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Abstract 
Real-time embedded systems (RTES) are part of a vast majority of computing devices 

available today. They are widely used in critical domains where high system dependability 

is required. These systems typically work in environments comprising of large numbers of 

interacting components. The interactions with the environment are often bound by time 

constraints. Missing such time deadlines, or missing them too often for soft real-time 

systems, can lead to serious failures resulting in threats to human life or the environment. 

There is usually a great number and variety of stimuli from the RTES environment with 

differing patterns of arrival times. Testing all possible sequences of stimuli is not feasible 

and only a fully automated testing approach can scale up to the testing requirements of 

industrial RTES. In this thesis, we take a black-box approach for system testing of RTES 

based on environment models. Our main motivation is to provide a practical approach to 

the model-based testing (MBT) of RTES. To do so, we enable system testers, who are 

often not familiar with the system design but are knowledgeable of the application domain, 

to model the environment using well-supported modeling standards, to enable test 

automation. Once the environment models are developed they can support the automation 

of three tasks: the code generation of an environment simulator to enable testing on the 

development platform, the selection of test cases, and the evaluation of their expected 

results (oracles). 

 Given the above objectives, a first contribution of this thesis is a detailed environment 

modeling methodology that fits the practical needs for industrial adoption of a RTES 

system testing approach. The methodology is based on modeling standards (1) that are at 

an adequate level of abstraction, (2) that software engineers are familiar with, and (3) that 

are well supported by commercial or open source tools. The methodology uses the Unified 

Modeling Language (UML), the profile for Modeling and Analysis of Real-time 

Embedded Systems (MARTE), and the Object Constraint Language (OCL). We also 

provide extensions to UML and introduce a profile for modeling concepts that are specific 

to our context. The models capture only the details in the environment that are visible and 

relevant to the SUT, including the nominal behavior and failure behavior of environment 

components. The environment behavioral models also capture what we call ‘error states’ 

that should never be reached if the SUT is implemented correctly. The ‘error states’ act as 

oracles for the test cases. The environment modeling methodology is applied on two 

industrial case studies. The results show that the modeling notations selected suffice to 
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model the RTES environments for our test automation. The experiences learned by 

applying UML/MARTE in industrial contexts are also summarized in the form of a 

framework, which can help practitioners in bridging the gap between the modeling 

standards and industrial adoption. 

 A second contribution of this thesis is the definition of transformation rules for 

environment simulator generation. To convert environment models developed using UML 

state machines and class diagrams to their simulator code, we extend the well-known state 

pattern for our specific purpose and also resolve a number of UML semantic variation 

points. We evaluate the transformation rules by transforming models for five case studies, 

including two industrial case studies and use these models for testing. Our empirical 

evaluation based on the case studies shows that the developed rules are sufficient and that 

they are correct as far as fault detection is concerned. The automated simulator generation 

is expected to save a significant amount of effort during system testing. 

 The third contribution of this thesis is an efficient approach to solve constraints on the 

environment models written using OCL. For this purpose we define a set of heuristics for 

search algorithms and empirically evaluate their effectiveness on an industrial case study. 

These heuristics play an important role in test case generation from environment models. 

Results of the empirical study suggest that even for the most difficult constraints, with 

research prototypes and no parallel computations, we obtain test data within 2.96 seconds 

on average. This is a significant improvement compared to an existing OCL solver, which 

was not able to solve the same constraints even after several hours of execution. 

 The final contribution of the thesis is test case generation from environment models 

for black-box system testing of RTES. We conducted a number of experiments to 

investigate the effectiveness of testing algorithms, specifically, Genetic Algorithms (GA) 

and (1+1) Evolutionary Algorithm (EA), Adaptive Random Testing (ART), and Random 

Testing (RT) in our context. The goal of testing in our context is to reach an ‘error state’ of 

the environment with as few test case executions as possible. For search algorithms we 

provide and iteratively improve a fitness function for effective testing. The testing 

strategies are evaluated on an industrial case study and a number of artificial problems. On 

the industrial case study we were able to automatically find new, critical faults. Based on 

the results of our experiments, we propose a hybrid strategy, which combines the strengths 

of (1+1) EA and ART, to improve the overall performance of system testing that is 

obtained when using each single strategy in isolation. Results show that the hybrid strategy 
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fares better and, unlike individual algorithms, its performance is not drastically affected by 

the characteristics of the environment models (i.e., low variance in results). 
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Summary 
 
 
 
 
 
 
 

1 Introduction 
Real-time embedded systems (RTES) are widely used in many different domains, from 

integrated control systems to consumer electronics. Already 98% of computing devices are 

embedded in nature and it is estimated that, by the year 2020, there will be over 40 billion 

embedded computing devices worldwide [1]. These systems typically work in 

environments comprising of large number of physical components (e.g., sensors and 

actuators) and possibly other RTES systems (e.g., in systems of systems). The interactions 

with the environment are usually bounded by timing constraints. For example, if a gate 

controller RTES on a railroad intersection is informed by a sensor that a train is 

approaching, then the RTES should command the gate to close before the train reaches it. 

Missing such time deadlines, or missing them too often for soft real-time systems, can lead 

to serious failures leading to threats to human life or the environment. There is usually a 

great number and variety of stimuli from the RTES environment with differing patterns of 

arrival times. Therefore, the number of possible test cases is usually very large if not 

infinite. Testing all possible sequences of stimuli is not feasible. Hence, systematic 

automated testing strategies that have high fault revealing power are essential for effective 

testing of industry scale RTES. 

Because RTES are developed for diverse domains presenting different characteristics 

(e.g., different timing, safety, security requirements), different testing approaches are 

required to handle the significant variation across domains [2]. Our main target RTES in 

this thesis are soft-real time systems with time deadlines in the order of hundreds of 

milliseconds, with an acceptable jitter of a few milliseconds in response time. Our testing 
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approach (black-box system level testing) not only encompasses functional correctness of 

the system under test (SUT), but also enable to focus testing on particularly critical aspects 

of the RTES, e.g., potentially hazardous situations.  

The work discussed in this thesis was motivated by the problems faced and practices 

followed by two industrial organizations that we worked with, namely WesternGeco AS, 

Norway [3] and Tomra AS, Norway [4]. These two organizations were developing RTES 

for two different domains; WesternGeco was developing a seismic acquisition system and 

Tomra was developing automated recycle machines. Both the RTES were developed to run 

in an environment that enforces time deadlines in the order of hundreds of milliseconds 

with an acceptable jitter of a few milliseconds in response time. In one of the 

organizations, testing the SUT on the development platform with a simulated environment 

was considered to be mandatory before deploying the software on the operational 

hardware. To achieve this, software engineers were writing application specific simulators 

directly in Java. Test cases for system level testing were written by hand by the software 

test engineers and were executed on the SUT with the environment simulator. The research 

presented in this paper was strongly driven by our investigation of the practical needs of 

our industry partners which, based on our experience, are shared by many others in 

numerous industry sectors. 

Typically, large scale testing of RTES software in real environments and on actual 

deployment platforms is not a viable option. It would be expensive, the consequences of 

failures might be catastrophic (e.g., in safety critical systems), and the number of variations 

in the environment that can be exercised within a reasonable time frame are small. 

Moreover, some of the environment components might not be available at the time of 

testing, since hardware and software components are typically developed concurrently. To 

test RTES software in this kind of situations, a common strategy is to develop a simulator 

for these environment components. A simulator enables the execution of the RTES on the 

development platform, without requiring actual interactions with its environment. In our 

context, a test case is a sequence of stimuli, generated by the environment or its simulator, 

that are sent to the RTES. If a user interacts with the RTES, then the user would be 

considered as part of the environment as well.  

Testing all possible sequences of environment stimuli and state changes is not feasible. 

In practice, a single test case of an industrial RTES could last several seconds or even 

minutes, executing hundreds of thousands of lines of code, generating hundreds of threads 

and processes running concurrently, communicating through TCP sockets and operating 
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system signals, and accessing the file system for I/O operations. Hence, systematic testing 

strategies that have high fault revealing power must be devised. The complexity of modern 

RTES makes the use of systematic testing techniques, whether based on the coverage of 

code or models, difficult to apply without generating far too many test cases. Alternatively, 

manually selecting and writing appropriate test cases based on human expertise for such 

complex systems would be far too challenging and time consuming. If any part of the 

specification of the RTES changes during its development, a very common occurrence in 

practice, then many test cases might become obsolete and their expected output would 

potentially need to be recalculated manually. The use of an automated oracle is hence 

another essential requirement when dealing with complex industrial RTES. 

In this thesis, we present a practical approach for automated system testing of RTES 

based on its environment models. The main contributions of this thesis are as follows: 

 We propose a methodology for modeling environments of RTES for automated system 

testing by using international modeling standards: the Unified Modeling Language 

(UML) [5], the Modeling and Analysis of Real-Time Embedded Systems (MARTE) 

profile [6] and our proposed profile for environment modeling (discussed in Paper 1). 

The proposed methodology is applied on two industrial case studies. Based on our 

experiences in industrial applications of our methodology, we derive a framework to 

help modelers for future industrial applications of UML/MARTE. The framework 

provides a set of detailed guidelines on how to apply these standards in industrial 

contexts and will help reduce the gap that is to be expected between such modeling 

standards and industrial needs 

 We present extensions to the state pattern [7] specifically aimed at enabling 

environment simulation for system testing and define rules for transforming 

environment models to Java code (the simulator). The rules are empirically evaluated 

for two industrial case studies and three artificial problems 

 A testing approach that uses the environment models to automatically generate test 

cases and test oracles for RTES system testing. We tailored ART and defined specific 

fitness functions for search-based testing (SBT). For applying SBT, a fundamental 

requirement was to solve OCL constraints in the UML models. To fulfill this need the 

thesis proposes heuristics for the application of SBT to solve these constraints. We 

empirically evaluated these techniques on one industrial case study and a number of 

artificial problems. The results of these evaluations lead us to propose a hybrid strategy 

that provides the benefits of both ART and SBT. The results of our experiments to 
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evaluate the fault detection effectiveness of this hybrid strategy suggest that it is a 

practical strategy to apply, since unlike other strategies, variations in environment 

properties do not have a drastic impact on its performance. This makes it a predictable 

test strategy.  

 Finally, we report our experience of applying UML/MARTE for model-based testing in 

industrial contexts and based on such experiences, we propose a framework to guide 

future practitioners on applying UML/MARTE in industry.  

This thesis has two parts: 

Summary: This part provides an overall summary of the thesis and is organized as 

follows: Section 2 provides the necessary background information required for the thesis. 

Section 3 summarizes the contributions of the thesis, whereas Section 4 discusses the 

research methodology that was followed. Section 5 highlights the results of the research 

papers that are submitted as part of the thesis. Section 6 provides future research directions 

and finally Section 7 concludes the thesis. 

Papers: This part provides the published or submitted research papers that are included 

in this thesis.  

  



 
 

 
5 

2 Background 
This section provides the background of the work reported in this thesis.  

2.1 Testing of Real-time Embedded Systems 
Depending on the goals, RTES testing can be performed at different levels. At the early 

stages of the development process for RTES, a typical approach is to model and simulate 

the SUT, its hardware and its environment. The aim is to ensure that the model of the SUT 

complies with the requirement specifications and does not violate the environment and 

hardware assumptions. This approach is sometimes also referred to as “model-in-the-loop” 

simulation or testing [2, 8, 9]. Another level of testing is when the actual executable 

software is deployed on the real hardware platform (e.g., electronic control unit) and their 

combination is tested with a simulated environment (e.g., with the simulation of a plant 

model [2]). This approach is generally called “hardware-in-the-loop”' testing [10, 11].  

Typically, a prototype of the hardware platform is used at this stage.  A variation to 

hardware-in-the-loop testing is the case where only the actual processor is used during 

testing and the rest of the hardware and environment are simulated. This variation is 

widely referred to as “processor-in-the-loop” testing [12].  

Before the hardware or the processor is available, the embedded software can also be 

tested on the development platform (e.g., Linux or Windows-based machine) with a 

simulated environment and hardware platform. This is typically done to ensure that the 

developed software works according to the environment assumptions and in hazardous 

situations. This is mostly referred to as “software-in-the-loop” [2, 8]. Existing modeling 

and simulation languages and their corresponding testing techniques have been developed 

and are widely used for the first three types of testing. In these cases the environment 

simulation needs to interact with the actual hardware or its simulation. In such cases, 

precise simulation of both discrete and continuous phenomena is required and is typically 

based on mathematical models.  

The approach presented in this thesis can be labeled as a slight variation of the typical 

software-in-the-loop testing as we only model and simulate the environment to test the 

SUT. We use an adapter for the hardware platform that forwards the signals from the SUT 

to the simulated environment. 
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2.2 Unified Modeling Language  
Unified Modeling Language (UML) [5] is an international standard for modeling 

different aspects of software systems. With a total of 13 diagrams in UML 2.x, the 

language enables the modelers to represent software systems at various levels of 

abstraction. For modeling the static structure of such systems, it provides class diagram, 

object diagram, package diagram, component diagram, composite structure diagram, 

deployment diagram, and profile diagram. For modeling the behavior UML provides with 

use case diagram, activity diagram, state machine diagram, sequence diagram, 

communication diagram, interaction overview diagram and timing diagram. Depending on 

the system being model and the purpose of modeling, typically a methodology is defined 

which identifies the subset of UML to be used. UML also provides a built-in mechanism to 

provide lightweight extensions that do not conflict with its original semantics by 

developing UML profiles.  

2.3 Object Constraint Language (OCL) 
OCL [13] is an international standard language for writing constraints on UML models. 

It is a textual language and is based on first order logic and set theory, but is more 

expressive as its syntax is closer to higher level programming languages. Since, it is a 

specification language, the expression written in OCL do not have any side effects. 

Depending on the goals, constraints can be written for different elements of UML models, 

ranging, for example, from class invariants to guards on state machines. A subset of this 

language can also be used to define constraints on meta-models, which for example is used 

to define UML meta-model. The language also provides a standard library that defines a 

number of operations on various OCL types, including collections, that are helpfull when 

writing constraints.  

Constraints written on UML models, as for example, the constraints written as part of 

guard conditions on state transitions in state machines, play an important role during 

model-based testing. As an example, consider a testing scenario where transition coverage 

based on a UML state machine is required. If any of the transitions in the state machine is 

guarded (where the guard is written in OCL), then to achieve the required coverage, the 

guard needs to be satisfied in order to trigger the transition.  

2.4 MARTE Profile 
The UML profile for Modeling and Analysis of Real-time Embedded Systems 

(MARTE) [6] was defined to provide a number of concepts that modelers can use to 
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express relevant properties of RTES, for example related to performance and 

schedulability. MARTE is meant to replace the previously defined UML profile for 

Schedulability, Performance, and Time specification (SPT) [14].  

At the highest level, MARTE contains three packages. The core package is MARTE 

Foundations that contains the sub-packages for modeling non-functional properties (NFP 

package), time properties (Time package), generic resource modeling of an execution 

platform for RTES (GRM package), and resource allocation (Alloc package). The MARTE 

Foundations package contains the core elements that are reused by the other two packages 

of the profile: MARTE design model and RealTime&Embedded Analysing (RTEA). The 

MARTE design model package contains various sub-packages required for modeling the 

design of RTES. This includes the packages to support modeling of component-based 

RTES with the Generic Component Model package (GCM), high-level features for RTES 

with the High-Level Application Modeling package (HLAM), and for detailed modeling of 

software and hardware resources with the Detailed Resource Modeling package (DRM). 

The RTEA package contains further concepts related primarily to modeling for analysis. 

This includes the Generic Quantitative Analysis Modeling package (GQAM) which 

provides generic concepts for resource modeling. These concepts are further specialized by 

the Schedulability Analysis Modeling (SAM) package for modeling properties useful for 

Schedulability and the Performance Analysis Modeling package (PAM) for modeling 

properties useful for performance analysis. 

2.5 Search-based Testing 
Several software engineering problems can be reformulated as a search problem, such 

as test data generation [15]. An exhaustive evaluation of the entire search space (i.e., the 

domain of all possible combinations of problem variables) is usually not feasible. There is 

a need for techniques that are able to produce “good’’ solutions in reasonable time by 

evaluating only a tiny fraction of the search space. Search algorithms can be used to 

address this type of problem. Several successful results by using search algorithms are 

reported in the literature for many types of software engineering problems [16].  

To use a search algorithm, typically a fitness function needs to be defined. The fitness 

function should be able to evaluate the quality of a candidate solution (i.e., an element in 

the search space). The fitness function is problem dependent, and proper care needs to be 

taken for developing adequate fitness functions. The fitness function will be used to guide 
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the search algorithms toward fitter solutions. Eventually, given enough time, a search 

algorithm will find a satisfactory solution. 

There are several types of search algorithms. Genetic Algorithms (GA) are the most 

well-known [16], and they are inspired by the Darwinian evolution theory. A population of 

individuals (i.e., candidate solutions) is evolved through a series of generations, where 

reproducing individuals evolve through crossover and mutation operators. (1+1) 

Evolutionary Algorithm (EA) is simpler than GA, in which only a single individual is 

evolved with mutation. To verify that search algorithms are actually necessary because 

they address a difficult problem, it is a common practice to use Random Search (or 

Random Testing (RT) for testing problems) as a comparison baseline [16].      

2.6 Adaptive Random Testing 
Adaptive Random Testing (ART) [17] has been proposed as an extension of RT. The 

underlying idea of ART is that diversity among test cases should be rewarded, because 

failing test cases tend to be clustered in contiguous regions of the input domain. ART can 

be automated if one can define a meaningful similarity function for test cases. 
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3 Environment Modeling and Testing of Real-Time 
Embedded Systems 

The main motivation of the thesis is to provide a practical approach for automated 

black-box system testing of RTES based on their environments. Fig. 1 shows a high level 

view of the framework for RTES system testing. The major input required by the software 

engineer is the environment models. These models are then translated using the simulator 

generator to a Java simulator. The software engineer also writes a minimal driver that 

configures the Test Framework. Environment models comprise of a domain model and a 

number of behavioral models. The domain model represents the overall structure of the 

environment, shown as a UML class diagram. The behavioral models represent the 

behavior of environment components using UML 2.x state machines. The Simulator 

Generator component shown in the figure generates a set of Java files implementing a 

Simulator for the environment. A set of classes labeled as External Action Code contain 

the code written by the tester containing complex actions and communication related code 

between the SUT and its environment (e.g., through UDP/TCP, as it was the case in both 

our industrial case studies). An OCL Constraint Solver is used during simulator generation 

to resolve any constraints on the environment models in order to generate values for 

environment components’ attributes. Later the constraint solver is embedded within the 

generated simulator and during simulation it calculates how far a test case is from 

satisfying a guard on a transition (i.e., the branch distance used to guide the search 

algorithms). The Test Framework is responsible for generating various test cases and 

starting up the RTES under test and the environment for each test case.  The framework 

Fig. 1. Framework for Environment Model-based Testing of RTES 
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allows test case generation using three testing strategies (RT (random testing), ART 

(adaptive random testing), SBT (search-based testing), and a hybrid strategy combining 

SBT and ART).  

The thesis can be divided into three related parts: (i) methodology for environment 

modeling; (ii) simulator generation from environment models; (iii) strategies for testing 

based on environment models including test data generation from OCL constraint. In the 

following sections, we give a brief overview of these three parts. 

3.1 Environment Modeling 
The first step is to model the characteristics and behavior of the environment. 

Environment models describe both relevant structural and behavioral characteristics of the 

environment. Given an appropriate level of detail, defined by our methodology, the models 

enable the automatic generation of the environment simulator. These models can also be 

used to generate automated test oracles, which are typically modeled as “error states” that 

should never be reached by the environment during the execution of a test case. From a 

practical standpoint, using the same model as the source for generating simulators and test 

cases is very important. Moreover, the models can further be used to automatically select 

test cases and sophisticated heuristics are used to automatically do so from the models 

without any intervention of the tester. To summarize, the only required artifacts to be 

developed by testers is the environment model and the rest of the process is expected to be 

fully automated. Incidentally, by using this automated Model-Based Testing (MBT) 

technology, one of our industrial partners was able to find new critical faults in their 

already tested RTES.   

To support environment modeling in a practical fashion, we have selected standard and 

widely accepted notation for modeling software systems, the UML and its standard 

extensions. We use the MARTE [6] extensions for modeling real-time features and OCL 

for specifying constraints. We have also provided lightweight extensions to UML as a 

profile, in order to ease its use in our context. The corresponding profile diagram is shown 

in Fig. 2. Modeling the environment of industrial RTES using a combination of UML, 

MARTE, and OCL has not been addressed in the literature.  By using the proposed 

methodology, software testers (who are primarily software engineers) can model the 

environment with a notation that they are familiar with, using commercial or open source 

tools, and at a level of precision required to support automated MBT. The importance of 
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relying on standards for modeling was confirmed on the two industrial case studies across 

entirely different domains.  

While modeling our industrial cases, we abstracted the functional details of the 

environment components to such an extent that only the details visible to the SUT were 

included. An environment of a RTES typically features a number of non-deterministic 

events (e.g., breakdown of a sensor), which must be modeled. Such events are not common 

when modeling the internal behavior of a system.  

In the kind of testing this thesis addresses, the focus is on the interactions of the RTES 

with the components in its environment, i.e., what are the possible inputs/outputs to/from 

the RTES from/to these components at any given point in time? How does the RTES 

behave in abnormal situations, such as a hardware failure in any of the environment 

components? A test case for a RTES would typically consist of a sequence of actions from 

the user(s), signals from/to sensors/actuators, and possibly hardware component 

breakdowns. This would correspond, in our context, to non-deterministic events that can 

happen during the environment simulations. 

3.2 Environment Simulation 
Although code generation from models has been widely studied, the context of black-

box RTES system testing poses specific challenges and problems that are not fully 

discussed and addressed in the literature. For this purpose we provide extensions to the 

original state pattern [7] specifically aimed at enabling environment simulation for system 

testing and define rules for transforming environment models to Java code (the simulator). 

Fig. 2. RTES Environment Modeling Profile  
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The original state pattern did not address a number of important features of UML state 

machines, such as, concurrency, parallel regions, composite states, time events, change 

events, and actions (on transition & within state). A number of extensions for the pattern 

have been discussed over time to handle missing features (e.g., [18, 19]). But overall, as 

discussed in Paper 2, none of the extensions completely meet the needs for RTES 

environment simulation to support system testing. We have adopted the extensions 

proposed in the literature wherever they were adequate for our needs. We also resolved a 

number of UML 2.x semantic variation points related to class diagrams and state machines 

for code generation. The model-to-text transformations for generating Java simulators from 

environment models are written using MofScript [20]. Fig. 3 shows an architecture 

diagram for the simulation framework. The domain model and behavioral model are inputs 

and a simulator corresponding to the environment models is one of the outputs of the 

framework. Further explanation of the framework is provided in Paper 2. 

3.3 Environment Model-Based Testing 
For model-based test case generation, we tailored the principles of Adaptive Random 

Testing (ART) [17] and Search-based Testing (SBT) [21] (specifically Genetic Algorithms 

and (1+1) Evolutionary Algorithm) to our specific problem and context. For our empirical 

evaluation, we also used Random Testing (RT) as a comparison baseline. One main 

advantage of ART and SBT is that they can be tailored to whatever time and resources are 

available for testing: when resources are expended and time is up, we can simply stop their 

application without any side effect.  Furthermore, ART and SBT attempt, through different 

heuristics, to maximize the chances to trigger a failure within time constraints. 

In our context, a test case is a sequence of stimuli generated by the environment that is 

sent to the RTES that can be taken during the simulation. If a user interacts with the RTES, 

then she would be considered part of the environment as well. A test case can also include 

Fig. 3 Architecture Diagram of Simulation Framework 
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state changes in the environment that can affect the RTES behavior. For example, with a 

certain probability, some hardware components might break, and that affects the expected 

and actual behavior of the RTES. A test case can contain information regarding when and 

in which order to trigger such changes. So, at a higher level, a test case in our context can 

be considered as a setting specifying the occurrence of all these environment events in the 

simulator. Explicit “error” states in the models represent states that should never be 

reached if the RTES is correct. If any of these error states is reached, then it implies a 

faulty RTES. Error states act as the oracle of the test cases, i.e., a test case is successful in 

triggering a failure in the RTES if an error state of the environment is reached during 

testing. 

A fundamental part of the fitness functions devised for SBT is the branch distance. In 

our context, the branch distance heuristically evaluates how close the values of a test case 

are to satisfy a guard on a transition on environment behavior models. Since the guards are 

written in OCL, we developed an OCL constraint solver for this purpose. Paper 7 and 

Paper 8 discusses the constraint solver in detail. 

Our focus is to devise a practical approach in a system testing context. For this purpose, 

we evaluate the proposed modeling methodology and simulation generation on two 

industrial case studies. The proposed testing methodology is evaluated on an industrial 

case study and a set of artificial problems inspired by two industrial case studies. 
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4 Research Methodology 
This thesis reports on industry-driven research aimed at finding applicable solutions to 

real, carefully defined problems. Defining such problems, their solutions and evaluations 

were, in our context, performed in collaboration with Tomra [4] and WesternGeco [3]. The 

research methodology followed for this thesis included understanding industrial problems 

in context, assess existing related work in terms of addressing the defined problems, 

developing specific modeling and testing methodologies, developing a tool for simulation 

and testing, conducting empirical studies for evaluating the methodologies and the tool, 

and iteratively improving the methodology and the tool based on the results of these 

empirical studies. 

4.1 Understanding Industrial Problems 
The thesis started by understanding the testing problems faced by our industry partners. 

These two partners were developing RTES for two different domains; WesternGeco was 

developing a seismic acquisition system and Tomra was developing automated recycle 

machines. Both the RTES were developed to run in an environment that enforces time 

deadlines in the order of hundreds of milliseconds with an acceptable jitter of a few 

milliseconds in response time. In one of the organizations, testing a SUT as a black-box on 

the development platform with a simulated environment is considered to be mandatory 

before deploying the software on the operational hardware. This is preferably carried out 

by independent testers who are application domain experts, but have little or no knowledge 

of SUT design and implementation. To achieve this, software engineers were writing 

application specific simulators directly in Java. Test cases for system level testing were 

written by hand by the software test engineers and were executed on the SUT with the 

environment simulator. In practice, a single test case for the type of testing done by our 

industry partners lasts several seconds, executing thousands of lines of code, generating 

hundreds of threads/processes running concurrently, communicating through TCP sockets 

and/or OS signals, and accessing the file system for I/O operations.  

Testing all possible sequences of environment stimuli/state changes is not feasible. 

Manually selecting and writing appropriate test cases based on human expertise for such 

complex systems was very challenging and time consuming. If any part of the specification 

of the RTES changed during its development, a very common occurrence in practice, then 
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many test cases became obsolete and their expected output was to be recalculated 

manually.  

Manually writing an environment simulator using a programming language (e.g., Java 

or C) for system testing also posed a number of issues, the main one being that software 

engineers had to develop such simulator at a low-level of abstraction while simultaneously 

focusing on the logic of the simulator, complex programming constructs (e.g., multiple 

threads, handling timers), and the handling of test case configurations (when the simulator 

is used for testing). Making this problem even more acute, over the course of the RTES 

development, these simulators frequently changed due to changes in the specifications of 

the hardware components. 

To solve the identified industrial problem, there was a need to devise a systematic 

testing methodology that has high fault revealing power. The target systems of the 

methodology are RTES having complex environments and soft-real time constraints in the 

order of hundreds of milliseconds pertaining to the response time of the SUT and 

operations of the environment. The developed methodology should be adaptable and 

scalable to the specific complexity of a RTES and available testing resources. To enable 

complete automation of the testing methodology, an automated oracle is also required. The 

methodology should not only generate meaningful test cases based on RTES environments, 

but should also generate automated simulators for the environments, preferably from same 

set of specifications/models. The methodology should also be easily transferable to 

software engineers working at industry partners in a way that minimum specialized 

training is required.  

The industrial case studies that we worked on are discussed throughout the papers (esp. 

Paper 2) and the steps followed along with our experiences to understand the problems and 

devise a solution are reported in Paper 6. 

4.2 Literature Survey 
Next step after understanding and precisely defining the industrial problem to target was 

to survey the literature for works (partially) matching our problem. We did not find any 

existing work that was entirely adequate for the needs of our industry partners. The 

environment modeling approaches reported in the literature were not based on modeling 

standards and not focusing on the type of testing we automate, i.e., automated black-box 

system testing of RTES. A number of approaches reported in the literature discuss code 

generation from models, but none of the approaches fit the requirement of generating 
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simulators for supporting the system testing of RTES.  The results of the survey are 

discussed in Paper 2 and Paper 4. 

4.3 Developing Methodologies for Modeling, Simulator Generation & Testing  
After understanding the industrial problem and conducting the literature survey, the 

next step was to develop a modeling methodology for supporting system test automation in 

our context. For this we looked at the needs of the industry partners and tried to adopt 

standard modeling notations to the maximum extent possible. The step was iterative and 

involved feedback from the industry partners and also accommodating the new 

requirements that arose after developing the simulation and testing strategies. For simulator 

generation, we extended the well-known state pattern [7] according to our needs. For 

testing, we followed a step-wise strategy to obtain the best strategy for the type of testing 

that we perform. This was based on the results of extensive empirical studies that we 

carried out. 

4.4 Empirical Studies 
A fundamental part of the thesis was to carry out empirical studies to evaluate and later 

improve the methodologies for modeling, simulation, and testing. For modeling and 

simulation, we applied our methodology and simulator generation rules on two industrial 

case studies. For empirically evaluating our testing strategies, we developed thirteen 

artificial problems based on these two case studies and a case study discussed in the 

literature. We carried out a number of experiments on these artificial problems and the 

industrial case study of WesternGeco, which are discussed in Paper 3, Paper 4, and Paper 

5. For evaluating our OCL constraint solver in isolation, we conducted a set of experiments 

on another industrial case study by Cisco Systems [22], which is discussed in Paper 7 and 

Paper 8. 
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5 Summary of Results 
In this section, a summary of the key results of the papers submitted as part of this 

thesis are presented. 

5.1 Paper 1 
In this paper, we proposed methodology for modeling the environment of a RTES in 

order to enable black-box, system test automation. For practical reasons and to facilitate its 

adoption, the methodology is based on standards: UML, MARTE profile, and OCL for 

modeling the structure, behavior, and constraints of the environment. We, and this is part 

of our methodology, made a conscious effort to minimize the notation subset used from 

these standards. The paper also discusses the profile that we proposed for modeling the 

environment. The profile provides extensions to UML to model concepts specific to our 

approach, including non-determinism – an important characteristic of RTES environments.  

The methodology provides in depth guidelines on how to model the environment 

structure and behavioral details. The structural details of the environment are captured 

using domain model. A domain model captures the structural details of the RTES 

environment, such as the environment components, their relationships, and their 

characteristics.  

The behavior of the environment components is captured by state machines. To 

minimize modeling effort, the methodology aims at capturing only the details in the 

environment which are visible and relevant to the SUT. This not only includes the nominal 

functional behavior of the environment components (e.g., booting of a component) but also 

includes their robustness (failure) behavior (e.g., break down of a sensor). The latter are 

modeled as failure states in the environment models. The environment behavioral models 

also capture what we call error states. These are the states of the environment that should 

never be reached if the SUT is implemented correctly (e.g., no incorrect or untimely 

message from the SUT to the environment component). Error states act as oracles for the 

test cases. For example, recall the example of a system under test that controls a physical 

gate on a railroad intersection. The gate should always be down whenever a train is 

reaching the intersection and should be raised in other situations. The various trains 

approaching the intersection and the gate will together compose the environment of the 

SUT. The domain model will comprise of a train component, a gate component, and the 

SUT. A state machine each for the train and gate components will specify their behavior. A 
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possible failure state can for example be when the physical gate is stuck in a position (in 

which case the trains should be stopped before reaching the intersection) and a possible 

error state can be the situation when a train arrives at the gate while it is still open. 

An important feature of these environment models is that they capture the non-

determinism of the environment, which is a common characteristic for RTES environments 

(for example, the time it takes to change a gate position can have a variation of few 

seconds). Non-determinism may include, for example, different occurrence rates and 

patterns of signals, failures of components, or user commands. The environment modeling 

profile provides special constructs to model non-deterministic behavior of the 

environment. Each environment component can have a number of non-deterministic 

choices whose exact values are selected at the time of testing. Java is used as an action 

language and OCL is used to specify constraints and guards.  

We modeled the environments of two industrial RTES in order to investigate whether 

our methodology and the notation subsets selected were sufficient to fully address the need 

for automated system testing. Results suggested that the methodology was sufficient to 

model the details at a level of abstraction that could be used to generate environment 

simulators, meaningful test cases, and obtain test oracles. Notations provided by UML, 

MARTE, and our proposed profile were sufficient to model the details required by these 

case studies (belonging to different domains).  

5.2 Paper 2 
This paper is a journal extension of Paper 1 with the following differences: 

1. The environment modeling profile has been extended based on the needs of more 

sophisticated testing strategies 

2. A discussion on how the various UML semantic variation points (related to the models 

being used) are resolved is added 

3. Rules for generating the executable simulator from the environment models and its 

integration with the test framework are discussed in detail 

4. The empirical evaluation has been improved in the following ways: 

a. Three new artificial problems inspired from industrial case studies have been 

added to further evaluate the modeling methodology and simulator generation 

b. The models of industrial cases have been modified according to the extended 

profile. Only that subset of industrial cases that is later used for testing is 

discussed. 
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c. The evaluation of transformation rules for simulator generation has been added 

Apart from discussing the environment modeling methodology, the paper also discusses 

the transformation rules to convert environment models into a Java-based simulator. The 

rules are based on an extension of the state pattern [7], which is a well-known way of 

implementing state machines. The transformations proposed in the paper are defined to 

address the specific requirements for environment simulation and RTES system testing. 

The rules discussed include rules for transformation of association, attributes, and non-

determinism modeled in the domain model and rules for transforming various state 

machine elements, including various events, hierarchical state machines, and non-

determinism, to their corresponding Java code. A number of design decisions including the 

ones that were taken to resolve open semantic variations points of UML are also discussed 

in the paper. We followed the Active object model [5] to handle object concurrency. This 

is because they operate independently in the RTES environment and can communicate 

asynchronously with each other and the SUT. These objects have their own thread of 

execution and receive asynchronous messages that are handled using an event queue. 

The following research questions are addressed in this paper: 

RQ1. Are the transformation rules sufficient to convert environment models of 

different complexity levels, and belonging to various domains, to simulator code? 

According to results of generating simulators from environment models for five 

different cases, including two industrial case studies, the transformation rules are complete. 

These test models along with the three artificial problems and two industrial cases covered 

all the modeling elements defined in the methodology. The MOFScript transformations 

developed were able to generate Java code for all of the UML/MARTE/OCL model 

constructs used in the case study artifacts and the test models.  

RQ2. Is the automated generation of simulators likely to significantly reduce 

development effort? 

Based on our experiences of working with two industrial case studies, we expect that 

the automated generation of the simulator code can save significant effort to the 

developers. Though there is a considerable effort involved in developing environment 

models, given the amount and complexity of the source code generated, it is expected to be 

less than the effort required for manually developing and maintaining environment 

simulator code with concurrency and complex synchronization issues.  

RQ3. How effective is the generated simulator in enabling the detection of failures in 

RTES system testing? 
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With the generator simulators, the testing framework was able to trigger system failures 

corresponding to all the seeded faults in the problems. For an industrial case study, the 

testing was able to find a previously undetected critical fault in the RTES. Taken together, 

the results of these experiments increased our confidence that the generated simulators are 

effective in detecting faults in the SUT when used in combination with various test 

automation strategies.  

RQ4. Are the transformations implemented correctly? 

The results of experiments conducted, manual inspection, and initial testing of the 

generated code suggest that it was generated according to the environment models 

following the extended state pattern.  

RQ5. Are the proposed methodology and profile sufficient for modeling environments 

of RTES for the type of testing we are interested in?  

For all the five cases, we were able to model the RTES environments with the subset of 

UML and MARTE that we identified and the lightweight extensions that we proposed. The 

models were sufficient to generate simulators that could be used to support large-scale test 

automation. The results of testing the five RTES show that the notations are sufficient for 

the type of testing we focused on. 

5.3 Paper 3 
Paper 3 discusses the first application of RT, ART, and GA for the purpose of RTES 

system testing based on environment models. The strategies were evaluated on an 

industrial case study and three artificial problems. Based on the results of the empirical 

study, we also provided practical guidelines to apply the three testing techniques.  

A test case in our context is the setting of simulator generated based on the models. This 

setting provides values to non-deterministic options of the environment models (e.g., when 

a sensor should fail). RT is the simplest technique to implement and it randomly selects the 

values for a new test case. For ART, the paper proposes the use of a specialized distance 

function. The distance function is used to select a new test case by calculating its distance 

from previously executed test cases. For SBT, a new fitness function was proposed based 

on an existing fitness function for model-based testing. The novel fitness function made 

used of three heuristics: approach level, branch distance, and time distance. Approach level 

suggests how far the executed test case was to reach an error state (i.e., a state reached 

when the SUT is faulty). Branch distance suggests that how far was the executed test case 
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to satisfy a guard, and time distance suggests the distance of the executed test case to 

trigger a time transition. 

