
Master Thesis, Department of Geosciences 

 

 

Comparative study of the 
Nise formation seismic 
response between Møre 
and Vøring basin  
Case studies 

Juan Sáez Barrero 

 

 

 

  



  



 

 

Comparative study of the 
Nise formation seismic 
response between Møre and 
Vøring basin 
Case studies 

 

Juan Sáez Barrero 

 

Master Thesis in Geosciences 

Discipline: Geophysics 

Department of Geosciences 

Faculty of Mathematics and Natural Sciences 

University of Oslo 

December 2012 



 

 

© Juan Sáez Barrero, 2012 

Tutors: Isabelle Lecomte, (UiO) and Pujianto Lukito Harjo, (Repsol Norge A.S.). 

This work is published digitally through DUO – Digitale Utgivelser ved UiO 

http://www.duo.uio.no 

It is also catalogued in BIBSYS (http://www.bibsys.no/english) 

All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, 

without permission. 

 

 

http://www.duo.uio.no/
http://www.bibsys.no/english




 

 

 

V 

Acknowledgements 
I would like to express my gratitude to my supervisors Isabelle Lecomte (UiO/NORSAR) 

and Pujianto Lukito Harjo (Repsol Norge A.S.) for their support and encouragement 

throughout my thesis work. I am very grateful to them for their advices and feedbacks on my 

work. 

I also thank Repsol Norge A.S. for providing me the information and resources necessary to 

carry on this work and the opportunity to see the daily work in an oil company. I am also 

grateful to the staff at the exploration department for helping me whenever I had any 

technical issue. 

I would like to thank NORSAR for granting me access to their office and software. I would 

also like to thank the people of NORSAR who were very kind with me during the time that I 

have spent at their offices. 

Finally, my special thanks to my family for their support and patience, not only during this 

work, but also during the last years.   

 



 

 

 

VI 

Summary 
 

The Vøring and Møre Basins are located in the western part of the Norwegian Sea 

Continental margin and are characterized by huge thicknesses of Cretaceous sediments. The 

main play in the area is formed by Nise formation (Fm.) sandstones, charged by a 

hypothetical Cretaceous or proven Upper Jurassic source rock, and trapped along rotated 

fault blocks and Tertiary domes. 

The aim of the present work is to analyse and compare four case studies (two wells in 

Vøring Basin and two wells in Møre Basin) in which nearby seismic sections show variation 

in amplitude with incident angle within the Nise Fm. This variation was sometimes 

associated to the presence of hydrocarbon; however that was not always the case. 

Well data is used to create AVO (amplitude vs Offset)-AVA (amplitude vs angle) models, 

which are studied by using the three-term Aki-Richards approximation of the Zoeppritz 

equation, and then compared with the available seismic. Three of the models are able to 

replicate the same amplitude-variation trend observed in seismic. In the Vøring Basin cases, 

models show that the seismic response is largely affected by the presence of gas. On the 

other hand, in the Møre Basin cases, the increment in amplitude with incident angle is not as 

strong as it was initially observed and relates more to lithological change. 

In addition, 2D velocity models are built and seismic modelling (ray tracing) is used to 

investigate possible wave-propagation effects in the amplitude variation with incident angle. 

This study discuss that the commonly-accepted direct relation reflectivity-amplitude cannot 

be taken for granted and that other factors like overburden or the reflector shape must be 

considered before AVO-AVA studies. However, once the effect of these factors is not 

present or it is removed, the AVO-AVA results can be considered valid. This is the case of 

the present work, where no remarkable wave-propagation effects have been found. 
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Chapter 1: Introduction 
The Norwegian Sea continental margin is the area between parallels 62ºN and 69ºN (Blystad 

et al., 1995). Vøring and Møre Basins are located in the western part of the Norwegian Sea 

Continental margin and they have been explored since 1987 (first well, 6607/5-1) (Fjellanger 

et al., 2005).  

 

FIGURE 1. 1 - VØRING AND NORTHERN MØRE BASINS WITH THE MAIN GEOLOGICAL FEATURES. LOCATIONS OF WELLS USED 

IN THIS REPORT ARE IDENTIFIED WITH A RED STAR (MODIFIED FROM NORWEGIAN PETROLEUM DIRECTORATE – NPD- 

FACTMAPS). 



Chapter 1: Introduction 

 

 

2 

The Vøring and Møre Basins are characterized by a huge thickness of the Cretaceous 

sediments (Brekke et al., 1999). One of the prospective intervals in the area is the Upper 

Cretaceous sandstones, with three main formations: Lysing Fm., Nise Fm., and Springar Fm. 

(Brekke et al., 1999). The depositional environment interpretation for the Lysing Fm. varies 

from shallow to deep marine -submarine fan deposits- (Dalland et al., 1988). Nise Fm. and 

Springar Fm. are interpreted as deep-water fan systems (Fjellanger et al., 2005). 

Gas discoveries have been made in the northern Vøring Basin in the Nise Fm. and Springar 

Fm. (Luva, Asterix, and Gro). The Luva discovery shows a very distinct seismic response in 

the partial angle stacks, with increase in amplitude from near-angle stack to far-angle stack.  

In the northern Møre Basin and for the same formations, some wells have been drilled based 

on a similar bright amplitude in the far offset, but they failed to find reservoir sandstones. 

Instead, they found inter-bedded laminations of siltstones, mudstones and limestone streaks. 

1.1 Objectives  

In order to better understand the reasons for apparent similar seismic responses between the 

two basins within the same formations, while lithology and fluid contents appeared to be 

different, the Nise Fm. seismic response is especially investigated by modelling in this 

project. To achieve that, four case studies are carried out in the area, i.e., two in the Vøring 

Basin (reservoirs) and two in the Møre Basin (no reservoirs) (see Figure 1.1): 

Vøring Basin – reservoirs 

 Well 6707/10-1 (Luva discovery) is located in the Nyk High, in the North Vøring 

Basin, and it was the first well drilled in the Vøring Basin deep water area. Its main 

objective was to identify the presence, quality, and fluid content of the Nise Fm. 

(Norwegian Petroleum Directorate – NPD- factpages). It found gas in the Nise Fm. 

and therefore will represent the gas-saturated sand case in this study. 

 Well 6704/12-1 is located on the Gjallar Ridge, in North-West Vøring Basin, and it 

was drilled to test the petroleum potential of the Upper Cretaceous formations. The 

Latest Campanian sandstones reservoir quality was excellent (NPD factpages) but 

only found low gas saturations.  It will represent a marginally gas-saturated sand case 

in this study. 

 Note that in both Nyk High and Gjallar Ridge wells, the sandstones facies of Nise 

Fm. are referred as Delfin Fm. 

Møre Basin – no reservoirs 

 Well 6403/10-1 is located in the Solsikke dome structure, in the North-West Møre 

Basin. The main objective was a potential hydrocarbon accumulation above a flat 

event in the Nise Fm., but the well was dry. Mudstone and high content of siltstone 

(with high porosity and low permeability) were encountered in the Nise Fm. (NPD 

factpages). It represents a purely lithological flat event or “non-hydrocarbon flat 

spot” case in the study. 
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 Well 6404/11-1 is located in North Møre Basin. One of the drilling objectives was 

again the Nise Fm. sandstones, but they showed to be poorly developed (NPD 

factpages). It represents a no-sand reservoir case in this study.  

Partial-stack time migrated sections (Near stack, Near/mid stack,  Far/Mid stack, Far stack) 

are available close to the three last cases, showing variations in amplitude with angle 

according to observations (See appendix A and Figure 1.2).  

 

FIGURE 1. 2 - PICKED AMPLITUDES IN PARTIAL-STACK SECTIONS: NEAR STACK, NEAR/MID STACK, FAR/MID STACK, FAR 

STACK. 

The objectives of the present work were therefore to: 

 Check whether the observed variation in amplitude with angle can be reproduced 

through standard forward modelling of the wells (1D-model based). 

 Better take into account potential complex wave propagation effects by building 2D 

velocity models used for seismic modelling (ray tracing) in order to further study 

amplitudes. 

 Find a plausible explanation for the observed seismic behaviour in each of the wells. 

1.2 Database and Methodology 

Composite petrophysical logs of wells 6403/10-1 (Solsikke), 6404/11-1, 6704/12-1 (Gjallar 

ridge) and 6707/10-1 (Luva gas discovery) are used in this study as the input of forward 

modelling of the wells. These logs include: 

 Caliper (inch), which measures the diameter of the borehole and allows the 

identification of areas with potential erratic measurements during logging. 

 Compressional sonic (us/ft), from which P-wave velocity, Vp (m/s), is calculated. 
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 Shear sonic (us/ft), from which S-wave velocity, Vs (m/s), is derived.  

 Bulk density (g/cc). 

 Gamma ray (API) to estimate shale content. 

The Kelly Bushing level is 25 meters for all wells and depths are given in Measured Depth 

(MD, m). In addition check-shot correction is used to constrain the time-depth curve 

between seismic section and wire logs. 

 

FIGURE 1. 3 - WELLS AND SEISMIC LINES LOCATIONS SUPERIMPOSED ON THE MAIN GEOLOGICAL FEATURES. 

Three 2D seismic sections close to the wells are also used (MNR07-208, MNR06-7124 and 

MNR04-7452) (Figure 1.3):  

 Full-stack time migrated sections (appendix A) are interpreted for input to ray-tracing 

modelling (picked time-migrated horizons). They are also used to extract the wavelet 

in wells 6403/10-1 (Solsikke), 6404/11-1 and 6704/12-1 (Gjallar ridge), as it will be 

showed later in Chapter 3.  



Chapter 1: Introduction 

 

 

5 

 Partial-stack time migrated sections (appendix A) are also available. According to the 

Fugro processing report (confidential), the stacking velocity field is smoothed and 

interval velocities are calculated with Dix approximation. A bending-ray method is 

later used to identify incident angles and to produce a field of angle-based mute 

functions for each CMP (Common Mid-Point). Finally, angle-band mutes defined in 

Table 1.1 are applied and the result (each angle band) is stacked to produce these 

partial-stack sections. 

TABLE 1. 1 – ANGLE RANGE FOR EACH PARTIAL STACK SECTION 

Stack 

volume 

Inner angle 

(degrees) 

Outer angle 

(degrees) 

Near 5 20 

Near-Mid 15 30 

Far-Mid 25 40 

Far 35 50 

 

The partial-stack sections are qualitatively compared with AVO-AVA modelling output. 

Ray-tracing modelling is used to check the relation angle-offset and the validity of the 

selection of these angles. 

In Table 1.2, note that these seismic sections do not cross the wells; they are at a distance of 

between 20 m in well 6403/10-1 (Solsikke) and 330 m in well 6404/11-1. This represents a 

major uncertainty for wells 6704/12-1 (Gjallar ridge) (250 m) and 6404/11-1 (329 m) in this 

study. 

3D seismic cube BPN9601 (Figure 1.3) is used in well 6707/10-1 to extract the wavelet, as it 

will be explained in Chapter 3. 

TABLE 1. 2 – WELL/SEISMIC LINE RELATION. WELL POSITION (WELL PROJECTION ON THE LINE) AND WELL/SEISMIC LINE 

DISTANCE. 

Well Seismic line Position Distance (m) 

6403/10-1 MNR07-208 CPD 25162 19.48 

6404/11-1 MNR06-7124 CPD 42879 326.87 

6704/12-1 MNR04-7452 CPD 14168 248.66 

6707/10-1 BPN9601 Inline 1930, Xline 2130 0 
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1.2.1 Methodology 

Log edition  

The Interactive Petrophysics software is used for log quality control and editing. Some logs 

that are missing (e.g., shear sonic in well 6404/11-1) are generated from other existing input 

logs based on empirical relations and/or linear regressions, as will be explained.  

AVO-AVA modelling  

The Hampson-Russell software is used for AVO-AVA modelling. The Geoview module is 

the main interface of the Hampson-Russell software and it is the link between different 

Hampson-Russell modules: 

 Well log information is loaded in Well database and it is available for other utilities 

for further analysis. Check-shot correction and well correlations were done from 

here. 

 Seismic information is loaded in the Seismic Section module and horizons in areas of 

interest are interpreted from that module.  

 eLog module is used to upscale well log data by creating blocks of tens of meters. 

This is necessary because log data measures with a resolution of centimetres whereas 

seismic data with a resolution of up to a few tens of meters. 

 AVO Modelling is used to define different pore saturation scenarios (Fluid 

Replacement Modelling - FRM - based on Biot-Gassmann equations) and to generate 

synthetic of NMO-corrected CMP gathers (1D model).  

 Synthetic seismic data amplitudes are extracted and analysed with the AVO Analysis 

module. 

Interpretation 

The Charisma seismic module is used for interpretation of horizons that are later used to 

build velocity models for 2D ray-tracing modelling. These horizons correspond to the top of 

the principal groups and formations given by the well logs and are in accordance with NPD 

definitions.  

Ray-tracing modelling 

NORSAR-2D (N2D) is the ray-modelling software that was used here to first create 2D P-

wave velocity (Vp) models from interpreted time-migrated horizons and stacking velocities, 

and then to perform ray tracing in order to study propagation effects on seismic amplitudes. 

In this study,  

 Laterally-varying interval velocities are estimated from stacking velocities and full 

stack time-migrated horizons following the approach of Hubral (1980). 
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 In interaction between the N2D Velocity Estimator and Model Builder modules, time 

horizons are depth-converted by means of ray tracing using the estimated interval 

velocities. This is done in a layer per layer mode starting from the sea bottom. 

1.3 Structure of the report 

The report is structured in chapters and appendices. Chapters represent the workflow of the 

investigation, whereas appendices provide more detailed information about specific topics. 

Chapter 2 introduces the geological framework of the area, with the presentation of the main 

structures, the structural evolution and a stratigraphy description of Upper Cretaceous 

formations. 

Chapter 3 focuses on the study of amplitude variations as a function of incident angle. AVO-

AVA forward models are produced to determine the relationship between elastic rock 

properties and AVO-AVA responses. In the two discovery wells (Vøring Basin), various gas 

saturation scenarios are also modelled to investigate the effect of gas on seismic response. 

In Chapter 4, modelling wave-propagation effects which may potentially affect the observed 

amplitudes on the seismic results are studied by using ray tracing modelling. The advantage 

of a seismic model against AVO-AVA analysis is that lateral velocity variations (2D model) 

are taken into account. Incident-angle ranges associated with the various partial stack 

sections are also reviewed for control. 

Finally, in Chapter 5, the main conclusions of the project are presented after some 

discussions. 
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Chapter 2: Geological framework 

2.1 Structural description 

The Norwegian Continental Shelf (NCS) is divided into three main provinces for 

hydrocarbon exploration: North Sea, Norwegian Sea continental margin and Western 

Barents Sea. Norwegian Sea continental margin is located between parallels 62ºN and 69ºN. 

The main structural elements can be recognized in Figure 2.1, according to Blystad et al. 

(1995) naming convention. 

 

FIGURE 2. 2 - MAIN STRUCTURAL ELEMENTS IN NORWEGIAN SEA CONTINENTAL SHELF. MAIN STRUCTURES ARE 

HIGHLIGHTED. AREA IN THE BOX IS ZOOMED IN FIGURE 2. FIGURE MODIFIED AFTER BREKKE (2000). 
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The following structures can be distinguished (Figure 2.1): 

 Vøring and Møre Basins: Deep Cretaceous basins in the central part with a general 

NE-SW trending. They are characterized by a huge thickness of the Cretaceous 

sediments (Brekke et al., 1999). Træna Basin and Rås sub-Basin, in the northeast and 

southeast of the Vøring Basin, are also Cretaceous basins.   

 Vøring and Møre Marginal highs: Platforms to the west of the basins, with thick, 

Lower-Eocene basalt flows that make difficult to identify the underlying sediments 

(Brekke et al., 1999). 

 Trøndelag Platform: Upper Jurassic/Lower Cretaceous Platform to the east in the 

central area. 

 Tertiary Domes: From south to north, Helland Hansen Arch, Modgunn Arch, Vema 

Dome and Naglfar Dome. Most of them located in Vøring Basin. 

The Norwegian Sea continental margin is crossed by NW-SE trending lineaments: Jan 

Mayer, Surt and Bivrost. Jan Mayer acted as a barrier between tectonically active Vøring 

Basin and inactive Møre Basins during Upper Cretaceous and Tertiary (Brekke et al., 1999). 

