduladoddi, Aspect Oriented Software Development: An Approach to
Composing UML Design Models: VDM Verlag Dr. Müller, 2009.

[17] S. Ali, L. C. Briand, and H. Hemmati, "Modeling Robustness Behavior Using
Aspect-Oriented Modeling to Support Robustness Testing of Industrial Systems,"
Simula Research Laboratory, Technical Report (2010-03)2010.

[18] M. Z. Iqbal, A. Arcuri, and L. Briand, "Code Generation from UML/MARTE/OCL
Environment Models to Support Automated System Testing of Real-Time Embedded
Software," Simula Research Laboratory, Technical Report (2011-04) 2011.

[19] M. Z. Iqbal, A. Arcuri, and L. Briand, "Automated System Testing of Real-Time
Embedded Systems Based on Environment Models," Simula Research Laboratory,
Technical Report (2011-19) 2011.

[20] M. Z. Iqbal, A. Arcuri, and L. Briand, "Environment Modeling with UML/MARTE
to Support Black-Box System Testing for Real-Time Embedded Systems:
Methodology and Industrial Case Studies," in Model Driven Engineering Languages
and Systems. Springer Berlin / Heidelberg, 2010, pp. 286-300.

[21] OMG, "Concrete Syntax for UML Action Language (Action Language for
Foundational UML - ALF), Version 1.0 - Beta 1, http://www.omg.org/spec/ALF/,"
ed, 2010.

[22] P. America, S. Thiel, S. Ferber, and M. Mergel, "Title," unpublished|.

212

[23] Conceptual Model (computer science):
http://en.wikipedia.org/wiki/Conceptual_model_(computer_science).

[24] C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and the Unified Process: Prentice Hall PTR Upper Saddle
River, NJ, USA, 2001.

[25] F. Lagarde, H. Espinoza, F. Terrier, C. André, and S. Gérard, "Leveraging Patterns
on Domain Models to Improve UML Profile Definition," in Fundamental
Approaches to Software Engineering, 2008.

[26] T. Weilkiens, Systems Engineering with SysML/UML: Modeling, Analysis, Design:
Tim Weilkiens, 2008.

[27] MARTE Tools Available: http://www.omgmarte.org/node/31
[28] IBM. (2011). IBM Rational Rhapsody Available:

http://www.ibm.com/software/awdtools/rhapsody/
[29] Papyrus UML. Available: http://www.papyrusuml.org
[30] MagicDraw. Available: http://www.magicdraw.com/
[31] Enterprise Architect. Available: http://www.sparxsystems.com/
[32] M. Grossman, J. E. Aronson, and R. V. McCarthy, "Does UML make the grade?

Insights from the software development community," Information and Software
Technology, vol. 47, pp. 383-397, 2005.

[33] J. G. Suess, P. Fritzson, and A. Pop:, "The Impreciseness of UML and Implications
for ModelicaML," in In Proceedings of the 2nd International Workshop on
Equation-Based Object-Oriented Languages and Tools, (EOOLT'2008), 2008, pp.
17-26.

213

A Search-based OCL Constraint Solver for
Model-based Test Data Generation
Shaukat Ali, Muhammad Zohaib Iqbal, Andrea Arcuri, Lionel Briand

In: Proceedings of the 11th International Conference on Quality Software (QSIC 2011), pp.

41-50, IEEE, 2011.

Abstract—Model-based testing (MBT) aims at automated, scalable, and systematic testing

solutions for complex industrial software systems. To increase chances of adoption in

industrial contexts, software systems should be modeled using well-established standards

such as the Unified Modeling Language (UML) and Object Constraint Language (OCL).

Given that test data generation is one of the major challenges to automate MBT, this is the

topic of this paper with a specific focus on test data generation from OCL constraints.

Though search-based software testing (SBST) has been applied to test data generation for

white-box testing (e.g., branch coverage), its application to the MBT of industrial software

systems has been limited. In this paper, we propose a set of search heuristics based on OCL

constraints to guide test data generation and automate MBT in industrial applications.

These heuristics are used to develop an OCL solver exclusively based on search, in this

particular case genetic algorithm and (1+1) EA. Empirical analyses to evaluate the

feasibility of our approach are carried out on one industrial system.

1. Introduction
Model-based testing (MBT) has recently received increasing attention in both industry and

academia. MBT promises systematic, automated, and thorough testing, which would likely

not be possible without models. However, the full automation of MBT, which is a

requirement for scaling up to large systems, requires solving many problems, including

preparing models for testing (e.g., flattening state machines), defining appropriate test

strategies and coverage criteria, and generating test data to execute test cases. Furthermore,

in order to increase chances of adoption, using MBT for industrial applications requires

using well-established standards, such as the Unified Modeling Language (UML) and its

associated language to write constraints: the Object Constraint Language (OCL) [1].

OCL [1] is a standard language that is widely accepted for writing constraints on UML

models. OCL is based on first order logic and is a highly expressive language. The

214

language allows modelers to write constraints at various levels of abstraction and for

various types of models. It can be used to write class and state invariants, guards in state

machines, constraints in sequence diagrams, and pre and post condition of operations. A

basic subset of the language has been defined that can be used with meta-models defined in

Meta Object Facility (MOF) [2] (which is a standard defined by Object Management

Group (OMG) for defining meta-models). This subset of OCL has been largely used in the

definition of UML for constraining various elements of the language. Moreover, the

language is also used in writing constraints while defining UML profiles, which is a

standard way of extending UML using pre-defined extension mechanisms.

