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Abstract

The purpose of this thesis is to explore the operation of clockless digital
logic. Different methods of achieving clockless operation are examined. A
chosen architecture is implemented on chip in a commercial 90nm process
from TSMC.

Post-production testing is performed by means of a custom-built PCB,
as well as a microcontroller with custom firmware. The performance and
characteristics of the chip is then evaluated for varying supply voltages.
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Chapter 1

Introduction

The world of digital electronics today is dominated by synchronous
logic[23]. In synchronous logic circuits, clock signals are used to control
the data flow. Inputs are read at regular intervals, dictated by the clock
signal. This means that all outputs must be stable and ready before the
next clock cycle. To ensure correct operation, the designer must set the
clock speed such that all components are able to generate stable output
signals within a single clock cycle. This sets an upper limit on the clock
frequency. Within each clock domain, the maximum clock frequency
is limited by the slowest component in the circuit, also known as the
critical data path[12]. The complexity and subsequent completion time for
each component can vary greatly. As a consequence, the outputs from
some components will be ready long before they are actually read by
other components. The result is considerable timing overhead for faster
calculations.

Asynchronous logic, on the other hand, operates without clock signals.
In asynchronous circuits, output signals are accompanied by ready-
signals[23], indicating to the receiving component(s) when the data can
be read. Ideally, this would eliminate the wasteful idle time, allowing the
circuit to operate as fast as the individual components allow. In reality, the
ready-signals themselves will introduce some overhead.

In this thesis, different approaches to asynchronous data processing are
explored. A limited instruction set asynchronous ALU is designed and
produced, which will be presented in detail.






Chapter 2

Why Asynchronous?

A major motivation for switching from synchronous to asynchronous
design is to get rid of the global clock signal. Clock generation and
distribution can consume a large amount of power. For instance, in
a modern CPU, up to 60% of Ippmu.x can be consumed by the clock
network[25]. In order to reach all components on a chip, the clock is often
implemented as a metal grid in layout, covering a large portion of the chip
area[13]. Because the grid covers such a large area, it effectively becomes
a large capacitor that charges and discharges with every clock cycle.

Standby power consumption is usually very low in asynchronous
systems, especially when implemented in CMOS. This is not unique to
asynchronous systems, but rather a general property of CMOS circuits.
However, asynchronous systems are event-driven. This means that signals
only transition when there is new data input to the system. When there
is no work to be done, the system will lie completely dormant. In
synchronous systems, the clock will still be running even if there are no
new inputs to be processed. Larger synchronous systems can achieve the
same effect by using sleep states to disable the clock. Clock gating can
also be used, so that the clock is only active where it is needed at any
given time[3].

Correct timing is essential in synthesis of synchronous systems. To
ensure that all components generate stable output signals within a single
clock cycle, a predefined supply voltage must be maintained. As supply
voltage is lowered, logic gates will operate more slowly. If the voltage
drops below a certain threshold, it is no longer guaranteed that output
signals are valid when the next clock cycle arrives. Other parameters such
as increased operating temperature, or transistor mismatch during chip
production, can also negatively impact the overall speed of the system.
When setting the clock speed of a synchronous system, these factors have
to be taken into account. The clock speed must be set low enough to allow
a certain tolerance for imperfections.

Asynchronous systems tend to be more robust in regards to variance
in supply voltage and other parameters. In fact, the voltage can be
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lowered intentionally. This will result in reduced speed, but also reduced
power consumption. As long as the the data remains intact, i.e. all
combinatorial functions are carried out correctly, the supply voltage can
be set as low as desired. A good example of this robustness is the
tirst fully asynchronous microprocessor, designed at Caltech in 1989[21].
The processor could handle a Vpp ranging from 0.35V to 7V. During an
experiment, the designers cooled the processor in liquid nitrogen, almost
doubling the number of instructions per second.

All electronics generate electrical noise. Digital systems in particular, often
exhibit sharp noise spikes because of the way charge carriers suddenly
move back and forth when signals change. In CMOS logic, noise is
generated primarily when signals transition from 0 to 1 or vice versa,
which is when the transistors switch between cut-off and saturation. In
clocked logic, this translates to a regular powerful noise spike for each
clock edge. Clockless logic also exhibits noise, but the noise tends to be
more evenly distributed in time. In figure 2.1 on the facing page we see
a good example of this difference. On the left is the measured substrate
noise on a chip with 36 clocked pseudorandom number generators. On
the right is the measured substrate noise on the same chip, but now with
36 clockless pseudorandom number generators. The clock rate on the left
is set such that the throughput of both the clocked and clockless circuits
are the same.

So why is synchronous electronics still so dominant in the industry?
The fact is that asynchronous circuits have many drawbacks. While
it is true that getting rid of the clock signal offers many benefits,
having a clock signal greatly simplifies the design process[23]. A regular
clock allows much of the design and simulation to be performed in
discrete time, decreasing the complexity and resource requirements
during development. Simply put, the designer only needs to worry about
signal levels at the rising or falling clock edge. In between clock edges,
signals may take on intermediate values, but it doesn’t matter as long as
the signals settle before the next clock edge.

To this date, practically all commercially available high-level digital
design tools assume clocked operation[18]. Some VHDL compilers, such
as Xilinx ISE and Altera Quartus can be used to generate asynchronous
circuits, but the software is not designed for it and may generate many
warnings along the way. Avoiding hazards and race conditions is a
challenge, as the software cannot easily guarantee correct timings when
there are no clocked registers involved.

Asynchronous circuits tend to have a higher number of transistors
than their synchronous counterparts, depending on the particular design
topology being used. Without a clock, data must be synchronized by
other means, such as handshaking[23]. This requires additional logic,
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Figure 2.1: Measured substrate noise for an array of synchronous (left) and
asynchronous (right) pseudorandom number generators[17].

which increases the transistor count and silicon area. Some asynchronous
topologies also require hazard-free logic, pushing the transistor count
even higher. The end result of this is increased total gate delays and
reduced overall speed.

2.1 Asynchronous Methodologies

There are many ways to achieve asynchronous operation. Each approach
has its pros and cons. In the following sections, some of the different
alternatives are outlined.

It should be noted that for very large-scale systems, with millions of
transistors, the asynchronous methodologies listed in this chapter can be
used in conjunction with synchronous logic to produce globally asyn-
chronous, locally synchronous (GALS) circuits[10]. In these circuits, each
local clock signal drives a limited number of transistors. Asynchronous
handshaking is only used to send and receive data between the clocked
subcircuits. This approach limits the impact of clock skew, which is often
a problem in large synchronous systems.

2.1.1 Matched Delays

A simple way to achieve asynchronous operation is to use preconfigured
delays between circuit elements[16]. Consider the processing pipeline
shown in figure 2.2 on the next page. In this methodology, logic blocks
are accompanied by delay elements, which dictate when data is shifted
from one block to the next. When data enters a block in the pipeline, the
next block will not receive data until the previous delay element sends
a ready-signal. The length of this wait time is determined by the delay
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Figure 2.2: A processing pipeline using delay elements to synchronize
data.

element. Each delay element is configured to produce a wait time equal to
or longer than the processing time of its corresponding logic block.

With this approach, the logic blocks themselves can be constructed just
as in a synchronous circuit. Glitch-free operation is not required, as long
as the outputs settle within the preset delay time. The delay elements can
be of very simple design, for example a capacitor discharging through a
resistor. In this case, the delay time can be tuned by varying the size of the
capacitor and/or the resistor.

The major downside of this approach is that all the delays must
be separately configured during circuit design. This configuration can
be very time-consuming, as precise timing simulations are required to
determine the completion time of each logic block. The designer(s) must
also take component mismatch, operating temperature and other variables
into account, allowing a certain timing overhead. To allow for these
imperfections, a higher delay time must be set.

The computing time for a logic block can vary a great deal, depending
on the input data. A ripple adder, for example, can present valid outputs
with minimal delay if there are no carries to be propagated. But if a carry
must be propagated all the way from LSB to MSB, the processing delay
increases substantially. Because of this variance in processing speed, the
wait time in a delay element must be set long enough to allow for worst-
case processing time in its corresponding logic block, just like in a clocked
system.

Although an asynchronous circuit using matched delays can operate
with varying supply voltage, the delay time may not be optimal over the
entire voltage range. Changing the supply voltage can affect the logic
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elements and the delay elements differently. If Vpp is decreased, the
processing time in a logic block will increase. However, the wait time in
the delay element may not increase by the same amount, leading to timing
errors. You could counter this by setting a longer delay time, but this could
lead to unnecessary long delay time for higher Vpp.