The results of the empirical study suggested that no test strategy generally dominates 

the others. GA was found to be statistically better on one problem, but worst on the other 

two problems. RT is best on the second problem and ART is better on the third one. On the 

industrial case study ART showed the best performance.  

5.4 Paper 4 
Paper 4 improves the fitness function for search-based testing discussed in Paper 3 and 

empirically evaluates the performance of the improvements. The empirical study is carried 

out on thirteen artificial problems and one industrial case study. The artificial problems 

were designed in a way to alter various environment model characteristics in order to 

evaluate their impact on the search algorithms. Four new heuristics were defined for the 

fitness functions and they were evaluated individually and in combination. Two search 

algorithms are evaluated in the paper: GA and (1+1) EA, whereas RT is used as a baseline 

for comparison. 

The first heuristic was improved time distance (ITD) that improved the way time 

distance was calculated earlier. If a transition should be taken after z time units, but it is 

not, we calculate the maximum consecutive time c the component stayed in the source 

state of this transition (e.g., State2 in the dummy example). To guide the search, we use the 

following heuristic: T = z – c, where c ≤ z. Earlier the branch distance was calculated after 

an event was triggered. This mechanism worked fine for transitions other than time 

transitions, because reducing time distance was not useful when a guard is not satisfied. 

This heuristic introduces the concept of a look-ahead branch distance, which represents the 

branch distance of OCL guard on a time transition when it is not fired (i.e., the timeout did 

not occur). The second heuristic discussed in this paper is “time in risky state” (TIR). TIR 

favors the test cases that spent more time in the state adjacent to the error state (i.e., the 

risky state). The motivation behind this heuristic is that, the more time spent in a risky 

state, the higher the chances of events happening in the environment or SUT that lead to 

the error state (e.g., receive a signal from the SUT). 

The third heuristic proposed is “risky state count” (RSC). RSC favors the test cases that 

enter a risky state more often than those that do so less often. The motivation is similar to 

that of TIR, that is, to remain in risky state for as long as possible to increase the chances 

of transitioning to the error state. Finally, the fourth heuristic proposed in the paper is 
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“coverage” (COV). COV favors the test cases that cover more environment states. The 

idea behind this heuristic is to increase the coverage of the environment models when the 

approach level, branch distance and time distance can no longer be improved. The 

assumption is that having higher environment coverage will result in more diversity in the 

test cases, which might lead to situations that help reach the error state. 

The paper answers the following research questions: 

RQ1: What is the effect on fault detection of new order functions having each one of 

the proposed heuristics: Improved Time Distance (ITD), Time In Risky State (TIR), 

Risky State Count (RSC), and Coverage (COV) compared to the previously defined 

basic fitness function for GA and (1+1) EA?  

The results showed that ITD with (1+1) EA yields significantly better results for two of 

the artificial problems. In other cases the performance of the algorithm was the same as 

that for the basic algorithm. ITD relies on information regarding guarded time transitions 

in the models. Among the thirteen artificial problems, four did not have any guard or time 

transition leading to the error state. Even in these cases, ITD shows similar performance to 

basic fitness with no significant drawbacks.  

When TIR was used with GA, it gave significantly better results in two of the artificial 

problems and was worse in one problem. For other problems, the results of the two 

algorithms were comparable. When TIR was used with (1+1) EA, it gave significantly 

better results for five of the 13 artificial problems. In other cases there were no significant 

differences. Hence the use of TIR in the order function seems to be an effective option. 

When RSC was used with GA, it gave significantly better results in one of the artificial 

problems and showed no significant difference for the other artificial problems. When RSC 

was used with (1+1) EA, it gave significantly better results for one artificial problem, 

worse results for another one (AP11), and no statistical differences otherwise. RSC 

depends on the presence of a loop back to a risky state. Five of the problems had a loop 

back to the risky state. For all the problems that have a loop to risky states, RSC heuristic 

performed significantly better or similar to the basic fitness function. But for the problems 

without such a loop, it can negatively affect performance. When COV was used with GA, 

there were no statistical differences between the results. When it was used with (1+1) EA, 

it gave significantly worse results for four of the artificial problems and yielded no 

significant differences in other cases.   
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RQ2: Which combinations of the proposed heuristics are best in terms of fault 

detection?  

When the heuristics were executed in combination, we had a total of 16 possible 

functions for each search algorithm. Overall, based on the results, (1+1) EA with TIR 

proved to be the best algorithm for both Basic and ITD versions of the heuristic. Based on 

the results, we concluded that in general search-based algorithms perform significantly 

worse than RT for the artificial problems where reaching a risky state in the environment 

model is trivial. If we exclude the results of such artificial problems, then in all the other 

problems, (1+1) EA with ITD and TIR performed significantly better than other 

combinations.  

RQ3: Between the two search-based algorithms, GA and (1+1) EA, which one works 

better in terms of fault detection with the new heuristics?  

According to the results of experiments, (1+1) EA seems overall to perform 

significantly better with various combinations when compared to GA using the same 

combinations of heuristics. An exception to this is when EA is used with the coverage 

heuristic, in which case it performs significantly worse than GA. Even for the problems 

with non-trivial approach to risky state, the performance of most of the heuristic 

combinations for EA is significantly better than their performance with GA. Hence, we can 

conclude that the fault detection effectiveness of (1+1) EA is higher than that of GA for the 

kind RTES system testing we focus on.  

RQ4: How do the search-based algorithms compare to random testing (RT)?  

According to the results of experiments, for simple problems (i.e., where the average 

success rate of all the algorithms is high or the approach level is trivial) RT performs 

significantly better than both search-algorithms, but for more difficult problems (i.e., lower 

success rates or non-trivial approach level), search algorithms perform significantly better. 

The best technique (1+1) EA-ITD-TIR has an average success rate of 73% for the 13 

problems with an average number of 222 test case executions to find a fault.  

RQ5:  How does the best combination of the proposed heuristics compare to RT and 

GA and (1+1) EA with basic fitness on the industrial case study? 

On the industrial case study, the best combination of proposed heuristics, i.e., (1+1) EA-

ITD-TIR, shows significantly better performance over both GA and (1+1) EA. When 

compared to RT, there is no significant statistical difference, though the combination has 
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relatively lower success rate (80% compared to 100% for RT). The better performance of 

RT can be explained by the fact that in the industrial case study, the approach level to risky 

state was trivial.  

5.5 Paper 5 
In Paper 5, we combined (1+1) EA with ART to improve the overall performance of our 

test strategy. The performance of these two algorithms individually is highly dependent on 

the characteristics of the problem (as suggested by results of Paper 4). In this paper, we 

proposed a way of combining the strengths of these two algorithms in a way that the 

dependence on the specifics of the problem is reduced.  The proposed hybrid strategy (HS) 

starts by applying (1+1) EA. If (1+1) EA does not find fitter test cases after running n 

number of test cases, the testing algorithm is switched to ART. All the test cases that were 

executed so far are now used for distance calculations in ART. The idea behind switching 

from (1+1) EA to ART is that there is not enough time for a random walk to get out of a 

fitness plateau. And so, in this scenario, applying ART can yield better results. Running 

system test cases is very time consuming, so only few fitness evaluations are feasible 

within reasonable time (e.g., 1000 test cases can already take several hours). Therefore, in 

case of fitness plateau, it is reasonable to switch strategy, and rather reward diversity 

instead of the fitness value. Though the choice of n is arbitrary it can have significant 

consequences on the performance of this strategy. The best choice for n is also evaluated in 

the paper. 

We conducted an empirical study involving an industrial case study and thirteen 

artificial problems to answer the following research questions in the paper: 

RQ1. Which configuration is best in terms of fault detection for the proposed hybrid 

strategy (HS)? 

According to the results of the empirical study, using a very low (< 50) or very high 

value (>=200) of n causes a degraded performance for HS. With a low value of n, HS 

makes the switch from (1+1) EA to ART too early, which does not give sufficient time for 

(1+1) EA to converge and hence running HS becomes similar to only running ART. In 

cases where ART performs well, such configurations of HS also perform well. Similarly, 

when HS switches too late, it does not give enough time to ART and hence running HS is 

similar to running (1+1) EA in such cases. These configurations perform well in cases 

where (1+1) EA performs well and poor otherwise. The best results are provided for values 

between 50 and 100 and the differences in results in this range are not significant. Though 
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the results are not fully consistent across all problems, configuration n = 50 has the best 

average rank across all problems and is always very close to the maximum success rates.  

RQ2. How the fault detection of the best HS configuration compares with the 

performance of ART, (1+1) EA, and RT for (a) the artificial problems and (b) the 

industrial case study (IC)? 

Based on the results, HS shows significantly better performance in terms of fault 

detection (an overall 88% success rate for artificial problems and 100% for the industrial 

case study) than the other three algorithms (for artificial problems: ART: 63%, RT: 64%, 

and (1+1) EA: 74% and for the industrial case study: ART: 100%, RT, 97%, (1+1) EA: 

74%. Unlike the other strategies, variations in environment properties do not have a drastic 

impact on the performance of HS and it is therefore the most practical approach, showing 

consistently good results for different problems. 

5.6 Paper 6 
For successful model-driven engineering (MDE) applications, a comprehensive 

methodology for modeling should be adopted that is specific to the problem being solved 

and adequate for the application domain. This paper discusses our experiences of applying 

the Unified Modeling Language (UML) and the UML profile for Modeling and Analysis 

of Real-Time Embedded Systems (MARTE) to solve three distinct industrial problems 

related to the use of real-time embedded systems (RTES). The work discussed in this 

thesis, environment model-based testing of RTES, is one of the addressed problems. The 

common experiences from these three problems are merged and summarized into a 

framework to guide future industrial applications of UML/MARTE. The framework 

provides a set of detailed guidelines on how to apply MARTE in industrial contexts and 

will help future modelers reduce the gap between the modeling standards and industrial 

needs.   

The proposed framework consists of six high level steps that are derived based on our 

experience. The first step is a domain analysis of the industrial context in order to 

understand the domain and the problem. The second step consists of identifying the proper 

set of notations for modeling. UML and MARTE are both international modeling standards 

and cater the needs of a large variety of problems and domains. To apply them in a 

particular context, identifying a relevant subset of UML/MARTE is a very important task. 

The next step is to provide extensions to UML/MARTE according to the requirements of 

the domain and problem being handled in the form of a profile. Selection of modeling tools 
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can also greatly impact the success of industrial application in a later stage and this forms 

the third step of the framework. Some of the important factors to consider are the cost of 

the tool, its supported technologies, and usability of the tool in modeling the selected 

subset of UML/MARTE. For a successful application of UML/MARTE, only selecting a 

set of notations is not sufficient, rather we also need to define a set of guidelines on how to 

use these notations to achieve the goals (for example, as we provided in Paper 1 and Paper 

2). This forms the fourth step of the framework. Finally, as a last step of the framework, 

we provide guidelines on how to actually apply UML/MARTE in industrial contexts (e.g., 

by conducting live modeling sessions). 

5.7 Paper 7 
This paper devises novel search heuristics to solve OCL constraints for test data 

generation. We evaluated two search-algorithms, GA and (1+1) EA, and used RT as a 

comparison baseline. A search-based OCL constraint solver was developed based on the 

heuristics and evaluated on an industrial case study. The heuristics are designed for various 

elements of OCL expressions, including operations on primitive types and collections. 

These heuristics are then evaluated on an industrial case study of a Video Conferencing 

Software developed by Cisco Systems. The following research questions were answered in 

this paper: 

RQ1: Are search-based techniques effective and efficient at solving OCL constraints 

in the models of industrial systems? 

The results show that (1+1) EA outperformed both RS and GA, whereas GA 

outperformed RS. We observed that, with an upper limit of 2000 iterations, (1+1) EA 

achieves a median success rate of 80% but GA did not exceed a median roughly 60%. The 

success rates for (1+1) EA were above 50% and most of them were close to 100%. 

Constraints with the lowest success rates were seven and eight clauses long. 

RQ2: Among the considered search algorithms, which one performs best in solving 

OCL constraints?  

According to the results of the empirical study, there is strong evidence to claim that 

(1+1) EA is more successful than both GA and RT. (1+1) EA was not only successful in 

solving the constraints with more frequency, but the magnitude of difference with the other 

two strategies was also large.  

5.8 Paper 8  
The paper is a journal extension of Paper 7 with the following differences: 
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1. Additional heuristics have been added in the paper such as heuristics for operations on 

collections, special operations (e.g., oclInState), and user-defined operations.  

2. The empirical evaluation based on the industrial case study has been improved in the 

following ways: 

a. The case study is extended with new constraints 

b. An additional search algorithm, Alternating Variable Method (AVM), is 

included 

3. The empirical evaluation of the individual heuristics on several artificial problems has 

been added. 

4. The empirical evaluation comparing our work with an existing work has been 

extended. The evaluation is based on the industrial case study. 

The paper discusses the following research questions: 

RQ1: Are search-based techniques effective and efficient at solving OCL constraints 

in industrial system models? 

The results show that AVM outperformed all the other three algorithms, i.e., (1+1) EA, 

RS, and GA. AVM also achieved 100% success rate (i.e., number of times it was able to 

solve a constraint) compared to 98% of (1+1) EA, 65% of GA, and 49% of RT. This 

showed that search-based techniques, specifically AVM and (1+1) EA are effective and 

efficient in solving constraints for industrial models. 

RQ2: Among the considered search algorithms (AVM, GA, (1+1) EA), which one 

fares best in solving OCL constraints and how do they compare to RT? 

The results indicate that among the three search algorithms, AVM had highest success 

rate, followed by (1+1) EA. GA showed relatively lower success rates. RT in comparison 

to these algorithms showed lowest success rate. 

RQ3: Does the optimized branch distance calculation improve the effectiveness of 

search over non-optimized branch distance calculation?   

When AVM and (1+1) EA with fitness function using optimized branch distance were 

compared with the ones with fitness function using non-optimized branch distance, the 

results showed that for both the algorithms, optimized branch distance showed 

significantly better results. In cases where there were no differences in success rates, 

algorithms with optimized branch distance took significantly less iterations to solve the 

problems.  
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6 Future Directions  
Regarding future work, a first step to carry out is an empirical cost-benefit analysis of 

the proposed model-based testing approach. The cost of building and modifying the 

environment models needs to be compared with that of the manual changes to simulators 

and test suites. Intuitively, the latter should be much larger than the former, but it 

nevertheless should be investigated. Estimates of the cost of field failures need to be 

considered as well to obtain more reliable and complete comparisons of cost-effectiveness 

among test strategies.  

Since our testing approach was based on the needs of our industry partners, we only 

focused on real-time systems with relatively soft deadlines of hundreds of milliseconds. A 

possible research direction is to adapt the approach for systems with strict and shorter time 

deadlines. For this purpose, we will need to investigate the simulator generation for other 

languages and specific platforms (e.g., C). 

The work reported in this thesis is restricted to one randomly generated configuration of 

the environment structure. Another research direction is to analyze how to properly use the 

domain models for effective automated testing of different configurations of the RTES 

environment. Strategies can be investigated to generate configurations at run time in a way 

that increases the effectiveness of testing algorithms. 
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7 Conclusion 
Black-box system testing of Real-time Embedded Systems (RTES) on their development 

platforms is required to verify the correctness of these systems without involving the 

deployed hardware and other physical components of their environments. This approach 

typically involves simulations of the behavior of environment components in a way that is 

transparent to the RTES. Such a strategy allows early and fully automated system testing, 

even when the hardware is not yet available. It is also helpful in situations where testing 

RTES for critical failures in their actual environments is either not feasible, too costly, or 

might have catastrophic consequences. 

This thesis reports on a model-driven, automated black-box system testing strategy for 

real-time embedded systems (RTES) based on their environments. The strategy is 

developed while keeping in consideration the practical requirements of two industrial 

partners that are, we believe, representative of a wider category of RTES developers. We 

purposefully took a practical angle and our approach does not require software engineers to 

use additional, specific notations for simulation and testing purposes, but only involves 

slight extensions of existing software modeling standards and a specific modeling 

methodology. First we developed a precise methodology for environment modeling of 

RTES. The methodology is based on standards: UML, MARTE profile and OCL for 

modeling the structure, behavior, and constraints of the environment. We, and this is part 

of our methodology, made a conscious effort to minimize the notation subset used from 

these standards. Our modeling methodology entails the use of constructs (e.g., non-

determinism, error states, and failure states), which are essential to enable fully automated 

system testing (i.e., choice, execution and evaluation of the test cases). We modeled the 

environment of three artificial problems and two industrial RTES in order to investigate 

whether our methodology and the notation subsets selected were sufficient to fully address 

the need for automated system testing. Our experiences showed that this was the case. 

Lessons learned from industrial applications of the methodology were also summarized to 

guide future practitioners. 

Secondly, based on a careful analysis of the literature, we concluded that none of the 

existing code generation approaches in the literature address the constructs required to 

support the testing of RTES through environment simulation. We implemented the code 

generation rules for the simulator using model-to-text transformations with 

MOFScript, thus producing a set of Java classes. Our empirical evaluation, based on our 
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five case studies, shows that the developed rules are sufficient and that they are correct as 

far as fault detection is concerned. The automated simulator generation is expected to save 

a significant amount of effort, although empirical studies in industrial contexts will be 

necessary to support such a claim with increased confidence. By using our environment 

models and the generated simulators, it was possible to automatically find new, critical 

faults in one of the industrial case studies using fully automated, random and search-based 

testing. 

The third part of the thesis concerned OCL constraint solving, for which, we defined 

search heuristics involving branch distance functions for various types of expressions in 

OCL to guide the search algorithms. We demonstrated the effectiveness and efficiency of 

our search-based constraint solver to generate test data in the context of the model-based, 

robustness testing of an industrial case study of a video conferencing system. Even for the 

most difficult constraints, with research prototypes and no parallel computations, we 

obtained test data within 2.96 seconds on average. 

Last but not least, we discussed various strategies for test case generation based on 

environment models. We defined and iteratively improved fitness functions for search-

based algorithms. We also evaluated the use of adaptive random testing (ART) and random 

testing (RT) in our context. The experiments were conducted on an industrial case study 

and a number of artificially created problems with varying properties. Based on the results 

of initial experiments, we proposed a hybrid strategy (HS) for testing that combined (1+1) 

Evolutionary Algorithm (EA) and ART. The strategy was developed to combine the 

benefits of both algorithms, since their individual results varied greatly depending on the 

failure rate of the system under test and the properties of its environment. The ultimate 

goal was to obtain a strategy with consistently good results. Overall, the results indicate 

that HS shows significantly better performance in terms of fault detection (an overall 88% 

success rate for artificial problems and 100% for the industrial case study) than the other 

three algorithms (for artificial problems: ART: 63%, RT: 64%, and (1+1) EA: 74% and for 

the industrial case study: ART: 100%, RT, 97%, (1+1) EA: 74%). Unlike the other 

strategies, variations in environment properties do not have a drastic impact on the 

performance of HS and it is therefore the most practical approach, showing consistently 

good results for different problems.  
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Abstract–The behavior of real-time embedded systems (RTES) is driven by their 

environment. Independent system test teams normally focus on black-box testing as they 

have typically no easy access to precise design information. Black-box testing in this 

context is mostly about selecting test scenarios that are more likely to lead to unsafe 

situations in the environment. Our Model-Based Testing (MBT) methodology explicitly 

models key properties of the environment, its interactions with the RTES, and potentially 

unsafe situations triggered by failures of the RTES under test. Though environment 

modeling is not new, we propose a precise methodology fitting our specific purpose, based 

on a language that is familiar to software testers, that is the UML and its extensions, as 

opposed to technologies geared towards simulating natural phenomena. Furthermore, in 

our context, simulation should only be concerned with what is visible to the RTES under 

test. Our methodology, focused on black-box MBT, was assessed on two industrial case 

studies. We show how the models are used to fully automate black-box testing using 

search-based test case generation techniques and the generation of code simulating the 

environment.  

1. Introduction 
Real-Time Embedded Systems (RTES) are largely used in critical domains where high 

system dependability is required and expected. The basic characteristic of RTES is that 

they react to external events within certain time constraints. Extensive testing of such 

systems is important in order to verify their correct behavior under different timing 

constraints and adverse situations of the environment (or context). It is also important to 
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verify that the system under test (SUT) does not lead the environment to a hazardous state. 

Testing RTES is particularly challenging since they operate in a physical environment 

composed of possibly large numbers of sensors and actuators. There is usually a great 

number and variety of stimuli with differing patterns of arrival times. Therefore, the 

number of possible test cases is usually very large if not infinite. Testing all possible 

sequences of stimuli/events is not feasible. Hence, systematic testing strategies that have 

high fault revealing power must be devised.  Manually writing appropriate test cases for 

such complex systems would be a far too challenging and time consuming task. If any part 

of the specification of the RTES changes during its development, a very common 

occurrence in practice, then the expected output of many test cases would potentially need 

to be recalculated manually. Automated test-generation and the use of an automated oracle 

are essential requirements when dealing with complex industrial RTES. 

Moreover, testing the RTES in the real environment usually entail a very high cost and 

in some cases the consequences of failures would not be acceptable, for example when 

leading to serious equipment damages or safety concerns.  In many cases the hardware, 

e.g., sensors and actuators, is not yet available at the time of testing as software and 

hardware are typically developed concurrently in RTES development. Since testing RTES 

on the real environment is not a viable solution, the use of a simulator is a common 

alternative.  

In our work, we address the above issues by devising a comprehensive, practical 

methodology for black-box, model-based testing (MBT). The main contributions of this 

paper are as follows: It provides an environment modeling methodology based on 

industrial standards and targeted at MBT, and evaluates it on two industrial case studies. 

The models describe both the structural and behavioral properties of the environment. 

Given an appropriate level of detail, defined by our methodology, they enable the 

automatic generation of the environment simulator. The models can also be used to 

generate automated test oracles. These could, for example, be invariants and error states 

that should never be reached by the environment during the execution of a test case. 

Moreover, the models can further be used to automatically choose test cases. Sophisticated 

heuristics to choose appropriate test cases are automatically derived from the models 

without any intervention of the tester. To summarize, the only required artifacts to be 

developed by testers is the environment model and the rest of the process is expected to be 
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fully automated. By using this automated MBT technology, one of our industrial partners 

was able to find new critical faults in their RTES.  This paper focuses on how to make 

environment modeling as easy as possible for the purpose of supporting black-box, MBT, 

and shows its use for test automation. Due to space constraints, we only briefly discuss the 

details for code generation.  

To support environment modeling in a practical fashion, we have selected standard and 

widely accepted notation for modeling software systems, the UML and its standard 

extensions. We use the MARTE [1] extensions for modeling real-time features and OCL 

for specifying constraints. We have also provided lightweight extension to UML to make it 

more useful in our context. As we will discuss later, environment modeling is not a new 

concept. But, most of the approaches use non-standardized notations or grammars for 

modeling, which makes them difficult to apply from a practical standpoint. To the best of 

our knowledge, modeling the environment of industrial RTES systems using a combination 

of UML, MARTE, and OCL has not been addressed in the literature.  By using the 

proposed methodology, the software testers (who are primarily software engineers) can 

model the environment with a notation that they are familiar with and at a level of 

precision required to support automated MBT.  

The importance of selecting standards for modeling was highlighted by the application 

of methodology on the two industrial case studies that belonged to completely different 

domains. An alternative to using standard notations for modeling could have been to create 

a Domain Specific Language (DSL) for environment modeling. Since the methodology 

needed to be generic for RTES irrespective of their application domain, making a DSL was 

not feasible. Making a DSL would have also reduced the benefits that we obtained from 

using standards and could have only been justified if existing standards did not fit our 

needs. Our case studies were developed using Enterprise Architect and IBM Rational 

Software Architect, though any of the widely available UML tools could have been used 

for this purpose.  

The rest of the paper is organized as follow. Section 2 discusses the related work on 

environment modeling and testing based on environment models. The environment 

modeling methodology and simulation is discussed in Section 3. Section 4 describes the 

use of the environment modeling methodology for automated testing. Section 5 discusses 
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the case studies on which the methodology was applied on and finally Section 6 concludes 

the paper. 

2. Related Work 
There are a few approaches reported in the literature for the environment modeling of 

embedded systems. Kishi and Noda [2] present an approach for modeling the environment 

of an embedded system using an aspect-oriented modeling technique. Karsai et al. [3] 

propose a new language for modeling the environment of an embedded system. Choi et al. 

[4] use annotated UML class and sequence diagrams for modeling and simulation of 

environment. Kreiner et al. [5] present a process to develop environment models for 

simulation of automatic logistic systems and its environment. Axelsson [6] evaluates how 

UML can be used to model real-time features and provides extension to UML for modeling 

of real-time systems and their environments. Gomaa [7] discusses the use of a context 

diagram for modeling the relationship between an RTES and its external entities. 

Friedentahl et al. use the concept of SysML block diagram and activity diagrams to 

represent the system and its interfaces with environment components [8].  

There are a few works reported in literature that discuss testing based on the 

environment of a system. Auguston et al. [9] discuss the development of environment 

behavioral models using Attributed Event Grammar for testing of RTES. Bousquet et al. 

[10] present an approach for testing of synchronous reactive software by representing the 

environmental constraints using temporal logic. Larsen et al. [11] propose an approach for 

online testing of RTES based on time automata and environmental constraints. Heisel et al. 

[12] propose the use of a requirement model and an environment model using UML state 

machines along with the model of the SUT for testing. Adjir et al. [13] discuss a technique 

for testing RTES based on the model of the system and model of intended assumptions in 

the environment in Labeled Prioritized Timed Petri Nets.  

As discussed above, there are approaches in literature that deal with modeling the 

environment of a system for various purposes. Most of these approaches are only limited to 

modeling the static structure of the environment, as they do not focus on test automation. 

The approaches that deal with modeling of behavioral aspects either use notations with 

which the software engineers are not familiar, or provide extensions for environment 

modeling that do not have well-defined semantics. Moreover, the properties of the 
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environment, such as its timeliness and non-determinism, are not modeled in a standard 

way. The environment models should be compatible with other standard techniques 

available for model manipulation, e.g., model transformations, consistency checking. For 

this reason, the modeling language should have well-defined constructs. All environment 

modeling approaches aimed at supporting testing, except by Heisel et al. [12], use non-

standard languages for modeling.  Heisel et al. models both the SUT and the environment, 

which does not fit our purpose: black-box, system testing. Moreover, they model the 

concepts of probabilities and time using non-standard notations, without using the UML 

extension mechanisms. Last but not least, none of the relevant work assesses their 

environmental methodology on an actual RTES system, which we believe is a requirement 

to assess the credibility and applicability of any MBT approach.  

3. Environment Modeling - Methodology 
If environment models are to be used for RTES, they should not only be sufficiently 

detailed, but should also be easy to understand and modify as the environment and RTES 

evolve. To handle the complexity of realistic RTES environments, the modeling language 

should have provision for modeling at various levels of abstraction. The modeling 

language should also have well-defined syntax and semantics for the tools to analyze the 

models and for the humans to accurately understand them. The language should also 

provide features (or allow possible extensions) for modeling real world concepts, real-time 

features, and other concepts, such as non-determinism, required by the environment 

components. The UML, MARTE profile, and the OCL together fulfill the important 

requirements of an environment modeling language. 

Even though we are using the same notations to model the environment that are used for 

modeling software systems, it is important to note that the methodology for environment 

modeling is significantly different from system modeling. While modeling for the 

industrial cases, we abstracted the functional details of the environment components to an 

extent that only the details visible to the SUT were included. For environment behavior 

modeling, non-determinism is widely used, which is not nearly as common when modeling 

the internal behavior of a system. 

For testing the system based on its environment, the behavior details of the environment 

are as important as its structural details. Structural details of the RTES environment are 
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important to understand the overall composition of the environment (e.g., number and 

configuration of sensors/actuators), the characteristics of various components, and their 

relationships. We choose to model these details in the form of a Domain Model developed 

using UML class diagrams. The behavioral details of environment components are 

required to specify the dynamic aspects of the environment, for example, to determine the 

possible environment states, before and after its interactions with the SUT, and to specify 

the possible interactions between the SUT and its environment. For behavioral details, we 

used the UML State Machines augmented with the MARTE profile.  

In the following subsections, we discuss the methodology for modeling the environment 

of a RTES. We also discuss various guidelines based on our experience of applying the 

methodology on two industrial case studies. 

3.1. Modeling Structural Details as Environment Domain Model 

The environment domain model provides information of the components of the 

environment, their characteristics, their relationships with one another and the SUT, and 

information regarding signal sending and reception. The various components modeled in 

the domain model together form the overall environment of the SUT. This means that all 

these components (their instances) will run in parallel with each other. Each component in 

the domain model can have a number of instances in the RTES environment. The 

information about the number of possible instances of a component in the environment is 

modeled as cardinalities on the associations between different components in the domain 

model. Therefore, the domain model can be used to obtain a number of potential 

configurations of the environment. Fig. 1 shows the partial domain model for the 

environment of one of our industrial cases, the sorting machine (named as SortingBoard in 

the figure). The sorting machine is part of an automated bottle recycling system and further 

details of the case study can be found in Section 5. The model shows various motors, 

sensors, mechanical devices taking part in sorting, and other systems the SortingBoard 

communicates with. 

Note that the domain model that we develop is different from the ones commonly 

discussed in literature (e.g., [14]). The components represented as classes in the 

environment domain model will not necessarily relate to software classes. They may 

correspond to systems, users and concepts related to various natural phenomena. Domain 
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modeling here is not a starting point for software analysis. The identification of 

components in the domain model, their properties, and their relationships is also different 

from what is commonly done for software analysis. Following, we further discuss various 

guidelines for modeling the structural details of a RTES environment. 

3.1.1. Environment Components to be Included.  

Initially, all the environment components that are directly interacting with the SUT are 

included in the domain model. Then, each of these components is further refined to a level 

where we are certain to cover the important details for simulating the environment needed 

to test the SUT. If at any time the behavior of an environment component was getting too 

complex, when possible, we decomposed the component and divided its behavior into 

multiple concurrent state machines. This is especially useful if a component can be divided 

into components that are similar to existing components, so that we can specialize existing 

state machines.  We used the stereotype <<context>> to represent components of the 

environment in the domain model. The components of the environment are made to 

communicate with each other and the SUT through signals, and are modeled as active 

objects.  

3.1.2. Relationships to be Included.  

All those associations representing the physical or logical relationships among various 

environment components, or that were needed for components to communicate, should be 

included. A number of components in the environment might be similar to each other (e.g., 

various types of sensors). It is useful to relate these components (and their behavior) using 

the generalization/specialization relationship for simplifying the model, as our experience 

shows that such domain models get highly complex. For example, in the sorting machine 

case study, we modeled the association of the SortingBoard with the SortingArm, which is 

controlled by the board, and the ItemSensor that reports arrival of an Item (e.g., bottle). We 

used generalization in multiple places, including motors and sensors as shown in Fig. 1. 

3.1.3. Properties to be Included.  

From all properties that may characterize environment components, it is important to 

include only those properties that are visible to the SUT (or have an impact on a 
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component that is visible to the SUT). These may include attributes that have a relationship 

to the inputs of the SUT, that constrain the behavior of a component with respect to the 

SUT, or that contribute to the state invariant of a component that is relevant to the SUT. In 

Fig. 1, all the modeled properties of Item are either visible to the SortingBoard or are used 

by other components. For example, the serialNum and materialType of Item is assigned by 

VendingMachine and is used by the SortingBoard.  

 

Fig. 1. Partial environment domain model showing properties and relationships of the sorting machine 
case study 

3.1.4. Modeling the SUT.  

It is important to include the SUT in the environment domain model, so that its relationship 

with the other environment components can be specified. It is also useful to include the 

details of signal receptions by the SUT from other environment components. The SUT is 

stereotyped as <<system>>. The stereotype was used initially by Gomaa [7] to refer the 

system in a context diagram. The SUT modeled in the domain model should represent the 

SUT and its execution platform, as a single component.  

3.2. Modeling Behavioral Details with UML State Machines & MARTE  

For modeling the behavior details of the environment that have an impact on the SUT, we 

developed the UML State Machines with MARTE real-time extensions for various 

components in the environment. As discussed earlier, the environment components run in 

parallel to form the environment of the RTES. The components can send signals to each 

other and to the SUT. We can also view the environment as having one state machine with 

orthogonal regions, one for each component. Fig. 2 shows the state machine of a 

component for one of the industrial case studies. We have abstracted out the concepts for 
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confidentiality reasons. Following, we discuss the details of the methodological guidelines 

we followed.  

3.2.1. Identifying Stateful Components.  

Components whose states either affect the SUT or are affected by the SUT should be 

modeled with state machines. Apart from these components, it is also useful to model the 

behavior of other components on which we would like control during the simulation.   

Overall, the environment should be modeled in a way that enables, after the initial 

configuration and provision of input data (parameters and guards), the full simulation of 

the interactions with the SUT. All the context components shown in Fig. 1 are stateful 

components of the sorting machine case study. For example, the SortingArm component 

was modeled as stateful since it receives signals from the SortingBoard and reacts 

differently based on its current state.   

3.2.2. States to be Included.  

It is important to determine the right level of abstraction for a component state machine. If 

we want to precisely model the behavior of an environment component, this might lead to 

a large number of states. We are, however, only interested in state changes that have an 

impact on the SUT. A single state in an environment model state machine may correspond 

to a large number of concrete or physical states. For example, in the sorting machine, the 

Item states that were modeled were all related to its movement through the sorting machine 

whereas its other possible states were not of interest as an environment component of the 

SortingBoard. 

3.2.3. Modeling Users in the Environment.  

Generally, for software system modeling users are only modeled as sources of inputs and 

data. The behaviors of users with respect to the system are mostly not considered. In the 

environment modeling methodology, it is useful to model the behavior of users in the 

environment to have a control over the inputs/outputs of the various components or the 

SUT. If a user participates in multiple roles, it is useful to model each role a user plays as a 

separate component. In the sorting machine case study, we modeled two different users 

(the operator and the persons who enter the items for sorting), each of them had 
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considerable non-deterministic behavior. In certain cases it can be interesting to model 

both the expected and unexpected behavior of users using the proposed methodology.  

3.2.4. Modeling Abstract Phenomena.  

Sometimes it is necessary to model abstract physical concepts, such as temperature, heat, 

voltage, and current. Mostly, information regarding these phenomena can be obtained and 

controlled through sensors and controllers, such as a temperature controller or sensor. 

Modeling of such concepts explicitly as environment components can be useful if a change 

in the state of these concepts impacts multiple components simultaneously, or if it is not 

possible to identify a related component in the environment that can act as a controller or 

sensor of this concept for simulation. As an example, consider a RTES on a vehicle that 

indicates its driver the time for a pit stop. The tires of a vehicle can burst when the 

temperature of the road gets too high. If there is no sensing mechanism available in the 

environment, then it is useful to make a state machine of temperature, with possibly two 

states representing below and above danger temperatures. 

3.2.5. Modeling Transitions & Action Durations.  

Most of the transitions in the state machines of the components will either be based on 

signal events or time events. Timeout transitions are an important concept in RTES 

environment models. The MARTE TimedEvent concept is used to model timeout 

transitions, so that it is possible for them to explicitly specify a clock. Each environment 

component may have its own clock or multiple components may share the same clock for 

absolute timing. The clocks are modeled using the MARTE’s concept of clocks.  

Specifying a threshold time for an action execution or for a component to remain in a state 

is possible using the MARTE TimedProcessing concept. This is also a useful concept and 

can be used, for example, to model the behavior of an environment component when the 

RTES expects a response from it within a time threshold. When a SortingArm is signaled 

to move, after staying some time in the Moving state, it transitions to the Not Moving state 

(see Fig. 2). 

3.2.6. Modeling Non-Determinism.  

Non-determinism is a particularly important concept for environment modeling and is one 
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of the fundamental differences between models for system modeling and models for 

environment modeling. Following we discuss different types of non-determinism that we 

have modeled for our case studies. 

Specifying exact value for timeout transitions might not always be possible for RTES 

environment components. To model their behavior in a realistic way, it is often more 

appropriate to specify a range of values for a possible timeout, rather than an exact value. 

Moreover, the behavior of humans interacting with the RTES is by definition non-

deterministic. For modeling this behavior, we can add an attribute in the environment 

component and use OCL to constrain the possible set of values of the attribute and then use 

this attribute as a parameter of a timeout transition. In the sorting machine case study, the 

SortingArm may reach a sorting location from its center between 5 sec and 6 sec, 

depending on various physical conditions. This is modeled through the attribute 

movingTime, which is passed as a parameter to the change event on the transition from 

Moving to Not Moving. Legal values for the attributes are constrained using OCL. 