Due to the ability of OCL to specify constraints for various purposes during modeling,

for example when defining guard conditions or state invariants in state machines, such

constraints play a significant role when testing is driven by models. For example, in state-

based testing, if the aim of a test case is to execute a guarded transition (where the guard is

written in OCL based on input values of the trigger) to achieve full transition coverage,

then it is essential to provide input values to the event that triggers the transition such that

the values satisfy the guard. Another example can be to generate valid parameter values

based on the pre-condition of an operation.

Test data generation is an important component of MBT automation. For UML models,

with constraints in OCL, test data generation is a non-trivial problem. A few approaches in

the literature exist that address this issue. But most of them, either target only a small

subset of OCL [3, 4], are not scalable, or lack proper tool support [5]. This is a major

limitation when it comes to the industrial application of MBT approaches that use OCL to

specify constraints on models.

This paper provides a contribution by devising novel heuristics for the application of

search-based techniques, such as Genetic Algorithms (GAs) and (1+1) Evolutionary

Algorithm (EA), to solving OCL constraints (covering the entire OCL 2.2 semantics [1]) in

order to generate test data. A search-based OCL constraint solver is implemented and

evaluated on the first reported, industrial case study on this topic.

The rest of the paper is organized as follows: Section 2 discusses the background and

Section 3 discusses related work. In Section 4, we present the definition of distance

function for various OCL constructs. Section 5 discusses the case studies and analysis of

results of the application of the approach, whereas Section 6 discusses the tool support and

Section 7 addresses the threats to validity of our empirical study. Finally, Section 8

concludes the paper.

215

2. Background
Several software engineering problems can be reformulated as a search problem, such as

test data generation [6]. An exhaustive evaluation of the entire search space (i.e., the

domain of all possible combinations of problem variables) is usually not feasible. There is

a need for techniques that are able to produce “good’’ solutions in reasonable time by

evaluating only a tiny fraction of the search space. Search algorithms can be used to

address this type of problem. Several successful results by using search algorithms are

reported in the literature for many types of software engineering problems [7-9].

To use a search algorithm, a fitness function needs to be defined. The fitness function

should be able to evaluate the quality of a candidate solution (i.e., an element in the search

space). The fitness function is problem dependent, and proper care needs to be taken for

developing adequate fitness functions. The fitness function will be used to guide the search

algorithms toward fitter solutions. Eventually, given enough time, a search algorithm will

find an optimal solution.

There are several types of search algorithms. Genetic Algorithms (GAs) are the most

well-known [7], and they are inspired by the Darwinian evolution theory. A population of

individuals (i.e., candidate solutions) is evolved through a series of generations, where

reproducing individuals evolve through crossover and mutation operators.

(1+1)Evolutionary Algorithm (EA) is simpler than GAs, in which only a single individual

is evolved with mutation. To verify that search algorithms are actually necessary because

they address a difficult problem, it is a common practice to use Random Search (RS) as

baseline [7].

3. Related Work
There are a number of approaches that deal with the evaluation of OCL constraints. The

basic aim of most of these approaches is to verify whether the constraints can be satisfied.

Though most of the approaches do not generate test data, they are still related to our work

since they require the generation of values for validating the constraints. These approaches

can be adapted for generating test data. In Section 3.1, we discuss the OCL-based

constraint solving approaches in the literature. In Section 3.2 we discuss the approaches

that use search-based heuristics for testing.

216

3.1. OCL-based Constraint Solvers
A number of approaches use constraint solvers for analyzing OCL constraints for various

purposes. These approaches usually translate constraints and models into a formalism (e.g.,

Alloy [10], temporal logic BOTL [11], FOL [12] , Prototype Verification System (PVS)

[13], graph constraints [14]), which can then be analyzed by a constraint analyzer (e.g.,

Alloy constraint analyzer [15], model checker [11], Satisfiability Modulo Theories (SMT)

Solver [12], theorem prover [12], [13]). Satisfiability Problem (SAT) solvers have also

been used for the animation of OCL operation contracts (e.g., [16], [17]).

Some approaches are reported in the literature that generates test cases based on OCL

constraints. Most of these approaches only handle a small subset of OCL and UML models

and are based on formal constraint solving techniques, such as SAT solving (e.g., [3]),

constraint satisfaction problem (CSP) (e.g., [18], [19]) and partition analysis (e.g., [5], [4]).

The work presented in [19] is one of the most sophisticated approaches in the literature.

However, its focus is on verification of correctness properties, but to achieve this, it also

generates an instantiation of the model. The major limitation of that approach is that the

search space is bounded and, as the bounds are raised, the CSP faces a combinatorial

explosion increase (as discussed in [19]). The task of determining the optimal bounds for

verification is left to the user, which is not simple and requires repeated interaction from

the user. Models of industrial applications can have hundreds of attributes and manually

finding bounds for individual attributes is often impractical. We present the results of an

experiment that we conducted to compare our approach with this approach in Section 5.2.

Most of the above approaches are different from our work, since we want to generate

test data based on OCL constraints provided by modelers on UML state and class

diagrams. These diagrams may be developed for environment models or system models

and the modeler should be allowed to use the complete set of standard OCL 2.2 notations.

We want to provide inputs for which the constraints are satisfied, and not just verify them.

We also want a tool that can be easily integrated with different state-based testing

approaches and manual intervention should not be required for every run.