2.1.2 Current-Sensing Completion Detection

The matched delay methodology outlined in the previous section uses
preconfigured timing estimates to determine when output data from
a logic block is valid. The delay elements are completely separate
from the actual logic. Ideally, a delay element would be connected
to its corresponding logic block and detect when the output data is
valid. This detection can be accomplished by using current-sensing
circuitry[16]. In conventional CMOS, the static current consumption is
very low compared to the dynamic current consumption. Power is mostly
dissipated during signal transitions. For a logic block receiving new data,
current consumption will be high at first, when internal signals switch
between high and low logic states. When processing is complete and all
signals have settled, the current consumption will drop sharply.

A current-sensing completion detector connected to a logic block
monitors the current consumption as data processing occurs. When the
current drops, processing is complete, and the completion detector sends
a ready-signal to the next stage in the pipeline.

Because CMOS logic primarily draws current during signal transitions,
the current-sensing scheme works well as long as data keeps changing
for each processing cycle. However, problems arise when two or more
identical sets of data are processed in sequence. Suppose a logic block has
finished processing a data set, and then receives a new, identical data set.
Because the inputs are the same as before, the internal signals and outputs
will not change, and the current consumption will not increase. In this
case, the completion detector will not be able to detect that a new data set
has been processed.

2.1.3 Differential Cascode Voltage Switch Logic

The logic family that is the main focus of this thesis is called Differen-
tial Cascode Voltage Switch Logic (DCVSL)[19]. Its method of operation is
quite different from conventional static CMOS. In this section, we will ex-
plore DCVSL by first comparing static CMOS- and single-ended Cascode
Voltage Switch Logic gates, before moving on to DCVSL gates.

In static CMOS circuits, logic gates consist of one or more NMOS transist-
ors driving the output to 0 or ground (pull-down), and a complementary
set of PMOS transistors driving the output to 1 or Vpp (pull-up). It’s called
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Figure 2.3: A single-ended CVSL gate.

|

Static CMOS because the outputs of a gate are at all times driven to either
0 or 1, meaning that a low resistance path always exists between the out-
put and either ground or Vpp. The counterpart to static CMOS is dynamic
CMOS, where outputs may temporarily be undriven, i.e. disconnected
from ground and Vpp by a transistor in cut-off[11].

In single-ended Cascode Voltage Switch Logic, the pull-down network
(NMOS tree) is the same as for static CMOS, with an additional NMOS
transistor to ground. The pull-up network is removed entirely, and the
output is instead connected to Vpp through a single PMOS transistor. A
sketch of such a logic gate is shown in figure 2.3. Unlike static CMOS, the
output from this gate is not driven at all times. The state of the output
depends on the Request signal. As long as Request is 0, the output is
pulled to 1 through the PMOS transistor, and the lowest NMOS transistor
disconnects the rest of the circuit from ground. This is the idle, stable state
of the gate. Because the NMOS tree is disconnected from ground, a change
in the input at this time will not affect the output.

If we now set Request to 1, the output will no longer be pulled to 1,
and the NMOS tree will be connected to ground. One of two things can
happen at this point. Depending on the inputs, the output will either be
pulled to 0 by the NMOS tree, or it will stay at 1. However, because Vpp
is disconnected, the output is a floating 1. Only parasitic capacitance is
maintaining the voltage on the output, and because of leakage currents it
will only stay valid for a short while[9].

Now let’s say we make this gate differential instead of single-ended, as
seen in figure 2.4 on the next page. In this gate, the NMOS tree is expanded
to include a pull-down network for a second output, Out. The second pull-
down network is the boolean complement of the first pull-down network,

8
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Figure 2.4: A DCVSL gate, using a differential signal path.

|

Out | Out’ | Logical value
0 0 Not used
0 1 0
1 0 1
1 1 | Idle (not ready)

Table 2.1: DCVSL output truth table.

such that when Out is 0, Out is 1 and vice versa.

We now have a DCVSL gate. This gate functions in the same way
as the single-ended gate, except it generates a differential output signal.
Instead of a single wire carrying the output data, we have two wires
carrying opposite values when data is present. This is useful for clockless
applications, because it allows us to see when the NMOS tree has finished
evaluating the input. The possible states of the differential output are
shown in table 2.1.

In the case of the single-ended gate, after Request is set to 1, we have
to wait a certain amount of time to see whether or not the NMOS tree
will pull the output down to 0. But how long do we have to wait? This
depends on several factors, such as the complexity of the NMOS tree, rail
voltage, transistor dimensions etc. With the differential gate on the other
hand, one and only one of the output signals will be pulled down to 0.
This means that as soon as Out and Out have differing values, we know
that the output is ready. A simple way of detecting this is to connect a
static NAND gate to the output, as shown in figure 2.5 on the next page.
In the idle state, when Out = Out, the NAND will generate a 0, indicating
that the outputs are not ready. When Request goes to 1 and the NMOS tree
evaluates the inputs, either Out or Out will be pulled to 0, and the NAND

9
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Figure 2.5: A DCVSL gate with NAND completion detection.

will generate a 1, indicating valid outputs.

Using differential outputs makes completion detection easy to imple-
ment, but it comes at a price. Using two wires to transmit the same amount
of data as one wire is naturally inefficient by comparison. Because every
logic gate has two pull-down networks instead of one, the transistor count
and silicon area per gate increases. Two data outputs for each gate also
means that wiring congestion can be a problem when interconnecting lar-
ger systems.

Hazard-free operation is a requirement when using DCVSL gates with
NAND completion detection[27]. As we can see in figure 2.5, the NAND
gate connected to the outputs will pull the Request out to 1 as soon as
either Out or Out is pulled to 0. As such, the outputs must be ready and
valid when the Request is generated.

We obviously have to make modifications to a conventional single-
ended CMOS pull-down network in order to make it differential. Luckily,
the modifications are easy to implement, and the procedure is the same
for all logic gates. For any pull-down network used to generate an output
Y, we need to add another pull-down network to generate the output Y.
De Morgan’s theorem states that

This theorem can be applied to any boolean expression in three simple
steps:

1. Inverse all variables.

2. Replace all AND with OR, and vice versa.

10



3. Inverse the result.

The end result is a boolean expression that is equivalent to what we begin
with. However, if we complete only the first two steps, we get a boolean
expression that is the opposite of what we begin with, which is exactly
what we need.

Let’s look at an example. In figure 2.6 we see the pull-down network
of a static CMOS NAND gate. The boolean expression for this gate is
Out = A-B. If we create a new pull-down network by doing the first
two steps above, and add this to the CMOS pull-down network, we get
the DCVSL pull-down network shown in figure 2.7 on the next page.
Note that the new transistors are connected in parallel instead of in series
(changed NAND to NOR), and the inputs are inversed.

Out

Figure 2.6: A CMOS NAND gate pull-down network.
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Figure 2.7: A DCVSL NAND gate pull-down network.
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Chapter 3
ALU Design

In this chapter, the construction of an Arithmetic Logic Unit (ALU) in the
low-power 90nm process from TSMC is presented. The ALU supports 8
different instructions or opcodes, and uses an 8-bit word length. There
are 2 input channels Ay_( and By_p, and one output channel OUT;_g. In
addition, there is an overflow (OF) output, used by the adder subcircuit to
indicate data overflow in the output.

DCVSL logic is the basis of the ALU. All of the subcircuits that perform
arithmetic and logic operations on the input data, are constructed using
DCVSL gates.

All transistors, except line pull-up and input pad inverters, use
minimum dimensions. In this particular process, the minimum transistor
dimensions are ¥ = 12311

All schematics and layouts were made using Virtuoso Front to Back
Design Environment version 5.1.0, from Cadence Design Systems.

3.1 Instruction Decoder

The ALU has a 3-bit control input, S,_g (Select). This signal, along with
the request signal (REQ), is fed into the instruction decoder. A schematic
is shown in figure 3.1 on the following page. The decoder forwards
the incoming REQ signal to the appropriate subcircuit, which then starts
processing the input data. In addition, the transmission gates following
each subcircuit are enabled. The transmission gates require both an active-
high and active-low enable signal, which is why the instruction decoder
generates both REQ and REQ for each input combination. An example
of a simulation run is shown in figure 3.2 on page 15. In this simulation,
S is strobed at different rates, running through all eight combinations of
control inputs. The request signals for the adder subcircuit are included
as an example, showing that the adder will only receive the request signal
when the ADD opcode (111) is present on S.
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Figure 3.1: Schematic of the instruction decoder.
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Figure 3.2: A 30ns transient simulation of the instruction decoder, strobing
the inputs at different rates.

The layout of the instruction decoder is shown in figure 3.3 on the
following page.
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Figure 3.3: Layout of the instruction decoder. Height = 15.78ym, width =
5.23um.
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3.2 Opcodes

The ALU can perform 8 different operations on the input data. The
operation to be executed at any given time is determined by the 3-bit Select
input to the instruction decoder. The supported operations are listed in
table 3.1.