2.2 Structural evolution 

The present structural configuration is a consequence of different extensional episodes that 

occurred in Upper Jurassic to Lower Cretaceous and Upper Cretaceous to Paleocene rifts 

following by compression after the Early Eocene continental break-up (e.g., Bukovics and 

Ziegler 1985; Færseth and Lien 2002). The NE-SW trend of the Vøring Basin is understood 

to come from the Caledonian suture system (Doré et al., 1997). 

The crustal extension, due to the Upper Jurassic-Lower Cretaceous rift phase and later 

thermal subsidence, opened the deep Basin area (Møre and Træna Basin and Rås sub-Basin). 

In Lower Cretaceous, at the east of the Træna Basin and Rås Sub-basin, Nordland and 

Sklinna Ridges (see 1 in Figure 2.2) became topographic highs and were eroded, providing 

sediments that were deposited in the restricted basin (along Møre, Træna, Rås rift axis) 

(Fjellanger et al., 2005).  

During the end of Lower Cretaceous and Upper Cretaceous, Jurassic faults were reactivated 

due to tectonic activity associated to a new extension (Upper Cretaceous-Paleocene rift). The 

basin increased the subsidence rate and the flanks were uplifted, producing tilting to the 

West in Trøndelag Platform and to the East in Gjalla Ridge (Brekke et al., 1999). Upper 

Cretaceous sediments were either deposited from Norway mainland or from East Greenland: 

 In the East of the basin, due to the erosion of rejuvenated Nordland Ridge footwall, 

the Lange Fm. sandstones were deposited into the basin during Cenomanian and 

Turonian times. During the Turonian-Coniacian, the basin was totally filled and, 

therefore, the Lysing Fm. (thick deep-water fan) was deposited over Dønna Terrace 

and Halten Terrace area (2 in Figure 2.2) without any distribution restriction. The 

source of sediments was Nordland Ridge. Lysing Fm. is composed by turbidites, 
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debrites and heterolithic sandstones and mudstones, with good reservoir properties 

and more connected than Lower Cretaceous sediments (Fjellanger et al., 2005). 

 The west part of the basin was controlled by Rym Fault Zone and Gjallar Ridge (3 in 

Figure 2.2). During Upper Cretaceous, Gjallar Ridge faults were active and Fenris 

Graben (3 in Figure 2.2) was developed to the west (Blystad et al., 1995). Hel 

Graben, Någrid Syncline and Vigrid Syncline (4 in Figure 2.2) subsided and 

extended.  

o Large and uniform basin-floor turbidite systems were deposited during the 

end of Upper Cretaceous: Nise Fm. in Campanian time and Springar Fm. in 

Maastrichtian time. A northeast Greenland provenance is suggested (Morton 

and Grant 1998), with Surt and Bivrost Lineaments controlling the sediment 

entry point position. 

o Some Basin areas were uplifted, faulted and eroded during Maastrichtian and 

Paleocene (Bukovics and Ziegler, 1985). Examples are Utgard High in the 

East, Nyk High in the center and Gjallar Ridge to the West (5 in Figure 2.2). 

During Early Eocene, extension was finalized and the continental separation between 

Norway and East Greenland produced an intense volcanism, with the eruption of basaltic 

lavas that flowed through eroded areas (Brekke et al., 1999). This volcanism produced 

extrusive and intrusive magmatic rocks that make difficult seismic imaging in West and 

North-west margins of the basin. 

 

FIGURE 2. 1 - VØRING BASIN STRUCTURAL EVOLUTION. STRUCTURES REFERRED IN THE TEXT ARE NUMBERED. FIGURE 

MODIFIED AFTER FJELLANGER ET AL. (2005) 



Chapter 2: Geological framework 

 

 

11 

During post Early Eocene to Late Pliocene, due to the separation and plate reorganization, 

the horizontal stress pattern changed from Northwest-Southeast extension to Northwest-

Southeast compression, resulting in the creation of tertiary domes and arches (Doré and 

Lundin 1996) (6 in Figure 2.2).  

In Late Pliocene and Quaternary, eastern margin of the basin experienced a rapid subsidence 

as a consequence of the Norwegian mainland uplift, producing an acceleration of 

hydrocarbon generation and migration in Halten Terrace areas (Koch and Heum 1995) and 

deposition of large amount of sediments on the surrounding shelf (Brekke et al., 1999). 

2.3 Stratigraphy description and depositional environment 

2.3.1 Upper Cretaceous Formations 

The Upper Cretaceous sandstones (Lysing Fm, Nise Fm and Springar Fm) (Figure 2.3), 

charged by a hypothetical Cretaceous source rock, and trapped along rotated fault blocks and 

Tertiary domes, represent one of the plays in Vøring and Møre Basins (Brekke et al., 1999). 

These reservoirs cover from slope to basin-floor fan deposits. 

 

FIGURE 2. 2 - VØRING BASIN STRATIGRAPHY (CRETACEOUS-CENOZOIC). LYSING FM, NISE FM AND SPRINGAR FM ACT AS 

RESERVOIRS AND SPEKK FM AS POSSIBLE SOURCE ROCK. FIGURE MODIFIED AFTER FJELLANGER ET AL. (2005) 
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Lysing Fm. 

The formation is present in Dønna Terrace and Halten Terrace, but not in Trøndelag 

Platform. The lithology is mainly fine to medium, occasionally coarse-grained, white-grey 

sandstones, partly carbonate-cemented and interbedded with shales (Dalland et al., 1988). 

The depositional environment is interpreted as a fan system, composed by turbidites, debrites 

and heterolithic sandstones and mudstones. Cores from wells close to Gjallar ridge are 

interpreted as mid basin-floor fan, cores from Dønna Terrace as lower-slope basin-floor fan, 

and cores from Nordland ridge as a part of the upper-slope fan system (Fugelli and Olsen 

2005). 

Nise Fm. 

The formation is present in the entire region, but is not in parts of the Nordland Ridge and on 

highs on the west of the Trøndelag Platform. The lithology consists mainly of grey and 

greyish-green claystones interbedded with carbonate and sandstone stringers (Dalland et al., 

1988).  

The depositional environment is interpreted as a fan complex (Figure 2.4). It was developed 

in Fenris and Hel Grabens, between Bivrost Lineament (North-east) and Gleipne Lineament 

(South-west). The deposits thicken towards the basin along the Surt Lineament and they 

reach the maximum thickness (approx. 900 m) at Nyk and Vema areas. The fan complex 

shales out to the Utgard High and the Fles Fault zone. (Fjellanger et al., 2005).  

 Cores in Nyk High are sheet sediments in a mid-fan position, with massive, stacked, 

normally graded sandstones deposited by turbidity flows with intervals of bioturbated 

mudstones deposited during periods of fan abandonment (Fjellanger et al., 2005).  

 Cores in Vema Dome are similar to cores in Nyk High, but with higher degree of 

amalgamation, meaning that it was in a mid-fan position, but closer to a channel 

(Fjellanger et al., 2005).  

 Cores in Utgard High are heterolithic sandstones, with massive sandstones at the top, 

representing a Basin-fan far from the provenance area (Fjellanger et al., 2005). 

Delfin Fm. 

The Delfin Fm. is present in several wells in the northern Vøring Basin. It is Early 

Campanian and Late Santonian in age and is formed by basin floor fan sandstones 

intercalated between Nise Fm. shales. Thicknesses can reach up to more than 1000 meters of 

good quality sandstones (NPD factpages). 

Springar Fm. 

The Springar Fm. is widespread in the area, but not present on parts of the Nordland Ridge. 

The lithology is mainly greyish-green claystones interbedded with stringers of carbonates 

and sandstones (Dalland et al., 1988). 
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Sediments were probably channelled by valleys between Nyk High and Gjallar ridge into the 

basin. The depositional environment is interpreted as a fan system, with the depocenter in the 

middle of Vøring Basin. Cores from wells in Gjallar Ridge area shows beds of normally 

graded sandstones with few mud interbeds deposited by density to turbidity flows. Their 

composition is very uniform and they are interpreted to be located in mid-to-outer fan 

(Fjellanger et al., 2005). 

 

 

FIGURE 2. 3 - CAMPANIAN PALEOGEOGRAPHY OF THE VØRING BASIN SHOWING A BASIN-FLOOR FAN SYSTEM DEPOSITED IN 

THE DEEP BASIN THROUGH SUBMARINE CANYONS. GREENLAND CONTINENTAL SHELF. AFTER FJELLANGER ET AL. (2005). 
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Chapter 3: AVO-AVA forward modelling 

3.1 Theoretical framework 

AVO-AVA is a technique that analyses the variations of amplitudes as a function of offset or 

incident angle in NMO-corrected CMP gathers along the reflector in order to extract rock 

properties. Ostrander (1984) showed indeed that amplitude varies with offset for 

hydrocarbon-saturated sandstones and, since then, AVO has become a common technique in 

hydrocarbon exploration. More recent works (e.g., Mavko et al., 1998; Avseth et al., 2005) 

proposed guidelines to use this technique in an effective manner.  

Appendix B gives a detailed theoretical framework for AVO-AVA forward modelling, 

including Zoeppritz (1919) equations and some linearized approximations, 1-D 

convolutional trace model, Gassmann (1951) theory, some effective medium models and 

AVO classification based on Rutherford and William (1989). 

In the AVO-AVA forward modelling, the amplitudes are calculated using the full Zoeppritz 

equation and synthetic traces (NMO-corrected CMP gathers) are generated for angles from 

0° to 50°. This modelling approach assumes horizontal layers without lateral velocity 

variations. Such AVO-AVA modelling is applied here for each of the four case studies. 

Different fluid saturation scenarios are modelled by using Gassmann theory.  

3.2 Methodology 

3.2.1 Data Preparation 

The main input log curves used for AVO-AVA modelling are upscaled density, Vp and Vs. 

Some preliminary work must be done on these curves before using them: 

 Correct density log from erratic measurements during logging. 

 Generate Vs curves from Vp curves in wells where it is not available. 

 Upscale logs. 

In addition, some values, such as porosity or matrix density, must be calculated in target 

intervals. In order to do it, volume of shale is first estimated from Gamma ray logs. 

Finally, a calibration or ‘tie’ between seismic data (in time) and well data (in depth) must be 

done to correlate seismic events with elastic properties measured in the well. This is 

performed in two steps: 

 Check-shot correction. 

 Wavelet extraction and well tie.  
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Logs Editing and QC 

Bulk density logs were corrected in areas where caliper showed large deviations and 

anomalously low values of density (see areas in the ellipse in Figure 3.1). The reason is that 

those measurements correspond to mud density, not to the formation.  

 

FIGURE 3. 1 - DENSITY CORRECTION IN WELL 6404/11-1 

Vp and Vs were directly calculated from compressional sonic (DTC) and shear sonic logs 

(DTS) from equations (3.1) and (3.2): 

  (   )  
   

   (     )
                                                                              (3. 1) 

  (   )    
   

   (      ) 
                                                             (3. 2) 

Shear-velocity estimation 

Shear sonic information was not available for the Springar Fm. in well 6403/10-1 (Solsikke) 

and in the whole depth range of well 6404/11-1. For this reason, Vs was estimated as follow: 

 Vs was computed from Vp for the Springar Fm. in well 6403/10-1 (Solsikke) by 

using the Greenberg-Castagna (1992) (Equation 3.3) empirical relation for shale, as 

this well mainly corresponds to shale according to Gamma ray logs (Figure 3.14). 

Note that Vp and Vs must be measured in km/s in this equation. 

                                                                                   (3. 3) 

 The corresponding output curve is compared with the real curve in areas where it 

was available (Figure 3.2). As they matched in the ellipse (Figure 3.2), a new curve 

was created by merging the original log below the top of the Nise Fm. and using the 

Greenberg-Castagna (Equation 3.3) derived curve in the Springar Fm.  

 Then, a linear regression in Vp/Vs plots was computed for the Springar Fm. and the 

Nise Fm. in well 6403/10-1 (Solsikke) to see the general Vp/Vs trend in the area 

(Figure 3.3). 

 Vs was computed from Vp in well 6404/11-1 by using two methods: 

o Linear regression for Vp/Vs relation computed in well 6403/10-1 (Figure 3.3). 

o Greenberg-Castagna (1992) empirical relation for shale (Equation 3.3). 
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 And, then, they were compared (Figure 3.4). Based on their observed similarity, the 

Greenberg-Castagna approximation was used to calculate Vs for well 6404/11-1. 

 

FIGURE 3. 2 - GREENBERG-CASTAGNA DERIVED CURVE (ORANGE) AND REAL DATA (PURPLE). THEY MATCH IN THE ELLIPSE. 

 

FIGURE 3. 3 - VP/VS CROSSPLOT FOR WELL 6403/10-1. LINEAR REGRESSION IS COMPUTED AND DISPLAYED FOR THE 

SPRINGER FM. AND THE NISE FM. 

 

FIGURE 3. 4 - VS CALCULATION FOR WELL 6404/11-1. NOTE HOW REGRESSION (ORANGE) AND GREENBERG-CASTAGNA 

(PURPLE) DERIVATIONS FIT IN SPRINGAR FM. AND NISE FM 
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Volume of shale (Vshale) estimation 

The total volumetric shale (Vsh) is calculated from the Gamma Ray (GR) log by using the 

equation: 

    
            

            
                                                                        (3. 4) 

where GRmin corresponds to the minimum value in the formation (more sandy areas) and 

GRmax corresponds to the maximum value in the formation (more shaly areas). 

 

FIGURE 3. 5 - GJALLAR RIDGE WELL (6704/12-1) VSH ESTIMATION. GR LOG IS DIVIDED INTO ZONES BASED ON 

FORMATIONS. FOR EACH ZONE, GRMAX AND GRMIN ARE DEFINED AND VSH IS COMPUTED. 

Check-shot correction 

Sonic log data (high-frequency, KHz) measures with a resolution of centimetres and seismic 

data (lower frequency, Hz) with a resolution of a few tens of meters. Sonic log is also 

dependent on the borehole conditions and it can only measure tens of centimetres into the 

formation, which might not be accurate for the estimation of interval velocity of the whole 

formation.  

The check shot is a borehole seismic data survey designed to measure the seismic traveltime 

from the surface to a given depth. With check-shot correction (Figure 3.6), sonic log is 

calibrated, i.e., the time-depth curve from the sonic log (and the sonic log/P-wave velocities) 

will match the time-depth relationship derived from seismic data after check-shot correction. 

The process is as follow: 

 From sonic/ Vp log, time is computed for specific depths. 

http://www.glossary.oilfield.slb.com/Display.cfm?Term=borehole%20seismic%20data
http://www.glossary.oilfield.slb.com/Display.cfm?Term=traveltime
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                                                                                            (3. 5) 

 Where tli, zli and Vli are time, depth and log velocity at position i. 

 Time-depth pairs (tci, zli) are recorded at the same position from the check shot 

(seismic frequency). 

 The difference Δt= tli - tci is used to correct sonic and time-depth well logs. 

 

FIGURE 3. 6 - GJALLAR RIDGE WELL (6704/12-1) CHECK-SHOT CORRECTION. DRIFT CURVE (CENTRE) IS INTERPOLATED TO 

SHOW THE DIFFERENCE BETWEEN THE TIME-DEPTH CURVE LOG AND CHECK-SHOT DATA. TIME-DEPTH CURVE (LEFT) AND 

SONIC/ VP (RIGHT) LOGS ARE CORRECTED USING THE DRIFT CURVE.   

Wavelet extraction and well correlation 

The wavelet extraction method (Figure 3.7) uses well information and seismic data close to 

that well. First, acoustic impedances are calculated from sonic and density logs and, then, 

reflectivity is derived from acoustic impedances. The wavelet is extracted by finding the 

operator which, convolved with the reflectivity, produces an output similar to the 

neighbouring seismic traces. A constant-phase method (Figure 3.7a) is selected because the 

Full-wavelet and Roy-White algorithm require high correlation between well logs and 

seismic data (Hampson-Russell manual). 

Well correlation (Figure 3.8) is used to improve the match between the well log time-depths 

and the measured P-wave seismic times. Synthetic traces derived from well log are shifted 

and manually stretched until they match seismic (i.e., they are well correlated). In this study 

and at that location, a correlation above 0.6 is considered good. However, in well 6404/11-1 

(Møre Basin) located at around 350 m from the line, a correlation of 0.5 is considered 

acceptable due to the distance between the well and the seismic line. Well correlations and 

extracted wavelets for the four lines/wells are available in appendix C.  
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(A) 

 

(B) 

FIGURE 3. 7 - WAVELET EXTRACTED FROM SOLSIKKE WELL (6403/10-1) AND SEISMIC LINE MNR07-208. (3.7A) WAVELET 

LENGTH IS 150 MS AND A CONSTANT-PHASE METHOD IS SELECTED. (3.7B) EXTRACTED WAVELET WITH A DOMINANT 

FREQUENCY AROUND 25 HZ. 