Existing approaches for OCL constraint solving do not fully fit our needs. Almost all of

the existing works only support a small subset of OCL. Most of the approaches are only

limited to simple numerical expressions and do not handle collections (used widely to

specify expressions that navigate over associations). This is generally due to the high

expressiveness of OCL that makes the definitions of constraints easier, but their analysis

more difficult. Conversion of OCL to a SAT formula or a CSP instance can easily result in

217

combinatorial explosion as the complexity of the model and constraints increase (as

discussed in [19]). For industrial scale systems, as in our case, this is a major limitation,

since the models and constraints are generally quite complex. Most of the discussed

approaches either do not support the OCL constructs present in the constraints that we

have in our industrial case study or are not efficient to solve them (see Section 5.2). Hence,

existing techniques based on conversion to lower-level languages seem impractical in the

context of large scale, real-world systems.

Instead of using search algorithms, another possible approach to cope with the

combinatorial explosion faced in solving OCL constraints could be to use hybrid

approaches that combine formal techniques (e.g., constraint solvers) with random testing

(e.g. [20]). However, we are aware of no work on this topic for OCL and, even for

common white-box testing strategies, performance comparisons of hybrid techniques with

search algorithms are rare [21].

3.2. Search-based Heuristics for Model Based Testing
The application of search-based heuristics for MBT has received significant attention

recently (e.g., [22], [23]). The idea of these techniques is to apply the heuristics to guide

the search for test data that should satisfy different types of coverage criteria on state

machines, such as state coverage. Achieving such coverage criteria is far from trivial since

guards on transitions can be arbitrarily complex. Finding the right inputs to trigger these

transitions is not simple. Heuristics have been defined based on common practices in

white-box, search-based testing, such as the use of branch distance and approach level

[24]. Our goal is to tailor this approach to OCL constraint solving for test data generation.

4. Definition of the Fitness Function for OCL
To guide the search for test data that satisfy OCL constraints, it is necessary to define a set

of heuristics. A heuristic would tell ‘how far’ an input data is from satisfying the

constraint. For example, let us say we want to satisfy the constraint x=0, and suppose we

have two data inputs: x1:=5 and x2:=1000. Both inputs x1 and x2 do not satisfy x=0, but

x1 is heuristically closer to satisfy x=0 than x2. A search algorithm would use such a

heuristic as a fitness function, to reward input data that are closer to satisfy the target

constraint.

218

Figure 1. Example class diagram

Figure 2. Example constraints

In this paper, to generate test data to solve OCL constraints, we use a fitness function

that is adapted from work done for code coverage (e.g., for branch coverage of code

written in C [24]). In particular, we use the so called branch distance (a function d()), as

defined in [24]. The function d() returns 0 if the constraint is solved, otherwise a positive

value that heuristically estimates how far the constraint was from being evaluated as true.

As for any heuristic, there is no guarantee that an optimal solution will be found in

reasonable time, but nevertheless many successful results are reported in the literature for

various software engineering problems [6].

Notice that, in some cases, we would want the constraints to evaluate to false (e.g., a

transition in a state machine that should not be taken). To cope with these cases, we can

simply negate the constraint and find data for which the negated constraint evaluates to

true.

OCL is a constraint language that is more expressive than programming languages such

as C and Java. Therefore, in this paper we extend the basic definition of branch distance to

cope with all the features of the OCL 2.2 constraint language.

In this section, we give examples of how to calculate the branch distance for various

kinds of expressions in OCL, including primitive data types (such as Real and Integer) and

collection-related types (such as Set and Bag). In OCL, all data types are subtypes of a

super type OCLAny, which is categorized into two subtypes: primitive types and collection

types. Primitive types are Real, Integer, String, and Boolean, whereas collection types

include Collection as super type with subtypes Set, OrderedSet, Bag, and Sequence. A

constraint can be seen as an expression involving one or more Boolean clauses connected

with operators such as and and or. The truth value of a clause can depend on different

types of properties involving variables of different types, such as equalities of integers and

comparisons of strings. To explain this, consider the UML class diagram in Figure 1

context Student inv ageConstraint:
 self.age>15

context University inv numberOfStudents:
 self.student->size() > 0

219

consisting of two classes: University and Student. Constraints on the class University are

shown in Figure 2.

The first constraint states that the age of a Student should be greater than 15. Based on

the type of attribute age of the class Student, which is Integer, the comparison in the clause

is determined to involve integers. The second constraint states that the number of students

in the university should be greater than 0. In this case, the size() operation is called on

collection student of the class Student, which is defined on collections in OCL and returns

an Integer denoting the number of elements in a collection. Again, we have a comparison

of integers, even though a function such as size() is called on a collection.

In the next section, we will discuss branch distance functions based on different types of

clauses in OCL.

4.1. Primitive types
A Boolean variable b is either true (d(b)=0), or false (d(b)=k, where for example k=1). If

the Boolean variable is obtained from a function call, then in general the branch distance

would take one of only two possible values (0 or k). However, when such calls belong to

the standard OCL operations (e.g., the operation isEmpty() called on a collection), then in

some cases we can provide more fine grained heuristics (we will specify which ones in

more details later in this section).

The operations defined in OCL to concatenate Boolean clauses are or, xor, and, not, if

then else, and implies. Branch distance for operations on Boolean are adopted from [24]

and are shown in Table 2. Operations implies, xor, and if then else are syntax sugars that

usually do not appear in programming languages, such as C and Java, and can be expressed

as combinations of and and or. The evaluation of d() on a predicate composed by two or

more clauses is done recursively, as specified in Table 1.

When a predicate or one of its parts is negated, then the predicate is transformed such as

to move the negation inward to the basic clauses, e.g., not (A and B) would be transformed

into not A or not B.