The ALU uses 8-bit input- and output buses. The subcircuits that
perform each operation consist of DCVSL gates stacked together in layout,
where every other gate is flipped upside down, such that each gate shares
Vpp- and ground rails with the gates directly above and beneath it.

In figure 3.4 on the following page we see the most basic DCVSL gate
in the ALU: The NOT gate. Strictly speaking, there is no need for NOT
gates when using differential data lines, because for each data bit X we
already have X. Nevertheless, it is included in this ALU design because it
is a good indicator of the best-case performance of any DCVSL gate. It is
the simplest DCVSL gate possible, which makes it a good reference when
measuring the performance of other, more complex DCVSL gates.

Schematics and layouts of the AND and OR gates are shown in figures
3.5-3.6. NAND and NOR gates are not shown, as the only difference is
that their outputs are swapped.

In all the DCVSL gates shown here, the PMOS transistors are
abutted[2] since they share a common source. The same goes for
the NMOS transistors. In the AND and OR gates, NMOS transistors
connected in series are implemented as two gates covering a common
channel.

The XOR gate is created by combining DCVSL NAND gates, as shown
in figure 3.7 on page 21. In the schematic, REQ for the final DCVSL NAND
gate is generated in the cell COMPLGEN2_v1, by static NANDing each
differential output from the previous DCVSL NAND cells, and then static
ANDing these results.

Opcode | Operation
000 NOT
001 AND
010 NAND
011 OR
100 NOR
101 XOR
110 XNOR
111 ADD

Table 3.1: List of supported ALU operations.
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Figure 3.4: Top: Schematic of a DCVSL NOT gate. Bottom: Layout of a
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3.21 ADD

The adder used in this ALU is a Kogge-Stone adder, a parallel prefix
form carry look-ahead adder. The design was introduced by Peter Kogge
and Harold Stone in 1973[14], and is widely used in modern processors
because of its high performance and scalability[26]. As with any carry
look-ahead adder, the principle idea is to calculate the carries for each
bit before the preceding sum has been determined, greatly decreasing the
time needed to calculate each bit result, especially for more significant bits.

The schematic for the Kogge-Stone adder is shown in figure 3.8 on the
facing page. At first glance, the schematic seems quite complex, but we
can divide the building blocks of the adder into three separate types of
cells: top cells, mid cells and bottom cells. In the following sections, each
of these cells will be explained in detail.
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Figure 3.8: Schematic of a DCVSL 8-bit Kogge-Stone adder with overflow
output.
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Figure 3.9: Layout of a DCVSL 8-bit Kogge-Stone adder with overflow
output. Height = 72.81ym, width = 50.32um.
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The top cell

In the schematic for the adder we see eight top cells, one for each pair of
binary inputs. As the name suggests, the top cells are located in the top of
the schematic. From right to left, input data Ay and By (LSB), A; and By,
Aj and By, ... up to A7 and B; (MSB) enter the top cells from above.

In figure 3.10 on the next page, we see the schematic and layout for the
top cell. The inputs and outputs are shown below.

Inputs:

e REQIN - Incoming request signal. Indicates new data input.
Generated by the instruction decoder.

e A, A’ - Data input, channel A. Differential line. Generated by
circuitry external to the ALU.

¢ B, B’ - Data input, channel B. Differential line. Generated by circuitry
external to the ALU.

Outputs:

¢ REQOUT - Outgoing request signal. Indicates P and G outputs ready
for retrieval by mid cells.

¢ D, P’ - The "Propagate"” signal. Differential line. Used by mid cells to
calculate carries, or by a bottom cell to calculate a sum.

* G, G’ - The "Generate" signal. Differential line. Used by mid cells to
calculate carries.

The function of the top cell is to generate two signals from its input bits: A
Propagate signal P and a Generate signal G. The Propagate signal denotes
whether or not an incoming carry from the right would be propagated to
the left, like the carry in a ripple adder. For bit position i, where position 0
is LSB, P; is 1 if a carry from position i-1 would be propagated to position
i+1. The Generate signal on the other hand, denotes whether or not the bit
position itself will generate a carry to the left, regardless of what is on the
right. For bit position i, G; is 1 if a carry is generated in that position and
sent to position i+1. Both of these signals are created only by looking at
the data inputs A; and B;. The expressions for P and G are shown below.
Note that they are exactly the same as for a half adder, with P being the
sum and G being the carry. The signals P and G are used further down in
the schematic, by the mid and bottom cells.

P=A®B (3.1)
G=A-B (3.2)
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Figure 3.10: Top: Schematic of the top cell in the Kogge-Stone adder.
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14.35um, width = 10.71pm.
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The mid cell and carry tree

The carry tree-structure in the adder is composed entirely of mid cells.
These take up most of the total adder area and interconnect. The schematic
and layout for the mid cell is shown in figure 3.11 on the following page,
and the inputs and outputs are listed below.

Inputs:

REQIN - Incoming request signal. Indicates that inputs PIN and GIN
are ready. Generated by the top or mid cell directly above this one.

REQPREYV - Incoming request signal. Indicates that inputs PPREV
and GPREV are ready. Generated by a top or mid cell above and to
the right of this one.

PIN, PIN’ - Incoming "Propagate" signal. Differential line. Generated
by the top or mid cell directly above this one.

PPREV, PPREV’ - Incoming "Propagate” signal. Differential line.
Generated by a top or mid cell above and to the right of this one.

GIN, GIN’ - Incoming "Generate" signal. Differential line. Generated
by the top or mid cell directly above this one.

GPREV, GPREV’ - Incoming "Generate" signal. Differential line.
Generated by a top or mid cell above and to the right of this one.

Outputs:

REQOUT - Outgoing request signal. Indicates P and G outputs ready
for retrieval by mid or bottom cells.

P, P’ - The "Propagate” signal. Differential line. Used by mid cells
below to calculate carries.

G, G’ - The "Generate" signal. Differential line. Used by mid cells
below to calculate carries, or by a bottom cell to calculate a sum.

The function of the mid cell, just like the top cell, is to generate
Propagate and Generate signals P and G. However, a mid cell in bit
position i does not look at the input bits A; and B; directly. Instead,
it combines Propagate and Generate signals from other cells above it in
the schematic, in order to generate new Propagate and Generate signals.
Depending on how far down the carry tree a particular mid cell is located,
it can either get its P and G inputs from other mid cells, or directly from
top cells. The expressions for P and G are shown below.

P=Py- Pprev (3.3)
G =G+ (Pin ) Gprev) (3.4)

27



voD 4y

()
a
MPLGEN2_v1
cOo _v
we o ouTm B REQOUT
O

reon -
REQPREV

] Ppr
. e

couT's
Q

PPReV I
PPREV’ I

oN -
o'

REQ o
A SouTm P

‘B .G,

cPReV I

%OUT'II
cPrReV

@]

oND 4y

E B mom mom m2 8 0 8 DN 8 8 8 OEEE oom

Figure 3.11: Top: Schematic of the mid cell in the Kogge-Stone adder.
Bottom: Layout of the mid cell in the Kogge-Stone adder. Height =
6.56pm, width = 9.21pym.

28



Inpaus 15 14 13 12 11 10 9 B 7 &6 3 4 3

I
=

Stage |

Siage 2

A Stage 3

I
I
I
[
I
I
| ainge i |
I

(S ——

Figure 3.12: Parallel prefix graph of a 16-bit Kogge-Stone adder [4].

An illustration of the carry tree is shown in figure 3.12. The white circles
represent top cells, and the grey circles represent mid cells. For all mid
cells, P;, and G;, are read from the cell directly above it, accompanied by
the request signal REQIN. Pyry and Gprey however, are a different story.
The cells in stage 1 read REQPREV, Ppey and Gypyrey from bit position i-1,
i.e. 1to the right. The cells in stage 2 read REQPREV, Py and Gprep from
bit position i-2, i.e. 2 to the right, and the cells in stage 3 read REQPREYV,
Pprev and Gypyep from bit position i-4, i.e. 4 to the right.

As we can see, the horizontal distance between one cell’s P or G output
to its corresponding Pprey Or Gpren input doubles at each vertical stage. This
is the source of the Kogge-Stone adder’s scalability. If we were to double
the width of the data words, for instance go from 8-bit to 16-bit, we would
only need one more vertical stage. Note that the carry-tree illustrated here
is for a 16-bit adder, not an 8-bit one. Therefore it has one more vertical
stage than our adder.

The bottom cell

So far we have only generated Propagate and Generate signals. We still
haven'’t calculated the final sum bits. This is accomplished by the bottom
cell, shown in figure 3.13 on page 31. The inputs and outputs to the bottom
cell are listed below.

Inputs:

* REQIN - Incoming request signal. Indicates that input P is ready.
Generated by the top cell in the current bit position.

¢ REQPREV - Incoming request signal. Indicates that input GPREV is
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ready. Generated by a top or mid cell above and to the right of this
cell.

e P, P’ - Incoming "Propagate" signal. Differential line. Generated by
the top cell in the current bit position.