 

FIGURE 3. 8 - WELL CORRELATION FOR SOLSIKKE WELL (6403) AND SEISMIC LINE MNR07-208 SHOWING A CORRELATION 

OF 0.6 IN THE TARGET ZONE. 
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Upscaling  

Since high-frequency (KHz) log data measures with a resolution of centimetres and lower 

frequency seismic data (Hz) with a resolution of up to a few tens of meters, upscaling is 

needed to match both. The Backus average (Backus, 1962) is used for this purpose. In this 

method, elastic properties (bulk and shear modulus) are calculated from densities, Vp and Vs 

of stacked thin layers. Then, these modulus and densities are averaged (blocked) over large 

intervals according to the seismic resolution and, finally, the velocities of these intervals are 

computed from these averages. 

As the seismic vertical resolution is given by the tuning thickness, a good way to estimate an 

appropriate block size is the calculation of this thickness. An approximation of the tuning 

thickness in the Nise Fm. can be derived from the average Vp in the target zone and the 

dominant frequency (f0) of the wavelets extracted for each well. Based on Table 3.1, a block 

size of 25 m is defined for upscaling in wells 6403/10-1 (Solsikke) and 6707/10-1 (Luva 

discovery), 26 m for 6404/11-1 and 51 m for well 6704/12-1 (Gjallar Ridge). 

                 
 

 
  

  

   
                                                                          (3. 6) 

TABLE 3. 1 – UPSCALLING BLOCK SIZES BASED ON TUNING THICKNESS. 

Well name Vp average (m/s) f0 (Hz) Tuning thickness 

(m) 

Solsikke   

(6403/10-1)  

2500 25 25 

6404/11-1 2700 26 26 

Gjallar Ridge 

(6704/12-1) 

3700 18 51 

Luva discovery 

(6707/10-1) 

2800 28 25 

3.2.2 AVO-AVA Modelling 

AVO-AVA forward models are produced to determine the relationship between elastic rock 

properties and AVO-AVA seismic responses. The result is then compared qualitatively with 

the variation in amplitude with incident angle observed in partial-stack data (Appendix A). 

 The two wells in Vøring Basin found gas in the Nise Fm. sandstones with very 

different saturations:  Luva discovery well (6707/10-1) was a gas discovery with gas 

saturations around 90%, while Gjallar Ridge well (6704/12-1) found only residual 

gas (10% saturation). Therefore, both wells have been used to investigate the effect 

of various gas saturations in AVO-AVA response. Fluid Replacement Modelling is 

used to evaluate different scenarios. 
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 The two wells in Møre Basin, Solsikke (6403/10-1) and 6404/11-1, were dry, so the 

investigation focuses here on the effect of the lithology in the AVO-AVA response. 

Target zone intervals are located in the Nise Fm. for Møre Basin wells, and the Delfin Fm. 

(sandstones in Nise Fm.) in Vøring Basin wells. The depths for the intervals are presented in 

Table 3.2. 

TABLE 3. 2 – DEPTH INTERVALS FOR TARGET FORMATIONS (NISE FM. IN MØRE BASIN AND DELFIN FM. IN VØRING BASIN) 

Well name Start End 

Solsikke   (6403/10-1) 2825 m 3098 m 

6404/11-1 3181 m 3600 m 

Gjallar Ridge (6704/12-1) 3619 m 3885 m 

Luva discovery (6707/10-1) 2952 m 3100 m 

 

The properties within the target zone are: 

Matrix properties: 

 Mineral composition: Clay and Quartz. 

 The content of clay is determined by the volumetric shale (Vsh) (previously derived). 

 The content of Quartz is 100 – Vsh, where Vsh is expressed in percentage. 

 The mineral elastic properties are given in Table 3.3: 

TABLE 3. 3 – QUARTZ AND CLAY DENSITY (Ρ), BULK (K) AND SHEAR (µ) MODULUS 

Mineral ρ (g/cc) K (GPa) µ(GPa) 

Quartz  2.65  36.6  45 

Clay 2.58 20.9 6.9 

 

 The density is computed from: 

                  (     )                                                   (3. 7) 

 The bulk and shear modulus are calculated using the Hashin-Shtrikman (1963) 

average (Table B.1 in Appendix B). 

Fluid properties: 

 The density is computed from: 

                                                                      (3. 8)  
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where Si is the saturation of element i. 

 The fluid elastic properties in Table 3.4 are based on Batzle and Wang (1992): 

TABLE 3. 4 - BRINE AND GAS DENSITY (Ρ) AND BULK (K) MODULUS 

Fluid Type ρ (g/cc) K (GPa) 

Brine 1.09 2.38 

Gas 0.10 0.02 

 

 Fully and homogeneous pore saturation is assumed and, hence, Wood (1955) or 

Reuss (1929) average (Table B.1 in Appendix B) is used to calculate the bulk 

modulus of the fluid mixture. 

The porosity is derived from the density log and density of the matrix: 

  
            

              
                                                                                 (3. 9) 

The effective bulk for different gas saturations in Vøring Basin are calculated with the 

Gassmann (1951) equations (Equations B.27 in Appendix B) from in-situ conditions. 

In all the wells, synthetic traces for the different scenarios are generated using a Ricker 

wavelet and applying Zoeppritz equations (Zoeppritz, 1919). The average frequency of the 

Ricker wavelet is the same as the dominant frequency of the extracted wavelet. Geometrical 

spreading and transmission-loss effects are not considered in the model. The incident angle 

ranges from 0° to 50°. 

Synthetic traces are NMO-corrected CMP gathers displayed in normal polarity convention, 

i.e., on zero-phase seismic data an increase in acoustic impedance is a peak, whereas a 

trough is a decrease in acoustic impedance. 

3.3 Results 

3.3.1 Vøring Basin cases 

Gas-saturated sand case- Luva discovery (6707/10-1) 

Luva discovery (6707/10-1) is a gas discovery in the upper Delfin Fm. sandstones 

(sandstones within the Nise Fm.) with 90% gas saturation (in-situ saturation). Different gas 

saturations are used to study their effect in the AVO-AVA response. Pure brine, 90% gas-

10% brine (in-situ case), 70% gas-30% brine and 50% gas-50% brine cases are modelled. 

Wiggled traces are generated by blocking logs in sizes of 25 meters and for incident angles 

between 0° and 50°. In Figure 3.9, Delfin Fm. sandstones can be identified by their low 

values in Gamma Ray log and the presence of gas is observed in the highlighted area by the 



Chapter 3: AVO/AVA forward modelling 

 

 

23 

large resistivity log measurement. Vp, Vs, density and Poisson’s ratio for each of saturation 

scenario together with wiggled traces are displayed in Figure 3.10. 

 

FIGURE 3. 9 - GAMMA RAY, DENSITY, VP, VS, RESISTIVITY AND NEUTRON POROSITY FROM LUVA DISCOVERY WELL 

(6707/10-1) COMPOSITE LOG. POISSON'S RATIO, P-IMPEDANCE AND P-REFLECTIVITY ARE CALCULATED. AREA OF 

INTEREST BETWEEN THE DELFIN (INFORMAL) FM. TOP AND BASE OF THE RESERVOIR IS HIGHLIGHTED. 

 

FIGURE 3. 10 - ELASTIC PROPERTIES (VP, VS, DENSITY AND POISSON’S RATIO) FROM LUVA DISCOVERY WELL (6707/10-1) 

DISPLAYED TOGETHER WITH WIGGLED TRACES FOR  PURE BRINE , 90% GAS-10% BRINE (IN-SITU FLUID SATURATION), 70% 

GAS-30% BRINE, AND 50% GAS-50% BRINE SCENARIOS 
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The effective elastic properties of the reservoir for the different scenarios (Figure 3.10), 

together with those of the overburden layer, are listed in Table 3.5. This information is based 

on 25-m blocks. In addition, variations in percentage of elastic properties for different gas 

saturations compared with the pure brine case are shown in Table 3.6.  

TABLE 3. 5 – VP, VS, DENSITY AND POISSON’S RATIO IN OVERBURDEN LAYER AND IN RESERVOIR FOR DIFFERENT PORE 

SATURATIONS (LUVA DISCOVERY) 

Model Vp (m/s) Vs (m/s) ρ (g/cm3) Poisson’s 

Ratio 

Overburden 

layer 

2808 1443 2.445 0.305 

Pure Brine  2977 1482 2.324  0.332 

Gas 90%          

(in situ) 

2613 1544 2.146 0.234 

Gas 70% 2634 1529 2.186 0.235 

Gas 50% 2658 1516 2.223 0.236 

 

TABLE 3. 6 - VP, VS, DENSITY AND POISSON’S RATIO PERCENTAGE VARIATION FOR THE MODELLED GAS SATURATIONS WITH 

RESPECT TO THE BRINE CASE (LUVA DISCOVERY) 

Gas (%) %ΔVp %ΔVs %Δρ (g/cm3) %ΔPoisson’s 

Ratio 

90          

(in situ) 

-12.2 4.1 -7.7 -29.5 

70 -11.5 3.2 -5.9 -29.2 

50 -10.7 2.3 -4.3 -28.9 

 

Based on tables 3.5 and 3.6, the increment of gas saturation reduces the value of Vp (-12.2%) 

in the reservoir. It also reduces density, but in a lesser extent, whereas Vs slightly increases. 

The consequence of all these changes is a dramatic drop of Poisson’s value (29%). When the 

90% gas saturation case is compared with the 70% and 50% gas saturation ones, the changes 

in elastic properties are very small.  

To show the effects in seismic response of changes in elastic parameters due to different gas 

saturations, the variation of amplitude with incident angle for each model is plotted in Figure 

3.11. In this figure, the zero-offset reflection coefficient (amplitude) is, in absolute value, 

much lower in pure brine case than in all gas-saturated cases. This effect is due to the 

decrease of Vp and density in the gas-saturated reservoir, which produces an increment in the 

contrast between reservoir and overburden impedances. Note also how the amplitude is 

becoming more positive with incident angle in the pure-brine scenario (with a change in 

polarity) and becoming more negative in the gas-saturated scenarios. The reason, as it will be 

discussed later, is the difference between Poisson´s ratio in reservoir and overburden. Figure 
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3.11 also shows that for gas saturations higher than 50%, the variation in amplitude with 

angle is almost the same regardless of the gas saturation. This demonstrates that AVO-AVA 

response is insensible to the increment of gas for gas saturations higher than 50% and it is in 

accordance with the slight variation of Poisson´s ratio in all those cases (Table 3.6).   

 

FIGURE 3. 11 - ELASTIC PROPERTIES (VP, VS, DENSITY AND POISSON’S RATIO) FROM LUVA DISCOVERY WELL (6707/10-1) 

DISPLAYED TOGETHER WITH WIGGLED TRACES FOR  PURE BRINE , 90% GAS-10% BRINE (IN-SITU FLUID SATURATION), 70% 

GAS-30% BRINE, AND 50% GAS-50% BRINE SCENARIOS 

Marginally gas saturated sand case - Gjallar Ridge (6704/12-1) 

Gjallar Ridge well (6704/12-1) is a dry well with residual gas and the Delfin Fm. represents 

the potential reservoir. The AVA response for low-gas saturations is studied at the top of the 

cleaner sand interval which is marked in blue in Figure 3.12 and Figure 3.13. The scenarios 

modelled are pure brine, 5% gas-95% brine, 10% gas-90% brine (in-situ fluid saturation), 

and 20% gas-80% brine. Wiggled traces are generated by blocking logs in sizes of 51 m and 

for incident angles between 0° and 50°. In Figure 3.12, Delfin Fm. sandstones can be 

identified by their relative low values in Gamma Ray log and the presence of marginal gas is 

perceived in the highlighted area by the slight increment in resistivity log measurement. Vp, 

Vs, density and Poisson’s ratio for each of saturation scenario together with wiggled traces 

are displayed in Figure 3.13. The target reflector is marked in red. 

The effective elastic properties for different gas saturation scenarios in the selected clean-

sand interval and those of the layer above are listed in Table 3.7. In addition, variations in 

percentage of elastic properties for different gas saturations compared with the pure brine 

case are shown in Table 3.8. 
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FIGURE 3. 12 - GAMMA RAY, DENSITY, VP, VS, RESISTIVITY AND NEUTRON POROSITY FROM GJALLAR RIDGE WELL 

(6704/12-1) COMPOSITE LOG. POISSON'S RATIO, P-IMPEDANCE AND P-REFLECTIVITY ARE CALCULATED. AREA OF 

INTEREST BETWEEN DELFIN (INFORMAL) FM TOP AND NISE 2 FM 2 IS HIGHLIGHTED. 

 

FIGURE 3. 13 - ELASTIC PROPERTIES (VP, VS, DENSITY AND POISSON’S RATIO) FROM GJALLAR RIDGE WELL (6704/12-1) 

DISPLAYED TOGETHER WITH WIGGLED TRACES FOR  PURE BRINE , 5% GAS-95% BRINE, 10% GAS-90% BRINE (IN-SITU FLUID 

SATURATION) AND 20% GAS-80% BRINE SCENARIOS. 
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TABLE 3. 7 - VP, VS, DENSITY AND POISSON’S RATIO IN OVERBURDEN LAYER AND IN RESERVOIR FOR DIFFERENT PORE 

SATURATIONS (GJALLAR RIDGE) 

Model Vp (m/s) Vs (m/s) ρ (g/cm3) Poisson’s Ratio 

Layer above 3740 2101 2.542 0.267 

Pure Brine 3735 2111 2.480 0.264 

Gas 5% 3558 2112 2.474 0.220 

Gas 10% (in situ) 3535 2115 2.470 0.216 

Gas 20% 3532 2119 2.459 0.212 

 

TABLE 3. 8 - VP, VS, DENSITY AND POISSON’S RATIO PERCENTAGE VARIATION FOR THE MODELLED GAS SATURATIONS WITH 

RESPECT TO THE BRINE CASE (GJALLAR RIDGE) 

Gas (%) %ΔVp (m/s) %ΔVs 

(m/s) 

%Δρ (g/cm3) %ΔPoisson’s 

Ratio 

5 -4.7 0.07 -0.24 -16.7 

10 (in situ) -5.3 0.20 -0.4 -18.2 

20 -5.4 0.42 -0.8 -19.7 

 

In Table 3.8, note how the effect of residual gas (5%) reduces the value of Vp (-4.7%) 

whereas Vs and density hardly change. This illustrates the insensitivity of Vs to pore fluid. 

The overall consequence is a dramatic drop of Poisson’s value (17%). When the gas 

saturation is increased to 10% or 20%, the changes in elastic properties are more limited.  

To show the effects in seismic response of changes in elastic parameters due to low-gas 

saturations, the variation of amplitude with incident angle for each model is plotted in Figure 

3.14.  

 

FIGURE 3. 14 - AMPLITUDE VS INCIDENT-ANGLE IN GJALLAR RIDGE WELL (6704/12-1) FOR PURE BRINE, 10% GAS-90% 

BRINE (IN-SITU FLUID SATURATION), 20% GAS-80% BRINE, AND 30% GAS-70% BRINE SCENARIOS. 

In Figure 3.14, the zero-offset reflection coefficient (amplitude) is, in absolute value, lower 

in pure-brine case than in all gas-saturated cases. This difference is due to the drop of Vp and 

density with residual gas, which produces a decrease in the impedance of the layer and, 



Chapter 3: AVO/AVA forward modelling 

 

 

28 

hence, an increment in the contrast between the impedance of the layers above and below the 

reflector. Note also how the amplitude decreases (increases the absolute value) more rapidly 

in gas-saturated scenarios than in pure-brine scenario. The reason is the lower Poisson´s ratio 

value in the reservoir and the overburden. In addition, the variation in amplitude with angle 

is very similar regardless of the gas saturation. This demonstrates that AVO-AVA response 

is insensible to the increase of gas saturation when it is higher than 10% (moreover, in this 

case, the 5% gas saturation case also shows similar response).    