For the data types defined for numerical data such as Integer and Real, the relational

operations defined that return Booleans (and so can be used as clauses) are <,>, <=,>=, and

<>. For these operations, we adopted the branch distance calculation from [24] as shown

in Table 2.

In OCL, several other operations are defined on Real and Integer such as +, -, *, /, abs(),

div(), mod(), max(), and min(). Since these operations are used as part of the calculation of

220

two compared numerical values in a clause, there is no need to define a branch distance for

them. For example, considering a and b are of type Integer and the constraint a+b*3<4,

then the operations + and * are used only to define that constraint. The overall result of the

expression a+b*3 will be an Integer and the clause will be considered as a comparison of

two values of Integer type.
Table 1. Branch distance calculations for OCL’s operations for Boolean

Boolean operations Distance function
Boolean if true then 0 otherwise k
A and B d(A)+d(B)
A or B min (d(A),d(b))
A implies B d(not A or B)
if A then B else C d((A and B) or (not A and C))
A xor B d((A and not B) or (not A and B))

Table 2. Branch distance calculations of OCL’s relational operations for numeric data

Relational operations Distance function

x=y if abs(x-y) = 0 then 0 otherwise abs(x-y)+k
x<>y if abs(x-y) <> 0 then 0 otherwise k
x<y if x-y < 0 then 0 otherwise (x-y)+k
x<=y if x-y <= 0 then 0 otherwise (x-y)+k
x>y if (y-x) < 0 then 0 otherwise (y-x)+k
x>=y if (y-x) <= 0 then 0 otherwise (y-x)+k

For the String type, OCL defines several operations such as =, +, size(), concat(),

substring(), and toInteger(). There are only three operations that return a Boolean: equality

operator =, inequality (<>) and equalsIgnoreCase(). In these cases, instead of using k if the

comparisons are negative, we can return the value of any string matching distance to

evaluate how close two strings are, as for example the edit distance [8].

Enumerations in OCL are treated in the same way as enumerations in programming

languages such as Java. Because enumerations are objects with no specific order relation,

equality comparisons are treated as basic Boolean expressions, whose branch distance is

either 0 or k.

4.2. Collection-Related Types
Collection types defined in OCL are Set, OrderedSet, Bag, and Sequence. Details of these

types can be found in [1].

OCL defines several operations on collections. An important point to note is that, if the

return type of an operation on a collection is Real or Integer and that value is used in an

expression, then the distance is calculated in the same way as for primitive types as defined

in Section 4.4.1. An example is the size() operation, which returns an Integer.

In this section, we discuss branch distance for operations in OCL that are specific to

221

collections, and that usually are not common in programming languages for expressing

constraints/predicates and hence are not discussed in the literature.

4.3. Equality of collections (=)
In OCL constraints, we may need to compare the equality of two collections. To improve

the search process by providing a more fine-grained heuristic, we defined a branch distance

for comparing collections as shown in Figure 3.

if not (A.oclIsKindOf(B))
 d(A=B) := 1
otherwise if A->size() <> B->size()
 d(A=B) := 0.5 + 0.5*n(d (A->size()=B->size()))
otherwise
d(A=B) := 0.5 * sum(n(d(pair)))/A->size()
where, d(pair) = distance between each paired element in the collection, e.g., d(A.at(i)=B.at(i)) and n is a
normalizing function [25], and it is defined as n(x)=x/(x+1). Suppose A and B are two collections in OCL.

Figure 3. Branch distance equality of collections

4.4. Operations checking existence of one or more objects in a collection
OCL defines several operations to check existence of one or more elements in a collection

such as includes() and excludes(), which check whether an object exists in a collection or

does not exist in a collection, respectively. Whether a collection is empty is checked with

isEmpty() and notEmpty(). Such operations can be further processed for calculation of

branch distance to improve the search, as described in Table 3.

Table 3. Branch distance calculation for operations checking objects in collections

Operation Distance function
includes (object:T): Boolean, where T is any OCL
type

excludes (object:T): Boolean, where T is any OCL
type

includesAll (c:Collection(T)): Boolean, where T is
any OCL type

excludesAll(c:Collection(T)): Boolean, where T is
any OCL type

isEmpty(): Boolean
notEmpty(): Boolean

4.5. Branch distance for iterators
 OCL defines several operations to iterate over collections. Below, we will discuss branch

distance for these iterators.

The forAll iterator operation is applied to an OCL collection and takes as input a

Boolean expression and determines whether the expression holds for all elements in the

collection. For branch distance, we calculate the distance of the Boolean expression in

222

forAll. Boolean expression on all elements in the collection is conjuncted. To avoid a bias

toward reducing the size of the collection on which the predicate is evaluated, we scale the

resulting distance by the number of elements in the collection. The general branch distance

function for forAll is shown in Table 4. For the sake of clarity in the paper, we assume that

function exp(v1,v2, …vm) evaluates an expression exp on a set of objects v1,v2, …vm in Table

4. Self in the table refers to the collection on which an operation is applied, at(i) is a

standard OCL operation that returns the ith element of a collection, and size() is another

OCL operation that returns the number of elements in a collection.
Table 4. Branch distance for forAll and exists

Operation Distance function

forAll(v1,v2, …vm|exp) if self->size() = 0 then 0

otherwise

exists(v1,v2, …vm|exp)

isUnique(v1|exp)

one(v1|exp)

The exists iterator operation determines whether a Boolean expression holds for at least

one element of the collection on which this operation is applied. The distance is computed

for each element of the collection on which the Boolean expression is applied and the

results are disjuncted. The general distance form for exists is shown in Table 4. In addition,

we also provide branch distance for isUnique() and one() operations in the same table.