* GPREV, GPREV’ - Incoming "Generate" signal. Differential line.
Generated by a top or mid cell above and to the right of this cell.

Outputs:
* 5,5’ - The final sum for this bit position. Differential line.

The bottom cell produces a sum by performing a simple XOR
operation:

S=P,® Gprev (3.5)

The P, in this expression is the Propagate signal generated by the top cell
in the current bit position, and G, is the final Generate signal created by
the last vertical stage in the previous bit position.

Considering that the top cell calculates P by XORing A and B, and that
Gprev is the carry-in for the current bit position, the expression above is
equivalent to that of a full adder:

S=A®B®Cy, (3.6)
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How it all works

Now that we have gone through the workings of each individual type of
cell, let’s see how it all fits together. We can do this by typing out the
expressions for the final sums one by one. For P and G below, we’re using
two indices x and y to indicate which cell the signals originate from. x
is the bit position, where x=0 is LSB and x=7 is MSB. y is the tree depth,
e.g. stage number in figure 3.12 on page 29. For instance, y=0 is a top cell,
and y=3 is a stage 3 mid cell. As an example, P4 3) is the Propagate signal
generated by the mid cell in bit position 4, in stage 3 e.g. third mid cell
from the top.

For bit position 0, we have no carry-in, which means the sum is simply

So = Ao @ By
= P,

For bit positions 1 and higher, we need to take the incoming carry into
account. The sum in position 1 is

S = (Al @ Bl) D (A() . BO)
— P(l,O) @ G0,0

For bit position 2, the sum is

Sy = (Ay® B) @ (((A1® B1) - (Ao - Bp)) + (A1-By))
= P20 ® ((P1,0) - Goo) + G10)
=P ® Gy

For bit position 3, the sum is

S3 = (A3 ® B3)
® ((((A2® Bz) - (A1 ® B1)) - (Ao - Bo))
+ (((A2® Ba) - (A1 B1)) + (A2 B2)))
= P30 D (((P20 - P1o) - Gopo) + (P20 - G10) + G2p))
= P30 D ((P21 - Gop) + G1,1)
= P30® G

The expressions for the sums in bit positions 4 through 7 are not shown
here, as the equations get increasingly complex. However, we can see that
each expression boils down to an XOR operation on a Propagate and a
Generate signal. For each new bit position, we only need to calculate one
additional Generate signal.

32



3.3 Transmission Gates and Standby Pull-up

The data outputs from each DCVSL subcircuit all connect to the same
output register (described in the next section). To ensure that only one
subcircuit at a time can drive the ALU output register, transmission
gates[20] are inserted at the outputs of each DCVSL subcircuit. The
schematic and layout are shown in figure 3.14 on the following page. All
data signals from the DCVSL subcircuits pass through a transmission gate
before entering the output register. When a DCVSL subcircuit receives
a request signal from the instruction decoder and starts processing input
data, the same request signal is also sent to the transmission gates on the
subcircuit output. The transmission gates will then be enabled and allow
the data to pass through to the output register. All other transmission
gates, connected to other DCVSL subcircuits, will still be disabled.

When the ALU is in standby, i.e. request in is low, no data processing
occurs. In this case, no DCVSL subcircuit is driving the data lines to the
output register. When request in is low, PMOS transistors are used to pull
the internal data lines high.
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transmission gate. Height = 2.47um, width = 1.59um.
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3.4 Completion Generation

After a set of input data has been processed, a currently active DCVSL
subcircuit sends a request signal to the output register. This internal
request signal is generated by the completion generator, shown in
figure 3.15 on the next page. Each DCVSL subcircuit has a completion
generator connected to its data outputs.

The completion generator is composed of static NAND- and AND
gates. Each differential data output bit from a DCVSL subcircuit is
NANDed, and the 8 resulting values are then ANDed together by a tree of
2-input AND gates. When a DCVSL subcircuit is not processing data, all
its output lines will be high. In this case, all 8 NAND gates will produce a
0, and the AND tree will output a 0. But when a DCVSL subcircuit has just
finished processing data, all its differential outputs will be pairs of either
0/1 or 1/0. All the NAND gates in the completion generator will then
switch from 0 to 1, and the AND tree will in turn switch to 1. This output
is then passed through a transmission gate, like the rest of the processed
data, and sent to the output register.
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3.5 The Output Register

Because the ALU utilizes dynamic data paths, internal signals are only
valid for a short period of time. When the ALU has finished an instruction
and data is ready on the output, we need a way to maintain the data
until it is read by an external circuit. The ALU is completely delay-
insensitive, which means that per definition, it must be able to retain the
data indefinitely. The circuit responsible for this is the output register, see
figure 3.16 on the following page. The register is composed mainly of a
series of SR latches (8 for data out, 1 for the overflow flag, and 2 for control
logic). The inputs and outputs are shown below.
Inputs:

¢ REQ - Incoming request signal. Indicates new data input. Generated
by the completion signal generator connected to the currently active
DCVSL subcircuit.

¢ ACK - Acknowledge signal. Indicates data output successfully read.
Generated by the external circuitry that communicates with the
ALU.

¢ OF OF’ - Incoming overflow. Differential line. Indicates arithmetic
overflow in the sum of an addition. Generated by the adder.

e IN[7-0], IN[7-0]" - Regular data inputs. Differential lines. Generated
by the currently active DCVSL subcircuit.

Outputs:

¢ REQOUT - Outgoing request signal. Indicates new data output
ready for retrieval by external circuitry.

e OFUT, OFOUT’ - Outgoing overflow. Differential line. Indicates
arithmetic overflow in the sum of an addition.

e OUT[7-0], OUT[7-0]" - Regular data outputs. Differential lines.

Static AND gates are connected to the S and R inputs of each data latch,
coupling the input signal with REQ. For a data latch storing bit x, the S and
R inputs are given by the logic expressions below.

Sy = IN,-REQ (3.7)
R, = IN, - REQ (3.8)
For reference, the truth table for an SR latch is shown in table 3.2 on
page 39. As long as REQ is low, both S and R will be low, and the state

of the latch will not change. When the ALU has finished an operation
and REQ goes high, each latch will either enter the set state (Q = 1) if
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Figure 3.16: Schematic of the output register.
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Quext Action
Q hold state
reset
1 set
X not allowed

e e E=1E=IN7))
oo X
o

Table 3.2: SR latch truth table.

S = 1and R = 0, or enter the reset state (Q = 0)if S = 0and R = 1.
The combination S = 1,R = 1 is usually considered not allowed for
SR latches, because it would break the logical assertion Q # Q. In this
implementation, this would normally not be an issue because I N, and IN,
will always be opposite when REQ goes high. However, if the external
circuitry fails to pull REQ low after data has been entered into the output
registry, the voltages on the data input lines may begin to drift towards 0,
eventually reaching inconsistent logical values, e.g. INy = INy = 0. The
latches are constructed using CMOS NOR gates, as seen in figure 3.17 on
the following page.

The complete layout of the output register is shown in figure 3.18 on
page 41.
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Figure 3.17: Top: Schematic of an SR latch using NOR gates. Bottom:
Layout of an SR latch using NOR gates. Height = 4.14pm, width = 2.15um.
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Figure 3.18: Layout of the output register. Height = 42.94ym, width =
4.39um.
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Control Logic

In addition to simply storing the output data, the output register keeps
track of the current operational state of the ALU. This is accomplished by
the control logic in the top of the schematic. A cutout of this section is
shown in 3.19 on the facing page.

In order for the output register to be able to receive data, two things
must be checked. First, we have to be sure that data from a previous
operation is not currently occupying the register, waiting to be read. If
this is the case and we were to start a new operation, the data stored in
the register would be overwritten without ever being read, which would
naturally result in data loss. Second, the ACK input must not be high
when the REQ input goes high. If ACK is high, it means that the previous
read operation is not yet finished.

A simple state diagram illustrating the operation of the control logic
is shown in figure 3.20 on page 44. Only transitions that cause the
current state to change, are shown in the figure. Circular transitions,
i.e. transitions that lead from one state back to the same state, have been
omitted for readability.