3.3.2 Møre Basin cases 

Non-hydrocarbon flat event case - Solsikke (6403/10-1)  

Based on NPD factpages, Solsikke well (6403/10-1) was drilled to test the hydrocarbon 

potential over a flat seismic event in the top the Nise Fm. (Appendix D). The result was a dry 

well with neither sand reservoir nor gas saturation. This is seen in Figure 3.15, where the 

Nise Fm. (highlighted) shows no sand interval in the Gamma Ray log and no presence of 

hydrocarbon in the resistivity log. In the available seismic data, the flat event was observed 

at 3560 ms. It is a positive amplitude that in partial stack data (Appendix A) shows a slight 

increment with angle.  

The AVA response for pure brine saturation is modelled in the top of Nise Fm. in order to 

check whether this increment can be reproduced. For this purpose, wiggled traces are 

generated by blocking logs in sizes of 25 meters and for angles between 0° and 50°. Vp, Vs, 

density, acoustic impedance and Poisson’s ratio for 25-m blocks, together with wiggled 

traces, are displayed in Figure 3.16, where an increase in amplitude with angle can be 

observed in the flat event (red line). 

 

FIGURE 3. 15 - GAMMA RAY, DENSITY, VP, VS, RESISTIVITY AND NEUTRON POROSITY FROM SOLSIKKE WELL (6403/10-1) 

COMPOSITE LOG. POISSON'S RATIO, P-IMPEDANCE AND P-REFLECTIVITY ARE CALCULATED. AREA OF INTEREST BETWEEN 

NISE FM. TOP AND KVITNOS FM. TOP IS HIGHLIGHTED. 
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FIGURE 3. 16 - P-IMPEDANCE AND POISSON’S RATIO IN SOLSIKKE WELL (6403/10-1) ARE DISPLAYED FOR BLOCKING OF 25 

METERS. SYNTHETIC SEISMIC TRACES FOR ANGLES BETWEEN 0 AND 50 ARE ALSO DISPLAYED FOR BLOCKING OF 25 

METERS. 

The Luva gas discovery well (6707/10-1 in Vøring Basin) has a flat event (Appendix D) at 

the base of the reservoir due to a fluid contact (gas-water contact; GWC), whereas the flat 

event observed in the Solsikke well (6403/10-1, no-discovery in Møre Basin) (Appendix D) 

is not associated with hydrocarbon accumulation. In order to compare the two cases, the 

effective elastic properties along the flat events (above and below) in both wells are 

evaluated in Table 3.9. This information is based on 25-m blocks. In addition, variations in 

elastic properties along the flat event are also calculated for both cases in Table 3.10. 

 

TABLE 3. 9 - VP, VS, DENSITY AND POISSON’S RATIO ABOVE AND BELOW FLAT EVENTS OBSERVED AT THE RESERVOIR BASE 

OF LUVA GAS DISCOVERY WELL (6707/10-1) AND AT SOLSIKKE WELL (6403/10-1) 

 Vp (m/s) Vs (m/s) ρ (g/cm3) Poisson’s Ratio 

Solsikke               

(above flat event) 

2387 1040 2.26 0.382 

Solsikke               

(below flat event) 

2494 1057 2.275 0.389 

Luva gas discovery    

(above flat event) 

2755 1646 2.17 0.234 

Luva gas discovery    

(below flat event) 

3042 1647 2.23 0.291 
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TABLE 3. 10 - VP, VS, DENSITY AND POISSON’S RATIO VARIATIONS ALONG THE FLAT EVENT IN LUVA GAS DISCOVERY 

(6707/10-1) AND IN SOLSIKKE WELL (6403/10-1) 

 ΔVp (m/s)  ΔVs (m/s) Δρ (g/cm3) ΔPoisson’s Ratio  

Solsikke 107 17 0.015 0.007 

Luva gas 

discovery     

287 1 0.06 0.057 

 

Based on Table 3.10, the increase in Vp and density is higher in the base of the Luva gas 

discovery (6707/10-1), whereas Solsikke well (6403/10-1) shows a notable increase in Vs. 

The result is a higher change in Poisson’s ratio in the Luva discovery (6707/10-1, in Vøring 

Basin) than in the Solsikke well (6403/10-1, no-discovery in Møre Basin). 

When comparing the variation of amplitude with incident angle for both wells (Figure 3.17), 

the amplitude increases in both Luva gas discovery (6707/10-1) and Solsikke  well (6403/10-

1) for large angles. However, this increment is much lower in Solsikke (6403/10-1) due to a 

lower Poisson ratio variation, as it will be discussed later.  

 

FIGURE 3. 17 - AMPLITUDE VS INCIDENT ANGLE VARIATION IN SOLSIKKE WELL (6403/10-1) AND LUVA DISCOVERY WELL 

(6707/10-1). 

No-sand reservoir case (6404/11-1) 

Well 6404/11-1 is a dry well with poor sand presence. This is observed in Figure 3.18, where 

the Nise Fm. (highlighted) does not show any sand interval in the Gamma Ray log and there 

is no hydrocarbon sign in the resistivity log. The absolute values of amplitudes, both positive 

and negative, increase with incident angle in partial-stack data (appendix A). The AVA 

response for pure-brine saturation is studied on top of the Nise Fm. in order to check whether 

the observed amplitude variation with angle can be reproduced. For this purpose, wiggled 

traces are generated by 26-m blocking logs for angles between 0° and 50° (Figure 3.19).  
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FIGURE 3. 18 - GAMMA RAY, DENSITY, VP, VS, RESISTIVITY AND NEUTRON POROSITY FROM WELL 6404/11-1 COMPOSITE 

LOG. POISSON'S RATIO, P-IMPEDANCE AND P-REFLECTIVITY ARE CALCULATED. AREA OF INTEREST BETWEEN NISE FM. TOP 

AND 3600 METERS IS HIGHLIGHTED. 

 

FIGURE 3. 19 - P-IMPEDANCE AND POISSON’S RATION ARE DISPLAYED FOR BLOCKING OF 26 METERS. SYNTHETIC SEISMIC 

TRACES FOR ANGLES BETWEEN 0 AND 50 ARE ALSO DISPLAYED. 

In Figure 3.19, the amplitude seems to be constant for all traces in the target reflector. The 

effective elastic properties above and below the positive target reflector (see Figure 3.19) are 
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listed in Table 3.11, and variations in elastic properties between layers are in Table 3.12. In 

Table 3.12, an increase in Vp, density (and hence, impedance) and Vs is observed. However, 

the change in Poisson’s ratio is small and negative, opposite to what was found in the base of 

Luva discovery (6707/10-1) and the Solsikke well (6403/10-1). 

TABLE 3. 11 - VP, VS, DENSITY AND POISSON’S RATIO ABOVE AND BELOW POSITIVE REFLECTOR OBSERVED IN WELL 

6404/11-1 

 Vp (m/s) Vs (m/s) ρ (g/cm3) Poisson 

Ratio 

Above positive  

reflector  

2610 1139 2.33 0.381 

Below positive  

reflector  

2660 1177 2.34 0.377 

 

TABLE 3. 12 - VP, VS, DENSITY AND POISSON’S RATIO VARIATIONS ALONG THE POSITIVE REFLECTOR IN WELL 6404/11-1 

 ΔVp (m/s)  ΔVs (m/s) Δρ (g/cm3) ΔPoisson’s Ratio  

6404/11-1 50 38 0.01 -0.004 

 

Figure 3.20 shows that the amplitude remains approximately constant in well 6404/11-1 for 

all angle ranges. For comparison, variation of amplitude with angle for Luva gas discovery 

well (6707/10-1) is also plotted.  

 

FIGURE 3. 20 - AMPLITUDE VS ANGLE VARIATION IN WELL 6404/11-1 WITH BLOCK 25M AND WELL 6707/10-1 
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3.4 Discussion 

The 3-terms Aki-Richards (1980) approximation (first-order linearized simplification of the 

Zoeppritz equation) can be rearranged and interpreted in terms of different incident angles 

(Avseth et al., 2005): 

   ( )         
     (           )                                                 (3. 10) 
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 is the dominant term in far angles, near the critical angle.                  (3. 13) 

The Poisson’s ratio is related to the Vp/Vs ratio as: 
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From the equation 3.14, it can be inferred that a decrease in Poisson ratio (decrease in 

(Vp/Vs)
2
) will imply an increase in (Vs/Vp )

 2
 and, hence, a more negative AVO gradient (G) 

(equation 3.12). As a consequence, negative amplitudes will become even more negative 

when angle increases. 

On the other hand, if the Poisson ratio increases (increase in (Vp/Vs)
2
 ratio), it will imply a 

decrease in (Vs/Vp)
2
 and the effect of negative second term in AVO gradient will be much 

lower (equation 3.12). 

3.4.1 Gas effect in Vøring Basin cases 

In the top of the Delfin Fm. in Luva gas discovery (well 6707/10-1) and clean-sand case in 

Gjallar Ridge well (6704/12-1 with residual gas), it was found that the effect of gas produced 

a decrease in Vp and density. Since Vs is less sensitive to pore fluid, the Poisson’s ratio 

decreased dramatically. A cross-plot of Vp versus Poisson’s ratio and Vs versus Poisson’s 

ratio for in-situ conditions in both cases illustrates this effect (Figure 3.21 and Figure 3.22): 

 In Figure 3.21a, low values of Vp and Poisson’s ratio corresponds with the reservoir 

in Luva discovery whereas, in Figure 3.21b, the reservoir can be identified due to the 

low value of Poisson’s ratio, but Vs shows normal values.  

 In Figure 3.22a, low values of Vp and Poisson’s ratio corresponds with sands with 

residual gas in Gjallar Ridge well. In Figure 3.22b, these sands can be identified due 

to the low value of Poisson’s ratio, but Vs shows normal values. 
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(A)  

 

(B)  

FIGURE 3. 21 - (A) VP VS POISSON´S RATIO AND (B) VS VS POISSON´S RATIO (LUVA GAS DISCOVERY). BOTH DEPTH COLOUR 

CODED. 
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(A)  

 

(B)  

FIGURE 3. 22 - (A) VP VS POISSON´S RATIO AND (B) VS VS POISSON´S RATIO (GJALLAR RIDGE, MARGINALLY GAS 

SATURATED SAND CASE). BOTH DEPTH COLOUR CODED. 

The variations in elastic properties along the top of the reservoir in Luva gas discovery (well 

6707/10-1) and the top of the clean sands in, marginally gas saturated,  Gjallar Ridge well 

(6704/12-1) for in-situ cases are listed in table 3.13. 

TABLE 3. 13 - VP, VS, DENSITY AND POISSON’S RATIO VARIATIONS ALONG TOP REFLECTORS IN LUVA GAS DISCOVERY 

(6707/10-1) AND GJALLAR RIDGE (6704/12-1) 

 ΔVp (m/s) ΔVs (m/s) Δρ (g/cm3) ΔPoisson’s Ratio 

Luva 

(6707/10-1) 

-195 101 -0.299 -0.071 

Gjallar 

Ridge 

(6704/12-1) 

-205 14 -0.072 -0.051 

 



Chapter 3: AVO/AVA forward modelling 

 

 

36 

The results observed in both models can be explained based on equation 3.10 and on the 

variation of the elastic properties (Table 3.13). The Rp, G and F coefficients in equation 3.10 

are calculated in appendix E: 

 The normal-incidence reflection coefficient (Rp) is negative in both cases due to the 

decrease in density and Vp, i.e., a decrease in acoustic impedance. 

 The AVO gradient (G) is negative due to the decrease in Vp and the increase in Vs.  

 For far angles, F is negative due to a decrease in Vp. 

 This combination produces negative amplitudes at zero incident angle that decrease 

(increase in absolute value) with angle. This is what the model for in-situ cases 

shows (figures 3.11 and 3.14) and also what is observed in real data (see section 

3.4.4). 

 The effect on residual gas and high-gas saturation leads to a very similar decrease in 

Vp and Poisson’s ratio. Hence AVO-AVA analysis will not be able to discriminate 

gas saturations between 10% and 90%. 

3.4.2 Flat event analysis in Solsikke and Luva gas discovery reservoir base 

In the flat event in Solsikke well (6403/10-1 in Møre Basin) (appendix D), it was found that 

Vp, Vs and density increase below the reflector and Poisson’s Ratio also slightly increases.  

The observed results in synthetic traces for this case can be explained based on equation 3.10 

and the variation of the elastic properties (Table 3.10). The Rp, G and F coefficients in 

equation 3.10 are calculated in appendix E:  

 The normal-incidence reflection coefficient (Rp) is positive in both cases due to the 

increase in density and Vp, i.e., the increase in acoustic impedance. 

 The AVO gradient (G) is positive and very small. The reason is that the increase in 

Vp is compensated by the second term. This term is negative due to the positive and 

relatively large variation in Vs and the positive variation in density.  

 For large angles, F is positive due to an increase in Vp. 

 This combination produces positive amplitudes at zero incident angle that maintains 

almost constant for intermediate incident angles, but increase slightly for large 

incident angles. This is what the model shows and also what it is observed in real 

data (see section 3.4.4). 

When flat events (appendix D) in Solsikke (Møre Basin) and the reservoir base in Luva gas 

discovery (Vøring Basin) were compared, the result was a variation of amplitude with 

incident angle in both cases, but higher in the Luva gas discovery (Figure 3.17). These 

results can be explained based on the equation 3.10 and the variation of the elastic properties 

(Table 3.10):  

 Both wells show an increase in Vp velocities, density and Poisson’s ratio, but it is 

much higher at the Luva gas discovery due to the gas-water transition.  
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 Solsikke well shows an increase in Vs while, in the Luva gas discovery, it is almost 

constant. Vs is more or less fluid-insensitive (Avseth et al., 2005) and therefore does 

not change between gas-saturated sandstones and brine-saturated sandstones, 

whereas lithological/diagenetics effects will change Vs, as it might happen in 

Solsikke well (6403/10-1). However, a more detailed rock physics study is necessary 

to confirm this statement. 

 When Rp, G and F factors are calculated (appendix E), all of them are larger in the 

Luva gas discovery (Vøring Basin) than in the Solsikke well (Møre Basin). 

 The effect in seismic response is a higher amplitude variation with incident angle in 

the Luva gas discovery due to a larger positive variation of Vp and a lower effect of 

density and Vs (Figure 3.17). 

3.4.3 No-sand reservoir case in Møre Basin 

In Well 6404/11-1 (Møre Basin), amplitude in synthetic traces showed to remain 

approximately constant. The result also showed increases in Vp, Vs and density and a very 

small decrease in Poisson´s ratio. The observations in synthetic traces can be explained 

based on equation 3.10 and the variation of the elastic properties through the reflector (Table 

3.12) (The Rp, G and F coefficients in equation 3.10 are calculated in appendix E): 

 Normal-incidence reflection coefficient (Rp) is positive and small due to the slightly 

increase in density and Vp, i.e., the increase in acoustic impedance. 

 AVO gradient (G) is negative due to a relative small variation in Vp and density and a 

notable increase in Vs.  

 For large angles, F is slightly positive due to a relative small increase in Vp. 

 This combination produces positive amplitudes at zero offset that slightly decrease 

with offset. For large angles there is a slightly increase with offset. However we can 

consider that there is almost no change in amplitude with angle. 

3.4.4 Qualitative comparison with seismic data 

In this section, a comparison between partial-stack time-migrated sections and synthetic 

NMO-corrected CMP gathers is done for each well. As in the partial stacks a range of 

incident angles is stacked, migrated and loaded in Charisma database, this comparison is 

qualitative, i.e., only the trends are compared (Figure 3.23).  

Vøring Basin cases 

Luva gas discovery (Well 6707/10-1, Nyk High) 

The well was a gas discovery and the synthetic model shows a class-III AVO anomaly. 

Unfortunately, there is no partial-stack data to compare with. However, Figure A.5 

(appendix A) seems to show higher amplitudes in far-angle stack (large incident angles) than 

in near-angle stack (small incident angles). 
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(A) 

 

(B) 

FIGURE 3. 23 – (A) AMPLITUDE VARIATION WITH INCIDENT ANGLE IN SYNTHETIC MODELS AND (B) PICKED AMPLITUDES IN 

PARTIAL STACK DATA (NEAR, NEAR/MID, FAR/MID, FAR) 

Gjallar Ridge (Well 6704/12-1, marginally gas saturated sand) 

The well was dry at the Nise Fm but petrophysical analysis shows residual gas saturations of 

approximately 10%. The partial stacks, from a seismic line located 248 m north of the well, 

are shown in Figure A.6 (appendix A). The synthetic model (Figure 3.23a) shows  that the 

amplitude becomes more negative with angle and the partial stacks show that the amplitude 

slightly becomes more negative up to Far/Mid angles (Figure 3.23b), i.e., both follow the 

same trend. However, for the Far partial stack section, this is not the case because the 

amplitude (in module) decreases, right the opposite to the synthetic model result. Possible 

explanations for the different results (partial stacks vs synthetic model) are: 

1. Partial stacks shows at the Delfin interval how the sandstones layers are pinching 

out towards the well. This produces tuning effects that create interferences and 

therefore mask the AVO variation. Note how in the far stack, due to its lower 

frequency content, the vertical resolution is not enough to resolve the pinch-out. 