Select, reject, collect, and iterator operations select a subset of elements in a collection.

The select operation selects all elements of a collection for which a Boolean expression is

true, whereas reject selects all elements of a collection for which a Boolean expression is

false. In contrast, the collect iterator may return a subset of elements, which do not belong

to the collection on which it is applied. Since all these iterators return a collection and not a

Boolean value, we do not need to define branch distance for them, as discussed in Section

4.4.1.

5. Case Study: Robustness Testing Of Video
Conference System

This case study is part of a project aiming at supporting automated, model-based

robustness testing of a core subsystem of a video conference system (VCS) called Saturn

223

[26] developed by Tandberg AS (now part of Cisco Systems, Inc). Saturn is modeled as a

UML class diagram meant to capture information about APIs and system (state) variables,

which are required to generate executable test cases in our application context. The

standard behavior of the system is modeled as a UML 2.0 state machine. In addition, we

used Aspect-oriented Modeling (AOM) and more specifically the AspectSM profile [27] to

model robustness behavior separately as aspect state machines. The robustness behavior is

modeled based on different functional and non-functional properties, whose violations lead

to erroneous states. Such properties can be related to the system or its environment such as

the network and other systems interacting with the system. A weaver later on weaves

robustness behavior into the standard behavior and generates a standard UML 2.0 state

machine. The woven state machine is provided in [27]. This woven state machine is used

for test case generation. In this current, simplified case study, the woven state machine has

11 states and 93 transitions. Out of 93 transitions, 73 transitions model robustness behavior

and 47 out of 73 are unique, all of them requiring test data that satisfy the constraints to

traverse them. All these 47 transitions have change events or triggers. A change event is

fired when a condition is met during the operation of a system. An example of such change

event is shown in Figure 4. This change event is fired during a videoconference when the

synchronization between audio and video passes the allowed threshold.

SynchronizationMismatch is a non-functional property defined using the MARTE profile,

which measures the synchronization between audio and video in time.

Figure 4. A constraint checking synchronization of audio and video in a videoconference

 In our case study, we target test data generation for model-based robustness testing of

the VCS. Testing is performed at the system level and we specifically targeted robustness

faults, for example related to faulty situations in the network and other systems that

comprise the environment of the SUT. Test cases are generated from the system state

machines using our tool TRUST [26]. To execute test cases, we need appropriate data for

the state variables of the system, state variables of the environment (network properties and

in certain cases state variables of other VCS), and input parameters that may be used in the

following UML state machine elements: (1) guard conditions on transitions, (2) change

events as triggers on transitions, and (3) inputs to time events. We have successfully used

the TRUST tool to generate test cases using different coverage criteria on UML state

machines, such as all transitions, all round trip, modified round trip strategy [26].

context Saturn inv synchronozationConstraint:
 self.media.synchronizationMismatch.value > self.media.synchronizationMismatchThreshold.value)

224

5.1. Empirical Evaluation
This section discusses the experiment design, execution, and analysis of evaluation of the

proposed OCL test data generator.

5.1.1. Experiment Design

We designed our experiment using the guidelines proposed in [7, 28]. The objective of our

experiment is to assess the efficiency of search algorithms such as GAs to generate test

data by solving OCL constraints. In our experiments, we compared three search

techniques: GA, (1+1) EA, and RS. GA was selected since it is the most commonly used

search algorithm in search-based software engineering [7]. (1+1) EA is simpler than GAs,

but in the previous work in software testing we found that it can be more effective in some

cases (e.g., see [9]). We used RS as the comparison baseline to assess the difficulty of the

addressed problem [7].

In this paper, we want to answer the following research questions.

RQ1: Are search-based techniques effective and efficient at solving OCL constraints in

the models of industrial systems?

Figure 5. Success rates for various algorithms

Figure 6. Odds ratio between pairs of algorithms

225

RQ2: Among the considered search algorithms, which one performs best in solving

OCL constraints?

5.1.2. Experiment Execution

We ran experiments for 47 OCL predicates as we discussed in Section 5. The number of

clauses in each predicate varies from one to eight and the median value is six. Each

algorithm was run 100 times to account for the random variation inherent to randomized

algorithms.

A solution is represented as an array of variables, the same that appear in the OCL

constraint we want to solve. For GA, we set the population size to 100 and the crossover

rate to 0.75, with a 1.5 bias for rank selection. We use a standard one-point crossover, and

mutation of a variable is done with the standard probability 1/n, where n is the number of

variables.

We ran each algorithm up to 2000 fitness evaluations on each problem and collected

data on whether an algorithm found the solution or not. On our machine (Intel Core Duo

CPU 2.20 GHz with 4 GB of RAM, running Microsoft Windows 7 operating system),

running 2000 fitness evaluations takes on average 3.8 minutes for all algorithms. Instead of

putting a limit to the number of fitness evaluations, a more practical approach would be to

run as many iterations as possible, but stopping once a predefined time threshold is reached

(e.g., 10 minutes) if the constraint has not been solved yet. The choice of the threshold

would be driven by the testing budget. However, though useful in practice, using a time

threshold would make it significantly more difficult and less reliable to compare different

search algorithms (e.g., accurately monitoring the passing of time, side effects of other

processes running at same time, inefficiencies in implementation details).

To compare the algorithms, we calculated their success rate, which is defined as the

number of times an algorithm was successful in finding optimal solutions out of the total

number of runs.