The state in the middle of the diagram is the idle state. Here, the
output register is empty, ready for input, and both REQ and ACK are
low. Now let’s say that REQ goes high. This causes a transition to the
state on the left. This is the storage state, where input data is stored in
the register, and REQOUT is set high to indicate available output data.
The external circuitry that communicates with the ALU can choose to set
REQ low at any time during this state. Setting REQ low will not affect
the data, because the latches can only change values when REQ is high.
However, if REQ stays high for too long, we run the risk of corrupting the
data because of leakage currents in the dynamic DCVSL cells. If ACK is
now set high, indicating that data is read out of the output register to the
external circuitry, we move to the state on the right. This is the lock state.
At this point in time, the register will not be able to process new data, and
REQOUT will not go high. Before starting each operation, the ALU needs
to be in the idle state for a certain amount of time in order to precharge
the DCVSL cells. If REQ goes high while in the lock state, the storage
latches will in fact be transparent and accept whatever data is on the input
lines, but there is no guarantee that the data is valid, because the DCVSL
cells may not yet have been precharged. When both REQ and ACK go
low, the register returns to the idle state, ready for the next operation. If
for some reason ACK goes high while in the idle state, the register would
transition back to the lock state, and no data will be accepted before the
register returns to the idle state.
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Figure 3.20: State diagram describing the output register control logic.
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3.6 Connecting the ALU to Padframe

The physical chip package used for this ALU is an 84-pin ceramic JLCC
package. For details on the chip package and padframe, as well as full
ALU layout, see A on page 75.

In figure 3.21 on the next page we see a top level view of the entire ALU
schematic. REQ and S[3-0] enter the instruction decoder in the top left of
the schematic. Input vectors A and B are below, on the left-hand side. The
output register and outputs to pads are in the upper right-hand corner.

Ordering custom microchips is a costly endeavour, especially in small
quantities. Because of limited funds, the ALU in this thesis shares the die
area and padframe with another circuit belonging to someone else. As
such, the number of available input and output pads is limited. The ALU
uses differential data paths, requiring two physical wires for each data bit.
However, there are not enough pads available for differential inputs on the
chip. Therefore, inverters are used at all data inputs, to create the inverse
of all data bits. These inverters can be seen below each input vector in the
top schematic.

The ALU output register does not drive the chip output pads directly.
Instead, powerful digital buffers are inserted between the output register
and the pads, in order to provide necessary current driving capacity. Each
buffer consists of two static CMOS inverters connected in series, with
transistor width/length ratios ¥ = 0%”—::”. The transistors in the first
inverter have 5 fingers[6], and the transistors in the second inverter have
10 fingers.

Four testpoints are inserted at the following critical locations in the
ALU, to assist in testing:

¢ The non-inverted request signal from the instruction decoder to the
adder

¢ The non-inverted sum bit 7 from the adder, before the transmission
gate

¢ The non-inverted input bit 7 entering the output register
¢ The request signal entering the output register

These four signals are connected to analog voltage followers (design
by Philipp Hafliger, Ph.D.). The outputs of these voltage followers are
connected directly to pads on the chip. During ALU operation, these
pads can be probed with an oscilloscope to get a direct view of the
internal signal transitions. The voltage followers, as well as the previously
mentioned digital pad drivers, can be seen in figure 3.22 on page 47. The
resistors connected in series after each follower/buffer are a requirement
of the process design rules by TSMC.
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Figure 3.21: Top level view of the ALU schematic.
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Figure 3.22: Schematic view of output-to-pad digital buffers and analog
voltage followers for testpoints.
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Compared to the small transistors of the ALU, the voltage followers
and pad drivers consume quite a large amount of power. To be able to
distinguish ALU power consumption from total chip power consumption
during testing, we use two Vpp references, PVpp and CVpp. CVpp
powers only the core, i.e. the ALU itself. PVpp powers everything else,
such as the output buffers and voltage followers. On the die, a parallel
plate decoupling capacitor is connected to each of these voltage references.
The capacitors measure 50ym by 15um, which gives a capacitance of
approx. 4.6pF.
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Chapter 4
Testing the ALU

Post-production testing of the ALU chip was performed by designing a
custom PCB to connect the chip to an Atmel AT91SAM75256 microcontrol-
ler on an Olimex SAM7-H256 header board. A testbench was programmed
into the microcontroller using the C programming language. The micro-
controller was used to supply the ALU with input vectors, and record
the responses. The microcontroller itself was connected to a computer via
USB, and the testbench program was controlled from the computer by is-
suing commands over the microcontroller’s UART interface. Using the
same interface, the microcontroller could transmit the test results back to
the computer, displaying the results live on the computer screen.

The Thurlby Thandar PL330DP DC voltage source was used to
provide varying supply voltages for the ALU. Signals on the PCB were
probed using an Agilent Technologies DSO6034A oscilloscope. Current
consumption was measured with an Agilent Technologies 34401A digital
multimeter.

4.1 PCB Design

The PCB was designed using CADSTAR Design Editor version 13.0
and PREditor XR version 1.13.DB.33, by Zuken Ltd. The PWB was
manufactured by an external supplier. SMD components were placed
manually on the board, and soldered in place using a vapor phase reflow
oven[15]. Through-hole mounted pin rows were soldered manually. The
finished PCB is shown in figure 4.1 on the next page.
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Figure 4.1: Top: Photograph of the finished PCB. Bottom: Photograph of
the finished PCB with microcontroller header board and lab equipment
attached, during a testing run.
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41.1 Schematic

A top sheet view of the PCB schematic is shown in figure 4.2 on the
following page. Because of the sheer number of signals, signal names
have been omitted for visibility. For full page views of the entire schematic
including subsheets, see appendix B on page 81.

The microcontroller header board (see appendix C on page 89 for
details) is mounted on the two parallel pin rows CNEXT1 and CNEXT2,
at the bottom left in the schematic. The microcontroller’s I/O banks
operate at 3.3V, whereas the ALU operates with voltages of 1.2V and
below. Signals travelling from the microcontroller to the ALU chip are
passed through 1kQ) potentiometers (design sheets STEPDOWN_CONTR,
STEPDOWN_A, and STEPDOWN_B) before entering the pads on the
chip. The potentiometers allow manual adjustment of the input voltage
levels.

The voltage level on the return signals from the ALU chip to the
microcontroller must also be adjusted, but this time it’s the other way
around. The output signals from the chip are fed into an array of high
speed voltage comparators (design sheet STEPUP), which in turn drive the
3.3V microcontroller inputs. The chosen comparators are called MAX964,
produced by Maxim Integrated. The MAX964 is a quad comparator
IC, featuring a built-in 50mV hysteresis. The hysteresis reduces the
susceptibility to signal noise on the comparator inputs, and helps to ensure
glitch-free transitions between voltage levels[22].

The microcontroller header board has an on-board power regulator
that draws power from the USB interface. The regulator provides
supply voltage for both the header board itself and the MAX964 voltage
comparators on the PCB. To provide a steady supply voltage during signal
transitions, a 100nF decoupling capacitor is connected to the Vpp input of
each comparator 1C[24].

PVpp and CVpp for the ALU are supplied by an external voltage
source. On the PCB, these voltage references are connected to single-pin
test points, to allow easy connectivity with the external equipment. Both
PVpp and CVpp have decoupling capacitors to stabilize the voltage. Each
power pin is connected to a 100nF and a InF capacitor in parallel. The
100nf capacitors act as charge reservoirs to minimize voltage loss during
current transients, and the 1nF capacitors minimize potential noise[7].

The comparators require a reference voltage to act as a switching
threshold. In our case, each comparator output should switch value
when the respective ALU output voltage crosses @. For example, if the
ALU Vpp is 1.2V, the switching threshold would be 0.6V. On the PCB,
this switching threshold is provided by a voltage divider (design sheet
STEPUP), composed of two 1k() resistors connected in series between
ALU PVpp and ground. A 100nF capacitor is placed in parallel with the
resistor to ground, stabilizing the reference voltage.
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Figure 4.2: Top level sheet of the PCB schematic.

4.1.2 Layout

The layout of the PCB can be seen in figure 4.1.2 on the next page. For a
tull page view, see appendix B on page 81. There are 2 electrical layers,
where a ground plane fills most of the bottom layer[8]. In the figure, the
top layer is depicted in red, and the bottom layer is depicted in green. The
PCB substrate is standard FR-4.

The board is designed for ease of testing, not high performance.
As such, the board is quite large for its relatively small number of
components, and there is a lot of unused space. Pin rows and jumpers are
used to provide access points for the test equipment and voltage sources.
The ALU input tracks, as well as CVpp, can be physically disconnected if
necessary, by removing the appropriate jumper.

The physical dimensions of the board are 160mm x 100mm. Nominal
track widths are Imm for power/ground, and 0.30mm for signals.
Necked track width for power/ground is 0.25mm, for entry/exit to small
soldering pads. In the design rules during layout, the copper-to-copper
minimum distance was set to 0.40mm.
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4,2 Microcontroller Interaction

The function of the microcontroller is to provide the ALU chip with
input data, record the generated outputs, and verify correct operation. In
addition, visual feedback is presented to the user during run time. This
is achieved by programming the microcontroller with testing procedures
written in the C programming language.