2. The synthetic model neglects noise effects that could be present in the seismic 

and could mask the AVO variation. 

3. The synthetic model does not consider lateral velocity variations which could 

have an impact at larger angles.  

Møre Basin cases 

Solsikke (Well 6403/10-1) 

The well was drilled to test a flat event at the Nise Fm, but it found no hydrocarbons and 

poor reservoir properties. The partial stacks, from a seismic line located 19-m away of the 

well, are shown in Figure A.7 (Appendix A). The synthetic model shows a slight increase in 

amplitude with angle at the flat event location and a similar effect is observed in the partial 

stacks (Figure 3.23a and Figure 3.23b). In this case the seismic data is very close to the well 

location so a direct comparison is valid. 
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Well 6404/11-1 

The well was dry at the Nise Fm and showed very poor reservoir properties.  The partial 

stacks, from a seismic line located 326 m away of the well, are shown in Figure A.8 

(Appendix A). The synthetic model shows a positive reflection due to the increase in density 

and Vp with almost no amplitude variation with incident angle (Figure 3.23a). However, 

partial stacks show a positive reflection which increases with angle (Figure 3.23b). Possible 

explanations for the different results (partial stacks vs synthetic model) are: 

1. As in Gjallar Ridge well (6704/12-1) case, noise effects and lateral velocity 

variations could have masked the AVO variation.  

2. As the well is not located at the seismic line, there might be small lateral changes 

in lithology that could change the seismic response such as pinch-outs, narrow 

channels or faults. A good solution for imaging these potential geological features 

would be a 3D seismic coverage.  

During this chapter, amplitude has been considered as a scaled version of reflectivity. 

However, wave propagation may produce amplitude variations not necessary related to 

reflectivity. In addition, partial stack sections have been compared with AVO-AVA model 

results. These sections are derived from angle-based mute functions as it was explained in 

the introduction. In the next chapter, the incident-angle ranges associated with angle mute 

functions will be reviewed and the wave propagation effects will be investigated by 2D 

seismic modelling. 
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Chapter 4: Ray-Tracing modelling 

4.1 Theoretical Framework 

Ray tracing is an approximation of the general seismic wave equation solution. It is valid for 

high frequencies and, hence, for short wavelengths. This limitation has practical effects 

when generating models (Gjøystdal et al., 2007): 

 The seismic wavelength must be significantly smaller than the smallest details of the 

model (e.g., radius of curvature and length of the interfaces or layer size). In other 

words, the model must only represent large scale elements and characteristics and is 

therefore a so-called macro model. 

 Interfaces and elastic properties must therefore be smoothed to remove small details 

and variations. 

 During depth conversion and velocity estimation, time horizons and velocity 

functions must be smoothed as well. 

Geometrical ray tracing 

In geometrical ray tracing, rays are reflected and transmitted following Snell’s law at all 

interfaces. The ray source, the initial ray direction and the ray code must be defined from the 

beginning. The ray code defines the rules which establish the ray (reflected or transmitted, P 

or S) that is generated when an incident ray reaches an interface. Geometrical ray tracing can 

be implemented in two ways: 

 

 Kinematic ray tracing – Raypaths and traveltimes along the raypath can be calculated 

with this method. The inputs are the wave velocities (Vp and Vs) in each layer of the 

model. The process is as follow: 

o Within a layer, raypaths and traveltimes are calculated by solving the 

kinematic ray-tracing differential equation system. The result depends on the 

velocity function within the layer (e.g., if velocity is constant, the result is a 

straight line). 

o When the ray is close to the next layer, the intersection point at the interface 

is calculated. 

o At the interface, the ray code is checked to determine which rays will follow. 

The ray directions are given by the Snell’s law.  

o These previous three steps are repeated in each layer until a stop criterion is 

satisfied. This criterion is defined in the ray code. Examples of stop criteria 

are when the ray gets specific traveltimes, or when the critical angle is 

reached, etc. 

 Dynamic ray tracing – This method is applied after kinematic ray tracing to compute 

along a raypath seismic wavefield properties such as wavefront curvature and 

amplitude coefficients. The inputs are the wave velocities (Vp and Vs) and the density 

in each block of the model. 
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The overall ray-tracing process (Figure 4.1) used to generate all parameters is as follow 

(NORSAR-2D manual): 

 Raypath and traveltimes along the raypath are calculated with the kinematic ray 

tracing. Values of geometrical spreading factors (G), wavefront curvatures (K) and 

amplitude coefficients (A real, B imaginary) are also provided in the source point. 

 Within each layer, G, K, A, and B are computed along the raypaths. 

 At the interfaces: 

o The change in G and K values due to transmission and reflection is calculated 

by wavefront conversion.  

o The new transmission and reflection coefficients are calculated by amplitude 

conversion. 

 

FIGURE 4. 1 - SCHEMATIC REPRESENTATION OF DYNAMIC RAY TRACING (NORSAR-2D MANUAL) 

Seismic modelling: two-point ray tracing 

In a seismic survey, a source generates a pulse that is recorded by some receivers and, hence, 

only raypaths between the source and given receivers are of interest. However, the initial ray 

direction for a ray which arrives at a specific receiver is unknown. In order to determine the 

initial direction, the “shooting method” is used in an iterative manner: 

 A ray fan is shot in a large range of directions with a given sampling in shooting 

direction. 

 Rays passing close to receivers are selected and a denser fan of rays is produced for 

near directions. This process is repeated until the source-receiver ray is found within 

a given accuracy (maximum distance to the given receiver position, e.g., 10 cm). For 

the iterative process, NORSAR-2D uses the “paraxial method”, where every new ray 

is calculated from the previous ray spreading factor by using dynamic ray tracer. 
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When all source-receiver rays are found, all parameters calculated by ray tracing (e.g., 

traveltimes, complex amplitudes, polarization, etc.) are stored in an “event” file, each event 

corresponding to one arrival for the corresponding shot/receiver pair. Such parameters might 

be used directly for various analyses, as will be done in the present work to study amplitudes 

and reflectivity as function of incident angle, etc. Eventually, synthetic seismograms can be 

calculated, using the parameters in an event file and a selected time pulse, and compared 

with real data. For each source/receiver pair, a trace is obtained by convolving the time pulse 

with a reflectivity log containing all arrivals recorded at the receiver and applying the 

complex amplitudes obtained by dynamic ray tracing. 

4.2 Methodology 

In order to investigate the possible propagation effects in the amplitude, two 2D-models are 

created:  

 Vøring Basin line model:  Line MNR04-7452 and Gjallar Ridge well (6704/12-1) are 

used as inputs for this model. 

 Møre Basins line model: Line MNR07-208 and Solsikke well (6403/10-1) are the 

inputs in this case. 

To create these models in depth, laterally-varying interval velocities are derived from time-

migrated horizons and stacking velocities following the approach of Hubral (1980). When 

the interval velocity is known, time-migrated horizons can be migrated to depth. In these 

processes, two ray techniques are used: 

 Normal Incidence Path (NIP) ray tracer – Shot-receiver pairs (zero-offset survey) are 

regularly distributed along a horizontal line and they can be projected to a horizon if 

needed (e.g., seafloor or earth’s surface).  Rays are traced from and perpendicular to 

the selected reflectors to all shot-receiver points. This configuration simulates post-

stack non-migrated data. 

 Image ray tracer – Shot-receiver pairs (zero-offset survey) are regularly distributed 

along a horizontal line. Rays are vertically shot and they are traced until the stop 

criterion is met. Two-way traveltimes (TWT) are calculated when an interface is 

intersected. This configuration simulates post-stack time-migrated data.  

Once the models are defined, they are compared at well positions with check-shots and well 

logs in order to calibrate and validate the model. Finally, the seismic survey is simulated and 

amplitudes, reflectivity, etc., are extracted for rays hitting the target reflector and are then 

analysed. The simulation is done by using the common shot tracer module, in which shots 

and receivers are regularly distributed and receiver positions are coupled to the shot 

positions (e.g., marine surveys with streamers towed behind a boat as is the case here). 
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4.2.1 Seismic interpretation 

Lines MNR04-7452 near to Gjallar Ridge (6704/12-1) well (Vøring Basin line model) 

(Figure 4.2) and MNR07-208 near to Solsikke (6403/10-1) well (Møre Basin line model) 

(Figure 4.3) were interpreted as a first input for ray tracing modelling. Note that, due to ray-

tracing requirements (smoothness with respect to wavelength), the interpretation does not 

focus on small details. 

The interpretation was done along the Top of the representative groups and formations. In 

Figure 4.2, there is a clear change in the seismic character and the structural configuration 

from the Tertiary to the Cretaceous section (above and below dark blue horizon). The 

Tertiary sediments are characterized by parallel to subparallel reflectors with amplitudes that 

range from high to medium-low depending on the seismic sequences. No major deformation 

is observed. On the contrary, Cretaceous sediments are distributed along synthetic and 

antithetic lystric faults and are characterized by medium to low amplitudes. To the West, just 

beneath the Shetland reflector (dark blue horizon), there is a high amplitude and chaotic 

seismic package that represent thick intrusions.  

In Figure 4.3, the two different deformation regimes are also observed in the southern part of 

the section: the main faulting activity occurs in the Cretaceous section (above and below 

dark blue horizon) while the Tertiary seems to be a relatively tectonically quiet period. The 

situation changes in the northern part where Cretaceous faults are reactivated during the 

Tertiary up to even Neogene times (seafloor). The high amplitude events observed above 

Shetland reflector (dark blue horizon) to the south correspond again to basalt intrusions. 

 

FIGURE 4. 2 - INTERPRETATION OF SEISMIC LINE MNR04-7452 AROUND GJALLAR RIDGE WELL (6704/12-1, SANDS WITH 

MARGINAL GAS). THE DELFIN HORIZON (DARK GREEN AT ABOUT 3800 MS) IS THE TARGET IN THE STUDY. 
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FIGURE 4. 3 - INTERPRETATION OF SEISMIC LINE MNR07-208 AROUND SOLSIKKE WELL (6403/10-1, NO SAND). THE NISE 

HORIZON (RED) IS THE TARGET IN THIS STUDY. 

4.2.2 NORSAR-2D Data Preparation 

 Model project definition – The modelling project was defined to cover an area that 

includes Vøring Basin and the north of Møre Basin (Figure 4.4). 

 

FIGURE 4. 4 - CUBE SHOWING THE AREA DEFINITION FOR THE PROJECT. LINE MNR04-7452 AND WELL 6704/12-1 (VØRING 

BASIN LINE MODEL) IN THE NORTH AND LINE MNR07-208 AND WELL 6403/10-1 (MØRE BASIN LINE MODEL) IN THE SOUTH. 

 Lines and section definition – Information required for creating 2D lines includes 

first and last CDP and their positions (in UTM coordinates). These were extracted 
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from seismic data SEG-Y files using Seismic Unix (SU webpage). So-called 

Modelling sections were then created associating each section to a 2D line. 

 Stacking velocities – In NORSAR-2D, a stacking velocity grid is derived from 

“stacking velocity function” (stacking velocity as a function of TWT at a given CMP 

position). These functions are stored in *.Stab files and there is no possibility to 

import them from Charisma stacking velocity formats as produced here 

(*.VG_VBASE). For this reason, a script was developed to transform Charisma 

format into NORSAR-2D format (VBASE2STAB.vbs in appendix G). Once the 

stacking velocity functions are loaded, the stacking velocity grid can be generated in 

Velocity Estimator module. Note that the stacking velocity grid must be smoothed to 

meet ray tracing requirements. 

 Horizons import – NORSAR-2D allows importing Charisma horizon files with the 

Import/Export module. However, these files had to be resampled before importing 

due to the large density of samples. 

4.2.3 Creation of a model in depth 

A model in depth can be created by using the NORSAR-2D Velocity Estimator and Model 

builder modules in parallel. In the present case, full-stack time-migrated horizons (in zero-

offset TWT) and interval velocities estimated from stacking velocities were used. Note that 

the interval velocities obtained in this manner can only vary laterally in the model, but are 

constant vertically for each layer. As each layer is delimited by the interpreted horizons (see 

Figures 4.2 and 4.3), the choice of the latter is crucial for the validity of the final model. 

Well logs help however to tie the model in depth.  

To build the model in depth, an iterative process is followed, starting from the shallower 

layer and finishing in the deepest. This process is described below and shown in detail in 

appendix F: 

1. In Model builder, an initial model is generated and stored. This model has two layers 

with a constant Vp corresponding to the water layer (constant velocity of 1480 m/s) 

and the seabed at its proper position in depth (depth conversion performed in the 

same module). 

2. In Velocity Estimator, this initial model is loaded. At the start of the process, a 

stacking velocity grid must be loaded and CMP positions used for the estimation 

must be selected. Then, the first time horizon (below seabed) that will be migrated is 

selected and the uncertainties and acceptance limits for velocity estimation are set. 

Finally, the estimation process can be launched. The output of this process is a 

velocity sample file giving estimates of possibly laterally-varying interval velocities 

above the selected horizon. 

3. In Model builder, the velocity sample file is loaded and it can optionally be modified 

and smoothed before creating a sampled velocity function (constant, linear trend or 

spline representation). Then, the velocity function is assigned to the layer right below 

the previously depth-converted horizon. 
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4. Still from Model Builder, the corresponding time horizon can be depth converted 

using the estimated interval velocities. As the time horizons are already migrated in 

this study, the image ray tracer described earlier is used in this step for proper lateral 

positioning. The model will now include a new layer at its bottom down to the depth 

converted horizon and is therefore updated for the following step. 

5. The new model is loaded in the Velocity Estimator module (see step 2) and the 

process is repeated for the next time horizon until there are no more time horizons 

and the final depth model is built. Note that below the deepest horizon, no interval 

velocities can be estimated using the present process and only well logs (if deep 

enough) or other information can be used to assign properties at the bottom of the 

model. 

In line MNR04-7452, only the part of the Nise Fm. and the Delfin Fm. around Gjallar Ridge 

well (between the two faults) was selected, and then, they were extended in the model. 

4.2.4 Model calibration 

In order to validate the models, data from wells present in the area are compared with data 

extracted from the models. Two key parameters are compared: 

 Petromarkers – Depth migrated horizons are compared with petromarkers (formation 

tops) in depth in the well to check that they are in the right position. 

 Interval velocities – Interval velocities are computed from check-shot log in the well 

and they are then compared with interval velocities in the model for each layer. Note 

that these velocities are Vp velocities. 

Once the wells are calibrated, density and Vs properties must be included in the model for 

each layer because reflection coefficient depends on these two parameters in addition to Vp. 

 Density is estimated by averaging density values from well composite logs in each 

layer. For layers where there is no density log, density is estimated from Vp with 

Gardner equation (Gardner et al., 1974): 

        
                                                                                            (4. 1) 

 Vs is estimated with two methods: 

o The mudrock line equation (Castagna, 1985) is used in the Vøring Basin line 

model for the whole interval as it is considered a good approximation in a 

water saturated sandstone-shale system. Note that in areas of Delfin Fm. with 

marginal gas saturation this approximation slightly underestimates Vs. 

o The Greenberg-Castagna (1992) empirical relation (Equation 3.3) for shale is 

used in the Møre Basin line model, as it showed to be more accurate than the 

mudrock line equation. 
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Vp, Vs and density extracted from the model are compared with the same parameters 

extracted from wells check-shot and wire logs are in Figures 4.5 and 4.6.  

 In Figure 4.5, the retrieved interval velocities in the model are not showing vertical 

variations within the layer as they can only vary laterally per definition in the used 

modelling method, whereas check-shot and well logs provides such vertical 

variations along the well. However, the correlation between Gjallar Ridge well 

(6704/12-1, sands with marginal gas case in Vøring Basin) check shot and wire logs 

and the model is fairly well. 