Another important form of non-determinism is to assign probabilities to the transitions 

of state machines. In an RTES environment, we sometimes only know the probability of a 

component to go into a particular state over time and we are not sure about the exact 

occurrence of such conditions. For example, we can say that the probability of a car engine 

to overheat after running continuously for 10 hours is 0.05, but we cannot be certain about 

the exact instance in time when this situation will happen. We can model this in the engine 

state machine with a transition going from Normal Temperature state to Overheated state, 

during an interval of 10 hours, with probability of 0.05. For modeling these scenarios, we 

assigned a probability on the transitions using the property prob of the MARTE GaStep 

concept. Whenever a timeout transition has the gaStep stereotype applied with a non-zero 

value of prob, the combination will be comprehended as the probability of taking the 

transition over time of timeout transition. In the sorting machine case study, a SortingArm 

can get stuck in a position (e.g., because of a bottle blocking it or the arm jamming) with a 

probability 0.02 in a minute if it is not moving and a higher probability when it is moving. 

This can be modeled as shown in Fig. 2 by the transitions from Not Moving and Moving to 

Sorter Stuck. The sending of non-deterministic signals can also be modeled using this type 

of transitions, by placing them in the actions of such transitions.  
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Fig. 2. State Machine of the SortingArm component in the sorting machine case study 

Another type of probability that we modeled in our case studies is for the situations 

where one event can lead to multiple possible scenarios, but all of them are mutually 

exclusive. For example, we might want to represent the fact that during the communication 

with the SUT there is a chance that signals are received with or without distortion. To 

make the models more realistic, we assigned probabilities to each of such scenarios in the 

environment component. In terms of UML state machines, this means that multiple 

transitions are outgoing from one state based on the same event (maybe with identical 

guard). For modeling these scenarios, we assigned the MARTE gaStep stereotype to each 

of the multiple possible outgoing transitions. The example of communication with the SUT 

can be modeled by having two transitions going out of the environment component state on 

receiving of a signal, one labeled with a probability that the signal was corrupted and the 

other with the probability that the signal was fine. Modeling the distribution of event 

arrivals and timeout transitions can be useful for validation purposes, but is out of the 

scope of this paper, since our goal is verification of the SUT. Nevertheless, this type of 

information can be easily expressed in the model using the MARTE profile.  

3.2.7. Modeling Error & Failure States.  

In the environment models, two types of states play a particularly important role: the error 

states and the failure states. 

Environment error states are those states that the environment goes into because of 

unwanted response(s) (or lack of) from the SUT. Every component in the environment may 

have error states. If any component of the environment reaches one of these error states, 

then it means that the SUT is faulty. We use the stereotype <<error>> for such states in 

the environment model. For a SortingArm, an Item should not arrive while the arm is 
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moving. This is an error state of the environment and can be caused if arm is not made to 

move on time by the SortingBoard. In Fig. 2, this has been modeled with the Item Arrival 

Error state. 

Failure states model possible failures of environment components. A component may 

fail in several different ways with different consequences for the SUT. The SUT should 

appropriately behave under known, failing conditions. A failure can happen at any time 

during the execution of a component, e.g., a sensor may break at any time, and is modeled 

as non-deterministic behavior (as discussed). We use the stereotype <<failure>> for these 

failure states. The Sorter Stuck state discussed earlier, in which the SortingArm is stuck and 

cannot change its position, is a failure state of the environment.  

3.3. Modeling the Constraints 

To apply constraints on the relationships and restrictions on various value combinations (or 

state combinations) of objects, we have used the Object Constraint Language (OCL). We 

have also used OCL for representing the guards on the state machines, various state 

invariants and general constraints on the relationships of environment components. 

RTES environment consists of a number of components including some real-world 

concepts (e.g., temperature, air pressure). If we consider all the various components of 

environment together, it is important to restrict the possible state combinations of these 

components to avoid infeasible situations (e.g., reverse and forward movement of motors is 

not possible at the same time). In our methodology, we have used OCL to specify 

constraints for such scenarios. For example, for the sorting machine, if a SortingArm is 

moving then only one DiskMotor and PositionMotor should be running at a given time. If 

the arm is not moving, both the motors should not be running. There can be a number of 

such constraints and it is important to model them to have a realistic simulation and testing 

based on the models. Otherwise, the models would end up in states that are not practically 

possible. 

State invariants in the environment also play a significant role. Based on the values of 

the attributes of the component, the state invariants are used to evaluate the current state of 

the environment and derive state oracles (i.e., is the environment in the expected state?). 

We have used OCL to specify the state invariants. We also used OCL to specify the overall 
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set of values that an attribute of an environment component can take. Last, the OCL 

constraints were also used for modeling non-determinism as discussed earlier.  

3.4. Environment Modeling Profile 

Our goal was to model the environment based only on the standard UML and its existing 

extensions as much as possible. We applied the standard notations and based on our needs 

for those case studies, where required, we provided light weight extensions to UML. In this 

section we will discuss the subsets of UML and MARTE that we used and the lightweight 

extensions that we have provided for environment modeling. From a practical standpoint, it 

was important to identify these subsets for the methodology, since the UML and MARTE 

standards are very large and most organizations would be reluctant to adopt such large 

notations.  

We used the concept of Context, System, Error, and Failure under the form of UML 

stereotypes. Context is used to represent an environment component and is applied on the 

classes of the domain model. Similarly, System is also applied on the classes of the domain 

model and represents the SUT. Error represents the states of environment component that 

are only taken if there is an error in the SUT. Failure is also applied on the states and 

represents a failure in the environment. Within UML, we used the concept of Class 

diagram, State Machines. From MARTE, we only used the Time package and the GaStep 

concept from the GQAM package as shown in Fig. 3. This small subset of UML and 

MARTE was sufficient for modeling our two industrial case studies for the purpose of 

automated black-box testing.  

3.5. Simulation of Environment Models 

Due to size constraints, we cannot go into the details of the simulation and only briefly 

discuss it. The environment models developed using our methodology with UML and the 

MARTE profile are transformed into a RTES environment simulator in Java using a model 

to text transformation. The transformation was based on an extended version of the state 

pattern that accounts for asynchronous communication, time events, and change events. 

The simulator is used to test a RTES in conditions similar to its real environment.  Since 

the standard for a concrete syntax of the UML Action Language is still not finalized, we 

made use of Java to specify actions. Once there is a standard UML Action Language, the 
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actions can be written in that language and then translated into the target language of the 

RTES. For our case studies, the actions are written in Java and are converted into Java 

method calls.  
 

 
Fig. 3. Profile diagram showing various stereotypes and references 

4. Model-based Testing based on Environment 
Models 

In this section we briefly discuss how our modeling methodology is used to achieve 

automated system testing. Further details can be found in [15].  

The UML/MARTE models of the environment are used to automatically generate a 

simulator for it.  The simulator is used to test the RTES on the development platform. The 

information from the models is used to guide the generation of test cases and for 

generating automated oracles, which enable fully automated testing. Once test case and 

oracle generation is completely automated, it is possible to execute and evaluate a large 

number of test cases.  

In our methodology, a test case is the setting used for the simulator. The information of 

what to configure in the simulator is automatically derived from the models and it is given 

as input to the test engine. Two types of setting are necessary: 

- Number and relations of the environmental components. For example, given a state 

machine representing a sensor, the Domain Model is used to determine how many 

sensors can be connected to the RTES (and so, we would know how many running 

instances we need for that state machine). Several different combinations are 

possible. 

- Each state machine can have non-deterministic events.  The models are used to 

specify them and to provide details of their type. When the simulator is running, 
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every time it requires a value to calculate a non-deterministic event, it then queries 

the test engine to obtain such values. 

At the current moment, we have not investigated different configurations based on the 

Domain Models. We have focused on testing the behavior of the RTES given a single 

configuration. The goal of the testing is to provide a valid setting for the non-deterministic 

events such that an environmental error state (Section 3.2) is reached during the 

simulation, if any fault is present. 

The simplest testing technique would be to provide (valid) random values each time the 

simulator queries the test engine for values to use in non-deterministic events. But more 

sophisticated techniques that exploit the information in the models can be used. For 

example, reaching the error state during simulation can be represented as a 

search/optimization problem, so Search Based Testing (SBT)[16] can be used. From the 

models we can automatically generate a fitness function to guide the search. Common 

heuristics such as approximation level and branch distance of the OCL constraints would 

be used for the fitness function. Due to size constraints, the investigated testing strategies 

are reported in [15], where we also proposed a novel fitness function that exploits the time 

properties of the UML/MARTE models. 

The use of models for SBT in the case of RTES system testing is essential. In fact, to 

have effective heuristics (i.e., the fitness function) we need to have precise knowledge of 

the error states. This information is easily added in the models using stereotypes (Section 

3.4). All the relevant states/transitions that lead to those error states can be exploited for 

the automatic derivation of the fitness function. On the other hand, if we have a simulator 

but no model, it is unlikely that it would be possible to automatically reverse-engineer all 

this necessary information from the code alone. Therefore, the fitness function would be 

necessarily written by hand, with all the related downsides that this choice brings.  

In some relevant cases [15], it is possible to automatically derive very precise fitness 

functions. This happens when time constraints need to be satisfied (a typical case in 

RTES), e.g., a signal should be received within 10 milliseconds. A test case for which that 

signal is received after nine milliseconds gives more information than a test case in which 

the same signal is immediately received after one millisecond (notice that in both cases the 

constraint is satisfied). SBT can automatically exploit this information by focusing the 

search on simulator configurations that are more likely to yield a deadline miss. A tester 
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does not need to write these heuristics, they are in fact automatically derived from the 

environment models. This is essential, because in general software testers do not have the 

expertise to write proper fitness functions for search algorithms.  

The results in [15] show that our modeling methodology can be used for a fully 

automated system testing that is effective in revealing faults in industrial RTES.  Although 

different testing strategies can be designed (e.g., Random Testing and SBT), the 

environment modeling methodology described here would still remain the same.   

5. Case Studies 
To evaluate the proposed methodology for environment modeling, we applied it on two 

industrial RTES. The application domains of the systems were entirely different. Because 

we cannot provide full details of the systems due to confidentiality restrictions, we are 

providing only a brief description. One of the RTES case studies (Case A) was a sorting 

system, which was part of an automated bottle recycling machine (developed by Tomra). 

The system communicated with a number of sensors and actuators to guide recycled items 

through the recycling machine to their appropriate destinations. The second RTES was a 

marine seismic acquisition system (Case B). One of the responsibilities of that system was 

to control the movement of seismic cables, where each cable had a large number of sensors 

and seismic vibrators, among other equipments. The system regularly communicated with 

these components and was responsible for managing the life cycle and connections for 

these components (among other things). We provide a summary of the environment 

models developed for both the case studies in Table 1.  

For Case A, the RTES was configurable as three different types of systems; therefore 

the number of environment components was large. But most of the components’ behavior 

could be modeled with a couple of states. The highest number of states was 18. Many 

components inherited a parent component behavior, i.e., its state machine. That was the 

case for example for DiskMotor and Motor in Fig. 1.  

Though the number of components for Case B was more limited than for Case A, the 

number of instances for some of the components in the environment was very large (e.g., 

thousands of sensors of the same type communicating with the SUT), thus leading to many 

instances of executing state machines during simulation. The complexity of component 

state machines was also on average much higher than for Case A.  
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One important conclusion is that, in both cases, we were able to model the RTES 

environments with the subset of UML and MARTE that we identified and the lightweight 

extensions that we proposed. The models were sufficient to generate simulators that could 

be used to support large-scale test automation. In one of our industrial case study, using 

random testing and the SBST strategy described above, combined with using the 

environment model to identify error states (oracle), new critical faults were detected.  

For both case studies, the number of components identified at the time of domain 

modeling was larger than what was finally required. During successive revisions and based 

on insight obtained through behavioral modeling, some components turned out to be 

unnecessary and were removed from the domain model. One practical challenge is that it 

was not easy in practice to identify the right level of abstraction to model the behavior of 

environment components. Sub-machines were widely used to incrementally refine the 

behavioral models until the right level of detail was achieved to simulate the behavior of 

component from the viewpoint of the SUT.  
Table 1.  Summary of the environment models of the two industrial RTES.  

Industry Case # of env. 

components  

Stateful 

components 

Average 

# of states 

Max states in 

a component 

Max transitions 

in a component 

Case A 55 43 ~3 18 40 

Case B 5 4 ~12 19 29 

6. Conclusion 
In this paper, we have discussed a methodology for modeling the environment of a Real-

Time Embedded System (RTES) in order to enable black-box, system test automation, 

which is usually performed by test engineers who are not informed of the design specifics 

of the RTES. For practical reasons and to facilitate its adoption, the methodology is based 

on standards: UML, MARTE profile, and OCL for modeling the structure, behavior, and 

constraints of the environment. We, and this is part of our methodology, made a conscious 

effort to minimize the notation subset used from these standards. We briefly discussed how 

the environment models are used to generate automated system test cases and a simulator 

of the environment to enable testing on the development platform. One advantage is that 

the methodology also allows more focus on the testing for critical and hazardous 

conditions in the RTES environment as environment failures and possible error states due 

to faults in the RTES implementation are explicitly modeled. 
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We modeled the environment of two industrial RTES in order to investigate whether 

our methodology and the notation subsets selected were sufficient to fully address the need 

for automated system testing. Our experience showed that was the case. In particular, by 

using our environment models to derive test cases and oracles, it was possible to 

automatically find new, critical faults in one of the industrial case studies using fully 

automated, large scale random and search-based testing. 
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Abstract–Testing real-time embedded systems (RTES) is in many ways challenging. 

Thousands of test cases can be potentially executed on an industrial RTES. Given the 

magnitude of testing at the system level, only a fully automated approach can really scale 

up to test industrial RTES. In this paper we take a black-box approach and model the 

RTES environment using the UML/- MARTE international standard. Our main motivation 

is to provide a more practical approach to the model-based testing of RTES by allowing 

system testers, who are often not familiar with the system design but know the application 

domain well-enough, to model the environment to enable test automation. Environment 

models can support the automation of three tasks: the code generation of an environment 

simulator, the selection of test cases, and the evaluation of their expected results (oracles). 

In this paper, we focus on the second task (test case selection) and investigate three test 

automation strategies using inputs from UML/MARTE environment models: Random 

Testing (baseline), Adaptive Random Testing, and Search-Based Testing (using Genetic 

Algorithms). Based on one industrial case study and three artificial systems, we show how, 

in general, no technique is better than the others. Which test selection technique to use is 

determined by the failure rate (testing stage) and the execution time of test cases. Finally, 

we propose a practical process to combine the use of all three test strategies.   

1. Introduction 
Real-time embedded systems (RTES) represent a major proportion of the software being 

developed [1]. The verification of their correctness is of paramount importance, 

particularly when these RTES are used for business or safety critical applications (e.g., 

controllers of nuclear reactors and flying systems). Testing RTES is particularly 

challenging since they operate in a physical environment composed of possibly large 

numbers of sensors and actuators. The interactions with the environment can be bound by 
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time constraints. For example, if the RTES of a gate is informed by a sensor that a train is 

approaching, then the RTES should command the gate to close down before the train 

reaches the gate. Missing such time deadlines can have disastrous consequences in the 

environment in which the RTES works. In general, the timing of interactions with the real-

world environment in which the RTES operates can have a significant effect on the 

resulting behavior of test cases.  

In this paper our objective is to enable the black-box, automated testing of RTES based 

on environment models. More precisely, our goal is to make such environment modeling 

as easy as possible, and allow the testers to automate testing without any knowledge about 

the design of the RTES. This is typically a practical requirement for independent system 

test teams in industrial settings. In addition, the test must be automated in such a way to be 

adaptable and scalable to the specific complexity of a RTES and available testing 

resources. By adaptable, we mean that a test strategy should enable the test manager to 

adjust the amount of testing to available resources, while retaining as high a fault revealing 

power as possible.   

The system testing of a RTES requires interactions with the actual environment or, 

when necessary and possible, a simulator. Unfortunately, testing the RTES in the real 

environment usually entails a very high cost and in some cases the consequences of 

failures would not be acceptable, for example when leading to serious equipment damage 

or safety concerns. In our context, a test case is a sequence of stimuli, generated by the 

environment or its simulator, that is sent to the RTES. If a user interacts with the RTES, 

then the user would be considered as part of the environment as well. There is usually a 

great number and variety of stimuli with differing patterns of arrival times. Therefore, the 

number of possible test cases is usually very large if not infinite. A test case can also 

contain changes of state in the environment that can affect the RTES behavior. For 

example, with a certain probability, some hardware components might break, and that has 

effect on the expected and actual behavior of the RTES. A test case can contain 

information regarding when and in which order to trigger such changes.  

Testing all possible sequences of environment stimuli/state changes is not feasible. In 

practice, a single test case of an industrial RTES could last several seconds/minutes, 

executing thousands of lines of code, generating hundreds of threads/processes running 

concurrently, communicating through TCP sockets and/or OS signals, and accessing the 
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file system for I/O operations. Hence, systematic testing strategies that have high fault 

revealing power must be devised.  

The complexity of modern RTES makes the use of systematic testing techniques, 

whether based on the coverage of code or models, difficult to apply without generating far 

too many test cases. Alternatively, manually selecting and writing appropriate test cases 

based on human expertise for such complex systems would be far too challenging and time 

consuming. If any part of the specification of the RTES changes during its development, a 

very common occurrence in practice, then many test cases might become obsolete and their 

expected output would potentially need to be recalculated manually. The use of an 

automated oracle is hence another essential requirement when dealing with complex 

industrial RTES.  

In this paper we present a Model-Based Testing (MBT) [2] methodology to carry out 

system testing of RTES in a fully automated, adaptable, and scalable way. We tailor the 

principles of Adaptive Random Testing (ART) [3] and Search-Based Testing (SBT) [4] to 

our specific problem and context. For our empirical evaluation, we use Random Testing 

(RT) [5] as baseline. One main advantage of ART and SBT is that it can be tailored to 

whatever time and resources are available for testing: when resources are expended and 

time is up, we can simply stop their application without any side effect. A coverage-based 

strategy could not be, for example, interrupted at any time. Furthermore, ART and SBT 

attempt, through different heuristics, to maximize the chances to trigger a failure within 

time constraints. We will also see how their combined use can be helpful to gain the most 

out of testing resources in practice. The RTES under test (SUT) is treated as a black box: 

no internal detail or model of its behavior is required, as per our objectives. The first step is 

to model the environment using the UML standard and its MARTE profile, the latter being 

necessary to capture real-time properties. The use of international standards rather than 

academic notations is dictated by the fact that our solutions are meant to be applied by our 

industry partners. Environment models support test automation in three different ways:  

 The environment models describe some of the structural and behavioral properties of 

the environment. Given an appropriate level of detail, they enable the automatic 

generation of an environment simulator to satisfy the specific needs of software 

testing.  
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 The models can be used to generate automated oracles. These could for example be 

invariants and error states that should never be reached by the environment during the 

execution of a test case (e.g., an open gate while a train is passing). In general, error 

states can model unsafe, undesirable, or illegal states in the environment. We used 

error states as oracles in our case studies.  

 Test cases can be automatically selected based on the models, using various heuristics 

to maximize chances of fault detection. In our case studies we use ART and SBT.  

 

In this paper we focus on the third item above and assess RT, ART, and SBT on the 

production code of a real industrial RTES. Due to space constraints, and because our focus 

in this paper is test automation, we do not explain in detail how to use UML/- MARTE to 

model the environment of a RTES and how simulator code can be automatically generated 

(which we investigated in [6]). To the best of our knowledge, no MBT automation results 

for ART and SBT on an actual RTES have ever been reported in the research literature. 

Since no freely available RTES was available, we also constructed three different artificial 

RTES in order to extend our investigation and better understand the influence of various 

factors on test cost-effectiveness such as the failure detection rate. The use of publicly 

available artificial RTES will also facilitate future empirical comparisons with our work 

since, due to confidentiality constraints, our industrial case study cannot be made public.  

The paper is organized as follows. Section 2 provides an overview of related work. How 

the context is modeled and simulated is shortly discussed in Section 3. Section 4 describes 

the different strategies we used to generate test cases. Their empirical validation is 

described in Section 5 and threats to validity are discussed in Section 6. Finally, Section 7 

concludes the paper.  

2. Related Work 
A large body of literature has been dedicated to test RTES. For reason of space, here we 

can only give a very brief and incomplete overview. 

Most of the approaches to test RTES are based on violating their timing constraints [7] 

or checking their conformance to a specification [8]. The specification is generally a 

formal model of the system and this model is then used to generate test cases. A number of 

approaches have been proposed over the years to address the above problem. The most 
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widely discussed approaches model the system using Timed Automata [9]. A number of 

Timed Automata extensions, such as Timed I/O Automata [10], have also been used for 

conformance testing. For the same purpose, UML statechart [11], Extended Finite State 

Machines [12] and Attributed Event Grammar [13] have also been used.  

There are several works using SBT techniques for testing different aspects of RTES 

[14], as for example identify deadline misses [15] and testing functional properties [16].  

The work presented here is significantly different from most the above approaches as 

we adopt, for practical reasons presented above, a black-box approach to system testing 

that relies on modeling the RTES environment rather than its internal design properties. As 

noted above, this is of practical importance as independent system test teams usually do 

not have easy access to precise design information.Most existing work does not focus on 

system testing, hence their emphasis on modeling the RTES internal behavior and 

structure. Another difference of practical importance, though this is not detailed in this 

paper, is that we use UML and its standard extensions for modeling the environment. Last 

but not least, as opposed to published case studies (e.g., [13, 12]), we assess our test 

strategies on the actual production code of an industrial RTES.  

3. Environment Modeling and Simulation 
For RTES system testing, software engineers would typically be responsible for 

developing the environment models. Therefore, the modeling language should be familiar 

to them and therefore based on software engineering standards. In other words, it is 

important to use a modeling language for environment modeling that is widely accepted 

and used by software engineers. Furthermore, standard modeling languages are widely 

supported in terms of tools and training. The Unified Modeling Language (UML) and its 

extensions are therefore a natural choice to consider in our context. Several modeling and 

simulation languages are available and can be used  

Several modeling and simulation languages are available and can be used for modeling 

and simulating the context (e.g., DEVS [17]). But in our case using these simulation 

languages raises a number of issues, including the fact that software engineers in the 

development team are usually not familiar with the notations and concepts of such 

languages.  
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Higher level programming languages (such as Java or C) can also be used as simulation 

languages. The major problem with the use of such languages is the low level of 

abstraction at which they “model” the environment. The software engineers will have to 

deal with all the programming language constructs (such as threads) while at the same time 

trying to focus on the details of the environment itself.  

RTES testing through an environment simulator faces the question of how time is 

handled. Indeed, many properties of the RTES depend on whether some time constraints 

are fulfilled or not. Ideally, we would like to be able to simulate the passing of time in a 

deterministic way, but it is not always possible for large and complex RTES.  

The opposite approach to time simulation would be to run the RTES with its simulated 

environment using the real clock of the CPU used to run the empirical analysis. On one 

hand, it has the benefit that we do not have any particular constraint on the type of RTES 

that can be analyzed. On the other hand, it adds noise and variance in the scheduled time 

events. If time constraints of the RTES are very tight (e.g., in the order of few 

milliseconds), then this approach is not a viable option.  

In our work, we have used UML/MARTE as a simulation language. Models are 

developed in UML as classes and their state-machines. These models are then transformed 

into Java using model to text transformations. The activities and actions are written in Java 

and are converted into Java method calls. This was appropriate for the RTES considered in 

this paper. For other types of RTES, different programming languages could be necessary. 

Notice that our methodology is general. We chose Java only for practical reasons. In 

particular, in our empirical analyses we did not face the problem of the garbage collector 

interfering with time properties. The garbage collector was never called during the 

execution of a test case.  

4. Automated Testing 
4.1. Test Case Representation 

In our context, a test case execution is akin to executing the environment simulator. Each 

state machine represents a component of the environment. There can be more instances of 

a state machine with different settings to represent different sensors/actuators of the same 

type. For example, in a gate controller RTES, we can have a state machine representing the 
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trains. For each simulated train we will have an independent running instance of that state 

machine. The domain model is used to identify how many instances can or should run in 

parallel for each state machine. Based on the domain model, there could be different 

possible configurations of the environment, but in this paper we focus only on one fixed 

configuration.  

In the behavioral models of the environment (i.e., the state machines) there can be non-

deterministic parts. For example, a timeout transition could be triggered within a minimum 

and a maximum time value but the exact value cannot be determined. This is very typical 

when real-world components are modeled, in which for example there is always a natural 

variance when time-related properties are represented. Another example is when we assign 

probabilities p in the models to represent failure scenarios, as for example the breakdown 

of sensors/actuators. In our context, input data of a test case are the choice of the actual 

values to use in these non-deterministic events.  

In our modeling methodology, we have non-deterministic choices only in the transitions 

between states. They can be in the trigger, the guard and the action of the transition. A 

transition might be taken several times, and this number might be unknown before 

executing the test case. Therefore, for each instance of the environment state machines, for 

each non-deterministic choice, we allocate in the test case a vector of possible values. The 

length of this vector is l. Each time such non-deterministic choice needs to be made, a 

value from the corresponding vector is selected. Because the vector has finite length l, it is 

used as a ring: The values are taken in order, and after l request for values, it starts again 

from the beginning of the vector. Figure 1 shows an example.  

Let the transition C → D have a non-deterministic choice in [0,1], for example the 

timeout T ∈ [0,1]. Given for example l = 2, we would have a data vector containing for 

example {0.4, 0.32}. The first time the transition C → D is taken, the value 0.4 is used for 

Figure 1. Example of a reduced UML/MARTE state machine 
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the non-deterministic choice. The second time, the value 0.32 is used. The third time, the 

value 0.4 is used again, and so on.  

Given n state machine instances, and m non-deterministic choices in each of them (for 

simplicity, because in general instances of different machines will have a different number 

of non-deterministic choices), we would have that each test case contains L = n * m * l 

values, which can be represented as a vector. The choice of l is arbitrary but has significant 

consequences. On one hand, a small number of possible values could make it impossible to 

represent sequences of event patterns that lead to failures in the RTES. On the other hand, 

a high number of possible values will lead to long vectors and might harm the 

effectiveness of test selections techniques such as ART and SBT (discussed in more details 

in the next sections).  

In our case studies, the values to include in the test case data are chosen before the 

execution of the test cases. This means that the domain of these values should be static and 

not depending on the dynamic execution of the test cases. For example, if a variable is 

constrained within a minimum and maximum limit, then these boundaries should be 

known before test execution. This is the case for the industrial RTES analyzed in this paper 

and for other RTES we have worked with. When this is not the case, we would need to 

enable the choice of non-deterministic options at runtime.  

4.2. Testing Strategies 

As described in the previous section, a test case can be seen as a vector V. Elements in this 

vector can be of different types, but their domain of valid values should be known. Given 

D(i) the domain of the ith variable in V, we obtain that the number of possible valid test 

cases is ∏|D(i)|, which is an extremely large number. An exhaustive execution of all 

possible test cases is infeasible.  

In this paper we consider the testing problem of sampling test cases to detect failures of 

the RTES with automated oracles derived from the environment models. For all test 

strategies, the oracle checks whether a transition to an error state specified in the model 

occurs during test execution. We choose and execute test cases one at a time. We stop 

sampling test cases as soon as a failure has been found. A test strategy that requires the 

sampling of fewer test cases to detect failures should obviously be preferred.  
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The simplest, automated technique to choose test cases is Random Testing (RT). For 

each variable in V, we simply sample a value from its domain with uniform probability. 

Although RT can be considered to be a naive technique, it has been shown to be effective 

in many testing situations [18, 19].  

Another technique that we investigate is Adaptive RT (ART) [3], which has been 

proposed as an extension of RT. The underlying idea of ART is that diversity among test 

cases should be rewarded, because failing test cases tend to be clustered in contiguous 

regions of the input domain. ART can be automated if one can define a meaningful 

similarity function for test cases. To the best of our knowledge, we are aware of no 

previous application of ART to test RTES. In this paper we use the basic ART algorithm 

described in [3].  

Because in our case studies all the variables in V are numerical, for the distance between 

two test case data vectors V1 and V2 we use the following dis(V1, V2) ∑= abs(V1(i) - 

V2(i))/|D(i)|. We sum the absolute difference of each variable weighted by the cardinality 

of the domain of that variable. Often, these variables represent the time in timeout 

transitions. Therefore, ART rewards diversity in the triggering time of events.  

In this paper we also investigate the use of search algorithms to tackle the testing of 

RTES. In particular we consider the use of Genetic Algorithms (GAs), which are the most 

used search algorithms in the literature on search-based testing (SBT) [14]. To use search 

algorithms to tackle a specific problem, a fitness function needs to be defined tailored to 

solve that problem. Search algorithms exploit the fitness function to guide the search 

toward promising areas of the search space. The fitness function is used to heuristically 

evaluate how “good” a test case is. In our case, the fitness function is used to estimate how 

close a test case is from triggering a failure in the RTES, that is when at least one 

component of the environment enters an error state. This is once again determined by 

analyzing the environment models.  

To tackle the testing problem described in this paper, we developed a novel fitness 

function f that can be seen as an extension of the fitness functions that are commonly used 

for structural testing [4] and MBT [20]. In our case, the goal is to minimize the fitness 

function f. If at least one error state is reached when a test case with test data V is executed, 

then f(V) = 0. For each error state E in each state machine instance we employ the so called 

approach level A and branch distance B. The approach level calculates the minimum 
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number of transitions in the state machine to reach an error state from the closest executed 

state. The branch distance is used to heuristically score the evaluation of the Object 

Constraint Language (OCL) constraints in the closest executed state from which the 

approach level is calculated. The branch distance is used to guide the search to find test 

data that satisfy those OCL constraints. A transition could be triggered several times but 

never executed because the guard fails. For the branch distance, we calculate it every time 

but then we only consider the minimum value it obtains. Because the branch distance is 

less important than the approach level, it is normalized in the range [0,1]. We use the 

following normalizing function: nor(x) = x/(x+1), which has been shown to be better than 

other normalizing functions used in the literature [21]. Notice that, in the case of MBT, it is 

not always possible to calculate the branch distance when the related transition has never 

been triggered. In these cases, we assign to the branch distance B its highest possible value.  

The extension of the fitness function we make in this paper exploits the time properties 

of the RTES. Some of the transitions are triggered when a time-threshold is violated. For 

example, an error state could be reached if a sensor/actuator does not receive a message 

from RTES within a time limit. If such transitions exist on the path toward the execution of 

the error states, then we need a way to reward test data that get the execution closer to 

violate those time constraints. If a transition is taken after a threshold z, then we calculate 

the maximum consecutive time t the state machine stays in the state from which that 

transition can be triggered (this would be the same state from which the approach level is 

calculated from). Then, to guide the search we can use the following heuristic T = z – t, 

where t ≤ z.  

Finally, the fitness function f for a test data vector V is defined as:  

f(V) = minE AE(V) + nor (TE(V)) + nor (BE(V))) 

Notice that, to collect information such as the approach level, the source code of the 

simulator needs to be instrumented. This is automatically done when this code is generated 

from the environment models.  

Once the fitness function is defined, we can use it to guide the GA to select test cases. 

But GAs have many parameters that need to be set. In this paper we use a Steady State GA 

[4]. We employ rank selection with bias 1.5 to choose the parents. A single point crossover 

is employed with probability Pxover = 0.75. This operator chooses a random point inside the 

data vectors V of the parents sx and sy. The elements in the data vector after that splitting 
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point are swapped between the two parent solutions. Each of the L elements in a data 

vector is mutated with probability 1/L. A mutation consists of replacing a value with 

another one at random from the same domain. The population size is chosen to be 10. The 

optimal configuration of search algorithms is in general problem dependent [22]. Due to 

the large computational cost of running our empirical analysis, we have not tuned the GA. 

We simply use reasonable parameter values given in the literature of GAs.  

5. Empirical Study 
5.1. Case Study 

To validate the novel approach presented in this paper, we have applied it to test an 

industrial RTES. The analyzed system is a very large and complex controller that interacts 

with several sensors/actuators. The company that provided the system is a market leader in 

its field. For confidentiality reasons we cannot provide full details of the system. 

Information of the environment models of this RTES is provided in Table 1. Notice that for 

this case study there are several state machines, and for each of them there can be one or 

more instances running in parallel at the same time. For each test case, 23 instances of state 

machines run in parallel, each of them can start several threads. The total number of non-

deterministic choices (NDCs) is 82. The UML/MARTE context models were developed in 

IBM Rational Software Architect. Constraints, such as guards, were expressed in OCL.  

To facilitate future comparisons with the techniques described in this paper, it would be 

necessary to also employ a set of benchmark systems that are freely available to 

researchers. Unfortunately, we have not found any RTES satisfying this criterion. 

Therefore, in addition to our industrial case study, we have designed three artificial RTES, 

called AP1, AP2 and AP3. Two of them are inspired by the industrial RTES used in this 

paper, whereas the third is inspired by the control gate system described in [12]. The RTES 

are written in Java to facilitate their use on different machines and operating systems. For 

Table 1. Summary of the state machines of the environment of the industrial RTES. NDC stands for 
“Non-Deterministic Choice”. 
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the same reason, the communications between the RTES and their environments are 

carried out through TCP. The use of TCP was also essential to simplify the connection of 

the RTES with its environment. For example, if the simulator of the environment is 

generated from the models using a different target language (e.g., C/C++), then it will not 

be too difficult to connect to the artificial RTES written in Java. These RTES are all 

multithreaded. Table 2 summarizes the properties of these artificial RTES. In each of them, 

there is only one error state. We introduced by hand a single non-trivial fault in each of 

these RTES.  

5.2. Experiments 

We have carried out two different sets of experiments. One for the artificial problems, and 

one for the industrial RTES. In all these experiments, the value l for the nondeterministic 

choices is set to l = 3. This means that the number of input variables in each test case is 60 

for AP1, 12 for AP2, 54 for AP3 and finally 246 for the industrial RTES.  

In the first step of the experiments, we ran RT, ART and GA on each of the three 

artificial problems. Because the execution of a single test case takes 10 seconds, we stop 

each algorithm after 1000 sampled test case or as soon as one of the error state is reached. 

Notice that the value 10 seconds is fixed, and it does not depend on the used execution 

platform. Using faster hardware would not change the amount of time required to run these 

experiments. The only requirement is that the hardware used for the experiments is fast 

enough to sustain the CPU load without introducing delays higher than a few milliseconds. 

Because in these simulations most of the time the CPU is in idle state, the computers used 

in the experiments were appropriate.  

For each test strategy and each case study, we ran the algorithms 100 times with 

different random seeds. Because these algorithms are randomized, a large number of 

experiments is required to obtain statistically significant results. The total number of 

sampled test cases is hence at most 3 * 3 * 1000 * 100 = 900,000, which can take up to 104 

days on a single computer. To cope with this problem, we used a cluster to run these 

Table 2. Properties of the three artificial problems. LoC stands for “Lines of Code”, whereas NDC 
stands for “Non-Deterministic Choice”. 
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experiments.  

Given an upper bound of 1000 test cases, it is not always the case that any of the test 

strategies is able to trigger a failure in the RTES. In Table 3 we report how many times 

each algorithm was able to do so out of the 100 experiments. Because the process of 

detecting failures in 100 experiments can be considered to be a binomial process with 

unknown probability [23], we use the Fisher Exact test to compare the success rate of RT 

with the ones of ART and GA. The significance level of the tests is set to 0.05. Results 

show that the only case in which there is no significant difference in the success rate is for 

problem AP2 when RT is compared to ART.  

The second set of experiments has been carried out on an industrial RTES. In system 

testing of RTES, the simulation of the environment can in general be run for any arbitrary 

amount of time. But there should be enough time to render possible the execution of all the 

functionalities of the RTES. For example, in the RTES for a train/gate controller, we 

should run the simulation at least long enough to make it possible for a train to arrive and 

then leave the gate. Choosing for how long to run a simulation (i.e., a test case) is 

conceptually the same as the choice of test sequence length in unit testing [24] (i.e., many 

short test cases or only few ones that are long?). But in contrast to unit testing in which 

often the execution time of a test case is in the order of milliseconds, in the system testing 

of RTES we have to deal with much longer execution time. In this paper, we run each test 

case for 20 seconds. This choice has been made based on the properties of the RTES and 

discussions with its software testers.  

We evaluated the use of RT, ART and GA to find failures in this RTES. We could not 

run this empirical analysis on a cluster due to technical reasons. We used a single dedicated 

computer, and it took nearly ten days to run these experiments. The failure rate of the SUT 

Table 3. Success rate (out of 100 runs) for the three artificial problems. 

Table 4. Success rate (out of 100 runs) for the three artificial problems. 
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in these experiments was quite high, so we did not use any upper bound for the number of 

sampled test cases. The results of experiments are shown in Table 4.  

To analyze the results in a sound manner we carried out a set of statistical tests on the 

data presented in Table 4. We used parametric t-tests to see whether there is any statistical 

difference between the mean values of sampled test cases among the three analyzed 

algorithms. The scientific or practical significance of these differences is evaluated using 

the Cohen D coefficient. We also carried out non-parametric Mann- Whitney U tests to see 

whether any of the results of these algorithms is stochastically greater than the others. The 

scientific significance of this test is measured with the Vargha-Delaney A statistic. For 

both t-tests and Mann-Whitney U tests the significant level is set to 0.05. For the Cohed D 

coefficient (value d), we classify the effect size as follows [25]: small for abs(d) = 0.2, 

medium for abs(d) = 0.5, and finally large for value abs(d) = 0.8. In the case of Vargha-

Delaney A statistic (value a), we use the following classification [26]: small for abs(a - 

0.5) = 0.06, medium for abs(a - 0.5) = 0.14 and large for abs(a - 0.5) = 0.21. Table 5 

summarizes the results of these statistical tests.  