5.1.3. Results and Analysis

Figure 5 shows a box plot of the success rate of the 47 problems for (1+1) EA, GA, and

RS. For each search technique, the box-plot is based on 47 success rates, one for each

constraint. The results show that (1+1) EA outperformed both RS and GA, whereas GA

outperformed RS. We can observe that, with an upper limit of 2000 iterations, (1+1) EA

achieves a median success rate of 80% but GA does not exceed a median roughly 60%. We

226

can also see that all success rates for (1+1) EA are above 50% and most of them are close

to 100%. Constraints with the lowest success rates are seven and eight clauses long. Even

taking the lowest success rates for the most difficult constraints (50%), this would entail

that with r runs of (1+1) EA, we would achieve a success rate of 1 - (1 - 0.5)r. For

example, with r = 7, we would obtain a success rate above 99%. This entails a computation

time of approximately 3.8*7=27 minutes. Given that we use a slow prototype (EyeOCL)

for OCL expression analysis and that we could parallelize the search, our results suggest

that our approach is effective, efficient, and therefore practical, even for difficult

constraints (RQ1).

To check the statistical significance of the results, we performed Fisher’s exact test

between each pair of algorithms based on their success rates for the 47 constraints. Due to

space limitations, we do not present p-values for each problem and each pair of algorithms.

In summary, we observe that for 105 times out of 141 (47*3, where 3 represent the number

of algorithm pairs), results were significant at the 0.05 level. We also carried out a paired

Mann-Whitney U-test (paired per constraint) on the distributions of the success rates for

the three algorithms. In all the three distribution comparisons, p-values were very close to

0, and hence showing a strong statistical difference among the three algorithms when

applied on all the 47 constraints (although on some constraints there is no statistical

difference, as the 141 Fisher’s exact tests show).

In addition to statistical significance, we also assessed the magnitude of the

improvement by calculating the effect size in a standardized way. We used odds ratio [28]

for this purpose, as the results of our experiments are dichotomous. Figure 6 shows box

plots of odds ratio for pairs of algorithms for the 47 constraints. Between RS and (1+1) EA

(the first column in Figure 6), the value of odds ratio is less than one, thus implying that

(1+1) EA has more chances of success than RS. The odds ratio between RS and GA is also

similar. Therefore, there is strong evidence to claim that (1+1) EA is significantly more

successful than the other analyzed algorithms since, in most of the cases, the odds ratios

comparing GA and RS with (1+1) EA (first and third column in Figure 6) show values not

only lower than one, but also very close to zero (RQ2).

To check the complexity of the problems, we repeat the experiment on the negation of

each of the 47 predicates. All algorithms managed to find solutions for all these problems

very quickly. Most of the time and for most of the problems, each algorithm managed to

find solutions in a single iteration. This result confirmed that the actual problems we

targeted with search were not easy to solve.

227

In practice, given a time budget T, we recommend running (1+1) EA for as many

iterations as possible. An alternative is to run the algorithms several times (e.g., r, so each

run with budget T/r) but this is expected to be less effective as no information is reused

between runs. But, in our experiments, this latter technique is already extremely effective

(99% success rate with seven runs in the worst case).

5.2. Comparision with UMLtoCSP
UMLtoCSP [19] is the most widely used and referenced OCL constraint solver in the

literature. To check the performance of UMLtoCSP to solve complex constraints such as

the ones in our current industrial case study, we conducted an experiment. We selected the

10 most complex constraints (based on the number of clauses in a constraint) from our

industrial application, which comprises constraints ranging from six to eight clauses (we

did not analyzed all the 47 constraints because, as we will show, these experiments took

substantial computational time). An example of such constraint, modeling a change event

on a transition of Saturn’s state machine, is shown in Figure 7. This change event is fired

when Saturn is successful in recovering the synchronization between audio and video.

Since UMLtoCSP does not support enumerations, we converted each enumeration into an

Integer and limited its bound to the number of literals in the enumeration. We also used the

MARTE profile to model different non-functional properties, and since UMLtoCSP does

not support UML profiles, we explicitly modeled the used subset of MARTE as part of our

models. In addition, UMLtoCSP does not allow writing constraints on inherited attributes

of a class, so we modified our models and modeled inherited attributes directly in the

classes. We set the range of Integer attributes from 1 to 100.

We ran the experiment on the same machine as we used in the experiments reported in

the previous section. Though we let UMLtoCSP address each of the selected constraints

for 10 hours each, it was not successful in finding any valid solution. A plausible

explanation is that UMLtoCSP is negatively affected by the state explosion problem, a

common problem in real-world industrial applications such as the one from

Tandberg/Cisco used in this paper. In contrast, even in the worst case, our constraint solver

managed to solve each constraint within at most 27 minutes, as we have reported in the

previous section.

6. Tool Support
We developed a tool in Java that interacts with an existing library, an OCL evaluator called

228

EyeOCL [29]. EyeOCL is a Java component that provides APIs to parse and evaluate an

OCL expression based on an object model. Our tool implements the calculation of branch

distance as discussed in Section 4 for various expressions in OCL. To calculate branch

distance for an OCL expression, we send this expression for parsing to EyeOCL and obtain

a parse tree of the expression. We manipulate the parse tree and call EyeOCL with the

current set of values for variables in the expression and calculate the branch distance. The

search algorithms employed in this paper were implemented in Java as well.

7. Threats to Validity
To reduce construct validity threats, we chose the measure success rate, which is

comparable across all three algorithms ((1+1) EA, GA and RS) that we used. Furthermore,

we used the same stopping criterion for all algorithms, i.e., number of fitness evaluations.