Separate C methods are written to test each ALU function. These
methods are implemented into a pre-existing microcontroller firmware,
previously written by PhD candidate Hdkon Hjortland at the UiO
Department of Informatics. Hjortland’s firmware already incorporates the
computer communication over USB, allowing this author to concentrate
on implementing the ALU test methods. For more information on the
underlying firmware, please see http://haakoh.at.ifi.uio.no/sam7. All of the
C source code used in the microcontroller was compiled under Linux Red
Hat version 4.1.2-52, using GCC version 4.1.2 20080704.

The complete test method source code with relevant header file is listed
in appendix D on page 93. The program flow of each test method is as
follows:

¢ Initialize microcontroller I/O

¢ Set the ALU input S (Select) to the appropriate value. 000 for NOT,
001 for NAND, 010 for AND etc.
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¢ Set ACK high and then low again to reset the ALU output register,
in case the chip was power cycled

¢ Loop through ALU input A values

— Loop through ALU input B values

* Send current A and B values and REQ

* Wait for REQOUT from the ALU. If REQOUT is received:
- Read ALU output
- Set REQ low

- Set ACK high, wait until REQOUT goes low, and set
ACK low

- Check validity of output data, and report any errors to
user

+ If REQOUT is not received:
- Set REQ low
- Increment wait timer and reset A and B to 0
- Notify user

+ Wait a little while before next data set. Specified by the wait
timer

— Report number of successful runs for current A value to user

The test program is self-timing, and determines the maximum speed
of the ALU during run time. When the program first executes, the wait
timer is 0, which means the program will attempt to send a new data set
as soon as the previous data set has been processed. In the event that the
ALU has not had enough time after a data set to get ready for the next
set (precharge time), REQOUT will not go high when REQ is sent to the
ALU. In this case, the test program will abort the current data set, and
try again from the start with a longer wait timer. This process may repeat
many times, continually lowering the number of attempted data sets per
second, until the maximum operating speed has been found.
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Chapter 5

Results

By running the microcontroller test program repeatedly and varying the
ALU voltage, the timing results shown in tables 5.1-5.5 were obtained.
The voltages shown in the first columns indicate both ALU Vpp and input
voltage range, fine-tuned by adjusting the potentiometers. The columns
marked IN->OUT indicate the time between a REQ was sent to the ALU,
and the ALU responded with a REQOUT. The columns marked Lap time
indicate the time between each data set. The final columns, marked Errors
indicate whether or not bit errors were recorded during that particular
test run. The timing intervals were measured using the oscilloscope, by
probing the REQ and REQOUT signal tracks. Note that in table 5.3, no
timing data is presented for the lowest voltage ranges. For these testing
runs, denoted by X in the table, the ALU did not respond with a REQOUT
when REQ was sent from the microcontroller.

The static current consumption of the chip for varying supply voltages
is shown in table 5.6 on page 58. Pad- and core static current consumption
plotted together is shown in figure 5.1 on page 59.
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NOT

IN->OUT | Lap time | Errors
1.20V | 26.0ns 35.6ys Yes
1.15V | 23.6ns 66.0us Yes
1.10V | 25.4ns 62.4us Yes
1.05V | 27.2ns 63.0us Yes
1.00V | 30.6ns 60.0us Yes
0.95V | 33.6ns 55.0us Yes
0.90V | 36.4ns 52.0us Yes
0.85V | 43.2ns 42 .4us Yes
0.80V | 53.2ns 34.0us Yes
0.75V | 60.8ns 34.2us Yes
0.70V | 78.0ns 34.0us Yes
0.65V | 103.0ns 34.4us Yes
0.60V | 155.0ns 34.4us Yes
0.55V | 232.0ns 34.4us Yes
0.50V | 416.0ns 34.4us Yes
0.45V | 888.0ns 34.6us Yes
0.40V | 2.42us 36.2us Yes

Table 5.1: ALU chip timing measurements for the NOT function.

AND NAND

IN->OUT | Lap time | Errors | IN->OUT | Lap time | Errors
1.20V | 23.6ns 123.0us No 22.2ns 119.0us No
1.15V | 25.0ns 116.0us No 23.2ns 114.0us No
1.10V | 26.2ns 116.0us No 24.4ns 112.0us No
1.05V | 28.6ns 119.0us | Yes 27.4ns 113.0us No
1.00V | 30.8ns 121.0us Yes 29.8ns 112.0us Yes
0.95V | 35.2ns 119.0us Yes 32.4ns 109.0us Yes
0.90V | 39.2ns 128.0us Yes 37.2ns 121.0us Yes
0.85V | 44.8ns 120.0us | Yes 44.0ns 115.0us Yes
0.80V | 52.0ns 118.0us | Yes 50.8ns 110.0us Yes
0.75V | 64.8ns 112.0us | Yes 62.8ns 110.0us Yes
0.70V | 82.0ns 112.1us Yes 79.0ns 111.0us Yes
0.65V | 113.0ns | 108.0us Yes 108.0ns | 112.1pus Yes
0.60V | 170.0ns 102.0us Yes 158.0ns 109.0us Yes
0.55V | 274.0ns | 100.0us | Yes 240.0ns | 107.0us Yes
0.50V | 512.0ns 94.0us Yes 452.0ns | 102.0us Yes
0.45V 1.1us 86.0us Yes 956.0ns 96.0us Yes
0.40V | 296pus 80.0us Yes 2.5us 89.0us Yes

Table 5.2: ALU chip timing measurements for the AND and NAND
functions.
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OR NOR

IN->OUT | Lap time | Errors | IN->OUT | Lap time | Errors
1.20V | 24.0ns 116.0us No 22.6ns 98.0us Yes
115V | 25.4ns 112.0us Yes 23.4ns 93.61s Yes
1.10V |  27.4ns 110.0us Yes 25.0ns 91.2us Yes
1.05V | 29.0ns 110.0us | Yes 27 .4ns 91.0us Yes
1.00V | 3l.4ns 110.0us | Yes 29.4ns 90.0us Yes
0.95V | 35.6ns 109.0us | Yes 33.2ns 89.0us Yes
0.90V | 39.6ns 117.0us Yes 37.6ns 96.0us Yes
0.85V | 46.4ns 111.0us Yes 42.0ns 93.0us Yes
0.80V | 55.6ns 110.0us Yes 50.8ns 94.0us Yes
0.75V | 66.8ns 111.0us | Yes 60.0ns 97.0us Yes
0.70V | 90.0ns 110.1us | Yes 78.0ns 101.0us Yes
0.65V X X X 110.0ns | 105.1us Yes
0.60V X X X X X X
0.55V X X X X X X
0.50V X X X X X X
0.45V X X X X X X
0.40V X X X X X X

Table 5.3: ALU chip timing measurements for the OR and NOR functions.

XOR XNOR

IN->OUT | Lap time | Errors | IN->OUT | Lap time | Errors
1.20V | 23.6ns 40.6us No 24.6ns 31.6us Yes
1.15V | 24.6ns 38.2us Yes 26.0ns 30.8ys Yes
1.10V | 26.8ns 37.0us Yes 27.6ns 27.0us Yes
1.05V | 29.0ns 36.4us Yes 29.0ns 20.6ys Yes
1.00V | 31.2ns 34.2us Yes 32.2ns 15.0us Yes
0.95V | 34.8ns 29.2us Yes 36.8ns 1.9us Yes
0.90V | 39.2ns 26.0us Yes 44.4ns 6.5us Yes
0.85V | 45.6ns 18.4us Yes 46.0ns 1.9us Yes
0.80V | 54.0ns 8.6ps Yes 56.4ns 1.9us Yes
0.75V | 66.4ns 3.6us Yes 72.8ns 2.2us Yes
0.70V | 85.0ns 2.1us Yes 86.0ns 2.2us Yes
0.65V | 115.0ns 2.1us Yes 119.0ns 2.2us Yes
0.60V | 171.0ns 2.1us Yes 174.0ns 2.2us Yes
0.55V | 264.0ns 2.1us Yes 264.0ns 2.2us Yes
0.50V | 484.0ns 2.4us Yes 476.0ns 2.5us Yes
0.45V 1.2us 3.0us Yes 1.1us 3.1us Yes
0.40V 3.1us 5.0us Yes 2.7us 4.8us Yes

Table 5.4: ALU chip timing measurements for the XOR and XNOR

functions.

57




ADD
IN->OUT | Lap time | Errors

1.20V | 35.6ns 96.0us Yes
1.15V | 38.0ns 100.0us Yes
1.10V | 41.6ns 98.0us Yes
1.05V | 45.0ns 98.0us Yes
1.00V | 50.0ns 100.0us Yes
0.95V | 56.4ns 98.0us Yes

090V | 62.4ns 100.1us Yes
0.85V | 74.0ns 100.0us Yes
0.80V | 88.0ns 100.0us Yes
0.75V | 107.0ns | 100.0us Yes
0.70V | 140.0ns | 100.0us Yes
0.65V | 190.0ns 100.0us Yes
0.60V | 290.0ns 100.0us Yes
0.55V | 464.0ns | 100.0us Yes
0.50V | 864.0ns | 100.0us Yes
0.45V 2.0us 100.0us Yes
0.40V 5.2us 100.4us Yes

Table 5.5: ALU chip timing measurements for the ADD function.