 In Figure 4.6, the match between Solsikke well (6403/10-1, no sand case in Møre 

Basin) check shot and wire logs and the model is also good, with only a large 

deviation in Kvitnos formation. The reason is that the velocity for this layer has not 

been estimated because top Kvitnos was the last horizon that was used during the 

estimation. However, the study of amplitude is in top Nise, so this layer is not used 

during ray-tracing modelling. 

 In Figure 4.5 and 4.6, density, which represents the average density in each layer, 

shows a fairly good match. 

 

The final model for each case is in figure 4.7. Note how petromarkers in the well match 

with the depth-migrated horizons coming from seismic data in both cases. This confirms 

the validity of the elastic models in depth. 
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FIGURE 4. 5 - VØRING BASIN LINE MODEL CALIBRATION, SHOWING VP, VS AND DENSITY EXTRACTED FROM THE MODEL AND 

FROM WELL 6704/12-1 (SANDS WITH MARGINAL GAS) CHECK-SHOT AND WIRE LOG. VS FOR THE MODEL AND CHECK-SHOT 

LOG IS DERIVED BY MUDROCK LINE EQUATION. 

 

FIGURE 4. 6 - MØRE BASIN LINE MODEL CALIBRATION, SHOWING VP, VS AND DENSITY EXTRACTED FROM THE MODEL AND 

FROM WELL 6403/10-1 (NO SAND) CHECK-SHOT AND WIRE LOG. VS FOR THE MODEL AND CHECK-SHOT LOG IS DERIVED BY 

GREENBERG-CASTAGNA (1992) EMPIRICAL RELATION. 
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(A) 

 

(B) 

FIGURE 4. 7 - (A) VØRING-BASIN 2D MODEL (SEISMIC LINE MNR04-7452 AND WELL 6704/12-1; SANDS WITH MARGINAL 

GAS). (B) MØRE-BASIN 2D MODEL (SEISMIC LINE MNR07-208 AROUND WELL 6403/10-1; NO SAND). NOTE THAT THE 

VERTICAL SCALE (DEPTH) IS EXAGGERATED (VERTICAL/HORIZONTAL = 5) FOR A BETTER DISPLAY. 
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4.2.5 Seismic modelling 

Seismic modelling allows us to include propagation effects when amplitudes are studied. In 

this project, ray-tracing modelling is used due to its fastness, flexibility and event-

identification capability, i.e., for each source/receiver pair and considered reflection, raypath, 

amplitudes and many other parameters can be calculated, extracted and analysed. This is in 

contrary to more “black-box” process (e.g., finite-difference modelling) producing only 

seismograms, though the latter are much more complete (full wavefield with all possible 

wave phases) than those obtainable by ray tracing (Lecomte et al., 2003, Gjøystdal et al., 

2007). The Common Shot Tracer module is used to simulate the marine survey (Figure 4.8). 

Some key parameters are defined based on the processing report: 

 Source depth: 7.5 meters. 

 Cable depth: 9 meters 

 Streamer parameters: Length 10050 m., Receiver interval 12.5 m, Near offset: 125 m.  

 Survey direction: From small to large CDP.   

 
(A) 

 

 
 (B) 

FIGURE 4. 8 - (A) VØRING BASIN LINE MODEL ZOOMED AROUND WELL POSITION. VP PROPERTY AND WELL 6704/12-1 

POSITION WITH PETROMARKERS ARE DISPLAYED IN THE LEFT. REFLECTION POINT FOR THE SAME POSITION AND TRACED 

RAYS ARE PLOTTED IN THE RIGHT (B) ZOOMED MØRE BASIN LINE MODEL AROUND WELL POSITION. VP PROPERTY AND WELL 

6403/10-1 POSITION WITH PETROMARKERS ARE DISPLAYED IN THE LEFT. REFLECTION POINT FOR THE SAME POSITION AND 

TRACED RAYS ARE PLOTTED IN THE RIGHT. 
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The survey is designed to cover the reflector point which is located at the well position in the 

target reflector (Top Delfin, sands in the Nise Fm., in Vøring basin line model and Top Nise 

in Møre basin line model) (see figure 4.8a and 4.8b). Only primary P-P reflections are 

considered. 

4.3 Results 

4.3.1 Review of angle ranges used for partial stack sections 

As it was presented in the introduction, partial-stack time migrated sections (appendix A) 

were generated by creating a field of angle-based mute functions for each CMP gather. 

These functions were then used to define angle band mutes (Table 4.1) which were applied. 

The resultant angle-muted CMP gather were stacked to produce the partial-stack sections. 

TABLE 4. 1 - ANGLE RANGE FOR EACH PARTIAL STACK SECTION 

Stack 

volume 

Inner angle 

(degrees) 

Outer angle 

(degrees) 

Near 5 20 

Near-Mid 15 30 

Far-Mid 25 40 

Far 35 50 

 

The angle ranges associated with the partial stack sections are reviewed in this chapter. To 

do it, offset vs angle, amplitude vs angle and reflectivity vs angle cross-plots are studied for 

both Vøring and Møre basin line models (Figure 4.9). The relation between offset and angle 

at the studied reflection point (Figures 4.9a and 4.9b) is linear in the used angle ranges (5° to 

50°) for both Vøring and Møre cases. This is due to the lack of abrupt lateral velocity 

changes and the almost horizontal configuration of the reflectors (Figures 4.8a and 4.8b). In 

Figures 4.9c and 4.9d, there is a large increase in amplitude after 50°. The amplitude reaches 

its maximum value around 65° in both cases, which corresponds to the critical angle. Figures 

4.9e and 4.9f show that stacking with the selected angle ranges (see table 4.1) is reasonable 

as the reflectivity trend is kept, i.e.: 

 In the Vøring case, there is a continuous decrease of reflectivity with angle. Near, 

Near-Mid, Far-Mid and Far partial stacks will therefore also show decreasing values. 

 In the Møre case, there is a decrease of reflectivity with angle up to 35°. Near, Near-

Mid, Far-Mid will show the same trend. After 35°, there is a reflectivity increases 

that will be detected by the far angle stack (35° to 50°). 
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(A) 

 

(B) 

 

(C) 

 

(D) 

 

(E) 

 

(F) 

FIGURE 4. 9 - OFFSET VS ANGLE (A), AMPLITUDE VS ANGLE (C) AND REFLECTIVITY VS ANGLE (E) CROSS-PLOTS FOR THE 

VØRING BASIN LINE MODEL. OFFSET VS ANGLE (B), AMPLITUDE VS ANGLE (D) AND REFLECTIVITY VS ANGLE (F) CROSS-
PLOTS FOR THE MØRE BASIN LINE MODEL. 

4.3.2 Geometrical spreading 

In order to investigate the potential wave-propagation effects which may affect the observed 

amplitudes, the total effect of geometrical spreading along ray is calculated. Figure 4.10 

shows the amplitude variation only due to geometrical spreading versus offset for Vøring 
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and Møre cases. Møre model shows higher amplitude values and a higher decrease in 

amplitude with offset due to geometrical spreading than Vøring model.  

 

FIGURE 4. 10 - AMPLITUDE VARIATIONS DUE TO GEOMETRICAL SPREADING VS OFFSET FOR VØRING AND MØRE CASES. 

4.4 Discussion 

The selection of angle ranges (Table 4.1) is appropriate because:  

 The offset-angle relation is linear up to 50°. 

 The maximum angle (50°) is far from critical angle.  

 Figures 4.9e and 4.9f show that partial stack sections based on angle-mutes keep the 

reflectivity variation trend with angle and should therefore not mask any change in 

the trend. 

In general, amplitude variations in a migrated 3D cube (both in depth or in time) are not only 

caused by the reflectivity of the subsurface, but also by other effects such as survey layout, 

transmission/reflection through the overburden, focusing/defocusing and shape of the target 

reflector (Figure 4.11). Some effects may be removed by processing, but some others, like 

the overburden or the shape of the target reflector, may remain in the final output (Laurain, 

2006). These elements are therefore analysed in both models of the present study: 

 

 Geometrical spreading is a combination of three factors (Cerveny, 2001): 

o Source-Reflector propagation. 

o Reflector-Receiver propagation. 

o Reflector shape. 

In Figure 4.10, as it was expected, the effect of geometrical spreading can be 

explained by means of raypath length in Vøring and Møre cases: the longer the 

offset, the longer the raypath and, consequently, the larger the geometrical spreading 
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effect is. However, in the processing report (confidential), it is mentioned that 

geometrical spreading is compensated by a gain time function: 

       ( )         ( ) 
                                                                         (4. 2) 

where Aoutput(t) is the amplitude after compensation at time t, Ainput(t) is the amplitude 

before compensation at time t and t is the TWT in seconds.  

 

FIGURE 4. 11 - EFFECTS DURING PROPAGATION WHICH MAY CONTRIBUTE TO AMPLITUDE VARIATIONS. 

 Intrinsic attenuation is due to the conversion of seismic energy to heat. This 

attenuation can be measured by the so called quality factor (Q) as: 

 ( )      
          

                                                                    (4. 3) 

where A(t) is the amplitude at time t, A0 is the amplitude at t=0, ω is the angular 

frequency and Q is the quality factor. In the 2D models of the present study, Q is not 

included because there is not information available. From equation 4.3, if Q is 

supposed constant, it can be inferred that the higher the frequency, the higher the 

amplitude decay with time (and/or distance). As a consequence, low frequency 

content in the frequency spectrum is expected in Far stack sections due to a larger 

raypath. 

 Focusing effect produces a phase shift of π when the wave is propagated through a 

focus (e.g., focus produced in a syncline). This is true when source and receiver are 

sufficiently far from the focus (Gelius et al., 1991). NORSAR-2D allows the 

evaluation of this change in phase by counting the number of times that the ray 

passed a focus point. In both Vøring and Møre cases the result was zero times, 

meaning that there is no focusing effect to account for. 

According to the analysis, no complex wave propagation effects exist in Vøring and Møre 

cases. In order to check whether the assumption that amplitude is a scaled version of 

reflectivity used in AVO modelling, a cross plot amplitude vs reflectivity is analysed in 

Vøring and Møre cases (Figure 4.12). 
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In the Vøring Basin case, the amplitude and the reflectivity decrease from 0° until around 

50° (Figures 4.9c and 4.9e) and show a linear relation (Figure 4.12a). In the Møre Basin 

case, the amplitude and the reflectivity decrease with angle until 35° (Figures 4.9d and 4.9f) 

and they also show a linear relation. From 35 to 50°, however, the amplitude and the 

reflectivity increase with angle (Figures 4.9d and 4.9f), but they still show a linear relation. 

These two linear trends are shown in Figure 4.12b. Therefore, the assumption that amplitude 

is a scaled version of reflectivity used in AVO analysis can be considered valid for both 

cases. 

 

(A) 

 

 (B) 

FIGURE 4. 12 - AMPLITUDE VS REFLECTIVITY FOR VØRING (A) AND MØRE (B) CASES. 
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Chapter 5: Conclusions 
The Nise Fm. and its sand intervals (sometimes so-called Delfin Fm.) represent one of the 

main Cretaceous reservoirs in the Møre and Vøring Basins. Increments of amplitude with 

incident angle have been observed in seismic data along Nise Fm., leading to the 

interpretation of the existence of a reservoir. However, once drilled, the results were very 

different, some of them discovered hydrocarbons, while in others, no reservoir was found. In 

this work, four case studies were investigated by modelling to understand the apparent 

similar seismic responses between the two basins within the same formations, while fluid 

content and lithology showed to be different: two in the Vøring Basin, with very good 

quality sandstones but very different gas saturations (Luva discovery (well 6707/10-1) and 

Gjallar Ridge (well 6704/12-1, with residual gas) and two in the Møre Basin, with no 

reservoir intervals (Solsikke (well 6403/10-1) and well 6404/11-1). 

AVO-AVA forward models (1-D models) were run in each of the cases to study how the 

variation of elastic properties along the reflector affects the amplitude variation with incident 

angle. In this part of the study, amplitudes were considered to be a scaled version of 

reflectivity. The conclusions derived from these synthetic models can be explained by a 

rearranged version of the three-term Aki-Richards (linearized approximation of the 

Zoeppritz equation): reflection coefficient (i.e., amplitude) is affected by the acoustic 

impedance contrast at small incident angles; it is mainly affected by variations in Vp and Vs 

(i.e. Poisson’s ratio) at intermediate incident angles; and it is affected by the variations in Vp 

at large incident angles. 

In the Vøring Basin cases (Gjallar ridge and Luva discovery wells), synthetic models showed 

that the presence of gas produces negative amplitude in small angles, which becomes more 

negative when angle increases. The reason is that Vp, Poisson’s ratio and density in gas 

saturated models decrease compared to the brine model whereas Vs is less sensitive to pore 

fluid. This seismic response was very similar for gas saturations between 50% and 90% in 

Luva discovery, and between 10% and 20% in Gjallar ridge due to a very similar decrease in 

Vp velocity and Poisson’s ratio. This demonstrates that AVO/AVA analysis will not be able 

to discriminate between different gas saturations for saturations higher than 10%. 

In the Møre Basin cases (Solsikke and 6404/11-1wells), synthetic models showed positive 

amplitude at zero-offset that, in Solsikke well (flat event) increase with angle, whereas the 

amplitude remains constant in well 6404/11-1. The reason is an increase in impedance, Vp, 

Vs and Poisson’s ratio in Solsikke well whereas, in well 6404/11-1, there is also an increase 

in impedance, but a negligible decrease in Poisson’s ratio due to a notable increase in Vs 

compared with Vp. 

The comparative analysis between layers above and below the flat events observed in the 

GWC in Luva discovery (Vøring Basin) and in Solsikke (Møre Basins) demonstrated that 

there was a higher increase in Vp, density and Poisson’s ratio along the transition from gas 

saturated to water bearing sandstones than through lithology changes. The reason is that Vs 
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is fluid-insensitive and does not change between gas-saturated sandstones and brine-

saturated sandstones (as in Luva discovery), whereas a lithological/diagenetic effect 

produces changes in Vs (as it might happen in Solsikke well). The consequence in seismic is 

a higher increase of amplitude with angle in the GWC in Luva discovery than in Solsikke 

well. 

When synthetic models were quantitatively compared with the seismic data, similar seismic 

response between models and seismic data occurred in Luva discovery and Solsikke, where 

seismic data was very close to the well location. In Gjallar Ridge, synthetic model and 

partial stacks showed similar trend in small and intermediate angles, but it was different in 

large angles (far stack).  The reason may be the interference produced by tuning effects due 

to low frequency content in far stack. The synthetic model in well 6404/11-1, where seismic 

data was more than 300m away, was not able to replicate the seismic data amplitude 

variations with angle. The possible causes for the different response can be noise effects 

(neglected in synthetic model) and wave propagation effects (not considered in 1-D model). 

Distance between well and seismic data might also have implied small lateral changes in 

lithology (e.g., small channels or faults) that produced changes of the seismic response. 

Two 2D velocity models were built (Gjallar Ridge in Vøring Basin and Solsikke in Møre 

Basin) and seismic modelling (ray tracing) was used to investigate the assumption that 

amplitude is a scaled version of reflectivity and to take into account potential complex wave 

propagation effects. The result showed in both cases that there were no focusing effects and 

the processing report indicated that geometrical spreading was compensated. Accordingly, 

reflectivity and amplitude showed a linear relation in these cases and, hence, the assumption 

in AVO-AVA forward models was considered valid. In addition, the offset-angle relation 

was found to be linear up to 50° (maximum angle in partial-stack sections), which is 

interpreted as a consequence of the smooth lateral velocity changes and the almost horizontal 

configuration of the reflectors around well locations.  

For a better understanding of lithological and/or diagenetic changes observed in both Møre 

and Vøring basins, a proposed future work could include a more detailed rocks physics 

analysis. This work could focus on defining possible mechanical and/or chemical 

compaction trends and the transition point between them. If chemical compaction exists, it 

could be compared with different cementation models. 
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Appendix 

Appendix A: Full stack and Observed variation in partial 
stacks 

This appendix presents the seismic data available: 

 Full stack sections with interpreted horizons. 

 Partial stack sections, in which variation in amplitudes between small and large 

incident angles is observed. 