5.3. Discussion 

In the results of the experiments on the artificial problems shown in Table 3, we can see 

that no testing technique generally dominates the others. GA is statistically better on the 

first problem, but it is the worst on the other two problems. Regarding RT and ART, they 

are equivalent on the second problem, but RT is best on the first, whereas ART is best on 

the third problem.  

The results in Table 3 for GA can be precisely explained. Covering all the nonerror 

states and transitions in the environment models of these problems is very easy, practically 

all test strategies achieve this. The only difficult part is the transition to the error state. For 

the first problem AP1, that transition is a time transition with no guard. After a time 

threshold, that transition is triggered. The novel fitness function proposed in this paper can 

take advantage of this information, rewarding test cases that get closer to violate that time 

Table 5. Results of the statistical tests for the data in Table 4 
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constraint. In fact, for each test case we can automatically calculate the time that it spends 

in the state that could lead to the error state. This automated fitness function produces an 

easy fitness landscape that can be efficiently searched by GA. This explains the fact that 

GA gets to the error state 90% of the time, whereas RT reaches it only in 6% of the time. 

However, why do we obtain so much worse results in the other two problems AP2 and 

AP3? The reason is that the fitness function in these cases is practically a needle-in-the-

haystack function. In the transition to the error state, there is a guard that is checking 

whether one Boolean variable is equal to true. The value of this variable depends on the 

interactions with the SUT, particularly whether a specific message has been received or 

not. This type of guard in search-based testing is a known, very difficult problem denoted 

as the flag problem [27]. In this case, the fitness function provides no gradient, and this 

makes the search difficult. Unfortunately, testability transformations [27] cannot be used in 

this case, because in our context the SUT is a black box. Even if we had access to the SUT, 

it would still be problematic, because we are aware of no work dealing with the flag 

problem for the system testing of concurrent programs. Though the above issue is a 

limitation, in practice, we can automatically determine before running GA whether it will 

work.  

Though we can explain why GA does not work well on AP2 and AP3, why does it 

behave even worse than RT? The reason is exactly the same for which ART is better than 

RT: the diversity of the test cases. If there is no gradient in the fitness function, all the 

sampled test cases would have same fitness value (i.e., the fitness landscape would have a 

large plateau). So any new sampled test case would be accepted and added to the next 

generation in GA. The crossover operator does not produce any new value in the data 

vector V , it simply swaps values between two parent test cases. The mutator operator does 

only small changes to a data vector, because on average only one variable is mutated. 

During the search, the offspring have genetic material (i.e., the data vectors) that is similar 

to the one of the parents. Therefore, the diversity of test cases during GA evolution is much 

lower than the one of RT. If the hypothesis of contiguous regions of faulty test cases is true 

for a RTES, then, when there is no gradient in the fitness function, we would a-priori 

expect this following relationship regarding the performance of testing strategies: GA ≤ RT 

≤ ART. For problems AP2 and AP3, this is verified in the results of Table 3.  
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In the experiments on the industrial RTES, we can see that GA is statistically worse 

than the other approaches, although the difference is only small/medium in size from a 

scientific point of view. The results on the industrial RTES shown in Table 4 are important 

to stress out that the choice of a testing strategy is also heavily dependent on when the SUT 

is tested. The version of the industrial RTES used in this paper was not a finished product. 

It was in an early phase of development. The types of failure scenarios introduced with our 

models were not something that was fully tested before. This explains the high failure rate 

shown in Table 4. Notice that the failure rate θ can be simply estimated from the mean 

value of RT, i.e. θ = 1/mean(RT). The reason is that RT follows a geometric distribution 

with parameter θ, therefore mean(RT) = 1/ θ. In our case, we have θ = 1/131.9 = 0.007, 

which can be considered to be a high failure rate.  

5.4. Practical Guidelines 

For high failure rates, it makes sense to use a simple RT instead of more sophisticated 

techniques, since the expected number of sampled test cases would be low on average. In 

practice, we would expect high failure rates at the beginning of the testing phase. The 

failure rate would hence be expected to decrease throughout the development process as 

faults get fixed. Therefore, we would expect to get good results for RT at the beginning, 

but then more sophisticated techniques could be required at later stages.  

Our results lead us to suggest the following heuristics to apply RT, ART, and SBT in 

practice: In the early stages of development and testing, when failure rates are still high, 

one should use RT as it will be very efficient and quick to detect the first failure, without 

requiring any overhead like ART or SBT. One exception to this rule is when the time of 

executing a test case is high (e.g., in the order of several seconds or minutes), where we 

then suggest to use ART as one should enforce test execution diversity to prevent the 

execution of too many test cases. Once the failure rate decreases due to the fixing of easy-

to-detect faults, then use SBT, but only if a proper fitness function can be derived 

automatically from the models, that is a fitness function that is likely to provide effective 

guidance for the search of failing test cases. Otherwise, use RT. ART should not be used 

when the failure rate is low as the overhead of distance calculations would get too high, 

due to the large number of test cases executed.  
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Figure 2 summarizes the above heuristic in a decision tree and it shows when to apply 

each testing technique. We provide practical advice regarding when to switch from ART to 

RT below. But for the switch from RT to SBT, we need more empirical/theoretical 

analyses to provide practical guidelines.  

In the literature, it has been shown that ART can be twice as fast as RT [3]. Let us 

consider ttc the execution time of a test case, tdis the execution time of a distance calculation 

with d the total number of distances computed, θ the failure rate, E[RT] and E[ART] the 

expected number of test cases sampled by RT and ART. We know that E[RT] = 1/θ and 

that, under optimal conditions, E[ART] = E[RT]/2. We can develop a heuristic that is 

based on the following equation: E[RT]·ttc = E[ART]·ttc + d·tdis, which is a loose 

approximation to determine the failure rate θ  above which ART is going to yield better 

results than RT. From that equation, it follows θ* ≈ tdis/4·ttc. This optimal threshold for 

ART for the failure rate can be estimated before test execution. Finally, we can suggest to 

run ART for ½ θ* iterations, but only as long as the number of sampled test cases is not 

high enough to make the decision to switch to SBT. The above recommendations are 

heuristics and will need to be evaluated and refined as we gather more empirical data.  

6. Threats to validity 
Due to the complexity of the industrial RTES used in the empirical study of this paper, 

we could not run the RTES and its simulated environment in such a way to obtain a precise 

and deterministic handling of clock time. We used the CPU clock instead. This could be 

unreliable if time constraints in the RTES are very tight, as for example in the order of 

milliseconds, because these constraints could be violated due to unpredictable changes of 

load balance in the CPU because of unrelated processes. Although the time constraints in 

Figure 2. Decision tree and and application timeline of the three analyzed testing strategies. 
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this paper were in the order of seconds, the problem could still remain. To evaluate 

whether our results are reliable, we hence selected a set of experiments, and we re-ran 

them again with exactly the same random seeds. We obtained equivalent results. For 

example, if RT for a particular seed obtained a failing test case after sampling 43 test 

cases, then, when we ran it again with the same seed, it was still requiring exactly 43 test 

cases. However, the experiments were not exactly the same. For example, for debugging 

purposes we used time stamps on log files. In these time stamps, small variances of a few 

milliseconds were present, but this did not have any effect on the testing results. Notice 

that our novel methodology can obviously be applied also when time clocks are simulated.  

7. Conclusion 
In this paper we proposed a black-box system testing methodology, based on 

environment modeling and various heuristics for test case generation. The focus on black-

box testing is due to the fact that system test teams are often independent from the 

development team and do not have (easy) access to system design expertise. Our objective 

is to achieve full system test automation that scales up to large industrial RTES and can be 

easily adjusted to resource constraints. The environment models are used for code 

generation of the environment simulator, selecting test cases, and the generation of 

corresponding oracles. The only incurred cost by human testers is the development of the 

environment models. This paper, due to space constraints, has focused on the testing 

heuristics and an empirical study to determine the conditions under which they are 

effective, plus guidelines to combine them in practice.  

In contrast to most of the work in the literature, the modeling and the experiments were 

carried out on an industrial RTES in order to achieve maximum realism in our results. 

However, in order to more precisely understand under which conditions each test heuristic 

is appropriate and how to combine them, we complemented this industrial study with 

artificial case studies, that will be made publicly available to foster future empirical 

analyses and comparisons.  

We experimented with different testing heuristics, which have the common property to 

be easily adjustable to available time and resources: Random Testing (RT), Adaptive 

Random Testing (ART) and Search-Based Testing using Genetic Algorithms (GAs). All 

these techniques can be adjusted to project constraints as they can be run as long as time 
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and access to CPU are available. Though RT was originally used as comparison baseline, it 

turned out to be the best alternative under certain conditions.  

On the artificial problems, in one case GA is the best search algorithm, and the 

difference is very large. But on the other two cases, GA has the worst results, which are 

due to poor fitness functions. In one case RT and ART are equivalent, but in the other two, 

RT is better in one case and worse in the other.  

However, on the industrial RTES, results are quite different from the artificial case 

studies: there is no statistical difference between RT and ART, whereas GA is slightly 

worse than the others (the effect size is between small and medium). After investigation, 

this was found to be due to the RTES high failure rate and a fitness function that offered 

little guidance to the search due to a Boolean guard condition. To support the claims 

above, we followed a rigorous experimental method based on five types of statistical 

analyses.  

Based on our results, we have provided practical guidelines to apply the three testing 

techniques described in this paper, i.e. RT, ART, and GA. In fact, none of them dominates 

the others in all testing conditions and they must be, in practice, combined to achieve better 

results. However, more empirical and theoretical studies are needed to develop more 

precise, practical guidelines.  

One current limitation of our testing approach is that the domains of valid values for the 

non-deterministic test inputs need to be static: they should be known before test case 

execution. Research will need to be carried out to design novel testing strategies for non-

deterministic inputs that can only be determined at runtime.  
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Abstract–System  testing of real-time embedded systems (RTES) is a challenging task and 

only a fully automated testing approach can scale up to the testing requirements of industrial 

RTES. One such approach, which offers the advantage for testing teams to be black-box, is to 

use environment models to automatically generate test cases and oracles and an environment 

simulator to enable earlier and more practical testing. In this paper, we propose novel 

heuristics for search-based, RTES system testing which are based on these environment 

models. We evaluate the fault detection effectiveness of two search-based algorithms, i.e., 

Genetic Algorithms and (1+1) Evolutionary Algorithm, when using these novel heuristics and 

their combinations. Preliminary experiments on 13 carefully selected, non-trivial artificial 

problems, show that, under certain conditions, these novel heuristics are effective at bringing 

the environment into a state exhibiting a system fault. The heuristic combination that showed 

the best overall performance on the artificial problems was applied on an industrial case study 

where it showed consistent results. 

Categories and Subject Descriptors 

D.2.5 [Software Engineering]: Testing and Debugging 

General Terms 

Experimentation, Verification. 

Keywords 

Automated model-based testing, real-time embedded systems, search-based software 

engineering, branch distance. 
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1. Introduction 
Real-time embedded systems (RTES) are part of a vast majority of computing devices 

available today. They are widely used in critical domains where high system dependability is 

required. These systems typically work in environments comprising of large numbers of 

interacting components. The interactions with the environment can be bound by time 

constraints. For example, if a gate controller RTES on a railroad intersection is informed by a 

sensor that a train is approaching, then the RTES should command the gate to close before the 

train reaches it. Missing such time deadlines, or missing them too often for soft real-time 

systems, can lead to serious failures leading to threats to human life or the environment. There 

is usually a great number and variety of stimuli from the RTES environment with differing 

patterns of arrival times. Therefore, the number of possible test cases is usually very large if 

not infinite. Testing all possible sequences of stimuli is not feasible. Hence, systematic 

automated testing strategies that have high fault revealing power are essential for effective 

testing of industry scale RTES. The system testing of a RTES requires interactions with the 

actual environment. Since, the cost of testing in actual environments tends to be high, 

environment simulators are typically used for this purpose. 

In our earlier work, we proposed an automated system testing approach for RTES software 

based on environment models [1, 2]. The models are developed according to a specific 

strategy using the Unified Modeling Language (UML) [3], the Modeling and Analysis of 

Real-Time Embedded Systems (MARTE) profile [4] and our proposed profile for environment 

modeling [5]. These models of the environment were used to generate an environment 

simulator [6], test cases, and obtain test oracle [1, 2]. We applied various testing strategies to 

generate test cases, including search-based strategies, which turned out not to work very well 

as even Random Testing (RT) [7] fared better.  

In our context, a test case is a sequence of stimuli generated by the environment that is sent 

to the RTES. If a user interacts with the RTES, then she would be considered part of the 

environment as well. A test case can also include changes of state in the environment that can 

affect the RTES behavior. For example, with a certain probability, some hardware components 

might break, and that affects the expected and actual behavior of the RTES. A test case can 

contain information regarding when and in which order to trigger such changes. So, at a higher 

level, a test case in our context can be considered as a setting specifying the occurrence of all 
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these environment events in the simulator. Explicit “error” states in the models represent states 

that should never be reached if the RTES is correct. If any of these error states is reached, then 

it implies a faulty RTES. Error states act as the oracle of the test cases, i.e., a test case is 

successful in triggering a fault in the RTES if an error state of the environment is reached 

during testing. 

In this paper, we further extend the fitness function proposed in [1] to improve the 

disappointing results we had obtained with search-based testing. For this purpose, we present 

four new heuristics that are aimed to exploit potentially useful characteristics of the 

environment models. We evaluate the fault detection effectiveness of the new heuristics and 

their combinations by first performing a series of experiments on 13 artificial RTES that we 

developed based on the specifications of two industrial case studies. For all heuristics, we used 

two search algorithms: Genetic Algorithms (GA) and (1+1) Evolutionary Algorithms (EA). 

We also ran RT on the problems as a comparison baseline. We then ran the heuristic 

combination that on average showed best results for the artificial problems on an industrial 

case study of a marine seismic acquisition system, which was developed by a company 

leading in this industry sector. We only ran the best combination because executing test cases 

on the industrial case study is very time consuming and we could not, for technical reasons, 

run it on a cluster. We compared the performance of RT and this heuristic combination when 

used with GA and (1+1)EA on the industrial case study. 

The rest of the paper is organized as follows: Section 2 provides a background of the work. 

Section 3 discusses related work. Section 4 provides an introduction to the earlier proposed 

environment modeling methodology and testing approach. Section 5 discusses the new search 

heuristics, whereas Section 6 discusses the empirical study carried out to evaluate the new 

search heuristics. Finally, Section 7 concludes the paper. 

2. Background 
Several software engineering problems can be reformulated as a search problem, such as test 

data generation [8]. An exhaustive evaluation of the entire search space (i.e., the domain of all 

possible combinations of problem variables) is usually not feasible. There is a need for 

techniques that are able to produce “good’’ solutions in reasonable time by evaluating only a 

tiny fraction of the search space. Search algorithms can be used to address this type of 
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problem. Several successful results by using search algorithms are reported in the literature for 

many types of software engineering problems [9].  

To use a search algorithm, typically a fitness function needs to be defined that is used to 

guide the search algorithms toward fitter solutions. The fitness function should be able to 

evaluate the quality of a candidate solution (i.e., an element in the search space). The fitness 

function is problem dependent, and proper care needs to be taken for developing adequate 

fitness functions. Eventually, given enough time, a search algorithm will find a satisfactory 

solution. 

There are several types of search algorithms. Genetic Algorithms (GA) are the most well-

known [9], and they are inspired by the Darwinian evolution theory. A population of 

individuals (i.e., candidate solutions) is evolved through a series of generations, where 

reproducing individuals evolve through crossover and mutation operators. (1+1) Evolutionary 

Algorithm (EA) is simpler than GAs, in which only a single individual is evolved with 

mutation.  

To cope with several problems related to combining together different heuristics/objectives 

with different priorities, we rather use an order function h. An order function takes two 

solutions as parameters and returns whether the first is better, equivalent, or worse than the 

second solution (e.g., by returning 1, 0, and -1 respectively). For a search algorithm, an order 

function h can always replace a fitness function f as long as the raw fitness values are not used 

besides comparing solutions’ fitness. For example, h can be used in a GA using tournament or 

rank selection, but not for fitness proportional selection. For more details, examples and 

discussions regarding order functions for search algorithms in software testing can be found in 

[10]. 

3. Related Work 
Depending on the goals, testing of RTES can be performed at different levels: model-in-the-

loop, hardware-in-the-loop, processor-in-the-loop, and software-in-the-loop [11]. Our 

approach falls in the software-in-the-loop testing category, in which the embedded software is 

tested on the development platform with a simulated environment. The only variation is that, 

rather than simulating the hardware platform, we use an adapter that forwards the signals from 

the system under test (SUT) to the simulated environment. This helps focus on testing the 
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embedded software. This approach is especially helpful when the software is to be deployed 

on multiple hardware platforms or the target hardware platform is stable (such as the case with 

our industry partners, working in the area of marine seismic acquisition and automated bottle 

recycling machines).   

A large body of research has been carried out for RTES testing. Most of these approaches 

are based on testing the violation of timing constraints [12] or checking their conformance to a 

specification [13]. The specification is generally a formal model of the system and this model 

is then used to generate the test cases. As specification of the system, a number of approaches 

use Timed Automata or one of its extensions (e.g., [14]). For the same purpose, UML 

statechart [15], Extended Finite State Machines [16] and Attributed Event Grammar [17] have 

also been used. There are also several works using search-based testing techniques for testing 

different aspects of RTES, as for example identify deadline misses [18]. Most of the work on 

search-based software testing has been focused on unit testing [19], and not system level 

testing as we do in this paper. 

There are also a few works discussing RTES testing based on environment models rather 

than system models. Auguston et al. [17] discusses the development of environment 

behavioral models using an event grammar for testing of RTES. The behavioral models 

contain details about the interactions with the SUT and possible hazardous situations in the 

environment. Heisel et al. [20] propose the use of a requirement model and an environment 

model along with the model of the SUT for testing. Adjir et al. [21] discuss a technique for 

testing RTES based on the system model and assumptions in the environment using Labeled 

Prioritized Timed Petri Nets. Larsen et al. [22] propose an approach for online RTES testing 

based on time automata to model the SUT and environmental constraints. Peleska et al. [23] 

present a benchmark model for testing RTES in the automotive domain. Their testing 

methodology uses information from environment models and system models to obtain test 

cases. 

The work presented here is significantly different from most the above approaches as we 

adopt, for practical reasons, a black-box approach to system testing that relies exclusively on 

modeling the RTES environment rather than its internal design properties. This is of practical 

importance as independent system test teams usually do not have easy access to precise design 

information. Most existing works do not focus on system testing, hence their emphasis is on 
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modeling the RTES internal behavior and structure. Another difference of practical 

importance, though this is not in the focus of this paper, is that we use UML  and its standard 

extensions for modeling the environment [5].   

4. Environment Modeling and Model-based Testing  
This section introduces our previous work on which we build in this paper.  

4.1 Environment Modeling & Simulation 
For RTES system testing, as we observed among our industry partners, software engineers 

familiar with the application domain would typically be responsible for developing the 

environment models. Therefore, we selected UML and its extensions as the environment 

modeling language. As a standard modeling language, it is widely taught and accepted by 

software engineers and supported by a broad range of tools and training material, all of which 

being important considerations for successful industry adoption. 

The environment models consist of a domain model and several behavioral models. The 

domain model captures the structural details of the RTES environment, such as the 

environment components, their relationships, and their characteristics. The behavior of the 

environment components is captured by state machines. These models are developed, based on 

our earlier proposed methodology by using UML, MARTE, and our proposed profile for 

environment modeling [5]. These models not only include the nominal functional behavior of 

the environment components (e.g., booting of a component) but also include their robustness 

(failure) behavior (e.g., break down of a sensor). The latter are modeled as failure states in the 

environment models. The behavioral models also capture what we call error states. These are 

the states of the environment that should never be reached if the SUT is implemented correctly 

(e.g., no incorrect or untimely message from the SUT to the environment components). 

Therefore, error states act as oracles for the test cases.  

An important feature of these environment models is that they capture the non-determinism 

in the environment, which is a common characteristic for most RTES environments Non-

determinism may include, for example, different occurrence rates and patterns of signals, 

failures of components, or user commands. The environment modeling profile provides 

special constructs to model non-deterministic behavior of the environment. Each environment 
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component can have a number of non-deterministic choices whose exact values are selected at 

the time of testing. Java is used as an action language and OCL (Object Constraint Language) 

is used to specify constraints and guards. In general, for the type of system testing we do, a 

communication layer is needed to make the simulated environment communicate with the 

actual RTES (e.g., to receive stimuli and to send responses). Such a communication layer is 

written by the software engineer separately from the models. This allows for the simulators 

and models to be independent of the language in which SUT is written.  

Using model to text transformations, the environment models are automatically 

transformed into environment simulators implemented in Java. The transformations follow 

specific rules that we discussed in detail in [6]. During simulation a number of instances can 

be created for each environment component, which interact with each other and the SUT (for 

example multiple instances of a sensor component). The generated simulators are linked with 

the test framework that provides the appropriate values for each simulation execution. For all 

our case studies, the generated simulators communicate with the SUT using TCP sockets. The 

choice of Java and TCP is based on actual requirements of one of our industrial partners, 

where the RTES under study involves soft real-time constraints.  

Environment simulation is an important feature for the type of testing that we do. Our 

target systems are typically reactive systems and depending on their internal states, they may 

behave differently to the same environment stimuli. Therefore, in some cases, the exact 

response from the SUT to a particular environment event cannot be determined before 

execution. Environment models are developed in a way that they accept different responses of 

the SUT that may be triggered as a result of the environment events, including invalid 

responses that lead to error states. The simulation allows the environment to handle such non-

determinism in the SUT, since depending on the response of SUT, the environment can 

simulate any of the modeled behavior.  

4.2 Environment Model-Based Testing 
In our context, a test case execution is akin to executing the environment simulator. The 

domain model represents various components in the RTES environment. As mentioned earlier, 

during a simulation there can be multiple instances for each of the environment components 

and multiple components run in parallel to form the RTES environment. During the 

simulation, values are required for the non-deterministic choices in the environment models. A 
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test case in our context provides information for both the number of instances for each 

component (which we refer to as the environment configuration) and the values for various 

non-deterministic choices (referred to as the simulation configuration). For the scope of this 

paper, we only consider one fixed environment configuration; therefore in the rest of the 

paper, a test case is alternatively used for referring to a simulation configuration.  

A test case can be seen as a test data matrix, where each row provides a series of values for 

a non-deterministic choice of the environment component (the number of rows is equal to the 

number of non-deterministic choices). Each time a non-deterministic choice needs to be made, 

a value from the corresponding matrix row is selected. During simulation, a query for a non-

deterministic choice can be made several times and the number of queries cannot be 

determined before simulation. To resolve this problem, each matrix row (a data vector) can be 

represented in two possible forms: a fixed length ring or a variable length vector. On one hand, 

in the fixed-length ring vector, the vector is considered as a ring and upon reaching the end/tail 

of the vector. Then, the values are again selected from the start/head of the vector. On the 

other hand, in the variable size vector, whenever the end of a vector is reached, its size is 

increased at run time and new values are added. In our earlier work [2], we evaluated the 

effect of the representations and starting lengths of the test data vectors on the fault detection 

effectiveness.  

In our earlier work, we applied various testing strategies to generate test cases from the 

environment models [1]. For search-based testing, we developed a new fitness function f that 

can be seen as an extension of the fitness function developed for model-based testing based on 

system specifications [24]. The original fitness function uses the so-called “approach level” 

and normalized “branch distance” to evaluate the fitness of a test case. For environment 

model-based testing, we introduced the novel concept of normalized “time distance”. In our 

context, the goal is to minimize the fitness function f, which heuristically evaluates how far a 

Figure 1. A dummy state machine to explain search heuristics 
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test case is from reaching an error state. If a test case with test data m is executed and an error 

state of the environment model is reached, then f(m) = 0.  

The approach level (A) refers to the minimum number of transitions in the state machine 

that are required to reach the error state from the closest executed state. Figure 1 shows a 

dummy example state machine to elaborate the concept. The state named Error is the error 

state. Events e1, e2, and e3 are signal events, whereas events after “t, s”, after “t1, ms”, and 

after “t2, ms” are time events with t, t1, and t2 as the time values and ms and s as time units. 

Events e3 and after “t, s” are guarded by constraints using OCL. If the desired state is Error 

and the closest executed state was State5, then the approach level is 1.  

The approach level rewards test case executions that get closer to an error state, but it does 

not provide any gradient (guidance) to solve the possible guards on the state transitions. The 

branch distance (B) is used to heuristically score the evaluation of the guards (if any) on the 

outgoing transitions from the closest executed state. In [25] we have defined a specific branch 

distance function for OCL expressions that is reused here for calculating the branch distance. 

In the dummy state machine in Figure 1, we need to solve the guard “y > 0” so that whenever 

e4 is triggered, then the simulation can transition to the Error state. Note that branch distance 

is less important than approach level, since it is required only when the transition towards an 

error state is guarded and the approach level cannot be reduced any further. Therefore, we 

normalized the branch distance in the range of 0 to 1 [10].  

The third important part of the fitness function is the time distance (T), which comes into 

play when there are timeout transitions in the environment models. For example, in Figure 1, 

the transition from State2 to Error is a timeout transition. If a transition should be taken after z 

time units, but it is not, we calculate the maximum consecutive time c the component stayed in 

the source state of this transition (e.g., State2 in Figure 1). To guide the search, we use the 

following heuristic: T = z – c, where c ≤  z. Again, the importance of time distance is less than 

that of approach level, therefore it is normalized in the range 0 to 1. The fitness function f 

using these three heuristics for a test data matrix m is defined as: 

f(m)= mine ((Ae(m) + nor(Te(m)) + nor(Be(m)))  (1) 

where for an error state e, Ae represents the approach level, Te represents the time distance, and 

Be represents the branch distance. nor() is the normalizing function. For guarded time 

transitions, Be was only calculated after the corresponding time event was triggered. Since, 
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there can be multiple error states in the environment models, the function f(m) only takes the 

minimum value over all error states (represented by mine in (1)). 

The results when using this fitness function, as reported in [1], were disappointing. The 

branch distance was calculated for the guards only after an event was triggered and this 

worked fine for signal events. But for time events, this meant that to get the branch distance, 

we first needed to trigger the time event. For this we focused first on reducing the time 

distance and then calculated the branch distance. It turned out that this assumption of favoring 

reduction of time distance whenever there is a time transition was naive. In situations where 

the time transition had a guard, a test case with less time distance but with a greater branch 

distance was considered to be better than a test case with greater time distance but lower 

branch distance. However, there is no purpose in reducing the time distance (i.e., the error 

state will not be reached) if at the end the transition is not fired because the guard is false. 

5. Improved Fitness Function 
In this section, we present novel improvements in the fitness function f for environment 

model-based testing of RTES. As mentioned earlier, for problems related to combining 

various heuristics/objectives with different priorities, we can replace the use of a fitness 

function f with an order function h. For two test data matrices m1 and m2, the function h will 

return 1, 0, or -1 if m1 is better, equal, or worse than m2, respectively.  

Following, based on f(m) we define a basic order function h for two test data matrices (m1, 

m2) that will be reused for definition of order functions for the three new heuristics: Time In 

Risky State (TIR), Risky State Count (RSC), and Coverage (COV). 

 
where for a set of error states es, Amin(m) is defined as the minimum approach level for the 

matrix m over es, Bmin(m) as the minimum branch distance for m over es, and Tmin(m) as 

minimum time distance for m over es. Amin takes precedence on Bmin and Tmin, and Bmin takes 

precedence on Tmin. This is simply reflecting the relative importance of these three heuristics.  

 

h(m1,m2)= 

1  if Amin(m1)<Amin(m2) or (Amin(m1)=Amin(m2) and  
  Bmin(m1) < Bmin(m2)) or (Amin(m1)=Amin(m2) and  
  Bmin(m1)= Bmin(m2) and Tmin(m1) < Tmin(m2)) 

0  if Amin(m1)=Amin (m2) and Bmin(m1)= Bmin(m2) and 
  Tmin(m1)=Tmin(m2)) 

-1  otherwise    (2) 
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5.1 Improved Time Distance (ITD) 
We improved the way the basic time distance was calculated in the earlier fitness function. 

The motivation behind the improved time distance is that to avoid fitness plateaus, a test case 

with a lower branch distance for a time transition should be preferred over the one having 

greater branch distance, irrespective of the time distance. This is due to the fact that during 

environment simulation, changing the values of a test case often has a direct impact on the 

time distance and it should therefore be easier to reduce it than the branch distance. For 

example in Figure 1, the time transition after “t, s” is guarded by [x > 0]. A test case with a 

positive value greater than 0 for x will be considered better than a test case with a negative or 

0 value for x, irrespective of the value of t. The value of t is considered only after the branch 

distance of the guard equals 0. For this, we introduced the concept of a look-ahead branch 

distance (LB) for time transitions, which represents the branch distance of OCL guard on a 

time transition when it is not fired (i.e., the timeout did not occur). Because OCL evaluations 

are free from side-effects [25], this does not lead to any particular problem. The order function 

for two test data matrices m1 and m2 using this heuristic is:  

 

 
where for the set of error states es and a given error state e  es, Amin(m) represents the 

minimum approach level for matrix m over es, Bmin(m) is the minimum branch distance for m 

over es, LBe(m) represents the look-ahead branch distance for m for the error state e, and Te(m) 

represents the time distance for m over e. 

h(m1,m2)= 

ITDe(m1,m2)= 

1  if Amin(m1)<Amin(m2) or (Amin(m1)=Amin(m2) and Bmin(m1) 
< Bmin(m2)) or (Amin(m1)=Amin(m2) and Bmin(m1)= 
Bmin(m2) and ITDmin(m1,m 2) = 1) 

0 if Amin(m1)=Amin (m2) and Bmin(m1)= Bmin(m2) and 
ITDmin(m1, m2)=0) 

-1  otherwise   (3)  

1 if LBe (m1) < LBe (m2) or (LBe (m1) = LBe (m2) and 
Te(m1) < Te(m2)) 

0 if (LBe (m1) = LBe (m2) and Te(m1) = Te(m2))  

-1 otherwise 
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5.2 Time in Risky State (TIR) 
A “risky state” is defined as a state adjacent to the error state (i.e., approach level = 1). For the 

order function, when two test cases have the same Amin, Bmin, and Tmin, then a test case that 

spends more time in risky states should have higher fitness. The motivation behind this 

heuristic is that, the more time spent in a risky state, the higher the chances of events 

happening in the environment or SUT leading to the error state (e.g., receive a signal from the 

SUT). For example, for the state machine shown in Figure 1, this heuristic will favor the test 

cases that spend more time in the risky states State2 or State5. For instance in State2, it is 

possible to increase the value of t1 in the time event after “t1, ms”, which will increase the 

time spent in this state. The overall order function based on h defined in (2), is given as:  

 
where TIRsum(m) is the sum of time spent in risky states for all error states and the test data 

matrix m. 

5.3 Risky State Count (RSC) 
This heuristic is also based on utilizing the concept of risky states: When two test cases have 

the same Amin, Bmin, and Tmin, then a test case that enters a risky state more often should be 

preferred over a test case that does so less often. For example, for the state machine shown in 

Figure 1, this heuristic will assign higher fitness to the test cases that make the component 

enter State2 more often, i.e., transitions to State4 and come back. This would for instance 

result in minimizing the values of t1 and t2 for the timeout transitions after “t1,s” and after 

“t2,s” to increase the risky state count. Note that the heuristic will only be useful for the cases 

that allow a loop back to a risky state. The overall order function based on the basic order 

function h defined in (2) is: 

 

h'(m1,m2)= 

h'(m1,m2)= 

h(m1, m2)  if h(m1, m2) != 0 

1    if h(m1, m2) = 0 and TIRsum(m1) > TIRsum(m2) 

0   if h(m1, m2) = 0 and TIRsum(m1) = TIRsum(m2) 

-1    otherwise 

h(m1, m2)  if h(m1, m2) != 0 

1   if h(m1, m2) = 0 and RSCsum(m1) > RSCsum(m2) 

0  if h(m1, m2) = 0 and RSCsum(m1) = RSCsum(m2) 

-1  otherwise 
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where RSCsum(m) is total count of transitions made to all risky states for the test data matrix m. 

5.4 Increase in Coverage (COV) 
This heuristic is based on the concept of coverage of environment models. This heuristic, 

when two test cases have the same Amin, Bmin, and Tmin, calculates the environment coverage 

and assign higher fitness to the test cases that cover more environment states.  

The idea behind this heuristic is to increase the coverage of the environment models when 

the approach level, branch distance and time distance can no longer be improved. The 

assumption is that having higher environment coverage will result in more diversity in the test 

cases, which might lead to situations that help reach the error state. For example in Figure 1, 

this heuristic will favor a test case that visited State4 over a test case that did not. The idea is 

to explore more states and transitions in the environment models. The overall order function 

for COV based on h (2) is:  

 
where COVsum(m) is the total coverage for all error states. 

5.5 Combination of heuristics  
Apart from the individual heuristics, we also investigate their combinations. In total, for the 

latter three heuristics (TIR, RSC, and COV) there are eight possible combinations. They can be 

combined with the basic order function h and an order function containing the improved time 

distance ITD instead of T in h, which results in a total of 16 possible combinations 

 
where comb(m) is a given combination of the heuristics.  

When combining these heuristics, we follow the Pareto dominance principle - a key 

concept for multi-objective optimization in evolutionary algorithms [26]. In our context this 

means that, given a combination of heuristics, a test data matrix m1 will dominate another 

h'(m1,m2)= 

h'(m1,m2)= 

h(m1, m2)  if h(m1, m2) != 0 

1   if h(m1, m2) = 0 and COVmin(m1) > COVmin(m2) 

0  if h(m1, m2) = 0 and COVmin(m1) = COVmin(m2) 

-1   otherwise 

h(m1, m2)  if h(m1, m2) != 0 

1   if h(m1, m2) = 0 and comb (m1) > comb(m2) 
0  if h(m1, m2) = 0 and comb (m1) = comb(m2) 

-1   otherwise 
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matrix m2, if it is better than m2 for at least one heuristic and is not worse than m2 in any of the 

other heuristics. The reasons for using a Pareto dominance is that, in contrast to approach level 

and branch distance, we do not know which is the most important heuristic among the three 

that were proposed: this is a research question that we address in this paper.  

6. Empirical Study 
The objective of this empirical study is to evaluate the effectiveness, in terms of fault 

detection, of the proposed heuristics and their combinations. We selected two search 

algorithms for this empirical study: Genetic Algorithms (GA) and (1+1)Evolutionary 

Algorithm (EA). Though (1+1) EA is simpler than GA, it has shown better results in our 

previous testing works (e.g., [25]). We use the convention Algorithm-Heuristic to denote an 

algorithm using a heuristic or its combination. For example, to denote that GA is used with the 

basic fitness function defined in (1), we use the terms GA-Basic.  

6.1 Case Study 
For the sake of experimenting with diverse environment models and RTES, we developed 13 

different artificial RTES that were inspired by two industrial cases we have been involved 

with [5] and one case study discussed in the literature [16]. Since, there are no benchmark 

RTES available to researchers, we specifically designed these artificial problems to conduct 

our experiments (called AP1 – AP13). The goal while developing the models of these RTES 

was to vary various characteristics of the environment models (e.g., guarded time transitions, 

loops) in order to evaluate the impact of these characteristics on the test heuristics. We could 

not have covered such variations in environment models with one or even a few industrial case 

studies, hence the motivation to develop artificial cases. Nine of these artificial problems were 

inspired by a marine seismic acquisition system developed by one of our industrial partners. 

These problems covered various subsets of the environment of the industrial RTES. Three of 

the 13 problems were inspired by the behavior of another industrial RTES (part of an 

automated recycling machine) developed by another industrial partner. The thirteenth artificial 

problem was inspired by the train control gate system described in [16].  

The industrial case study we also report on is a very large and complex seismic acquisition 

system that interacts with several sensors and actuators. The timing deadlines on the 
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environment are in the order of hundreds of milliseconds. The company that provided the 

system is a market leader in its field. For confidentiality reasons we cannot provide full details 

of the system. The SUT consists of two processes running in parallel, requiring a high 

performance, dedicated machine to run.  
Table 1. Summary of environment models* 

Problem Guard on 
Path 

Time 
transition on 

Path 

Loop to 
Risky State 

Guard on Error 
Transition 

Tine Transition 
to Error State 

Approach to  
Risky State 

AP1 Yes Yes No Yes Yes Non-trivial 
AP2 Yes Yes No Yes Yes Non-trivial 
AP3 No Yes No No Yes Non-trivial 
AP4 No Yes No No Yes Non-trivial 
AP5 No Yes No No Yes Non-trivial 
AP6 Yes Yes Yes Yes Yes Non-trivial 
AP7 Yes Yes Yes Yes Yes Non-trivial 
AP8 Yes Yes Yes Yes Yes Non-trivial 
AP9 No No Yes No No Trivial 
AP10 Yes Yes Yes Yes Yes Trivial 
AP11 Yes Yes No Yes Yes Trivial 
AP12 Yes Yes No Yes Yes Trivial 
AP13 Yes Yes No Yes Yes Trivial 
IC Yes Yes Yes Yes  Yes Trivial 

To facilitate the discussion of our results, a summary of relevant characteristics for the 

environment models of the RTES under study is provided in Table 1. The columns ‘Guard on 

Path’ and ‘Time transition on Path’ represent whether these features were present on a path to 

the error state. The column ‘Loop to Risky state’ reports whether there was a loop back to a 

risky state (i.e., an outgoing transition to a state and then returning back to the risky state). The 

columns ‘Guard to Error Transition’ and ‘Time transition to Error’ show whether these 

features were present on the transition from the risky state to the error state. The column 

‘Approach’ shows if the approach to the risky state (i.e., obtaining a test case in which the 

closest executed state is the risky state) is trivial or not. It is considered to be trivial if a risky 

state is reached on average by the first ten randomly executed test cases. The row in Table 1 

with problem IC summarizes the characteristics of the environment models for the industrial 

case study. 