Core (CVDD) | Pads (PVDD)
120V | 47.0uA 696.9A
115V | 41.8uA 665.51A
110V | 37.2uA 620.9A
105V | 32.8uA 569.3pA
1.00V | 28.8uA 480.61A
0.95V |  24.7uA 462.3uA
0.90V |  20.8uA 452.8uA
0.85V |  17.3uA 409.8uA
0.80V |  14.1uA 386.04A
0.75V |  11.5uA 367.61A
0.70V 8.7uA 332.5uA
0.65V 6.41A 312.6uA
0.60V 44uA 279.8uA
0.55V 2.7uA 253.61A
0.50V L6jA 229.3uA
0.45V 0.8pA 180.811A
0.40V 0.4uA 73.1uA

Table 5.6: ALU chip static current consumption.
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Figure 5.1: Plot of pad- and core static current consumption vs. supply
voltage.
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In figure 5.2 on the facing page we see a screenshot of the oscilloscope
during an XOR operation, showing the REQ and ACK signals.

* Trace 1 (yellow): The REQIN signal from the microcontroller to the
ALU.

e Trace 2 (green) : The REQOUT signal from the ALU to the
comparator.

* Trace 3 (purple): The REQOUT signal from the comparator the
microcontroller.

¢ Trace 4 (red) : The ACK signal from the microcontroller to the ALU.
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Figure 5.2: Oscilloscope screenshot showing the REQ and ACK signals
during an XOR operation at 1.2V.

In figure 5.3 on the next page we see a screenshot of the oscilloscope
during the very first XOR data set, where A = B = 0, showing the
propagation of the REQ signal.

¢ Trace 1 (yellow): The REQIN signal from the microcontroller to the
ALU.

¢ Trace 2 (green) : The internal REQ signal in the ALU, between the
XOR cells and the output register.

e Trace 3 (purple): The REQOUT signal from the ALU to the
comparator.

* Trace 4 (red) : The REQOUT signal from the comparator the
microcontroller.
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Figure 5.3: Oscilloscope screenshot showing the propagation of Request
during the very first XOR data set at 1.2V.

In figure 5.4 on the facing page we see a screenshot of the oscilloscope
during the very last XOR data set, where A = B = 255, showing the
propagation of the REQ signal.

¢ Trace 1 (yellow): The REQIN signal from the microcontroller to the
ALU.

¢ Trace 2 (green) : The internal REQ signal in the ALU, between the
XOR cells and the output register.

* Trace 3 (purple): The REQOUT signal from the ALU to the
comparator.

e Trace 4 (red) : The REQOUT signal from the comparator the
microcontroller.
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Figure 5.4: Oscilloscope screenshot showing the propagation of Request
during the very last XOR data set at 1.2V.

In figure 5.5 on the next page we see a screenshot of the oscilloscope
during an OR operation, where A = 0 and B = 16, showing an error in
ALU output bit 3.

¢ Trace 1 (yellow): The REQIN signal from the microcontroller to the
ALU.

¢ Trace 2 (green) : The OUT3 signal from the ALU to the comparator.

¢ Trace 3 (purple): The OUT3 signal from the comparator to the
microcontroller.

* Trace 4 (red) : The ACK signal from the microcontroller to the ALU.
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Figure 5.5: Oscilloscope screenshot showing an error in bit 3 of the ALU
output during an OR data set at 1.2V.
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Chapter 6

Discussion

6.1 Internal Request to the Output Register

When a REQIN signal is sent to the ALU, it will be propagated by the
instruction decoder to one of the DCVSL subcircuits. When the subcircuit
has processed the input data, the completion generator connected to
it will send a request to the output register, which will then read the
data into the latches, and trigger the REQOUT signal. This request
propagation is shown in figure 5.3 on page 62. When REQIN goes low
again, the same completion generator output will transition from 1 to 0.
However, because REQIN is 0, the transmission gate connected to the
completion generator will be disabled, and the completion generator will
be virtually disconnected (high impedance) from the output register by
the transmission gate. As a consequence, the request signal to the output
register is never actively pulled low after a data set has been processed.
The output register cannot accept new data until the request goes low
again, which is why we see lap times in the order of microseconds instead
of nanoseconds in tables 5.1-5.5. After each data set, the internal request
line to the output register will eventually transition back to 0 because
of leakage currents through the 8 transmission gates attached, but the
operating speed of the ALU is greatly affected.

This design error could easily be corrected by connecting a standby
pull-down NMOS transistor to the internal request line. The gate of this
transistor would be connected to ALU REQIN, which is already generated
internally in the instruction decoder.

6.2 Single-bit Errors in the Output Data

In addition to the lack of an active pull-down on the internal request, there
appears to be issues with the data lines to the output register. As we
can see in tables 5.1-5.5, there are many bit errors in the output stream,
especially at lower supply voltages. The errors manifest as single-bit
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misses, seemingly uncorrelated to any specific pattern of input data. An
example of such an error, during an OR operation, is shown in figure 5.5
on page 64. The second trace (green) shows the value of ALU output bit
3. During this particular instruction, A = “00000000" and B = “00010000’,
so output bit 3 should be 0 when REQ (yellow trace) goes high. Instead,
output bit 3 stays high while REQ is high, and transitions to 0 when REQ
goes low.

A falling edge on the REQ signal should in theory not affect the data
outputs, as is the case whenever no output errors occur. It is possible that
stray parasitics in the long internal conducting lines cause the glitches that
are observed here[5].

6.3 Schematic Errors in the Kogge-Stone Adder

In the design of the Kogge-Stone adder, the P (Propagate) inputs to the
bottom cells are connected to the mid cells directly above, instead of the
top cells. A schematic with these errors present is shown in figure 6.1 on
the facing page. Figure 3.9 on page 24 shows the correct schematic. This
design error was uncovered during simulation, but unfortunately the chip
layout was already delivered to TSMC for manufacturing. Because of this
error, the adder will not produce the correct sum whenever carries are
generated.
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Figure 6.1: Schematic view of the Kogge-Stone adder with errors.

6.4 Measuring Current Consumption

In table 5.6 on page 58 and figure 5.1 on page 59 the static current
consumption of the ALU chip can be observed. However, due to
the limited sensitivity and temporal resolution of the lab equipment,
dynamic current consumption could not be measured. A possible solution
to this problem is to include current-sensing circuitry on the chip, as
demonstrated in [1].

6.5 Irregularities in Layout Cell Size

When implementing layout blocks, especially larger ones such as the
adder in 3.9 on page 24, it can be beneficial to first determine a standard
size for the underlying cells and logic gates. If all gates are designed using
the same height and width, fitting them together in larger blocks is much
easier, and may in the end result in less area overhead. The adder designed
in this thesis contains a lot of unused space between cells, because of small
variations in size in the smaller cells. As bigger and bigger blocks are fitted
together, the severity of these initially small variations increase, eventually
leading to large offsets in cell placement.
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6.6 Lower limit of the Supply Voltage

As shown in the results, no data is logged for ALU supply voltages lower
than 0.40V. Attempts were made to lower the supply voltage further than
0.40V, but this resulted in uncontrollable oscillations on the input lines
to the ALU. As we can see in figures 5.2-5.5, considerable ringing occurs
on the request input when the voltage comparators switch output values.
Steps taken to reduce the susceptibility to noise on the input lines, such
as using lower resistance potentiometers, and better separation of high
voltage and low voltage PCB tracks, could result in increased stability,
enabling the ALU to be tested at lower voltages.
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Chapter 7

Conclusion

In this thesis, an 8-bit differential asynchronous ALU designed in the 90nm
process from TSMC has been constructed and presented. A test bench has
been created, using a custom built PCB and microcontroller firmware.

Future work should include rigorous simulation runs of the ALU to
determine the origin of the single-bit data errors. Parasitic extraction
should be performed, to investigate the cause of potential crosstalk
between signals.

The layout of the ALU should be optimized, to reduce the total
occupied chip area. Design errors in the pathway of the request signal
should be corrected, to realize the true performance potential of the ALU.
The instruction set of the ALU could be extended with new arithmetic
functions, such as multiplication and division.

A software test bench could be made, to verify and improve on the
ALU design without the need for a physical chip.
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Appendix A

Chip package with bonding
diagram and padframe

For access to Cadence Virtuoso source files, please contact this author or
thesis supervisor Philipp Héfliger.
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Figure A.1: Full view of ALU layout, not including pad connections.
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Figure A.2: Full view of ALU layout inserted into the padframe.
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Figure A.4: Data sheet for the chip package showing physical dimensions.
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Appendix B

PCB full schematics and layout
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Figure B.2: PCB schematic, design sheet STEPDOWN_CONTR, showing
potentiometers for the Request-, Acknowledge- and Select signals.
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Figure B.3: PCB schematic, design sheet STEPDOWN_A, showing
potentiometers for ALU input vector A.