This criterion is comparable across all the algorithms that we studied because each

iteration requires updating the object diagram in EyeOCL and evaluating a query on it.

This time is same for all the algorithms, and it is rather expensive (approximately, 0.114

second per iteration).

The most probable conclusion validity threat in experiments involving randomized

algorithms is due to random variation. To address it, we repeated experiments 100 times to

reduce the possibility that the results were obtained by chance. Furthermore, we perform

Fisher exact test to compare proportions to determine statistical significance of results. We

chose Fisher’s exact test because it is appropriate for dichotomous data where proportions

must be compared, thus matching our case [28]. To determine practical significance of

results, we measure the effect size using the odds ratio of success rates across search

techniques.

A possible threat to internal validity is that we have experimented with only one

configuration setting for the GA parameters. However, these settings are in line with

common guidelines in the literature and our previous experience on testing problems.

In the empirical comparisons with UMLtoCSP, there is the threat that we might have

wrongly configured it. To reduce the probability of such an event, we contacted the authors

of UMLtoCSP who were very helpful in ensuring its proper use.

 We ran our experiments on an industrial case study to generate test data for 47

different OCL constraints, ranging from simpler constraints having just one clause to

complex constraints having eight clauses. Although the empirical analysis is based on a

229

real industrial system and not on small artificial problems (as most work in the literature

[11], [13], and [16]), our results might not generalize to other case studies. However, such

threat to external validity is common to all empirical studies.

Figure 7. A change event checking which is fired when synchronization between audio and video is

within threshold

From our analysis of UMLtoCSP, we cannot generalize our results to traditional

constraint solvers in general when applied to solve OCL constraints. However, empirical

comparisons with other constraints solvers were not possible because, to the best of our

knowledge, UMLtoCSP is not only the most referenced OCL solver but also the only one

that is publically available.

8. Conclusion
In this paper, we presented a search-based constraint solver for the Object Constraint

Language (OCL). The goal is to achieve a practical, scalable solution to support test data

generation for Model-based Testing (MBT). Existing OCL constraint solvers have one or

more of the following problems that make them difficult to use in industrial applications:

(1) they support only a subset of OCL; (2) they translate OCL into formalisms such as first

order logic, temporal logic, or Alloy, and thus are relying on non-standard technologies

and result into combinatorial explosion problems. These problems limit their practical

adoption in industrial settings.

To overcome the abovementioned problems, we defined a set of heuristics based on

OCL constraints to guide search-based algorithms (genetic algorithms, (1+1) EA) and

implemented them in our search-based OCL constraint solver. More specifically, we

defined branch distance functions for various types of expressions in OCL to guide search

algorithms. We demonstrated the effectiveness and efficiency of our search-based

context Saturn inv synchronizationConstraint:
 self.systemUnit.NumberOfActiveCalls > 1 and
 self.systemUnit.NumberOfActiveCalls <= self.systemUnit.MaximumNumberOfActiveCalls) and
 self.media.synchronizationMismatch.unit = TimeUnitKind::s and
 (
 self.media.synchronizationMismatch.value >= 0 and

self.media.synchronizationMismatch.value <=
 self.media.synchronizationMismatchThreshold.value
)
 and self.conference.PresentationMode = Mode::Off and
 self.conference.call->select(call |
 call.incomingPresentationChannel.Protocol <> VideoProtocol::Off)->size() = 2 and
 self.conference.call->select(call |
 call.outgoingPresentatiaonChannel.Protocol <> VideoProtocol::Off)->size()=2

230

constraint solver to generate test data in the context of the model-based, robustness testing

of an industrial case study of a video conferencing system. Even for the most difficult

constraints, with research prototypes and no parallel computations, we obtain test data

within 27 minutes in the worst case and in less than 4 minutes on average.

As a comparison, we ran the 10 most complex constraints on one well-known,

downloadable OCL solver (UMLtoCSP) and the results showed that, even after running it

for 10 hours, no solutions could be found. Similar to all existing OCL solvers, because it

could not handle all OCL constructs, we had to transform our constraints to satisfy

UMLtoCSP requirements.

We also conducted an empirical evaluation in which we compared three search

algorithms using two statistical tests: Fisher’s exact test between each pair of algorithms to

test their differences in success rates for each constraints and a paired Mann-Whitney U-

test on the distributions of the success rates (paired per constraint). Results showed that

(1+1) EA was significantly better than GA, which itself were significantly better than

random search. Notice that in both empirical evaluations, the execution times were

obtained on a regular PC.

Future work will consider hybrid approaches, in which traditional constraint solver

techniques will be integrated with search algorithms, with the aim to overcome the current

limitations that both approaches have and exploit the best of both worlds.

Acknowledgement
The work described in this paper was supported by the Norwegian Research Council. This

paper was produced as part of the ITEA-2 project called VERDE. We thank Marius

Christian Liaaen (Tandberg AS, part of Cisco Systems, Inc) for providing us the case

study.

9. References
[1] (2010). Object Constraint Language Specification, Version 2.2. Available:

http://www.omg.org/spec/OCL/2.2/
[2] N. Holt, B. Anda, K. Asskildt, L. Briand, J. Endresen, and S. Frøystein, "Experiences

with Precise State Modeling in an Industrial Safety Critical System," presented at the
Critical Systems Development Using Modeling Lanuguages, CSDUML’06, 2006.

[3] L. v. Aertryck and T. Jensen, "UML-Casting: Test synthesis from UML models
using constraint resolution," presented at the Approches Formelles dans l'Assistance
au Développement de Logiciels (AFADL'2003), 2003.