These RTES are written in Java to facilitate their use on different machines and operating 

systems. The communication between the RTES and their environments is carried out through 
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TCP. All these RTES are multithreaded. Each of the artificial problems had one error state in 

their environment models and non-trivial faults were introduced by hand in each of them. We 

could have rather seeded those faults in a systematic way, as for example by using a mutation 

testing tool [27]. We did not follow such procedure because the SUTs are highly multi-

threaded and use a high number of network features (e.g., opening and reading/writing from 

TCP sockets), which could be a problem for current mutation testing tools. Furthermore, our 

testing is taking place at the system level, and though small modifications made by a mutation 

testing tool might be representative of faults at the unit level, it is unlikely to be the case at the 

system level for RTES. On the other hand, the faults that we manually seeded came from our 

experience with the industrial RTES and from the feedback of our industry partners. For the 

industrial case study, we did not seed any fault and the goal was to find the real fault that we 

initially uncovered in [1]. 
Table 2. Success rates of various heuristic for GA & EA 

 
Problem 

Basic ITD TIR RSC COV 
GA EA GA EA GA EA GA EA GA EA 

AP1 0.3 0 0.05 0.15 0.9 1 0.2 0.05 0.4 0 
AP2 0.65 0.3 0.5 0.5 11 1 0.65 0.55 0.6 0.25 
AP3 0.4 1 0.5 0.9 0.5 0.9 0.45 0.9 0.5 1 
AP4 0.9 1 0.95 1 1 1 0.95 1 0.95 0.95 
AP5 0 0.55 0.05 0.6 0.05 0.95 0.05 0.5 0.05 0.6 
AP6 0.65 0.5 0.85 0.9 0.65 0.75 0.4 0.35 0.5 0.15 
AP7 1 0.9 1 0.9 1 1 0.95 0.9 0.95 0.3 
AP8 0.15 0.1 0.15 0.55 0 0.3 0 0.05 0 0.05 
AP9 0.75 0.65 0.8 0.45 0.6 0.4 0.9 1 0.45 0.45 
AP10 1 0.9 1 0.85 1 0.9 1 0.95 0.85 0.15 
AP11 0.55 0.75 0.75 0.8 0.6 0.7 0.65 0.45 0.65 0.45 
AP12 0.25 0.25 0.3 0.1 0.25 0.05 0.25 0 0.15 0.1 
AP13 0.95 1 1 1 0.85 0.9 0.95 0.85 1 0.75 
Average 0.58 0.61 0.61 0.67 0.65 0.76 0.57 0.58 0.54 0.4 

6.2 Experiments 
In this paper, we want to answer the following research questions: RQ1: What is the effect on 

fault detection of new order functions having each one of the proposed heuristics: Improved 

Time Distance (ITD), Time In Risky State (TIR), Risky State Count (RSC), and Coverage 

(COV) compared to the previously defined basic fitness function for GA and (1+1) EA? RQ2: 

Which combinations of the proposed heuristics are best in terms of fault detection? RQ3: 
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Between the two search-based algorithms, GA and (1+1) EA, which one works better in terms 

of fault detection with the new heuristics? RQ4: How do the search-based algorithms compare 

to random testing (RT)? RQ5:  How does the best combination of the proposed heuristics 

compare to RT, GA-Basic, and (1+1) EA-Basic on the industrial case study? 

To answer the research questions RQ1 – RQ4, we carried out a series of experiments on the 

above-mentioned thirteen artificial problems. For RQ5, we conducted the experiments on the 

industrial case study. We ran two search algorithms, (1+1) EA and GA, to answer these 

research questions. We also used RT as a comparison baseline for RQ2, RQ4, and RQ5, as it 

is the simplest solution to implement. For GA, we employ rank selection with bias 1.5 to 

choose the parents, the initial population size is 10 and a single point crossover is used with 

probability Pxover = 0.75. Different settings of these parameters could lead to different 

performance, but we selected reasonable parameter values following recommendations in the 

GA literature [28].  

For the experiments, we ran RT, GA, (1+1) EA on each of the 13 problems. We have three 

order functions for the individual heuristics and can combine them in 12 different ways (as 

described in Section 5.5). We ran these combinations with both the basic order function 

(defined in (2)) and the order function using ITD (defined in (3)). In total we therefore 

executed 2 * (8 * 2) *13 + 13 = 429 experiment configurations (two search algorithms, 16 

order functions, 13 artificial problems, on which RT is also run). The execution time of each 

test case was fixed to 10 seconds and we stopped each algorithm after 1000 sampled test cases 

or as soon as we reached any of the error states. The choice of running each test case for 10 

seconds was based on the properties of the RTES and the environment models. The objective 

was to allow enough time for the test cases to reach an error state. For each of these 429 

experiment configurations, we ran each algorithm 20 times with different random seeds. The 

total number of sampled test cases was 7,676,635, which required around 888 days of CPU 

resources. Therefore, we performed the experiments on a cluster of computers.  

To answer the research question RQ5, we carried out experiments on the industrial case 

study. We run each test case for 60 seconds, where 1000 test case executions (fitness 

evaluations) can take more than 16 hours. This choice has been made based on the properties 

of the RTES and discussions with the actual testers. Due to the large amount of resources 

required, we only ran the combination of heuristics that on average gave best results for the 
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thirteen artificial problems. We compared its fault detection rate with that of GA-Basic, (1+1) 

EA-Basic, and RT. We carried out 20 runs for each of these four experiment configurations. 

The total number of sampled test cases was 42,073, which required over 29 days of 

computation on a single, high-performance, dedicated machine. 

To analyze the results, we used the guidelines described in [29] which recommends a 

number of statistical procedures to assess randomized test strategies. First we calculated the 

success rates of each algorithm: the number of times it was successful in reaching the error 

state out of the total number of runs. These success rates are then compared using the Fisher 

Exact test, quantifying the effect size using an odds ratio (ψ) with a 0.5 correction (p-values of 

this test are denoted as p in the tables showing the results). When the differences between the 

success rates of two algorithms were not significant, we then looked at the average number of 

test cases that each of the algorithms executed to reach the error state. We used the Mann-

Whitney U-test and quantified the effect size with the Vargha-Delaney A12 statistics (p-values 

of this test are denoted as it-p in the tables showing the results). The significance level for 

these statistical tests was set to 0.05. In all the tables showing the odds ratio and A12 statistics, 

when comparing two algorithms, say q and r, a bold-faced font shows that q is significantly 

better than r and an italicized font shows that q is significantly worse than r. Table cells with a 

‘-’ denote no significant results for the comparison. 
Table 3. Results of ITD compared with basic fitness function 

Problem GA-ITD vs. GA EA-ITD vs. EA 
AP6 - p=0.0138, ψ =7.4 
AP8 - p=0.0057, ψ =8.96 

Table 4. Results of TIR compared with basic fitness function 

Problem GA-TIR vs. GA EA-TIR vs. EA 
AP1 p= 0.00024, ψ = 16.51   p=1.45e-11, ψ =1681 
AP2 p= 0.00832, ψ = 22.78 p=3.34e-06, ψ = 91.46 
AP3 - it-p = 0.00167, A12 = 0.8 
AP5 - p=0.00836, ψ = 10.74 
AP6 it-p= 0.03125,  A12 = 0.24 - 
AP10 - it-p= 0.02677, A12 = 0.7 

6.3 Results and Discussion 
We decompose RQ1 into four sub questions (RQ1a - RQ1d), one for each heuristic. Table 2 

shows the success rates for the 13 artificial problems and the four heuristics with GA and 

(1+1) EA. 
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Results when applying ITD (RQ1a) to the artificial problems with GA and EA are shown in 

Table 3 and are compared with results obtained when using the basic fitness function. The 

table shows the p-values and odds ratio when success rates were significantly different and 

otherwise, the p-value and the A12 statistics on the difference in the number of test case 

executions to reach the error state. Using ITD with (1+1) EA yields significantly better results 

for two of the artificial problems. In other cases the performance of the algorithm with this 

order function was the same as that for the basic algorithm. ITD relies on information 

regarding guarded time transitions in the models. Among the thirteen artificial problems, AP3 

– AP5 and AP9 did not have any guard or time transition leading to the error state. Even in 

these cases, ITD shows similar performance to basic fitness with no significant drawbacks. To 

answer RQ1a, using the fitness function with ITD can bring improvements in fault detection 

effectiveness for (1+1) EA and has no significant difference when used with GA. 

Turning now to Table 4, when TIR was used with GA (RQ1b), it gave significantly better 

results in two of the artificial problems and was worse in one problem (AP6). For other 

artificial problems, the results of the two algorithms were comparable. When TIR was used 

with (1+1) EA, it gave significantly better results for five of the 13 artificial problems. In other 

cases there were no significant differences. To answer RQ1b, TIR performs better or similar to 

the basic fitness for all but one of the artificial problems, whereas the performance of TIR with 

EA is better or equal to the (1+1) EA-Basic in all the cases. Hence the use of TIR in the order 

function seems to be an effective option in most cases. 

Table 5 addresses RQ1c and evaluates the RSC heuristic. When RSC was used with GA, it 

gave significantly better results in one of the artificial problems (AP10) and showed no 

significant difference for the other artificial problems. When RSC was used with (1+1) EA, it 

gave significantly better results for one artificial problem (AP9), worse results for another one 

(AP12), and no statistical differences otherwise. RSC depends on the presence of a loop back 

to a risky state. According to the information in Table 1, AP6 – AP10 had a loop back to the 

risky state. Hence, we can answer RQ1c by stating that for all the problems that have a loop to 

risky states, an order function using the RSC heuristic performs significantly better or similar 

to the basic fitness function. But for the problems without such a loop, it can negatively affect 

performance. Table 6 addresses RQ1d and evaluates the Coverage (COV) heuristic. When 

COV was used with GA, there were no statistical differences between the results. When it was 
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used with (1+1) EA, it gave significantly worse results for four of the artificial problems and 

yielded no significant differences in other cases. To answer RQ1d, using the order function 

with coverage only can result in significant deterioration in the performance of (1+1) EA. 

To summarize the comparison of proposed heuristics with basic fitness (RQ1), we can state 

that ITD and TIR heuristics shows significant improvements for (1+1) EA and in most cases 

for GA. RSC shows improvements in cases where there is a loop to risky states, otherwise it 

can negatively affect the performance. Finally the COV heuristic shows worse performance 

for (1+1) EA and no difference for GA.  

Next, we answer RQ2, for which we evaluate the various combinations of the four 

proposed heuristics. As discussed we had a total of 16 possible order functions for each search 

algorithm. Table 7 provides the relative ranking based on the statistical difference of the 

compared configurations. Configurations which are statistically equivalent (i.e., p-values 

above 0.05) are expected to show a similar ranking. This is done by assigning scores based on 

pairwise comparisons of configurations. Whenever a configuration is better than the other and 

the difference is statistically significant, its score is increased. Then, based on the final scores, 

each configuration is assigned ranks ranging from 1 (best configuration) to 33 (worst 

configuration). In case of ties, ranks are averaged. The configurations in the table are sorted by 

their average ranking (last column) in an ascending order. 

Overall, based on the average ranks for the 13 artificial problems, (1+1) EA with TIR 

proved to be the best algorithm for both Basic and ITD versions of the heuristic. Analyzing the 

results of Table 7 according to the characteristics of artificial problem, we can conclude that in 

general search-based algorithms perform significantly worse than RT for the artificial 

problems where the approach to risky states is trivial (see discussion for RQ4 and a plausible 

detailed explanation at the end of this section). If we exclude the results of such artificial 

problems (i.e., AP9 – AP13), then in all the other problems, (1+1) EA with ITD and TIR 

performed significantly better than other combinations. According to the ranks shown, the 

only exception seems to be AP7, but even in that case, though the number of test case 

executions is significantly less for other order functions, the success rate of (1+1) EA with 

both the order functions (Basic-TIR and ITD-TIR) was 100%. If we only consider GA, then 

the best two algorithms were GA-ITD-TIR and GA-ITD-TIR-RSC. The good overall 

performance of TIR is likely to be due to the fact that it focuses on making the environment 
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spend more time in the risky states, thus increasing the occurrence of situations that lead to the 

error state. When we compared the performance of (1+1) EA-Basic-TIR with (1+1) EA-ITD-

TIR, there were no significant differences in the results. But looking at the results in Table 7, 

where for various combinations used with (1+1) EA-ITD and (1+1) EA-Basic, the 

combinations used with (1+1) EA-ITD showed better or statistically equal results. This further 

confirms the findings of RQ1a, which suggested to use (1+1) EA-ITD over (1+1) EA-Basic. 
Table 5. Results of RSC compared with basic fitness function 

Problem GA-RSC vs. GA EA-RSC vs. EA 
AP9 - p=0.00831, ψ =22.78 
AP10 it-p= 0.0073, A12 = 0.74 - 
AP12 - p=0.047, , ψ =22.78 

Table 6. Results of COV compared with Basic fitness function 

Problem GA-COV vs. GA EA-COV vs. EA 
AP6 - p = 0.0407, ψ = 5 
AP7 - p = 0.0002, ψ =16.5 
AP10 - p = 3.36e-06, ψ =37 
AP13 - p = 0.0471, ψ =14.5 

 

Regarding RQ3 (about the comparison of GA and (1+1) EA), based on Table 7, (1+1) EA 

seems overall to provide significantly better results with various combinations when compared 

to GA using the same combinations of heuristics. An exception to this is when EA is used with 

the coverage heuristic, in which case it performs significantly worse than GA. Even for the 

problems with non-trivial approach level, the performance of most of the heuristic 

combinations for EA is significantly better than their performance with GA. Hence, we can 

conclude that the fault detection effectiveness of (1+1) EA is higher than that of GA for the 

kind RTES system testing we focus on.  

To answer RQ4 (comparison of RT with EA and GA), we compare RT with the heuristic 

combinations giving the best results for GA and EA. According to RQ3, for (1+1) EA, EA-

ITD-TIR and EA-Basic-TIR and for GA, GA-ITD-TIR and GA-ITD-TIR-RSC were the best 

combinations. Table 8 shows a comparison of RT with these four algorithms. The statistics for 

the situations where RT is significantly worse than these algorithms are bold faced and the 

situations where it is significantly better are italicized. It can be observed that for all the 

artificial problems that have a trivial approach level (Table 1:  AP9–AP13), RT performs 

significantly better than both search algorithms. But in other cases, where the approach level is 
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hard, EA and GA perform significantly better. This is especially true for EA who performs 

better in all the other problems, except AP7. For AP7, over 90% of the heuristics combinations 

had a 100% success rate and the remaining had a success rate of over 85%. Therefore, AP7 

can also be considered to be a simple problem. Hence, we can answer RQ4 by stating that for 

simple problems (i.e., where the average success rate of all the algorithms is high or the 

approach level is trivial) RT performs significantly better than both search-algorithms, but for 

more difficult problems (i.e., lower success rates or non-trivial approach level), search 

algorithms perform significantly better. The best technique (1+1) EA-ITD-TIR has an average 

success rate of 73% for the 13 problems with an average number of 222 test case executions to 

find a fault. If we only consider the problems where approach level was non-trivial (i.e., 

excluding AP9 – AP13), then the average success rate is 84%. The worst success rate is 35% 

(AP8), which suggests that with r runs of the technique, we would achieve a success rate of 1 - 

(1-0.35)r. For example with only five runs (r = 5), we would obtain a success rate above 99%. 

RQ5 is about comparing the best combination of heuristics with GA-basic, (1+1) EA-Basic 

and RT on the industrial case study. According to RQ2, the combination showing on average 

the best results for artificial problems was (1+1) EA-ITD-TIR. Table 9 shows the comparative 

results of running (1+1) EA-ITD-TIR, (1+1) EA-Basic, GA-Basic, and RT on the industrial 

case study. Table 10 shows the details of the results of this experiment including the average 

success rate (SR) and the average number of test case executions to find a fault (ATE). We can 

see that (1+1) EA-ITD-TIR shows significantly better performance over both GA-Basic and 

(1+1) EA-Basic. When compared to RT, there is no significant statistical difference. The best 

combination has relatively lower success rate (0.8 compared to 1 for RT), but it finds the fault 

with a lower, average number of test case executions (250 compared to 295 for RT). The 

better performance of RT can be explained by the fact that in the industrial case study, the 

approach level to risky state was again trivial as shown in Table 1 (i.e., on average it could be 

reached in less than 10 random test cases).  

Following, we provide a plausible explanation as to why RT shows better performance 

when the approach level to risky state is trivial. The transition from a risky state to the error 

state represents the erroneous behavior of the SUT and will only be triggered if the interaction 

of the SUT with the environment was at some point incorrect. Therefore, triggering this 

transition is dependent on the behavior of the SUT. Once the environment reaches a risky state 
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and is not able to proceed to the error state, a possible option is to try to maximize the 

diversity in the environment behavior (e.g., by using entirely different values for the test data 

matrix, irrespective of their effect on the fitness). Maximizing diversity could result in 

execution of a behavior of the environment that causes the SUT to interact in an erroneous 

way which will in turn result in the transition to the error state. When the approach to risky 

state is trivial then we can simply use RT (or a similar technique) to try to maximize diversity, 

instead of using a technique like (1+1) EA that generates similar individuals (which makes it 

hard for search algorithms to be successful in such cases).  
Table 7. Rank of each heuristic combination on 13 artificial problems (sorted by average rank) 

Algorithm AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8 AP9 AP10 AP11 AP12 AP13 Avg.  
EA-Basic-TIR 2.5 2.5 4 4 1 3 26.5 8.5 31 12.5 17.5 24.5 23 12.35 
EA-ITD-TIR 2.5 2.5 2 3 2.5 2 22 5.5 23.5 18.5 23.5 30 27 12.65 
GA-ITD-TIR 7 5 24.5 21 26 7.5 1 25 25 2.5 10.5 3.5 12 13.12 
EA-ITD-TIR-RSC 2.5 2.5 1 1 9.5 7.5 19 3.5 26 20.5 22 30 31 13.54 
GA-ITD-TIR-RSC 10 9 24.5 21 26 7.5 8 16 3 4 26 17.5 4 13.58 
GA-ITD-RSC-COV 17 18.5 24.5 12.5 26 13 4 21 4 9 17.5 2 14.5 14.12 
RT 14.5 9 33 33 26 32 8 31 1 2.5 1 1 1 14.85 
EA-ITD-TIR-RSC-COV 5 9 9 2 9.5 7.5 4 1.5 22 30 32 30 32.5 14.92 
EA-ITD-RSC-COV 28 29 14 14.5 9.5 4 20 3.5 21 22 5 8.5 18.5 15.19 
GA-ITD-RSC 19.5 22 24.5 17 26 22.5 12 16 19.5 9 2 5 3 15.23 
GA-ITD-TIR-COV 23 13.5 24.5 26 26 10 12 16 16.5 9 7.5 8.5 6 15.27 
EA-ITD 23 27 15.5 6 14.5 1 21 1.5 32 20.5 6 17.5 20.5 15.85 
GA-Basic-TIR-RSC 11 9 24.5 21 26 17 8 25 8 12.5 20 17.5 10.5 16.15 
EA-ITD-RSC 19.5 18.5 12 6 14.5 11 24 5.5 12 18.5 20 24.5 24.5 16.19 
GA-Basic-RSC-COV 26.5 24.5 24.5 28.5 17.5 22.5 2 16 7 9 14.5 3.5 14.5 16.19 
EA-Basic-TIR-RSC 2.5 2.5 9 9 5 20.5 24 10.5 29.5 16 23.5 30 29 16.23 
GA-Basic-RSC 23 22 24.5 21 26 26 18 31 6 1 3.5 8.5 5 16.58 
EA-ITD-TIR-COV 7 13.5 9 10.5 5 5 24 10.5 23.5 29 33 30 22 17.08 
GA-Basic 18 22 24.5 24 26 14.5 8 16 14.5 16 14.5 8.5 17 17.19 
GA-ITD-COV 26.5 18.5 24.5 27 17.5 14.5 15.5 16 10 14 14.5 17.5 8 17.23 
GA-Basic-TIR-COV 13 18.5 24.5 30 26 17 14 25 5 5 14.5 17.5 14.5 17.27 
GA-Basic-TIR 7 9 24.5 31 26 28.5 17 31 16.5 9 10.5 8.5 8 17.42 
GA-ITD 30 27 24.5 28.5 26 12 8 16 12 16 10.5 8.5 10.5 17.65 
GA-ITD-TIR-RSC-COV 23 15.5 24.5 25 26 20.5 12 16 14.5 24 7.5 17.5 8 18.00 
GA-Basic-TIR-RSC-COV 14.5 15.5 24.5 32 26 24.5 15.5 25 12 6 10.5 17.5 14.5 18.31 
EA-Basic-TIR-COV 12 9 4 17 5 28.5 29.5 25 9 31 26 24.5 27 19.04 
GA-Basic-COV 16 24.5 24.5 21 26 27 4 31 28 23 3.5 17.5 2 19.08 
EA-Basic-RSC-COV 23 30 13 14.5 16 17 31.5 8.5 18 26 26 17.5 20.5 20.12 
EA-Basic-TIR-RSC-COV 9 9 6 12.5 2.5 30.5 31.5 31 19.5 28 31 30 32.5 21.00 
EA-Basic-RSC 30 27 9 10.5 9.5 30.5 26.5 25 2 25 29 30 24.5 21.42 
EA-Basic 32.5 31 15.5 8 9.5 24.5 29.5 16 27 27 30 12 18.5 21.62 
EA-ITD-COV 30 32.5 4 17 9.5 19 28 7 33 32.5 20 24.5 27 21.85 
EA-Basic-COV 32.5 32.5 9 6 13 33 33 25 29.5 32.5 28 17.5 30 24.73 
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If this is not the case and approach to risky state is not trivial, then a likely reason for not 

reaching the risky state is a guard on the transition and/or a time transition. The heuristics for 

search-based algorithms that we discussed in this paper are specifically designed to deal with 

these cases and are more suitable for such cases than RT. Our previous results on solving 

constraints written in OCL, lead us to the conclusion that search-based algorithms are an order 

of magnitude better than randomized algorithms for this purpose [25]. Hence, if the guard on 

the transition can be solved by directly changing the values of attributes of the environment 

components or the transition is a time transition, then our best chance is to use the search 

algorithms (and more specifically in our context, (1+1) EA-ITD-TIR).  

From a practical standpoint, a possible solution to deal with the above mentioned situations 

that arise due to the nature of environment models is to apply RT at the start of testing and 

evaluate whether risky states are easy to reach. If this is the case, and if the OCL guard on the 

transition does not provide gradient (i.e., the so called flag problem [30]), then RT is most 

likely to trigger the transition to the error states compared to search algorithms (because of the 

reasons discussed above). In case the approach is not trivial, then one should use (1+1) EA-

ITD-TIR, which is the best combination to use in the cases when there are guards on time 

transitions located on the path to the error state and is at the same time no worse than its 

corresponding Basic version (i.e., (1+1) EA-Basic-TIR). One limitation to this can be 

situations in which the approach level is not trivial and at the same time the transition leading 

to the risky state is only triggered in response to a particular SUT behavior (e.g., a guard that 

is set based on interactions with the SUT). This case will be similar to scenarios with a trivial 

approach to risky state in a way that the best chances of getting the SU===T to behave in the 

required way are by invoking diverse environment behaviors. This, as we discussed earlier, is 

better done by RT than by the search algorithms with the proposed order functions. A possible 

solution to situations like these is to combine random testing with search-based algorithms and 

apply adaptive mechanisms based on the feedback from the executed test cases, which we will 

address in our future work. 

In light of all the results and discussions, we can conclude that when applying our 

environment model-based testing approach in practice, one can achieve good results by 

combining RT and (1+1) EA-ITD-TIR. This can be done by running RT first and then, if no 

error state is reached within a short time, by running (1+1) EA-ITD-TIR for a few runs. Based 
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on the results reported in this paper, this strategy would be expected to achieve a success rate 

close to 100%. 

6.4 Threats to validity 
Although the artificial problems that we developed were based on industrial RTES and are not 

trivial (they are multithreaded and hundreds of lines long), these artificial problems are not 

necessarily representative of complex RTES. To reduce this threat, we used artificial problems 

inspired by three actual RTES and intentionally varied the properties of their environments in 

ways which could affect the search algorithms.  

A typical problem when testing RTES is accurate simulation of time. Our approach focuses 

on RTES with soft time deadlines in the order of hundreds of milliseconds with an acceptable 

jitter of a few milliseconds. Therefore, we used the CPU clock to represent time. This might 

be unreliable if time constraints in the RTES were very tight (e.g., nanoseconds) since they 

could be violated because of unpredictable changes of load balance in the CPU in the presence 

of unrelated process executions. To be on the safe side, to evaluate whether our results are 

reliable, we selected a set of experiments and ran them again with exactly the same random 

seeds. We obtained equivalent results with a small variance of a few milliseconds, which in 

our context did not affect the testing results. 
Table 8. Comparison of RT with best combinations of GA and (1+1)EA on artificial problems*  

Problem RT vs. GA1 RT vs. GA2 RT vs. EA1 RT vs. EA2  
AP1 p=0.0012, ψ =15.74 - p = 0.0001, ψ = 49.63 p = 0.0001, ψ = 49.63 

AP2 - - it-p =  0.002,  
A12 = 0.2137 

it-p =  0.0038,  
A12= 0.2312 

AP3 0.0202, ψ = 18.38 p = 0.0005, ψ = 41 p = 3.3e-09, ψ = 303.40 p = 1.5e-11,  
ψ = 1681.00 

AP4 - - p = 0.0083, ψ = 22.78 p = 0.0083, ψ = 22.78 
AP5 - - p = 3.0e-10, ψ = 533.00 p = 3.3e-06, ψ = 91.46 
AP6 p = 1.7e-05, ψ = 27.13 p = 8.7e-05, ψ = 18.33 p = 0.0012, ψ = 10.33 p = 8.7e-05, ψ = 18.33 

AP7 - - it-p =  0.0053,  
A12 = 0.759 

it-p =  0.0425,  
A12 = 0.689 

AP8 - - p = 0.0201, ψ = 18.38 p = 0.0083, ψ = 22.78 
AP9 p=0.0004, ψ = 41 p=0.0202, ψ = 18.38 p = 4.5e-05, ψ = 60.29 p = 0.0004, ψ = 41.00 

AP10 - - - it-p =  0.0114,  
A12 = 0.738 

AP11 p = 0.0471, ψ = 14.55 p = 4.5e-05, ψ = 60.29 p = 0.0201, ψ = 18.38 p = 0.0001, ψ = 49.63 

AP12 p = 1.3e-05, ψ = 73.80 p = 2.6e-08 , ψ = 
205.00 p = 3.0e-10, ψ = 533.00  p = 1.4e-11,  

ψ = 1681.00 

AP13 - - it-p =  0.0081,  
A12 = 0.7528 p = 0.0202, ψ = 18.38 

* GA1 = GA-ITD-TIR, GA2 = GA-ITD-TIR-RSC, EA1 = EA-Basic-TIR, EA2 = EA-ITD-TIR 
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Table 9. Comparison of four algorithms on industrial case 

Algorithm (1+1)EA-Basic (1+1)EA-ITD-TIR RT GA-Basic 

(1+1)EA-Basic × ψ= 0.40 ,  A12= 0.74 ψ= 0.036 , A12= 0.75 ψ= 1.78 , A12= 0.82 

(1+1)EA-ITD-TIR ψ= 3.40 ,  A12= 0.26 × ψ= 0.089 ,  A12= 0.44 ψ= 4.44 , A12= 0.42 
RT ψ= 27.88 , A12= 0.25 ψ= 11.18, A12= 0.56 × ψ= 49.63 , A12= 0.47 
GA-Basic ψ= 0.56,  A12= 0.18 ψ= 0.23, A12= 0.71 ψ= 0.02 , A12= 0.53 × 

Table 10. Details of each algorithm on the industrial case* 

Algorithm  Success Rate 
Avg. Fitness 
Evaluations 

Standard 
Deviation Median Skewness  Kurtosis 

(1+1)EA-Basic 0.6 559 270.18 615.5 -0.8 3.03 

(1+1)EA-ITD-TIR  0.8 250.12 235.44 166 1.35 3.25 

RT  1 295.2 279.1 225 1.24 3.42 

GA-Basic  0.45 273.22 186.97 246 0.18 1.88 

7. Conclusion 
In this paper, we proposed four new heuristics for search-based, black-box automated testing of Real-

Time Embedded Systems (RTES) based on a model of their environment. The heuristics were developed 

to exploit various properties of these environment models in an attempt to reach environments states 

indicating a fault in the RTES (Error states). We provide an extensive empirical evaluation on an 

industrial case study and thirteen artificial RTES that we developed based on two industrial case studies 

belonging to different domains. The models of these artificial problems present varying properties that 

may affect the performance of these heuristics and are meant to help us understand the conditions under 

which they are beneficial. We evaluated the individual heuristics and their 16 combinations with two 

search algorithms, Genetic Algorithms (GA) and (1+1) Evolutionary Algorithm (EA). We also used 

Random Testing (RT) as a comparison baseline.  

Results show that when reaching a state adjacent to the error state (risky state) is not trivial (i.e., 

reached by random test cases), RT is significantly worse than any of the proposed search algorithms. In 

this case, the best results are obtained when using (1) a heuristic favoring test cases maximizing the time 

spent in risky states and (2) (1+1) EA as a search algorithm, which showed to be overall superior to GA. 

However, the heuristic that favored higher coverage of states in the environment model (coverage) 

showed significantly poorer performance with (1+1) EA in four of the thirteen problems. Based on the 

results, we proposed a way to combine RT with (1+1) EA in order to achieve high fault detection rates 

in practice. 
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Abstract – Effective system testing of real-time embedded systems (RTES) requires a fully 

automated approach. One such black-box system testing approach is to use environment 

models to automatically generate test cases and test oracles along with an environment 

simulator to enable early testing of RTES. In this paper, we propose a hybrid strategy, 

which combines (1+1) Evolutionary Algorithm (EA) and Adaptive Random Testing 

(ART), to improve the overall performance of system testing that is obtained when using 

each single strategy in isolation. An empirical study is carried out on a number of artificial 

problems and one industrial case study. The novel strategy shows significant overall 

improvement in terms of fault detection compared to individual performances of both 

(1+1) EA and ART. 

1. Introduction 
Real-time embedded systems (RTES) are widely used in critical domains where high 

system dependability is required. These systems typically work in environments 

comprising of large numbers of interacting components. The interactions with the 

environment are typically bounded by time constraints. Missing these time deadlines, or 

missing them too often for soft real-time systems, can lead to serious failures leading to 

threats to human life or the environment. There is usually a great number and variety of 

stimuli from the RTES environment with differing patterns of arrival times. Therefore, the 

number of possible test cases is usually very large if not infinite. Testing all possible 

sequences of stimuli is not feasible. Hence, systematic automated testing strategies that 

have high fault revealing power are essential for effective testing of industry scale RTES. 

The system testing of RTES requires interactions with the actual environment. Since, the 
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cost of testing in actual environments tends to be high, environment simulators are 

typically used for this purpose. 

In our earlier work, we proposed an automated system testing approach for RTES 

software based on environment models [1, 2]. The models are developed according to a 

specific strategy using the Unified Modeling Language (UML) [3], the Modeling and 

Analysis of Real-Time Embedded Systems (MARTE) profile [4] and our proposed profile 

[5]. These models of the environment were used to automatically generate an environment 

simulator [6], test cases, and obtain test oracle [1, 2].  

In our context, a test case is a sequence of stimuli generated by the environment that is 

sent to the RTES. A test case can also include changes of state in the environment that can 

affect the RTES behavior. For example, with a certain probability, some hardware 

components might break, and that affects the expected and actual behavior of the RTES. A 

test case can contain information regarding when and in which order to trigger such 

changes. So, at a higher level, a test case in our context can be considered as a setting 

specifying the occurrence of all these environment events in the simulator. Explicit “error” 

states in the models represent states of the environment that are only reached when RTES 

is faulty. Error states act as the oracle of the test cases, i.e., a test case is successful in 

triggering a fault in the RTES if any of these error states is reached during testing. 

In previous work, we investigated several testing strategies to generate test cases. We 

used random testing (RT) [7] as baseline, and then considered two different approaches: 

Search-based Testing (SBT) [8] and Adaptive Random Testing (ART) [1]. For SBT, an 

order function was defined that utilizes the information in environment models to guide the 

search toward the error states. In contrast, with ART, test cases are rewarded based on their 

diversity. The results indicated that, apart from the failure rate of the system under test 

(SUT), the effectiveness of a testing algorithm also depends on the characteristics of the 

environment models. For problems where the environment model is easier to cover or 

where the failure rate of the RTES is high, even RT outperforms SBT. However, for more 

complex problems, SBT showed much better performance than RT. This raised the need 

for a strategy that combines the individual benefits of the two strategies and utilizes 

adaptive mechanisms based on the feedback from executed test cases.  

In this paper, we extend our previous work by devising such a hybrid strategy that aims 

at combining the best search technique, i.e., (1+1) Evolutionary Algorithm (EA) in our 

experiments and ART (which is the algorithm that gave best results in our earlier 
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experiments in [2]) in order to achieve better overall results in terms of fault detection. We 

defined two different strategies for combining these algorithms, but due to space 

constraints, in this paper, we only discuss the strategy that showed the best results. The 

hybrid strategy (HS) discussed here starts with running (1+1) EA and switches to ART 

when (1+1) EA stops yielding fitter test cases. The decision of when to switch (referred to 

as configuration) can have significant impact on the performance of the strategy and one 

main objective of this paper is to empirically investigate different configuration options. 

The other combination strategy started by running ART and later switched to (1+1) EA if 

consecutive test cases generated through ART showed better fitness compared to 

previously executed test cases. It did show improvements over the individual algorithms, 

but fared worse than HS. 

We evaluate the fault detection effectiveness of HS by performing a series of 

experiments on 13 artificial problems and an industrial case study. The RTES of the 

artificial problems were based on the specifications of two industrial case studies. Their 

environment models were developed in a way to vary possible modeling characteristics so 

as to understand their effect on the performance of the test strategies. We could not have 

covered such variations in environment models with one or even a few industrial case 

studies, hence the motivation to develop artificial cases. The industrial case study used is 

of a marine seismic acquisition system, which was developed by a company leading in this 

industry sector. For all these cases, we compared the performance of HS (with best 

configuration) with that of ART, (1+1) EA, and RT. The results suggest that in terms of 

success rates (number of times an algorithm found a fault within a given test budget), for 

the problems where RT/ART showed better performance over (1+1) EA, HS results are 

similar to ART/RT and for the problems where (1+1) EA was better, HS results are similar 

to those of (1+1) EA, thus suggesting that HS combines the strength of both algorithms.  

The rest of the paper is organized as follows. Section 2 discusses the related work, while 

Section 3 provides an introduction to the earlier proposed environment model-based 

system testing methodology that we improve in this paper. Section 4 describes the 

proposed hybrid strategy, whereas Section 5 reports on the empirical study carried out for 

evaluation purposes. Finally, Section 6 concludes the paper. 



 
173 

2. Related Work 
Depending on the goals, testing of RTES can be performed at different levels: model-in-

the-loop, hardware-in-the-loop, processor-in-the-loop, and software-in-the-loop [9]. Our 

approach falls in the software-in-the-loop testing category, in which the embedded 

software is tested on the development platform with a simulated environment. The only 

variation is that, rather than simulating the hardware platform, we use an adapter for the 

hardware platform that forwards the signals from the SUT to the simulated environment. 

This approach is especially helpful when the software is to be deployed on multiple 

hardware platforms or the target hardware platform is stable. 

There are only a few works in literature that discuss RTES testing based on 

environment models rather than system models. Auguston et al. [10] discusses the 

modeling of environment behaviors for testing of RTES using an event grammar. The 

behavioral models contain details about the interactions with the SUT and possible 

hazardous situations in the environment. Heisel et al. [11] propose the use of a requirement 

model and an environment model along with the model of the SUT for testing. Adjir et al. 