84



.
-
e
&
il
=
N
+
=
5
2

Figure B.4: PCB schematic, design sheet STEPDOWN_B, showing poten-
tiometers for ALU input vector B.
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Figure B.5: PCB schematic, design sheet STEPUP, showing the voltage
comparators for the ALU outputs.
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Appendix C
Olimex SAM7-H256 header board
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Figure C.1: Bottom view of the SAM7-H256 header board, showing the
AT91SAM7S256 microcontroller, two pin rows for interconnect, and the
USB port on the left.
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Appendix D

Microcontroller C code and
relevant header files

Below is Hdkon Hjortland’s header file for the Olimex SAM7-H256 board,
modified by this author to include I/O addresses for use with the ALU
chip.

/>(-********>(-***********>(->(->F>F>(->(-***X—***X—************************

+ Copyright (C) 2008 Hikon A. Hjortland <haakoh@ifi.uio.no>

* You may use all or parts of this code any way you want. You
can even remove

* the copyright mnotice and these conditions. There is NO
WARRANTY, to the

+ extent permitted by law.
EECR I R R R R O R R R R R R R R R R R R R R R R R R R */

/>(- LRI R R R R R I I I I S R R R R

+ Edited by Harald S. Furuseth for use in master thesis , fall
2012

%k Sk K ok Xk % K ok X ok Sk K ok ¥ b % K ok ¥ o X K b ¥ ok % K ok ¥ ok ¥ K Ok ¥ ok ¥k ¥ ¥ ok ¥ ok % >6/

#ifndef _BOARD H
#define BOARD H

#include "sam7.h"
#include "misc.h"

[1117177 777777777777 7777777777777777777777777777777777777777

// Master Clock

#define EXT_OSC 18432000 // External oscillator
MAINCK

#define MCK 48054857 // MCK (PLLRC div by 2)

[ 7 7777777777777 7777777777777 777777777777777777777777

// Peripherals in use

#define pPIO AT91C_BASE_PIOA

#define pSPI AT91C_BASE_SPI
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30
31
32
33
34
35

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

#define pUSART AT91C_BASE_USO

117117777777 7777 77777 7777777777777777777777777777777777777

// PIO pins in use

// Examples :

#define PIO_PA8_LED AT91C_PIO_PAS /* LED
on Olimex SAM7-H256 etc. =/

#define PIO_PA5 Ledl AT91C_PIO_PA5

#define PIO_PA6_Led2 AT91C_PIO_PA6

#define PIO_PA7_Led3 AT91C_PIO_PA7

#define PIO_PA18_Btnl AT91C_PIO_PA18

#define PIO_PA19_Btn2 AT91C_PIO_PA19

#define PIO_PA20_Btn3 AT91C_PIO_PA20

#define PIO_PA21_Btn4 AT91C_PIO_PA21

#define PIO_PA28 PCBversionBit0 AT91C_PIO_PA28

#define PIO_PA29 PCBversionBitl AT91C_PIO_PA29
#define PIO_PA30_PCBversionBit2 AT91C_PIO_PA30
#define PIO_PA31_PCBversionBit3 AT91C_PIO_PA31
#define PA17_PCK1_ClockOutput AT91C_PA17_PCK1
[0 77777777777 77777777777777777777777777777777777777777

// Memory information
#define SRAM BASE ((void =*)0x00200000)
#define FLASH BASE ((void =*)0x00100000)

#define TEXT_SECTION_SIZE ((int)&_etext)
//

// ALU Definitions

//

#define REQ MASK 0x10000000 // PA28

#define ACK MASK 0x08000000 // PA27
#define S _ALL_MASK 0x07000000 // PA26—24
#define A_ALL MASK 0x000000FF // PA7-0
#define B ALL MASK 0x0000FF00 // PA15-8
#define REQOUT MASK 0x40000000 // PA30
#define OFOUT MASK 0x20000000 // PA29
#define OUT 7TO1_MASK 0x00FE0000 // PA23-17
#define OUT0O MASK  0x80000000 // PA31

#endif // _BOARD_H

Below is the C code for the method to test the XOR function on the
ALU. The other test methods are not shown in this appendix, as they are
virtually identical to this one. The only difference is the C operator used in
the code to verify the ALU output (Bitwise NOT, bitwise AND etc.). Also,
the C method to test the NOT function uses a single for-loop instead of a
double for-loop when generating input vectors, as the NOT function only
reads ALU input channel A.

1| // Tests the XOR opcode by running through all input A values

from 0 to 255, and for each A input, running through B = 0 fto

94




10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36

37

38
39
40
41

42
43

44
45

255, and reporting the results over UART
void testXOR () {

// Power Management Controller (PMC): Enable PIO clock
AT91F_PMC_EnablePeriphClock (AT91C_BASE_PMC, 1 << AT91C_ID_PIOA

)

// PIO Output Enable Register — Enable output for REQ, ACK, S,
A and B

pPIO—PIO_OER = REQ MASK | ACK MASK | S_ALL MASK | A_ALL MASK
| B_ALL_MASK;

// PIO Clear Output Data Register — Set all outputs low
pPIO—PIO_CODR = O0xFFFFFFFF;

unsigned long j;

// Set S = 101" (XOR)
pPIO—PIO_SODR = 0x05000000 ;

// Set ACK high and then low again, to clear the ALU output
register

for (j = 3000000; j !'= 0; j— ); // wait a while

pPIO—PIO_SODR = ACK MASK;

for (j = 3000000; j !'= 0; j— ); // wait a while

pPIO—PIO_CODR = ACK MASK;

for (j = 3000000; j !'= 0; j— ); // wait a while

// Initialize input and output data, success counter and
Request OK boolean

unsigned long input_A = 0x00000000;

unsigned long input_B;

unsigned long output;

unsigned short nrSuccesses;

short REQOK;

// Loop through all A inputs from 0 to 255
while (input_A != 0x00000100) {
input_B = 0x00000000; // Reset input B
nrSuccesses = 0;
while (input_B != 0x00010000) f{ // Loop through all B
inputs from 0 to 255
pPIO—PIO_SODR = (input_A | input_B); // Set ALU input

data
pPIO—>PIO_SODR = REQ MASK; // Set REQ high
REQOK = 0;
for (j = 300000; j !'= 0; j— ) | // Wait for REQOUT

to go high. Will time out eventually.
if ((pPIO—PIO_PDSR & REQOUT MASK) != 0) { // If REQOUT

is high
REQOK = 1;
break; // Exit for—loop

}
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}

if (REQOK) ({ // If a REQOUT was
received from the ALU
output = pPIO—PIO_PDSR; // Read ALU output
pPIO—PIO_CODR = REQ MASK; // Set REQ low
pPIO—PIO_SODR = ACK MASK; // Set ACK high

}

while ((pPIO—PIO_PDSR & REQOUT MASK) != 0) {} // Wait
until REQOUT goes low
pPIO—PIO_CODR = ACK MASK; // Set ACK low

if (((output >> 31) | ((output & OUT_7TOl_MASK) >> 16))
== (input_A ~ (input_B >> 8))) { // If ALU output is
bitwise A XOR B

nrSuccesses++; // Increment success counter

)

else {

// Send great fail over UART
usb_print("Testing A = ");
usb_print_int (input_A);
usb_print(", B = ");
usb_print_int (input_B >> 8);
usb_print(": Fail! ALU output = ");
usb_print_int (((output >> 31) | ((output &
OUT_7TO1_MASK) >> 16)));

usb_print(", unprocessed output = ");
usb_print_hex (output) ;
usb_println (" ");

}

pPIO—PIO_CODR = input_B; // Clear input B
input_B += 0x00000100; // Increment input B
for (j = ALUWait; j != 0; j— ); // wait a while

else { // If a REQOUT was not received

from the ALU

pPIO—>PIO_CODR = REQ MASK; // Set REQ low

ALUWait++; // Increment wait timer

pPIO—PIO_CODR = (input_A | input_B); // Clear ALU input
data

input_A = 0; // Reset input A to 0

input_B = 0; // Reset input B to 0

nrSuccesses = 0; // Reset success counter to
0

//Send notification over UART

usb_print ("Wait timer too low, increasing to ");
usb_print_int (ALUWait) ;

usb_println (" ");

for (j = ALUWait; j !'= 0; j— ); // wait a while
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103}

// Send results over UART

usb_print ("Successful runs for A = ");
usb_print_int (input_A);

usb_print(": ");

usb_print_int (nrSuccesses);
usb_println (" ");

pPIO—PIO_CODR = input_A; // Clear input A
input_A++; // Increment input A
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