Full stack sections 

Well 6707/10-1 (Nyk High) – Luva gas discovery 

 

FIGURE A. 1 - LUVA GAS DISCOVERY. FULL STACK CROSS SECTION IN CUBE BPN9601 AT WELL POSITION. 
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Well 6704/12-1 (Gjallar Ridge) – Marginally gas saturated sand 

 

FIGURE A. 2 - GJALLAR RIDGE WELL AND LINE MNR04-7452 FULL STACK SECTION 

Well 6403/10-1 (Solsikke) – Flat lithological event 

 

FIGURE A. 3 - SOLSIKKE WELL AND LINE MNR07-208 FULL STACK SECTION 
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Well 6404/11-1 – No-sand reservoir 

 

FIGURE A. 4 - 6404/11-1 WELL AND LINE MNR06-7124 FULL STACK SECTION 

Partial Stack sections 

Well 6707/10-1 (Nyk High) – Luva gas discovery 

 

FIGURE A. 5 - LUVA GAS DISCOVERY. SEISMIC SHOWS BRIGHT AMPLITUDES IN LARGE ANGLE (FAR ANGLE). 

 



Appendix 

 

 

70 

 

Well 6704/12-1 (Gjallar Ridge) – Marginally gas saturated sand 

 

FIGURE A. 6 - GJALLAR RIDGE WELL AND LINE MNR04-7452. NEAR, NEAR-MID, FAR-MID AND FAR PARTIAL STACK 

SECTIONS ARE DISPLAYED. PICKED TRACES TO MEASURE AMPLITUDES ARE MARKED BY HORIZONTAL RED LINES IN THE 

INTERPRETED HORIZON (TOP STUDY CASE). 

Well 6403/10-1 (Solsikke) – Flat lithological event 

 

FIGURE A. 7 - SOLSIKKE WELL AND LINE MNR07-208. NEAR, NEAR-MID, FAR-MID AND FAR PARTIAL STACK SECTIONS ARE 

DISPLAYED. PICKED TRACES TO MEASURE AMPLITUDES ARE MARKED BY HORIZONTAL RED LINES IN THE INTERPRETED 

HORIZON (TOP STUDY CASE). 
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Well 6404/11-1 – No-sand reservoir 

 

FIGURE A. 8 - 6404/11-1 WELL AND LINE MNR06-7124. NEAR, NEAR-MID, FAR-MID AND FAR PARTIAL STACK SECTIONS ARE 

DISPLAYED. PICKED TRACES TO MEASURE AMPLITUDES ARE MARKED BY HORIZONTAL RED LINES IN THE INTERPRETED 

HORIZON (TOP STUDY CASE). 

Amplitudes at picked points in seismic events 

In Table A.1, picked amplitudes in interpreted horizons where partial stack sections are 

available are shown. The area which was picked is marked by a red horizontal line in Figures 

A.6, A.7 and A.8. In Table A.1, negative amplitudes in Gjallar Ridge well show an 

increment (in absolute value) in partial stacks covering mid and mid-far angles, but in far 

angle stack the amplitude drops. Positive amplitudes in 6403/10-1 (Solsikke) and 6404/11-1 

(No-sand reservoir) wells show an increment for partial stack sections covering large angles.  

TABLE A. 1 – PICKED AMPLITUDES IN PARTIAL STACK SECTIONS 

  Near Near/mid Far/Mid Far 

6704/12-1 

(Gjallar Ridge) 

-1403 -1413 -1630 -463 

6403/10-1 

(Solsikke) 

1720 1885 1867 2192 

6404/11-1 (No-

sand reservoir) 

194 586 603 1365 
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Appendix B: AVO-AVA theoretical framework 

Reflection coefficient: variation with incident angle 

When a plane P-wave incidents at the interface between two elastic mediums (layer 1, with 

density ρ1, P-velocity Vp1 and S-velocity Vs1, and layer 2 with density ρ2, P-velocity Vp2 and 

S-velocity Vs2) with an angle θ>0, reflected and transmitted P- and SV-waves are generated 

(mode conversion) (Figure B.1). In the case of normal incidence (θ=0), only P-waves are 

generated.  

 

FIGURE B. 1 - REFLECTION AND TRANSMISSION BETWEEN TWO ELASTIC MEDIA. AFTER AVSETH ET AL, 2005. 

The relation between incident, reflected and transmitted angles is given by Snell’s law. 

   
     

   
 
     

   
 
     

   
 
     

   
                                                          (B. 1) 

Where p is the ray parameter. 

Zoeppritz equations (Zoeppritz, 1919) describe the variation of P-P reflection coefficient 

(Rpp) as a function of incident angle.   

    [( 
     

   
  

     

   
)   (   

     

   

     

   
)   ]                             (B. 2) 

Where a,d,c,d,D,E,F,G and H coefficients are defined by the expressions: 
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The Zoeppritz equations are however not easy to handle and have a difficult physical 

interpretation. Some simplifications of Zoeppritz equations make possible an easy physical 

interpretation which can be applied practically to relate rock properties with seismic 

responses. 

Aki-Richards (1980) gave, after a first-order linearized analysis, a Zoeppritz equation 

approximation which can be rearranged as: 

   ( )  
 

 
[(
   

  
 
  

 
)]   (

  

  
)
 

[ 
   

  
 
  

 
]        

 

 

   

  
(           ) = 

        
     (           )                                    (B. 12) 

Where:   
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And it can be interpreted in terms of different angles (Avseth et al, 2005) where: 

    
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) is the normal incidence reflection coefficient.                         (B. 13) 

   
 

 

   

  
  (

  

  
)
 

[ 
   

  
 
  

 
] is the dominant term in intermediate angles.   (B. 14) 

   
 

 

   

  
 is the dominant term in far angles, near the critical angle.                  (B. 15) 

Wiggens or Gelfand’s (Gelfand, 1986) approximation simplified even more Aki-Richards 

equations assuming small angles (tanθ≈sinθ) and a relation Vp/Vs=2. 
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where: 

          is the AVO gradient.                                                                    (B. 17) 

    
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Poisson’s ratio is the ratio of lateral to axial strain and it measures the compressibility of a 

material when an axial stress is applied: Tensile deformation is considered positive and 

compressive deformation is considered negative. Poisson’s ratio is considered a good 

lithological indicator as it is related to Vp/Vs ratio in an isotropic elastic material with the 

equation (e.g., Gelius and Johansen, 2010). 
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                                                                                                      (B. 20) 

Shuey (1985) proposed a relation between R and G and Poisson’s ratio variation (  ) for 

small angles based on a first order linearized analysis together with the approximation 

Vp/Vs=2 (and hence   
 

 
). 

   
 

 
(    )                                                                                                 (B. 21) 

All approximations are accurate up to 20°, with Gelfand’s or Wiggens’ best fit up to 35°and 

Shueys’s approximation with accurate result in the full rank of angles up to 45° (Gelius and 

Johansen, 2010).  

1-D convolutional trace model  

AVO-AVA forward modelling uses well logs (density, Vs and Vp logs) as inputs and 

generates synthetic traces as outputs. The generation of these traces relies on the 1-D 

convolutional trace model, which is based on the assumptions: 

 Horizontally layered earth model. 

 Stationary source pulse (no attenuation effect). 

 Noise contribution is neglected 

Acoustic impedance (Zi) is defined as the multiplication of density (ρi) and velocity (Vpi) for 

a given layer (Figure B.2).  

 

FIGURE B. 2 - P-WAVE NORMAL INCIDENT BETWEEN TWO ELASTIC MEDIA, WHERE Ρ, VP AND Z ARE DENSITY, P-WAVE 

VELOCITY AND IMPEDANCE RESPECTIVELY. 

The zero offset reflection coefficient (reflected/incident wave amplitude ratio) for an 

interface between two layers with impedance contrast is given by: 
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                                                                                  (B. 22) 

The earth reflectivity series is a time series of spikes, where each spike represents the 

reflection coefficient for a specific interface positioned at the zero-offset two-way traveltime. 

From the equation above, the earth reflectivity series can be computed. 

Finally, according to the 1-D convolutional trace model, the seismic trace can be described 

as the linear convolution between the source pulse (wavelet, w(t)) and the earth reflectivity 

series. 

 ( )   ( )   ( )  ∫ ( ) (   )                                             (B. 23) 

As it is observed in equation B.23, the wavelet is one of the most important input parameters 

to generate synthetic traces. A narrow wavelet with small or no sidelobes will define the 

boundaries between two layers better than a wider wavelet with big sidelobes. 

Gassmann Fluid substitution 

Fluid substitution is applied in AVO modelling as it gives information of insitu fluid 

scenarios and it allows the evaluation of other scenarios under different conditions (grain 

composition, fluid saturation or porosity).  

One of the most common methods used for fluid substitution is based on Gassmann (1951) 

model. Porous rocks can be defined as set of grains and fluid domains with different size, 

shape and physical properties. When the physical properties are referred for the whole rock, 

then, they are called effective properties. According to Gassmann equations: 

     
(  

  
  
)
 

 

  
 
   

  
 
  

  
 

                                                                                   (B. 24) 

     (Fluids are not sensible to shear stress)                                     (B. 25) 

Where K is the effective saturated bulk modulus, Φ is the porosity, Kd is the effective bulk 

modulus for dry rock, Ks is the bulk modulus of the grains, Kf is the bulk modulus of the 

fluids, µ is the effective saturated shear modulus and µd is the effective shear modulus for 

dry rock. The main assumptions of this theory are: 

 Open pore rock where all pores are connected. Note that µ=µd under this conditions 

because shear modulus is zero for fluids. 

 All the grains have the same physical properties. In case of different mineral 

composition, the effective elastic properties must be calculated by using effective 

medium models. 

 Pore is fully and homogeneously saturated. In case of different phases on the fluid 

system, the effective elastic properties must be calculated. Wood (1955) or Reuss 

(1929) isostress model (Table B.1) can be used for this purpose. 
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                                               (B. 26) 

Where Si is the saturation of fluid i and Kfi is the bulk modulus for fluid i. For an 

homogeneous mixture of brine, oil and gas Sbrine+ Soil + Sgas = 1. 

 In the case of low frequencies, the wavelength must be much larger than the 

maximum size of pores or grains (Gelius and Johansen, 2010). 

Alternatively, as the effective bulk modulus for dry rock is independent of the fluid, the 

effective saturated bulk modulus can be computed in a reservoir saturated with a specific 

fluid (f1) from the information of the effective parameters when the reservoir is saturated by 

other fluid (f2). 
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                                             (B. 27) 

Finally, elastic parameters can be linked to seismic responses due to the relation between 

density, Vp and Vs and the effective elastic modules. 
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                                                                               (B. 28) 
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                                                                                     (B. 29) 

Where the effective density for fluid mixture or grain mixture is given by an average in 

volume: 

   ∑     
 
                                                                              (B. 30) 

With Vj and ρj are the volume fraction and density of each constituents. 

In the case of saturated sandstone-shale system, equation B.30 can be expressed as: 

  (   )                                                           (B. 31) 

Where: 

 Φ is the porosity. 

         (   )              , where C is the shale volume. 

                                      , where Si is the saturation of element i. 

Note that                    . 
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TABLE B. 1 – EFFECTIVE MEDIUM MODELS 

Model 

name 

Equation Model assumption 

Reuss 

(1929) 
 

  
( )
 ∑

  
   

 

   

 

 

  
( )
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Iso-stress model. 

Represent the softest 

composite when mixed 

two materials (lower 

boundary). Vi and Ksi are 

the fraction volume and 

bulk modulus of mineral i. 

Voigt 

(1910)   
( )
 ∑  

 

   

    

  
( )
 ∑  

 

   

    

Iso-strain model. 

Represent the stiffest 

composite when mixed 

two materials (upper 

boundary). Vi and Ksi are 

the fraction volume and 

bulk modulus of mineral i. 

Hill (1963) 
 ( )  

 

 
( ( )   ( )) 

 ( )  
 

 
( ( )   ( )) 

Reuss (1929) and Voigt 

(1910) average. 

Hashin-

Shtrikman 

(1963) 

 (   )

    
  

(     )     (   
 
   )

   

 (   )     
  

(     )   
   (      )

   (   
 
   )

 

Upper bound (+) is 

computed when material 1 

is the stiffest and  Lower 

bound (-) when material 1 

is the softest. K mineral 

can be calculated as an 

average: 

   
 

 
( (   )   (   )) 

 

 

AVO classification scheme 

Based on the variation of amplitude with offset described by Zoeppritz equations, Rutherford 

and William (1989) proposed an AVO classification for different types of gas sands and 

defined three types: Class I, Class II and Class III. Ross and Kinman (1995) identify a new 
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subclass (Class IIp) and Castagna and Swan (1997) included a new class (Class IV). All 

these classes (Figure B.3) are summarized below: 

AVO Class I 

Sands with higher impedance and lower Vp/Vs ratio compared with the surrounding shales. 

They are mature sands with high to moderate compaction and they are common in offshore 

areas.  The reflection coefficient in the interface between cap rock (shale) and sand is large 

and positive at zero-offset and, then, it decreases with offset.   

AVO Class II 

Impedance in these sands is similar than in surrounding shales. They are moderately 

compacted and consolidated and they can be present in both offshore and onshore areas. In 

class II, the reflection coefficient in the interface between cap rock (shale) and sand is close 

to zero and negative at zero-offset and, then, it decreases with offset.  They are difficult to 

see in stack sections because they are often “dim spots” (Avseth et al, 2005). 

In Class IIp, the reflection coefficient is close to zero and positive at zero-offset and it 

decreases with offset, producing polarity change. It can sometimes be observed as negative 

amplitude on full stack. 

AVO Class III 

Sands with lower impedance compared with the surrounding shales. They are unconsolidated 

sands and produce “bright spots” on stacked sections.  The reflection coefficient in the 

interface between cap rock (shale) and sand is negative and large for all offsets and it 

increases (more negative) with offset. It is associated with marine environment.  

AVO Class IV 

Impedance in these sands is lower than in the cap rock (very compacted or silty shales) and 

Vp/Vs ratios in cap rock are a bit higher than in sand. They are unconsolidated sands 

associated with areas offshore.  The reflection coefficient is negative and large for all offsets 

and it decreases (less negative) with offset. 

Cross-plot intercept vs gradient is commonly used for AVO analysis. It is based on: 

 The AVO class classification scheme. 

 The background trend. In the case of water saturated sandstone-shale system, this 

trend is given by the “mudrock line” defined by Castagna (1985). 

                
   

   
                                                         (B. 32) 
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 All the samples that are far away from the trend in the Cross-plot are considered 

anomalous cases and, hence, possible gas sands. The type of sand is given by the 

position in the diagram (Gelius and Johansen, 2010). 

 

FIGURE B. 3 - AVO CLASS CLASSIFICATION. AFTER CASTAGNA ET ALT 1997 

Although the AVO classes were initially defined to classify gas sands, it is commonly used 

to describe AVO anomalies that are not always related with gas sands (Avseth et al, 2005). 

Appendix C: Well correlations 

The purpose of this appendix is to show the result of well correlations when well were tied to 

their corresponding seismic lines. 
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Vøring Basin cases 

Well 6707/10-1 (Nyk High) – Luva gas discovery 

 

FIGURE C. 1 - SEISMIC CUBE BPN9601 AND WELL 6707/10-1 (LUVA GAS DISCOVERY) CORRELATION. THE CORRELATION IS 

0.86, SHOWING A VERY GOOD MATCH BETWEEN SYNTHETIC TRACES AND ACTUAL SEISMIC DATA. 

Well 6704/12-1 (Gjallar Ridge) – Marginally gas saturated sand 

 

FIGURE C. 2 - SEISMIC LINE MNR04-7452 AND WELL 6704/12-1 (GJALLAR RIDGE) CORRELATION. THE CORRELATION IS 

0.69, SHOWING A GOOD MATCH BETWEEN SYNTHETIC TRACES AND ACTUAL SEISMIC DATA IN THE TARGET AREA (BETWEEN 

YELLOW HORIZONTAL LINES). 
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Møre Basin cases 

Well 6403/10-1 (Solsikke) – Flat lithological event 

 

FIGURE C. 3 - SEISMIC LINE MNR07-208 AND WELL 6403/10-1 (SOLSIKKE) CORRELATION. THE CORRELATION IS 0.61, 
SHOWING A GOOD MATCH BETWEEN SYNTHETIC TRACES AND ACTUAL SEISMIC DATA IN THE TARGET AREA (BETWEEN 

YELLOW HORIZONTAL LINES). 