[12] discuss a technique for testing RTES based on the system model and assumptions in 

the environment using Labeled Prioritized Timed Petri Nets. Larsen et al. [13] propose an 

approach for online RTES testing based on time automata to model the SUT and 

environmental constraints. Iqbal et al. [5] propose an environment modeling methodology 

based on UML and MARTE for black-box system testing. Fault detection effectiveness of 

testing strategies based on these models was evaluated and reported in [8], including 

RT/ART [1], GA, and (1+1) EA. The results indicate that SBT show significantly better 

performance over RT for a number of cases and significantly worse performance than RT 

for a number of other cases. 

There has been some work to combine SBT with RT. Andrews et al. propose the use of 

GA to tune parameters for random unit testing [14]. An evolutionary ART algorithm that 

uses the ART distance function as a fitness function for GA is proposed in [15]. In [16], 

the authors propose a search-based ART algorithm by using a variant of ART distance 

function as the fitness function for Hill Climbing to optimize the results of ART when the 

input domains are more than two dimensional. 

The work presented here improves the work on environment model-based testing  

presented in [8] by combining the strengths of both ART and (1+1) Evolutionary 
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Algorithm.  Approaches discussed in the literature for combining ART/RT with SBT are 

restricted to improving ART or tuning RT by using search techniques. In contrast, here we 

want to use (1+1) EA to generate test cases that exploit the characteristics of environment 

models as well as benefit from the test diversity generated by ART, thus combining the 

two approaches. 

3. Environment Model-based Testing 
In this section, we discuss in more details the various components of our environment 

model-based testing approach. 

3.1. Environment Modeling & Simulation 
For RTES system testing, as we observed with our industry partner, software engineers 

familiar with the application domain would typically be responsible for developing the 

environment models. Therefore, we selected UML and its extensions as the environment 

modeling language, which is a standard modeling language that is widely taught and 

accepted by software engineers, in addition to be widely supported in terms of tools and 

training material. These are important considerations for successful industry adoption. 

The environment models consist of a domain model and several behavioral models. The 

domain model, represented as a class diagram, captures the structural details of the RTES 

environment, such as the environment components, their relationships, and their 

characteristics. The behavior of the environment components is captured by state 

machines. These models are developed, based on our earlier proposed methodology by 

using UML, MARTE, and our proposed profile for environment modeling [5]. These 

models not only include the nominal functional behavior of the environment components 

(e.g., booting of a component) but also include their robustness (failure) behavior (e.g., 

break down of a sensor). The latter are modeled as “failure” states in the environment 

models. The behavioral models also capture what we call “error” states. These are the 

Figure. 1. A dummy state machine to explain search heuristics 
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states of the environment that should never be reached if the SUT is implemented correctly 

(e.g., no incorrect or untimely message from the SUT to the environment components). 

Therefore, error states act as oracles for the test cases.  

An important feature of these environment models is that they capture the non-

determinism in the environment, which is a common characteristic for most RTES 

environments. Non-determinism may include, for example, different occurrence rates and 

patterns of signals, failures of components, or user commands. Each environment 

component can have a number of non-deterministic choices whose exact values are 

selected at the time of testing. Java is used as an action language and OCL (Object 

Constraint Language) is used to specify constraints and guards.  

Using model to text transformations, the environment models are automatically 

transformed into environment simulators implemented in Java. The transformations follow 

specific rules that we discussed in detail in [6]. During simulation a number of instances 

can be created for each environment component, which can interact with each others and 

the SUT (for example multiple instances of a sensor component). The generated simulators 

communicate with the SUT through a communication layer (e.g., TCP layer), which is 

written by software engineers. They are also linked with the test framework that provides 

the appropriate values for each simulation execution. The choice of Java as target language 

is based on actual requirements of our industrial partner, where the RTES under study only 

involves soft real-time constraints.    

3.2. Testing RTES based on Environment Models 
In our context, a test case execution is akin to executing the environment simulator. During 

the simulation, values are required for the non-deterministic choices in the environment 

models. A test case, in our context, can be seen as a test data matrix, where each row 

provides a series of values for a non-deterministic choice of the environment component 

(the number of rows is equal to the number of non-deterministic choices). Each time a non-

deterministic choice needs to be made, a value from the corresponding matrix row is 

selected.  

During the simulation, a query for a non-deterministic choice can be made several times 

and the number of queries cannot be determined before simulation. To resolve this 

problem, each matrix row (a data vector) is represented as a variable size vector so that 

whenever the end of a vector is reached, its size is increased at run time and new values are 
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added. In our earlier work [2], we evaluated the effect of the representations and starting 

lengths of the test data vectors on the fault detection effectiveness and showed that such a 

variable size vector is a suitable solution to this problem. In [1], we applied various testing 

strategies to generate test cases from the environment models, including ART, RT, and 

Genetic Algorithms (GA).  

Given a test data matrix, a test case can be run for any arbitrary length of time (e.g., 10 

seconds, one hour). The choice of the duration has high impact on the testing performance. 

Is it better to have many quick simulations, or fewer longer ones? This is conceptually 

similar to the choice of test length in test data generation of object-oriented software. In 

this paper, we choose a fixed duration based on the properties the models (e.g., if there are 

time transitions that take 10 seconds, then we should have test cases running for at least 10 

seconds, otherwise those transitions will never be taken). 

To calculate the distance between two test data matrices m1 and m2 for ART we use the 

function dis(m1, m2) = ∑r∑c abs(m1[r,c] – m2[r,c])/ |D(r)|, where r and c represent the 

rows and columns of the matrices. In other words, we sum the absolute difference of each 

variable weighted by the cardinality of the domain of that variable. Often, these variables 

represent the time in timeout transitions. Therefore, ART rewards diversity for the values 

of non-deterministic choices. The results of the first experiments we conducted showed 

that RT/ART perform better than SBT [1].  

For search-based testing, rather than using a fitness function, we use an order function. 

An order function is used to determine whether one solution is better than another, without 

having the problem of defining a precise numerical score (this is often difficult when 

several objectives need to be combined and tight budget constraints do not allow a full 

multi-objective approach). The new order function h can be seen as an extension of the 

fitness function developed for model-based testing based on system specifications [17]. 

The original fitness function uses the so-called “approach level” and normalized “branch 

distance” to evaluate the fitness of a test case. For environment model-based testing, we 

introduced the concept of “time distance” with a look-ahead branch distance and the 

concept of “time in risky states” [8].  

In our context, the goal is to minimize the order function h, which heuristically 

evaluates how far a test case is from reaching an error state. If a test case with test data m is 

executed and an error state of the environment model is reached, then h(m) = 0. The 

approach level (A) refers to the minimum number of transitions in the state machine that 
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are required to reach the error state from the closest executed state. Figure. 1 shows a 

dummy example state machine to elaborate the concept. The state named Error is the error 

state. Events e1, e2, and e3 are signal events, whereas events after “t, s”, after “t1, ms”, 

and after “t2, ms” are time events with t, t1, and t2 as the time values and ms and s as time 

units referring to milliseconds and seconds. Events e3 and after “t, s” are guarded by 

constraints using OCL. If the desired state is Error and the closest executed state was 

State5, then the approach level is 1.  

The approach level is helpful to reward test case executions that get closer to an error 

state, but it does not provide any gradient (guidance) to solve the possible guards on the 

state transitions. The branch distance (B) is used to heuristically score the evaluation of the 

guards on the outgoing transitions from the closest executed state. In previous work [18], 

we have defined a specific branch distance function for OCL expressions that is reused 

here for calculating the branch distance. In the dummy state machine in Figure. 1 we need 

to solve the guard “y > 0” so that whenever e4 is triggered, then the simulation can 

transition to Error. Note that branch distance is less important than approach level, since it 

is required only when the transition towards an error state is guarded and the approach 

level cannot be reduced any further.  

The third important part of the order function is the time distance (T), which comes into 

play when there are timeout transitions in the environment models. For example, in Figure. 

1, the transition from State2 to Error is a timeout transition. If a transition should be taken 

after z time units, but it is not, we calculate the maximum consecutive time c the 

component stayed in the source state of this transition (e.g., State2 in the dummy example). 

To guide the search, we use the following heuristic: T = z – c, where c ≤ z. For transitions 

other than time transitions, we initially decided to calculate branch distance after an event 

is triggered. As investigated in our earlier work [8], this is not suitable for time transitions 

and therefore the concept of a look-ahead branch distance (LB) was introduced. LB 

represents the branch distance of OCL guard on a time transition when it is not fired (i.e., 

the timeout did not occur). Because OCL evaluations are free from side-effects [18], this 

approach is feasible in our context.  

The fourth important part of the order function is “time in risky states” (TIR). TIR 

favors the test cases that spent more time in the state adjacent to the error state (i.e., the 

risky state). The motivation behind this heuristic is that, the more time spent in a risky 

state, the higher the chances of events happening in the environment or SUT that lead to 
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the error state (e.g., receive a signal from the SUT). For example, for the state machine 

shown in Figure. 1, this heuristic will favor the test cases that spend more time in the risky 

states State2 or State5. For instance in State2, it is possible to increase the value of t1 in the 

time event after “t1, ms”, which will increase the time spent in this state. TIR is less 

important than the other three heuristics and is only used when the other heuristics fail to 

guide the search. The order function h using the four previously described heuristics, given 

two test data matrices m1 and m2 as input, is defined as: 

 

 

 

where for an error state e, Amin(m) represents the minimum approach level over all error 

states, Bmin(m) represents the minimum branch distance, Te represents the time distance, 

LBe is the look-ahead branch distance for an error state e, and TIRsum(m) is the sum of time 

spent in risky states for all error states for test data matrix m.  

The results, based on our extensive experiments evaluating various heuristics [8], 

suggested that (1+1) EA with the order function in (1) gave best results in cases where the 

approach to a risky state was non-trivial (i.e., simulation cannot reach a risky state in <5 

random test cases). But in cases where the approach was easy, RT outperformed 

evolutionary algorithms. 

 

h(m1,m2)= 

 

v(m1,m2)= 

1 if LBe (m1) < LBe (m2) or (LBe (m1) = LBe (m2) and Te(m1) <
Te(m2)) 

0 if (LBe (m1) = LBe (m2) and Te(m1) = Te(m2))  

-1 otherwise 

v(m1, m2)  if v(m1, m2) != 0 

1   if v(m1, m2) = 0 and TIRsum(m1) > TIRsum(m2) 

0  if v(m1, m2) = 0 and TIRsum(m1) = TIRsum(m2) 

-1   otherwise               (1) 

1  if Amin(m1)<Amin(m2) or (Amin(m1)=Amin(m2) and Bmin(m1) < 
Bmin(m2)) or (Amin(m1)=Amin(m2) and Bmin(m1)= Bmin(m2) 
and ITDmin(m1,m 2) = 1) 

0 if Amin(m1)=Amin (m2) and Bmin(m1)= Bmin(m2) and 
ITDmin(m1, m2)=0) 

-1  otherwise   

 
ITDe(m1,m2) = 
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4. Hybrid Strategy by Combining Adaptive Random 
and Search-based Testing 

In this section we present our proposed hybrid strategy (HS) that combines (1+1) EA and 

ART to improve the overall fault detection effectiveness of our system testing approach. 

As discussed earlier (Section 3), previous studies showed that, in some cases, RT/ART 

could perform better than SBT. The difference between their performances was mostly 

significant and at times even extreme. In [2] and [8], we identified two possible reasons for 

this behavior. First of all, for the problems with high failure rates, randomized algorithms 

were found to be much better than SBT [2]. For high failure rates, there is no need for 

search, as solutions are anyway found quickly. Crossover produces similar genes, while 

mutation only performs small modifications. This can have a negative effect as, given just 

few fitness evaluations, only similar solutions are evaluated (in contrast to RT/ART). 

Secondly, the performance of the algorithms also depended on the properties of 

environment models, and in particular how easy is it to traverse the models in order to 

reach the error states. In other words, by combining ART and (1+1) EA, we hope to 

achieve is a consistently good result regardless of the properties of the SUT or its 

environment. 

In the environment models, there are transitions on paths leading to error states that 

depend only on the behavior of the SUT (i.e., they can only be triggered when the SUT 

behaves in a certain way). Transition from a risky state to an error state is one such 

example as it is only triggered when the SUT behaves in an erroneous way. Another 

example can be when a guard on a transition depends on a specific response from the SUT. 

To execute this behavior of SUT, the overall environment (combination of environment 

components) needs to behave in a particular way. This particular behavior of the 

environment that is required to trigger SUT behavior cannot be determined before 

simulation, since for practical reasons discussed earlier the design of the SUT is not 

visible. Hence, the information of what should be executed in the environment to trigger 

this behavior is not available in the environment models. The fitness function for SBT 

(which exploits the environment models to guide the search towards error states) in this 

case does not give enough gradient to generate fitter test cases (i.e., a search plateau). In 

these cases maximizing the diversity of the environment behavior (e.g., by using entirely 

different values for the test data matrix, irrespective of their effect on the fitness) appears 
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to be a better option, thus favoring RT/ART. This can explain the scenarios where 

RT/ART show better results than (1+1) EA. 

On the other hand, if in the environment models, there are transitions on the path to 

error states which are triggered by specific behaviors of the environment (e.g., a transition 

triggered as a result of a specific non-deterministic event in the environment, such as a 

failure of an environment component) or time transitions, then fitness function for SBT is 

specifically designed to deal with these cases and are more suitable for such cases than RT. 

For example, in the fitness function, the time distance heuristic is defined specifically for 

time transitions and favors test cases that are closer to executing the transitions (i.e., with a 

value of c closer to z, see Section 3.2). OCL constraints in guards that are independent of 

SUT behavior but dependent on the state of environment components (e.g., a constraint 

requiring a sensor to be broken), can be solved by directly changing the values of these 

components’ attributes. For such constraints, our previous results showed that SBT are an 

order of magnitude better than RT [18]. 

HS combines ART, which showed best results in our initial experiments [2], with our 

proposed SBT strategy that showed best performance [8], i.e., (1+1) EA with improved 

time distance and the “time in risky state” heuristic (ITD-TIR). The strategy is designed to 

combine the strengths of both (1+1) EA and ART. This strategy starts by applying (1+1) 

EA. If (1+1) EA does not find fitter test cases after running n number of test cases, the 

testing algorithm is switched to ART. All the test cases that were executed so far are now 

used for distance calculations in ART. Figure. 2 shows the pseudo-code for HS. The idea 

behind switching from (1+1) EA to ART is that there is not enough time for a random walk 

to get out of a fitness plateau. And so, in this scenario, applying ART can yield better 

results. Running system test cases is very time consuming, so only few fitness evaluations 

are feasible within reasonable time (e.g., 1000 test cases can already take several hours). 

Therefore, in case of fitness plateau, it is reasonable to switch strategy, and rather reward 

diversity instead of the fitness value. Though the choice of n is arbitrary it can have 

significant consequences on the performance of this strategy. A too small value of n will 

result in an early switch to ART. If the given problem matches the case where (1+1) EA 

performs better, then the performance of HS will be affected. Similarly, if n is too large 

then the remaining testing budget might not be sufficient for ART to perform well.  
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Figure. 2 Pseudo code of the proposed hybrid strategy (HS) 

5. Empirical Study 
The objective of this empirical study is to evaluate the fault detection effectiveness of the 

proposed hybrid strategy. 

5.1. Case Study 
To enable experimentation with diverse environment models and RTES, we developed 13 

different artificial RTES that were inspired by two industrial cases we have been involved 

with [2] and one case study discussed in the literature [19]. Since, there are no benchmark 

Algorithm  HybridStrategy(mx, n, w) 
Input  mx: number of maximum fitness evaluations 
    n: number of consecutive test cases with no improved fitness 
    w: number of random test-cases to generate for comparison in ART 
Declare  Y: set of executed test cases = {}, W: set of randomly generated test cases = {}  
    ev: number of fitness evaluations performed = 0 
    z: number of consecutive test cases with no improved fitness found so far = 0 
    Tc: a random test case, Tm: mutated test case, Tw: a test case from W, Te test case  
    from W selected according to ART criteria  
    Dw: minimum distance of test case Tw with all the test cases in Y 
    d: stores the maximum value of Dw obtained over W  
1. begin 
2.  Generate a random test case Tc  
3.  Execute Tc and evaluate whether environment error state is reached  
4.  Add Tc to Y  
5.  while environment error state not reached OR  ev <= mx OR z <= n 
6.   Mutate Tc to get Tm 
7.   Execute Tm and evaluate whether environment error state is reached  
8.   Add Tm to Y  
9.   Increment ev 
10.   if fitness(Tm) >= fitness(Tc) 
11.    then Tc = Tm , z = 1 
12.   else  
13.    Increment z 
14.  while environment error state not reached OR ev <= mx 
15.   Sample w random test cases and add them to W 
16.   d = 0  
17.   for each Tw ∈ W 
18.    Calculate Dw  
19.    if Dw > d 
20.     then d = Dw, Te = Tw  
21.   Execute Te and evaluate whether environment error state is reached 
22.   Add Te to Y 
23.   Increment ev  
24. end 
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RTES available to researchers, we specifically designed these artificial problems to 

conduct our experiments (called P1 – P13). The goal while developing the models of these 

RTES was to vary various characteristics of the environment models (e.g., guarded time 

transitions, loops) that were expected to have an impact on the test heuristics. Nine of these 

artificial problems were inspired by a marine seismic acquisition system developed by one 

of our industrial partners. They covered various subsets of the environment of that RTES. 

Three problems were inspired by the behavior of another industrial RTES (automated 

recycling machine) developed by another industrial partner. The thirteenth artificial 

problem was inspired by the train control gate system described in [19].  

These RTES are multithreaded, written in Java and they communicate with their 

environments through TCP. Each of the artificial problems had one error state in their 

environment models and non-trivial faults were introduced by hand in each of them. We 

could have rather seeded the faults in a systematic way, as for example by using a mutation 

testing tool [20] but opted for a different procedure since the SUTs are highly multi-

threaded and use a high number of network features (e.g., opening and reading/writing 

from TCP sockets), features that are not handled by current mutation testing tools. 

Furthermore, our testing is taking place at the system level, and though small modifications 

made by a mutation testing tool might be representative of faults at the unit level, it is 

unlikely to be the case at the system level for RTES. On the other hand, the faults that we 

manually seeded came from our experience with the industrial RTES and from the 

feedback of our industry partners.  

The industrial case study we also report on (called IC) is a very large and complex 

seismic acquisition system (mentioned above) that interacts with many sensors and 

actuators. The timing deadlines on the environment are in the order of hundreds of 

milliseconds. The company that provided the system is a market leader in its field. For 

confidentiality reasons we cannot provide full details of the system. The SUT consists of 

two processes running in parallel, requiring a high performance, dedicated machine to run. 

For the industrial case study, we did not seed any fault and the goal was to find the real 

fault that we uncovered earlier [1]. 

5.2. Experiment 
In this paper, we want to answer the following research questions:  
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RQ1. Which configuration is best in terms of fault detection for the proposed hybrid 

strategy (HS)? 

RQ2. How the fault detection of the best HS configuration compares with the performance 

of ART, (1+1) EA, and RT for (a) the artificial problems (P1-13) and (b) the industrial case 

study (IC)? 

To answer these research questions, we have conducted two distinct sets of 

experiments, one for the artificial problems (to answer RQ1 and RQ2a) and one for the 

industrial RTES (to answer RQ2b). For test case representation in these experiments we 

used a dynamic representation with a length equal to 10 for the test cases (which 

correspond to each row of the test data matrix m). In our earlier experiments this setting 

showed the best results [2]. For (1+1) EA we calculated the mutation rate as 1/k, where k is 

the number of total elements in a test data matrix. This strategy is widely used for SBT and 

was initially suggested in [21]. We used the fitness function that performed best in our 

previous experiments [8], as discussed in Section 4: Improved Time Distance with Time in 

Risky State (ITD-TIR). 

To answer RQ1, we used 12 different values for the number of test cases which fitness 

should be considered before switching from (1+1) EA to ART: n  {10, 20, 50, 60, 70, 80, 

90, 100, 200, 300, 400, 500}. We ran these 12 configurations on each of the 13 artificial 

problems. To answer RQ2a, we selected the configuration of HS that gave the best result in 

terms of fault detection for the 13 artificial problems. We compared this configuration with 

the results of (1+1) EA, ART, and RT on these problems. RT was used as a comparison 

baseline. 

For the artificial problems, the execution time of each test case was fixed to 10 seconds 

and we stopped each algorithm after 1000 sampled test cases or as soon as we reached any 

of the error states. The choice of running each test case for 10 seconds was based on the 

properties of the RTES and the environment models. The objective was to allow enough 

time for the test cases to reach an error state. We ran each of the strategies 20 times on 

each artificial problem with different random seeds. The total number of sampled test cases 

was 1,561,390, which required around 180 days of CPU resources. Therefore, we 

performed these experiments on a cluster of computers.  

To answer RQ2b, we carried out experiments on the described seismic acquisition 

system. We run each test case for 60 seconds, where 1000 test case executions (fitness 
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evaluations) can take more than 16 hours. This choice has been made based on the 

properties of the RTES and discussions with the actual testers. Due to the large amount of 

resources required, we only ran the configuration that on average gave best results for the 

artificial problems (i.e., n=50) and compared its fault detection rate with that of (1+1) EA, 

ART, and RT. We carried out 39 runs for each of these four test strategies. The total 

number of sampled test cases was 55,283, which required over 55 days of computation on 

a single, high-performance, dedicated machine. 

Table 1. Success Rates (SR) for 12 configurations of HS on the 13 problems 

Configurations → 
Problems ↓  

10 20 50 60 70 80 90 100 200 300 400 500 

P1 0.5 0.75 0.95 1 1 1 1 1 1 1 1 1 
P2 0.85 0.95 1 1 1 1 1 1 0.9 1 1 1 
P3 1 1 1 1 1 1 1 1 0.9 0.8 0.6 0.5 
P4 0.05 0.2 0.8 0.85 0.7 0.75 0.9 0.9 1 1 0.9 1 
P5 0.85 1 1 1 1 1 1 1 1 1 1 1 
P6 0 0.15 0.45 0.4 0.45 0.5 0.45 0.6 0.7 0.7 0.5 0.6 
P7 0.3 0.4 0.8 0.8 0.85 0.95 0.8 0.8 0.8 0.8 0.8 1 
P8 1 1 1 1 1 1 1 1 1 1 0.95 1 
P9 0.05 0.05 0.45 0.55 0.55 0.35 0.6 0.4 0.8 0.45 0.5 0.55 
P10 1 1 1 1 0.95 0.85 1 0.95 0.65 0.55 0.4 0.45 
P11 1 1 1 0.95 0.95 0.9 1 0.9 0.65 0.05 0.1 0.4 
P12 1 1 1 1 0.95 1 1 1 0.9 0.9 0.75 0.65 
P13 1 1 1 1 1 1 1 1 0.9 0.7 0.95 0.85 
Average SR 0.66 0.73 0.88 0.89 0.88 0.87 0.9 0.89 0.86 0.77 0.73 0.77 
Average Rank 6.38 6.73 5.19 5.77 5.23 6.31 6.50 6.19 6.73 8.46 7.73 6.69 

To analyze the results, we used the guidelines described in [22] which recommends a 

number of statistical procedures to assess randomized algorithms. First we calculated the 

success rates of each algorithm: the number of times it was successful in reaching the error 

state out of the total number of runs. These success rates are then compared using the 

Fisher Exact test, quantifying the effect size using an odds ratio (ψ) with a 0.5 correction. 

When the differences between the success rates of two algorithms were not significant, we 

then looked at the average number of test cases that each of the algorithms executed to 

reach the error state. We used the Mann-Whitney U-test and quantified the effect size with 

the Vargha-Delaney A12 statistics. The significance level for these statistical tests was set 

to 0.05.  
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Table 2. Success Rates of HS (Best configuration), RT, ART, and ( 1+1) EA 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 Avg.  IC 
HS 0.95 1 1 0.8 1 0.45 0.8 1 0.45 1 1 1 1 0.88 1 
ART 0.4 0.75 1 0 0.95 0 0.15 1 0 1 1 1 1 0.63 1 
EA 1 1 0.5 1 1 0.7 0.85 1 0.35 0.45 0 0.7 0.95 0.73 0.74 
RT 0.45 1 1 0 0.65 0 0.2 1 0 1 1 1 1 0.64 0.97 

Table 3. Comparison of best HS configuration with RT, ART, & (1+1)EA* 

Problem HS vs. (1+1) EA HS vs. RT HS vs. ART 
P1 - p = 0.0012, ψ =15.74 p = 0.0004, ψ =19.12 
P2 - it-p = 0.0065, A12 = 0.25 p = 0.047, ψ =14.55 
P3 p = 0.0004, ψ = 41.00 - it-p =  0.013, A12 = 0.73 
P4 - p = 1.5e-07, ψ = 150.33 p = 1.5e-07, ψ = 150.33 
P5 - p = 0.0083, ψ = 22.78 - 
P6 - p = 0.0012, ψ = 33.87 p = 0.0012, ψ = 33.87 
P7 - p = 0.0004, ψ = 13.44 p = 8.7e-05, ψ = 18.33 
P8 - it-p =  0.009, A12 = 0.74 it-p =  0.0004, A12 = 0.825 
P9 - p = 0.0012, ψ = 33.87 p = 0.0012, ψ = 33.87 
P10 p = 0.0001, ψ = 49.63 it-p = 0.0006, A12 = 0.81 it-p = 0.0002, A12 = 0.85 
P11 p = 1.4e-11, ψ = 1681.00 - it-p = 0.0032, A12 = 0.77 
P12 p = 0.02, ψ = 18.38 it-p = 0.0016, A12 = 0.79 it-p = 0.0008, A12 = 0.81 
P13 - it-p = 0.0199, A12 = 0.71 it-p = 0.021, A12 = 0.71 
IC p = 0.0004, ψ = 28.83 - it-p = 0.015, A12 = 0.66 

5.3. Results & Discussion 
Table 1 provides the success rates (in terms of fault detection) for various HS 

configurations. The last row of the table shows the average ranking of each configuration 

based on the statistical differences among them. Configurations that are statistically 

equivalent (i.e., p-values above 0.05) are assigned a similar ranking. This is done by 

assigning scores based on pairwise comparisons of configurations. Whenever a 

configuration is better than the other and the difference is statistically significant, its score 

is increased (for details, see [22]). Then, based on the final scores, each configuration is 

assigned ranks ranging from 1 (best configuration) to 12 (worst configuration). In case of 

ties, ranks are averaged. As the success rates and average rankings indicate, using a very 

low (< 50) or very high value (>=200) of n results in a degraded performance for HS. With 

a low value of n, HS makes the switch from (1+1) EA to ART too early, which does not 

give sufficient time for (1+1) EA to converge and hence running HS becomes similar to 

only running ART. In cases where ART performs well, such configurations of HS also 

perform well (see Table 2 for the performance of ART on artificial problems). For 
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instance, for n = 10, the average success rate is 66% and average ranking is 6.38. Similarly, 

when HS switches too late, it does not give enough time to ART (given the upper bound of 

1000 iterations) and hence running HS is similar to running (1+1) EA in such cases. These 

configurations perform well in cases where (1+1) EA performs well (Table 2) and poor 

otherwise. The best results are provided for values between 50 and 100 and the differences 

in results in this range are not significant. Though the results are not fully consistent across 

all problems, configuration n = 50 has the best average rank across all problems and is 

always very close to the maximum success rates. We can hence answer RQ1 by stating 

that, overall, n=50 shows the best results for HS and therefore this configuration can be 

used when applying HS on new problems. 

For RQ2a we compared the best HS configuration (n = 50) with RT, ART, and (1+1)EA. 

Table 2 shows the corresponding success rates of these algorithms and Table 3 shows a 

comparison of HS with the other three algorithms based on statistical tests. The statistics 

for the situations where HS is significantly better are bold-faced and are italicized where it 

is significantly worse. Table cells with a ‘-’ denote no significant differences. P-values 

obtained as a result of Fisher Exact test on the success rates are denoted as p and odds ratio 

as ψ. In cases where there is no statistical difference in success rates, the number of 

iterations is considered and the p-values of the Mann-Whitney U-test are denoted as it-p 

and corresponding effect sizes by A12.  

When compared to (1+1) EA, HS showed better fault detection performance in four of the 

artificial problems (P3, P10 – P12) and had similar results otherwise. These are the 

problems where (1+1) EA, when ran in isolation, showed poor results when compared to 

RT and ART (as visible from Table 2). For example in the case of P11, (1+1) EA was not 

able to find the a in any of the runs. On the other hand it is 100% for HS, RT, and ART, 

which means that these strategies were able to find a fault in every run. Hence, HS shows 

significant improvement over (1+1) EA. 

When compared to RT, HS showed significantly better results in terms of success rates for 

six artificial problems (P1, P4, P5, P6, P7, and P9) and had similar results for all the other 

problems. Similarly with ART, in terms of success rates, HS showed better results for six 

artificial problems (P1, P2, P4, P6, P7, and P9) and had similar results for the rest. P1, P4, 

P6, P7, and P9 are the problems where ART and RT showed poor results when compared 

to (1+1) EA (Table 2). For example in the cases of P4, P6, and P9, the success rate of both 

RT and ART is 0, but that of (1+1) EA and HS is 1 and 0.8, respectively. Hence, in terms 
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of success rates, HS shows significantly better results when compared to RT and ART. 

However, in terms of number of iterations required to detect the fault, HS is significantly 

worse than RT in four problems (P8, P10, P12, and P13) and significantly worse than ART 

in six problems (P3, P8, P10, P11, P12, and P13). But, for all these problems, the success 

rate of HS, RT, and ART is 1, which means that whenever these algorithms run they find 

the fault (within the budget of 1000 test cases). Therefore, we can answer RQ2a by stating 

that HS shows overall significantly better performance than ART, RT, and (1+1) EA in 

terms of fault detection, but was slower than RT/ART in finding faults for problems where 

these two algorithms perform better than (1+1) EA. But since the success rate of HS is 

100%, and therefore the first run is expected to reach the error state, this difference in 

execution time has limited practical impact.  

For RQ2b we compared the performance of the best configuration of HS (n = 50) with that 

of ART, RT, and (1+1) EA on the industrial case study. The last row of Table 3 shows a 

comparison of the results of the four strategies on this case study (IC) and the last column 

of Table 2 shows the corresponding success rates. The results are similar to that obtained 

for those artificial problems where RT and ART perform better than (1+1) EA. HS 

outperformed (1+1) EA. When compared with the results of ART and RT, there is no 

significant difference though (100% success rate). These results are consistent with RQ2a 

and we can therefore answer RQ2 by stating that, overall, HS shows significantly better 

results when compared to (1+1) EA, RT, and ART. However, as for RQ2a, for problems 

where ART performed much better than (1+1) EA, though the success rates of HS and 

ART are similar, ART find the faults faster than HS. 

HS starts with (1+1) EA and switches only when fifty consecutive test cases do not 

show better fitness. Fitness evaluations make HS slower than ART/RT but its effectiveness 

considerably improves over ART/RT for the problems where they showed poor results. In 

the light of these results, we can conclude that when applying our testing approach, using 

HS seems to be the most practical choice as its performance, unlike that of (1+1) EA, 

ART, and RT, is not drastically affected by the properties of the SUT and its environment 

models. As a result, testers can apply this strategy in confidence, knowing it will perform 

well in most circumstances.  
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5.4. Threats to Validity 
Although the artificial problems that we developed were based on industrial RTES and are 

not trivial to test (they are multithreaded and hundreds of lines long), these artificial 

problems may not be representative of complex RTES. To reduce this threat, we used 

artificial problems inspired by actual RTES and intentionally varied the properties of their 

environments in ways that could affect the testing strategies.  

A typical problem when testing RTES is the accurate simulation of time. Our approach 

focuses on RTES with soft time deadlines in the order of hundreds of milliseconds with an 

acceptable jitter of a few milliseconds. Therefore, we used the CPU clock to represent 

time. This might be unreliable if time constraints in the RTES were very tight (e.g., 

nanoseconds) since they could be violated due to unpredictable changes of load balance in 

the CPU in the presence of unrelated process executions. To be on the safe side, to evaluate 

whether our results are reliable, we selected a set of experiments and ran them again with 

exactly the same random seeds. We obtained equivalent results with a small variance of a 

few milliseconds, which in our context did not affect the testing results. 

6. Conclusion 
In this paper, we proposed a hybrid strategy (HS) that combines (1+1) Evolutionary 

Algorithm (EA) and Adaptive Random Testing (ART) for black-box automated system 

testing of real-time embedded systems (RTES). The strategy was developed to combine the 

benefits of both algorithms, since their individual results varied greatly depending on the 

failure rate of the system under test and properties of its environment. The ultimate goal 

was to obtain a strategy with consistently good results. The proposed strategy starts with 

running (1+1) EA and switches to ART when the (1+1) EA search stops yielding fitter test 

cases. We empirically investigated when to switch to ART and identified an optimal 

setting for HS. Results indicate that switching too early or too late than the identified 

setting has a negative impact on the performance of the strategy. Based on the experiments, 

when using HS in practice, we propose switching to ART after (1+1) EA generates 50 

consecutive test cases that do not improve fitness. We evaluated the proposed strategy and 

compared its performance with that of running (1+1) EA and ART individually. We also 

use random testing (RT) as a comparison baseline. The empirical evaluation uses an 

industrial case study and 13 artificial problems that were developed based on two industrial 
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case studies belonging to different domains. The models of these artificial problems were 

developed in order to vary their characteristics, thus potentially affecting the performance 

of the evaluated testing strategies. Overall, the results indicate that HS shows significantly 

better performance in terms of fault detection (an overall 88% success rate for artificial 

problems and 100% for the industrial case study) than the other three algorithms (for 

artificial problems: ART: 63%, RT: 64%, and (1+1) EA: 74% and for the industrial case 

study: ART: 100%, RT, 97%, (1+1) EA: 74%). Unlike the other strategies, variations in 

environment properties do not have a drastic impact on the performance of HS and it is 

therefore the most practical approach, showing consistently good results for different 

problems.  
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Abstract – MARTE (Modeling and Analysis of Real-Time and Embedded Systems) is a 

UML profile, which has been developed to model concepts specific to Real-Time and 

Embedded Systems (RTES). In previous years, we have we have applied UML/MARTE to 

three distinct industrial problems in various industry sectors: architecture modeling and 

configuration of large-scale and highly configurable integrated control systems, model-

based robustness testing of communication-intensive systems, and model-based 

environment simulator generation of large-scale RTES for testing. In this paper, we report 

on our experiences of solving these problems by applying UML/MARTE on four industrial 

case studies. Based on our common experiences, we derive a framework to help 

practitioners for future applications of UML/MARTE. The framework provides a set of 

detailed guidelines on how to apply MARTE in industrial contexts and will help reduce the 

gap between the modeling standards and industrial needs.  

Keywords: UML, MARTE, Real-time Embedded Systems, Architecture Modeling, 

Model-based Testing 

1. Introduction 
Model Based Engineering (MBE) consists in using models as the primary artifacts in 

various development phases of software systems, including, for example, configuration 

and software testing. The Unified Modeling Language (UML) [1] and its extensions (via 

its profiling mechanism) are the most widely used modeling notations for software systems 

in diverse domains.  

Real-time embedded systems (RTES) are widely used in many different domains, as for 

example from integrated control systems to consumer electronics. Already 98% of 

computing devices are embedded in nature and it is estimated that, by the year 2020, there 

will be over 40 billion embedded computing devices worldwide [2]. Modeling for such 
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systems requires constructs that deal with characteristics specific to RTES (such as 

resource modeling, timeliness, schedulability). The recent UML profile for Modeling and 

Analysis of Real-Time Embedded Systems (MARTE) [3] is an effort to address the 

growing modeling needs of RTES.  

In software engineering, like any engineering discipline, the usefulness of a new 

concept must ultimately be evaluated by applying it in real-life scenarios. To successfully 

apply MBE in practice, selecting a modeling language is not sufficient; rather we need to 

provide a detailed methodology on how to use the selected notations, which is a piece of 

information usually missing from language specifications and varies from problem to 

problem. This paper reports the experiences of four such applications on industrial RTES 

and based on the experiences layouts the guidelines that can be used for future successful 

application of UML/MARTE for RTES. 

There are very few works discussing the experiences of using UML/MARTE. 

Demathieu et al [4] discuss their experiences of applying UML and MARTE on an 

academic case study for software resource modeling, hardware resource modeling, and 

modeling for logical system decomposition. Briand et al [5] discuss their experiences of 

applying MBE to three industrial cases belonging to maritime and energy domains using 

UML and MARTE. The work focuses on providing guidelines to improve collaboration 

between industry and researchers. Yue et al [6] discuss their experience of conducting a 

systematic and industrial domain analysis and the feasibility of applying model-based 

product line engineering methods for architecture modeling and configuration of large-

scale integrated control systems. Espinoza et al [7] evaluate MARTE after applying it to a 

project in the automobile domain. Middleton et al [8] present their experiences about 

applying UML and MARTE for stochastic modeling of two interactive applications.  