231

[4] M. Benattou, J. Bruel, and N. Hameurlain, "Generating test data from OCL
specification," 2002.

[5] L. Bao-Lin, L. Zhi-shu, L. Qing, and C. Y. Hong, "Test case automate generation
from uml sequence diagram and ocl expression," presented at the International
Conference on cimputational Intelligence and Security, 2007.

[6] M. Harman, S. A.Mansouri, and Y. Zhang, "Search based software engineering: A
comprehensive analysis and review of trends techniques and applications," King’s
College,Technical Report TR-09-032009.

[7] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, "A Systematic
Review of the Application and Empirical Investigation of Search-Based Test Case
Generation," IEEE Transactions on Software Engineering, vol. 99, 2009.

[8] M. Alshraideh and L. Bottaci, "Search-based software test data generation for string
data using program-specific search operators: Research Articles," Softw. Test. Verif.
Reliab., vol. 16, pp. 175-203, 2006.

[9] A. Andrea, "Longer is Better: On the Role of Test Sequence Length in Software
Testing," International Conference on Software Testing, Verification, and Validation,
2010.

[10] B. Bordbar and K. Anastasakis, "UML2Alloy: A tool for lightweight modelling of
Discrete Event Systems," presented at the IADIS International Conference in
Applied Computing, 2005.

[11] D. Distefano, J.-P. Katoen, and A. Rensink, "Towards model checking OCL,"
presented at the ECOOP-Workshop on Defining Precise Semantics for UML, 2000.

[12] M. Clavel and M. A. G. d. Dios, "Checking unsatisfiability for OCL constraints,"
presented at the In the proceedings of the 9th OCL 2009 Workshop at the
UML/MoDELS Conferences, 2009.

[13] M. Kyas, H. Fecher, F. S. d. Boer, J. Jacob, J. Hooman, M. v. d. Zwaag, T. Arons,
and H. Kugler, "Formalizing UML Models and OCL Constraints in PVS," Electron.
Notes Theor. Comput. Sci., vol. 115, pp. 39-47, 2005.

[14] J. Winkelmann, G. Taentzer, K. Ehrig, and J. M. ster, "Translation of Restricted OCL
Constraints into Graph Constraints for Generating Meta Model Instances by Graph
Grammars," Electron. Notes Theor. Comput. Sci., vol. 211, pp. 159-170, 2008.

[15] D. Jackson, I. Schechter, and H. Shlyahter, "Alcoa: the alloy constraint analyzer,"
presented at the Proceedings of the 22nd international conference on Software
engineering, Limerick, Ireland, 2000.

[16] M. Krieger and A. Knapp, "Executing Underspecified OCL Operation Contracts with
a SAT Solver," presented at the 8th International Workshop on OCL Concepts and
Tools., 2008.

[17] M. P. Krieger, A. Knapp, and B. Wolff, "Automatic and Efficient Simulation of
Operation Contracts," presented at the 9th International Conference on Generative
Programming and Component Engineering, 2010.

[18] B. K. Aichernig and P. A. P. Salas, "Test Case Generation by OCL Mutation and
Constraint Solving," presented at the Proceedings of the Fifth International
Conference on Quality Software, 2005.

[19] J. Cabot, R. Claris, and D. Riera, "Verification of UML/OCL Class Diagrams using
Constraint Programming," presented at the Proceedings of the 2008 IEEE
International Conference on Software Testing Verification and Validation Workshop,
2008.

[20] K. Sen, D. Marinov, and G. Agha, "CUTE: a concolic unit testing engine for C,"
SIGSOFT Softw. Eng. Notes, vol. 30, pp. 263-272, 2005.

232

[21] K. Lakhotia, P. McMinn, and M. Harman, "An empirical investigation into branch
coverage for C programs using CUTE and AUSTIN," Journal of Systems and
Software, vol. 83, pp. 2379-2391.

[22] C. Doungsa-ard, K. Dahal, A. Hossain, and T. Suwannasart, "GA-based Automatic
Test Data Generation for UML State Diagrams with Parallel Paths," Advanced
Design and Manufacture to Gain a Competitive Edge, pp. 147-156, 2008.

[23] R. Lefticaru and F. Ipate, "Functional Search-based Testing from State Machines,"
presented at the Proceedings of the 2008 International Conference on Software
Testing, Verification, and Validation, 2008.

[24] P. McMinn, "Search-based software test data generation: a survey: Research
Articles," Softw. Test. Verif. Reliab., vol. 14, pp. 105-156, 2004.

[25] A. Arcuri, "It Does Matter How You Normalise the Branch Distance in Search Based
Software Testing," presented at the Proceedings of the 2010 Third International
Conference on Software Testing, Verification and Validation.

[26] S. Ali, H. Hemmati, N. E. Holt, E. Arisholm, and L. C. Briand, "Model
Transformations as a Strategy to Automate Model-Based Testing - A Tool and
Industrial Case Studies," Simula Research Laboratory, Technical Report (2010-
01)2010.

[27] S. Ali, L. C. Briand, and H. Hemmati, "Modeling Robustness Behavior Using
Aspect-Oriented Modeling to Support Robustness Testing of Industrial Systems,"
Simula Research Laboratory, Technical Report (2010-03)2010.

[28] A. Arcuri and L. Briand., "A Practical Guide for Using Statistical Tests to Assess
Randomized Algorithms in Software Engineering," presented at the International
Conference on Software Engineering (ICSE), 2011.

[29] M. Egea, "EyeOCL Software," ed, 2010.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