Well 6404/11-1 – No-sand reservoir 

 

FIGURE C. 4 - SEISMIC LINE MNR06-7124 AND WELL 6404/11-1 CORRELATION. THE CORRELATION IS 0.51, SHOWING THE 

POOREST MATCH BETWEEN SYNTHETIC TRACES AND ACTUAL SEISMIC DATA. HOWEVER, GIVEN THAT THE DISTANCE 

BETWEEN THE LINE AND THE WELL IS AROUND 325 M, THIS CORRELATION IS CONSIDERED GOOD ENOUGH. 
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Appendix D: Flat events 

 

This appendix shows two interpreted flat events: 

 One in Luva gas discovery in Vøring Basin (Well 6707/10-1 in Nyk High) due to gas 

water contact (GWC). 

 Other in Solsikke well (6403/10-1) in Møre Basin related with a lithological event. 

 

Flat event– Luva gas discovery (Nyk High, Vøring Basin) 

 

FIGURE D. 1 - INTERPRETED FLAT EVENT IN LUVA GAS DISCOVERY DUE TO GAS-WATER CONTACT (VØRING BASIN). 

Flat lithological event – Solsikke (Møre Basin) 

 

FIGURE D. 2 - INTERPRETED FLAT EVENT IN SOLSIKKE WELL (MØRE BASIN). DISPLAYED LINE IS 3002 TO BETTER SHOW THE 

EVENT. 
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FIGURE D. 3 - INTERPRETED FLAT EVENT IN SOLSIKKE DISCOVERY (MØRE BASIN). MNR07-208 FAR STACK SECTION (LEFT) 

IS COMPARED WITH LINE IS 3002 (RIGHT) TO SHOW THE MATCH BETWEEN THE TWO SECTIONS. FLAT EVENT IS INTERPRETED 

AT AROUND 3560 MS. 

Appendix E: Detailed calculation of Rp, G and F 

In this appendix, Rp, G and F coefficients of the rearranged Aki-Richards (1980) first-order 

linearized approximation of Zoeppritz equation (Zoeppritz, 1919) are calculated as follow: 

 For each target reflector, Vp, Vs, density and Poisson’s Ratio are measured for upper 

and lower layers. 

 Variations and average of Vp, Vs, density and Poisson’s Ratio (υ) between layers are 

calculated. 

 Finally, Rp, G and F coefficients are calculated based on three terms Aki-Richards 

approximation. 
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Vøring Basin cases 

Well 6707/10-1 (Nyk High) – Luva gas discovery 

Top 

TABLE E. 1 - VP, VS, DENSITY AND POISSON’S RATIO IN OVERBURDEN LAYER AND IN RESERVOIR FOR IN-SITU CASE (LUVA 

DISCOVERY) 

 Vp (m/s) Vs (m/s) Density (g/cm3) Poisson’s Ratio 

Overburden 2808 1443 2.445 0.305 

Reservoir 2613 1544 2.146 0.234 

 

TABLE E. 2 - VP, VS, DENSITY AND POISSON’S RATIO VARIATION AND AVERAGE BETWEEN OVERBURDEN LAYER AND 

RESERVOIR FOR IN-SITU CASE (LUVA DISCOVERY) 

ΔVp ΔVs Δρ Δυ 

-195 101 -0.299 -0.071 

Vp Vs ρ υ 

2710 1493 2.295 0.266 
 

TABLE E. 3 - RP, G AND F COEFFICIENTS IN TOP RESERVOIR (LUVA DISCOVERY) 

Rp G F 

-0.1010 -0.0388 -0.0359 

Base 

TABLE E. 4 - VP, VS, DENSITY AND POISSON’S RATIO IN RESERVOIR AND LAYER BELOW FOR IN-SITU CASE (LUVA 

DISCOVERY) 

 Vp (m/s) Vs (m/s) Density (g/cm3) Poisson’s Ratio 

Overburden 2755 1646 2.170 0.234 

Reservoir 3042 1647 2.230 0.291 

 

TABLE E. 5 - VP, VS, DENSITY AND POISSON’S RATIO VARIATION AND AVERAGE BETWEEN RESERVOIR AND LAYER BELOW 

FOR IN-SITU CASE (LUVA DISCOVERY) 

ΔVp ΔVs Δρ Δυ 

287  1 0.06 0.057 

Vp Vs ρ υ 

2899 1646 2.20 0.263 

 

TABLE E. 6 - RP, G AND F COEFFICIENTS IN BASE RESERVOIR (LUVA DISCOVERY) 

Rp G F 

0.0632 0.0311 0.0495 

 



Appendix 

 

 

85 

Well 6704/12-1 (Gjallar Ridge) – Marginally gas saturated sand 

TABLE E. 7 - VP, VS, DENSITY AND POISSON’S RATIO IN OVERBURDEN LAYER AND IN RESERVOIR FOR IN-SITU CASE 

(GJALLAR RIDGE) 

 Vp (m/s) Vs (m/s) Density (g/cm3) Poisson’s Ratio 

Overburden 3740 2101 2.542 0.267 

Reservoir 3535 2115 2.470 0.216 

 

TABLE E. 8 - VP, VS, DENSITY AND POISSON’S RATIO VARIATION AND AVERAGE BETWEEN OVERBURDEN LAYER AND 

RESERVOIR FOR IN-SITU CASE (GJALLAR RIDGE) 

ΔVp ΔVs Δρ Δυ 

-205 14 -0.072 -0.051 

Vp Vs ρ υ 

3637 2108 2.506 0.242 

 

TABLE E. 9 - RP, G AND F COEFFICIENTS IN TOP RESERVOIR (LUVA DISCOVERY) 

Rp G F 

-0.0426 -0.0178 -0.0282 

Møre Basin cases 

Well 6403/10-1 (Solsikke) – Flat lithological event 

TABLE E. 10 - VP, VS, DENSITY AND POISSON’S RATIO IN LAYERS ABOVE AND BELOW THE FLAT EVENT (SOLSIKKE) 

 Vp (m/s) Vs (m/s) Density (g/cm3) Poisson’s Ratio 

Above flat event 2387 1040 2.260 0.382 

Below flat event 2494 1057 2.275 0.389 

 

TABLE E. 11 - VP, VS, DENSITY AND POISSON’S RATIO VARIATION AND AVERAGE BETWEEN LAYERS ABOVE AND BELOW THE 

FLAT EVENT (SOLSIKKE) 

ΔVp ΔVs Δρ Δυ 

107 17 0.015 0.007 

Vp Vs ρ υ 

2441 1049 2.268 0.386 

 

TABLE E. 12 - RP, G AND F COEFFICIENTS IN FLAT EVENT (SOLSIKKE) 

Rp G F 

0.0252 0.0075 0.0219 
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Well 6404/11-1 – No-sand reservoir 

TABLE E. 13 - VP, VS, DENSITY AND POISSON’S RATIO IN LAYERS ABOVE AND BELOW THE REFLECTOR (6404/11-1) 

 Vp (m/s) Vs (m/s) Density (g/cm3) Poisson’s Ratio 

Above reflector 2610 1139 2.330 0.381 

Below reflector 2660 1177 2.340 0.377 

 

TABLE E. 14 - VP, VS, DENSITY AND POISSON’S RATIO VARIATION AND AVERAGE BETWEEN LAYERS ABOVE AND BELOW THE 

REFLECTOR (6404/11-1) 

ΔVp ΔVs Δρ Δυ 

50 38 0.010 -0.004 

Vp Vs ρ υ 

2635 1158 2.335 0.379 

 

TABLE E. 15 - RP, G AND F COEFFICIENTS IN REFLECTOR (6404/11-1) 

Rp G F 

0.0116 -0.0175 0.0095 

 

Appendix F: Interval velocity estimation and depth 
conversion with NORSAR-2D. 

The purpose of this appendix is to give an example of the detailed steps followed during 

interval velocity estimation from stacking velocity and the depth conversion.  

Velocity estimation process is showed in Figure F.1: 

 The velocity estimator needs an initial model in depth as input. In this case, the 

model has two layers with a constant Vp corresponding to the sea water (1480 m/s) 

separated by the seabed interface (previously depth migrated) (Figure F.1a). 

 Stacked velocity grid is computed from smoothed stacking velocity functions (Stab 

files). Stab files were created from Charisma stacking velocity files (VBASE) by 

using the script in appendix G. CMP positions from which the velocity will be 

estimated are also loaded in this step (Figure F.1b). 

 The selected horizon is displayed in time domain. Note that these horizons must be 

always selected from shallow to depth. On the top, red triangles identify the CMP 

position at which the velocity will be estimated (Figure F.1c).  

 The first time horizon below seabed is selected and the uncertainties and acceptance 

limits for velocity estimation are set (5% on the stacking velocity and of 100% on the 

interval velocity in this case). The velocity sample file has the same name as the 

horizon used for the estimation. The [Estimate] button starts the process (Figure 

F.1d).  
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 The output velocity sample file is displayed in the velocity domain. Every interval 

velocity sample has associated a measurement of the uncertainty. Note that the 

deeper the horizon is, the larger the uncertainty will be. This is because for each new 

horizon, the previous internal velocities are used and, hence, their uncertainties are 

propagated (Figure F.1e). 

 

(A) INITIAL MODEL IN DEPTH 

 

(B) STACKING VELOCITY GRID 

 

(C) HORIZON USED FOR ESTIMATION IN TIME DOMAIN 

 

(D) VELOCITY ESTIMATOR 

  

(E) ESTIMATED VELOCITY 

FIGURE F. 1 - NORSAR-2D VELOCITY ESTIMATOR. 
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Depth conversion process is showed in Figure F.2: 

 The velocity sample (output of previous step) file is loaded in NORSAR-2D model 

builder and it can be modified and smoothed before creating a sampled velocity 

function (constant, linear trend or spline representation). In the example, spline is 

selected with an increment every 500m (Figure F.2a). 

 When the velocity function is stored, it is assigned to the deepest layer in the model. 

The corresponding horizon (Hordaland, in the example) is finally depth converted 

with image ray tracer technique (Figure F.2b).   

 A new model is created with an additional layer below the depth-converted horizon. 

This model can be loaded in NORSAR-2D velocity estimator module and repeat the 

same process for the rest of the horizons (Figure F.2c).    

 

(A) SAMPLE VELOCITY FUNCTION 

 

(B) DEPTH CONVERSION 

 

(C) FINAL MODEL 

FIGURE F. 2 - DEPTH CONVERSION. 

Appendix G: Script to convert stacking velocity from 
Charisma (*.VG_VBASE) to NORSAR-2D (*.Stab) format. 

The following script is developed in vbscript and it can be executed in any windows 

platform. It covers charisma VG_VBASE files containing stacking velocities into NORSAR-

2D format (*.Stab). Details of these formats can be found in Charisma and NORSAR-2D 

manuals. 
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'Scriptname: VBASE2STAB.vbs. 
' Language: vbscript. 
'Seismic line information 
line = "name_of_section" 'example: "MNR06-7124" 
nInitCDP = InitialCDP 'example: 26813 
nStep = SeparationBetweenCDPs 'example: 0.0062164 
strVBase = InputCharismaFile 'example: "MNR06_7124_VBASE.dat" 
'Output files 
foutput = OutputN2Dfile 'example: "Final_" & line & ".Stab" 
'Main program 
Set fso = CreateObject("Scripting.FileSystemObject")  
Set VBaseFile = fso.OpenTextFile(strVBase) 
Set outfile =  fso.CreateTextFile(foutput,true) 
outfile.Writeline("tabular property-1") 
outfile.Writeline("    1    1    2    6    1") 
do while not VBaseFile.AtEndOfStream   
    fName =  VBaseFile.ReadLine() 
    If InStr(fName, "CDP")<>0 then 
  strLine = left(fName,29) 
  strLine = Replace(strLine, "SP", "") 
  strLine = Replace(strLine, "CDP", ";") 
  strLine = Replace(strLine, "NV", ";") 
  arrRef = split(strLine,";") 
        strSP = Trim(arrRef(0)) 
        strCDP = Trim(arrRef(1)) 
  strNV = Trim(arrRef(2)) 
  xpos = round((int(strCDP) - nInitCDP)*nStep,4) 
  strLine = strSP & "-" & strCDP & "-" & xpos & "-" & strNV 
  sout = "******************************" & vbCrLf 
  sout = sout & "   " & xpos & "        " & strCDP & "        " & strNV 
  outfile.writeline(sout) 
  else 
  VTpair = split(fName,"T") 
  for each pair in VTpair 
  If InStr(pair, "V")<>0 then 
   Data = split(pair,"V")    
   ms = trim(Data(0)) 
   ks = round(int(ms)/1000,4) 
   mse = trim(Data(1)) 
   se = round(int(mse)/1000,4) 
   sout = "   " & ks & "     " & se 
   outfile.writeline(sout) 
   end if  
     next  
 end if   
loop 
outfile.close 
'Change "," by "." as decimal separator 
Set outfile = fso.OpenTextFile(foutput) 
contents = outfile.readall 
outfile.close 
Rep2 = replace(contents,",",".") 
fouttmp = "tmp_" & foutput 
Set outfiletmp =  fso.CreateTextFile(fouttmp,true) 
outfiletmp.write Rep2 
outfiletmp.close 
fso.deletefile foutput 
fso.MoveFile fouttmp, foutput 
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Glossary 
 AVA – Amplitude versus angle. 

 AVO – Amplitude versus offset. 

 Common Midpoint (CMP) – For a source-receiver pair, the midpoint can be 

calculated. Traces with common midpoint between sources and receivers are 

gathered in groups called CMP gathers. In the case of horizontal layers, traces from 

the same CMP are reflected in the same CDP (common depth point). 

 Dix approximation – In horizontal and parallel layers, the interval velocity for a 

layer between two reflectors can be approximated by: 

     √
      

 
 
         

 
   

       
                                               (Gl. 1) 

where vint is the interval velocity in the layer number n, tn-1 and tn are the traveltimes 

of the first and second reflectors and vRMSn and vRMSn-1 are the RMS velocities 

(approximated by stacking velocities) of the n and n-1 layers.  

 Fan system - Accumulation of land-provenance sediments on the basin-floor 

normally through submarine canyon-channel systems. 

 GWC – Gas-water contact. 

 Normal Move Out – It is the difference between a certain offset traveltime and the 

zero-offset traveltime in a CMP gather. This difference must be corrected before 

stacking (NMO correction). 

 Play – Group of known or proposed hydrocarbon accumulations with similar 

geologic, geographic and temporal characteristics, e.g., similar source rock, 

migration pathways, timing, trapping mechanism and hydrocarbon type. 

 Root-mean-square velocity (VRMS) – it is the effective velocity of a wave travelling 

from the surface to a given reflector. It is defined as: 

     √
∑  

     

∑    
                                                                       (Gl. 2)  

where VRMS is the root-mean-square velocity in the layer n, vi is the interval velocity 

in layer I and Δti0 is the vertical traveltime in layer i. VRMS can be approximated by 

stacking velocity for horizontal reflectors and small offsets. 

 Stacking velocity – The traveltime variation with the offset can be expressed with 

the hyperbola: 

     
  

  

  
                                                                     (Gl. 3) 

where t0 is the traveltime at zero-offset, x is the offset, t is the traveltime at offset x 

and v is the velocity. The stacking velocity is the velocity that will give the best stack 
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of the data. If v=stacking velocity, the difference between t and t0 after NMO 

correction should be zero.  

In NOSAR2D, the “stacking velocity function” represents the stacking velocity 

variations with depth for a specific CMP. 

 Interval velocity – It is the velocity within a layer (or block). 

 Image Ray – Ray path starting at the surface in the vertical direction, used for local 

depth conversion of a Migrated Time Horizon (MTH). 

 Seismic model (ray tracing model in NORSAR-2D – In the context of this study, the 

seismic model is represented by: 

o Interfaces – Surfaces representing the discontinuity between two mediums 

with different physical properties (Figure Gl1a). In NORSAR2D, each 

interface must have two intersections (with the model box or with other 

interface). 

o Blocks or layers – Zones between surfaces (Figure Gl1b). 

o Material properties – Density, Vp and Vs assigned to each block. These 

properties can be constant or defined by a function (Figure Gl1c). 

 

(A) - INTERFACES 

 

(B) - BLOCKS 

 

 (C) – MATERIAL PROPERTIES (VP) 

FIGURE GL. 1 - SEISMIC MODEL EXAMPLE. SEISMIC LINE MNR07-208. 

 Tuning effect – Constructive or destructive interference of waves from closely 

spaced reflectors. Tuning effect starts when the spacing between reflectors is lower 

than Tuning thickness. 
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