Our work discusses experiences of applying UML/MARTE on four industrial RTES 

belonging to different domains. We report our experiences of solving three industrial 

problems over the span of four years. The first problem was about architecture modeling 

and configuration of large-scale and highly configurable integrated control systems for 

FMC[9] Subsea Production Systems. The second problem was of model-based robustness 

testing of a video conferencing system at Cisco Systems [10]. The third problem was of 

environment model-based testing for a marine seismic acquisition system at WesternGeco 

[11] and an automated bottle recycling system at Tomra [12]. Based on our common 

experiences in the projects, we derived a comprehensive framework to successfully use 
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MARTE in future industrial applications. The framework, which is the first of its kind, 

aims at providing detailed guidelines and steps on how to apply and extend UML/MARTE 

in industrial contexts. . 

The rest of the paper is organized as follows. Section 2 provides the background, while 

Section 3 discusses the contexts, modeling solutions and key results for the four selected 

industrial problems. Section 4 discusses the proposed framework based on our experiences 

from these four cases. Finally, Section 5 concludes the paper. 

2. Background 
The MARTE profile was defined to provide a number of concepts that modelers can use to 

express relevant properties of RTES, for example related to performance and 

schedulability. MARTE is meant to replace the previously defined UML profile for 

Schedulability, Performance, and Time specification (SPT) [13].  

At the highest level, MARTE contains three packages. The core package is MARTE 

Foundations that contains the sub-packages for modeling non-functional properties (NFP 

package), time properties (Time package), generic resource modeling of an execution 

platform for RTES (GRM package), and resource allocation (Alloc package). The MARTE 

Foundations package contains the core elements that are reused by the other two packages 

of the profile: MARTE design model and RealTime&Embedded Analysing (RTEA). The 

MARTE design model package contains various sub-packages required for modeling the 

design of RTES. This includes the packages to support modeling of component-based 

RTES with the Generic Component Model package (GCM), high-level features for RTES 

with the High-Level Application Modeling package (HLAM), and for detailed modeling of 

software and hardware resources with the Detailed Resource Modeling package (DRM). 

The RTEA package contains further concepts related primarily to modeling for analysis. 

This includes the Generic Quantitative Analysis Modeling package (GQAM) which 

provides generic concepts for resource modeling. These concepts are further specialized by 

the Schedulability Analysis Modeling (SAM) package for modeling properties useful for 

Schedulability and the Performance Analysis Modeling package (PAM) for modeling 

properties useful for performance analysis. 
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3. Industrial Applications of UML/MARTE 
This section discusses three UML/MARTE applications in different industrial contexts. 

For each of the three applications, we provide the case study description, the problem 

description, the modeling solution, the modeling tool, and the key results of the 

application. This information will subsequently be used to propose a framework meant to 

provide guidance to future users of UML/MARTE. 

3.1. Architectural Modeling and Configuration with UML/MARTE  

3.1.1. Case Study Description 
Integrated Control Systems (ICSs) are heterogeneous systems-of-systems, where software 

and hardware components are integrated to control and monitor physical devices and 

processes, such as process plants or oil and gas production platforms. FMC Technologies, 

Inc is a leading global provider of technology solutions for the energy industry. FMC’s 

Subsea Production Systems (SPSs) are large-scale, highly-hierarchical, and highly-

configurable ICSs for managing exploitation of oil and gas production fields. One of its 

key technologies is subsea production systems, used to develop new energy reserves and 

for managing and improving producing fields. They are composed of hundreds of 

mechanical, hydraulic, and electrical components and configured software to support 

various field layouts ranging from single satellite wells to large multiple-well sites (more 

than 50 wells). The main components of the system are subsea control modules, which 

contain software, electronics, instrumentation, and hydraulics for safe and efficient 

operation of subsea tree valves, chokes, and downhole valves.  

3.1.2. Problem Description 
The research question of this project is to devise a product line architecture modeling 

methodology, including modeling notations, guidelines and tool support, for the purpose of 

facilitating the systematic and automated product configuration of ICSs such as FMC’s 

SPSs. The ultimate goal is to improve the overall quality and productivity of the product 

development lifecycle of ICSs. Specifically, selected/tailored modeling notations of such a 

methodology should have the following characteristics: (i) It should contain both hardware 

and software modeling notations and the hardware modeling notations should be 

expressive enough to capture different types of hardware components and elements; (ii) 

The interactions between software and hardware components should be captured, such as 
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the deployment of a software component to its hardware computing resources; (iii) The 

consistency between hardware and software components should be maintained in the 

context of supporting configuration; (iv) The variability modeling notation should enable 

automated configuration and configuration reuse. We have proposed such a produce line 

architecture modeling methodology, named SimPL [14], to facilitate automated 

configuration of families of ICSs.  

3.1.3. Modeling Solution 
In addition to satisfy the modeling requirements described above, there are a number of 

practical requirements that affect the selection of existing modeling languages: 1) the 

modeling notation should be easy to learn and apply for industrial partners; 2) the 

modeling notation should have available tool support. Therefore our modeling solution is 

based on UML/MARTE, with a minimum extension through the UML profiling extension 

mechanism.  

To facilitate automated configuration, the modeling notation we proposed for modeling 

the product line architecture uses UML classes, properties, and relationships (i.e., 

generalization relationships, and several types of association relationships) resulting in 

base models of hardware and software. In the SimPL methodology we use the following 

four stereotypes from MARTE to create hardware models and to model software to 

hardware bindings/allocations. To distinguish between hardware and software classes, any 

class in the hardware sub-view should be stereotyped by one of the following four MARTE 

stereotypes: 1) «HwComputingResource» is used to distinguish those electrical hardware 

components on which software is deployed; 2) «HwDevice» is used to distinguish those 

hardware devices that are controlled by, or in general interact with, software; 3) 

«HwComponent» characterizes hardware classes representing hardware components that 

physically contain other devices and execution platforms; 4) «Assign» models the 

deployment, allocation, or binding of a structure (e.g., software class) in the software sub-

view to a resource (e.g., a hardware component) in the hardware sub-view. UML templates 

and packages, along with six stereotypes from our newly proposed profile, named SimPL, 

are used to model the product line architecture.  

3.1.4. Modeling Tool 
IBM Rational Software Architect (RSA) [15] was used to model the architecture. 
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3.1.5. Key results 
The resulting product-line model contained a total of five views and sub-views and is 

visualized using 17 class diagrams. The model contains a total of 71 classes, including 46 

software classes, 24 classes belonging to the hardware sub-view, and a class representing 

the topmost element, FMCSystem.  

The software sub-view contains configurable software classes related to the selected 

components of the FMC family, their attributes, their relationships, and supporting 

containment and taxonomic hierarchies. The hardware sub-view captures a subset of 

devices (i.e., only those devices that are controlled by software classes captured in the 

software sub-view), their attributes, and the supporting containment and taxonomic 

hierarchies. The result is a hardware sub-view with 24 hardware components and devices, 

including 11 computing resources. Two types of relationships between the software and 

hardware classes (i.e., allocation of software to hardware and software controlling 

hardware) are captured in the allocation view.  

The variability view contains 22 configuration units, corresponding to 22 configurable 

classes in software and hardware sub-views. A total of 109 variability points are organized 

using these configuration units. In addition, a total of 34 dependencies stereotyped with the 

SimPL profile were created to complete the variability model. A total of 16 OCL 

constraints are captured in the variability view modeling the dependencies between 

variability points, mainly the dependencies between variability points introduced by 

software and those introduced by hardware.  

3.2. Model-based Robustness Testing with UML/MARTE  
We applied UML/MARTE to support automated, model-based robustness testing of a core 

subsystem of a video conferencing system developed by Cisco Systems, Norway. 

3.2.1. Case Study Description 
Our case study is a commercial Video Conferencing System (VCS) called Saturn 

developed by Cisco Systems Inc, Norway. The core functionality of Saturn manages the 

sending and receiving of multimedia streams. Audio and video signals are sent through 

separate channels and there is also a possibility of transmitting presentations in parallel 

with audio and video. Presentations can be sent by only one conference participant at a 

time and all others receive it. In total, Saturn consists of 20 subsystems such as audio and 
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video subsystems. Each subsystem can run in parallel to the subsystem implementing the 

core functionality dealing with establishing videoconferences.  

3.2.2. Problem Description 
Our case study is part of a project aiming at supporting automated, model-based robustness 

testing of Saturn. A system should be robust enough to handle the possible abnormal 

situations that can occur in its operating environment and invalid inputs. For example, 

Saturn should be robust against hostile environment conditions (regarding the network and 

other communicating VCSs), such as high percentage of packet loss and high percentage of 

corrupt packets. Saturn should not crash, halt, or restart in the presence of, for instance, a 

high percentage of packet loss. Furthermore, Saturn should continue to work in a degraded 

mode, such as continuing the videoconference with lower audio and video quality. In the 

worst case, Saturn should return to the most recent safe state instead of bluntly stopping 

execution. Such behavior is very important for a commercial VCS and must be tested 

systematically and automatically to be scalable. 

3.2.3. Modeling Solution 
Following, we discuss our modeling solution to support automated robustness testing.  

To model the functional behavior, for each subsystem, we modeled a class diagram to 

capture APIs and state variables. In addition, we modeled one or more state machines to 

capture the behavior of each subsystem. Due to confidentiality restrictions, we do not 

provide details of the subsystems. However, on average each subsystem has five states and 

11 transitions, with the biggest subsystem having 22 states and 63 transitions. It is 

important to note that, though the complexity of an individual subsystem may not look 

high in terms of number of states and transitions, all subsystems run in parallel to each 

other and therefore the spaces of system states and possible execution interleavings are 

very large. Saturn’s implementation consists of more than three million lines of C code. 

Robustness behavior is typically crosscutting many parts of the system functional model 

and, as a result, modeling such behavior directly within the functional models is not 

practical since it leads to many redundancies and hence results in large, cluttered models. 

To cope with this issue, we decided to adopt Aspect-Oriented Modeling (AOM) [16] and 

more specifically a UML profile for AOM called AspectSM [17]. With it, we model each 

aspect as a UML state machine with stereotypes (aspect state machine). The modeling of 
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aspect state machines is systematically derived from a fault taxonomy [17] categorizing 

different types of faults (faults in the environment such as communication medium and 

media streams that lead to faulty situations in the environment). Each aspect state machine 

has a corresponding aspect class diagram modeling different properties of the environment 

using the MARTE profile, whose violations lead to faulty situations in the environment. 

More specifically, we used the NFPs package to model properties of the operating 

environment of Saturn.  

Table 1. Summary of features of MARTE and other profiles applied 

Robustness 
Behavior 

Stereotypes Existing 
MARTE NFPs 

Newly 
introduced 
NFPs 

NFP GRM RobustProfile 

Media Quality 2 1 19 19 2 
Network 
Communication 

4 1 13 21 3 

Illegal Inputs - - 1 2 - 
 

Saturn’s non-functional behaviors consist of five aspect class diagrams and five aspect 

state machines modeling various robustness behaviors. The largest aspect state machine 

specifying robustness behavior has three states and ten transitions, which would translate 

into 1604 transitions in standard UML state machines if AspectSM was not used.  

3.2.4. Modeling Tool 
IBM RSA was used for modeling class diagrams, UML state machines, and aspect state 

machines. In addition, we also defined AspectSM in the same tool. 

3.2.5. Key Results 
Table 1 summarizes the features of the MARTE profile and other profiles, which we used 

in conjunction with MARTE in our case study. The first column shows various robustness 

behaviors we modeled in this case study. The first one is related to modeling faulty 

situations in media, i.e., audio and video, the second behavior is about constraining 

parameters of events on transitions, which is used to generate test cases exercising the 

system robustness with illegal inputs, and the third robustness behavior models the 

behavior of a system in the presence of various network faults. Columns two and three 

show that we used stereotypes from MARTE NFP and GRM packages. For instance, to 

model network communication we used four stereotypes from the NFP package (e.g., 

NfpType), whereas we used one stereotype from the GRM package, CommunicationMedia. 
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The fourth column shows the stereotypes from other profiles used in conjunction with 

MARTE. In our case study, we used stereotypes from RobustProfile [17], which allows 

modeling various properties of faults (e.g., severity) to assist in defining robustness test 

strategies. For example, for modeling media quality we used in total 19 stereotypes such as 

AudioFault and VideoFault from RobustProfile. The fifth column shows the number of 

existing NFPs we used that are already defined in MARTE for each of the robustness 

behaviors. For media quality, we used 19 existing NFPs, e.g., NPF_Percentage. The last 

column shows the number of new NFPs we defined in our case study. For instance, in case 

of media quality, we defined two new NFPs based on the existing NFPs defined in 

MARTE, e.g., PacketLoss in the case of modeling network communication.  

3.3. Testing RTES using UML/MARTE environment models 
We applied our approach for model-based testing of RTES to two industrial case studies, 

involving WesternGeco AS and Tomra AS, both in Norway. 

3.3.1. Case Study Description  
The case study at WesternGeco is of a very large and complex control system for marine 

seismic acquisition. The system controls tens of thousands of sensors and actuators in its 

environment. The timing deadlines on the environment are in the order of hundreds of 

milliseconds. WesternGeco is a market leader in the field of such seismic systems. The 

system was developed using Java.  

The other case study is an automated bottle-recycling machine developed by Tomra AS. 

The system under test (SUT) was an embedded device ‘Sorter’, which was responsible to 

sort the bottles into their appropriate destinations. The system communicated with a 

number of components to guide recycled items through the recycling machine to their 

appropriate destinations. It is possible to cascade multiple sorters with one another, which 

results in a complex recycling machine. The SUT was developed using C. 

Both the RTES were running in environments that enforce time deadlines in the order of 

hundreds of milliseconds with acceptable jitters of a few milliseconds in response time.  

3.3.2. Problem Description 
RTES typically work in environments comprising large numbers of interacting 

components. The interactions with the environment can be bound by time constraints. 

Violating such time constraints, or violating them too often for soft real-time systems, can 
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lead to serious failures leading to threats to human life or the environment. There is usually 

a great number and variety of stimuli from the RTES environment with differing patterns 

of arrival times. Therefore, the number of possible test cases is usually very large if not 

infinite. Testing all possible sequences of stimuli is not feasible. Hence, systematic 

automated testing strategies that have high fault revealing power are essential for effective 

testing of industry scale RTES. The system testing of a RTES requires interactions with the 

actual environment. Since, the cost of testing in real conditions tends to be high, 

environment simulators are typically used for this purpose. For the industrial systems of 

WesternGeco and Tomra, we applied one such approach for black-box system level testing 

based on the environment models of the systems. These models were used to generate an 

environment simulator [18], test cases, and obtain test oracles. For test case generation, we 

applied various testing strategies, including search-based testing and adaptive random 

testing [19]. 

3.3.3. Modeling Solution 
The environment models were developed using our proposed UML & MARTE Real-time 

Embedded systems Modeling Profile (REMP) [20]. REMP provided extension to the 

standard UML class diagram and state machine notations and used the MARTE Time 

package and GQAM package for modeling timing details and non-deterministic events, 

respectively. One of the major aims while developing REMP was to keep it as simple as 

possible. We only used those notations and concepts from UML/MARTE that were 

essential to model the two industrial case studies. Even though the notation subset was 

minimal, the goal was to keep REMP generic and applicable to the testing of soft RTES 

belonging to various domains. This was the motivation to apply the methodology to two 

case studies that belonged to entirely different domains.  

The structural details of a RTES environment were modeled as an environment domain 

model, which captures the information of various environment components, their 

properties, and their relationships. For the domain model, we used the UML class diagram 

notation and annotated class diagram elements with REMP. The behavioral details of the 

environment were modeled using the state machine notation annotated with REMP. Each 

environment component has one associated state machine. Such state machines contain 

information of the nominal behavior of the components, their robustness behavior (e.g., 

break down of a sensor), and “error states” that should never be reached (e.g., hazardous 
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situations). If any of these error states is reached, then it implies a faulty RTES. Error 

states act as the oracle of the test cases, i.e., a test case is successful in triggering a fault in 

the RTES if an error state of the environment is reached during testing. 

3.3.4. Modeling Tool 
For initial interactive sessions with experts, we used a sketching tool to model the domain. 

Later on when we had sufficient details of the system, we used Enterprise Architect for 

modeling Tomra’s case study (because that was the tool they already used) and IBM RSA 

for modeling WesternGeco. Later on due to various limitations of Enterprise Architect, we 

migrated the models to IBM RSA. 

3.3.5. Key Results 
For Tomra’s case, we had a total of 55 environment components, out of which 43 have a 

corresponding state machine. For testing, we only focused on a subset of the SUT, for 

which we only use four of the environment components with a total of 23 states and 38 

transitions. For the subset of environment models for WesternGeco’s case, a total of three 

environment components have a state machine. In total for these components, we modeled 

27 states and 46 transitions. In both cases, environment components have a large number 

of instances during test case execution. For example, in WesternGeco, one of the 

components could have up to thousands of instances. 

From MARTE, we mostly used the concepts of TimedEvent and TimedProcessing from 

the Time Package. The MARTE TimedEvent concept is used to model timeout transitions, 

so that it is possible for the time events to explicitly specify a clock (if needed). Each 

environment component may have its own clock or multiple components may share the 

same clock for absolute timing. Clocks are modeled using the MARTE’s concept of clocks. 

According to REMP, if no clock is specified, then by default the notion of time is 

considered to be according to the physical time. Specifying a threshold time for an action 

execution or for a component to remain in a state is done using the MARTE 

TimedProcessing concept. This is also a useful concept and can be used, for example, to 

model the behavior of an environment component when the RTES expects a response from 

it within a time threshold.  

From the GQAM package of MARTE, we used the concept of GaStep to model non-

determinism. Whenever a timeout transition is labeled with «gaStep» and a non-zero value 
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for the prob property, this is interpreted as the probability of taking the transition over the 

time of the test case execution. This stereotype was used to model scenarios where the 

modeler wants to specify exact probabilities of an event occurrence. For non-determinism, 

REMP provides other stereotypes too that give more control to the testing engine to specify 

the probability of event occurrences. 

In our methodology, we chose Java as the action language for writing actions. The 

decision to choose Java as the action language at the model level is due to the lack of tool 

support for the UML action language (ALF) [21] at the time our tool was developed. 

Testers of the SUT are also expected to be more familiar with Java (consistent with our 

experience of applying the approach in two industrial contexts), rather than with a newly 

approved, standard language. Moreover, ALF does not provide support for specifying time 

related actions (e.g., corresponding to the MARTE’s concept of an RTAction to specify an 

atomic action). It was also not possible to specify time delays with ALF. Both these 

concepts were used repeatedly while modeling the environment of both industrial cases. 

4. Framework for Applying UML/MARTE in 
Industry 

In this section, we present a framework we devised by combining our experiences in 

applying UML/MARTE on the industrial problems described above. This framework can 

help practitioners in future application of UML/MARTE in industrial contexts. At a high 

level, the framework is presented as a UML activity diagram shown in Figure 1. 

Following, we briefly discuss each of these activities. 

4.1. Perform Domain Analysis (A1) 
Each of our industrial applications started from performing a domain analysis. Domain 

analysis is defined as “the process by which information used in developing software 

systems within the domain is identified, captured, and organized with the purpose of 

making it reusable (to create assets) when building new products” [22]. Typically, the 

domain analysis results in a domain model [23] that captures domain concepts and the 

relationships among them. A domain model can be described using different notations, 

UML being a frequently used one. For all the three applications, we used the UML class 

diagram notation for domain modeling.  
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Figure 1. Framework for UML/MARTE applied to industrial applications 

 
The objective of the domain analysis that we performed was different from what is 

typically presented in OOAD methods [24]. More specifically, our domain analysis is not 

the start of the software analysis phase but its usage depends on the problem at hand. For 

architectural modeling, the domain model was later used as a basis to derive the product 

line architecture modeling methodology, including a UML profile and modeling guidelines. 

For both the model-based testing projects, the domain analyses resulted in the definition of 

either environment or system static structure models (as class diagrams), which were used, 

later on together with state machines, to facilitate automated test-case generation.  

To derive the domain models, we followed an iterative process during which we had 

multiple sessions with our industry partners. In some cases, we initially used sketching 

tools and simple drawings on white boards for ease of understanding. We started by just 

capturing the concepts first and later introduced associations and attributes in the domain 

models. Last, we also added OCL constraints on the domain model concepts. Detailed 

discussions on how the domain analysis was performed in each of the applications are 

provided in [6] for architectural modeling, in [17] for robustness testing, and in [20] for 

model-based testing of RTES.  

In all the three cases, the domain analysis was useful in the following ways: (i) It helped 

us in understanding and specifying (as a domain model) the complexities of large-scale 

systems having characteristics of multiple disciplines (e.g., electrical, mechanical, and 

software) and involving multiple stakeholders; (ii) It was instrumental in understanding the 

needs of industry partners and served as a communication medium with them; (iii) It 

formed a basis for other activities that we carried out at later stages of the projects, such as 

defining the modeling methodology and identifying the language and notations for the 

modeling solution. 
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4.2. Define a Modeling Methodology (A2) 
After performing the domain analysis, we defined a specific modeling methodology to 

tackle each problem, keeping in mind the requirements of the domain. To apply 

UML/MARTE in practice, just identifying a set of notations is not sufficient. We need to 

define a proper process and guidelines, select proper modeling tools, and train the industry 

partners regarding all these aspects. Following, we discuss the various sub-activities of 

defining a methodology. 

4.2.1. Identify Notations (A2.1) 
The first activity for each of the applications was to identify the modeling notations. In all 

our industrial applications, we carefully selected a subset of UML and MARTE for 

modeling. The reasons for using UML are as follows: (i) it is a modeling standard; (ii) it 

has industrial strength tool support ranging from open source (e.g., Papyrus) to commercial 

(e.g., IBM RSA); (iii) it has sufficient training material available to help train industry 

partners; (iv) it provides a rich set of notations to model a system from different 

perspectives; (v) it is extensible for various application domains. Though MARTE is a 

relatively new profile, we have observed significant progress in tool support and training 

material available over the last couple of years. Plus it has a rich set of concepts, which can 

be selected and used for various modeling purposes in the context of real-time, embedded, 

and concurrent systems. 

Despite the above-mentioned advantages, UML is still a challenge to apply in industrial 

settings without clear objectives and a well-defined methodology. UML is a general 

purpose, standard modeling language that is meant to cater for different application domain 

and problems, and is as a result quite large. The entire language is not meant to be used to 

solve a particular problem in a particular domain. Therefore one of the key requirements to 

make UML successful in industry is to select a proper subset of the language matching the 

needs. In our projects, we systematically aimed to identify such a minimal subset. Figure 2 

shows the packages of UML that were used for our applications. We used UML class 

diagrams for modeling the domains for all the industrial case studies. Other notations were 

selected based on individual needs of the target industrial problem and domain. For 

architectural modeling we used UML package and class diagram, and for both model-

based testing applications, we used UML state machines to model system behavior. In total, 
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we only used four out of fourteen UML diagrams (including the UML profile diagram that 

we used to create profiles as part of activity A2.2).  

MARTE is a comprehensive UML profile covering different aspects for modeling 

RTES (Section 2). Similar to UML, the set of concepts provided by MARTE are fairly 

large to cater to a wide variety of analysis needs and it is also important to clearly identify 

the required subset of MARTE for a specific problem and domain. Figure 3 shows the six 

MARTE packages we used (highlighted in grey), a selected subset of the concepts which 

were used to model our four industrial case studies. In our experience, using 

UML/MARTE showed to be an adequate combination considering our industrial 

application domains.  

4.2.2. Extend Notations (A2.2) 
After we identified the subset of UML and MARTE, the next step was to find out whether 

the identified notations were sufficient to address our problems. Various steps that we 

performed in this activity are summarized as an activity diagram in Figure 4. First we 

evaluated whether the identified MARTE subset was sufficient. If this was not the case, we 

tried to extend MARTE using the defined constructs (e.g., by adding a new NFP). When 

required, we further defined guidelines on how to extend MARTE (for example, see [17]) 

in the future. We then evaluated whether the identified subsets of UML, MARTE, and its 

extensions were sufficient for our modeling purposes. If this was not the case, we extended 

UML by creating UML profiles. One of the important decisions was to decide whether to 

go for a profile or a domain specific language (DSL). In all our cases, we decided to opt for 

UML profiles over DSL since, in our applications as in many others, minimizing 

extensions to UML is expected to ease practical adoption and technology transfer. In [25], 

two main approaches for profile creation are discussed. The first approach directly 

implements a profile by defining key concepts of a target domain, such as what was done 

to define SysML [26]. The second approach first creates a conceptual model outlining the 

key concepts of a target domain followed by creating a profile for the identified concepts, 

such as what was done to define SPT [13] and MARTE. We used the second approach to 

define profiles in our context, since it is more systematic as it clearly separates the profile 

creation process into two distinct stages. 

We found the MARTE NFP package and the extension mechanism sufficient for our 

industrial application of model-based robustness testing. The NFP package provides 
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different data types such as NFP_Percentage and NFP_DataTxRate, which are helpful to 

model properties of the environment, for instance jitter and packet loss in networks. When 

the built-in data types of MARTE are not sufficient, the open modeling framework of 

MARTE can be used to define new NFP types by either extending the existing NFPs or by 

defining completely new NFPs. For instance, we extended MARTE’s NFPs and define 

several properties of the environment when modeling echo in audio streams and modeling 

synchronization mismatch between audio and video streams coming to a video 

conferencing system. From our experience in using MARTE, in addition to the advantages 

of using a standard, we can conclude that the MARTE profile and its open modeling 

framework were sufficient to model relevant properties of the Saturn operating 

environment (Section 3.2). However, for our specific problem of robustness testing, we 

defined a UML profile called RobustProfile [17] to model faults and their properties. In 

addition, the profile supports the modeling of recovery mechanisms when a fault has 

occurred and the modeling of states that a system can transition to when it has recovered. 

Since these features were not part of MARTE, a profile was required.  
 

 

 
 

 

Figure 2. UML packages used in industrial case studies (highlighted in grey) 

Figure 3. MARTE packages used in industrial case studies (highlighted in grey) 
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For architecture modeling, we proposed the use of 6 new concepts as stereotypes to 

extend UML. For model-based robustness testing, we proposed 30 new stereotypes to 

extend UML and MARTE, and for the environment model-based testing profile, we 

proposed 8 new stereotypes to extend UML concepts. Overall, we can see that a limited 

number of stereotypes were required to extend UML for all the three projects. For 

robustness testing, most of the new stereotypes were based on a fault model and were 

extending MARTE NFPs. 

 
Figure 4. Sub-activities under the activity A2.2 Extend Notations 

4.2.3. Tool Selection (A2.3) 
An important consideration for the practical adoption of our proposed methodologies in 

industrial settings is the selection of an adequate modeling tool. This is important since the 

models developed are meant to support automation (e.g., software test automation). The 

modeling tool should provide support to export the models in a standard format which can 

later be processed by other MDE tools (e.g., for model transformations and OCL parsers). 

According to the MARTE official website [27], the MARTE profile is available in four 

tools: IBM RSA [15], IBM Rhapsody [28], Papyrus UML [29], and MagicDraw [30].  

Among these tools, only IBM RSA and Papyrus UML are EMF-based and hence can be 

used with other EMF based tools (e.g., Kermeta for model transformations). For Papyrus 

UML, we faced serious usability problems in modeling state machines, since most of the 

interface of the tool is based on the assumption that the modeler is aware of the underlying 

UML metamodel. IBM RSA comes with a high price tag to be used in small to medium 

sized companies. Even IBM RSA has usability issues, for example, it is not possible to 

directly link action on a modeling element, such as sending of a signal, in the action code 

written as part effects in the state machines. Similarly, the MARTE profile is only 

compatible with RSA version 7.0 and if used with later versions, it does not support the 

Value Specification Language (VSL) editor. Due to this reason and that a complete parser 

of VSL was not available at the time we worked on the industrial projects, we used OCL to 

specify values for NFPs and other MARTE types. 
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For one of the projects, we also worked with Enterprise Architect [31]. Initially for the 

domain model we used a sketching tool. It was easier for the industry partners to work with 

it, because it did not enforce any constraint on the modeling and was good for initial 

domain modeling. Though Enterprise Architect is cheap and affordable for smaller 

companies, migrating its models to a form compatible to EMF-based tools is not trivial.  

Overall, we found IBM RSA as the most viable modeling tool in terms of usability and 

its interoperability with third party MBE tools (such as model transformation tools).  

4.2.4. Define Guidelines (A2.4) 
The next step after tool selection was to define modeling guidelines for each of the 

methodologies. As discussed earlier, only specifying a set of notations is not sufficient and 

we need a proper methodology to help modelers determine what to model, in which order, 

and at what level of detail. The guidelines are not generic and are, to some extent, specific 

to each domain and application. For example, for the environment model-based testing 

approach, we defined guidelines to help modelers in identifying test-relevant environment 

concepts and their relationships [20] in the context of embedded systems. According to our 

experience, such guidelines are crucial for modelers to correctly and effectively apply our 

modeling notations. 

4.3. Application of Methodology 
Once the methodology was defined, numerous training sessions took place, which ranged 

from acquiring basic UML modeling skills to more advanced methodology specific 

training. Training was conducted in an interactive manner, where the attendees were given 

exercises based on their own domain and systems. This last point is very important as 

people more easily understand and adopt technologies that have shown to apply to their 

environment.  

Training must be complemented by workshops where we model the solution to a 

representative (sub)problem with them, thus reducing the initial learning curve with respect 

to the modeling tool and notations. Later, when the first modeling activities are undertaken, 

mentoring is also required, at least in the initial stages, until a certain level of comfort is 

attained. A natural tendency is for people to revert to previous practices when faced with a 

seemingly intractable problem.  
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4.4. Summary and Discussion 
For the three industrial projects, we used the UML class, package and state machine 

diagrams for modeling the different aspects of software systems. From MARTE, we used 

concepts from the MARTE Time, NFP, GQAM, Alloc, GRM and HRM packages. Over 

the years, a number of researchers and industry practitioners have raised the issue that 

UML is too large [32] [33]. Recently, the same has been written about MARTE [7]. In our 

opinion and based on our practice, UML and MARTE are meant to provide an 

encompassing set of modeling notations catering diverse needs. To successfully apply 

these standards to industrial projects, we need a complete methodology that identifies the 

subset of UML and MARTE to be used to address specific problems in specific contexts 

and guidelines to help people apply such standards in a systematic and consistent manner.  

A complete methodology based on UML/MARTE should be derived for a specific 

purpose, to address a particular problem in a particular domain. To do so, we found that a 

thorough domain analysis is an important step, which, as we discussed in Section 4.1, is a 

necessary basis not just for the analysis but also to make decisions during other activities. 

Depending on the complexity of the domain under analysis and the nature of the problem, 

the domain analysis activities and effort required vary significantly from case to case. The 

next steps are to carefully select a minimal subset of UML and MARTE notations and if 

needed, extend MARTE, for example by defining new NFPs, and extend UML by defining 

a profile. Though the selection of a modeling tool might seem to be a trivial process, in our 

experience, this can have large impact on adoption by the industry partners. If needed, the 

modeling tool should be customized based on the modeling notations selected, so that 

concepts of UML and MARTE that are not relevant are also not visible to the end user. 

Along with the notations, we found it an essential step to provide a set of modeling 

guidelines for the end user, which will help her to properly use these notations. 

Integrating UML and MARTE can be challenging too, especially when it comes to 

bridging the semantic gap between the two. For example, when «HwComponent» was used 

on a class in a class diagram to represent a hardware component, the meaning of its 

association with another class not carrying any stereotype becomes ambiguous. This is 

because UML is typically used to model software. Without having any stereotype applied, 

a class by default implies that it is a software class. Then the association between the 

hardware component class and the software class should be given a specific meaning, like 
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the deployment of the software to its hardware platform. In our cases, we address such 

semantic gaps in our modeling guidelines. 

In our experience, there is limited action language support for MARTE concepts, such 

as time delays between actions and the concept of RTAction (e.g., required to model atomic 

actions). Even in the recently released Action Language for Foundational UML (ALF) [21], 

such concepts are not supported. We used Java as an action language, which provided the 

concepts of real-time actions that we required. 

For model-based robustness testing of RTES, we defined a profile for modeling faults 

and their properties, recovery mechanisms, and faulty states. These are based on well-

defined fault models in the literature and are applicable to RTES in general. These 

concepts can be a good addition as they align with the goals of the MARTE profile, though 

this requires further investigation. 

5. Conclusion 
Applying Model-based Engineering (MBE) notations and methodologies to real-life 

industrial problems is a challenging task and very few articles in the research literature 

report on such experiences. For successful MBE application, a comprehensive 

methodology for modeling should be adopted that is specific to the problem being solved 

and adequate for the application domain. This paper discusses our experiences of applying 

Unified Modeling Language (UML) and the UML profile for Modeling and Analysis of 

Real-Time Embedded Systems (MARTE) to solve three distinct industrial problems related 

to the use of real-time embedded systems (RTES) in four different industry sectors. The 

industrial problems that we tackled were related to architectural modeling and 

configuration, model-based robustness testing, and environment model-based testing of 

RTES. Based on these experiences, we derived a framework to guide practitioners in their 

application of UML/MARTE in industrial contexts. This will help practitioners bridge the 

gap between modeling standards and the modeling needs of industrial RTES. 
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Abstract—Model-based testing (MBT) aims at automated, scalable, and systematic testing 

solutions for complex industrial software systems. To increase chances of adoption in 

industrial contexts, software systems should be modeled using well-established standards 

such as the Unified Modeling Language (UML) and Object Constraint Language (OCL). 

Given that test data generation is one of the major challenges to automate MBT, this is the 

topic of this paper with a specific focus on test data generation from OCL constraints. 

Though search-based software testing (SBST) has been applied to test data generation for 

white-box testing (e.g., branch coverage), its application to the MBT of industrial software 

systems has been limited. In this paper, we propose a set of search heuristics based on OCL 

constraints to guide test data generation and automate MBT in industrial applications. 

These heuristics are used to develop an OCL solver exclusively based on search, in this 

particular case genetic algorithm and (1+1) EA. Empirical analyses to evaluate the 

feasibility of our approach are carried out on one industrial system. 

1. Introduction 
Model-based testing (MBT) has recently received increasing attention in both industry and 

academia. MBT promises systematic, automated, and thorough testing, which would likely 

not be possible without models. However, the full automation of MBT, which is a 

requirement for scaling up to large systems, requires solving many problems, including 

preparing models for testing (e.g., flattening state machines), defining appropriate test 

strategies and coverage criteria, and generating test data to execute test cases. Furthermore, 

in order to increase chances of adoption, using MBT for industrial applications requires 

using well-established standards, such as the Unified Modeling Language (UML) and its 

associated language to write constraints: the Object Constraint Language (OCL) [1].  

OCL [1] is a standard language that is widely accepted for writing constraints on UML 

models. OCL is based on first order logic and is a highly expressive language. The 
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language allows modelers to write constraints at various levels of abstraction and for 

various types of models. It can be used to write class and state invariants, guards in state 

machines, constraints in sequence diagrams, and pre and post condition of operations. A 

basic subset of the language has been defined that can be used with meta-models defined in 

Meta Object Facility (MOF) [2] (which is a standard defined by Object Management 

Group (OMG) for defining meta-models). This subset of OCL has been largely used in the 

definition of UML for constraining various elements of the language. Moreover, the 

language is also used in writing constraints while defining UML profiles, which is a 

standard way of extending UML using pre-defined extension mechanisms. 

Due to the ability of OCL to specify constraints for various purposes during modeling, 

for example when defining guard conditions or state invariants in state machines, such 

constraints play a significant role when testing is driven by models. For example, in state-

based testing, if the aim of a test case is to execute a guarded transition (where the guard is 

written in OCL based on input values of the trigger) to achieve full transition coverage, 

then it is essential to provide input values to the event that triggers the transition such that 

the values satisfy the guard. Another example can be to generate valid parameter values 

based on the pre-condition of an operation. 

Test data generation is an important component of MBT automation. For UML models, 

with constraints in OCL, test data generation is a non-trivial problem. A few approaches in 

the literature exist that address this issue. But most of them, either target only a small 

subset of OCL [3, 4], are not scalable, or lack proper tool support [5]. This is a major 

limitation when it comes to the industrial application of MBT approaches that use OCL to 

specify constraints on models. 

This paper provides a contribution by devising novel heuristics for the application of 

search-based techniques, such as Genetic Algorithms (GAs) and (1+1) Evolutionary 

Algorithm (EA), to solving OCL constraints (covering the entire OCL 2.2 semantics [1]) in 

order to generate test data. A search-based OCL constraint solver is implemented and 

evaluated on the first reported, industrial case study on this topic. 

The rest of the paper is organized as follows: Section 2 discusses the background and 

Section 3 discusses related work. In Section 4, we present the definition of distance 

function for various OCL constructs. Section 5 discusses the case studies and analysis of 

results of the application of the approach, whereas Section 6 discusses the tool support and 

Section 7 addresses the threats to validity of our empirical study. Finally, Section 8 

concludes the paper. 
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2. Background 
Several software engineering problems can be reformulated as a search problem, such as 

test data generation [6]. An exhaustive evaluation of the entire search space (i.e., the 

domain of all possible combinations of problem variables) is usually not feasible. There is 

a need for techniques that are able to produce “good’’ solutions in reasonable time by 

evaluating only a tiny fraction of the search space. Search algorithms can be used to 

address this type of problem. Several successful results by using search algorithms are 

reported in the literature for many types of software engineering problems [7-9].  

To use a search algorithm, a fitness function needs to be defined. The fitness function 

should be able to evaluate the quality of a candidate solution (i.e., an element in the search 

space). The fitness function is problem dependent, and proper care needs to be taken for 

developing adequate fitness functions. The fitness function will be used to guide the search 

algorithms toward fitter solutions. Eventually, given enough time, a search algorithm will 

find an optimal solution. 

There are several types of search algorithms. Genetic Algorithms (GAs) are the most 

well-known [7], and they are inspired by the Darwinian evolution theory. A population of 

individuals (i.e., candidate solutions) is evolved through a series of generations, where 

reproducing individuals evolve through crossover and mutation operators. 

(1+1)Evolutionary Algorithm (EA) is simpler than GAs, in which only a single individual 

is evolved with mutation. To verify that search algorithms are actually necessary because 

they address a difficult problem, it is a common practice to use Random Search (RS) as 

baseline [7].      

3. Related Work 
There are a number of approaches that deal with the evaluation of OCL constraints. The 

basic aim of most of these approaches is to verify whether the constraints can be satisfied. 

Though most of the approaches do not generate test data, they are still related to our work 

since they require the generation of values for validating the constraints. These approaches 

can be adapted for generating test data. In Section 3.1, we discuss the OCL-based 

constraint solving approaches in the literature. In Section 3.2 we discuss the approaches 

that use search-based heuristics for testing. 
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3.1. OCL-based Constraint Solvers 
A number of approaches use constraint solvers for analyzing OCL constraints for various 

purposes. These approaches usually translate constraints and models into a formalism (e.g., 

Alloy [10], temporal logic BOTL [11], FOL [12] , Prototype Verification System (PVS) 

[13], graph constraints [14]), which can then be analyzed by a constraint analyzer (e.g., 

Alloy constraint analyzer [15], model checker [11], Satisfiability Modulo Theories (SMT) 

Solver [12], theorem prover [12], [13]). Satisfiability Problem (SAT) solvers have also 

been used for the animation of OCL operation contracts (e.g., [16], [17]).  

Some approaches are reported in the literature that generates test cases based on OCL 

constraints. Most of these approaches only handle a small subset of OCL and UML models 

and are based on formal constraint solving techniques, such as SAT solving (e.g., [3]), 

constraint satisfaction problem (CSP) (e.g., [18], [19]) and partition analysis (e.g., [5], [4]).  

The work presented in [19] is one of the most sophisticated approaches in the literature. 

However, its focus is on verification of correctness properties, but to achieve this, it also 

generates an instantiation of the model. The major limitation of that approach is that the 

search space is bounded and, as the bounds are raised, the CSP faces a combinatorial 

explosion increase (as discussed in [19]). The task of determining the optimal bounds for 

verification is left to the user, which is not simple and requires repeated interaction from 

the user. Models of industrial applications can have hundreds of attributes and manually 

finding bounds for individual attributes is often impractical. We present the results of an 

experiment that we conducted to compare our approach with this approach in Section 5.2.       

Most of the above approaches are different from our work, since we want to generate 

test data based on OCL constraints provided by modelers on UML state and class 

diagrams. These diagrams may be developed for environment models or system models 

and the modeler should be allowed to use the complete set of standard OCL 2.2 notations. 

We want to provide inputs for which the constraints are satisfied, and not just verify them. 

We also want a tool that can be easily integrated with different state-based testing 

approaches and manual intervention should not be required for every run.  

Existing approaches for OCL constraint solving do not fully fit our needs. Almost all of 

the existing works only support a small subset of OCL. Most of the approaches are only 

limited to simple numerical expressions and do not handle collections (used widely to 

specify expressions that navigate over associations). This is generally due to the high 

expressiveness of OCL that makes the definitions of constraints easier, but their analysis 

more difficult. Conversion of OCL to a SAT formula or a CSP instance can easily result in 
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combinatorial explosion as the complexity of the model and constraints increase (as 

discussed in [19]). For industrial scale systems, as in our case, this is a major limitation, 

since the models and constraints are generally quite complex. Most of the discussed 

approaches either do not support the OCL constructs present in the constraints that we 

have in our industrial case study or are not efficient to solve them (see Section 5.2). Hence, 

existing techniques based on conversion to lower-level languages seem impractical in the 

context of large scale, real-world systems.  

Instead of using search algorithms, another possible approach to cope with the 

combinatorial explosion faced in solving OCL constraints could be to use hybrid 

approaches that combine formal techniques (e.g., constraint solvers) with random testing 

(e.g. [20]). However, we are aware of no work on this topic for OCL and, even for 

common white-box testing strategies, performance comparisons of hybrid techniques with 

search algorithms are rare [21].   

3.2. Search-based Heuristics for Model Based Testing 
The application of search-based heuristics for MBT has received significant attention 

recently (e.g., [22], [23]). The idea of these techniques is to apply the heuristics to guide 

the search for test data that should satisfy different types of coverage criteria on state 

machines, such as state coverage. Achieving such coverage criteria is far from trivial since 

guards on transitions can be arbitrarily complex. Finding the right inputs to trigger these 

transitions is not simple. Heuristics have been defined based on common practices in 

white-box, search-based testing, such as the use of branch distance and approach level 

[24]. Our goal is to tailor this approach to OCL constraint solving for test data generation.  

4. Definition of the Fitness Function for OCL 
To guide the search for test data that satisfy OCL constraints, it is necessary to define a set 

of heuristics.  A heuristic would tell ‘how far’ an input data is from satisfying the 

constraint. For example, let us say we want to satisfy the constraint x=0, and suppose we 

have two data inputs: x1:=5 and x2:=1000. Both inputs x1 and x2 do not satisfy x=0, but 

x1 is heuristically closer to satisfy x=0 than x2. A search algorithm would use such a 

heuristic as a fitness function, to reward input data that are closer to satisfy the target 

constraint.   
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Figure 1. Example class diagram 

 

Figure 2. Example constraints 

In this paper, to generate test data to solve OCL constraints, we use a fitness function 

that is adapted from work done for code coverage (e.g., for branch coverage of code 

written in C [24]). In particular, we use the so called branch distance (a function d()), as 

defined in [24]. The function d() returns 0 if the constraint is solved, otherwise a positive 

value that heuristically estimates how far the constraint was from being evaluated as true. 

As for any heuristic, there is no guarantee that an optimal solution will be found in 

reasonable time, but nevertheless many successful results are reported in the literature for 

various software engineering problems [6].   

Notice that, in some cases, we would want the constraints to evaluate to false (e.g., a 

transition in a state machine that should not be taken). To cope with these cases, we can 

simply negate the constraint and find data for which the negated constraint evaluates to 

true. 

OCL is a constraint language that is more expressive than programming languages such 

as C and Java. Therefore, in this paper we extend the basic definition of branch distance to 

cope with all the features of the OCL 2.2 constraint language.  

In this section, we give examples of how to calculate the branch distance for various 

kinds of expressions in OCL, including primitive data types (such as Real and Integer) and 

collection-related types (such as Set and Bag). In OCL, all data types are subtypes of a 

super type OCLAny, which is categorized into two subtypes: primitive types and collection 

types. Primitive types are Real, Integer, String, and Boolean, whereas collection types 

include Collection as super type with subtypes Set, OrderedSet, Bag, and Sequence. A 

constraint can be seen as an expression involving one or more Boolean clauses connected 

with operators such as and and or. The truth value of a clause can depend on different 

types of properties involving variables of different types, such as equalities of integers and 

comparisons of strings. To explain this, consider the UML class diagram in Figure 1 

context Student inv ageConstraint: 
 self.age>15 
 
context University inv numberOfStudents: 
 self.student->size() > 0 
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consisting of two classes: University and Student. Constraints on the class University are 

shown in Figure 2. 

The first constraint states that the age of a Student should be greater than 15. Based on 

the type of attribute age of the class Student, which is Integer, the comparison in the clause 

is determined to involve integers. The second constraint states that the number of students 

in the university should be greater than 0. In this case, the size() operation is called on 

collection student of the class Student, which is defined on collections in OCL and returns 

an Integer denoting the number of elements in a collection. Again, we have a comparison 

of integers, even though a function such as size() is called on a collection.   

In the next section, we will discuss branch distance functions based on different types of 

clauses in OCL. 

4.1. Primitive types 
A Boolean variable b is either true (d(b)=0), or false (d(b)=k, where for example k=1). If 

the Boolean variable is obtained from a function call, then in general the branch distance 

would take one of only two possible values (0 or k).  However, when such calls belong to 

the standard OCL operations (e.g., the operation isEmpty() called on a collection), then in 

some cases we can provide more fine grained heuristics (we will specify which ones in 

more details later in this section). 

The operations defined in OCL to concatenate Boolean clauses are or, xor, and, not, if 

then else, and implies. Branch distance for operations on Boolean are adopted from [24] 

and are shown in Table 2. Operations implies, xor, and if then else are syntax sugars that 

usually do not appear in programming languages, such as C and Java, and can be expressed 

as combinations of and and or. The evaluation of d() on a predicate composed by two or 

more clauses is done recursively, as specified in Table 1.  

When a predicate or one of its parts is negated, then the predicate is transformed such as 

to move the negation inward to the basic clauses, e.g., not (A and B) would be transformed 

into not A or not B. 

For the data types defined for numerical data such as Integer and Real, the relational 

operations defined that return Booleans (and so can be used as clauses) are <,>, <=,>=, and 

<>.  For these operations, we adopted the branch distance calculation from [24] as shown 

in Table 2.  

In OCL, several other operations are defined on Real and Integer such as +, -, *, /, abs(), 

div(), mod(), max(), and min(). Since these operations are used as part of the calculation of 
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two compared numerical values in a clause, there is no need to define a branch distance for 

them. For example, considering a and b are of type Integer and the constraint a+b*3<4, 

then the operations + and * are used only to define that constraint. The overall result of the 

expression a+b*3 will be an Integer and the clause will be considered as a comparison of 

two values of Integer type.   
Table 1. Branch distance calculations for OCL’s operations for Boolean 

Boolean operations Distance function 
Boolean  if true then 0 otherwise k  
A and B  d(A)+d(B) 
A or B  min (d(A),d(b)) 
A implies B  d(not A or B) 
if A then B else C  d((A and B) or (not A and C)) 
A xor B  d((A and not B) or (not A and B))  

Table 2. Branch distance calculations of OCL’s relational operations for numeric data 

Relational operations Distance function 

x=y if abs(x-y) = 0 then 0 otherwise abs(x-y)+k  
x<>y if abs(x-y) <> 0 then 0 otherwise k 
x<y if x-y < 0 then 0 otherwise (x-y)+k 
x<=y if x-y <= 0 then 0 otherwise (x-y)+k 
x>y if (y-x) < 0 then 0 otherwise (y-x)+k 
x>=y if (y-x) <= 0 then 0 otherwise (y-x)+k 

For the String type, OCL defines several operations such as =, +, size(), concat(), 

substring(), and toInteger(). There are only three operations that return a Boolean: equality 

operator =, inequality (<>) and equalsIgnoreCase(). In these cases, instead of using k if the 

comparisons are negative, we can return the value of any string matching distance to 

evaluate how close two strings are, as for example the edit distance [8].  

Enumerations in OCL are treated in the same way as enumerations in programming 

languages such as Java. Because enumerations are objects with no specific order relation, 

equality comparisons are treated as basic Boolean expressions, whose branch distance is 

either 0 or k.  

4.2. Collection-Related Types 
Collection types defined in OCL are Set, OrderedSet, Bag, and Sequence. Details of these 

types can be found in [1].  

OCL defines several operations on collections. An important point to note is that, if the 

return type of an operation on a collection is Real or Integer and that value is used in an 

expression, then the distance is calculated in the same way as for primitive types as defined 

in Section 4.4.1. An example is the size() operation, which returns an Integer.  

In this section, we discuss branch distance for operations in OCL that are specific to 
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collections, and that usually are not common in programming languages for expressing 

constraints/predicates and hence are not discussed in the literature. 

4.3. Equality of collections (=) 
In OCL constraints, we may need to compare the equality of two collections. To improve 

the search process by providing a more fine-grained heuristic, we defined a branch distance 

for comparing collections as shown in Figure 3. 

if not (A.oclIsKindOf(B)) 
 d(A=B) := 1 
otherwise if A->size() <> B->size()  
 d(A=B) := 0.5 + 0.5*n(d (A->size()=B->size())) 
otherwise 
d(A=B) := 0.5 *  sum( n(d(pair)) )/A->size() 
where, d(pair) = distance between each paired element in the collection, e.g., d(A.at(i)=B.at(i)) and n is a 
normalizing function [25],  and it is defined as n(x)=x/(x+1). Suppose A and B are two collections in OCL. 

Figure 3. Branch distance equality of collections 

4.4. Operations checking existence of one or more objects in a collection 
OCL defines several operations to check existence of one or more elements in a collection 

such as includes() and excludes(), which check whether an object exists in a collection or 

does not exist in a collection, respectively. Whether a collection is empty is checked with 

isEmpty() and notEmpty(). Such operations can be further processed for calculation of 

branch distance to improve the search, as described in Table 3. 

Table 3. Branch distance calculation for operations checking objects in collections 

Operation Distance function 
includes (object:T): Boolean, where T is any OCL 
type 

  

excludes (object:T): Boolean, where T is any OCL 
type 

  

includesAll (c:Collection(T)): Boolean, where T is 
any OCL type 

    

excludesAll(c:Collection(T)): Boolean, where T is 
any OCL type 

   

isEmpty(): Boolean   
notEmpty():  Boolean  

4.5. Branch distance for iterators 
 OCL defines several operations to iterate over collections. Below, we will discuss branch 

distance for these iterators.  

The forAll iterator operation is applied to an OCL collection and takes as input a 

Boolean expression and determines whether the expression holds for all elements in the 

collection. For branch distance, we calculate the distance of the Boolean expression in 
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forAll. Boolean expression on all elements in the collection is conjuncted. To avoid a bias 

toward reducing the size of the collection on which the predicate is evaluated, we scale the 

resulting distance by the number of elements in the collection. The general branch distance 

function for forAll is shown in Table 4. For the sake of clarity in the paper, we assume that 

function exp(v1,v2, …vm) evaluates an expression exp on a set of objects v1,v2, …vm in Table 

4. Self in the table refers to the collection on which an operation is applied, at(i) is a 

standard OCL operation that returns the ith element of a collection, and size() is another 

OCL operation that returns the number of elements in a collection. 
Table 4. Branch distance for forAll and exists 

Operation Distance function 

forAll(v1,v2, …vm|exp)  if self->size() = 0 then 0  

otherwise  

  

exists( v1,v2, …vm|exp)   

isUnique(v1|exp)     

one( v1|exp)   

The exists iterator operation determines whether a Boolean expression holds for at least 

one element of the collection on which this operation is applied. The distance is computed 

for each element of the collection on which the Boolean expression is applied and the 

results are disjuncted. The general distance form for exists is shown in Table 4. In addition, 

we also provide branch distance for isUnique() and one() operations in the same table. 

Select, reject, collect, and iterator operations select a subset of elements in a collection. 

The select operation selects all elements of a collection for which a Boolean expression is 

true, whereas reject selects all elements of a collection for which a Boolean expression is 

false. In contrast, the collect iterator may return a subset of elements, which do not belong 

to the collection on which it is applied. Since all these iterators return a collection and not a 

Boolean value, we do not need to define branch distance for them, as discussed in Section  

4.4.1. 

5. Case Study: Robustness Testing Of Video 
Conference System 

This case study is part of a project aiming at supporting automated, model-based 

robustness testing of a core subsystem of a video conference system (VCS) called Saturn 
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[26] developed by Tandberg AS (now part of Cisco Systems, Inc). Saturn is modeled as a 

UML class diagram meant to capture information about APIs and system (state) variables, 

which are required to generate executable test cases in our application context. The 

standard behavior of the system is modeled as a UML 2.0 state machine. In addition, we 

used Aspect-oriented Modeling (AOM) and more specifically the AspectSM profile [27] to 

model robustness behavior separately as aspect state machines. The robustness behavior is 

modeled based on different functional and non-functional properties, whose violations lead 

to erroneous states. Such properties can be related to the system or its environment such as 

the network and other systems interacting with the system. A weaver later on weaves 

robustness behavior into the standard behavior and generates a standard UML 2.0 state 

machine. The woven state machine is provided in [27]. This woven state machine is used 

for test case generation. In this current, simplified case study, the woven state machine has 

11 states and 93 transitions. Out of 93 transitions, 73 transitions model robustness behavior 

and 47 out of 73 are unique, all of them requiring test data that satisfy the constraints to 

traverse them. All these 47 transitions have change events or triggers. A change event is 

fired when a condition is met during the operation of a system. An example of such change 

event is shown in Figure 4. This change event is fired during a videoconference when the 

synchronization between audio and video passes the allowed threshold. 

SynchronizationMismatch is a non-functional property  defined using the MARTE profile, 

which measures the synchronization between audio and video in time.  

 
Figure 4. A constraint checking synchronization of audio and video in a videoconference 

  In our case study, we target test data generation for model-based robustness testing of 

the VCS. Testing is performed at the system level and we specifically targeted robustness 

faults, for example related to faulty situations in the network and other systems that 

comprise the environment of the SUT. Test cases are generated from the system state 

machines using our tool TRUST [26]. To execute test cases, we need appropriate data for 

the state variables of the system, state variables of the environment (network properties and 

in certain cases state variables of other VCS), and input parameters that may be used in the 

following UML state machine elements: (1) guard conditions on transitions, (2) change 

events as triggers on transitions, and (3) inputs to time events. We have successfully used 

the TRUST tool to generate test cases using different coverage criteria on UML state 

machines, such as all transitions, all round trip, modified round trip strategy [26].  

context Saturn inv synchronozationConstraint:  
   self.media.synchronizationMismatch.value  > self.media.synchronizationMismatchThreshold.value) 
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5.1. Empirical Evaluation 
This section discusses the experiment design, execution, and analysis of evaluation of the 

proposed OCL test data generator.  

5.1.1. Experiment Design 

We designed our experiment using the guidelines proposed in [7, 28]. The objective of our 

experiment is to assess the efficiency of search algorithms such as GAs to generate test 

data by solving OCL constraints. In our experiments, we compared three search 

techniques: GA, (1+1) EA, and RS. GA was selected since it is the most commonly used 

search algorithm in search-based software engineering [7]. (1+1) EA is simpler than GAs, 

but in the previous work in software testing we found that it can be more effective in some 

cases (e.g., see [9]). We used RS as the comparison baseline to assess the difficulty of the 

addressed problem [7].  

In this paper, we want to answer the following research questions. 

RQ1: Are search-based techniques effective and efficient at solving OCL constraints in 

the models of industrial systems? 

 

Figure 5. Success rates for various algorithms 

 

Figure 6. Odds ratio between pairs of algorithms 
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RQ2: Among the considered search algorithms, which one performs best in solving 

OCL constraints?  

5.1.2. Experiment Execution 

We ran experiments for 47 OCL predicates as we discussed in Section 5. The number of 

clauses in each predicate varies from one to eight and the median value is six. Each 

algorithm was run 100 times to account for the random variation inherent to randomized 

algorithms. 

A solution is represented as an array of variables, the same that appear in the OCL 

constraint we want to solve. For GA, we set the population size to 100 and the crossover 

rate to 0.75, with a 1.5 bias for rank selection. We use a standard one-point crossover, and 

mutation of a variable is done with the standard probability 1/n, where n is the number of 

variables.  

We ran each algorithm up to 2000 fitness evaluations on each problem and collected 

data on whether an algorithm found the solution or not. On our machine (Intel Core Duo 

CPU 2.20 GHz with 4 GB of RAM, running Microsoft Windows 7 operating system), 

running 2000 fitness evaluations takes on average 3.8 minutes for all algorithms. Instead of 

putting a limit to the number of fitness evaluations, a more practical approach would be to 

run as many iterations as possible, but stopping once a predefined time threshold is reached 

(e.g., 10 minutes) if the constraint has not been solved yet. The choice of the threshold 

would be driven by the testing budget. However, though useful in practice, using a time 

threshold would make it significantly more difficult and less reliable to compare different 

search algorithms (e.g., accurately monitoring the passing of time, side effects of other 

processes running at same time, inefficiencies in implementation details).   

To compare the algorithms, we calculated their success rate, which is defined as the 

number of times an algorithm was successful in finding optimal solutions out of the total 

number of runs.  

5.1.3. Results and Analysis 

Figure 5 shows a box plot of the success rate of the 47 problems for (1+1) EA, GA, and 

RS. For each search technique, the box-plot is based on 47 success rates, one for each 

constraint. The results show that (1+1) EA outperformed both RS and GA, whereas GA 

outperformed RS. We can observe that, with an upper limit of 2000 iterations, (1+1) EA 

achieves a median success rate of 80% but GA does not exceed a median roughly 60%. We 
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can also see that all success rates for (1+1) EA are above 50% and most of them are close 

to 100%. Constraints with the lowest success rates are seven and eight clauses long. Even 

taking the lowest success rates for the most difficult constraints (50%), this would entail 

that with r runs of (1+1) EA, we would achieve a success rate of 1 - (1 - 0.5)r. For 

example, with r = 7, we would obtain a success rate above 99%. This entails a computation 

time of approximately 3.8*7=27 minutes. Given that we use a slow prototype (EyeOCL) 

for OCL expression analysis and that we could parallelize the search, our results suggest 

that our approach is effective, efficient, and therefore practical, even for difficult 

constraints (RQ1).  

To check the statistical significance of the results, we performed Fisher’s exact test 

between each pair of algorithms based on their success rates for the 47 constraints. Due to 

space limitations, we do not present p-values for each problem and each pair of algorithms. 

In summary, we observe that for 105 times out of 141 (47*3, where 3 represent the number 

of algorithm pairs), results were significant at the 0.05 level. We also carried out a paired 

Mann-Whitney U-test (paired per constraint) on the distributions of the success rates for 

the three algorithms. In all the three distribution comparisons, p-values were very close to 

0, and hence showing a strong statistical difference among the three algorithms when 

applied on all the 47 constraints (although on some constraints there is no statistical 

difference, as the 141 Fisher’s exact tests show). 

In addition to statistical significance, we also assessed the magnitude of the 

improvement by calculating the effect size in a standardized way. We used odds ratio [28] 

for this purpose, as the results of our experiments are dichotomous. Figure 6 shows box 

plots of odds ratio for pairs of algorithms for the 47 constraints. Between RS and (1+1) EA 

(the first column in Figure 6), the value of odds ratio is less than one, thus implying that 

(1+1) EA has more chances of success than RS. The odds ratio between RS and GA is also 

similar. Therefore, there is strong evidence to claim that (1+1) EA is significantly more 

successful than the other analyzed algorithms since, in most of the cases, the odds ratios 

comparing GA and RS with (1+1) EA (first and third column in Figure 6) show values not 

only lower than one,  but also very close to zero (RQ2).  

To check the complexity of the problems, we repeat the experiment on the negation of 

each of the 47 predicates. All algorithms managed to find solutions for all these problems 

very quickly. Most of the time and for most of the problems, each algorithm managed to 

find solutions in a single iteration. This result confirmed that the actual problems we 

targeted with search were not easy to solve.  
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In practice, given a time budget T, we recommend running (1+1) EA for as many 

iterations as possible. An alternative is to run the algorithms several times (e.g., r, so each 

run with budget T/r) but this is expected to be less effective as no information is reused 

between runs. But, in our experiments, this latter technique is already extremely effective 

(99% success rate with seven runs in the worst case). 

5.2. Comparision with UMLtoCSP 
UMLtoCSP [19] is the most widely used and referenced OCL constraint solver in the 

literature. To check the performance of UMLtoCSP to solve complex constraints such as 

the ones in our current industrial case study, we conducted an experiment. We selected the 

10 most complex constraints (based on the number of clauses in a constraint) from our 

industrial application, which comprises constraints ranging from six to eight clauses (we 

did not analyzed all the 47 constraints because, as we will show, these experiments took 

substantial computational time). An example of such constraint, modeling a change event 

on a transition of Saturn’s state machine, is shown in Figure 7. This change event is fired 

when Saturn is successful in recovering the synchronization between audio and video. 

Since UMLtoCSP does not support enumerations, we converted each enumeration into an 

Integer and limited its bound to the number of literals in the enumeration. We also used the 

MARTE profile to model different non-functional properties, and since UMLtoCSP does 

not support UML profiles, we explicitly modeled the used subset of MARTE as part of our 

models. In addition, UMLtoCSP does not allow writing constraints on inherited attributes 

of a class, so we modified our models and modeled inherited attributes directly in the 

classes. We set the range of Integer attributes from 1 to 100. 

We ran the experiment on the same machine as we used in the experiments reported in 

the previous section. Though we let UMLtoCSP address each of the selected constraints 

for 10 hours each, it was not successful in finding any valid solution. A plausible 

explanation is that UMLtoCSP is negatively affected by the state explosion problem, a 

common problem in real-world industrial applications such as the one from 

Tandberg/Cisco used in this paper. In contrast, even in the worst case, our constraint solver 

managed to solve each constraint within at most 27 minutes, as we have reported in the 

previous section.  

6. Tool Support  
We developed a tool in Java that interacts with an existing library, an OCL evaluator called 
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EyeOCL [29]. EyeOCL is a Java component that provides APIs to parse and evaluate an 

OCL expression based on an object model. Our tool implements the calculation of branch 

distance as discussed in Section 4 for various expressions in OCL. To calculate branch 

distance for an OCL expression, we send this expression for parsing to EyeOCL and obtain 

a parse tree of the expression. We manipulate the parse tree and call EyeOCL with the 

current set of values for variables in the expression and calculate the branch distance. The 

search algorithms employed in this paper were implemented in Java as well.  

7. Threats to Validity 
To reduce construct validity threats, we chose the measure success rate, which is 

comparable across all three algorithms ((1+1) EA, GA and RS) that we used. Furthermore, 

we used the same stopping criterion for all algorithms, i.e., number of fitness evaluations. 

This criterion is comparable across all the algorithms that we studied because each 

iteration requires updating the object diagram in EyeOCL and evaluating a query on it. 

This time is same for all the algorithms, and it is rather expensive (approximately, 0.114 

second per iteration).  

The most probable conclusion validity threat in experiments involving randomized 

algorithms is due to random variation. To address it, we repeated experiments 100 times to 

reduce the possibility that the results were obtained by chance. Furthermore, we perform 

Fisher exact test to compare proportions to determine statistical significance of results. We 

chose Fisher’s exact test because it is appropriate for dichotomous data where proportions 

must be compared, thus matching our case [28]. To determine practical significance of 

results, we measure the effect size using the odds ratio of success rates across search 

techniques. 

A possible threat to internal validity is that we have experimented with only one 

configuration setting for the GA parameters. However, these settings are in line with 

common guidelines in the literature and our previous experience on testing problems. 

In the empirical comparisons with UMLtoCSP, there is the threat that we might have 

wrongly configured it. To reduce the probability of such an event, we contacted the authors 

of UMLtoCSP who were very helpful in ensuring its proper use. 

  We ran our experiments on an industrial case study to generate test data for 47 

different OCL constraints, ranging from simpler constraints having just one clause to 

complex constraints having eight clauses. Although the empirical analysis is based on a 
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real industrial system and not on small artificial problems (as most work in the literature 

[11], [13], and [16]), our results might not generalize to other case studies. However, such 

threat to external validity is common to all empirical studies. 

 
Figure 7. A change event checking which is fired when synchronization between audio and video is 

within threshold 

From our analysis of UMLtoCSP, we cannot generalize our results to traditional 

constraint solvers in general when applied to solve OCL constraints. However, empirical 

comparisons with other constraints solvers were not possible because, to the best of our 

knowledge, UMLtoCSP is not only the most referenced OCL solver but also the only one 

that is publically available.  

8. Conclusion 
In this paper, we presented a search-based constraint solver for the Object Constraint 

Language (OCL). The goal is to achieve a practical, scalable solution to support test data 

generation for Model-based Testing (MBT). Existing OCL constraint solvers have one or 

more of the following problems that make them difficult to use in industrial applications: 

(1) they support only a subset of OCL; (2) they translate OCL into formalisms such as first 

order logic, temporal logic, or Alloy, and thus are relying on non-standard technologies 

and result into combinatorial explosion problems. These problems limit their practical 

adoption in industrial settings.  

To overcome the abovementioned problems, we defined a set of heuristics based on 

OCL constraints to guide search-based algorithms (genetic algorithms, (1+1) EA) and 

implemented them in our search-based OCL constraint solver. More specifically, we 

defined branch distance functions for various types of expressions in OCL to guide search 

algorithms. We demonstrated the effectiveness and efficiency of our search-based 

context Saturn inv synchronizationConstraint:  
    self.systemUnit.NumberOfActiveCalls  > 1 and   
 self.systemUnit.NumberOfActiveCalls  <= self.systemUnit.MaximumNumberOfActiveCalls) and  
 self.media.synchronizationMismatch.unit = TimeUnitKind::s and   
 ( 
  self.media.synchronizationMismatch.value  >= 0 and  

self.media.synchronizationMismatch.value  <=          
   self.media.synchronizationMismatchThreshold.value 
 )  
 and self.conference.PresentationMode = Mode::Off and  
 self.conference.call->select(call |  
  call.incomingPresentationChannel.Protocol <> VideoProtocol::Off)->size() = 2  and 
 self.conference.call->select(call |   
  call.outgoingPresentatiaonChannel.Protocol <> VideoProtocol::Off)->size()=2 
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constraint solver to generate test data in the context of the model-based, robustness testing 

of an industrial case study of a video conferencing system. Even for the most difficult 

constraints, with research prototypes and no parallel computations, we obtain test data 

within 27 minutes in the worst case and in less than 4 minutes on average.  

As a comparison, we ran the 10 most complex constraints on one well-known, 

downloadable OCL solver (UMLtoCSP) and the results showed that, even after running it 

for 10 hours, no solutions could be found. Similar to all existing OCL solvers, because it 

could not handle all OCL constructs, we had to transform our constraints to satisfy 

UMLtoCSP requirements.  

We also conducted an empirical evaluation in which we compared three search 

algorithms using two statistical tests: Fisher’s exact test between each pair of algorithms to 

test their differences in success rates for each constraints and a paired Mann-Whitney U-

test on the distributions of the success rates (paired per constraint). Results showed that 

(1+1) EA was significantly better than GA, which itself were significantly better than 

random search. Notice that in both empirical evaluations, the execution times were 

obtained on a regular PC. 

Future work will consider hybrid approaches, in which traditional constraint solver 

techniques will be integrated with search algorithms, with the aim to overcome the current 

limitations that both approaches have and exploit the best of both worlds.    

Acknowledgement 
The work described in this paper was supported by the Norwegian Research Council. This 

paper was produced as part of the ITEA-2 project called VERDE. We thank Marius 

Christian Liaaen (Tandberg AS, part of Cisco Systems, Inc) for providing us the case 

study.  

9. References 
[1]  (2010). Object Constraint Language Specification, Version 2.2. Available: 

http://www.omg.org/spec/OCL/2.2/ 
[2]  N. Holt, B. Anda, K. Asskildt, L. Briand, J. Endresen, and S. Frøystein, "Experiences 

with Precise State Modeling in an Industrial Safety Critical System," presented at the 
Critical Systems Development Using Modeling Lanuguages, CSDUML’06, 2006. 

[3]  L. v. Aertryck and T. Jensen, "UML-Casting: Test synthesis from UML models 
using constraint resolution," presented at the Approches Formelles dans l'Assistance 
au Développement de Logiciels (AFADL'2003), 2003. 



 
231 

[4]  M. Benattou, J. Bruel, and N. Hameurlain, "Generating test data from OCL 
specification," 2002. 

[5]  L. Bao-Lin, L. Zhi-shu, L. Qing, and C. Y. Hong, "Test case automate generation 
from uml sequence diagram and ocl expression," presented at the International 
Conference on cimputational Intelligence and Security, 2007. 

[6]  M. Harman, S. A.Mansouri, and Y. Zhang, "Search based software engineering: A 
comprehensive analysis and review of trends techniques and applications," King’s 
College,Technical Report TR-09-032009. 

[7]  S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, "A Systematic 
Review of the Application and Empirical Investigation of Search-Based Test Case 
Generation," IEEE Transactions on Software Engineering, vol. 99, 2009. 

[8]  M. Alshraideh and L. Bottaci, "Search-based software test data generation for string 
data using program-specific search operators: Research Articles," Softw. Test. Verif. 
Reliab., vol. 16, pp. 175-203, 2006. 

[9]  A. Andrea, "Longer is Better: On the Role of Test Sequence Length in Software 
Testing," International Conference on Software Testing, Verification, and Validation, 
2010. 

[10]  B. Bordbar and K. Anastasakis, "UML2Alloy: A tool for lightweight modelling of 
Discrete Event Systems," presented at the IADIS International Conference in 
Applied Computing, 2005. 

[11]  D. Distefano, J.-P. Katoen, and A. Rensink, "Towards model checking OCL," 
presented at the ECOOP-Workshop on Defining Precise Semantics for UML, 2000. 

[12]  M. Clavel and M. A. G. d. Dios, "Checking unsatisfiability for OCL constraints," 
presented at the In the proceedings of the 9th OCL 2009 Workshop at the 
UML/MoDELS Conferences, 2009. 

[13]  M. Kyas, H. Fecher, F. S. d. Boer, J. Jacob, J. Hooman, M. v. d. Zwaag, T. Arons, 
and H. Kugler, "Formalizing UML Models and OCL Constraints in PVS," Electron. 
Notes Theor. Comput. Sci., vol. 115, pp. 39-47, 2005. 

[14]  J. Winkelmann, G. Taentzer, K. Ehrig, and J. M. ster, "Translation of Restricted OCL 
Constraints into Graph Constraints for Generating Meta Model Instances by Graph 
Grammars," Electron. Notes Theor. Comput. Sci., vol. 211, pp. 159-170, 2008. 

[15]  D. Jackson, I. Schechter, and H. Shlyahter, "Alcoa: the alloy constraint analyzer," 
presented at the Proceedings of the 22nd international conference on Software 
engineering, Limerick, Ireland, 2000. 

[16]  M. Krieger and A. Knapp, "Executing Underspecified OCL Operation Contracts with 
a SAT Solver," presented at the 8th International Workshop on OCL Concepts and 
Tools., 2008. 

[17]  M. P. Krieger, A. Knapp, and B. Wolff, "Automatic and Efficient Simulation of 
Operation Contracts," presented at the 9th International Conference on Generative 
Programming and Component Engineering, 2010. 

[18]  B. K. Aichernig and P. A. P. Salas, "Test Case Generation by OCL Mutation and 
Constraint Solving," presented at the Proceedings of the Fifth International 
Conference on Quality Software, 2005. 

[19]  J. Cabot, R. Claris, and D. Riera, "Verification of UML/OCL Class Diagrams using 
Constraint Programming," presented at the Proceedings of the 2008 IEEE 
International Conference on Software Testing Verification and Validation Workshop, 
2008. 

[20]  K. Sen, D. Marinov, and G. Agha, "CUTE: a concolic unit testing engine for C," 
SIGSOFT Softw. Eng. Notes, vol. 30, pp. 263-272, 2005. 



 
232 

[21]  K. Lakhotia, P. McMinn, and M. Harman, "An empirical investigation into branch 
coverage for C programs using CUTE and AUSTIN," Journal of Systems and 
Software, vol. 83, pp. 2379-2391. 

[22]  C. Doungsa-ard, K. Dahal, A. Hossain, and T. Suwannasart, "GA-based Automatic 
Test Data Generation for UML State Diagrams with Parallel Paths," Advanced 
Design and Manufacture to Gain a Competitive Edge, pp. 147-156, 2008. 

[23]  R. Lefticaru and F. Ipate, "Functional Search-based Testing from State Machines," 
presented at the Proceedings of the 2008 International Conference on Software 
Testing, Verification, and Validation, 2008. 

[24]  P. McMinn, "Search-based software test data generation: a survey: Research 
Articles," Softw. Test. Verif. Reliab., vol. 14, pp. 105-156, 2004. 

[25]  A. Arcuri, "It Does Matter How You Normalise the Branch Distance in Search Based 
Software Testing," presented at the Proceedings of the 2010 Third International 
Conference on Software Testing, Verification and Validation. 

[26]  S. Ali, H. Hemmati, N. E. Holt, E. Arisholm, and L. C. Briand, "Model 
Transformations as a Strategy to Automate Model-Based Testing - A Tool and 
Industrial Case Studies," Simula Research Laboratory, Technical Report (2010-
01)2010. 

[27]  S. Ali, L. C. Briand, and H. Hemmati, "Modeling Robustness Behavior Using 
Aspect-Oriented Modeling to Support Robustness Testing of Industrial Systems," 
Simula Research Laboratory, Technical Report (2010-03)2010. 

[28]  A. Arcuri and L. Briand., "A Practical Guide for Using Statistical Tests to Assess 
Randomized Algorithms in Software Engineering," presented at the International 
Conference on Software Engineering (ICSE), 2011. 

[29]  M. Egea, "EyeOCL Software," ed, 2010. 
 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


